diff options
-rw-r--r-- | src/ChangeLog | 16 | ||||
-rw-r--r-- | src/interp/c-util.boot | 7 | ||||
-rw-r--r-- | src/interp/compiler.boot | 20 | ||||
-rw-r--r-- | src/interp/define.boot | 4 | ||||
-rw-r--r-- | src/interp/g-opt.boot | 4 | ||||
-rw-r--r-- | src/interp/wi1.boot | 4 | ||||
-rw-r--r-- | src/interp/wi2.boot | 8 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 2632 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 4500 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1335 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10514 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 33604 |
12 files changed, 26346 insertions, 26302 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index bcab5bca..684720ba 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,5 +1,21 @@ 2010-06-30 Gabriel Dos Reis <gdr@cs.tamu.edu> + * interp/c-util.boot (giveVariableSomeValue): New. + * interp/compiler.boot (setqMultiple): Use it. + (compColon): Likewise. + (compRetractGuard): Likewise. + (compRecoverDomain): Likewise. + (defineMatchScrutinee): Likewise. + (compStepIterator): Likewise. + (compIterator): Likewise. + (compUnnamedMapping): Likewise. + * interp/define.boot (giveFormalParametersValues): Likewise. + * interp/wi1.boot (setqMultiple): Likewise. + * interp/wi2.boot (compIterator): Likewise. + (smallIntegerStep): Likewise. + +2010-06-30 Gabriel Dos Reis <gdr@cs.tamu.edu> + * algebra/vector.spad.pamphlet (LinearElement): New. 2010-06-30 Gabriel Dos Reis <gdr@cs.tamu.edu> diff --git a/src/interp/c-util.boot b/src/interp/c-util.boot index 1403eaf8..5a42c2f0 100644 --- a/src/interp/c-util.boot +++ b/src/interp/c-util.boot @@ -46,6 +46,7 @@ module c_-util where getFunctionReplacement: %Symbol -> %Form getSuccessEnvironment: (%Form,%Env) -> %Env getInverseEnvironment: (%Form,%Env) -> %Env + giveVariableSomeValue: (%Symbol,%Mode,%Env) -> %Env --% @@ -465,6 +466,12 @@ getInverseEnvironment(a,e) == a is ["not",a'] => getSuccessEnvironment(a',e) e +++ Give some abstract value to the variable `v' of mode `m' in `e'. +++ Return the resulting environment. +giveVariableSomeValue(x,m,e) == + put(x,'value,[genSomeVariable(),m,nil],e) + + printEnv E == for x in E for i in 1.. repeat for y in x for j in 1.. repeat diff --git a/src/interp/compiler.boot b/src/interp/compiler.boot index 6fa7b699..f412c078 100644 --- a/src/interp/compiler.boot +++ b/src/interp/compiler.boot @@ -865,7 +865,7 @@ setqMultiple(nameList,val,m,e) == -- 1.1. exit if result is a list m1 is ["List",D] => for y in nameList repeat - e:= put(y,"value",[genSomeVariable(),D,$noEnv],e) + e:= giveVariableSomeValue(y,D,e) convert([["PROGN",x,["%LET",nameList,g],g],m',e],m) -- 2. verify that the #nameList = number of parts of right-hand-side selectorModePairs:= @@ -1536,7 +1536,7 @@ compColon([":",f,t],m,e) == put(f,"mode",t,e) if not $bootStrapMode and $insideFunctorIfTrue and makeCategoryForm(t,e) is [catform,e] then - e:= put(f,"value",[genSomeVariable(),t,$noEnv],e) + e := giveVariableSomeValue(f,t,e) ["/throwAway",getmode(f,e),e] unknownTypeError name == @@ -1738,7 +1738,7 @@ coerceSuperset(T,sub) == T'.rest.first := "$" T' pred := isSubset(sub,T.mode,T.env) => - [["%Retract",T.expr,sub,pred],sub,T.env] + [["%retract",T.expr,sub,pred],sub,T.env] nil compCoerce1(x,m',e) == @@ -1983,7 +1983,7 @@ compRetractGuard(x,t,sn,sm,e) == else return stackAndThrow('"%1bp is not retractable to %2bp",[sm,t]) -- 2. Now declare `x'. [.,.,e] := compMakeDeclaration(x,t,e) or return nil - e := put(x,"value",[genSomeVariable(),t,$noEnv],e) + e := giveVariableSomeValue(x,t,e) -- 3. Assemble result. [caseCode, [[x,restrictCode]],e,envFalse] @@ -2000,7 +2000,7 @@ compRecoverDomain(x,t,sn,e) == -- 2. Declare `x'. originalEnv := e [.,.,e] := compMakeDeclaration(x,t,e) or return nil - e := put(x,"value",[genSomeVariable(),t,$noEnv],e) + e := giveVariableSomeValue(x,t,e) -- 3. Assemble the result [caseCode,[[x,['%tail,sn]]],e,originalEnv] @@ -2082,7 +2082,7 @@ defineMatchScrutinee(m,e) == where defTemp(m,e) == t := gensym() [.,.,e] := compMakeDeclaration(t,m,e) - [t,put(t,"value",[genSomeVariable(),m,$noEnv],e)] + [t,giveVariableSomeValue(t,m,e)] ++ Generate code for guard in a simple pattern where ++ `sn' is the name of the temporary holding the scrutinee value, @@ -2415,7 +2415,7 @@ compStepIterator(index,start,final,inc,e) == joinIntegerModes(startMode,finalMode,e) if get(index,"mode",e) = nil then [.,.,e] := compMakeDeclaration(index,indexMode,e) or return nil - e:= put(index,"value",[genSomeVariable(),indexMode,$noEnv],e) + e := giveVariableSomeValue(index,indexMode,e) [["STEP",index,start,inc,:final],e] compIterator(it,e) == @@ -2432,7 +2432,7 @@ compIterator(it,e) == stackMessage('"mode: %1pb must be a list of some mode",[m]) if null get(x,"mode",e) then [.,.,e]:= compMakeDeclaration(x,mUnder,e) or return nil - e:= put(x,"value",[genSomeVariable(),mUnder,$noEnv],e) + e:= giveVariableSomeValue(x,mUnder,e) [y'',m'',e] := coerce([y',m,e], mOver) or return nil [["IN",x,y''],e] it is ["ON",x,y] => @@ -2445,7 +2445,7 @@ compIterator(it,e) == stackMessage('"mode: %1pb must be a list of other modes",[m]) if null get(x,"mode",e) then [.,.,e]:= compMakeDeclaration(x,m,e) or return nil - e:= put(x,"value",[genSomeVariable(),m,$noEnv],e) + e:= giveVariableSomeValue(x,m,e) [y'',m'',e] := coerce([y',m,e], mOver) or return nil [["ON",x,y''],e] it is ["STEP",index,start,inc,:optFinal] => @@ -2516,7 +2516,7 @@ compUnnamedMapping(parms,source,target,body,env) == savedEnv := env for p in parms for s in source repeat [.,.,env] := compMakeDeclaration(p,s,env) - env := put(p,'value,[genSomeVariable(),get(p,'mode,env),nil],env) + env := giveVariableSomeValue(p,get(p,'mode,env),env) T := comp(body,target,env) or return nil [.,fun] := optimizeFunctionDef [nil,["LAMBDA",parms,T.expr]] fun := finishLambdaExpression(fun,env) diff --git a/src/interp/define.boot b/src/interp/define.boot index ad52ec88..039f1618 100644 --- a/src/interp/define.boot +++ b/src/interp/define.boot @@ -332,8 +332,8 @@ getTargetFromRhs(lhs,rhs,e) == (compOrCroak(rhs,$EmptyMode,e)).mode giveFormalParametersValues(argl,e) == - for x in argl repeat - e:= put(x,'value,[genSomeVariable(),get(x,'mode,e),nil],e) + for x in argl | IDENTP x repeat + e := giveVariableSomeValue(x,get(x,'mode,e),e) e diff --git a/src/interp/g-opt.boot b/src/interp/g-opt.boot index 6786bbbf..1670e994 100644 --- a/src/interp/g-opt.boot +++ b/src/interp/g-opt.boot @@ -659,7 +659,7 @@ optCollectVector form == ++ Translate retraction of a value denoted by `e' to sub-domain `m' ++ defined by predicate `pred', -optRetract ["%Retract",e,m,pred] == +optRetract ["%retract",e,m,pred] == atom e => ["check-subtype",substitute(e,"#1",pred),MKQ m,e] g := gensym() ["LET",[[g,e]],["check-subtype",substitute(g,"#1",pred),MKQ m,g]] @@ -682,7 +682,7 @@ for x in '( (%call optCall) _ (_| optSuchthat)_ (CATCH optCatch)_ (COND optCond)_ - (%Retract optRetract)_ + (%retract optRetract)_ (%CollectV optCollectVector)_ (mkRecord optMkRecord)_ (RECORDELT optRECORDELT)_ diff --git a/src/interp/wi1.boot b/src/interp/wi1.boot index e67cc234..f8f7c5c9 100644 --- a/src/interp/wi1.boot +++ b/src/interp/wi1.boot @@ -605,7 +605,7 @@ setqMultiple(nameList,val,m,e) == [x,m',e]:= convert(T,m) or return nil --1.1 exit if result is a list m1 is ["List",D] => - for y in nameList repeat e:= put(y,"value",[genSomeVariable(),D,$noEnv],e) + for y in nameList repeat e := giveVariableSomeValue(y,D,e) convert([["PROGN",x,["%LET",nameList,g],g],m',e],m) --2. verify that the #nameList = number of parts of right-hand-side selectorModePairs:= @@ -730,7 +730,7 @@ compColon([":",f,t],m,e) == put(f,"mode",t,e) if not $bootStrapMode and $insideFunctorIfTrue and makeCategoryForm(t,e) is [catform,e] then - e:= put(f,"value",[genSomeVariable(),t,$noEnv],e) + e:= giveVariableSomeValue(f,t,e) ["/throwAway",getmode(f,e),e] compConstruct(form,m,e) == (T := compConstruct1(form,m,e)) and markConstruct(form,T) diff --git a/src/interp/wi2.boot b/src/interp/wi2.boot index 451a4b70..1bd25e3b 100644 --- a/src/interp/wi2.boot +++ b/src/interp/wi2.boot @@ -761,7 +761,7 @@ compIterator(it,e) == stackMessage ["mode: ",m," must be a list or vector of some mode"] if null get(x,"mode",e) then [.,.,e]:= compMakeDeclaration(x,mUnder,e) or return nil - e:= put(x,"value",[genSomeVariable(),mUnder,e],e) + e:= giveVariableSomeValue(x,mUnder,e) markReduceIn(it, [["IN",x,y'],e]) it is ["ON",x,y] => ---------------> new <--------------------- @@ -777,7 +777,7 @@ compIterator(it,e) == stackMessage ["mode: ",m," must be a list of other modes"] if null get(x,"mode",e) then [.,.,e]:= compMakeDeclaration(x,m,e) or return nil - e:= put(x,"value",[genSomeVariable(),m,e],e) + e:= giveVariableSomeValue(x,m,e) [["ON",x,y'],e] it is ["STEP",oindex,start,inc,:optFinal] => index := markKillAll oindex @@ -805,7 +805,7 @@ compIterator(it,e) == -- markImport ['Segment,indexmode] if null get(index,"mode",e) then [.,.,e]:= compMakeDeclaration(index,indexmode,e) or return nil - e:= put(index,"value",[genSomeVariable(),indexmode,e],e) + e:= giveVariableSomeValue(index,indexmode,e) markReduceStep(it, [["STEP",markStep(index),start,inc,:optFinal],e]) it is ["WHILE",p] => [p',m,e]:= @@ -853,7 +853,7 @@ smallIntegerStep(it,index,start,inc,optFinal,e) == givenRange => givenRange nil e:= put(index,"range",range,e) - e:= put(index,"value",[genSomeVariable(),indexmode,e],e) + e:= giveVariableSomeValue(index,indexmode,e) noptFinal := final' => [final'.expr] diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index cd8ab950..4fe747fa 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2294307 . 3486852427) +(2294960 . 3486916218) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4465 . T) (-4464 . T)) +((-4467 . T) (-4466 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4461 . T) (-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4457 . T) (-4462 . T) (-4456 . T)) +((-4463 . T) (-4461 . T) (-4460 . T) ((-4468 "*") . T) (-4459 . T) (-4464 . T) (-4458 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -2119) +(-32 R -1995) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) +((|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4464))) +((|HasAttribute| |#1| (QUOTE -4466))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4464 . T) (-4465 . T)) +((-4466 . T) (-4467 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4458 . T) (-4459 . T) (-4461 . T)) +((-4460 . T) (-4461 . T) (-4463 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -2119 UP UPUP -1488) +(-40 -1995 UP UPUP -1648) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4457 |has| (-419 |#2|) (-374)) (-4462 |has| (-419 |#2|) (-374)) (-4456 |has| (-419 |#2|) (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-3795 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-3795 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3795 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3795 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-3795 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-3795 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) -(-41 R -2119) +((-4459 |has| (-419 |#2|) (-374)) (-4464 |has| (-419 |#2|) (-374)) (-4458 |has| (-419 |#2|) (-374)) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2748 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2748 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2748 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2748 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2748 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -652) (QUOTE (-576)))) (-2748 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) +(-41 R -1995) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -442) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -442) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-317)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4461 |has| |#1| (-568)) (-4459 . T) (-4458 . T)) +((-4463 |has| |#1| (-568)) (-4461 . T) (-4460 . T)) ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4464 . T) (-4465 . T)) -((-3795 (-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|))))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-861))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|))))))) +((-4466 . T) (-4467 . T)) +((-2748 (-12 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|))))))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-862))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| $ (QUOTE (-1071))) (|HasCategory| $ (LIST (QUOTE -1060) (QUOTE (-576))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4461 . T)) +((-4463 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -2119) +(-54 |Base| R -1995) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4464 . T) (-4465 . T)) +((-4466 . T) (-4467 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -4149) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -2634) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -4149) +(-62 -2634) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -4149) +(-63 -2634) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -4149) +(-64 -2634) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -4149) +(-65 -2634) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -4149) +(-66 -2634) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -4149) +(-67 -2634) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -4149) +(-68 -2634) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -4149) +(-69 -2634) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -4149) +(-70 -2634) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -4149) +(-71 -2634) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -4149) +(-72 -2634) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -4149) +(-73 -2634) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -4149) +(-74 -2634) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -4149) +(-77 -2634) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -4149) +(-78 -2634) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -4149) +(-79 -2634) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -4149) +(-80 -2634) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -4149) +(-81 -2634) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -4149) +(-82 -2634) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -4149) +(-83 -2634) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -4149) +(-84 -2634) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -4149) +(-85 -2634) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -4149) +(-86 -2634) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -4149) +(-87 -2634) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -4149) +(-88 -2634) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -4149) +(-89 -2634) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,8 +294,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-374)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4464 . T)) +((-4466 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4464 . T) ((-4466 "*") . T) (-4465 . T) (-4461 . T) (-4459 . T) (-4458 . T) (-4457 . T) (-4462 . T) (-4456 . T) (-4455 . T) (-4454 . T) (-4453 . T) (-4452 . T) (-4460 . T) (-4463 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4451 . T)) +((-4466 . T) ((-4468 "*") . T) (-4467 . T) (-4463 . T) (-4461 . T) (-4460 . T) (-4459 . T) (-4464 . T) (-4458 . T) (-4457 . T) (-4456 . T) (-4455 . T) (-4454 . T) (-4462 . T) (-4465 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4453 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4461 . T)) +((-4463 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4466 "*")))) +((|HasAttribute| |#1| (QUOTE (-4468 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4464 . T)) +((-4466 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4465 . T)) +((-4467 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-3795 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| (-576) (QUOTE (-929))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1044))) (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862))) (-2748 (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1174))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1198)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -652) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (|HasCategory| (-576) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4465 . T) (-4464 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1121))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-861))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-112) (QUOTE (-1121))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-112) (QUOTE (-102)))) +((-4467 . T) (-4466 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1122))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-112) (QUOTE (-1122))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-112) (QUOTE (-102)))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4459 . T) (-4458 . T)) +((-4461 . T) (-4460 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -392,22 +392,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -2119 UP) +(-116 -1995 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-928))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1043))) (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861))) (-3795 (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1173))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-928)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| (-117 |#1|) (QUOTE (-929))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1044))) (|HasCategory| (-117 |#1|) (QUOTE (-833))) (|HasCategory| (-117 |#1|) (QUOTE (-862))) (-2748 (|HasCategory| (-117 |#1|) (QUOTE (-833))) (|HasCategory| (-117 |#1|) (QUOTE (-862)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1174))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-929)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) (-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4465))) +((|HasAttribute| |#1| (QUOTE -4467))) (-120 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -418,15 +418,15 @@ NIL NIL (-122 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) (-123 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-124) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4465 . T) (-4464 . T)) +((-4467 . T) (-4466 . T)) NIL (-125 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -434,20 +434,20 @@ NIL NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4464 . T) (-4465 . T)) +((-4466 . T) (-4467 . T)) NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-3795 (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-130) (QUOTE (-861))) (-3795 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1122))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-2748 (-12 (|HasCategory| (-130) (QUOTE (-1122))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1122)))) (|HasCategory| (-130) (QUOTE (-862))) (-2748 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1122))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1122))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -470,13 +470,13 @@ NIL NIL (-135) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4466 "*") . T)) +(((-4468 "*") . T)) NIL -(-136 |minix| -1913 S T$) +(-136 |minix| -2703 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -1913 R) +(-137 |minix| -2703 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -498,8 +498,8 @@ NIL NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4464 . T) (-4454 . T) (-4465 . T)) -((-3795 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-4466 . T) (-4456 . T) (-4467 . T)) +((-2748 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4461 . T)) +((-4463 . T)) NIL (-147 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -522,9 +522,9 @@ NIL NIL (-148) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4461 . T)) +((-4463 . T)) NIL -(-149 -2119 UP UPUP) +(-149 -1995 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -535,14 +535,14 @@ NIL (-151 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasAttribute| |#1| (QUOTE -4464))) +((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasAttribute| |#1| (QUOTE -4466))) (-152 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-153 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4459 . T) (-4458 . T) (-4461 . T)) +((-4461 . T) (-4460 . T) (-4463 . T)) NIL (-154) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -564,7 +564,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-159 R -2119) +(-159 R -1995) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -595,10 +595,10 @@ NIL (-166 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1223))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasAttribute| |#2| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568)))) +((|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-1224))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasAttribute| |#2| (QUOTE -4465)) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568)))) (-167 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4457 -3795 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4463 |has| |#1| (-6 -4463)) (-2649 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 -2748 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4465 |has| |#1| (-6 -4465)) (-4143 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-168 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4457 -3795 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4463 |has| |#1| (-6 -4463)) (-2649 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-3795 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-360)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-928))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-928))))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-1081))) (-12 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasAttribute| |#1| (QUOTE -4463)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-360))))) +((-4459 -2748 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4465 |has| |#1| (-6 -4465)) (-4143 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2748 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-360)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-929))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-929))))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-1224)))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-1224)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-374)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4465)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198))))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-360))))) (-172 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -626,7 +626,7 @@ NIL NIL (-174) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-175) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -634,7 +634,7 @@ NIL NIL (-176 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4466 "*") . T) (-4457 . T) (-4462 . T) (-4456 . T) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") . T) (-4459 . T) (-4464 . T) (-4458 . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-177) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -651,7 +651,7 @@ NIL (-180 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-971 |#2|) (LIST (QUOTE -901) (|devaluate| |#1|)))) +((|HasCategory| (-972 |#2|) (LIST (QUOTE -902) (|devaluate| |#1|)))) (-181 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -688,7 +688,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-190 R -2119) +(-190 R -1995) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -796,23 +796,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-217 -2119 UP UPUP R) +(-217 -1995 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-218 -2119 FP) +(-218 -1995 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-219) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-3795 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| (-576) (QUOTE (-929))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1044))) (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862))) (-2748 (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1174))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1198)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -652) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (|HasCategory| (-576) (QUOTE (-146))))) (-220) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-221 R -2119) +(-221 R -1995) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -826,19 +826,19 @@ NIL NIL (-224 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) (-225 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4461 . T)) +((-4463 . T)) NIL -(-226 R -2119) +(-226 R -1995) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-227) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2642 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4130 . T) (-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-228) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -846,19 +846,19 @@ NIL NIL (-229 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4468 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) (-230 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-231 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4465 . T)) +((-4467 . T)) NIL (-232 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-4461 . T)) +((-4463 . T)) NIL (-233 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -870,7 +870,7 @@ NIL NIL (-235 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-4459 . T) (-4458 . T)) +((-4461 . T) (-4460 . T)) NIL (-236 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) @@ -882,36 +882,36 @@ NIL NIL (-238) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-4461 . T)) +((-4463 . T)) NIL (-239 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4464))) +((|HasAttribute| |#1| (QUOTE -4466))) (-240 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4465 . T)) +((-4467 . T)) NIL (-241) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-242 S -1913 R) +(-242 S -2703 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasAttribute| |#3| (QUOTE -4461)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) -(-243 -1913 R) +((|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (QUOTE (-862))) (|HasAttribute| |#3| (QUOTE -4463)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (QUOTE (-1122)))) +(-243 -2703 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) +((-4460 |has| |#2| (-1071)) (-4461 |has| |#2| (-1071)) (-4463 |has| |#2| (-6 -4463)) (-4466 . T)) NIL -(-244 -1913 A B) +(-244 -2703 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-245 -1913 R) +(-245 -2703 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3795 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-3795 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-3795 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-4460 |has| |#2| (-1071)) (-4461 |has| |#2| (-1071)) (-4463 |has| |#2| (-6 -4463)) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-374))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (-2748 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (|HasCategory| |#2| (QUOTE (-238))) (-2748 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1071))))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#2| (QUOTE (-1122))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-806)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122))))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1071))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198))))) (-2748 (|HasCategory| |#2| (QUOTE (-1071))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122)))) (|HasAttribute| |#2| (QUOTE -4463)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-246) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -922,7 +922,7 @@ NIL NIL (-248) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4457 . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-249 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -930,20 +930,20 @@ NIL NIL (-250 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-251 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-252 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-4459 . T) (-4458 . T)) +((-4461 . T) (-4460 . T)) NIL (-253 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4468 "*") |has| |#2| (-174)) (-4459 |has| |#2| (-568)) (-4464 |has| |#2| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#2| (QUOTE (-929))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-146))))) (-254) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -958,23 +958,23 @@ NIL NIL (-257 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4461 -3795 (-2311 (|has| |#4| (-1070)) (|has| |#4| (-238))) (|has| |#4| (-6 -4461)) (-2311 (|has| |#4| (-1070)) (|has| |#4| (-917 (-1197))))) (-4458 |has| |#4| (-1070)) (-4459 |has| |#4| (-1070)) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#4| (QUOTE (-374))) (-3795 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-1070)))) (-3795 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374)))) (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (QUOTE (-805))) (-3795 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (QUOTE (-861)))) (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-238))) (-3795 (|HasCategory| |#4| (QUOTE (-238))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070))))) (-3795 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#4| (QUOTE (-1121))) (-3795 (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-374)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-379)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-738)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-805)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-861)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1121))))) (-3795 (-12 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1070))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-3795 (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-3795 (|HasCategory| |#4| (QUOTE (-1070))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1121)))) (-3795 (|HasAttribute| |#4| (QUOTE -4461)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))))) +((-4463 -2748 (-2675 (|has| |#4| (-1071)) (|has| |#4| (-238))) (|has| |#4| (-6 -4463)) (-2675 (|has| |#4| (-1071)) (|has| |#4| (-918 (-1198))))) (-4460 |has| |#4| (-1071)) (-4461 |has| |#4| (-1071)) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-739))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-806))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))))) (|HasCategory| |#4| (QUOTE (-374))) (-2748 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-1071)))) (-2748 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374)))) (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (QUOTE (-739))) (|HasCategory| |#4| (QUOTE (-806))) (-2748 (|HasCategory| |#4| (QUOTE (-806))) (|HasCategory| |#4| (QUOTE (-862)))) (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (QUOTE (-379))) (-2748 (-12 (|HasCategory| |#4| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -652) (QUOTE (-576)))))) (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2748 (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1071)))) (|HasCategory| |#4| (QUOTE (-238))) (-2748 (|HasCategory| |#4| (QUOTE (-238))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1071))))) (-2748 (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#4| (QUOTE (-1122))) (-2748 (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-374)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-379)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-739)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-806)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-862)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1071)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1122))))) (-2748 (-12 (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-739))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-806))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1071))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-739))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-806))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -652) (QUOTE (-576))))) (-2748 (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -920) (QUOTE (-1198)))))) (-2748 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1071)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1071))))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-2748 (|HasCategory| |#4| (QUOTE (-1071))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1122)))) (-2748 (|HasAttribute| |#4| (QUOTE -4463)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1071)))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1071)))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -920) (QUOTE (-1198))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))))) (-258 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4461 -3795 (-2311 (|has| |#3| (-1070)) (|has| |#3| (-238))) (|has| |#3| (-6 -4461)) (-2311 (|has| |#3| (-1070)) (|has| |#3| (-917 (-1197))))) (-4458 |has| |#3| (-1070)) (-4459 |has| |#3| (-1070)) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-374))) (-3795 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3795 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-3795 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-238))) (-3795 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-1121))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121))))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-3795 (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-3795 (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (-3795 (|HasAttribute| |#3| (QUOTE -4461)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) +((-4463 -2748 (-2675 (|has| |#3| (-1071)) (|has| |#3| (-238))) (|has| |#3| (-6 -4463)) (-2675 (|has| |#3| (-1071)) (|has| |#3| (-918 (-1198))))) (-4460 |has| |#3| (-1071)) (-4461 |has| |#3| (-1071)) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))))) (|HasCategory| |#3| (QUOTE (-374))) (-2748 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1071)))) (-2748 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-806))) (-2748 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-379))) (-2748 (-12 (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2748 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1071)))) (|HasCategory| |#3| (QUOTE (-238))) (-2748 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1071))))) (-2748 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#3| (QUOTE (-1122))) (-2748 (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-739)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-806)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1122))))) (-2748 (-12 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1071))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-2748 (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -920) (QUOTE (-1198)))))) (-2748 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1071))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-2748 (|HasCategory| |#3| (QUOTE (-1071))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1122)))) (-2748 (|HasAttribute| |#3| (QUOTE -4463)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -920) (QUOTE (-1198))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (-259 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-238)))) (-260 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) NIL (-261 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4464 . T) (-4465 . T)) +((-4466 . T) (-4467 . T)) NIL (-262) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -1015,15 +1015,15 @@ NIL (-271 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-237)))) +((|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-237)))) (-272 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL (-273 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-929))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) (-274 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1068,11 +1068,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-285 R -2119) +(-285 R -1995) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-286 R -2119) +(-286 R -1995) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1095,10 +1095,10 @@ NIL (-291 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121)))) +((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122)))) (-292 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4465 . T)) +((-4467 . T)) NIL (-293 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1119,18 +1119,18 @@ NIL (-297 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4465))) +((|HasAttribute| |#1| (QUOTE -4467))) (-298 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-299 S R |Mod| -1767 -2748 |exactQuo|) +(-299 S R |Mod| -2444 -1661 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-300) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4457 . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-301) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1146,21 +1146,21 @@ NIL NIL (-304 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4461 -3795 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4458 |has| |#1| (-1070)) (-4459 |has| |#1| (-1070))) -((|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738)))) (|HasCategory| |#1| (QUOTE (-485))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-312))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485)))) (-3795 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738)))) (-3795 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-738)))) +((-4463 -2748 (|has| |#1| (-1071)) (|has| |#1| (-485))) (-4460 |has| |#1| (-1071)) (-4461 |has| |#1| (-1071))) +((|HasCategory| |#1| (QUOTE (-374))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2748 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-739)))) (|HasCategory| |#1| (QUOTE (-485))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#1| (QUOTE (-1134)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-312))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485)))) (-2748 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-739)))) (-2748 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1071)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-739)))) (-305 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102)))) (-306) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-307 -2119 S) +(-307 -1995 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-308 E -2119) +(-308 E -1995) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -1175,7 +1175,7 @@ NIL (-311 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1070)))) +((|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1071)))) (-312) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL @@ -1198,7 +1198,7 @@ NIL NIL (-317) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-318 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1208,7 +1208,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-320 -2119) +(-320 -1995) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1222,8 +1222,8 @@ NIL NIL (-323 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1043))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-861))) (-3795 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-861)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1173))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| $ (QUOTE (-146)))) (-3795 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| $ (QUOTE (-146)))))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-929))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-1044))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-833))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (-2748 (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-833))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-862)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-1174))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-929))) (|HasCategory| $ (QUOTE (-146)))) (-2748 (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-929))) (|HasCategory| $ (QUOTE (-146)))))) (-324 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1234,9 +1234,9 @@ NIL NIL (-326 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4461 -3795 (-12 (|has| |#1| (-568)) (-3795 (|has| |#1| (-1070)) (|has| |#1| (-485)))) (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) ((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-568)) (-4456 |has| |#1| (-568))) -((-3795 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-3795 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-1070))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3795 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3795 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1133)))) (-3795 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3795 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) -(-327 R -2119) +((-4463 -2748 (-12 (|has| |#1| (-568)) (-2748 (|has| |#1| (-1071)) (|has| |#1| (-485)))) (|has| |#1| (-1071)) (|has| |#1| (-485))) (-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) ((-4468 "*") |has| |#1| (-568)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-568)) (-4458 |has| |#1| (-568))) +((-2748 (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-2748 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1071)))) (|HasCategory| |#1| (QUOTE (-21))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1071)))) (|HasCategory| |#1| (QUOTE (-1071))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))))) (-2748 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1134)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (-2748 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2748 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2748 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1071)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576))))) (-2748 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))))) (-2748 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1134)))) (-2748 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))))) (-2748 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1134))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1071))) (|HasCategory| $ (LIST (QUOTE -1060) (QUOTE (-576))))) +(-327 R -1995) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1246,8 +1246,8 @@ NIL NIL (-329 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4412) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1585) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-374))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3515) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2320) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -1998) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|))))))) (-330 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1258,8 +1258,8 @@ NIL NIL (-332 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4459 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-576) (QUOTE (-804)))) +((-4461 . T) (-4460 . T)) +((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-805)))) (-333 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1267,26 +1267,26 @@ NIL (-334 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-783) (QUOTE (-804)))) +((|HasCategory| (-784) (QUOTE (-805)))) (-335 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL ((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174)))) (-336 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-337 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-338 S -2119) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-338 S -1995) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-379)))) -(-339 -2119) +(-339 -1995) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-340) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1308,54 +1308,54 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-345 S -2119 UP UPUP R) +(-345 S -1995 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-346 -2119 UP UPUP R) +(-346 -1995 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-347 -2119 UP UPUP R) +(-347 -1995 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL (-348 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-349 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-350 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-390)))) (|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) +((-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-390)))) (|HasCategory| $ (QUOTE (-1071))) (|HasCategory| $ (LIST (QUOTE -1060) (QUOTE (-576))))) (-351 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-352 S -2119 UP UPUP) +(-352 S -1995 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-374)))) -(-353 -2119 UP UPUP) +(-353 -1995 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4457 |has| (-419 |#2|) (-374)) (-4462 |has| (-419 |#2|) (-374)) (-4456 |has| (-419 |#2|) (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 |has| (-419 |#2|) (-374)) (-4464 |has| (-419 |#2|) (-374)) (-4458 |has| (-419 |#2|) (-374)) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-354 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (|HasCategory| (-930 |#1|) (QUOTE (-146))) (|HasCategory| (-930 |#1|) (QUOTE (-379)))) (|HasCategory| (-930 |#1|) (QUOTE (-148))) (|HasCategory| (-930 |#1|) (QUOTE (-379))) (|HasCategory| (-930 |#1|) (QUOTE (-146)))) (-355 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-356 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-357 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1370,33 +1370,33 @@ NIL NIL (-360) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-361 R UP -2119) +(-361 R UP -1995) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-362 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (|HasCategory| (-930 |#1|) (QUOTE (-146))) (|HasCategory| (-930 |#1|) (QUOTE (-379)))) (|HasCategory| (-930 |#1|) (QUOTE (-148))) (|HasCategory| (-930 |#1|) (QUOTE (-379))) (|HasCategory| (-930 |#1|) (QUOTE (-146)))) (-363 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-364 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-365 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (|HasCategory| (-930 |#1|) (QUOTE (-146))) (|HasCategory| (-930 |#1|) (QUOTE (-379)))) (|HasCategory| (-930 |#1|) (QUOTE (-148))) (|HasCategory| (-930 |#1|) (QUOTE (-379))) (|HasCategory| (-930 |#1|) (QUOTE (-146)))) (-366 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-367 -2119 GF) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +(-367 -1995 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1404,21 +1404,21 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-369 -2119 FP FPP) +(-369 -1995 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-370 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-371 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-372 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4461 . T)) +((-4463 . T)) NIL (-373 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1426,7 +1426,7 @@ NIL NIL (-374) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-375 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) @@ -1442,7 +1442,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-568)))) (-378 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4461 |has| |#1| (-568)) (-4459 . T) (-4458 . T)) +((-4463 |has| |#1| (-568)) (-4461 . T) (-4460 . T)) NIL (-379) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1454,7 +1454,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-374)))) (-381 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4458 . T) (-4459 . T) (-4461 . T)) +((-4460 . T) (-4461 . T) (-4463 . T)) NIL (-382 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1463,14 +1463,14 @@ NIL (-383 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121)))) +((|HasAttribute| |#1| (QUOTE -4467)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122)))) (-384 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4464 . T)) +((-4466 . T)) NIL (-385 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4459 . T) (-4458 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4461 . T) (-4460 . T)) NIL (-386 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1479,7 +1479,7 @@ NIL (-387 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) +((|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-388 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL @@ -1490,7 +1490,7 @@ NIL NIL (-390) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4447 . T) (-4455 . T) (-2642 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4449 . T) (-4457 . T) (-4130 . T) (-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-391 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1498,11 +1498,11 @@ NIL NIL (-392 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4459 . T) (-4458 . T)) +((-4461 . T) (-4460 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) (-393 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4459 . T) (-4458 . T)) +((-4461 . T) (-4460 . T)) NIL (-394) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) @@ -1514,8 +1514,8 @@ NIL NIL (-396 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4459 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) +((-4461 . T) (-4460 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) (-397 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL @@ -1523,10 +1523,10 @@ NIL (-398 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-861)))) +((|HasCategory| |#1| (QUOTE (-862)))) (-399) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-400) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1538,13 +1538,13 @@ NIL NIL (-402 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4459 . T) (-4458 . T)) +((-4461 . T) (-4460 . T)) NIL (-403) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-404 -2119 UP UPUP R) +(-404 -1995 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1568,11 +1568,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-410 -4149 |returnType| -4285 |symbols|) +(-410 -2634 |returnType| -1383 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-411 -2119 UP) +(-411 -1995 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1586,15 +1586,15 @@ NIL NIL (-414) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-415 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4447)) (|HasAttribute| |#1| (QUOTE -4455))) +((|HasAttribute| |#1| (QUOTE -4449)) (|HasAttribute| |#1| (QUOTE -4457))) (-416) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2642 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4130 . T) (-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-417 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1606,20 +1606,20 @@ NIL NIL (-419 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4451 -12 (|has| |#1| (-6 -4462)) (|has| |#1| (-464)) (|has| |#1| (-6 -4451))) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4451)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +((-4453 -12 (|has| |#1| (-6 -4464)) (|has| |#1| (-464)) (|has| |#1| (-6 -4453))) (-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-862)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-841))))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-841))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4464)) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) (-420 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-421 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4458 . T) (-4459 . T) (-4461 . T)) +((-4460 . T) (-4461 . T) (-4463 . T)) NIL (-422 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) +((|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-423 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL @@ -1628,14 +1628,14 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-425 R -2119 UP A) +(-425 R -1995 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4461 . T)) +((-4463 . T)) NIL -(-426 R -2119 UP A |ibasis|) +(-426 R -1995 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1059) (|devaluate| |#2|)))) +((|HasCategory| |#4| (LIST (QUOTE -1060) (|devaluate| |#2|)))) (-427 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1646,12 +1646,12 @@ NIL ((|HasCategory| |#2| (QUOTE (-374)))) (-429 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4461 |has| |#1| (-568)) (-4459 . T) (-4458 . T)) +((-4463 |has| |#1| (-568)) (-4461 . T) (-4460 . T)) NIL (-430 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1242))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1242)))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1243))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1243)))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) (-431 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL @@ -1675,40 +1675,40 @@ NIL (-436 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379)))) +((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379)))) (-437 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4464 . T) (-4454 . T) (-4465 . T)) +((-4466 . T) (-4456 . T) (-4467 . T)) NIL -(-438 R -2119) +(-438 R -1995) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-439 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4451 -12 (|has| |#1| (-6 -4451)) (|has| |#2| (-6 -4451))) (-4458 . T) (-4459 . T) (-4461 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4451)) (|HasAttribute| |#2| (QUOTE -4451)))) -(-440 R -2119) +((-4453 -12 (|has| |#1| (-6 -4453)) (|has| |#2| (-6 -4453))) (-4460 . T) (-4461 . T) (-4463 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4453)) (|HasAttribute| |#2| (QUOTE -4453)))) +(-440 R -1995) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL (-441 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) +((|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1134))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-442 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4461 -3795 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) ((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-568)) (-4456 |has| |#1| (-568))) +((-4463 -2748 (|has| |#1| (-1071)) (|has| |#1| (-485))) (-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) ((-4468 "*") |has| |#1| (-568)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-568)) (-4458 |has| |#1| (-568))) NIL -(-443 R -2119) +(-443 R -1995) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-444 R -2119) +(-444 R -1995) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-445 R -2119) +(-445 R -1995) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1716,10 +1716,10 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-447 R -2119 UP) +(-447 R -1995 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-48))))) +((|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-48))))) (-448) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL @@ -1748,7 +1748,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-455 R UP -2119) +(-455 R UP -1995) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1786,16 +1786,16 @@ NIL NIL (-464) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-465 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4461 |has| (-419 (-971 |#1|)) (-568)) (-4459 . T) (-4458 . T)) -((|HasCategory| (-419 (-971 |#1|)) (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-419 (-971 |#1|)) (QUOTE (-568)))) +((-4463 |has| (-419 (-972 |#1|)) (-568)) (-4461 . T) (-4460 . T)) +((|HasCategory| (-419 (-972 |#1|)) (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-419 (-972 |#1|)) (QUOTE (-568)))) (-466 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4468 "*") |has| |#2| (-174)) (-4459 |has| |#2| (-568)) (-4464 |has| |#2| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#2| (QUOTE (-929))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-146))))) (-467 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1822,7 +1822,7 @@ NIL NIL (-473 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4459 . T) (-4458 . T)) +((-4461 . T) (-4460 . T)) NIL (-474 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1830,8 +1830,8 @@ NIL NIL (-475 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4465 . T) (-4464 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-4467 . T) (-4466 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) (-476 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1860,7 +1860,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-483 |lv| -2119 R) +(-483 |lv| -1995 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1870,23 +1870,23 @@ NIL NIL (-485) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4461 . T)) +((-4463 . T)) NIL (-486 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4412) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1585) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-374))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3515) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2320) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -1998) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|))))))) (-487 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121)))) +((-4467 . T)) +((-12 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122)))) (-488 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4465 . T) (-4464 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-4467 . T) (-4466 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) (-489) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-490) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1894,29 +1894,29 @@ NIL NIL (-491 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102)))) (-492) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-493 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-494 -1913 S) +(((-4468 "*") |has| |#2| (-174)) (-4459 |has| |#2| (-568)) (-4464 |has| |#2| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#2| (QUOTE (-929))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-494 -2703 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3795 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-3795 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-3795 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-4460 |has| |#2| (-1071)) (-4461 |has| |#2| (-1071)) (-4463 |has| |#2| (-6 -4463)) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-374))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (-2748 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (|HasCategory| |#2| (QUOTE (-238))) (-2748 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1071))))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#2| (QUOTE (-1122))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-806)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122))))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1071))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198))))) (-2748 (|HasCategory| |#2| (QUOTE (-1071))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122)))) (|HasAttribute| |#2| (QUOTE -4463)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-495) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL (-496 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-497 -2119 UP UPUP R) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-497 -1995 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1926,12 +1926,12 @@ NIL NIL (-499) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-3795 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| (-576) (QUOTE (-929))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1044))) (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862))) (-2748 (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1174))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1198)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -652) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (|HasCategory| (-576) (QUOTE (-146))))) (-500 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4464)) (|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) +((|HasAttribute| |#1| (QUOTE -4466)) (|HasAttribute| |#1| (QUOTE -4467)) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (-501 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1952,34 +1952,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-506 -2119 UP |AlExt| |AlPol|) +(-506 -1995 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-507) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| $ (QUOTE (-1071))) (|HasCategory| $ (LIST (QUOTE -1060) (QUOTE (-576))))) (-508 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-509 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) (-510 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-511 R UP -2119) +(-511 R UP -1995) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-512 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4465 . T) (-4464 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1121))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-861))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-112) (QUOTE (-1121))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-112) (QUOTE (-102)))) +((-4467 . T) (-4466 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1122))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-112) (QUOTE (-1122))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-112) (QUOTE (-102)))) (-513 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1992,10 +1992,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-516 -2119 |Expon| |VarSet| |DPoly|) +(-516 -1995 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-1197))))) +((|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-1198))))) (-517 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -2007,11 +2007,11 @@ NIL (-519 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) (-520 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) (-521 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL @@ -2019,15 +2019,15 @@ NIL (-522 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) (-523 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) (-524 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) (-525 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL @@ -2039,39 +2039,39 @@ NIL (-527 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-804)))) +((|HasCategory| |#2| (QUOTE (-805)))) (-528 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-529) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-530 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146)))) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146)))) (-531 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) (-532 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-533 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4465))) +((|HasAttribute| |#3| (QUOTE -4467))) (-534 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4465))) +((|HasAttribute| |#7| (QUOTE -4467))) (-535 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4468 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) (-536) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2103,8 +2103,8 @@ NIL (-543 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| (-783) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-1121))))) -(-544 K -2119 |Par|) +((-12 (|HasCategory| (-784) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-1122))))) +(-544 K -1995 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2128,7 +2128,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-550 K -2119 |Par|) +(-550 K -1995 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2158,7 +2158,7 @@ NIL NIL (-557) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4462 . T) (-4463 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4464 . T) (-4465 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-558) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) @@ -2178,13 +2178,13 @@ NIL NIL (-562 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102)))) -(-563 R -2119) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102)))) +(-563 R -1995) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-564 R0 -2119 UP UPUP R) +(-564 R0 -1995 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2194,7 +2194,7 @@ NIL NIL (-566 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2642 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4130 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-567 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2202,9 +2202,9 @@ NIL NIL (-568) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-569 R -2119) +(-569 R -1995) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2216,39 +2216,39 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-572 R -2119 L) +(-572 R -1995 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|)))) +((|HasCategory| |#3| (LIST (QUOTE -669) (|devaluate| |#2|)))) (-573) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-574 -2119 UP UPUP R) +(-574 -1995 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-575 -2119 UP) +(-575 -1995 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-576) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4446 . T) (-4452 . T) (-4456 . T) (-4451 . T) (-4462 . T) (-4463 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4448 . T) (-4454 . T) (-4458 . T) (-4453 . T) (-4464 . T) (-4465 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-577) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-578 R -2119 L) +(-578 R -1995 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|)))) -(-579 R -2119) +((|HasCategory| |#3| (LIST (QUOTE -669) (|devaluate| |#2|)))) +(-579 R -1995) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1160)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-641))))) -(-580 -2119 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-641))))) +(-580 -1995 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2256,27 +2256,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-582 -2119) +(-582 -1995) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-583 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2642 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4130 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-584) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-585 R -2119) +(-585 R -1995) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-294))) (|HasCategory| |#2| (QUOTE (-641))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-294)))) (|HasCategory| |#1| (QUOTE (-568)))) -(-586 -2119 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-294))) (|HasCategory| |#2| (QUOTE (-641))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-294)))) (|HasCategory| |#1| (QUOTE (-568)))) +(-586 -1995 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-587 R -2119) +(-587 R -1995) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2298,21 +2298,21 @@ NIL NIL (-592 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL (-593 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) (-594) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-595 R -2119) +(-595 R -1995) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-596 E -2119) +(-596 E -1995) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL @@ -2320,10 +2320,10 @@ NIL ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-598 -2119) +(-598 -1995) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4459 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-1197))))) +((-4461 . T) (-4460 . T)) +((|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-1198))))) (-599 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL @@ -2350,19 +2350,19 @@ NIL NIL (-605 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-3795 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-145) (QUOTE (-861))) (-3795 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2748 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-877)))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122)))) (|HasCategory| (-145) (QUOTE (-862))) (-2748 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-606 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL (-607 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576)))))) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3515) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576)))))) (-608 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-568)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) ((|HasCategory| |#1| (QUOTE (-568)))) (-609) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) @@ -2376,7 +2376,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-612 R -2119 FG) +(-612 R -1995 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2386,12 +2386,12 @@ NIL NIL (-614 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#1| (QUOTE (-1071))) (-12 (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-1071)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-615 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#2| (QUOTE (-861))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#3| (QUOTE (-1121)))) +((|HasAttribute| |#1| (QUOTE -4467)) (|HasCategory| |#2| (QUOTE (-862))) (|HasAttribute| |#1| (QUOTE -4466)) (|HasCategory| |#3| (QUOTE (-1122)))) (-616 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2406,19 +2406,19 @@ NIL NIL (-619 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4461 -3795 (-2311 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4459 . T) (-4458 . T)) -((-3795 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) +((-4463 -2748 (-2675 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4461 . T) (-4460 . T)) +((-2748 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-620 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-102)))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (QUOTE (-1180))) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| (-1180) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (QUOTE (-102)))) (-621 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL (-622 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4465 . T)) +((-4467 . T)) NIL (-623 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) @@ -2427,7 +2427,7 @@ NIL (-624 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) +((|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-625 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL @@ -2436,7 +2436,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-627 -2119 UP) +(-627 -1995 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2458,20 +2458,20 @@ NIL NIL (-632 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4461 . T)) +((-4463 . T)) NIL (-633 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-860)))) -(-634 R -2119) +((-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-861)))) +(-634 R -1995) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL (-635 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4457 . T) (-4461 . T)) -((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) +((-4461 . T) (-4460 . T) ((-4468 "*") . T) (-4459 . T) (-4463 . T)) +((|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (-636 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL @@ -2486,7 +2486,7 @@ NIL NIL (-639 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4461 . T)) +((-4463 . T)) NIL (-640 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) @@ -2496,30 +2496,30 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-642 R -2119) +(-642 R -1995) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-643 |lv| -2119) +(-643 |lv| -1995) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-644) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -2905) (QUOTE (-52))))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1179) (QUOTE (-861))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-1121)))) +((-4467 . T)) +((-12 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (QUOTE (-1180))) (LIST (QUOTE |:|) (QUOTE -4440) (QUOTE (-52))))))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1180) (QUOTE (-862))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877))))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (QUOTE (-1122)))) (-645 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-374)))) (-646 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4459 . T) (-4458 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4461 . T) (-4460 . T)) NIL (-647 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4461 -3795 (-2311 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4459 . T) (-4458 . T)) -((-3795 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) +((-4463 -2748 (-2675 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4461 . T) (-4460 . T)) +((-2748 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-648 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL @@ -2531,2674 +2531,2678 @@ NIL (-650 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2299 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374)))) -(-651 R) +((-2665 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374)))) +(-651 K B) +((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|) (|List| (|OrderedVariableList| |#2|))) "\\spad{linearElement([x1,..,xn],[b1,..,bn]) constructs a linear element with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{b1},{}...\\spad{bn}."))) +((-4461 . T) (-4460 . T)) +NIL +(-652 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-652 S) +(-653 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-653 A B) +(-654 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-654 A B) +(-655 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-655 A B C) +(-656 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-656 S) +(-657 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-657 T$) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-658 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-658 S) +(-659 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-659 S) +(-660 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-660 R) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-661 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-661 S E |un|) +(-662 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-662 A S) +(-663 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4465))) -(-663 S) +((|HasAttribute| |#1| (QUOTE -4467))) +(-664 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-664 R -2119 L) +(-665 R -1995 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-665 A) +(-666 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-666 A M) +((-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) +(-667 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-667 S A) +((-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) +(-668 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-374)))) -(-668 A) +(-669 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4458 . T) (-4459 . T) (-4461 . T)) +((-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-669 -2119 UP) +(-670 -1995 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-670 A -3304) +(-671 A -3307) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-671 A L) +((-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) +(-672 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-672 S) +(-673 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-673) +(-674) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-674 M R S) +(-675 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4459 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-803)))) -(-675 R) +((-4461 . T) (-4460 . T)) +((|HasCategory| |#1| (QUOTE (-804)))) +(-676 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-676 |VarSet| R) +(-677 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4459 . T) (-4458 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4461 . T) (-4460 . T)) ((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-174)))) -(-677 A S) +(-678 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-678 S) +(-679 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4465 . T) (-4464 . T)) +((-4467 . T) (-4466 . T)) NIL -(-679 -2119) +(-680 -1995) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-680 -2119 |Row| |Col| M) +(-681 -1995 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-681 R E OV P) +(-682 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-682 |n| R) +(-683 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4461 . T) (-4464 . T) (-4458 . T) (-4459 . T)) -((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-3795 (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-683) +((-4463 . T) (-4466 . T) (-4460 . T) (-4461 . T)) +((|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4468 "*"))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-2748 (|HasAttribute| |#2| (QUOTE (-4468 "*"))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-684) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-684 |VarSet|) +(-685 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-685 A S) +(-686 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-686 S) +(-687 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-687 R) +(-688 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-688) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-689) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-689 |VarSet|) +(-690 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-690 A) +(-691 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-691 A C) +(-692 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-692 A B C) +(-693 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-693) +(-694) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-694 A) +(-695 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-695 A C) +(-696 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-696 A B C) +(-697 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-697 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-698 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-698 S R |Row| |Col|) +(-699 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568)))) -(-699 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4468 "*"))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568)))) +(-700 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4464 . T) (-4465 . T)) +((-4466 . T) (-4467 . T)) NIL -(-700 R |Row| |Col| M) +(-701 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568)))) -(-701 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4464 . T) (-4465 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-702 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-4466 . T) (-4467 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4468 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-703 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-703 T$) +(-704 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-704 S -2119 FLAF FLAS) +(-705 S -1995 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-705 R Q) +(-706 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-706) +(-707) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4457 . T) (-4462 |has| (-711) (-374)) (-4456 |has| (-711) (-374)) (-2649 . T) (-4463 |has| (-711) (-6 -4463)) (-4460 |has| (-711) (-6 -4460)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-711) (QUOTE (-148))) (|HasCategory| (-711) (QUOTE (-146))) (|HasCategory| (-711) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-379))) (|HasCategory| (-711) (QUOTE (-374))) (-3795 (|HasCategory| (-711) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-237))) (-3795 (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197))))) (-3795 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (LIST (QUOTE -296) (QUOTE (-711)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -319) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-711) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (-3795 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-711) (QUOTE (-1043))) (|HasCategory| (-711) (QUOTE (-1223))) (-12 (|HasCategory| (-711) (QUOTE (-1023))) (|HasCategory| (-711) (QUOTE (-1223)))) (-3795 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-374))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-928))))) (-3795 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (-12 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-928)))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-928))))) (|HasCategory| (-711) (QUOTE (-557))) (-12 (|HasCategory| (-711) (QUOTE (-1081))) (|HasCategory| (-711) (QUOTE (-1223)))) (|HasCategory| (-711) (QUOTE (-1081))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928))) (-3795 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-374)))) (-3795 (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (QUOTE (-237)))) (-3795 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-568)))) (-12 (|HasCategory| (-711) (QUOTE (-237))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-568))) (|HasAttribute| (-711) (QUOTE -4463)) (|HasAttribute| (-711) (QUOTE -4460)) (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-146)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-360))))) -(-707 S) +((-4459 . T) (-4464 |has| (-712) (-374)) (-4458 |has| (-712) (-374)) (-4143 . T) (-4465 |has| (-712) (-6 -4465)) (-4462 |has| (-712) (-6 -4462)) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| (-712) (QUOTE (-148))) (|HasCategory| (-712) (QUOTE (-146))) (|HasCategory| (-712) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-712) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| (-712) (QUOTE (-379))) (|HasCategory| (-712) (QUOTE (-374))) (-2748 (|HasCategory| (-712) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-712) (QUOTE (-374)))) (|HasCategory| (-712) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-712) (QUOTE (-238))) (|HasCategory| (-712) (QUOTE (-237))) (-2748 (-12 (|HasCategory| (-712) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-712) (QUOTE (-374)))) (|HasCategory| (-712) (LIST (QUOTE -920) (QUOTE (-1198))))) (-2748 (|HasCategory| (-712) (QUOTE (-374))) (|HasCategory| (-712) (QUOTE (-360)))) (|HasCategory| (-712) (QUOTE (-360))) (|HasCategory| (-712) (LIST (QUOTE -296) (QUOTE (-712)) (QUOTE (-712)))) (|HasCategory| (-712) (LIST (QUOTE -319) (QUOTE (-712)))) (|HasCategory| (-712) (LIST (QUOTE -526) (QUOTE (-1198)) (QUOTE (-712)))) (|HasCategory| (-712) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-712) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-712) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-712) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (-2748 (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-374))) (|HasCategory| (-712) (QUOTE (-360)))) (|HasCategory| (-712) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-712) (QUOTE (-1044))) (|HasCategory| (-712) (QUOTE (-1224))) (-12 (|HasCategory| (-712) (QUOTE (-1024))) (|HasCategory| (-712) (QUOTE (-1224)))) (-2748 (-12 (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (|HasCategory| (-712) (QUOTE (-374))) (-12 (|HasCategory| (-712) (QUOTE (-360))) (|HasCategory| (-712) (QUOTE (-929))))) (-2748 (-12 (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (-12 (|HasCategory| (-712) (QUOTE (-374))) (|HasCategory| (-712) (QUOTE (-929)))) (-12 (|HasCategory| (-712) (QUOTE (-360))) (|HasCategory| (-712) (QUOTE (-929))))) (|HasCategory| (-712) (QUOTE (-557))) (-12 (|HasCategory| (-712) (QUOTE (-1082))) (|HasCategory| (-712) (QUOTE (-1224)))) (|HasCategory| (-712) (QUOTE (-1082))) (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929))) (-2748 (-12 (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (|HasCategory| (-712) (QUOTE (-374)))) (-2748 (-12 (|HasCategory| (-712) (QUOTE (-238))) (|HasCategory| (-712) (QUOTE (-374)))) (|HasCategory| (-712) (QUOTE (-237)))) (-2748 (-12 (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (|HasCategory| (-712) (QUOTE (-568)))) (-12 (|HasCategory| (-712) (QUOTE (-237))) (|HasCategory| (-712) (QUOTE (-374)))) (-12 (|HasCategory| (-712) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-712) (QUOTE (-374)))) (-12 (|HasCategory| (-712) (QUOTE (-238))) (|HasCategory| (-712) (QUOTE (-374)))) (-12 (|HasCategory| (-712) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-712) (QUOTE (-374)))) (|HasCategory| (-712) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-712) (QUOTE (-568))) (|HasAttribute| (-712) (QUOTE -4465)) (|HasAttribute| (-712) (QUOTE -4462)) (-12 (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (|HasCategory| (-712) (LIST (QUOTE -920) (QUOTE (-1198)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (|HasCategory| (-712) (QUOTE (-146)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (|HasCategory| (-712) (QUOTE (-360))))) +(-708 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4465 . T)) +((-4467 . T)) NIL -(-708 U) +(-709 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-709) +(-710) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-710 OV E -2119 PG) +(-711 OV E -1995 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-711) +(-712) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2642 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4130 . T) (-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-712 R) +(-713 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-713) +(-714) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4463 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4465 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-714 S D1 D2 I) +(-715 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-715 S) +(-716 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-716 S) +(-717 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-717 S T$) +(-718 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-718 S -3157 I) +(-719 S -2066 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-719 E OV R P) +(-720 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-720 R) +(-721 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4458 . T) (-4459 . T) (-4461 . T)) +((-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-721 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-722 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-722) +(-723) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-723 R |Mod| -1767 -2748 |exactQuo|) +(-724 R |Mod| -2444 -1661 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-724 R |Rep|) +(-725 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-725 IS E |ff|) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-726 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-726 R M) +(-727 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) +((-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) (-4463 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-727 R |Mod| -1767 -2748 |exactQuo|) +(-728 R |Mod| -2444 -1661 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4461 . T)) +((-4463 . T)) NIL -(-728 S R) +(-729 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-729 R) +(-730 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4459 . T) (-4458 . T)) +((-4461 . T) (-4460 . T)) NIL -(-730 -2119) +(-731 -1995) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4461 . T)) +((-4463 . T)) NIL -(-731 S) +(-732 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-732) +(-733) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-733 S) +(-734 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-734) +(-735) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-735 S R UP) +(-736 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL ((|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379)))) -(-736 R UP) +(-737 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4457 |has| |#1| (-374)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 |has| |#1| (-374)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-737 S) +(-738 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-738) +(-739) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-739 -2119 UP) +(-740 -1995 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-740 |VarSet| E1 E2 R S PR PS) +(-741 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-741 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-742 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-742 E OV R PPR) +(-743 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-743 |vl| R) +(-744 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-744 E OV R PRF) +(((-4468 "*") |has| |#2| (-174)) (-4459 |has| |#2| (-568)) (-4464 |has| |#2| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#2| (QUOTE (-929))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-745 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-745 E OV R P) +(-746 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-746 R S M) +(-747 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-747 R M) +(-748 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-861)))) -(-748 S) +((-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) (-4463 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-862)))) +(-749 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4454 . T) (-4465 . T)) +((-4456 . T) (-4467 . T)) NIL -(-749 S) +(-750 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4464 . T) (-4454 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-750) +((-4466 . T) (-4456 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-751) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-751 S) +(-752 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-752 |Coef| |Var|) +(-753 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4459 . T) (-4458 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4461 . T) (-4460 . T) (-4463 . T)) NIL -(-753 OV E R P) +(-754 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-754 E OV R P) +(-755 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-755 S R) +(-756 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-756 R) +(-757 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4459 . T) (-4458 . T)) +((-4461 . T) (-4460 . T)) NIL -(-757) +(-758) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-758) +(-759) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-759) +(-760) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-760) +(-761) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-761) +(-762) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-762) +(-763) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-763) +(-764) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-764) +(-765) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-765) +(-766) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-766) +(-767) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-767) +(-768) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-768) +(-769) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-769) +(-770) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-770) +(-771) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-771) +(-772) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-772 S) +(-773 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-773) +(-774) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-774 S) +(-775 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-775) +(-776) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-776 |Par|) +(-777 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-777 -2119) +(-778 -1995) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-778 P -2119) +(-779 P -1995) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-779 T$) +(-780 T$) NIL NIL NIL -(-780 UP -2119) +(-781 UP -1995) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-781) +(-782) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-782 R) +(-783 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-783) +(-784) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4466 "*") . T)) +(((-4468 "*") . T)) NIL -(-784 R -2119) +(-785 R -1995) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-785 S) +(-786 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-786) +(-787) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-787 R |PolR| E |PolE|) +(-788 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-788 R E V P TS) +(-789 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-789 -2119 |ExtF| |SUEx| |ExtP| |n|) +(-790 -1995 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-790 BP E OV R P) +(-791 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-791 |Par|) +(-792 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-792 R |VarSet|) +(-793 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2299 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2299 (|HasCategory| |#1| (QUOTE (-557)))) (-2299 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2299 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-2299 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2299 (|HasCategory| |#1| (LIST (QUOTE -1013) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-793 R S) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-929))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198)))) (-2665 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198)))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198)))) (-2665 (|HasCategory| |#1| (QUOTE (-557)))) (-2665 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198)))) (-2665 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-2665 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198)))) (-2665 (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-794 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-794 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-795 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-796 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-796 R E V P) +(-797 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4465 . T) (-4464 . T)) +((-4467 . T) (-4466 . T)) NIL -(-797 S) +(-798 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-174)))) -(-798) +((-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-174)))) +(-799) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-799) +(-800) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-800) +(-801) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-801) +(-802) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-802 |Curve|) +(-803 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-803) +(-804) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-804) +(-805) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-805) +(-806) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-806) +(-807) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-807) +(-808) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-808 S R) +(-809 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379)))) -(-809 R) +((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379)))) +(-810 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4458 . T) (-4459 . T) (-4461 . T)) +((-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-810 -3795 R OS S) +(-811 -2748 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-811 R) +(-812 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-3795 (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) -(-812) +((-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-2748 (|HasCategory| (-1021 |#1|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2748 (|HasCategory| (-1021 |#1|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1021 |#1|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1021 |#1|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) +(-813) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-813 R -2119 L) +(-814 R -1995 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-814 R -2119) +(-815 R -1995) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-815) +(-816) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-816 R -2119) +(-817 R -1995) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-817) +(-818) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-818 -2119 UP UPUP R) +(-819 -1995 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-819 -2119 UP L LQ) +(-820 -1995 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-820) +(-821) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-821 -2119 UP L LQ) +(-822 -1995 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-822 -2119 UP) +(-823 -1995 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-823 -2119 L UP A LO) +(-824 -1995 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-824 -2119 UP) +(-825 -1995 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-825 -2119 LO) +(-826 -1995 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-826 -2119 LODO) +(-827 -1995 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-827 -1913 S |f|) +(-828 -2703 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3795 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-3795 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-3795 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) -(-828 R) +((-4460 |has| |#2| (-1071)) (-4461 |has| |#2| (-1071)) (-4463 |has| |#2| (-6 -4463)) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-374))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (-2748 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (|HasCategory| |#2| (QUOTE (-238))) (-2748 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1071))))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#2| (QUOTE (-1122))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-806)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122))))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1071))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198))))) (-2748 (|HasCategory| |#2| (QUOTE (-1071))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122)))) (|HasAttribute| |#2| (QUOTE -4463)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +(-829 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-829 |Kernels| R |var|) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-929))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-831 (-1198)) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-831 (-1198)) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-831 (-1198)) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-831 (-1198)) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-831 (-1198)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-830 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4466 "*") |has| |#2| (-374)) (-4457 |has| |#2| (-374)) (-4462 |has| |#2| (-374)) (-4456 |has| |#2| (-374)) (-4461 . T) (-4459 . T) (-4458 . T)) +(((-4468 "*") |has| |#2| (-374)) (-4459 |has| |#2| (-374)) (-4464 |has| |#2| (-374)) (-4458 |has| |#2| (-374)) (-4463 . T) (-4461 . T) (-4460 . T)) ((|HasCategory| |#2| (QUOTE (-374)))) -(-830 S) +(-831 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-831 S) +(-832 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-861)))) -(-832) +((|HasCategory| |#1| (QUOTE (-862)))) +(-833) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-833) +(-834) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-834) +(-835) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-835) +(-836) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-836) +(-837) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-837) +(-838) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-838 R) +(-839 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-839 P R) +(-840 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4458 . T) (-4459 . T) (-4461 . T)) +((-4460 . T) (-4461 . T) (-4463 . T)) ((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-238)))) -(-840) +(-841) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-841) +(-842) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-842 S) +(-843 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4464 . T) (-4454 . T) (-4465 . T)) +((-4466 . T) (-4456 . T) (-4467 . T)) NIL -(-843) +(-844) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-844 R S) +(-845 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-845 R) +(-846 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4461 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3795 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) -(-846 A S) +((-4463 |has| |#1| (-861))) +((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-21))) (-2748 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-2748 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) +(-847 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-847 S) +(-848 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-848 R) +(-849 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) +((-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) (-4463 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-849) +(-850) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-850) +(-851) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-851) +(-852) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-852) +(-853) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-853) +(-854) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-854 R S) +(-855 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-855 R) +(-856 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4461 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3795 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) -(-856) +((-4463 |has| |#1| (-861))) +((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-21))) (-2748 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-2748 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) +(-857) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-857 -1913 S) +(-858 -2703 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-858) +(-859) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-859 S) +(-860 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-860) +(-861) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4461 . T)) +((-4463 . T)) NIL -(-861) +(-862) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-862 T$ |f|) +(-863 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -NIL -(-863 S) +((|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) +(-864 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-864) +(-865) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-865 S R) +(-866 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL ((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174)))) -(-866 R) +(-867 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4458 . T) (-4459 . T) (-4461 . T)) +((-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-867 R C) +(-868 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) -(-868 R |sigma| -1993) +(-869 R |sigma| -4256) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-869 |x| R |sigma| -1993) +((-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) +(-870 |x| R |sigma| -4256) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-374)))) -(-870 R) +((-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-374)))) +(-871 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-871) +(-872) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-872) +(-873) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-873 S) +(-874 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-874) +(-875) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-875) +(-876) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-876) +(-877) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-877) +(-878) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-878 |VariableList|) +(-879 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-879) +(-880) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-880 R |vl| |wl| |wtlevel|) +(-881 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) +((-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) (-4463 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) -(-881 R PS UP) +(-882 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-882 R |x| |pt|) +(-883 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-883 |p|) +(-884 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-884 |p|) +(-885 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-885 |p|) +(-886 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-884 |#1|) (QUOTE (-928))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-148))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-884 |#1|) (QUOTE (-1043))) (|HasCategory| (-884 |#1|) (QUOTE (-832))) (|HasCategory| (-884 |#1|) (QUOTE (-861))) (-3795 (|HasCategory| (-884 |#1|) (QUOTE (-832))) (|HasCategory| (-884 |#1|) (QUOTE (-861)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (QUOTE (-1173))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (QUOTE (-237))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (QUOTE (-238))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -884) (|devaluate| |#1|)) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (QUOTE (-317))) (|HasCategory| (-884 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-928)))) (|HasCategory| (-884 |#1|) (QUOTE (-146))))) -(-886 |p| PADIC) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| (-885 |#1|) (QUOTE (-929))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-885 |#1|) (QUOTE (-146))) (|HasCategory| (-885 |#1|) (QUOTE (-148))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-885 |#1|) (QUOTE (-1044))) (|HasCategory| (-885 |#1|) (QUOTE (-833))) (|HasCategory| (-885 |#1|) (QUOTE (-862))) (-2748 (|HasCategory| (-885 |#1|) (QUOTE (-833))) (|HasCategory| (-885 |#1|) (QUOTE (-862)))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-885 |#1|) (QUOTE (-1174))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| (-885 |#1|) (QUOTE (-237))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-885 |#1|) (QUOTE (-238))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -885) (|devaluate| |#1|)))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -885) (|devaluate| |#1|)))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -885) (|devaluate| |#1|)) (LIST (QUOTE -885) (|devaluate| |#1|)))) (|HasCategory| (-885 |#1|) (QUOTE (-317))) (|HasCategory| (-885 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-885 |#1|) (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-885 |#1|) (QUOTE (-929)))) (|HasCategory| (-885 |#1|) (QUOTE (-146))))) +(-887 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861))) (-3795 (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-887 S T$) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-862))) (-2748 (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1174))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-888 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))))) -(-888) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))))) +(-889) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-889) +(-890) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-890) +(-891) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-891 CF1 CF2) +(-892 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-892 |ComponentFunction|) +(-893 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-893 CF1 CF2) +(-894 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-894 |ComponentFunction|) +(-895 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-895) +(-896) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-896 CF1 CF2) +(-897 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-897 |ComponentFunction|) +(-898 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-898) +(-899) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-899 R) +(-900 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-900 R S L) +(-901 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-901 S) +(-902 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-902 |Base| |Subject| |Pat|) +(-903 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2299 (|HasCategory| |#2| (QUOTE (-1070)))) (-2299 (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (-2299 (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) -(-903 R A B) +((-12 (-2665 (|HasCategory| |#2| (QUOTE (-1071)))) (-2665 (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198)))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (-2665 (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198)))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198))))) +(-904 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-904 R S) +(-905 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-905 R -3157) +(-906 R -2066) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-906 R S) +(-907 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-907 R) +(-908 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-908 |VarSet|) +(-909 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-909 UP R) +(-910 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-910 A T$ S) +(-911 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-911 T$ S) +(-912 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-912) +(-913) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-913 UP -2119) +(-914 UP -1995) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-914) +(-915) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-915) +(-916) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-916 R S) +(-917 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4459 . T) (-4458 . T)) +((-4461 . T) (-4460 . T)) NIL -(-917 S) +(-918 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4461 . T)) +((-4463 . T)) NIL -(-918 A S) +(-919 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-919 S) +(-920 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-920 S) +(-921 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-921 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-922 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-922 S) +(-923 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4461 . T)) +((-4463 . T)) NIL -(-923 S) +(-924 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-924 S) +(-925 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4461 . T)) -((-3795 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) -(-925 R E |VarSet| S) +((-4463 . T)) +((-2748 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862)))) +(-926 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-926 R S) +(-927 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-927 S) +(-928 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-146)))) -(-928) +(-929) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-929 |p|) +(-930 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) -(-930 R0 -2119 UP UPUP R) +(-931 R0 -1995 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-931 UP UPUP R) +(-932 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-932 UP UPUP) +(-933 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-933 R) +(-934 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-934 R) +(-935 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-935 E OV R P) +(-936 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-936) +(-937) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-937 -2119) +(-938 -1995) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-938 R) +(-939 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-939) +(-940) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-940) +(-941) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4466 "*") . T)) +(((-4468 "*") . T)) NIL -(-941 -2119 P) +(-942 -1995 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-942 |xx| -2119) +(-943 |xx| -1995) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-943 R |Var| |Expon| GR) +(-944 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-944 S) +(-945 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-945) +(-946) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-946) +(-947) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-947) +(-948) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-948 R -2119) +(-949 R -1995) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-949) +(-950) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-950 S A B) +(-951 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-951 S R -2119) +(-952 S R -1995) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-952 I) +(-953 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-953 S E) +(-954 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-954 S R L) +(-955 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-955 S E V R P) +(-956 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -901) (|devaluate| |#1|)))) -(-956 R -2119 -3157) +((|HasCategory| |#3| (LIST (QUOTE -902) (|devaluate| |#1|)))) +(-957 R -1995 -2066) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-957 -3157) +(-958 -2066) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-958 S R Q) +(-959 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-959 S) +(-960 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-960 S R P) +(-961 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-961) +(-962) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-962 R) +(-963 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-963 |lv| R) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#1| (QUOTE (-1071))) (-12 (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-1071)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-964 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-964 |TheField| |ThePols|) +(-965 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-965 R S) +((|HasCategory| |#1| (QUOTE (-861)))) +(-966 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-966 |x| R) +(-967 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-967 S R E |VarSet|) +(-968 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-928))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) -(-968 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-929))) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) +(-969 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) NIL -(-969 E V R P -2119) +(-970 E V R P -1995) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-970 E |Vars| R P S) +(-971 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-971 R) +(-972 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-972 E V R P -2119) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-929))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1198) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-1198) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-1198) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-1198) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-1198) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-973 E V R P -1995) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-464)))) -(-973) +(-974) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-974) +(-975) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-975 R L) +(-976 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-976 A B) +(-977 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-977 S) +(-978 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-978) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-979) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-979 -2119) +(-980 -1995) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-980 I) +(-981 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-981) +(-982) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-982 R E) +(-983 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4462))) -(-983 A B) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4464))) +(-984 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4461 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) -(-984) +((-4463 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-806)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862))))) (-12 (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-806)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-806))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-806))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-739))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-806))))) (-12 (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862))))) +(-985) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-985 T$) +(-986 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-986 T$) +(-987 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-987 S T$) +(-988 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-988) +(-989) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-989 S) +(-990 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4464 . T) (-4465 . T)) +((-4466 . T) (-4467 . T)) NIL -(-990 R |polR|) +(-991 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-464)))) -(-991) +(-992) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-992) +(-993) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-993 S |Coef| |Expon| |Var|) +(-994 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-994 |Coef| |Expon| |Var|) +(-995 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-995) +(-996) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-996 S R E |VarSet| P) +(-997 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL ((|HasCategory| |#2| (QUOTE (-568)))) -(-997 R E |VarSet| P) +(-998 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4464 . T)) +((-4466 . T)) NIL -(-998 R E V P) +(-999 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-464)))) -(-999 K) +(-1000 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-1000 |VarSet| E RC P) +(-1001 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-1001 R) +(-1002 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4465 . T) (-4464 . T)) +((-4467 . T) (-4466 . T)) NIL -(-1002 R1 R2) +(-1003 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-1003 R) +(-1004 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-1004 K) +(-1005 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-1005 R E OV PPR) +(-1006 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1006 K R UP -2119) +(-1007 K R UP -1995) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1007 |vl| |nv|) +(-1008 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-1008 R |Var| |Expon| |Dpoly|) +(-1009 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-317))))) -(-1009 R E V P TS) +(-1010 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1010) +(-1011) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-1011 A B R S) +(-1012 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-1012 A S) +(-1013 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1173)))) -(-1013 S) +((|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1174)))) +(-1014 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1014 |n| K) +(-1015 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1015) +(-1016) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1016 S) +(-1017 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4464 . T) (-4465 . T)) +((-4466 . T) (-4467 . T)) NIL -(-1017 S R) +(-1018 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-300)))) -(-1018 R) +((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-300)))) +(-1019 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4457 |has| |#1| (-300)) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 |has| |#1| (-300)) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1019 QR R QS S) +(-1020 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1020 R) +(-1021 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4457 |has| |#1| (-300)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557)))) -(-1021 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4459 |has| |#1| (-300)) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-2748 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-557)))) (-1022 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1023 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1023) +(-1024) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1024 -2119 UP UPUP |radicnd| |n|) +(-1025 -1995 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4457 |has| (-419 |#2|) (-374)) (-4462 |has| (-419 |#2|) (-374)) (-4456 |has| (-419 |#2|) (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-3795 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-3795 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3795 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3795 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-3795 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-3795 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) -(-1025 |bb|) +((-4459 |has| (-419 |#2|) (-374)) (-4464 |has| (-419 |#2|) (-374)) (-4458 |has| (-419 |#2|) (-374)) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2748 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2748 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2748 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2748 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2748 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -652) (QUOTE (-576)))) (-2748 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) +(-1026 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-3795 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) -(-1026) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| (-576) (QUOTE (-929))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1044))) (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862))) (-2748 (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1174))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1198)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -652) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (|HasCategory| (-576) (QUOTE (-146))))) +(-1027) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1027) +(-1028) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1028 RP) +(-1029 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1029 S) +(-1030 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1030 A S) +(-1031 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4465)) (|HasCategory| |#2| (QUOTE (-1121)))) -(-1031 S) +((|HasAttribute| |#1| (QUOTE -4467)) (|HasCategory| |#2| (QUOTE (-1122)))) +(-1032 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1032 S) +(-1033 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1033) +(-1034) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4457 . T) (-4462 . T) (-4456 . T) (-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4461 . T)) +((-4459 . T) (-4464 . T) (-4458 . T) (-4461 . T) (-4460 . T) ((-4468 "*") . T) (-4463 . T)) NIL -(-1034 R -2119) +(-1035 R -1995) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1035 R -2119) +(-1036 R -1995) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1036 -2119 UP) +(-1037 -1995 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1037 -2119 UP) +(-1038 -1995 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1038 S) +(-1039 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1039 F1 UP UPUP R F2) +(-1040 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1040) +(-1041) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1041 |Pol|) +(-1042 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1042 |Pol|) +(-1043 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1043) +(-1044) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1044) +(-1045) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1045 |TheField|) +(-1046 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4457 . T) (-4462 . T) (-4456 . T) (-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4461 . T)) -((-3795 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (QUOTE (-576))))) -(-1046 -2119 L) +((-4459 . T) (-4464 . T) (-4458 . T) (-4461 . T) (-4460 . T) ((-4468 "*") . T) (-4463 . T)) +((-2748 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1060) (QUOTE (-576))))) +(-1047 -1995 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1047 S) +(-1048 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1121)))) -(-1048 R E V P) +((|HasCategory| |#1| (QUOTE (-1122)))) +(-1049 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4465 . T) (-4464 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1049 R) +((-4467 . T) (-4466 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1050 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4466 "*")))) -(-1050 R) +((|HasAttribute| |#1| (QUOTE (-4468 "*")))) +(-1051 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317)))) -(-1051 S) +(-1052 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1052) +(-1053) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1053 S) +(-1054 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1054 S) +(-1055 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1055 -2119 |Expon| |VarSet| |FPol| |LFPol|) +(-1056 -1995 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1056) -((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (QUOTE (-1197))) (LIST (QUOTE |:|) (QUOTE -2905) (QUOTE (-52))))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-102)))) (-1057) +((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (QUOTE (-1198))) (LIST (QUOTE |:|) (QUOTE -4440) (QUOTE (-52))))))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-1198) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1122))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877))))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-102)))) +(-1058) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1058 A S) +(-1059 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1059 S) +(-1060 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1060 Q R) +(-1061 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1061) +(-1062) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1062 UP) +(-1063 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1063 R) +(-1064 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1064 R) +(-1065 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1065 T$) +(-1066 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1066 T$) +(-1067 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1067 R |ls|) +(-1068 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4465 . T) (-4464 . T)) -((-12 (|HasCategory| (-792 |#1| (-878 |#2|)) (QUOTE (-1121))) (|HasCategory| (-792 |#1| (-878 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -792) (|devaluate| |#1|) (LIST (QUOTE -878) (|devaluate| |#2|)))))) (|HasCategory| (-792 |#1| (-878 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-792 |#1| (-878 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-878 |#2|) (QUOTE (-379))) (|HasCategory| (-792 |#1| (-878 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-792 |#1| (-878 |#2|)) (QUOTE (-102)))) -(-1068) +((-4467 . T) (-4466 . T)) +((-12 (|HasCategory| (-793 |#1| (-879 |#2|)) (QUOTE (-1122))) (|HasCategory| (-793 |#1| (-879 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -793) (|devaluate| |#1|) (LIST (QUOTE -879) (|devaluate| |#2|)))))) (|HasCategory| (-793 |#1| (-879 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-793 |#1| (-879 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-879 |#2|) (QUOTE (-379))) (|HasCategory| (-793 |#1| (-879 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-793 |#1| (-879 |#2|)) (QUOTE (-102)))) +(-1069) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1069 S) +(-1070 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1070) +(-1071) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4461 . T)) +((-4463 . T)) NIL -(-1071 |xx| -2119) +(-1072 |xx| -1995) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1072 S) +(-1073 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-1073 S |m| |n| R |Row| |Col|) +(-1074 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL ((|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-568))) (|HasCategory| |#4| (QUOTE (-174)))) -(-1074 |m| |n| R |Row| |Col|) +(-1075 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4464 . T) (-4459 . T) (-4458 . T)) +((-4466 . T) (-4461 . T) (-4460 . T)) NIL -(-1075 |m| |n| R) +(-1076 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4464 . T) (-4459 . T) (-4458 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-3795 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876))))) -(-1076 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4466 . T) (-4461 . T) (-4460 . T)) +((|HasCategory| |#3| (QUOTE (-174))) (-2748 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-877))))) +(-1077 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1077 R) +(-1078 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1078 S T$) +(-1079 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1121)))) -(-1079) +((|HasCategory| |#1| (QUOTE (-1122)))) +(-1080) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1080 S) +(-1081 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1081) +(-1082) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1082 |TheField| |ThePolDom|) +(-1083 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1083) +(-1084) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4452 . T) (-4456 . T) (-4451 . T) (-4462 . T) (-4463 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4454 . T) (-4458 . T) (-4453 . T) (-4464 . T) (-4465 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1084) +(-1085) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (QUOTE (-1197))) (LIST (QUOTE |:|) (QUOTE -2905) (QUOTE (-52))))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-102)))) -(-1085 S R E V) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (QUOTE (-1198))) (LIST (QUOTE |:|) (QUOTE -4440) (QUOTE (-52))))))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-1198) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1122))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877))))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (QUOTE (-102)))) +(-1086 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1013) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-1197))))) -(-1086 R E V) +((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-1198))))) +(-1087 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) NIL -(-1087) +(-1088) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1088 S |TheField| |ThePols|) +(-1089 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1089 |TheField| |ThePols|) +(-1090 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1090 R E V P TS) +(-1091 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1091 S R E V P) +(-1092 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1092 R E V P) +(-1093 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4465 . T) (-4464 . T)) +((-4467 . T) (-4466 . T)) NIL -(-1093 R E V P TS) +(-1094 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1094) +(-1095) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1095) +(-1096) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1096 |f|) +(-1097 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1097 |Base| R -2119) +(-1098 |Base| R -1995) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1098 |Base| R -2119) +(-1099 |Base| R -1995) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1099 R |ls|) +(-1100 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1100 UP SAE UPA) +(-1101 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1101 R UP M) +(-1102 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4457 |has| |#1| (-374)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) -(-1102 UP SAE UPA) +((-4459 |has| |#1| (-374)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))))) +(-1103 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1103) +(-1104) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1104) +(-1105) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1105 S) +(-1106 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1106) +(-1107) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1107 R) +(-1108 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1108 R) +(-1109 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1109 S) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-929))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1110 (-1198)) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-1110 (-1198)) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-1110 (-1198)) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-1110 (-1198)) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-1110 (-1198)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1110 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1110 R S) +(-1111 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-1111) +((|HasCategory| |#1| (QUOTE (-861)))) +(-1112) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1112 R S) +(-1113 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1113 S) +(-1114 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1115 |#1|) (QUOTE (-1121)))) -(-1114 S) +((|HasCategory| (-1116 |#1|) (QUOTE (-1122)))) +(-1115 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1115 S) +(-1116 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) -(-1116 S L) +((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) +(-1117 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1117) +(-1118) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1118 A S) +(-1119 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1119 S) +(-1120 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4454 . T)) +((-4456 . T)) NIL -(-1120 S) +(-1121 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1121) +(-1122) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1122 |m| |n|) +(-1123 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1123 S) +(-1124 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4464 . T) (-4454 . T) (-4465 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-1124 |Str| |Sym| |Int| |Flt| |Expr|) +((-4466 . T) (-4456 . T) (-4467 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-1125 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1125) +(-1126) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1126 |Str| |Sym| |Int| |Flt| |Expr|) +(-1127 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1127 R FS) +(-1128 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1128 R E V P TS) +(-1129 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1129 R E V P TS) +(-1130 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1130 R E V P) +(-1131 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4465 . T) (-4464 . T)) +((-4467 . T) (-4466 . T)) NIL -(-1131) +(-1132) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1132 S) +(-1133 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1133) +(-1134) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1134 |dimtot| |dim1| S) +(-1135 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4458 |has| |#3| (-1070)) (-4459 |has| |#3| (-1070)) (-4461 |has| |#3| (-6 -4461)) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#3| (QUOTE (-374))) (-3795 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3795 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-3795 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-238))) (-3795 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-1121))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121))))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197))))) (-3795 (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (|HasAttribute| |#3| (QUOTE -4461)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) -(-1135 R |x|) +((-4460 |has| |#3| (-1071)) (-4461 |has| |#3| (-1071)) (-4463 |has| |#3| (-6 -4463)) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-2748 (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1122)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#3| (QUOTE (-374))) (-2748 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1071)))) (-2748 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-806))) (-2748 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-379))) (-2748 (-12 (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2748 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (QUOTE (-1122)))) (-2748 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (QUOTE (-1122)))) (-2748 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1071)))) (-2748 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1071)))) (-2748 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1071)))) (-2748 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1071)))) (-2748 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1071)))) (|HasCategory| |#3| (QUOTE (-238))) (-2748 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1071))))) (-2748 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#3| (QUOTE (-1122))) (-2748 (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-739)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-806)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1122))))) (-2748 (-12 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1071))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -920) (QUOTE (-1198))))) (-2748 (|HasCategory| |#3| (QUOTE (-1071))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1122)))) (|HasAttribute| |#3| (QUOTE -4463)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) +(-1136 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-464)))) -(-1136) +(-1137) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1137 R -2119) +(-1138 R -1995) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1138 R) +(-1139 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1139) +(-1140) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1140) +(-1141) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1141) +(-1142) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4452 . T) (-4456 . T) (-4451 . T) (-4462 . T) (-4463 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4454 . T) (-4458 . T) (-4453 . T) (-4464 . T) (-4465 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1142 S) +(-1143 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4464 . T) (-4465 . T)) +((-4466 . T) (-4467 . T)) NIL -(-1143 S |ndim| R |Row| |Col|) +(-1144 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-374))) (|HasAttribute| |#3| (QUOTE (-4466 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) -(-1144 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-374))) (|HasAttribute| |#3| (QUOTE (-4468 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) +(-1145 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4464 . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4466 . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1145 R |Row| |Col| M) +(-1146 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1146 R |VarSet|) +(-1147 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1147 |Coef| |Var| SMP) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-929))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1148 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1148 R E V P) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) +(-1149 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4465 . T) (-4464 . T)) +((-4467 . T) (-4466 . T)) NIL -(-1149 UP -2119) +(-1150 UP -1995) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1150 R) +(-1151 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1151 R) +(-1152 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1152 R) +(-1153 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1153 S A) +(-1154 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-861)))) -(-1154 R) +((|HasCategory| |#1| (QUOTE (-862)))) +(-1155 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1155 R) +(-1156 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1156) +(-1157) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1157) +(-1158) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1158) +(-1159) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1159) +(-1160) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1160) +(-1161) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1161 V C) +(-1162 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1162 V C) +(-1163 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121))) (-3795 (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121)))) (-3795 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121))))) (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102)))) -(-1163 |ndim| R) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| (-1162 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1162) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1162 |#1| |#2|) (QUOTE (-1122)))) (|HasCategory| (-1162 |#1| |#2|) (QUOTE (-1122))) (-2748 (|HasCategory| (-1162 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1162 |#1| |#2|) (QUOTE (-1122)))) (-2748 (|HasCategory| (-1162 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-877)))) (-12 (|HasCategory| (-1162 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1162) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1162 |#1| |#2|) (QUOTE (-1122))))) (|HasCategory| (-1162 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-1162 |#1| |#2|) (QUOTE (-102)))) +(-1164 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4461 . T) (-4453 |has| |#2| (-6 (-4466 "*"))) (-4464 . T) (-4458 . T) (-4459 . T)) -((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-374))) (-3795 (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-1164 S) +((-4463 . T) (-4455 |has| |#2| (-6 (-4468 "*"))) (-4466 . T) (-4460 . T) (-4461 . T)) +((|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4468 "*"))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-374))) (-2748 (|HasAttribute| |#2| (QUOTE (-4468 "*"))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-1165 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1165) +(-1166) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4465 . T) (-4464 . T)) +((-4467 . T) (-4466 . T)) NIL -(-1166 R E V P TS) +(-1167 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1167 R E V P) +(-1168 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4465 . T) (-4464 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1168 S) +((-4467 . T) (-4466 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1169 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1169 A S) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1170 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1170 S) +(-1171 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1171 |Key| |Ent| |dent|) +(-1172 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121)))) -(-1172) +((-4467 . T)) +((-12 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122)))) +(-1173) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1173) +(-1174) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1174 |Coef|) +(-1175 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1175 S) +(-1176 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1176 A B) +(-1177 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1177 A B C) +(-1178 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1178 S) +(-1179 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1179) +((-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1180) ((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-3795 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-145) (QUOTE (-861))) (-3795 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) -(-1180 |Entry|) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2748 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-877)))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122)))) (|HasCategory| (-145) (QUOTE (-862))) (-2748 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +(-1181 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#1|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-102)))) -(-1181 A) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (QUOTE (-1180))) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#1|)))))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| (-1180) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (-2748 (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (QUOTE (-102)))) +(-1182 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-1182 |Coef|) +(-1183 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1183 |Coef|) +(-1184 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1184 R UP) +(-1185 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-317)))) -(-1185 |n| R) +(-1186 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1186 S1 S2) +(-1187 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1187) +(-1188) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1188 |Coef| |var| |cen|) +(-1189 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4466 "*") -3795 (-2311 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2311 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4457 -3795 (-2311 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2311 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4412) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1585) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1189 R -2119) +(((-4468 "*") -2748 (-2675 (|has| |#1| (-374)) (|has| (-1196 |#1| |#2| |#3|) (-833))) (|has| |#1| (-174)) (-2675 (|has| |#1| (-374)) (|has| (-1196 |#1| |#2| |#3|) (-929)))) (-4459 -2748 (-2675 (|has| |#1| (-374)) (|has| (-1196 |#1| |#2| |#3|) (-833))) (|has| |#1| (-568)) (-2675 (|has| |#1| (-374)) (|has| (-1196 |#1| |#2| |#3|) (-929)))) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-1174))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2748 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2748 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2748 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2748 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1134))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-374)))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-2748 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-1174))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3515) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2320) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -1998) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2748 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1190 R -1995) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1190 R) +(-1191 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1191 R S) +(-1192 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1192 E OV R P) +(-1193 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1193 R) +(-1194 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1194 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4412) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1585) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1195 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-374))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3515) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2320) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -1998) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|))))))) +(-1196 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4412) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1585) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) -(-1196) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-784)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-784)) (|devaluate| |#1|)))) (|HasCategory| (-784) (QUOTE (-1134))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-784))))) (|HasSignature| |#1| (LIST (QUOTE -3515) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-784))))) (|HasCategory| |#1| (QUOTE (-374))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2320) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -1998) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|))))))) +(-1197) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1197) +(-1198) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1198 R) +(-1199 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1199 R) +(-1200 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-992) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasAttribute| |#1| (QUOTE -4462))) -(-1200) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-993) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasAttribute| |#1| (QUOTE -4464))) +(-1201) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1201) +(-1202) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1202) +(-1203) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1203 N) +(-1204 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1204 N) +(-1205 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1205) +(-1206) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1206 R) +(-1207 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1207) +(-1208) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1208 S) +(-1209 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1209 S) +(-1210 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1210 |Key| |Entry|) +(-1211 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102)))) -(-1211 S) +((-4466 . T) (-4467 . T)) +((-12 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4286) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (-2748 (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (QUOTE (-102)))) +(-1212 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1212 R) +(-1213 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1213 S |Key| |Entry|) +(-1214 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1214 |Key| |Entry|) +(-1215 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4465 . T)) +((-4467 . T)) NIL -(-1215 |Key| |Entry|) +(-1216 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1216) +(-1217) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1217 S) +(-1218 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1218) +(-1219) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1219) +(-1220) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1220 R) +(-1221 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1221) +(-1222) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1222 S) +(-1223 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1223) +(-1224) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1224 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4465 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1225 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4467 . T) (-4466 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1226 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1226) +(-1227) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1227 R -2119) +(-1228 R -1995) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1228 R |Row| |Col| M) +(-1229 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1229 R -2119) +(-1230 R -1995) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -901) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -901) (|devaluate| |#1|))))) -(-1230 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -902) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -902) (|devaluate| |#1|))))) +(-1231 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-379)))) -(-1231 R E V P) +(-1232 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4465 . T) (-4464 . T)) +((-4467 . T) (-4466 . T)) NIL -(-1232 |Coef|) +(-1233 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1233 |Curve|) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) +(-1234 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1234) +(-1235) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1235 S) +(-1236 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) -(-1236 -2119) +((|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) +(-1237 -1995) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1237) +(-1238) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1238) +(-1239) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1239 S) +(-1240 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-861)))) -(-1240) +((|HasCategory| |#1| (QUOTE (-862)))) +(-1241) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1241 S) +(-1242 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1242) +(-1243) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1243) +(-1244) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1244) +(-1245) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1245) +(-1246) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1246) +(-1247) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1247 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1248 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1248 |Coef|) +(-1249 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1249 S |Coef| UTS) +(-1250 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-374)))) -(-1250 |Coef| UTS) +(-1251 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1251 |Coef| UTS) +(-1252 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-3795 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861))))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4412) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1585) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-928))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146)))))) -(-1252 |Coef| |var| |cen|) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1174)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-2748 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1134))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1044)))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-833)))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))))) (-2748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1174)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1174)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3515) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2320) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -1998) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-929))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146)))))) +(-1253 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4466 "*") -3795 (-2311 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2311 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-928)))) (-4457 -3795 (-2311 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2311 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4412) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1585) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1253 ZP) +(((-4468 "*") -2748 (-2675 (|has| |#1| (-374)) (|has| (-1281 |#1| |#2| |#3|) (-833))) (|has| |#1| (-174)) (-2675 (|has| |#1| (-374)) (|has| (-1281 |#1| |#2| |#3|) (-929)))) (-4459 -2748 (-2675 (|has| |#1| (-374)) (|has| (-1281 |#1| |#2| |#3|) (-833))) (|has| |#1| (-568)) (-2675 (|has| |#1| (-374)) (|has| (-1281 |#1| |#2| |#3|) (-929)))) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) +((-2748 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-1174))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2748 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2748 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2748 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2748 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1134))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-374)))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-2748 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-1174))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3515) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2320) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -1998) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2748 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1254 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1254 R S) +(-1255 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-1255 S) +((|HasCategory| |#1| (QUOTE (-861)))) +(-1256 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) -(-1256 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) +(-1257 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1257 R Q UP) +(-1258 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1258 R UP) +(-1259 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1259 R UP) +(-1260 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1260 R U) +(-1261 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1261 |x| R) +(-1262 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4460 |has| |#2| (-374)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-1262 R PR S PS) +(((-4468 "*") |has| |#2| (-174)) (-4459 |has| |#2| (-568)) (-4462 |has| |#2| (-374)) (-4464 |has| |#2| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2748 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-2748 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1174))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (-2748 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-1263 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1263 S R) +(-1264 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1173)))) -(-1264 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1174)))) +(-1265 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) NIL -(-1265 S |Coef| |Expon|) +(-1266 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1133))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4113) (LIST (|devaluate| |#2|) (QUOTE (-1197)))))) -(-1266 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1134))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3515) (LIST (|devaluate| |#2|) (QUOTE (-1198)))))) +(-1267 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1267 RC P) +(-1268 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1268 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1269 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1269 |Coef|) +(-1270 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1270 S |Coef| ULS) +(-1271 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1271 |Coef| ULS) +(-1272 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1272 |Coef| ULS) +(-1273 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4412) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1585) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-1273 |Coef| |var| |cen|) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-374))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3515) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2320) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -1998) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) +(-1274 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4412) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1585) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) -(-1274 R FE |var| |cen|) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-374))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2748 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3515) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2320) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -1998) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|))))))) +(-1275 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4466 "*") |has| (-1273 |#2| |#3| |#4|) (-174)) (-4457 |has| (-1273 |#2| |#3| |#4|) (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-174))) (-3795 (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-568)))) -(-1275 A S) +(((-4468 "*") |has| (-1274 |#2| |#3| |#4|) (-174)) (-4459 |has| (-1274 |#2| |#3| |#4|) (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| (-1274 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1274 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1274 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1274 |#2| |#3| |#4|) (QUOTE (-174))) (-2748 (|HasCategory| (-1274 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1274 |#2| |#3| |#4|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1274 |#2| |#3| |#4|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1274 |#2| |#3| |#4|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-1274 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1274 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1274 |#2| |#3| |#4|) (QUOTE (-568)))) +(-1276 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4465))) -(-1276 S) +((|HasAttribute| |#1| (QUOTE -4467))) +(-1277 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1277 |Coef1| |Coef2| UTS1 UTS2) +(-1278 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1278 S |Coef|) +(-1279 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1223))) (|HasSignature| |#2| (LIST (QUOTE -1585) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4412) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1197))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) -(-1279 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-979))) (|HasCategory| |#2| (QUOTE (-1224))) (|HasSignature| |#2| (LIST (QUOTE -1998) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2320) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1198))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) +(-1280 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1280 |Coef| |var| |cen|) +(-1281 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4412) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1585) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) -(-1281 |Coef| UTS) +(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2748 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-784)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-784)) (|devaluate| |#1|)))) (|HasCategory| (-784) (QUOTE (-1134))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-784))))) (|HasSignature| |#1| (LIST (QUOTE -3515) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-784))))) (|HasCategory| |#1| (QUOTE (-374))) (-2748 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2320) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -1998) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|))))))) +(-1282 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1282 -2119 UP L UTS) +(-1283 -1995 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-568)))) -(-1283) +(-1284) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1284 |sym|) +(-1285 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1285 S R) +(-1286 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1286 R) +((|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1287 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4465 . T) (-4464 . T)) +((-4467 . T) (-4466 . T)) NIL -(-1287 A B) +(-1288 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1288 R) +(-1289 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4465 . T) (-4464 . T)) -((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-1289) +((-4467 . T) (-4466 . T)) +((-2748 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2748 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2748 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2748 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#1| (QUOTE (-1071))) (-12 (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-1071)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-1290) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1290) +(-1291) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1291) +(-1292) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1292) +(-1293) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1293) +(-1294) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1294 A S) +(-1295 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1295 S) +(-1296 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4459 . T) (-4458 . T)) +((-4461 . T) (-4460 . T)) NIL -(-1296 R) +(-1297 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1297 K R UP -2119) +(-1298 K R UP -1995) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1298) +(-1299) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1299) +(-1300) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1300 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1301 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) +((-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) (-4463 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1301 R E V P) +(-1302 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4465 . T) (-4464 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1302 R) +((-4467 . T) (-4466 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1303 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4458 . T) (-4459 . T) (-4461 . T)) +((-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1303 |vl| R) +(-1304 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4461 . T) (-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4457))) -(-1304 R |VarSet| XPOLY) +((-4463 . T) (-4459 |has| |#2| (-6 -4459)) (-4461 . T) (-4460 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4459))) +(-1305 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1305 |vl| R) +(-1306 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) +((-4459 |has| |#2| (-6 -4459)) (-4461 . T) (-4460 . T) (-4463 . T)) NIL -(-1306 S -2119) +(-1307 S -1995) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1307 -2119) +(-1308 -1995) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL -(-1308 |VarSet| R) +(-1309 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -729) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasAttribute| |#2| (QUOTE -4457))) -(-1309 |vl| R) +((-4459 |has| |#2| (-6 -4459)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -730) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasAttribute| |#2| (QUOTE -4459))) +(-1310 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) +((-4459 |has| |#2| (-6 -4459)) (-4461 . T) (-4460 . T) (-4463 . T)) NIL -(-1310 R) +(-1311 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4457 |has| |#1| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4457))) -(-1311 R E) +((-4459 |has| |#1| (-6 -4459)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4459))) +(-1312 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4461 . T) (-4462 |has| |#1| (-6 -4462)) (-4457 |has| |#1| (-6 -4457)) (-4459 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4457))) -(-1312 |VarSet| R) +((-4463 . T) (-4464 |has| |#1| (-6 -4464)) (-4459 |has| |#1| (-6 -4459)) (-4461 . T) (-4460 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4463)) (|HasAttribute| |#1| (QUOTE -4464)) (|HasAttribute| |#1| (QUOTE -4459))) +(-1313 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4457))) -(-1313) +((-4459 |has| |#2| (-6 -4459)) (-4461 . T) (-4460 . T) (-4463 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4459))) +(-1314) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1314 A) +(-1315 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1315 R |ls| |ls2|) +(-1316 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1316 R) +(-1317 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1317 |p|) +(-1318 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +(((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) NIL NIL NIL @@ -5216,4 +5220,4 @@ NIL NIL NIL NIL -((-3 NIL 2294287 2294292 2294297 2294302) (-2 NIL 2294267 2294272 2294277 2294282) (-1 NIL 2294247 2294252 2294257 2294262) (0 NIL 2294227 2294232 2294237 2294242) (-1317 "ZMOD.spad" 2294036 2294049 2294165 2294222) (-1316 "ZLINDEP.spad" 2293102 2293113 2294026 2294031) (-1315 "ZDSOLVE.spad" 2283047 2283069 2293092 2293097) (-1314 "YSTREAM.spad" 2282542 2282553 2283037 2283042) (-1313 "YDIAGRAM.spad" 2282176 2282185 2282532 2282537) (-1312 "XRPOLY.spad" 2281396 2281416 2282032 2282101) (-1311 "XPR.spad" 2279191 2279204 2281114 2281213) (-1310 "XPOLY.spad" 2278746 2278757 2279047 2279116) (-1309 "XPOLYC.spad" 2278065 2278081 2278672 2278741) (-1308 "XPBWPOLY.spad" 2276502 2276522 2277845 2277914) (-1307 "XF.spad" 2274965 2274980 2276404 2276497) (-1306 "XF.spad" 2273408 2273425 2274849 2274854) (-1305 "XFALG.spad" 2270456 2270472 2273334 2273403) (-1304 "XEXPPKG.spad" 2269707 2269733 2270446 2270451) (-1303 "XDPOLY.spad" 2269321 2269337 2269563 2269632) (-1302 "XALG.spad" 2268981 2268992 2269277 2269316) (-1301 "WUTSET.spad" 2264784 2264801 2268591 2268618) (-1300 "WP.spad" 2263983 2264027 2264642 2264709) (-1299 "WHILEAST.spad" 2263781 2263790 2263973 2263978) (-1298 "WHEREAST.spad" 2263452 2263461 2263771 2263776) (-1297 "WFFINTBS.spad" 2261115 2261137 2263442 2263447) (-1296 "WEIER.spad" 2259337 2259348 2261105 2261110) (-1295 "VSPACE.spad" 2259010 2259021 2259305 2259332) (-1294 "VSPACE.spad" 2258703 2258716 2259000 2259005) (-1293 "VOID.spad" 2258380 2258389 2258693 2258698) (-1292 "VIEW.spad" 2256060 2256069 2258370 2258375) (-1291 "VIEWDEF.spad" 2251261 2251270 2256050 2256055) (-1290 "VIEW3D.spad" 2235222 2235231 2251251 2251256) (-1289 "VIEW2D.spad" 2223113 2223122 2235212 2235217) (-1288 "VECTOR.spad" 2221634 2221645 2221885 2221912) (-1287 "VECTOR2.spad" 2220273 2220286 2221624 2221629) (-1286 "VECTCAT.spad" 2218177 2218188 2220241 2220268) (-1285 "VECTCAT.spad" 2215888 2215901 2217954 2217959) (-1284 "VARIABLE.spad" 2215668 2215683 2215878 2215883) (-1283 "UTYPE.spad" 2215312 2215321 2215658 2215663) (-1282 "UTSODETL.spad" 2214607 2214631 2215268 2215273) (-1281 "UTSODE.spad" 2212823 2212843 2214597 2214602) (-1280 "UTS.spad" 2207770 2207798 2211290 2211387) (-1279 "UTSCAT.spad" 2205249 2205265 2207668 2207765) (-1278 "UTSCAT.spad" 2202372 2202390 2204793 2204798) (-1277 "UTS2.spad" 2201967 2202002 2202362 2202367) (-1276 "URAGG.spad" 2196640 2196651 2201957 2201962) (-1275 "URAGG.spad" 2191277 2191290 2196596 2196601) (-1274 "UPXSSING.spad" 2188922 2188948 2190358 2190491) (-1273 "UPXS.spad" 2186218 2186246 2187054 2187203) (-1272 "UPXSCONS.spad" 2183977 2183997 2184350 2184499) (-1271 "UPXSCCA.spad" 2182548 2182568 2183823 2183972) (-1270 "UPXSCCA.spad" 2181261 2181283 2182538 2182543) (-1269 "UPXSCAT.spad" 2179850 2179866 2181107 2181256) (-1268 "UPXS2.spad" 2179393 2179446 2179840 2179845) (-1267 "UPSQFREE.spad" 2177807 2177821 2179383 2179388) (-1266 "UPSCAT.spad" 2175594 2175618 2177705 2177802) (-1265 "UPSCAT.spad" 2173087 2173113 2175200 2175205) (-1264 "UPOLYC.spad" 2168127 2168138 2172929 2173082) (-1263 "UPOLYC.spad" 2163059 2163072 2167863 2167868) (-1262 "UPOLYC2.spad" 2162530 2162549 2163049 2163054) (-1261 "UP.spad" 2159636 2159651 2160023 2160176) (-1260 "UPMP.spad" 2158536 2158549 2159626 2159631) (-1259 "UPDIVP.spad" 2158101 2158115 2158526 2158531) (-1258 "UPDECOMP.spad" 2156346 2156360 2158091 2158096) (-1257 "UPCDEN.spad" 2155555 2155571 2156336 2156341) (-1256 "UP2.spad" 2154919 2154940 2155545 2155550) (-1255 "UNISEG.spad" 2154272 2154283 2154838 2154843) (-1254 "UNISEG2.spad" 2153769 2153782 2154228 2154233) (-1253 "UNIFACT.spad" 2152872 2152884 2153759 2153764) (-1252 "ULS.spad" 2142656 2142684 2143601 2144030) (-1251 "ULSCONS.spad" 2133790 2133810 2134160 2134309) (-1250 "ULSCCAT.spad" 2131527 2131547 2133636 2133785) (-1249 "ULSCCAT.spad" 2129372 2129394 2131483 2131488) (-1248 "ULSCAT.spad" 2127604 2127620 2129218 2129367) (-1247 "ULS2.spad" 2127118 2127171 2127594 2127599) (-1246 "UINT8.spad" 2126995 2127004 2127108 2127113) (-1245 "UINT64.spad" 2126871 2126880 2126985 2126990) (-1244 "UINT32.spad" 2126747 2126756 2126861 2126866) (-1243 "UINT16.spad" 2126623 2126632 2126737 2126742) (-1242 "UFD.spad" 2125688 2125697 2126549 2126618) (-1241 "UFD.spad" 2124815 2124826 2125678 2125683) (-1240 "UDVO.spad" 2123696 2123705 2124805 2124810) (-1239 "UDPO.spad" 2121189 2121200 2123652 2123657) (-1238 "TYPE.spad" 2121121 2121130 2121179 2121184) (-1237 "TYPEAST.spad" 2121040 2121049 2121111 2121116) (-1236 "TWOFACT.spad" 2119692 2119707 2121030 2121035) (-1235 "TUPLE.spad" 2119178 2119189 2119591 2119596) (-1234 "TUBETOOL.spad" 2116045 2116054 2119168 2119173) (-1233 "TUBE.spad" 2114692 2114709 2116035 2116040) (-1232 "TS.spad" 2113291 2113307 2114257 2114354) (-1231 "TSETCAT.spad" 2100418 2100435 2113259 2113286) (-1230 "TSETCAT.spad" 2087531 2087550 2100374 2100379) (-1229 "TRMANIP.spad" 2081897 2081914 2087237 2087242) (-1228 "TRIMAT.spad" 2080860 2080885 2081887 2081892) (-1227 "TRIGMNIP.spad" 2079387 2079404 2080850 2080855) (-1226 "TRIGCAT.spad" 2078899 2078908 2079377 2079382) (-1225 "TRIGCAT.spad" 2078409 2078420 2078889 2078894) (-1224 "TREE.spad" 2076867 2076878 2077899 2077926) (-1223 "TRANFUN.spad" 2076706 2076715 2076857 2076862) (-1222 "TRANFUN.spad" 2076543 2076554 2076696 2076701) (-1221 "TOPSP.spad" 2076217 2076226 2076533 2076538) (-1220 "TOOLSIGN.spad" 2075880 2075891 2076207 2076212) (-1219 "TEXTFILE.spad" 2074441 2074450 2075870 2075875) (-1218 "TEX.spad" 2071587 2071596 2074431 2074436) (-1217 "TEX1.spad" 2071143 2071154 2071577 2071582) (-1216 "TEMUTL.spad" 2070698 2070707 2071133 2071138) (-1215 "TBCMPPK.spad" 2068791 2068814 2070688 2070693) (-1214 "TBAGG.spad" 2067841 2067864 2068771 2068786) (-1213 "TBAGG.spad" 2066899 2066924 2067831 2067836) (-1212 "TANEXP.spad" 2066307 2066318 2066889 2066894) (-1211 "TALGOP.spad" 2066031 2066042 2066297 2066302) (-1210 "TABLE.spad" 2064000 2064023 2064270 2064297) (-1209 "TABLEAU.spad" 2063481 2063492 2063990 2063995) (-1208 "TABLBUMP.spad" 2060284 2060295 2063471 2063476) (-1207 "SYSTEM.spad" 2059512 2059521 2060274 2060279) (-1206 "SYSSOLP.spad" 2056995 2057006 2059502 2059507) (-1205 "SYSPTR.spad" 2056894 2056903 2056985 2056990) (-1204 "SYSNNI.spad" 2056076 2056087 2056884 2056889) (-1203 "SYSINT.spad" 2055480 2055491 2056066 2056071) (-1202 "SYNTAX.spad" 2051686 2051695 2055470 2055475) (-1201 "SYMTAB.spad" 2049754 2049763 2051676 2051681) (-1200 "SYMS.spad" 2045777 2045786 2049744 2049749) (-1199 "SYMPOLY.spad" 2044784 2044795 2044866 2044993) (-1198 "SYMFUNC.spad" 2044285 2044296 2044774 2044779) (-1197 "SYMBOL.spad" 2041788 2041797 2044275 2044280) (-1196 "SWITCH.spad" 2038559 2038568 2041778 2041783) (-1195 "SUTS.spad" 2035607 2035635 2037026 2037123) (-1194 "SUPXS.spad" 2032890 2032918 2033739 2033888) (-1193 "SUP.spad" 2029610 2029621 2030383 2030536) (-1192 "SUPFRACF.spad" 2028715 2028733 2029600 2029605) (-1191 "SUP2.spad" 2028107 2028120 2028705 2028710) (-1190 "SUMRF.spad" 2027081 2027092 2028097 2028102) (-1189 "SUMFS.spad" 2026718 2026735 2027071 2027076) (-1188 "SULS.spad" 2016489 2016517 2017447 2017876) (-1187 "SUCHTAST.spad" 2016258 2016267 2016479 2016484) (-1186 "SUCH.spad" 2015940 2015955 2016248 2016253) (-1185 "SUBSPACE.spad" 2008055 2008070 2015930 2015935) (-1184 "SUBRESP.spad" 2007225 2007239 2008011 2008016) (-1183 "STTF.spad" 2003324 2003340 2007215 2007220) (-1182 "STTFNC.spad" 1999792 1999808 2003314 2003319) (-1181 "STTAYLOR.spad" 1992427 1992438 1999673 1999678) (-1180 "STRTBL.spad" 1990478 1990495 1990627 1990654) (-1179 "STRING.spad" 1989265 1989274 1989486 1989513) (-1178 "STREAM.spad" 1986066 1986077 1988673 1988688) (-1177 "STREAM3.spad" 1985639 1985654 1986056 1986061) (-1176 "STREAM2.spad" 1984767 1984780 1985629 1985634) (-1175 "STREAM1.spad" 1984473 1984484 1984757 1984762) (-1174 "STINPROD.spad" 1983409 1983425 1984463 1984468) (-1173 "STEP.spad" 1982610 1982619 1983399 1983404) (-1172 "STEPAST.spad" 1981844 1981853 1982600 1982605) (-1171 "STBL.spad" 1979928 1979956 1980095 1980110) (-1170 "STAGG.spad" 1979003 1979014 1979918 1979923) (-1169 "STAGG.spad" 1978076 1978089 1978993 1978998) (-1168 "STACK.spad" 1977316 1977327 1977566 1977593) (-1167 "SREGSET.spad" 1974984 1975001 1976926 1976953) (-1166 "SRDCMPK.spad" 1973545 1973565 1974974 1974979) (-1165 "SRAGG.spad" 1968688 1968697 1973513 1973540) (-1164 "SRAGG.spad" 1963851 1963862 1968678 1968683) (-1163 "SQMATRIX.spad" 1961394 1961412 1962310 1962397) (-1162 "SPLTREE.spad" 1955790 1955803 1960674 1960701) (-1161 "SPLNODE.spad" 1952378 1952391 1955780 1955785) (-1160 "SPFCAT.spad" 1951187 1951196 1952368 1952373) (-1159 "SPECOUT.spad" 1949739 1949748 1951177 1951182) (-1158 "SPADXPT.spad" 1941334 1941343 1949729 1949734) (-1157 "spad-parser.spad" 1940799 1940808 1941324 1941329) (-1156 "SPADAST.spad" 1940500 1940509 1940789 1940794) (-1155 "SPACEC.spad" 1924699 1924710 1940490 1940495) (-1154 "SPACE3.spad" 1924475 1924486 1924689 1924694) (-1153 "SORTPAK.spad" 1924024 1924037 1924431 1924436) (-1152 "SOLVETRA.spad" 1921787 1921798 1924014 1924019) (-1151 "SOLVESER.spad" 1920315 1920326 1921777 1921782) (-1150 "SOLVERAD.spad" 1916341 1916352 1920305 1920310) (-1149 "SOLVEFOR.spad" 1914803 1914821 1916331 1916336) (-1148 "SNTSCAT.spad" 1914403 1914420 1914771 1914798) (-1147 "SMTS.spad" 1912675 1912701 1913968 1914065) (-1146 "SMP.spad" 1910150 1910170 1910540 1910667) (-1145 "SMITH.spad" 1908995 1909020 1910140 1910145) (-1144 "SMATCAT.spad" 1907105 1907135 1908939 1908990) (-1143 "SMATCAT.spad" 1905147 1905179 1906983 1906988) (-1142 "SKAGG.spad" 1904110 1904121 1905115 1905142) (-1141 "SINT.spad" 1903050 1903059 1903976 1904105) (-1140 "SIMPAN.spad" 1902778 1902787 1903040 1903045) (-1139 "SIG.spad" 1902108 1902117 1902768 1902773) (-1138 "SIGNRF.spad" 1901226 1901237 1902098 1902103) (-1137 "SIGNEF.spad" 1900505 1900522 1901216 1901221) (-1136 "SIGAST.spad" 1899890 1899899 1900495 1900500) (-1135 "SHP.spad" 1897818 1897833 1899846 1899851) (-1134 "SHDP.spad" 1885496 1885523 1886005 1886104) (-1133 "SGROUP.spad" 1885104 1885113 1885486 1885491) (-1132 "SGROUP.spad" 1884710 1884721 1885094 1885099) (-1131 "SGCF.spad" 1877849 1877858 1884700 1884705) (-1130 "SFRTCAT.spad" 1876779 1876796 1877817 1877844) (-1129 "SFRGCD.spad" 1875842 1875862 1876769 1876774) (-1128 "SFQCMPK.spad" 1870479 1870499 1875832 1875837) (-1127 "SFORT.spad" 1869918 1869932 1870469 1870474) (-1126 "SEXOF.spad" 1869761 1869801 1869908 1869913) (-1125 "SEX.spad" 1869653 1869662 1869751 1869756) (-1124 "SEXCAT.spad" 1867425 1867465 1869643 1869648) (-1123 "SET.spad" 1865713 1865724 1866810 1866849) (-1122 "SETMN.spad" 1864163 1864180 1865703 1865708) (-1121 "SETCAT.spad" 1863648 1863657 1864153 1864158) (-1120 "SETCAT.spad" 1863131 1863142 1863638 1863643) (-1119 "SETAGG.spad" 1859680 1859691 1863111 1863126) (-1118 "SETAGG.spad" 1856237 1856250 1859670 1859675) (-1117 "SEQAST.spad" 1855940 1855949 1856227 1856232) (-1116 "SEGXCAT.spad" 1855096 1855109 1855930 1855935) (-1115 "SEG.spad" 1854909 1854920 1855015 1855020) (-1114 "SEGCAT.spad" 1853834 1853845 1854899 1854904) (-1113 "SEGBIND.spad" 1853592 1853603 1853781 1853786) (-1112 "SEGBIND2.spad" 1853290 1853303 1853582 1853587) (-1111 "SEGAST.spad" 1853004 1853013 1853280 1853285) (-1110 "SEG2.spad" 1852439 1852452 1852960 1852965) (-1109 "SDVAR.spad" 1851715 1851726 1852429 1852434) (-1108 "SDPOL.spad" 1849048 1849059 1849339 1849466) (-1107 "SCPKG.spad" 1847137 1847148 1849038 1849043) (-1106 "SCOPE.spad" 1846290 1846299 1847127 1847132) (-1105 "SCACHE.spad" 1844986 1844997 1846280 1846285) (-1104 "SASTCAT.spad" 1844895 1844904 1844976 1844981) (-1103 "SAOS.spad" 1844767 1844776 1844885 1844890) (-1102 "SAERFFC.spad" 1844480 1844500 1844757 1844762) (-1101 "SAE.spad" 1841950 1841966 1842561 1842696) (-1100 "SAEFACT.spad" 1841651 1841671 1841940 1841945) (-1099 "RURPK.spad" 1839310 1839326 1841641 1841646) (-1098 "RULESET.spad" 1838763 1838787 1839300 1839305) (-1097 "RULE.spad" 1837003 1837027 1838753 1838758) (-1096 "RULECOLD.spad" 1836855 1836868 1836993 1836998) (-1095 "RTVALUE.spad" 1836590 1836599 1836845 1836850) (-1094 "RSTRCAST.spad" 1836307 1836316 1836580 1836585) (-1093 "RSETGCD.spad" 1832685 1832705 1836297 1836302) (-1092 "RSETCAT.spad" 1822621 1822638 1832653 1832680) (-1091 "RSETCAT.spad" 1812577 1812596 1822611 1822616) (-1090 "RSDCMPK.spad" 1811029 1811049 1812567 1812572) (-1089 "RRCC.spad" 1809413 1809443 1811019 1811024) (-1088 "RRCC.spad" 1807795 1807827 1809403 1809408) (-1087 "RPTAST.spad" 1807497 1807506 1807785 1807790) (-1086 "RPOLCAT.spad" 1786857 1786872 1807365 1807492) (-1085 "RPOLCAT.spad" 1765930 1765947 1786440 1786445) (-1084 "ROUTINE.spad" 1761351 1761360 1764115 1764142) (-1083 "ROMAN.spad" 1760679 1760688 1761217 1761346) (-1082 "ROIRC.spad" 1759759 1759791 1760669 1760674) (-1081 "RNS.spad" 1758662 1758671 1759661 1759754) (-1080 "RNS.spad" 1757651 1757662 1758652 1758657) (-1079 "RNG.spad" 1757386 1757395 1757641 1757646) (-1078 "RNGBIND.spad" 1756546 1756560 1757341 1757346) (-1077 "RMODULE.spad" 1756311 1756322 1756536 1756541) (-1076 "RMCAT2.spad" 1755731 1755788 1756301 1756306) (-1075 "RMATRIX.spad" 1754519 1754538 1754862 1754901) (-1074 "RMATCAT.spad" 1750098 1750129 1754475 1754514) (-1073 "RMATCAT.spad" 1745567 1745600 1749946 1749951) (-1072 "RLINSET.spad" 1745271 1745282 1745557 1745562) (-1071 "RINTERP.spad" 1745159 1745179 1745261 1745266) (-1070 "RING.spad" 1744629 1744638 1745139 1745154) (-1069 "RING.spad" 1744107 1744118 1744619 1744624) (-1068 "RIDIST.spad" 1743499 1743508 1744097 1744102) (-1067 "RGCHAIN.spad" 1742027 1742043 1742929 1742956) (-1066 "RGBCSPC.spad" 1741808 1741820 1742017 1742022) (-1065 "RGBCMDL.spad" 1741338 1741350 1741798 1741803) (-1064 "RF.spad" 1738980 1738991 1741328 1741333) (-1063 "RFFACTOR.spad" 1738442 1738453 1738970 1738975) (-1062 "RFFACT.spad" 1738177 1738189 1738432 1738437) (-1061 "RFDIST.spad" 1737173 1737182 1738167 1738172) (-1060 "RETSOL.spad" 1736592 1736605 1737163 1737168) (-1059 "RETRACT.spad" 1736020 1736031 1736582 1736587) (-1058 "RETRACT.spad" 1735446 1735459 1736010 1736015) (-1057 "RETAST.spad" 1735258 1735267 1735436 1735441) (-1056 "RESULT.spad" 1732856 1732865 1733443 1733470) (-1055 "RESRING.spad" 1732203 1732250 1732794 1732851) (-1054 "RESLATC.spad" 1731527 1731538 1732193 1732198) (-1053 "REPSQ.spad" 1731258 1731269 1731517 1731522) (-1052 "REP.spad" 1728812 1728821 1731248 1731253) (-1051 "REPDB.spad" 1728519 1728530 1728802 1728807) (-1050 "REP2.spad" 1718177 1718188 1728361 1728366) (-1049 "REP1.spad" 1712373 1712384 1718127 1718132) (-1048 "REGSET.spad" 1710134 1710151 1711983 1712010) (-1047 "REF.spad" 1709469 1709480 1710089 1710094) (-1046 "REDORDER.spad" 1708675 1708692 1709459 1709464) (-1045 "RECLOS.spad" 1707458 1707478 1708162 1708255) (-1044 "REALSOLV.spad" 1706598 1706607 1707448 1707453) (-1043 "REAL.spad" 1706470 1706479 1706588 1706593) (-1042 "REAL0Q.spad" 1703768 1703783 1706460 1706465) (-1041 "REAL0.spad" 1700612 1700627 1703758 1703763) (-1040 "RDUCEAST.spad" 1700333 1700342 1700602 1700607) (-1039 "RDIV.spad" 1699988 1700013 1700323 1700328) (-1038 "RDIST.spad" 1699555 1699566 1699978 1699983) (-1037 "RDETRS.spad" 1698419 1698437 1699545 1699550) (-1036 "RDETR.spad" 1696558 1696576 1698409 1698414) (-1035 "RDEEFS.spad" 1695657 1695674 1696548 1696553) (-1034 "RDEEF.spad" 1694667 1694684 1695647 1695652) (-1033 "RCFIELD.spad" 1691853 1691862 1694569 1694662) (-1032 "RCFIELD.spad" 1689125 1689136 1691843 1691848) (-1031 "RCAGG.spad" 1687053 1687064 1689115 1689120) (-1030 "RCAGG.spad" 1684908 1684921 1686972 1686977) (-1029 "RATRET.spad" 1684268 1684279 1684898 1684903) (-1028 "RATFACT.spad" 1683960 1683972 1684258 1684263) (-1027 "RANDSRC.spad" 1683279 1683288 1683950 1683955) (-1026 "RADUTIL.spad" 1683035 1683044 1683269 1683274) (-1025 "RADIX.spad" 1679859 1679873 1681405 1681498) (-1024 "RADFF.spad" 1677598 1677635 1677717 1677873) (-1023 "RADCAT.spad" 1677193 1677202 1677588 1677593) (-1022 "RADCAT.spad" 1676786 1676797 1677183 1677188) (-1021 "QUEUE.spad" 1676017 1676028 1676276 1676303) (-1020 "QUAT.spad" 1674505 1674516 1674848 1674913) (-1019 "QUATCT2.spad" 1674125 1674144 1674495 1674500) (-1018 "QUATCAT.spad" 1672295 1672306 1674055 1674120) (-1017 "QUATCAT.spad" 1670216 1670229 1671978 1671983) (-1016 "QUAGG.spad" 1669043 1669054 1670184 1670211) (-1015 "QQUTAST.spad" 1668811 1668820 1669033 1669038) (-1014 "QFORM.spad" 1668429 1668444 1668801 1668806) (-1013 "QFCAT.spad" 1667131 1667142 1668331 1668424) (-1012 "QFCAT.spad" 1665424 1665437 1666626 1666631) (-1011 "QFCAT2.spad" 1665116 1665133 1665414 1665419) (-1010 "QEQUAT.spad" 1664674 1664683 1665106 1665111) (-1009 "QCMPACK.spad" 1659420 1659440 1664664 1664669) (-1008 "QALGSET.spad" 1655498 1655531 1659334 1659339) (-1007 "QALGSET2.spad" 1653493 1653512 1655488 1655493) (-1006 "PWFFINTB.spad" 1650908 1650930 1653483 1653488) (-1005 "PUSHVAR.spad" 1650246 1650266 1650898 1650903) (-1004 "PTRANFN.spad" 1646373 1646384 1650236 1650241) (-1003 "PTPACK.spad" 1643460 1643471 1646363 1646368) (-1002 "PTFUNC2.spad" 1643282 1643297 1643450 1643455) (-1001 "PTCAT.spad" 1642536 1642547 1643250 1643277) (-1000 "PSQFR.spad" 1641842 1641867 1642526 1642531) (-999 "PSEUDLIN.spad" 1640728 1640738 1641832 1641837) (-998 "PSETPK.spad" 1626161 1626177 1640606 1640611) (-997 "PSETCAT.spad" 1620081 1620104 1626141 1626156) (-996 "PSETCAT.spad" 1613975 1614000 1620037 1620042) (-995 "PSCURVE.spad" 1612958 1612966 1613965 1613970) (-994 "PSCAT.spad" 1611741 1611770 1612856 1612953) (-993 "PSCAT.spad" 1610614 1610645 1611731 1611736) (-992 "PRTITION.spad" 1609312 1609320 1610604 1610609) (-991 "PRTDAST.spad" 1609031 1609039 1609302 1609307) (-990 "PRS.spad" 1598593 1598610 1608987 1608992) (-989 "PRQAGG.spad" 1598028 1598038 1598561 1598588) (-988 "PROPLOG.spad" 1597600 1597608 1598018 1598023) (-987 "PROPFUN2.spad" 1597223 1597236 1597590 1597595) (-986 "PROPFUN1.spad" 1596621 1596632 1597213 1597218) (-985 "PROPFRML.spad" 1595189 1595200 1596611 1596616) (-984 "PROPERTY.spad" 1594677 1594685 1595179 1595184) (-983 "PRODUCT.spad" 1592359 1592371 1592643 1592698) (-982 "PR.spad" 1590751 1590763 1591450 1591577) (-981 "PRINT.spad" 1590503 1590511 1590741 1590746) (-980 "PRIMES.spad" 1588756 1588766 1590493 1590498) (-979 "PRIMELT.spad" 1586837 1586851 1588746 1588751) (-978 "PRIMCAT.spad" 1586464 1586472 1586827 1586832) (-977 "PRIMARR.spad" 1585316 1585326 1585494 1585521) (-976 "PRIMARR2.spad" 1584083 1584095 1585306 1585311) (-975 "PREASSOC.spad" 1583465 1583477 1584073 1584078) (-974 "PPCURVE.spad" 1582602 1582610 1583455 1583460) (-973 "PORTNUM.spad" 1582377 1582385 1582592 1582597) (-972 "POLYROOT.spad" 1581226 1581248 1582333 1582338) (-971 "POLY.spad" 1578561 1578571 1579076 1579203) (-970 "POLYLIFT.spad" 1577826 1577849 1578551 1578556) (-969 "POLYCATQ.spad" 1575944 1575966 1577816 1577821) (-968 "POLYCAT.spad" 1569414 1569435 1575812 1575939) (-967 "POLYCAT.spad" 1562222 1562245 1568622 1568627) (-966 "POLY2UP.spad" 1561674 1561688 1562212 1562217) (-965 "POLY2.spad" 1561271 1561283 1561664 1561669) (-964 "POLUTIL.spad" 1560212 1560241 1561227 1561232) (-963 "POLTOPOL.spad" 1558960 1558975 1560202 1560207) (-962 "POINT.spad" 1557645 1557655 1557732 1557759) (-961 "PNTHEORY.spad" 1554347 1554355 1557635 1557640) (-960 "PMTOOLS.spad" 1553122 1553136 1554337 1554342) (-959 "PMSYM.spad" 1552671 1552681 1553112 1553117) (-958 "PMQFCAT.spad" 1552262 1552276 1552661 1552666) (-957 "PMPRED.spad" 1551741 1551755 1552252 1552257) (-956 "PMPREDFS.spad" 1551195 1551217 1551731 1551736) (-955 "PMPLCAT.spad" 1550275 1550293 1551127 1551132) (-954 "PMLSAGG.spad" 1549860 1549874 1550265 1550270) (-953 "PMKERNEL.spad" 1549439 1549451 1549850 1549855) (-952 "PMINS.spad" 1549019 1549029 1549429 1549434) (-951 "PMFS.spad" 1548596 1548614 1549009 1549014) (-950 "PMDOWN.spad" 1547886 1547900 1548586 1548591) (-949 "PMASS.spad" 1546896 1546904 1547876 1547881) (-948 "PMASSFS.spad" 1545863 1545879 1546886 1546891) (-947 "PLOTTOOL.spad" 1545643 1545651 1545853 1545858) (-946 "PLOT.spad" 1540566 1540574 1545633 1545638) (-945 "PLOT3D.spad" 1537030 1537038 1540556 1540561) (-944 "PLOT1.spad" 1536187 1536197 1537020 1537025) (-943 "PLEQN.spad" 1523477 1523504 1536177 1536182) (-942 "PINTERP.spad" 1523099 1523118 1523467 1523472) (-941 "PINTERPA.spad" 1522883 1522899 1523089 1523094) (-940 "PI.spad" 1522492 1522500 1522857 1522878) (-939 "PID.spad" 1521462 1521470 1522418 1522487) (-938 "PICOERCE.spad" 1521119 1521129 1521452 1521457) (-937 "PGROEB.spad" 1519720 1519734 1521109 1521114) (-936 "PGE.spad" 1511337 1511345 1519710 1519715) (-935 "PGCD.spad" 1510227 1510244 1511327 1511332) (-934 "PFRPAC.spad" 1509376 1509386 1510217 1510222) (-933 "PFR.spad" 1506039 1506049 1509278 1509371) (-932 "PFOTOOLS.spad" 1505297 1505313 1506029 1506034) (-931 "PFOQ.spad" 1504667 1504685 1505287 1505292) (-930 "PFO.spad" 1504086 1504113 1504657 1504662) (-929 "PF.spad" 1503660 1503672 1503891 1503984) (-928 "PFECAT.spad" 1501342 1501350 1503586 1503655) (-927 "PFECAT.spad" 1499052 1499062 1501298 1501303) (-926 "PFBRU.spad" 1496940 1496952 1499042 1499047) (-925 "PFBR.spad" 1494500 1494523 1496930 1496935) (-924 "PERM.spad" 1490307 1490317 1494330 1494345) (-923 "PERMGRP.spad" 1485077 1485087 1490297 1490302) (-922 "PERMCAT.spad" 1483738 1483748 1485057 1485072) (-921 "PERMAN.spad" 1482270 1482284 1483728 1483733) (-920 "PENDTREE.spad" 1481494 1481504 1481782 1481787) (-919 "PDSPC.spad" 1480307 1480317 1481484 1481489) (-918 "PDSPC.spad" 1479118 1479130 1480297 1480302) (-917 "PDRING.spad" 1478960 1478970 1479098 1479113) (-916 "PDMOD.spad" 1478776 1478788 1478928 1478955) (-915 "PDEPROB.spad" 1477791 1477799 1478766 1478771) (-914 "PDEPACK.spad" 1471831 1471839 1477781 1477786) (-913 "PDECOMP.spad" 1471301 1471318 1471821 1471826) (-912 "PDECAT.spad" 1469657 1469665 1471291 1471296) (-911 "PDDOM.spad" 1469095 1469108 1469647 1469652) (-910 "PDDOM.spad" 1468531 1468546 1469085 1469090) (-909 "PCOMP.spad" 1468384 1468397 1468521 1468526) (-908 "PBWLB.spad" 1466972 1466989 1468374 1468379) (-907 "PATTERN.spad" 1461511 1461521 1466962 1466967) (-906 "PATTERN2.spad" 1461249 1461261 1461501 1461506) (-905 "PATTERN1.spad" 1459585 1459601 1461239 1461244) (-904 "PATRES.spad" 1457160 1457172 1459575 1459580) (-903 "PATRES2.spad" 1456832 1456846 1457150 1457155) (-902 "PATMATCH.spad" 1455029 1455060 1456540 1456545) (-901 "PATMAB.spad" 1454458 1454468 1455019 1455024) (-900 "PATLRES.spad" 1453544 1453558 1454448 1454453) (-899 "PATAB.spad" 1453308 1453318 1453534 1453539) (-898 "PARTPERM.spad" 1451316 1451324 1453298 1453303) (-897 "PARSURF.spad" 1450750 1450778 1451306 1451311) (-896 "PARSU2.spad" 1450547 1450563 1450740 1450745) (-895 "script-parser.spad" 1450067 1450075 1450537 1450542) (-894 "PARSCURV.spad" 1449501 1449529 1450057 1450062) (-893 "PARSC2.spad" 1449292 1449308 1449491 1449496) (-892 "PARPCURV.spad" 1448754 1448782 1449282 1449287) (-891 "PARPC2.spad" 1448545 1448561 1448744 1448749) (-890 "PARAMAST.spad" 1447673 1447681 1448535 1448540) (-889 "PAN2EXPR.spad" 1447085 1447093 1447663 1447668) (-888 "PALETTE.spad" 1446055 1446063 1447075 1447080) (-887 "PAIR.spad" 1445042 1445055 1445643 1445648) (-886 "PADICRC.spad" 1442283 1442301 1443454 1443547) (-885 "PADICRAT.spad" 1440191 1440203 1440412 1440505) (-884 "PADIC.spad" 1439886 1439898 1440117 1440186) (-883 "PADICCT.spad" 1438435 1438447 1439812 1439881) (-882 "PADEPAC.spad" 1437124 1437143 1438425 1438430) (-881 "PADE.spad" 1435876 1435892 1437114 1437119) (-880 "OWP.spad" 1435116 1435146 1435734 1435801) (-879 "OVERSET.spad" 1434689 1434697 1435106 1435111) (-878 "OVAR.spad" 1434470 1434493 1434679 1434684) (-877 "OUT.spad" 1433556 1433564 1434460 1434465) (-876 "OUTFORM.spad" 1422948 1422956 1433546 1433551) (-875 "OUTBFILE.spad" 1422366 1422374 1422938 1422943) (-874 "OUTBCON.spad" 1421372 1421380 1422356 1422361) (-873 "OUTBCON.spad" 1420376 1420386 1421362 1421367) (-872 "OSI.spad" 1419851 1419859 1420366 1420371) (-871 "OSGROUP.spad" 1419769 1419777 1419841 1419846) (-870 "ORTHPOL.spad" 1418254 1418264 1419686 1419691) (-869 "OREUP.spad" 1417707 1417735 1417934 1417973) (-868 "ORESUP.spad" 1417008 1417032 1417387 1417426) (-867 "OREPCTO.spad" 1414865 1414877 1416928 1416933) (-866 "OREPCAT.spad" 1409012 1409022 1414821 1414860) (-865 "OREPCAT.spad" 1403049 1403061 1408860 1408865) (-864 "ORDTYPE.spad" 1402286 1402294 1403039 1403044) (-863 "ORDTYPE.spad" 1401521 1401531 1402276 1402281) (-862 "ORDSTRCT.spad" 1401348 1401363 1401511 1401516) (-861 "ORDSET.spad" 1401048 1401056 1401338 1401343) (-860 "ORDRING.spad" 1400438 1400446 1401028 1401043) (-859 "ORDRING.spad" 1399836 1399846 1400428 1400433) (-858 "ORDMON.spad" 1399691 1399699 1399826 1399831) (-857 "ORDFUNS.spad" 1398823 1398839 1399681 1399686) (-856 "ORDFIN.spad" 1398643 1398651 1398813 1398818) (-855 "ORDCOMP.spad" 1397108 1397118 1398190 1398219) (-854 "ORDCOMP2.spad" 1396401 1396413 1397098 1397103) (-853 "OPTPROB.spad" 1395039 1395047 1396391 1396396) (-852 "OPTPACK.spad" 1387448 1387456 1395029 1395034) (-851 "OPTCAT.spad" 1385127 1385135 1387438 1387443) (-850 "OPSIG.spad" 1384781 1384789 1385117 1385122) (-849 "OPQUERY.spad" 1384330 1384338 1384771 1384776) (-848 "OP.spad" 1384072 1384082 1384152 1384219) (-847 "OPERCAT.spad" 1383538 1383548 1384062 1384067) (-846 "OPERCAT.spad" 1383002 1383014 1383528 1383533) (-845 "ONECOMP.spad" 1381747 1381757 1382549 1382578) (-844 "ONECOMP2.spad" 1381171 1381183 1381737 1381742) (-843 "OMSERVER.spad" 1380177 1380185 1381161 1381166) (-842 "OMSAGG.spad" 1379965 1379975 1380133 1380172) (-841 "OMPKG.spad" 1378581 1378589 1379955 1379960) (-840 "OM.spad" 1377554 1377562 1378571 1378576) (-839 "OMLO.spad" 1376979 1376991 1377440 1377479) (-838 "OMEXPR.spad" 1376813 1376823 1376969 1376974) (-837 "OMERR.spad" 1376358 1376366 1376803 1376808) (-836 "OMERRK.spad" 1375392 1375400 1376348 1376353) (-835 "OMENC.spad" 1374736 1374744 1375382 1375387) (-834 "OMDEV.spad" 1369045 1369053 1374726 1374731) (-833 "OMCONN.spad" 1368454 1368462 1369035 1369040) (-832 "OINTDOM.spad" 1368217 1368225 1368380 1368449) (-831 "OFMONOID.spad" 1366340 1366350 1368173 1368178) (-830 "ODVAR.spad" 1365601 1365611 1366330 1366335) (-829 "ODR.spad" 1365245 1365271 1365413 1365562) (-828 "ODPOL.spad" 1362534 1362544 1362874 1363001) (-827 "ODP.spad" 1350348 1350368 1350721 1350820) (-826 "ODETOOLS.spad" 1348997 1349016 1350338 1350343) (-825 "ODESYS.spad" 1346691 1346708 1348987 1348992) (-824 "ODERTRIC.spad" 1342700 1342717 1346648 1346653) (-823 "ODERED.spad" 1342099 1342123 1342690 1342695) (-822 "ODERAT.spad" 1339714 1339731 1342089 1342094) (-821 "ODEPRRIC.spad" 1336751 1336773 1339704 1339709) (-820 "ODEPROB.spad" 1336008 1336016 1336741 1336746) (-819 "ODEPRIM.spad" 1333342 1333364 1335998 1336003) (-818 "ODEPAL.spad" 1332728 1332752 1333332 1333337) (-817 "ODEPACK.spad" 1319394 1319402 1332718 1332723) (-816 "ODEINT.spad" 1318829 1318845 1319384 1319389) (-815 "ODEIFTBL.spad" 1316224 1316232 1318819 1318824) (-814 "ODEEF.spad" 1311715 1311731 1316214 1316219) (-813 "ODECONST.spad" 1311252 1311270 1311705 1311710) (-812 "ODECAT.spad" 1309850 1309858 1311242 1311247) (-811 "OCT.spad" 1307986 1307996 1308700 1308739) (-810 "OCTCT2.spad" 1307632 1307653 1307976 1307981) (-809 "OC.spad" 1305428 1305438 1307588 1307627) (-808 "OC.spad" 1302949 1302961 1305111 1305116) (-807 "OCAMON.spad" 1302797 1302805 1302939 1302944) (-806 "OASGP.spad" 1302612 1302620 1302787 1302792) (-805 "OAMONS.spad" 1302134 1302142 1302602 1302607) (-804 "OAMON.spad" 1301995 1302003 1302124 1302129) (-803 "OAGROUP.spad" 1301857 1301865 1301985 1301990) (-802 "NUMTUBE.spad" 1301448 1301464 1301847 1301852) (-801 "NUMQUAD.spad" 1289424 1289432 1301438 1301443) (-800 "NUMODE.spad" 1280778 1280786 1289414 1289419) (-799 "NUMINT.spad" 1278344 1278352 1280768 1280773) (-798 "NUMFMT.spad" 1277184 1277192 1278334 1278339) (-797 "NUMERIC.spad" 1269298 1269308 1276989 1276994) (-796 "NTSCAT.spad" 1267806 1267822 1269266 1269293) (-795 "NTPOLFN.spad" 1267357 1267367 1267723 1267728) (-794 "NSUP.spad" 1260310 1260320 1264850 1265003) (-793 "NSUP2.spad" 1259702 1259714 1260300 1260305) (-792 "NSMP.spad" 1255932 1255951 1256240 1256367) (-791 "NREP.spad" 1254310 1254324 1255922 1255927) (-790 "NPCOEF.spad" 1253556 1253576 1254300 1254305) (-789 "NORMRETR.spad" 1253154 1253193 1253546 1253551) (-788 "NORMPK.spad" 1251056 1251075 1253144 1253149) (-787 "NORMMA.spad" 1250744 1250770 1251046 1251051) (-786 "NONE.spad" 1250485 1250493 1250734 1250739) (-785 "NONE1.spad" 1250161 1250171 1250475 1250480) (-784 "NODE1.spad" 1249648 1249664 1250151 1250156) (-783 "NNI.spad" 1248543 1248551 1249622 1249643) (-782 "NLINSOL.spad" 1247169 1247179 1248533 1248538) (-781 "NIPROB.spad" 1245710 1245718 1247159 1247164) (-780 "NFINTBAS.spad" 1243270 1243287 1245700 1245705) (-779 "NETCLT.spad" 1243244 1243255 1243260 1243265) (-778 "NCODIV.spad" 1241460 1241476 1243234 1243239) (-777 "NCNTFRAC.spad" 1241102 1241116 1241450 1241455) (-776 "NCEP.spad" 1239268 1239282 1241092 1241097) (-775 "NASRING.spad" 1238864 1238872 1239258 1239263) (-774 "NASRING.spad" 1238458 1238468 1238854 1238859) (-773 "NARNG.spad" 1237810 1237818 1238448 1238453) (-772 "NARNG.spad" 1237160 1237170 1237800 1237805) (-771 "NAGSP.spad" 1236237 1236245 1237150 1237155) (-770 "NAGS.spad" 1225898 1225906 1236227 1236232) (-769 "NAGF07.spad" 1224329 1224337 1225888 1225893) (-768 "NAGF04.spad" 1218731 1218739 1224319 1224324) (-767 "NAGF02.spad" 1212800 1212808 1218721 1218726) (-766 "NAGF01.spad" 1208561 1208569 1212790 1212795) (-765 "NAGE04.spad" 1202261 1202269 1208551 1208556) (-764 "NAGE02.spad" 1192921 1192929 1202251 1202256) (-763 "NAGE01.spad" 1188923 1188931 1192911 1192916) (-762 "NAGD03.spad" 1186927 1186935 1188913 1188918) (-761 "NAGD02.spad" 1179674 1179682 1186917 1186922) (-760 "NAGD01.spad" 1173967 1173975 1179664 1179669) (-759 "NAGC06.spad" 1169842 1169850 1173957 1173962) (-758 "NAGC05.spad" 1168343 1168351 1169832 1169837) (-757 "NAGC02.spad" 1167610 1167618 1168333 1168338) (-756 "NAALG.spad" 1167151 1167161 1167578 1167605) (-755 "NAALG.spad" 1166712 1166724 1167141 1167146) (-754 "MULTSQFR.spad" 1163670 1163687 1166702 1166707) (-753 "MULTFACT.spad" 1163053 1163070 1163660 1163665) (-752 "MTSCAT.spad" 1161147 1161168 1162951 1163048) (-751 "MTHING.spad" 1160806 1160816 1161137 1161142) (-750 "MSYSCMD.spad" 1160240 1160248 1160796 1160801) (-749 "MSET.spad" 1158162 1158172 1159910 1159949) (-748 "MSETAGG.spad" 1158007 1158017 1158130 1158157) (-747 "MRING.spad" 1154984 1154996 1157715 1157782) (-746 "MRF2.spad" 1154554 1154568 1154974 1154979) (-745 "MRATFAC.spad" 1154100 1154117 1154544 1154549) (-744 "MPRFF.spad" 1152140 1152159 1154090 1154095) (-743 "MPOLY.spad" 1149611 1149626 1149970 1150097) (-742 "MPCPF.spad" 1148875 1148894 1149601 1149606) (-741 "MPC3.spad" 1148692 1148732 1148865 1148870) (-740 "MPC2.spad" 1148338 1148371 1148682 1148687) (-739 "MONOTOOL.spad" 1146689 1146706 1148328 1148333) (-738 "MONOID.spad" 1146008 1146016 1146679 1146684) (-737 "MONOID.spad" 1145325 1145335 1145998 1146003) (-736 "MONOGEN.spad" 1144073 1144086 1145185 1145320) (-735 "MONOGEN.spad" 1142843 1142858 1143957 1143962) (-734 "MONADWU.spad" 1140873 1140881 1142833 1142838) (-733 "MONADWU.spad" 1138901 1138911 1140863 1140868) (-732 "MONAD.spad" 1138061 1138069 1138891 1138896) (-731 "MONAD.spad" 1137219 1137229 1138051 1138056) (-730 "MOEBIUS.spad" 1135955 1135969 1137199 1137214) (-729 "MODULE.spad" 1135825 1135835 1135923 1135950) (-728 "MODULE.spad" 1135715 1135727 1135815 1135820) (-727 "MODRING.spad" 1135050 1135089 1135695 1135710) (-726 "MODOP.spad" 1133715 1133727 1134872 1134939) (-725 "MODMONOM.spad" 1133446 1133464 1133705 1133710) (-724 "MODMON.spad" 1130148 1130164 1130867 1131020) (-723 "MODFIELD.spad" 1129510 1129549 1130050 1130143) (-722 "MMLFORM.spad" 1128370 1128378 1129500 1129505) (-721 "MMAP.spad" 1128112 1128146 1128360 1128365) (-720 "MLO.spad" 1126571 1126581 1128068 1128107) (-719 "MLIFT.spad" 1125183 1125200 1126561 1126566) (-718 "MKUCFUNC.spad" 1124718 1124736 1125173 1125178) (-717 "MKRECORD.spad" 1124322 1124335 1124708 1124713) (-716 "MKFUNC.spad" 1123729 1123739 1124312 1124317) (-715 "MKFLCFN.spad" 1122697 1122707 1123719 1123724) (-714 "MKBCFUNC.spad" 1122192 1122210 1122687 1122692) (-713 "MINT.spad" 1121631 1121639 1122094 1122187) (-712 "MHROWRED.spad" 1120142 1120152 1121621 1121626) (-711 "MFLOAT.spad" 1118662 1118670 1120032 1120137) (-710 "MFINFACT.spad" 1118062 1118084 1118652 1118657) (-709 "MESH.spad" 1115844 1115852 1118052 1118057) (-708 "MDDFACT.spad" 1114055 1114065 1115834 1115839) (-707 "MDAGG.spad" 1113346 1113356 1114035 1114050) (-706 "MCMPLX.spad" 1108777 1108785 1109391 1109592) (-705 "MCDEN.spad" 1107987 1107999 1108767 1108772) (-704 "MCALCFN.spad" 1105109 1105135 1107977 1107982) (-703 "MAYBE.spad" 1104393 1104404 1105099 1105104) (-702 "MATSTOR.spad" 1101701 1101711 1104383 1104388) (-701 "MATRIX.spad" 1100288 1100298 1100772 1100799) (-700 "MATLIN.spad" 1097632 1097656 1100172 1100177) (-699 "MATCAT.spad" 1089154 1089176 1097600 1097627) (-698 "MATCAT.spad" 1080548 1080572 1088996 1089001) (-697 "MATCAT2.spad" 1079830 1079878 1080538 1080543) (-696 "MAPPKG3.spad" 1078745 1078759 1079820 1079825) (-695 "MAPPKG2.spad" 1078083 1078095 1078735 1078740) (-694 "MAPPKG1.spad" 1076911 1076921 1078073 1078078) (-693 "MAPPAST.spad" 1076226 1076234 1076901 1076906) (-692 "MAPHACK3.spad" 1076038 1076052 1076216 1076221) (-691 "MAPHACK2.spad" 1075807 1075819 1076028 1076033) (-690 "MAPHACK1.spad" 1075451 1075461 1075797 1075802) (-689 "MAGMA.spad" 1073241 1073258 1075441 1075446) (-688 "MACROAST.spad" 1072820 1072828 1073231 1073236) (-687 "M3D.spad" 1070423 1070433 1072081 1072086) (-686 "LZSTAGG.spad" 1067661 1067671 1070413 1070418) (-685 "LZSTAGG.spad" 1064897 1064909 1067651 1067656) (-684 "LWORD.spad" 1061602 1061619 1064887 1064892) (-683 "LSTAST.spad" 1061386 1061394 1061592 1061597) (-682 "LSQM.spad" 1059543 1059557 1059937 1059988) (-681 "LSPP.spad" 1059078 1059095 1059533 1059538) (-680 "LSMP.spad" 1057928 1057956 1059068 1059073) (-679 "LSMP1.spad" 1055746 1055760 1057918 1057923) (-678 "LSAGG.spad" 1055415 1055425 1055714 1055741) (-677 "LSAGG.spad" 1055104 1055116 1055405 1055410) (-676 "LPOLY.spad" 1054058 1054077 1054960 1055029) (-675 "LPEFRAC.spad" 1053329 1053339 1054048 1054053) (-674 "LO.spad" 1052730 1052744 1053263 1053290) (-673 "LOGIC.spad" 1052332 1052340 1052720 1052725) (-672 "LOGIC.spad" 1051932 1051942 1052322 1052327) (-671 "LODOOPS.spad" 1050862 1050874 1051922 1051927) (-670 "LODO.spad" 1050246 1050262 1050542 1050581) (-669 "LODOF.spad" 1049292 1049309 1050203 1050208) (-668 "LODOCAT.spad" 1047958 1047968 1049248 1049287) (-667 "LODOCAT.spad" 1046622 1046634 1047914 1047919) (-666 "LODO2.spad" 1045895 1045907 1046302 1046341) (-665 "LODO1.spad" 1045295 1045305 1045575 1045614) (-664 "LODEEF.spad" 1044097 1044115 1045285 1045290) (-663 "LNAGG.spad" 1040244 1040254 1044087 1044092) (-662 "LNAGG.spad" 1036355 1036367 1040200 1040205) (-661 "LMOPS.spad" 1033123 1033140 1036345 1036350) (-660 "LMODULE.spad" 1032891 1032901 1033113 1033118) (-659 "LMDICT.spad" 1032061 1032071 1032325 1032352) (-658 "LLINSET.spad" 1031768 1031778 1032051 1032056) (-657 "LITERAL.spad" 1031674 1031685 1031758 1031763) (-656 "LIST.spad" 1029256 1029266 1030668 1030695) (-655 "LIST3.spad" 1028567 1028581 1029246 1029251) (-654 "LIST2.spad" 1027269 1027281 1028557 1028562) (-653 "LIST2MAP.spad" 1024172 1024184 1027259 1027264) (-652 "LINSET.spad" 1023951 1023961 1024162 1024167) (-651 "LINEXP.spad" 1022694 1022704 1023941 1023946) (-650 "LINDEP.spad" 1021503 1021515 1022606 1022611) (-649 "LIMITRF.spad" 1019431 1019441 1021493 1021498) (-648 "LIMITPS.spad" 1018334 1018347 1019421 1019426) (-647 "LIE.spad" 1016350 1016362 1017624 1017769) (-646 "LIECAT.spad" 1015826 1015836 1016276 1016345) (-645 "LIECAT.spad" 1015330 1015342 1015782 1015787) (-644 "LIB.spad" 1013081 1013089 1013527 1013542) (-643 "LGROBP.spad" 1010434 1010453 1013071 1013076) (-642 "LF.spad" 1009389 1009405 1010424 1010429) (-641 "LFCAT.spad" 1008448 1008456 1009379 1009384) (-640 "LEXTRIPK.spad" 1003951 1003966 1008438 1008443) (-639 "LEXP.spad" 1001954 1001981 1003931 1003946) (-638 "LETAST.spad" 1001653 1001661 1001944 1001949) (-637 "LEADCDET.spad" 1000051 1000068 1001643 1001648) (-636 "LAZM3PK.spad" 998755 998777 1000041 1000046) (-635 "LAUPOL.spad" 997355 997368 998255 998324) (-634 "LAPLACE.spad" 996938 996954 997345 997350) (-633 "LA.spad" 996378 996392 996860 996899) (-632 "LALG.spad" 996154 996164 996358 996373) (-631 "LALG.spad" 995938 995950 996144 996149) (-630 "KVTFROM.spad" 995673 995683 995928 995933) (-629 "KTVLOGIC.spad" 995185 995193 995663 995668) (-628 "KRCFROM.spad" 994923 994933 995175 995180) (-627 "KOVACIC.spad" 993646 993663 994913 994918) (-626 "KONVERT.spad" 993368 993378 993636 993641) (-625 "KOERCE.spad" 993105 993115 993358 993363) (-624 "KERNEL.spad" 991760 991770 992889 992894) (-623 "KERNEL2.spad" 991463 991475 991750 991755) (-622 "KDAGG.spad" 990572 990594 991443 991458) (-621 "KDAGG.spad" 989689 989713 990562 990567) (-620 "KAFILE.spad" 988543 988559 988778 988805) (-619 "JORDAN.spad" 986372 986384 987833 987978) (-618 "JOINAST.spad" 986066 986074 986362 986367) (-617 "JAVACODE.spad" 985932 985940 986056 986061) (-616 "IXAGG.spad" 984065 984089 985922 985927) (-615 "IXAGG.spad" 982053 982079 983912 983917) (-614 "IVECTOR.spad" 980670 980685 980825 980852) (-613 "ITUPLE.spad" 979831 979841 980660 980665) (-612 "ITRIGMNP.spad" 978670 978689 979821 979826) (-611 "ITFUN3.spad" 978176 978190 978660 978665) (-610 "ITFUN2.spad" 977920 977932 978166 978171) (-609 "ITFORM.spad" 977275 977283 977910 977915) (-608 "ITAYLOR.spad" 975269 975284 977139 977236) (-607 "ISUPS.spad" 967706 967721 974243 974340) (-606 "ISUMP.spad" 967207 967223 967696 967701) (-605 "ISTRING.spad" 966134 966147 966215 966242) (-604 "ISAST.spad" 965853 965861 966124 966129) (-603 "IRURPK.spad" 964570 964589 965843 965848) (-602 "IRSN.spad" 962542 962550 964560 964565) (-601 "IRRF2F.spad" 961027 961037 962498 962503) (-600 "IRREDFFX.spad" 960628 960639 961017 961022) (-599 "IROOT.spad" 958967 958977 960618 960623) (-598 "IR.spad" 956768 956782 958822 958849) (-597 "IRFORM.spad" 956092 956100 956758 956763) (-596 "IR2.spad" 955120 955136 956082 956087) (-595 "IR2F.spad" 954326 954342 955110 955115) (-594 "IPRNTPK.spad" 954086 954094 954316 954321) (-593 "IPF.spad" 953651 953663 953891 953984) (-592 "IPADIC.spad" 953412 953438 953577 953646) (-591 "IP4ADDR.spad" 952969 952977 953402 953407) (-590 "IOMODE.spad" 952491 952499 952959 952964) (-589 "IOBFILE.spad" 951852 951860 952481 952486) (-588 "IOBCON.spad" 951717 951725 951842 951847) (-587 "INVLAPLA.spad" 951366 951382 951707 951712) (-586 "INTTR.spad" 944748 944765 951356 951361) (-585 "INTTOOLS.spad" 942503 942519 944322 944327) (-584 "INTSLPE.spad" 941823 941831 942493 942498) (-583 "INTRVL.spad" 941389 941399 941737 941818) (-582 "INTRF.spad" 939813 939827 941379 941384) (-581 "INTRET.spad" 939245 939255 939803 939808) (-580 "INTRAT.spad" 937972 937989 939235 939240) (-579 "INTPM.spad" 936357 936373 937615 937620) (-578 "INTPAF.spad" 934221 934239 936289 936294) (-577 "INTPACK.spad" 924595 924603 934211 934216) (-576 "INT.spad" 924043 924051 924449 924590) (-575 "INTHERTR.spad" 923317 923334 924033 924038) (-574 "INTHERAL.spad" 922987 923011 923307 923312) (-573 "INTHEORY.spad" 919426 919434 922977 922982) (-572 "INTG0.spad" 913159 913177 919358 919363) (-571 "INTFTBL.spad" 907188 907196 913149 913154) (-570 "INTFACT.spad" 906247 906257 907178 907183) (-569 "INTEF.spad" 904632 904648 906237 906242) (-568 "INTDOM.spad" 903255 903263 904558 904627) (-567 "INTDOM.spad" 901940 901950 903245 903250) (-566 "INTCAT.spad" 900199 900209 901854 901935) (-565 "INTBIT.spad" 899706 899714 900189 900194) (-564 "INTALG.spad" 898894 898921 899696 899701) (-563 "INTAF.spad" 898394 898410 898884 898889) (-562 "INTABL.spad" 896470 896501 896633 896660) (-561 "INT8.spad" 896350 896358 896460 896465) (-560 "INT64.spad" 896229 896237 896340 896345) (-559 "INT32.spad" 896108 896116 896219 896224) (-558 "INT16.spad" 895987 895995 896098 896103) (-557 "INS.spad" 893490 893498 895889 895982) (-556 "INS.spad" 891079 891089 893480 893485) (-555 "INPSIGN.spad" 890527 890540 891069 891074) (-554 "INPRODPF.spad" 889623 889642 890517 890522) (-553 "INPRODFF.spad" 888711 888735 889613 889618) (-552 "INNMFACT.spad" 887686 887703 888701 888706) (-551 "INMODGCD.spad" 887174 887204 887676 887681) (-550 "INFSP.spad" 885471 885493 887164 887169) (-549 "INFPROD0.spad" 884551 884570 885461 885466) (-548 "INFORM.spad" 881750 881758 884541 884546) (-547 "INFORM1.spad" 881375 881385 881740 881745) (-546 "INFINITY.spad" 880927 880935 881365 881370) (-545 "INETCLTS.spad" 880904 880912 880917 880922) (-544 "INEP.spad" 879442 879464 880894 880899) (-543 "INDE.spad" 879091 879108 879352 879357) (-542 "INCRMAPS.spad" 878512 878522 879081 879086) (-541 "INBFILE.spad" 877584 877592 878502 878507) (-540 "INBFF.spad" 873378 873389 877574 877579) (-539 "INBCON.spad" 871668 871676 873368 873373) (-538 "INBCON.spad" 869956 869966 871658 871663) (-537 "INAST.spad" 869617 869625 869946 869951) (-536 "IMPTAST.spad" 869325 869333 869607 869612) (-535 "IMATRIX.spad" 868153 868179 868665 868692) (-534 "IMATQF.spad" 867247 867291 868109 868114) (-533 "IMATLIN.spad" 865852 865876 867203 867208) (-532 "ILIST.spad" 864357 864372 864882 864909) (-531 "IIARRAY2.spad" 863628 863666 863847 863874) (-530 "IFF.spad" 863038 863054 863309 863402) (-529 "IFAST.spad" 862652 862660 863028 863033) (-528 "IFARRAY.spad" 859992 860007 861682 861709) (-527 "IFAMON.spad" 859854 859871 859948 859953) (-526 "IEVALAB.spad" 859259 859271 859844 859849) (-525 "IEVALAB.spad" 858662 858676 859249 859254) (-524 "IDPO.spad" 858397 858409 858574 858579) (-523 "IDPOAMS.spad" 858075 858087 858309 858314) (-522 "IDPOAM.spad" 857717 857729 857987 857992) (-521 "IDPC.spad" 856446 856458 857707 857712) (-520 "IDPAM.spad" 856113 856125 856358 856363) (-519 "IDPAG.spad" 855782 855794 856025 856030) (-518 "IDENT.spad" 855432 855440 855772 855777) (-517 "IDECOMP.spad" 852671 852689 855422 855427) (-516 "IDEAL.spad" 847620 847659 852606 852611) (-515 "ICDEN.spad" 846809 846825 847610 847615) (-514 "ICARD.spad" 846000 846008 846799 846804) (-513 "IBPTOOLS.spad" 844607 844624 845990 845995) (-512 "IBITS.spad" 843772 843785 844205 844232) (-511 "IBATOOL.spad" 840749 840768 843762 843767) (-510 "IBACHIN.spad" 839256 839271 840739 840744) (-509 "IARRAY2.spad" 838127 838153 838746 838773) (-508 "IARRAY1.spad" 837019 837034 837157 837184) (-507 "IAN.spad" 835242 835250 836835 836928) (-506 "IALGFACT.spad" 834845 834878 835232 835237) (-505 "HYPCAT.spad" 834269 834277 834835 834840) (-504 "HYPCAT.spad" 833691 833701 834259 834264) (-503 "HOSTNAME.spad" 833499 833507 833681 833686) (-502 "HOMOTOP.spad" 833242 833252 833489 833494) (-501 "HOAGG.spad" 830524 830534 833232 833237) (-500 "HOAGG.spad" 827545 827557 830255 830260) (-499 "HEXADEC.spad" 825550 825558 825915 826008) (-498 "HEUGCD.spad" 824585 824596 825540 825545) (-497 "HELLFDIV.spad" 824175 824199 824575 824580) (-496 "HEAP.spad" 823450 823460 823665 823692) (-495 "HEADAST.spad" 822983 822991 823440 823445) (-494 "HDP.spad" 810793 810809 811170 811269) (-493 "HDMP.spad" 808007 808022 808623 808750) (-492 "HB.spad" 806258 806266 807997 808002) (-491 "HASHTBL.spad" 804286 804317 804497 804524) (-490 "HASAST.spad" 804002 804010 804276 804281) (-489 "HACKPI.spad" 803493 803501 803904 803997) (-488 "GTSET.spad" 802396 802412 803103 803130) (-487 "GSTBL.spad" 800473 800508 800647 800662) (-486 "GSERIES.spad" 797786 797813 798605 798754) (-485 "GROUP.spad" 797059 797067 797766 797781) (-484 "GROUP.spad" 796340 796350 797049 797054) (-483 "GROEBSOL.spad" 794834 794855 796330 796335) (-482 "GRMOD.spad" 793405 793417 794824 794829) (-481 "GRMOD.spad" 791974 791988 793395 793400) (-480 "GRIMAGE.spad" 784863 784871 791964 791969) (-479 "GRDEF.spad" 783242 783250 784853 784858) (-478 "GRAY.spad" 781705 781713 783232 783237) (-477 "GRALG.spad" 780782 780794 781695 781700) (-476 "GRALG.spad" 779857 779871 780772 780777) (-475 "GPOLSET.spad" 779275 779298 779503 779530) (-474 "GOSPER.spad" 778544 778562 779265 779270) (-473 "GMODPOL.spad" 777692 777719 778512 778539) (-472 "GHENSEL.spad" 776775 776789 777682 777687) (-471 "GENUPS.spad" 773068 773081 776765 776770) (-470 "GENUFACT.spad" 772645 772655 773058 773063) (-469 "GENPGCD.spad" 772231 772248 772635 772640) (-468 "GENMFACT.spad" 771683 771702 772221 772226) (-467 "GENEEZ.spad" 769634 769647 771673 771678) (-466 "GDMP.spad" 766690 766707 767464 767591) (-465 "GCNAALG.spad" 760613 760640 766484 766551) (-464 "GCDDOM.spad" 759789 759797 760539 760608) (-463 "GCDDOM.spad" 759027 759037 759779 759784) (-462 "GB.spad" 756553 756591 758983 758988) (-461 "GBINTERN.spad" 752573 752611 756543 756548) (-460 "GBF.spad" 748340 748378 752563 752568) (-459 "GBEUCLID.spad" 746222 746260 748330 748335) (-458 "GAUSSFAC.spad" 745535 745543 746212 746217) (-457 "GALUTIL.spad" 743861 743871 745491 745496) (-456 "GALPOLYU.spad" 742315 742328 743851 743856) (-455 "GALFACTU.spad" 740488 740507 742305 742310) (-454 "GALFACT.spad" 730677 730688 740478 740483) (-453 "FVFUN.spad" 727700 727708 730667 730672) (-452 "FVC.spad" 726752 726760 727690 727695) (-451 "FUNDESC.spad" 726430 726438 726742 726747) (-450 "FUNCTION.spad" 726279 726291 726420 726425) (-449 "FT.spad" 724576 724584 726269 726274) (-448 "FTEM.spad" 723741 723749 724566 724571) (-447 "FSUPFACT.spad" 722641 722660 723677 723682) (-446 "FST.spad" 720727 720735 722631 722636) (-445 "FSRED.spad" 720207 720223 720717 720722) (-444 "FSPRMELT.spad" 719089 719105 720164 720169) (-443 "FSPECF.spad" 717180 717196 719079 719084) (-442 "FS.spad" 711448 711458 716955 717175) (-441 "FS.spad" 705494 705506 711003 711008) (-440 "FSINT.spad" 705154 705170 705484 705489) (-439 "FSERIES.spad" 704345 704357 704974 705073) (-438 "FSCINT.spad" 703662 703678 704335 704340) (-437 "FSAGG.spad" 702779 702789 703618 703657) (-436 "FSAGG.spad" 701858 701870 702699 702704) (-435 "FSAGG2.spad" 700601 700617 701848 701853) (-434 "FS2UPS.spad" 695092 695126 700591 700596) (-433 "FS2.spad" 694739 694755 695082 695087) (-432 "FS2EXPXP.spad" 693864 693887 694729 694734) (-431 "FRUTIL.spad" 692818 692828 693854 693859) (-430 "FR.spad" 686441 686451 691749 691818) (-429 "FRNAALG.spad" 681710 681720 686383 686436) (-428 "FRNAALG.spad" 676991 677003 681666 681671) (-427 "FRNAAF2.spad" 676447 676465 676981 676986) (-426 "FRMOD.spad" 675857 675887 676378 676383) (-425 "FRIDEAL.spad" 675082 675103 675837 675852) (-424 "FRIDEAL2.spad" 674686 674718 675072 675077) (-423 "FRETRCT.spad" 674197 674207 674676 674681) (-422 "FRETRCT.spad" 673574 673586 674055 674060) (-421 "FRAMALG.spad" 671922 671935 673530 673569) (-420 "FRAMALG.spad" 670302 670317 671912 671917) (-419 "FRAC.spad" 667308 667318 667711 667884) (-418 "FRAC2.spad" 666913 666925 667298 667303) (-417 "FR2.spad" 666249 666261 666903 666908) (-416 "FPS.spad" 663064 663072 666139 666244) (-415 "FPS.spad" 659907 659917 662984 662989) (-414 "FPC.spad" 658953 658961 659809 659902) (-413 "FPC.spad" 658085 658095 658943 658948) (-412 "FPATMAB.spad" 657847 657857 658075 658080) (-411 "FPARFRAC.spad" 656697 656714 657837 657842) (-410 "FORTRAN.spad" 655203 655246 656687 656692) (-409 "FORT.spad" 654152 654160 655193 655198) (-408 "FORTFN.spad" 651322 651330 654142 654147) (-407 "FORTCAT.spad" 651006 651014 651312 651317) (-406 "FORMULA.spad" 648480 648488 650996 651001) (-405 "FORMULA1.spad" 647959 647969 648470 648475) (-404 "FORDER.spad" 647650 647674 647949 647954) (-403 "FOP.spad" 646851 646859 647640 647645) (-402 "FNLA.spad" 646275 646297 646819 646846) (-401 "FNCAT.spad" 644870 644878 646265 646270) (-400 "FNAME.spad" 644762 644770 644860 644865) (-399 "FMTC.spad" 644560 644568 644688 644757) (-398 "FMONOID.spad" 644225 644235 644516 644521) (-397 "FMONCAT.spad" 641378 641388 644215 644220) (-396 "FM.spad" 640993 641005 641232 641259) (-395 "FMFUN.spad" 638023 638031 640983 640988) (-394 "FMC.spad" 637075 637083 638013 638018) (-393 "FMCAT.spad" 634743 634761 637043 637070) (-392 "FM1.spad" 634100 634112 634677 634704) (-391 "FLOATRP.spad" 631835 631849 634090 634095) (-390 "FLOAT.spad" 625149 625157 631701 631830) (-389 "FLOATCP.spad" 622580 622594 625139 625144) (-388 "FLINEXP.spad" 622302 622312 622570 622575) (-387 "FLINEXP.spad" 621968 621980 622238 622243) (-386 "FLASORT.spad" 621294 621306 621958 621963) (-385 "FLALG.spad" 618940 618959 621220 621289) (-384 "FLAGG.spad" 615982 615992 618920 618935) (-383 "FLAGG.spad" 612925 612937 615865 615870) (-382 "FLAGG2.spad" 611650 611666 612915 612920) (-381 "FINRALG.spad" 609711 609724 611606 611645) (-380 "FINRALG.spad" 607698 607713 609595 609600) (-379 "FINITE.spad" 606850 606858 607688 607693) (-378 "FINAALG.spad" 595971 595981 606792 606845) (-377 "FINAALG.spad" 585104 585116 595927 595932) (-376 "FILE.spad" 584687 584697 585094 585099) (-375 "FILECAT.spad" 583213 583230 584677 584682) (-374 "FIELD.spad" 582619 582627 583115 583208) (-373 "FIELD.spad" 582111 582121 582609 582614) (-372 "FGROUP.spad" 580758 580768 582091 582106) (-371 "FGLMICPK.spad" 579545 579560 580748 580753) (-370 "FFX.spad" 578920 578935 579261 579354) (-369 "FFSLPE.spad" 578423 578444 578910 578915) (-368 "FFPOLY.spad" 569685 569696 578413 578418) (-367 "FFPOLY2.spad" 568745 568762 569675 569680) (-366 "FFP.spad" 568142 568162 568461 568554) (-365 "FF.spad" 567590 567606 567823 567916) (-364 "FFNBX.spad" 566102 566122 567306 567399) (-363 "FFNBP.spad" 564615 564632 565818 565911) (-362 "FFNB.spad" 563080 563101 564296 564389) (-361 "FFINTBAS.spad" 560594 560613 563070 563075) (-360 "FFIELDC.spad" 558171 558179 560496 560589) (-359 "FFIELDC.spad" 555834 555844 558161 558166) (-358 "FFHOM.spad" 554582 554599 555824 555829) (-357 "FFF.spad" 552017 552028 554572 554577) (-356 "FFCGX.spad" 550864 550884 551733 551826) (-355 "FFCGP.spad" 549753 549773 550580 550673) (-354 "FFCG.spad" 548545 548566 549434 549527) (-353 "FFCAT.spad" 541718 541740 548384 548540) (-352 "FFCAT.spad" 534970 534994 541638 541643) (-351 "FFCAT2.spad" 534717 534757 534960 534965) (-350 "FEXPR.spad" 526434 526480 534473 534512) (-349 "FEVALAB.spad" 526142 526152 526424 526429) (-348 "FEVALAB.spad" 525635 525647 525919 525924) (-347 "FDIV.spad" 525077 525101 525625 525630) (-346 "FDIVCAT.spad" 523141 523165 525067 525072) (-345 "FDIVCAT.spad" 521203 521229 523131 523136) (-344 "FDIV2.spad" 520859 520899 521193 521198) (-343 "FCTRDATA.spad" 519867 519875 520849 520854) (-342 "FCPAK1.spad" 518434 518442 519857 519862) (-341 "FCOMP.spad" 517813 517823 518424 518429) (-340 "FC.spad" 507820 507828 517803 517808) (-339 "FAXF.spad" 500791 500805 507722 507815) (-338 "FAXF.spad" 493814 493830 500747 500752) (-337 "FARRAY.spad" 491811 491821 492844 492871) (-336 "FAMR.spad" 489947 489959 491709 491806) (-335 "FAMR.spad" 488067 488081 489831 489836) (-334 "FAMONOID.spad" 487735 487745 488021 488026) (-333 "FAMONC.spad" 486031 486043 487725 487730) (-332 "FAGROUP.spad" 485655 485665 485927 485954) (-331 "FACUTIL.spad" 483859 483876 485645 485650) (-330 "FACTFUNC.spad" 483053 483063 483849 483854) (-329 "EXPUPXS.spad" 479886 479909 481185 481334) (-328 "EXPRTUBE.spad" 477174 477182 479876 479881) (-327 "EXPRODE.spad" 474334 474350 477164 477169) (-326 "EXPR.spad" 469509 469519 470223 470518) (-325 "EXPR2UPS.spad" 465631 465644 469499 469504) (-324 "EXPR2.spad" 465336 465348 465621 465626) (-323 "EXPEXPAN.spad" 462137 462162 462769 462862) (-322 "EXIT.spad" 461808 461816 462127 462132) (-321 "EXITAST.spad" 461544 461552 461798 461803) (-320 "EVALCYC.spad" 461004 461018 461534 461539) (-319 "EVALAB.spad" 460576 460586 460994 460999) (-318 "EVALAB.spad" 460146 460158 460566 460571) (-317 "EUCDOM.spad" 457720 457728 460072 460141) (-316 "EUCDOM.spad" 455356 455366 457710 457715) (-315 "ESTOOLS.spad" 447202 447210 455346 455351) (-314 "ESTOOLS2.spad" 446805 446819 447192 447197) (-313 "ESTOOLS1.spad" 446490 446501 446795 446800) (-312 "ES.spad" 439305 439313 446480 446485) (-311 "ES.spad" 432026 432036 439203 439208) (-310 "ESCONT.spad" 428819 428827 432016 432021) (-309 "ESCONT1.spad" 428568 428580 428809 428814) (-308 "ES2.spad" 428073 428089 428558 428563) (-307 "ES1.spad" 427643 427659 428063 428068) (-306 "ERROR.spad" 424970 424978 427633 427638) (-305 "EQTBL.spad" 423000 423022 423209 423236) (-304 "EQ.spad" 417805 417815 420592 420704) (-303 "EQ2.spad" 417523 417535 417795 417800) (-302 "EP.spad" 413849 413859 417513 417518) (-301 "ENV.spad" 412527 412535 413839 413844) (-300 "ENTIRER.spad" 412195 412203 412471 412522) (-299 "EMR.spad" 411483 411524 412121 412190) (-298 "ELTAGG.spad" 409737 409756 411473 411478) (-297 "ELTAGG.spad" 407955 407976 409693 409698) (-296 "ELTAB.spad" 407430 407443 407945 407950) (-295 "ELFUTS.spad" 406817 406836 407420 407425) (-294 "ELEMFUN.spad" 406506 406514 406807 406812) (-293 "ELEMFUN.spad" 406193 406203 406496 406501) (-292 "ELAGG.spad" 404164 404174 406173 406188) (-291 "ELAGG.spad" 402072 402084 404083 404088) (-290 "ELABOR.spad" 401418 401426 402062 402067) (-289 "ELABEXPR.spad" 400350 400358 401408 401413) (-288 "EFUPXS.spad" 397126 397156 400306 400311) (-287 "EFULS.spad" 393962 393985 397082 397087) (-286 "EFSTRUC.spad" 391977 391993 393952 393957) (-285 "EF.spad" 386753 386769 391967 391972) (-284 "EAB.spad" 385029 385037 386743 386748) (-283 "E04UCFA.spad" 384565 384573 385019 385024) (-282 "E04NAFA.spad" 384142 384150 384555 384560) (-281 "E04MBFA.spad" 383722 383730 384132 384137) (-280 "E04JAFA.spad" 383258 383266 383712 383717) (-279 "E04GCFA.spad" 382794 382802 383248 383253) (-278 "E04FDFA.spad" 382330 382338 382784 382789) (-277 "E04DGFA.spad" 381866 381874 382320 382325) (-276 "E04AGNT.spad" 377716 377724 381856 381861) (-275 "DVARCAT.spad" 374606 374616 377706 377711) (-274 "DVARCAT.spad" 371494 371506 374596 374601) (-273 "DSMP.spad" 368868 368882 369173 369300) (-272 "DSEXT.spad" 368170 368180 368858 368863) (-271 "DSEXT.spad" 367379 367391 368069 368074) (-270 "DROPT.spad" 361338 361346 367369 367374) (-269 "DROPT1.spad" 361003 361013 361328 361333) (-268 "DROPT0.spad" 355860 355868 360993 360998) (-267 "DRAWPT.spad" 354033 354041 355850 355855) (-266 "DRAW.spad" 346909 346922 354023 354028) (-265 "DRAWHACK.spad" 346217 346227 346899 346904) (-264 "DRAWCX.spad" 343687 343695 346207 346212) (-263 "DRAWCURV.spad" 343234 343249 343677 343682) (-262 "DRAWCFUN.spad" 332766 332774 343224 343229) (-261 "DQAGG.spad" 330944 330954 332734 332761) (-260 "DPOLCAT.spad" 326293 326309 330812 330939) (-259 "DPOLCAT.spad" 321728 321746 326249 326254) (-258 "DPMO.spad" 313488 313504 313626 313839) (-257 "DPMM.spad" 305261 305279 305386 305599) (-256 "DOMTMPLT.spad" 305032 305040 305251 305256) (-255 "DOMCTOR.spad" 304787 304795 305022 305027) (-254 "DOMAIN.spad" 303874 303882 304777 304782) (-253 "DMP.spad" 301134 301149 301704 301831) (-252 "DMEXT.spad" 301001 301011 301102 301129) (-251 "DLP.spad" 300353 300363 300991 300996) (-250 "DLIST.spad" 298779 298789 299383 299410) (-249 "DLAGG.spad" 297196 297206 298769 298774) (-248 "DIVRING.spad" 296738 296746 297140 297191) (-247 "DIVRING.spad" 296324 296334 296728 296733) (-246 "DISPLAY.spad" 294514 294522 296314 296319) (-245 "DIRPROD.spad" 282061 282077 282701 282800) (-244 "DIRPROD2.spad" 280879 280897 282051 282056) (-243 "DIRPCAT.spad" 280072 280088 280775 280874) (-242 "DIRPCAT.spad" 278892 278910 279597 279602) (-241 "DIOSP.spad" 277717 277725 278882 278887) (-240 "DIOPS.spad" 276713 276723 277697 277712) (-239 "DIOPS.spad" 275683 275695 276669 276674) (-238 "DIFRING.spad" 275521 275529 275663 275678) (-237 "DIFFSPC.spad" 275100 275108 275511 275516) (-236 "DIFFSPC.spad" 274677 274687 275090 275095) (-235 "DIFFMOD.spad" 274166 274176 274645 274672) (-234 "DIFFDOM.spad" 273331 273342 274156 274161) (-233 "DIFFDOM.spad" 272494 272507 273321 273326) (-232 "DIFEXT.spad" 272313 272323 272474 272489) (-231 "DIAGG.spad" 271943 271953 272293 272308) (-230 "DIAGG.spad" 271581 271593 271933 271938) (-229 "DHMATRIX.spad" 269776 269786 270921 270948) (-228 "DFSFUN.spad" 263416 263424 269766 269771) (-227 "DFLOAT.spad" 260147 260155 263306 263411) (-226 "DFINTTLS.spad" 258378 258394 260137 260142) (-225 "DERHAM.spad" 256292 256324 258358 258373) (-224 "DEQUEUE.spad" 255499 255509 255782 255809) (-223 "DEGRED.spad" 255116 255130 255489 255494) (-222 "DEFINTRF.spad" 252653 252663 255106 255111) (-221 "DEFINTEF.spad" 251163 251179 252643 252648) (-220 "DEFAST.spad" 250531 250539 251153 251158) (-219 "DECIMAL.spad" 248540 248548 248901 248994) (-218 "DDFACT.spad" 246353 246370 248530 248535) (-217 "DBLRESP.spad" 245953 245977 246343 246348) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2294940 2294945 2294950 2294955) (-2 NIL 2294920 2294925 2294930 2294935) (-1 NIL 2294900 2294905 2294910 2294915) (0 NIL 2294880 2294885 2294890 2294895) (-1318 "ZMOD.spad" 2294689 2294702 2294818 2294875) (-1317 "ZLINDEP.spad" 2293755 2293766 2294679 2294684) (-1316 "ZDSOLVE.spad" 2283700 2283722 2293745 2293750) (-1315 "YSTREAM.spad" 2283195 2283206 2283690 2283695) (-1314 "YDIAGRAM.spad" 2282829 2282838 2283185 2283190) (-1313 "XRPOLY.spad" 2282049 2282069 2282685 2282754) (-1312 "XPR.spad" 2279844 2279857 2281767 2281866) (-1311 "XPOLY.spad" 2279399 2279410 2279700 2279769) (-1310 "XPOLYC.spad" 2278718 2278734 2279325 2279394) (-1309 "XPBWPOLY.spad" 2277155 2277175 2278498 2278567) (-1308 "XF.spad" 2275618 2275633 2277057 2277150) (-1307 "XF.spad" 2274061 2274078 2275502 2275507) (-1306 "XFALG.spad" 2271109 2271125 2273987 2274056) (-1305 "XEXPPKG.spad" 2270360 2270386 2271099 2271104) (-1304 "XDPOLY.spad" 2269974 2269990 2270216 2270285) (-1303 "XALG.spad" 2269634 2269645 2269930 2269969) (-1302 "WUTSET.spad" 2265437 2265454 2269244 2269271) (-1301 "WP.spad" 2264636 2264680 2265295 2265362) (-1300 "WHILEAST.spad" 2264434 2264443 2264626 2264631) (-1299 "WHEREAST.spad" 2264105 2264114 2264424 2264429) (-1298 "WFFINTBS.spad" 2261768 2261790 2264095 2264100) (-1297 "WEIER.spad" 2259990 2260001 2261758 2261763) (-1296 "VSPACE.spad" 2259663 2259674 2259958 2259985) (-1295 "VSPACE.spad" 2259356 2259369 2259653 2259658) (-1294 "VOID.spad" 2259033 2259042 2259346 2259351) (-1293 "VIEW.spad" 2256713 2256722 2259023 2259028) (-1292 "VIEWDEF.spad" 2251914 2251923 2256703 2256708) (-1291 "VIEW3D.spad" 2235875 2235884 2251904 2251909) (-1290 "VIEW2D.spad" 2223766 2223775 2235865 2235870) (-1289 "VECTOR.spad" 2222287 2222298 2222538 2222565) (-1288 "VECTOR2.spad" 2220926 2220939 2222277 2222282) (-1287 "VECTCAT.spad" 2218830 2218841 2220894 2220921) (-1286 "VECTCAT.spad" 2216541 2216554 2218607 2218612) (-1285 "VARIABLE.spad" 2216321 2216336 2216531 2216536) (-1284 "UTYPE.spad" 2215965 2215974 2216311 2216316) (-1283 "UTSODETL.spad" 2215260 2215284 2215921 2215926) (-1282 "UTSODE.spad" 2213476 2213496 2215250 2215255) (-1281 "UTS.spad" 2208423 2208451 2211943 2212040) (-1280 "UTSCAT.spad" 2205902 2205918 2208321 2208418) (-1279 "UTSCAT.spad" 2203025 2203043 2205446 2205451) (-1278 "UTS2.spad" 2202620 2202655 2203015 2203020) (-1277 "URAGG.spad" 2197293 2197304 2202610 2202615) (-1276 "URAGG.spad" 2191930 2191943 2197249 2197254) (-1275 "UPXSSING.spad" 2189575 2189601 2191011 2191144) (-1274 "UPXS.spad" 2186871 2186899 2187707 2187856) (-1273 "UPXSCONS.spad" 2184630 2184650 2185003 2185152) (-1272 "UPXSCCA.spad" 2183201 2183221 2184476 2184625) (-1271 "UPXSCCA.spad" 2181914 2181936 2183191 2183196) (-1270 "UPXSCAT.spad" 2180503 2180519 2181760 2181909) (-1269 "UPXS2.spad" 2180046 2180099 2180493 2180498) (-1268 "UPSQFREE.spad" 2178460 2178474 2180036 2180041) (-1267 "UPSCAT.spad" 2176247 2176271 2178358 2178455) (-1266 "UPSCAT.spad" 2173740 2173766 2175853 2175858) (-1265 "UPOLYC.spad" 2168780 2168791 2173582 2173735) (-1264 "UPOLYC.spad" 2163712 2163725 2168516 2168521) (-1263 "UPOLYC2.spad" 2163183 2163202 2163702 2163707) (-1262 "UP.spad" 2160289 2160304 2160676 2160829) (-1261 "UPMP.spad" 2159189 2159202 2160279 2160284) (-1260 "UPDIVP.spad" 2158754 2158768 2159179 2159184) (-1259 "UPDECOMP.spad" 2156999 2157013 2158744 2158749) (-1258 "UPCDEN.spad" 2156208 2156224 2156989 2156994) (-1257 "UP2.spad" 2155572 2155593 2156198 2156203) (-1256 "UNISEG.spad" 2154925 2154936 2155491 2155496) (-1255 "UNISEG2.spad" 2154422 2154435 2154881 2154886) (-1254 "UNIFACT.spad" 2153525 2153537 2154412 2154417) (-1253 "ULS.spad" 2143309 2143337 2144254 2144683) (-1252 "ULSCONS.spad" 2134443 2134463 2134813 2134962) (-1251 "ULSCCAT.spad" 2132180 2132200 2134289 2134438) (-1250 "ULSCCAT.spad" 2130025 2130047 2132136 2132141) (-1249 "ULSCAT.spad" 2128257 2128273 2129871 2130020) (-1248 "ULS2.spad" 2127771 2127824 2128247 2128252) (-1247 "UINT8.spad" 2127648 2127657 2127761 2127766) (-1246 "UINT64.spad" 2127524 2127533 2127638 2127643) (-1245 "UINT32.spad" 2127400 2127409 2127514 2127519) (-1244 "UINT16.spad" 2127276 2127285 2127390 2127395) (-1243 "UFD.spad" 2126341 2126350 2127202 2127271) (-1242 "UFD.spad" 2125468 2125479 2126331 2126336) (-1241 "UDVO.spad" 2124349 2124358 2125458 2125463) (-1240 "UDPO.spad" 2121842 2121853 2124305 2124310) (-1239 "TYPE.spad" 2121774 2121783 2121832 2121837) (-1238 "TYPEAST.spad" 2121693 2121702 2121764 2121769) (-1237 "TWOFACT.spad" 2120345 2120360 2121683 2121688) (-1236 "TUPLE.spad" 2119831 2119842 2120244 2120249) (-1235 "TUBETOOL.spad" 2116698 2116707 2119821 2119826) (-1234 "TUBE.spad" 2115345 2115362 2116688 2116693) (-1233 "TS.spad" 2113944 2113960 2114910 2115007) (-1232 "TSETCAT.spad" 2101071 2101088 2113912 2113939) (-1231 "TSETCAT.spad" 2088184 2088203 2101027 2101032) (-1230 "TRMANIP.spad" 2082550 2082567 2087890 2087895) (-1229 "TRIMAT.spad" 2081513 2081538 2082540 2082545) (-1228 "TRIGMNIP.spad" 2080040 2080057 2081503 2081508) (-1227 "TRIGCAT.spad" 2079552 2079561 2080030 2080035) (-1226 "TRIGCAT.spad" 2079062 2079073 2079542 2079547) (-1225 "TREE.spad" 2077520 2077531 2078552 2078579) (-1224 "TRANFUN.spad" 2077359 2077368 2077510 2077515) (-1223 "TRANFUN.spad" 2077196 2077207 2077349 2077354) (-1222 "TOPSP.spad" 2076870 2076879 2077186 2077191) (-1221 "TOOLSIGN.spad" 2076533 2076544 2076860 2076865) (-1220 "TEXTFILE.spad" 2075094 2075103 2076523 2076528) (-1219 "TEX.spad" 2072240 2072249 2075084 2075089) (-1218 "TEX1.spad" 2071796 2071807 2072230 2072235) (-1217 "TEMUTL.spad" 2071351 2071360 2071786 2071791) (-1216 "TBCMPPK.spad" 2069444 2069467 2071341 2071346) (-1215 "TBAGG.spad" 2068494 2068517 2069424 2069439) (-1214 "TBAGG.spad" 2067552 2067577 2068484 2068489) (-1213 "TANEXP.spad" 2066960 2066971 2067542 2067547) (-1212 "TALGOP.spad" 2066684 2066695 2066950 2066955) (-1211 "TABLE.spad" 2064653 2064676 2064923 2064950) (-1210 "TABLEAU.spad" 2064134 2064145 2064643 2064648) (-1209 "TABLBUMP.spad" 2060937 2060948 2064124 2064129) (-1208 "SYSTEM.spad" 2060165 2060174 2060927 2060932) (-1207 "SYSSOLP.spad" 2057648 2057659 2060155 2060160) (-1206 "SYSPTR.spad" 2057547 2057556 2057638 2057643) (-1205 "SYSNNI.spad" 2056729 2056740 2057537 2057542) (-1204 "SYSINT.spad" 2056133 2056144 2056719 2056724) (-1203 "SYNTAX.spad" 2052339 2052348 2056123 2056128) (-1202 "SYMTAB.spad" 2050407 2050416 2052329 2052334) (-1201 "SYMS.spad" 2046430 2046439 2050397 2050402) (-1200 "SYMPOLY.spad" 2045437 2045448 2045519 2045646) (-1199 "SYMFUNC.spad" 2044938 2044949 2045427 2045432) (-1198 "SYMBOL.spad" 2042441 2042450 2044928 2044933) (-1197 "SWITCH.spad" 2039212 2039221 2042431 2042436) (-1196 "SUTS.spad" 2036260 2036288 2037679 2037776) (-1195 "SUPXS.spad" 2033543 2033571 2034392 2034541) (-1194 "SUP.spad" 2030263 2030274 2031036 2031189) (-1193 "SUPFRACF.spad" 2029368 2029386 2030253 2030258) (-1192 "SUP2.spad" 2028760 2028773 2029358 2029363) (-1191 "SUMRF.spad" 2027734 2027745 2028750 2028755) (-1190 "SUMFS.spad" 2027371 2027388 2027724 2027729) (-1189 "SULS.spad" 2017142 2017170 2018100 2018529) (-1188 "SUCHTAST.spad" 2016911 2016920 2017132 2017137) (-1187 "SUCH.spad" 2016593 2016608 2016901 2016906) (-1186 "SUBSPACE.spad" 2008708 2008723 2016583 2016588) (-1185 "SUBRESP.spad" 2007878 2007892 2008664 2008669) (-1184 "STTF.spad" 2003977 2003993 2007868 2007873) (-1183 "STTFNC.spad" 2000445 2000461 2003967 2003972) (-1182 "STTAYLOR.spad" 1993080 1993091 2000326 2000331) (-1181 "STRTBL.spad" 1991131 1991148 1991280 1991307) (-1180 "STRING.spad" 1989918 1989927 1990139 1990166) (-1179 "STREAM.spad" 1986719 1986730 1989326 1989341) (-1178 "STREAM3.spad" 1986292 1986307 1986709 1986714) (-1177 "STREAM2.spad" 1985420 1985433 1986282 1986287) (-1176 "STREAM1.spad" 1985126 1985137 1985410 1985415) (-1175 "STINPROD.spad" 1984062 1984078 1985116 1985121) (-1174 "STEP.spad" 1983263 1983272 1984052 1984057) (-1173 "STEPAST.spad" 1982497 1982506 1983253 1983258) (-1172 "STBL.spad" 1980581 1980609 1980748 1980763) (-1171 "STAGG.spad" 1979656 1979667 1980571 1980576) (-1170 "STAGG.spad" 1978729 1978742 1979646 1979651) (-1169 "STACK.spad" 1977969 1977980 1978219 1978246) (-1168 "SREGSET.spad" 1975637 1975654 1977579 1977606) (-1167 "SRDCMPK.spad" 1974198 1974218 1975627 1975632) (-1166 "SRAGG.spad" 1969341 1969350 1974166 1974193) (-1165 "SRAGG.spad" 1964504 1964515 1969331 1969336) (-1164 "SQMATRIX.spad" 1962047 1962065 1962963 1963050) (-1163 "SPLTREE.spad" 1956443 1956456 1961327 1961354) (-1162 "SPLNODE.spad" 1953031 1953044 1956433 1956438) (-1161 "SPFCAT.spad" 1951840 1951849 1953021 1953026) (-1160 "SPECOUT.spad" 1950392 1950401 1951830 1951835) (-1159 "SPADXPT.spad" 1941987 1941996 1950382 1950387) (-1158 "spad-parser.spad" 1941452 1941461 1941977 1941982) (-1157 "SPADAST.spad" 1941153 1941162 1941442 1941447) (-1156 "SPACEC.spad" 1925352 1925363 1941143 1941148) (-1155 "SPACE3.spad" 1925128 1925139 1925342 1925347) (-1154 "SORTPAK.spad" 1924677 1924690 1925084 1925089) (-1153 "SOLVETRA.spad" 1922440 1922451 1924667 1924672) (-1152 "SOLVESER.spad" 1920968 1920979 1922430 1922435) (-1151 "SOLVERAD.spad" 1916994 1917005 1920958 1920963) (-1150 "SOLVEFOR.spad" 1915456 1915474 1916984 1916989) (-1149 "SNTSCAT.spad" 1915056 1915073 1915424 1915451) (-1148 "SMTS.spad" 1913328 1913354 1914621 1914718) (-1147 "SMP.spad" 1910803 1910823 1911193 1911320) (-1146 "SMITH.spad" 1909648 1909673 1910793 1910798) (-1145 "SMATCAT.spad" 1907758 1907788 1909592 1909643) (-1144 "SMATCAT.spad" 1905800 1905832 1907636 1907641) (-1143 "SKAGG.spad" 1904763 1904774 1905768 1905795) (-1142 "SINT.spad" 1903703 1903712 1904629 1904758) (-1141 "SIMPAN.spad" 1903431 1903440 1903693 1903698) (-1140 "SIG.spad" 1902761 1902770 1903421 1903426) (-1139 "SIGNRF.spad" 1901879 1901890 1902751 1902756) (-1138 "SIGNEF.spad" 1901158 1901175 1901869 1901874) (-1137 "SIGAST.spad" 1900543 1900552 1901148 1901153) (-1136 "SHP.spad" 1898471 1898486 1900499 1900504) (-1135 "SHDP.spad" 1886149 1886176 1886658 1886757) (-1134 "SGROUP.spad" 1885757 1885766 1886139 1886144) (-1133 "SGROUP.spad" 1885363 1885374 1885747 1885752) (-1132 "SGCF.spad" 1878502 1878511 1885353 1885358) (-1131 "SFRTCAT.spad" 1877432 1877449 1878470 1878497) (-1130 "SFRGCD.spad" 1876495 1876515 1877422 1877427) (-1129 "SFQCMPK.spad" 1871132 1871152 1876485 1876490) (-1128 "SFORT.spad" 1870571 1870585 1871122 1871127) (-1127 "SEXOF.spad" 1870414 1870454 1870561 1870566) (-1126 "SEX.spad" 1870306 1870315 1870404 1870409) (-1125 "SEXCAT.spad" 1868078 1868118 1870296 1870301) (-1124 "SET.spad" 1866366 1866377 1867463 1867502) (-1123 "SETMN.spad" 1864816 1864833 1866356 1866361) (-1122 "SETCAT.spad" 1864301 1864310 1864806 1864811) (-1121 "SETCAT.spad" 1863784 1863795 1864291 1864296) (-1120 "SETAGG.spad" 1860333 1860344 1863764 1863779) (-1119 "SETAGG.spad" 1856890 1856903 1860323 1860328) (-1118 "SEQAST.spad" 1856593 1856602 1856880 1856885) (-1117 "SEGXCAT.spad" 1855749 1855762 1856583 1856588) (-1116 "SEG.spad" 1855562 1855573 1855668 1855673) (-1115 "SEGCAT.spad" 1854487 1854498 1855552 1855557) (-1114 "SEGBIND.spad" 1854245 1854256 1854434 1854439) (-1113 "SEGBIND2.spad" 1853943 1853956 1854235 1854240) (-1112 "SEGAST.spad" 1853657 1853666 1853933 1853938) (-1111 "SEG2.spad" 1853092 1853105 1853613 1853618) (-1110 "SDVAR.spad" 1852368 1852379 1853082 1853087) (-1109 "SDPOL.spad" 1849701 1849712 1849992 1850119) (-1108 "SCPKG.spad" 1847790 1847801 1849691 1849696) (-1107 "SCOPE.spad" 1846943 1846952 1847780 1847785) (-1106 "SCACHE.spad" 1845639 1845650 1846933 1846938) (-1105 "SASTCAT.spad" 1845548 1845557 1845629 1845634) (-1104 "SAOS.spad" 1845420 1845429 1845538 1845543) (-1103 "SAERFFC.spad" 1845133 1845153 1845410 1845415) (-1102 "SAE.spad" 1842603 1842619 1843214 1843349) (-1101 "SAEFACT.spad" 1842304 1842324 1842593 1842598) (-1100 "RURPK.spad" 1839963 1839979 1842294 1842299) (-1099 "RULESET.spad" 1839416 1839440 1839953 1839958) (-1098 "RULE.spad" 1837656 1837680 1839406 1839411) (-1097 "RULECOLD.spad" 1837508 1837521 1837646 1837651) (-1096 "RTVALUE.spad" 1837243 1837252 1837498 1837503) (-1095 "RSTRCAST.spad" 1836960 1836969 1837233 1837238) (-1094 "RSETGCD.spad" 1833338 1833358 1836950 1836955) (-1093 "RSETCAT.spad" 1823274 1823291 1833306 1833333) (-1092 "RSETCAT.spad" 1813230 1813249 1823264 1823269) (-1091 "RSDCMPK.spad" 1811682 1811702 1813220 1813225) (-1090 "RRCC.spad" 1810066 1810096 1811672 1811677) (-1089 "RRCC.spad" 1808448 1808480 1810056 1810061) (-1088 "RPTAST.spad" 1808150 1808159 1808438 1808443) (-1087 "RPOLCAT.spad" 1787510 1787525 1808018 1808145) (-1086 "RPOLCAT.spad" 1766583 1766600 1787093 1787098) (-1085 "ROUTINE.spad" 1762004 1762013 1764768 1764795) (-1084 "ROMAN.spad" 1761332 1761341 1761870 1761999) (-1083 "ROIRC.spad" 1760412 1760444 1761322 1761327) (-1082 "RNS.spad" 1759315 1759324 1760314 1760407) (-1081 "RNS.spad" 1758304 1758315 1759305 1759310) (-1080 "RNG.spad" 1758039 1758048 1758294 1758299) (-1079 "RNGBIND.spad" 1757199 1757213 1757994 1757999) (-1078 "RMODULE.spad" 1756964 1756975 1757189 1757194) (-1077 "RMCAT2.spad" 1756384 1756441 1756954 1756959) (-1076 "RMATRIX.spad" 1755172 1755191 1755515 1755554) (-1075 "RMATCAT.spad" 1750751 1750782 1755128 1755167) (-1074 "RMATCAT.spad" 1746220 1746253 1750599 1750604) (-1073 "RLINSET.spad" 1745924 1745935 1746210 1746215) (-1072 "RINTERP.spad" 1745812 1745832 1745914 1745919) (-1071 "RING.spad" 1745282 1745291 1745792 1745807) (-1070 "RING.spad" 1744760 1744771 1745272 1745277) (-1069 "RIDIST.spad" 1744152 1744161 1744750 1744755) (-1068 "RGCHAIN.spad" 1742680 1742696 1743582 1743609) (-1067 "RGBCSPC.spad" 1742461 1742473 1742670 1742675) (-1066 "RGBCMDL.spad" 1741991 1742003 1742451 1742456) (-1065 "RF.spad" 1739633 1739644 1741981 1741986) (-1064 "RFFACTOR.spad" 1739095 1739106 1739623 1739628) (-1063 "RFFACT.spad" 1738830 1738842 1739085 1739090) (-1062 "RFDIST.spad" 1737826 1737835 1738820 1738825) (-1061 "RETSOL.spad" 1737245 1737258 1737816 1737821) (-1060 "RETRACT.spad" 1736673 1736684 1737235 1737240) (-1059 "RETRACT.spad" 1736099 1736112 1736663 1736668) (-1058 "RETAST.spad" 1735911 1735920 1736089 1736094) (-1057 "RESULT.spad" 1733509 1733518 1734096 1734123) (-1056 "RESRING.spad" 1732856 1732903 1733447 1733504) (-1055 "RESLATC.spad" 1732180 1732191 1732846 1732851) (-1054 "REPSQ.spad" 1731911 1731922 1732170 1732175) (-1053 "REP.spad" 1729465 1729474 1731901 1731906) (-1052 "REPDB.spad" 1729172 1729183 1729455 1729460) (-1051 "REP2.spad" 1718830 1718841 1729014 1729019) (-1050 "REP1.spad" 1713026 1713037 1718780 1718785) (-1049 "REGSET.spad" 1710787 1710804 1712636 1712663) (-1048 "REF.spad" 1710122 1710133 1710742 1710747) (-1047 "REDORDER.spad" 1709328 1709345 1710112 1710117) (-1046 "RECLOS.spad" 1708111 1708131 1708815 1708908) (-1045 "REALSOLV.spad" 1707251 1707260 1708101 1708106) (-1044 "REAL.spad" 1707123 1707132 1707241 1707246) (-1043 "REAL0Q.spad" 1704421 1704436 1707113 1707118) (-1042 "REAL0.spad" 1701265 1701280 1704411 1704416) (-1041 "RDUCEAST.spad" 1700986 1700995 1701255 1701260) (-1040 "RDIV.spad" 1700641 1700666 1700976 1700981) (-1039 "RDIST.spad" 1700208 1700219 1700631 1700636) (-1038 "RDETRS.spad" 1699072 1699090 1700198 1700203) (-1037 "RDETR.spad" 1697211 1697229 1699062 1699067) (-1036 "RDEEFS.spad" 1696310 1696327 1697201 1697206) (-1035 "RDEEF.spad" 1695320 1695337 1696300 1696305) (-1034 "RCFIELD.spad" 1692506 1692515 1695222 1695315) (-1033 "RCFIELD.spad" 1689778 1689789 1692496 1692501) (-1032 "RCAGG.spad" 1687706 1687717 1689768 1689773) (-1031 "RCAGG.spad" 1685561 1685574 1687625 1687630) (-1030 "RATRET.spad" 1684921 1684932 1685551 1685556) (-1029 "RATFACT.spad" 1684613 1684625 1684911 1684916) (-1028 "RANDSRC.spad" 1683932 1683941 1684603 1684608) (-1027 "RADUTIL.spad" 1683688 1683697 1683922 1683927) (-1026 "RADIX.spad" 1680512 1680526 1682058 1682151) (-1025 "RADFF.spad" 1678251 1678288 1678370 1678526) (-1024 "RADCAT.spad" 1677846 1677855 1678241 1678246) (-1023 "RADCAT.spad" 1677439 1677450 1677836 1677841) (-1022 "QUEUE.spad" 1676670 1676681 1676929 1676956) (-1021 "QUAT.spad" 1675158 1675169 1675501 1675566) (-1020 "QUATCT2.spad" 1674778 1674797 1675148 1675153) (-1019 "QUATCAT.spad" 1672948 1672959 1674708 1674773) (-1018 "QUATCAT.spad" 1670869 1670882 1672631 1672636) (-1017 "QUAGG.spad" 1669696 1669707 1670837 1670864) (-1016 "QQUTAST.spad" 1669464 1669473 1669686 1669691) (-1015 "QFORM.spad" 1669082 1669097 1669454 1669459) (-1014 "QFCAT.spad" 1667784 1667795 1668984 1669077) (-1013 "QFCAT.spad" 1666077 1666090 1667279 1667284) (-1012 "QFCAT2.spad" 1665769 1665786 1666067 1666072) (-1011 "QEQUAT.spad" 1665327 1665336 1665759 1665764) (-1010 "QCMPACK.spad" 1660073 1660093 1665317 1665322) (-1009 "QALGSET.spad" 1656151 1656184 1659987 1659992) (-1008 "QALGSET2.spad" 1654146 1654165 1656141 1656146) (-1007 "PWFFINTB.spad" 1651561 1651583 1654136 1654141) (-1006 "PUSHVAR.spad" 1650899 1650919 1651551 1651556) (-1005 "PTRANFN.spad" 1647026 1647037 1650889 1650894) (-1004 "PTPACK.spad" 1644113 1644124 1647016 1647021) (-1003 "PTFUNC2.spad" 1643935 1643950 1644103 1644108) (-1002 "PTCAT.spad" 1643189 1643200 1643903 1643930) (-1001 "PSQFR.spad" 1642495 1642520 1643179 1643184) (-1000 "PSEUDLIN.spad" 1641380 1641391 1642485 1642490) (-999 "PSETPK.spad" 1626813 1626829 1641258 1641263) (-998 "PSETCAT.spad" 1620733 1620756 1626793 1626808) (-997 "PSETCAT.spad" 1614627 1614652 1620689 1620694) (-996 "PSCURVE.spad" 1613610 1613618 1614617 1614622) (-995 "PSCAT.spad" 1612393 1612422 1613508 1613605) (-994 "PSCAT.spad" 1611266 1611297 1612383 1612388) (-993 "PRTITION.spad" 1609964 1609972 1611256 1611261) (-992 "PRTDAST.spad" 1609683 1609691 1609954 1609959) (-991 "PRS.spad" 1599245 1599262 1609639 1609644) (-990 "PRQAGG.spad" 1598680 1598690 1599213 1599240) (-989 "PROPLOG.spad" 1598252 1598260 1598670 1598675) (-988 "PROPFUN2.spad" 1597875 1597888 1598242 1598247) (-987 "PROPFUN1.spad" 1597273 1597284 1597865 1597870) (-986 "PROPFRML.spad" 1595841 1595852 1597263 1597268) (-985 "PROPERTY.spad" 1595329 1595337 1595831 1595836) (-984 "PRODUCT.spad" 1593011 1593023 1593295 1593350) (-983 "PR.spad" 1591403 1591415 1592102 1592229) (-982 "PRINT.spad" 1591155 1591163 1591393 1591398) (-981 "PRIMES.spad" 1589408 1589418 1591145 1591150) (-980 "PRIMELT.spad" 1587489 1587503 1589398 1589403) (-979 "PRIMCAT.spad" 1587116 1587124 1587479 1587484) (-978 "PRIMARR.spad" 1585968 1585978 1586146 1586173) (-977 "PRIMARR2.spad" 1584735 1584747 1585958 1585963) (-976 "PREASSOC.spad" 1584117 1584129 1584725 1584730) (-975 "PPCURVE.spad" 1583254 1583262 1584107 1584112) (-974 "PORTNUM.spad" 1583029 1583037 1583244 1583249) (-973 "POLYROOT.spad" 1581878 1581900 1582985 1582990) (-972 "POLY.spad" 1579213 1579223 1579728 1579855) (-971 "POLYLIFT.spad" 1578478 1578501 1579203 1579208) (-970 "POLYCATQ.spad" 1576596 1576618 1578468 1578473) (-969 "POLYCAT.spad" 1570066 1570087 1576464 1576591) (-968 "POLYCAT.spad" 1562874 1562897 1569274 1569279) (-967 "POLY2UP.spad" 1562326 1562340 1562864 1562869) (-966 "POLY2.spad" 1561923 1561935 1562316 1562321) (-965 "POLUTIL.spad" 1560864 1560893 1561879 1561884) (-964 "POLTOPOL.spad" 1559612 1559627 1560854 1560859) (-963 "POINT.spad" 1558297 1558307 1558384 1558411) (-962 "PNTHEORY.spad" 1554999 1555007 1558287 1558292) (-961 "PMTOOLS.spad" 1553774 1553788 1554989 1554994) (-960 "PMSYM.spad" 1553323 1553333 1553764 1553769) (-959 "PMQFCAT.spad" 1552914 1552928 1553313 1553318) (-958 "PMPRED.spad" 1552393 1552407 1552904 1552909) (-957 "PMPREDFS.spad" 1551847 1551869 1552383 1552388) (-956 "PMPLCAT.spad" 1550927 1550945 1551779 1551784) (-955 "PMLSAGG.spad" 1550512 1550526 1550917 1550922) (-954 "PMKERNEL.spad" 1550091 1550103 1550502 1550507) (-953 "PMINS.spad" 1549671 1549681 1550081 1550086) (-952 "PMFS.spad" 1549248 1549266 1549661 1549666) (-951 "PMDOWN.spad" 1548538 1548552 1549238 1549243) (-950 "PMASS.spad" 1547548 1547556 1548528 1548533) (-949 "PMASSFS.spad" 1546515 1546531 1547538 1547543) (-948 "PLOTTOOL.spad" 1546295 1546303 1546505 1546510) (-947 "PLOT.spad" 1541218 1541226 1546285 1546290) (-946 "PLOT3D.spad" 1537682 1537690 1541208 1541213) (-945 "PLOT1.spad" 1536839 1536849 1537672 1537677) (-944 "PLEQN.spad" 1524129 1524156 1536829 1536834) (-943 "PINTERP.spad" 1523751 1523770 1524119 1524124) (-942 "PINTERPA.spad" 1523535 1523551 1523741 1523746) (-941 "PI.spad" 1523144 1523152 1523509 1523530) (-940 "PID.spad" 1522114 1522122 1523070 1523139) (-939 "PICOERCE.spad" 1521771 1521781 1522104 1522109) (-938 "PGROEB.spad" 1520372 1520386 1521761 1521766) (-937 "PGE.spad" 1511989 1511997 1520362 1520367) (-936 "PGCD.spad" 1510879 1510896 1511979 1511984) (-935 "PFRPAC.spad" 1510028 1510038 1510869 1510874) (-934 "PFR.spad" 1506691 1506701 1509930 1510023) (-933 "PFOTOOLS.spad" 1505949 1505965 1506681 1506686) (-932 "PFOQ.spad" 1505319 1505337 1505939 1505944) (-931 "PFO.spad" 1504738 1504765 1505309 1505314) (-930 "PF.spad" 1504312 1504324 1504543 1504636) (-929 "PFECAT.spad" 1501994 1502002 1504238 1504307) (-928 "PFECAT.spad" 1499704 1499714 1501950 1501955) (-927 "PFBRU.spad" 1497592 1497604 1499694 1499699) (-926 "PFBR.spad" 1495152 1495175 1497582 1497587) (-925 "PERM.spad" 1490959 1490969 1494982 1494997) (-924 "PERMGRP.spad" 1485729 1485739 1490949 1490954) (-923 "PERMCAT.spad" 1484390 1484400 1485709 1485724) (-922 "PERMAN.spad" 1482922 1482936 1484380 1484385) (-921 "PENDTREE.spad" 1482146 1482156 1482434 1482439) (-920 "PDSPC.spad" 1480959 1480969 1482136 1482141) (-919 "PDSPC.spad" 1479770 1479782 1480949 1480954) (-918 "PDRING.spad" 1479612 1479622 1479750 1479765) (-917 "PDMOD.spad" 1479428 1479440 1479580 1479607) (-916 "PDEPROB.spad" 1478443 1478451 1479418 1479423) (-915 "PDEPACK.spad" 1472483 1472491 1478433 1478438) (-914 "PDECOMP.spad" 1471953 1471970 1472473 1472478) (-913 "PDECAT.spad" 1470309 1470317 1471943 1471948) (-912 "PDDOM.spad" 1469747 1469760 1470299 1470304) (-911 "PDDOM.spad" 1469183 1469198 1469737 1469742) (-910 "PCOMP.spad" 1469036 1469049 1469173 1469178) (-909 "PBWLB.spad" 1467624 1467641 1469026 1469031) (-908 "PATTERN.spad" 1462163 1462173 1467614 1467619) (-907 "PATTERN2.spad" 1461901 1461913 1462153 1462158) (-906 "PATTERN1.spad" 1460237 1460253 1461891 1461896) (-905 "PATRES.spad" 1457812 1457824 1460227 1460232) (-904 "PATRES2.spad" 1457484 1457498 1457802 1457807) (-903 "PATMATCH.spad" 1455681 1455712 1457192 1457197) (-902 "PATMAB.spad" 1455110 1455120 1455671 1455676) (-901 "PATLRES.spad" 1454196 1454210 1455100 1455105) (-900 "PATAB.spad" 1453960 1453970 1454186 1454191) (-899 "PARTPERM.spad" 1451968 1451976 1453950 1453955) (-898 "PARSURF.spad" 1451402 1451430 1451958 1451963) (-897 "PARSU2.spad" 1451199 1451215 1451392 1451397) (-896 "script-parser.spad" 1450719 1450727 1451189 1451194) (-895 "PARSCURV.spad" 1450153 1450181 1450709 1450714) (-894 "PARSC2.spad" 1449944 1449960 1450143 1450148) (-893 "PARPCURV.spad" 1449406 1449434 1449934 1449939) (-892 "PARPC2.spad" 1449197 1449213 1449396 1449401) (-891 "PARAMAST.spad" 1448325 1448333 1449187 1449192) (-890 "PAN2EXPR.spad" 1447737 1447745 1448315 1448320) (-889 "PALETTE.spad" 1446707 1446715 1447727 1447732) (-888 "PAIR.spad" 1445694 1445707 1446295 1446300) (-887 "PADICRC.spad" 1442935 1442953 1444106 1444199) (-886 "PADICRAT.spad" 1440843 1440855 1441064 1441157) (-885 "PADIC.spad" 1440538 1440550 1440769 1440838) (-884 "PADICCT.spad" 1439087 1439099 1440464 1440533) (-883 "PADEPAC.spad" 1437776 1437795 1439077 1439082) (-882 "PADE.spad" 1436528 1436544 1437766 1437771) (-881 "OWP.spad" 1435768 1435798 1436386 1436453) (-880 "OVERSET.spad" 1435341 1435349 1435758 1435763) (-879 "OVAR.spad" 1435122 1435145 1435331 1435336) (-878 "OUT.spad" 1434208 1434216 1435112 1435117) (-877 "OUTFORM.spad" 1423600 1423608 1434198 1434203) (-876 "OUTBFILE.spad" 1423018 1423026 1423590 1423595) (-875 "OUTBCON.spad" 1422024 1422032 1423008 1423013) (-874 "OUTBCON.spad" 1421028 1421038 1422014 1422019) (-873 "OSI.spad" 1420503 1420511 1421018 1421023) (-872 "OSGROUP.spad" 1420421 1420429 1420493 1420498) (-871 "ORTHPOL.spad" 1418906 1418916 1420338 1420343) (-870 "OREUP.spad" 1418359 1418387 1418586 1418625) (-869 "ORESUP.spad" 1417660 1417684 1418039 1418078) (-868 "OREPCTO.spad" 1415517 1415529 1417580 1417585) (-867 "OREPCAT.spad" 1409664 1409674 1415473 1415512) (-866 "OREPCAT.spad" 1403701 1403713 1409512 1409517) (-865 "ORDTYPE.spad" 1402938 1402946 1403691 1403696) (-864 "ORDTYPE.spad" 1402173 1402183 1402928 1402933) (-863 "ORDSTRCT.spad" 1401946 1401961 1402109 1402114) (-862 "ORDSET.spad" 1401646 1401654 1401936 1401941) (-861 "ORDRING.spad" 1401036 1401044 1401626 1401641) (-860 "ORDRING.spad" 1400434 1400444 1401026 1401031) (-859 "ORDMON.spad" 1400289 1400297 1400424 1400429) (-858 "ORDFUNS.spad" 1399421 1399437 1400279 1400284) (-857 "ORDFIN.spad" 1399241 1399249 1399411 1399416) (-856 "ORDCOMP.spad" 1397706 1397716 1398788 1398817) (-855 "ORDCOMP2.spad" 1396999 1397011 1397696 1397701) (-854 "OPTPROB.spad" 1395637 1395645 1396989 1396994) (-853 "OPTPACK.spad" 1388046 1388054 1395627 1395632) (-852 "OPTCAT.spad" 1385725 1385733 1388036 1388041) (-851 "OPSIG.spad" 1385379 1385387 1385715 1385720) (-850 "OPQUERY.spad" 1384928 1384936 1385369 1385374) (-849 "OP.spad" 1384670 1384680 1384750 1384817) (-848 "OPERCAT.spad" 1384136 1384146 1384660 1384665) (-847 "OPERCAT.spad" 1383600 1383612 1384126 1384131) (-846 "ONECOMP.spad" 1382345 1382355 1383147 1383176) (-845 "ONECOMP2.spad" 1381769 1381781 1382335 1382340) (-844 "OMSERVER.spad" 1380775 1380783 1381759 1381764) (-843 "OMSAGG.spad" 1380563 1380573 1380731 1380770) (-842 "OMPKG.spad" 1379179 1379187 1380553 1380558) (-841 "OM.spad" 1378152 1378160 1379169 1379174) (-840 "OMLO.spad" 1377577 1377589 1378038 1378077) (-839 "OMEXPR.spad" 1377411 1377421 1377567 1377572) (-838 "OMERR.spad" 1376956 1376964 1377401 1377406) (-837 "OMERRK.spad" 1375990 1375998 1376946 1376951) (-836 "OMENC.spad" 1375334 1375342 1375980 1375985) (-835 "OMDEV.spad" 1369643 1369651 1375324 1375329) (-834 "OMCONN.spad" 1369052 1369060 1369633 1369638) (-833 "OINTDOM.spad" 1368815 1368823 1368978 1369047) (-832 "OFMONOID.spad" 1366938 1366948 1368771 1368776) (-831 "ODVAR.spad" 1366199 1366209 1366928 1366933) (-830 "ODR.spad" 1365843 1365869 1366011 1366160) (-829 "ODPOL.spad" 1363132 1363142 1363472 1363599) (-828 "ODP.spad" 1350946 1350966 1351319 1351418) (-827 "ODETOOLS.spad" 1349595 1349614 1350936 1350941) (-826 "ODESYS.spad" 1347289 1347306 1349585 1349590) (-825 "ODERTRIC.spad" 1343298 1343315 1347246 1347251) (-824 "ODERED.spad" 1342697 1342721 1343288 1343293) (-823 "ODERAT.spad" 1340312 1340329 1342687 1342692) (-822 "ODEPRRIC.spad" 1337349 1337371 1340302 1340307) (-821 "ODEPROB.spad" 1336606 1336614 1337339 1337344) (-820 "ODEPRIM.spad" 1333940 1333962 1336596 1336601) (-819 "ODEPAL.spad" 1333326 1333350 1333930 1333935) (-818 "ODEPACK.spad" 1319992 1320000 1333316 1333321) (-817 "ODEINT.spad" 1319427 1319443 1319982 1319987) (-816 "ODEIFTBL.spad" 1316822 1316830 1319417 1319422) (-815 "ODEEF.spad" 1312313 1312329 1316812 1316817) (-814 "ODECONST.spad" 1311850 1311868 1312303 1312308) (-813 "ODECAT.spad" 1310448 1310456 1311840 1311845) (-812 "OCT.spad" 1308584 1308594 1309298 1309337) (-811 "OCTCT2.spad" 1308230 1308251 1308574 1308579) (-810 "OC.spad" 1306026 1306036 1308186 1308225) (-809 "OC.spad" 1303547 1303559 1305709 1305714) (-808 "OCAMON.spad" 1303395 1303403 1303537 1303542) (-807 "OASGP.spad" 1303210 1303218 1303385 1303390) (-806 "OAMONS.spad" 1302732 1302740 1303200 1303205) (-805 "OAMON.spad" 1302593 1302601 1302722 1302727) (-804 "OAGROUP.spad" 1302455 1302463 1302583 1302588) (-803 "NUMTUBE.spad" 1302046 1302062 1302445 1302450) (-802 "NUMQUAD.spad" 1290022 1290030 1302036 1302041) (-801 "NUMODE.spad" 1281376 1281384 1290012 1290017) (-800 "NUMINT.spad" 1278942 1278950 1281366 1281371) (-799 "NUMFMT.spad" 1277782 1277790 1278932 1278937) (-798 "NUMERIC.spad" 1269896 1269906 1277587 1277592) (-797 "NTSCAT.spad" 1268404 1268420 1269864 1269891) (-796 "NTPOLFN.spad" 1267955 1267965 1268321 1268326) (-795 "NSUP.spad" 1260908 1260918 1265448 1265601) (-794 "NSUP2.spad" 1260300 1260312 1260898 1260903) (-793 "NSMP.spad" 1256530 1256549 1256838 1256965) (-792 "NREP.spad" 1254908 1254922 1256520 1256525) (-791 "NPCOEF.spad" 1254154 1254174 1254898 1254903) (-790 "NORMRETR.spad" 1253752 1253791 1254144 1254149) (-789 "NORMPK.spad" 1251654 1251673 1253742 1253747) (-788 "NORMMA.spad" 1251342 1251368 1251644 1251649) (-787 "NONE.spad" 1251083 1251091 1251332 1251337) (-786 "NONE1.spad" 1250759 1250769 1251073 1251078) (-785 "NODE1.spad" 1250246 1250262 1250749 1250754) (-784 "NNI.spad" 1249141 1249149 1250220 1250241) (-783 "NLINSOL.spad" 1247767 1247777 1249131 1249136) (-782 "NIPROB.spad" 1246308 1246316 1247757 1247762) (-781 "NFINTBAS.spad" 1243868 1243885 1246298 1246303) (-780 "NETCLT.spad" 1243842 1243853 1243858 1243863) (-779 "NCODIV.spad" 1242058 1242074 1243832 1243837) (-778 "NCNTFRAC.spad" 1241700 1241714 1242048 1242053) (-777 "NCEP.spad" 1239866 1239880 1241690 1241695) (-776 "NASRING.spad" 1239462 1239470 1239856 1239861) (-775 "NASRING.spad" 1239056 1239066 1239452 1239457) (-774 "NARNG.spad" 1238408 1238416 1239046 1239051) (-773 "NARNG.spad" 1237758 1237768 1238398 1238403) (-772 "NAGSP.spad" 1236835 1236843 1237748 1237753) (-771 "NAGS.spad" 1226496 1226504 1236825 1236830) (-770 "NAGF07.spad" 1224927 1224935 1226486 1226491) (-769 "NAGF04.spad" 1219329 1219337 1224917 1224922) (-768 "NAGF02.spad" 1213398 1213406 1219319 1219324) (-767 "NAGF01.spad" 1209159 1209167 1213388 1213393) (-766 "NAGE04.spad" 1202859 1202867 1209149 1209154) (-765 "NAGE02.spad" 1193519 1193527 1202849 1202854) (-764 "NAGE01.spad" 1189521 1189529 1193509 1193514) (-763 "NAGD03.spad" 1187525 1187533 1189511 1189516) (-762 "NAGD02.spad" 1180272 1180280 1187515 1187520) (-761 "NAGD01.spad" 1174565 1174573 1180262 1180267) (-760 "NAGC06.spad" 1170440 1170448 1174555 1174560) (-759 "NAGC05.spad" 1168941 1168949 1170430 1170435) (-758 "NAGC02.spad" 1168208 1168216 1168931 1168936) (-757 "NAALG.spad" 1167749 1167759 1168176 1168203) (-756 "NAALG.spad" 1167310 1167322 1167739 1167744) (-755 "MULTSQFR.spad" 1164268 1164285 1167300 1167305) (-754 "MULTFACT.spad" 1163651 1163668 1164258 1164263) (-753 "MTSCAT.spad" 1161745 1161766 1163549 1163646) (-752 "MTHING.spad" 1161404 1161414 1161735 1161740) (-751 "MSYSCMD.spad" 1160838 1160846 1161394 1161399) (-750 "MSET.spad" 1158760 1158770 1160508 1160547) (-749 "MSETAGG.spad" 1158605 1158615 1158728 1158755) (-748 "MRING.spad" 1155582 1155594 1158313 1158380) (-747 "MRF2.spad" 1155152 1155166 1155572 1155577) (-746 "MRATFAC.spad" 1154698 1154715 1155142 1155147) (-745 "MPRFF.spad" 1152738 1152757 1154688 1154693) (-744 "MPOLY.spad" 1150209 1150224 1150568 1150695) (-743 "MPCPF.spad" 1149473 1149492 1150199 1150204) (-742 "MPC3.spad" 1149290 1149330 1149463 1149468) (-741 "MPC2.spad" 1148936 1148969 1149280 1149285) (-740 "MONOTOOL.spad" 1147287 1147304 1148926 1148931) (-739 "MONOID.spad" 1146606 1146614 1147277 1147282) (-738 "MONOID.spad" 1145923 1145933 1146596 1146601) (-737 "MONOGEN.spad" 1144671 1144684 1145783 1145918) (-736 "MONOGEN.spad" 1143441 1143456 1144555 1144560) (-735 "MONADWU.spad" 1141471 1141479 1143431 1143436) (-734 "MONADWU.spad" 1139499 1139509 1141461 1141466) (-733 "MONAD.spad" 1138659 1138667 1139489 1139494) (-732 "MONAD.spad" 1137817 1137827 1138649 1138654) (-731 "MOEBIUS.spad" 1136553 1136567 1137797 1137812) (-730 "MODULE.spad" 1136423 1136433 1136521 1136548) (-729 "MODULE.spad" 1136313 1136325 1136413 1136418) (-728 "MODRING.spad" 1135648 1135687 1136293 1136308) (-727 "MODOP.spad" 1134313 1134325 1135470 1135537) (-726 "MODMONOM.spad" 1134044 1134062 1134303 1134308) (-725 "MODMON.spad" 1130746 1130762 1131465 1131618) (-724 "MODFIELD.spad" 1130108 1130147 1130648 1130741) (-723 "MMLFORM.spad" 1128968 1128976 1130098 1130103) (-722 "MMAP.spad" 1128710 1128744 1128958 1128963) (-721 "MLO.spad" 1127169 1127179 1128666 1128705) (-720 "MLIFT.spad" 1125781 1125798 1127159 1127164) (-719 "MKUCFUNC.spad" 1125316 1125334 1125771 1125776) (-718 "MKRECORD.spad" 1124920 1124933 1125306 1125311) (-717 "MKFUNC.spad" 1124327 1124337 1124910 1124915) (-716 "MKFLCFN.spad" 1123295 1123305 1124317 1124322) (-715 "MKBCFUNC.spad" 1122790 1122808 1123285 1123290) (-714 "MINT.spad" 1122229 1122237 1122692 1122785) (-713 "MHROWRED.spad" 1120740 1120750 1122219 1122224) (-712 "MFLOAT.spad" 1119260 1119268 1120630 1120735) (-711 "MFINFACT.spad" 1118660 1118682 1119250 1119255) (-710 "MESH.spad" 1116442 1116450 1118650 1118655) (-709 "MDDFACT.spad" 1114653 1114663 1116432 1116437) (-708 "MDAGG.spad" 1113944 1113954 1114633 1114648) (-707 "MCMPLX.spad" 1109375 1109383 1109989 1110190) (-706 "MCDEN.spad" 1108585 1108597 1109365 1109370) (-705 "MCALCFN.spad" 1105707 1105733 1108575 1108580) (-704 "MAYBE.spad" 1104991 1105002 1105697 1105702) (-703 "MATSTOR.spad" 1102299 1102309 1104981 1104986) (-702 "MATRIX.spad" 1100886 1100896 1101370 1101397) (-701 "MATLIN.spad" 1098230 1098254 1100770 1100775) (-700 "MATCAT.spad" 1089752 1089774 1098198 1098225) (-699 "MATCAT.spad" 1081146 1081170 1089594 1089599) (-698 "MATCAT2.spad" 1080428 1080476 1081136 1081141) (-697 "MAPPKG3.spad" 1079343 1079357 1080418 1080423) (-696 "MAPPKG2.spad" 1078681 1078693 1079333 1079338) (-695 "MAPPKG1.spad" 1077509 1077519 1078671 1078676) (-694 "MAPPAST.spad" 1076824 1076832 1077499 1077504) (-693 "MAPHACK3.spad" 1076636 1076650 1076814 1076819) (-692 "MAPHACK2.spad" 1076405 1076417 1076626 1076631) (-691 "MAPHACK1.spad" 1076049 1076059 1076395 1076400) (-690 "MAGMA.spad" 1073839 1073856 1076039 1076044) (-689 "MACROAST.spad" 1073418 1073426 1073829 1073834) (-688 "M3D.spad" 1071021 1071031 1072679 1072684) (-687 "LZSTAGG.spad" 1068259 1068269 1071011 1071016) (-686 "LZSTAGG.spad" 1065495 1065507 1068249 1068254) (-685 "LWORD.spad" 1062200 1062217 1065485 1065490) (-684 "LSTAST.spad" 1061984 1061992 1062190 1062195) (-683 "LSQM.spad" 1060141 1060155 1060535 1060586) (-682 "LSPP.spad" 1059676 1059693 1060131 1060136) (-681 "LSMP.spad" 1058526 1058554 1059666 1059671) (-680 "LSMP1.spad" 1056344 1056358 1058516 1058521) (-679 "LSAGG.spad" 1056013 1056023 1056312 1056339) (-678 "LSAGG.spad" 1055702 1055714 1056003 1056008) (-677 "LPOLY.spad" 1054656 1054675 1055558 1055627) (-676 "LPEFRAC.spad" 1053927 1053937 1054646 1054651) (-675 "LO.spad" 1053328 1053342 1053861 1053888) (-674 "LOGIC.spad" 1052930 1052938 1053318 1053323) (-673 "LOGIC.spad" 1052530 1052540 1052920 1052925) (-672 "LODOOPS.spad" 1051460 1051472 1052520 1052525) (-671 "LODO.spad" 1050844 1050860 1051140 1051179) (-670 "LODOF.spad" 1049890 1049907 1050801 1050806) (-669 "LODOCAT.spad" 1048556 1048566 1049846 1049885) (-668 "LODOCAT.spad" 1047220 1047232 1048512 1048517) (-667 "LODO2.spad" 1046493 1046505 1046900 1046939) (-666 "LODO1.spad" 1045893 1045903 1046173 1046212) (-665 "LODEEF.spad" 1044695 1044713 1045883 1045888) (-664 "LNAGG.spad" 1040842 1040852 1044685 1044690) (-663 "LNAGG.spad" 1036953 1036965 1040798 1040803) (-662 "LMOPS.spad" 1033721 1033738 1036943 1036948) (-661 "LMODULE.spad" 1033489 1033499 1033711 1033716) (-660 "LMDICT.spad" 1032659 1032669 1032923 1032950) (-659 "LLINSET.spad" 1032366 1032376 1032649 1032654) (-658 "LITERAL.spad" 1032272 1032283 1032356 1032361) (-657 "LIST.spad" 1029854 1029864 1031266 1031293) (-656 "LIST3.spad" 1029165 1029179 1029844 1029849) (-655 "LIST2.spad" 1027867 1027879 1029155 1029160) (-654 "LIST2MAP.spad" 1024770 1024782 1027857 1027862) (-653 "LINSET.spad" 1024549 1024559 1024760 1024765) (-652 "LINEXP.spad" 1023292 1023302 1024539 1024544) (-651 "LINELT.spad" 1022694 1022706 1023260 1023287) (-650 "LINDEP.spad" 1021503 1021515 1022606 1022611) (-649 "LIMITRF.spad" 1019431 1019441 1021493 1021498) (-648 "LIMITPS.spad" 1018334 1018347 1019421 1019426) (-647 "LIE.spad" 1016350 1016362 1017624 1017769) (-646 "LIECAT.spad" 1015826 1015836 1016276 1016345) (-645 "LIECAT.spad" 1015330 1015342 1015782 1015787) (-644 "LIB.spad" 1013081 1013089 1013527 1013542) (-643 "LGROBP.spad" 1010434 1010453 1013071 1013076) (-642 "LF.spad" 1009389 1009405 1010424 1010429) (-641 "LFCAT.spad" 1008448 1008456 1009379 1009384) (-640 "LEXTRIPK.spad" 1003951 1003966 1008438 1008443) (-639 "LEXP.spad" 1001954 1001981 1003931 1003946) (-638 "LETAST.spad" 1001653 1001661 1001944 1001949) (-637 "LEADCDET.spad" 1000051 1000068 1001643 1001648) (-636 "LAZM3PK.spad" 998755 998777 1000041 1000046) (-635 "LAUPOL.spad" 997355 997368 998255 998324) (-634 "LAPLACE.spad" 996938 996954 997345 997350) (-633 "LA.spad" 996378 996392 996860 996899) (-632 "LALG.spad" 996154 996164 996358 996373) (-631 "LALG.spad" 995938 995950 996144 996149) (-630 "KVTFROM.spad" 995673 995683 995928 995933) (-629 "KTVLOGIC.spad" 995185 995193 995663 995668) (-628 "KRCFROM.spad" 994923 994933 995175 995180) (-627 "KOVACIC.spad" 993646 993663 994913 994918) (-626 "KONVERT.spad" 993368 993378 993636 993641) (-625 "KOERCE.spad" 993105 993115 993358 993363) (-624 "KERNEL.spad" 991760 991770 992889 992894) (-623 "KERNEL2.spad" 991463 991475 991750 991755) (-622 "KDAGG.spad" 990572 990594 991443 991458) (-621 "KDAGG.spad" 989689 989713 990562 990567) (-620 "KAFILE.spad" 988543 988559 988778 988805) (-619 "JORDAN.spad" 986372 986384 987833 987978) (-618 "JOINAST.spad" 986066 986074 986362 986367) (-617 "JAVACODE.spad" 985932 985940 986056 986061) (-616 "IXAGG.spad" 984065 984089 985922 985927) (-615 "IXAGG.spad" 982053 982079 983912 983917) (-614 "IVECTOR.spad" 980670 980685 980825 980852) (-613 "ITUPLE.spad" 979831 979841 980660 980665) (-612 "ITRIGMNP.spad" 978670 978689 979821 979826) (-611 "ITFUN3.spad" 978176 978190 978660 978665) (-610 "ITFUN2.spad" 977920 977932 978166 978171) (-609 "ITFORM.spad" 977275 977283 977910 977915) (-608 "ITAYLOR.spad" 975269 975284 977139 977236) (-607 "ISUPS.spad" 967706 967721 974243 974340) (-606 "ISUMP.spad" 967207 967223 967696 967701) (-605 "ISTRING.spad" 966134 966147 966215 966242) (-604 "ISAST.spad" 965853 965861 966124 966129) (-603 "IRURPK.spad" 964570 964589 965843 965848) (-602 "IRSN.spad" 962542 962550 964560 964565) (-601 "IRRF2F.spad" 961027 961037 962498 962503) (-600 "IRREDFFX.spad" 960628 960639 961017 961022) (-599 "IROOT.spad" 958967 958977 960618 960623) (-598 "IR.spad" 956768 956782 958822 958849) (-597 "IRFORM.spad" 956092 956100 956758 956763) (-596 "IR2.spad" 955120 955136 956082 956087) (-595 "IR2F.spad" 954326 954342 955110 955115) (-594 "IPRNTPK.spad" 954086 954094 954316 954321) (-593 "IPF.spad" 953651 953663 953891 953984) (-592 "IPADIC.spad" 953412 953438 953577 953646) (-591 "IP4ADDR.spad" 952969 952977 953402 953407) (-590 "IOMODE.spad" 952491 952499 952959 952964) (-589 "IOBFILE.spad" 951852 951860 952481 952486) (-588 "IOBCON.spad" 951717 951725 951842 951847) (-587 "INVLAPLA.spad" 951366 951382 951707 951712) (-586 "INTTR.spad" 944748 944765 951356 951361) (-585 "INTTOOLS.spad" 942503 942519 944322 944327) (-584 "INTSLPE.spad" 941823 941831 942493 942498) (-583 "INTRVL.spad" 941389 941399 941737 941818) (-582 "INTRF.spad" 939813 939827 941379 941384) (-581 "INTRET.spad" 939245 939255 939803 939808) (-580 "INTRAT.spad" 937972 937989 939235 939240) (-579 "INTPM.spad" 936357 936373 937615 937620) (-578 "INTPAF.spad" 934221 934239 936289 936294) (-577 "INTPACK.spad" 924595 924603 934211 934216) (-576 "INT.spad" 924043 924051 924449 924590) (-575 "INTHERTR.spad" 923317 923334 924033 924038) (-574 "INTHERAL.spad" 922987 923011 923307 923312) (-573 "INTHEORY.spad" 919426 919434 922977 922982) (-572 "INTG0.spad" 913159 913177 919358 919363) (-571 "INTFTBL.spad" 907188 907196 913149 913154) (-570 "INTFACT.spad" 906247 906257 907178 907183) (-569 "INTEF.spad" 904632 904648 906237 906242) (-568 "INTDOM.spad" 903255 903263 904558 904627) (-567 "INTDOM.spad" 901940 901950 903245 903250) (-566 "INTCAT.spad" 900199 900209 901854 901935) (-565 "INTBIT.spad" 899706 899714 900189 900194) (-564 "INTALG.spad" 898894 898921 899696 899701) (-563 "INTAF.spad" 898394 898410 898884 898889) (-562 "INTABL.spad" 896470 896501 896633 896660) (-561 "INT8.spad" 896350 896358 896460 896465) (-560 "INT64.spad" 896229 896237 896340 896345) (-559 "INT32.spad" 896108 896116 896219 896224) (-558 "INT16.spad" 895987 895995 896098 896103) (-557 "INS.spad" 893490 893498 895889 895982) (-556 "INS.spad" 891079 891089 893480 893485) (-555 "INPSIGN.spad" 890527 890540 891069 891074) (-554 "INPRODPF.spad" 889623 889642 890517 890522) (-553 "INPRODFF.spad" 888711 888735 889613 889618) (-552 "INNMFACT.spad" 887686 887703 888701 888706) (-551 "INMODGCD.spad" 887174 887204 887676 887681) (-550 "INFSP.spad" 885471 885493 887164 887169) (-549 "INFPROD0.spad" 884551 884570 885461 885466) (-548 "INFORM.spad" 881750 881758 884541 884546) (-547 "INFORM1.spad" 881375 881385 881740 881745) (-546 "INFINITY.spad" 880927 880935 881365 881370) (-545 "INETCLTS.spad" 880904 880912 880917 880922) (-544 "INEP.spad" 879442 879464 880894 880899) (-543 "INDE.spad" 879091 879108 879352 879357) (-542 "INCRMAPS.spad" 878512 878522 879081 879086) (-541 "INBFILE.spad" 877584 877592 878502 878507) (-540 "INBFF.spad" 873378 873389 877574 877579) (-539 "INBCON.spad" 871668 871676 873368 873373) (-538 "INBCON.spad" 869956 869966 871658 871663) (-537 "INAST.spad" 869617 869625 869946 869951) (-536 "IMPTAST.spad" 869325 869333 869607 869612) (-535 "IMATRIX.spad" 868153 868179 868665 868692) (-534 "IMATQF.spad" 867247 867291 868109 868114) (-533 "IMATLIN.spad" 865852 865876 867203 867208) (-532 "ILIST.spad" 864357 864372 864882 864909) (-531 "IIARRAY2.spad" 863628 863666 863847 863874) (-530 "IFF.spad" 863038 863054 863309 863402) (-529 "IFAST.spad" 862652 862660 863028 863033) (-528 "IFARRAY.spad" 859992 860007 861682 861709) (-527 "IFAMON.spad" 859854 859871 859948 859953) (-526 "IEVALAB.spad" 859259 859271 859844 859849) (-525 "IEVALAB.spad" 858662 858676 859249 859254) (-524 "IDPO.spad" 858397 858409 858574 858579) (-523 "IDPOAMS.spad" 858075 858087 858309 858314) (-522 "IDPOAM.spad" 857717 857729 857987 857992) (-521 "IDPC.spad" 856446 856458 857707 857712) (-520 "IDPAM.spad" 856113 856125 856358 856363) (-519 "IDPAG.spad" 855782 855794 856025 856030) (-518 "IDENT.spad" 855432 855440 855772 855777) (-517 "IDECOMP.spad" 852671 852689 855422 855427) (-516 "IDEAL.spad" 847620 847659 852606 852611) (-515 "ICDEN.spad" 846809 846825 847610 847615) (-514 "ICARD.spad" 846000 846008 846799 846804) (-513 "IBPTOOLS.spad" 844607 844624 845990 845995) (-512 "IBITS.spad" 843772 843785 844205 844232) (-511 "IBATOOL.spad" 840749 840768 843762 843767) (-510 "IBACHIN.spad" 839256 839271 840739 840744) (-509 "IARRAY2.spad" 838127 838153 838746 838773) (-508 "IARRAY1.spad" 837019 837034 837157 837184) (-507 "IAN.spad" 835242 835250 836835 836928) (-506 "IALGFACT.spad" 834845 834878 835232 835237) (-505 "HYPCAT.spad" 834269 834277 834835 834840) (-504 "HYPCAT.spad" 833691 833701 834259 834264) (-503 "HOSTNAME.spad" 833499 833507 833681 833686) (-502 "HOMOTOP.spad" 833242 833252 833489 833494) (-501 "HOAGG.spad" 830524 830534 833232 833237) (-500 "HOAGG.spad" 827545 827557 830255 830260) (-499 "HEXADEC.spad" 825550 825558 825915 826008) (-498 "HEUGCD.spad" 824585 824596 825540 825545) (-497 "HELLFDIV.spad" 824175 824199 824575 824580) (-496 "HEAP.spad" 823450 823460 823665 823692) (-495 "HEADAST.spad" 822983 822991 823440 823445) (-494 "HDP.spad" 810793 810809 811170 811269) (-493 "HDMP.spad" 808007 808022 808623 808750) (-492 "HB.spad" 806258 806266 807997 808002) (-491 "HASHTBL.spad" 804286 804317 804497 804524) (-490 "HASAST.spad" 804002 804010 804276 804281) (-489 "HACKPI.spad" 803493 803501 803904 803997) (-488 "GTSET.spad" 802396 802412 803103 803130) (-487 "GSTBL.spad" 800473 800508 800647 800662) (-486 "GSERIES.spad" 797786 797813 798605 798754) (-485 "GROUP.spad" 797059 797067 797766 797781) (-484 "GROUP.spad" 796340 796350 797049 797054) (-483 "GROEBSOL.spad" 794834 794855 796330 796335) (-482 "GRMOD.spad" 793405 793417 794824 794829) (-481 "GRMOD.spad" 791974 791988 793395 793400) (-480 "GRIMAGE.spad" 784863 784871 791964 791969) (-479 "GRDEF.spad" 783242 783250 784853 784858) (-478 "GRAY.spad" 781705 781713 783232 783237) (-477 "GRALG.spad" 780782 780794 781695 781700) (-476 "GRALG.spad" 779857 779871 780772 780777) (-475 "GPOLSET.spad" 779275 779298 779503 779530) (-474 "GOSPER.spad" 778544 778562 779265 779270) (-473 "GMODPOL.spad" 777692 777719 778512 778539) (-472 "GHENSEL.spad" 776775 776789 777682 777687) (-471 "GENUPS.spad" 773068 773081 776765 776770) (-470 "GENUFACT.spad" 772645 772655 773058 773063) (-469 "GENPGCD.spad" 772231 772248 772635 772640) (-468 "GENMFACT.spad" 771683 771702 772221 772226) (-467 "GENEEZ.spad" 769634 769647 771673 771678) (-466 "GDMP.spad" 766690 766707 767464 767591) (-465 "GCNAALG.spad" 760613 760640 766484 766551) (-464 "GCDDOM.spad" 759789 759797 760539 760608) (-463 "GCDDOM.spad" 759027 759037 759779 759784) (-462 "GB.spad" 756553 756591 758983 758988) (-461 "GBINTERN.spad" 752573 752611 756543 756548) (-460 "GBF.spad" 748340 748378 752563 752568) (-459 "GBEUCLID.spad" 746222 746260 748330 748335) (-458 "GAUSSFAC.spad" 745535 745543 746212 746217) (-457 "GALUTIL.spad" 743861 743871 745491 745496) (-456 "GALPOLYU.spad" 742315 742328 743851 743856) (-455 "GALFACTU.spad" 740488 740507 742305 742310) (-454 "GALFACT.spad" 730677 730688 740478 740483) (-453 "FVFUN.spad" 727700 727708 730667 730672) (-452 "FVC.spad" 726752 726760 727690 727695) (-451 "FUNDESC.spad" 726430 726438 726742 726747) (-450 "FUNCTION.spad" 726279 726291 726420 726425) (-449 "FT.spad" 724576 724584 726269 726274) (-448 "FTEM.spad" 723741 723749 724566 724571) (-447 "FSUPFACT.spad" 722641 722660 723677 723682) (-446 "FST.spad" 720727 720735 722631 722636) (-445 "FSRED.spad" 720207 720223 720717 720722) (-444 "FSPRMELT.spad" 719089 719105 720164 720169) (-443 "FSPECF.spad" 717180 717196 719079 719084) (-442 "FS.spad" 711448 711458 716955 717175) (-441 "FS.spad" 705494 705506 711003 711008) (-440 "FSINT.spad" 705154 705170 705484 705489) (-439 "FSERIES.spad" 704345 704357 704974 705073) (-438 "FSCINT.spad" 703662 703678 704335 704340) (-437 "FSAGG.spad" 702779 702789 703618 703657) (-436 "FSAGG.spad" 701858 701870 702699 702704) (-435 "FSAGG2.spad" 700601 700617 701848 701853) (-434 "FS2UPS.spad" 695092 695126 700591 700596) (-433 "FS2.spad" 694739 694755 695082 695087) (-432 "FS2EXPXP.spad" 693864 693887 694729 694734) (-431 "FRUTIL.spad" 692818 692828 693854 693859) (-430 "FR.spad" 686441 686451 691749 691818) (-429 "FRNAALG.spad" 681710 681720 686383 686436) (-428 "FRNAALG.spad" 676991 677003 681666 681671) (-427 "FRNAAF2.spad" 676447 676465 676981 676986) (-426 "FRMOD.spad" 675857 675887 676378 676383) (-425 "FRIDEAL.spad" 675082 675103 675837 675852) (-424 "FRIDEAL2.spad" 674686 674718 675072 675077) (-423 "FRETRCT.spad" 674197 674207 674676 674681) (-422 "FRETRCT.spad" 673574 673586 674055 674060) (-421 "FRAMALG.spad" 671922 671935 673530 673569) (-420 "FRAMALG.spad" 670302 670317 671912 671917) (-419 "FRAC.spad" 667308 667318 667711 667884) (-418 "FRAC2.spad" 666913 666925 667298 667303) (-417 "FR2.spad" 666249 666261 666903 666908) (-416 "FPS.spad" 663064 663072 666139 666244) (-415 "FPS.spad" 659907 659917 662984 662989) (-414 "FPC.spad" 658953 658961 659809 659902) (-413 "FPC.spad" 658085 658095 658943 658948) (-412 "FPATMAB.spad" 657847 657857 658075 658080) (-411 "FPARFRAC.spad" 656697 656714 657837 657842) (-410 "FORTRAN.spad" 655203 655246 656687 656692) (-409 "FORT.spad" 654152 654160 655193 655198) (-408 "FORTFN.spad" 651322 651330 654142 654147) (-407 "FORTCAT.spad" 651006 651014 651312 651317) (-406 "FORMULA.spad" 648480 648488 650996 651001) (-405 "FORMULA1.spad" 647959 647969 648470 648475) (-404 "FORDER.spad" 647650 647674 647949 647954) (-403 "FOP.spad" 646851 646859 647640 647645) (-402 "FNLA.spad" 646275 646297 646819 646846) (-401 "FNCAT.spad" 644870 644878 646265 646270) (-400 "FNAME.spad" 644762 644770 644860 644865) (-399 "FMTC.spad" 644560 644568 644688 644757) (-398 "FMONOID.spad" 644225 644235 644516 644521) (-397 "FMONCAT.spad" 641378 641388 644215 644220) (-396 "FM.spad" 640993 641005 641232 641259) (-395 "FMFUN.spad" 638023 638031 640983 640988) (-394 "FMC.spad" 637075 637083 638013 638018) (-393 "FMCAT.spad" 634743 634761 637043 637070) (-392 "FM1.spad" 634100 634112 634677 634704) (-391 "FLOATRP.spad" 631835 631849 634090 634095) (-390 "FLOAT.spad" 625149 625157 631701 631830) (-389 "FLOATCP.spad" 622580 622594 625139 625144) (-388 "FLINEXP.spad" 622302 622312 622570 622575) (-387 "FLINEXP.spad" 621968 621980 622238 622243) (-386 "FLASORT.spad" 621294 621306 621958 621963) (-385 "FLALG.spad" 618940 618959 621220 621289) (-384 "FLAGG.spad" 615982 615992 618920 618935) (-383 "FLAGG.spad" 612925 612937 615865 615870) (-382 "FLAGG2.spad" 611650 611666 612915 612920) (-381 "FINRALG.spad" 609711 609724 611606 611645) (-380 "FINRALG.spad" 607698 607713 609595 609600) (-379 "FINITE.spad" 606850 606858 607688 607693) (-378 "FINAALG.spad" 595971 595981 606792 606845) (-377 "FINAALG.spad" 585104 585116 595927 595932) (-376 "FILE.spad" 584687 584697 585094 585099) (-375 "FILECAT.spad" 583213 583230 584677 584682) (-374 "FIELD.spad" 582619 582627 583115 583208) (-373 "FIELD.spad" 582111 582121 582609 582614) (-372 "FGROUP.spad" 580758 580768 582091 582106) (-371 "FGLMICPK.spad" 579545 579560 580748 580753) (-370 "FFX.spad" 578920 578935 579261 579354) (-369 "FFSLPE.spad" 578423 578444 578910 578915) (-368 "FFPOLY.spad" 569685 569696 578413 578418) (-367 "FFPOLY2.spad" 568745 568762 569675 569680) (-366 "FFP.spad" 568142 568162 568461 568554) (-365 "FF.spad" 567590 567606 567823 567916) (-364 "FFNBX.spad" 566102 566122 567306 567399) (-363 "FFNBP.spad" 564615 564632 565818 565911) (-362 "FFNB.spad" 563080 563101 564296 564389) (-361 "FFINTBAS.spad" 560594 560613 563070 563075) (-360 "FFIELDC.spad" 558171 558179 560496 560589) (-359 "FFIELDC.spad" 555834 555844 558161 558166) (-358 "FFHOM.spad" 554582 554599 555824 555829) (-357 "FFF.spad" 552017 552028 554572 554577) (-356 "FFCGX.spad" 550864 550884 551733 551826) (-355 "FFCGP.spad" 549753 549773 550580 550673) (-354 "FFCG.spad" 548545 548566 549434 549527) (-353 "FFCAT.spad" 541718 541740 548384 548540) (-352 "FFCAT.spad" 534970 534994 541638 541643) (-351 "FFCAT2.spad" 534717 534757 534960 534965) (-350 "FEXPR.spad" 526434 526480 534473 534512) (-349 "FEVALAB.spad" 526142 526152 526424 526429) (-348 "FEVALAB.spad" 525635 525647 525919 525924) (-347 "FDIV.spad" 525077 525101 525625 525630) (-346 "FDIVCAT.spad" 523141 523165 525067 525072) (-345 "FDIVCAT.spad" 521203 521229 523131 523136) (-344 "FDIV2.spad" 520859 520899 521193 521198) (-343 "FCTRDATA.spad" 519867 519875 520849 520854) (-342 "FCPAK1.spad" 518434 518442 519857 519862) (-341 "FCOMP.spad" 517813 517823 518424 518429) (-340 "FC.spad" 507820 507828 517803 517808) (-339 "FAXF.spad" 500791 500805 507722 507815) (-338 "FAXF.spad" 493814 493830 500747 500752) (-337 "FARRAY.spad" 491811 491821 492844 492871) (-336 "FAMR.spad" 489947 489959 491709 491806) (-335 "FAMR.spad" 488067 488081 489831 489836) (-334 "FAMONOID.spad" 487735 487745 488021 488026) (-333 "FAMONC.spad" 486031 486043 487725 487730) (-332 "FAGROUP.spad" 485655 485665 485927 485954) (-331 "FACUTIL.spad" 483859 483876 485645 485650) (-330 "FACTFUNC.spad" 483053 483063 483849 483854) (-329 "EXPUPXS.spad" 479886 479909 481185 481334) (-328 "EXPRTUBE.spad" 477174 477182 479876 479881) (-327 "EXPRODE.spad" 474334 474350 477164 477169) (-326 "EXPR.spad" 469509 469519 470223 470518) (-325 "EXPR2UPS.spad" 465631 465644 469499 469504) (-324 "EXPR2.spad" 465336 465348 465621 465626) (-323 "EXPEXPAN.spad" 462137 462162 462769 462862) (-322 "EXIT.spad" 461808 461816 462127 462132) (-321 "EXITAST.spad" 461544 461552 461798 461803) (-320 "EVALCYC.spad" 461004 461018 461534 461539) (-319 "EVALAB.spad" 460576 460586 460994 460999) (-318 "EVALAB.spad" 460146 460158 460566 460571) (-317 "EUCDOM.spad" 457720 457728 460072 460141) (-316 "EUCDOM.spad" 455356 455366 457710 457715) (-315 "ESTOOLS.spad" 447202 447210 455346 455351) (-314 "ESTOOLS2.spad" 446805 446819 447192 447197) (-313 "ESTOOLS1.spad" 446490 446501 446795 446800) (-312 "ES.spad" 439305 439313 446480 446485) (-311 "ES.spad" 432026 432036 439203 439208) (-310 "ESCONT.spad" 428819 428827 432016 432021) (-309 "ESCONT1.spad" 428568 428580 428809 428814) (-308 "ES2.spad" 428073 428089 428558 428563) (-307 "ES1.spad" 427643 427659 428063 428068) (-306 "ERROR.spad" 424970 424978 427633 427638) (-305 "EQTBL.spad" 423000 423022 423209 423236) (-304 "EQ.spad" 417805 417815 420592 420704) (-303 "EQ2.spad" 417523 417535 417795 417800) (-302 "EP.spad" 413849 413859 417513 417518) (-301 "ENV.spad" 412527 412535 413839 413844) (-300 "ENTIRER.spad" 412195 412203 412471 412522) (-299 "EMR.spad" 411483 411524 412121 412190) (-298 "ELTAGG.spad" 409737 409756 411473 411478) (-297 "ELTAGG.spad" 407955 407976 409693 409698) (-296 "ELTAB.spad" 407430 407443 407945 407950) (-295 "ELFUTS.spad" 406817 406836 407420 407425) (-294 "ELEMFUN.spad" 406506 406514 406807 406812) (-293 "ELEMFUN.spad" 406193 406203 406496 406501) (-292 "ELAGG.spad" 404164 404174 406173 406188) (-291 "ELAGG.spad" 402072 402084 404083 404088) (-290 "ELABOR.spad" 401418 401426 402062 402067) (-289 "ELABEXPR.spad" 400350 400358 401408 401413) (-288 "EFUPXS.spad" 397126 397156 400306 400311) (-287 "EFULS.spad" 393962 393985 397082 397087) (-286 "EFSTRUC.spad" 391977 391993 393952 393957) (-285 "EF.spad" 386753 386769 391967 391972) (-284 "EAB.spad" 385029 385037 386743 386748) (-283 "E04UCFA.spad" 384565 384573 385019 385024) (-282 "E04NAFA.spad" 384142 384150 384555 384560) (-281 "E04MBFA.spad" 383722 383730 384132 384137) (-280 "E04JAFA.spad" 383258 383266 383712 383717) (-279 "E04GCFA.spad" 382794 382802 383248 383253) (-278 "E04FDFA.spad" 382330 382338 382784 382789) (-277 "E04DGFA.spad" 381866 381874 382320 382325) (-276 "E04AGNT.spad" 377716 377724 381856 381861) (-275 "DVARCAT.spad" 374606 374616 377706 377711) (-274 "DVARCAT.spad" 371494 371506 374596 374601) (-273 "DSMP.spad" 368868 368882 369173 369300) (-272 "DSEXT.spad" 368170 368180 368858 368863) (-271 "DSEXT.spad" 367379 367391 368069 368074) (-270 "DROPT.spad" 361338 361346 367369 367374) (-269 "DROPT1.spad" 361003 361013 361328 361333) (-268 "DROPT0.spad" 355860 355868 360993 360998) (-267 "DRAWPT.spad" 354033 354041 355850 355855) (-266 "DRAW.spad" 346909 346922 354023 354028) (-265 "DRAWHACK.spad" 346217 346227 346899 346904) (-264 "DRAWCX.spad" 343687 343695 346207 346212) (-263 "DRAWCURV.spad" 343234 343249 343677 343682) (-262 "DRAWCFUN.spad" 332766 332774 343224 343229) (-261 "DQAGG.spad" 330944 330954 332734 332761) (-260 "DPOLCAT.spad" 326293 326309 330812 330939) (-259 "DPOLCAT.spad" 321728 321746 326249 326254) (-258 "DPMO.spad" 313488 313504 313626 313839) (-257 "DPMM.spad" 305261 305279 305386 305599) (-256 "DOMTMPLT.spad" 305032 305040 305251 305256) (-255 "DOMCTOR.spad" 304787 304795 305022 305027) (-254 "DOMAIN.spad" 303874 303882 304777 304782) (-253 "DMP.spad" 301134 301149 301704 301831) (-252 "DMEXT.spad" 301001 301011 301102 301129) (-251 "DLP.spad" 300353 300363 300991 300996) (-250 "DLIST.spad" 298779 298789 299383 299410) (-249 "DLAGG.spad" 297196 297206 298769 298774) (-248 "DIVRING.spad" 296738 296746 297140 297191) (-247 "DIVRING.spad" 296324 296334 296728 296733) (-246 "DISPLAY.spad" 294514 294522 296314 296319) (-245 "DIRPROD.spad" 282061 282077 282701 282800) (-244 "DIRPROD2.spad" 280879 280897 282051 282056) (-243 "DIRPCAT.spad" 280072 280088 280775 280874) (-242 "DIRPCAT.spad" 278892 278910 279597 279602) (-241 "DIOSP.spad" 277717 277725 278882 278887) (-240 "DIOPS.spad" 276713 276723 277697 277712) (-239 "DIOPS.spad" 275683 275695 276669 276674) (-238 "DIFRING.spad" 275521 275529 275663 275678) (-237 "DIFFSPC.spad" 275100 275108 275511 275516) (-236 "DIFFSPC.spad" 274677 274687 275090 275095) (-235 "DIFFMOD.spad" 274166 274176 274645 274672) (-234 "DIFFDOM.spad" 273331 273342 274156 274161) (-233 "DIFFDOM.spad" 272494 272507 273321 273326) (-232 "DIFEXT.spad" 272313 272323 272474 272489) (-231 "DIAGG.spad" 271943 271953 272293 272308) (-230 "DIAGG.spad" 271581 271593 271933 271938) (-229 "DHMATRIX.spad" 269776 269786 270921 270948) (-228 "DFSFUN.spad" 263416 263424 269766 269771) (-227 "DFLOAT.spad" 260147 260155 263306 263411) (-226 "DFINTTLS.spad" 258378 258394 260137 260142) (-225 "DERHAM.spad" 256292 256324 258358 258373) (-224 "DEQUEUE.spad" 255499 255509 255782 255809) (-223 "DEGRED.spad" 255116 255130 255489 255494) (-222 "DEFINTRF.spad" 252653 252663 255106 255111) (-221 "DEFINTEF.spad" 251163 251179 252643 252648) (-220 "DEFAST.spad" 250531 250539 251153 251158) (-219 "DECIMAL.spad" 248540 248548 248901 248994) (-218 "DDFACT.spad" 246353 246370 248530 248535) (-217 "DBLRESP.spad" 245953 245977 246343 246348) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 7a9fe5a2..5db33608 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,113 +1,113 @@ -(204999 . 3486852434) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) #0#) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) -((((-576)) . T) (($) -3795 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T)) +(205224 . 3486916226) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((#0=(-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) +((((-576)) . T) (($) -2748 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1060 (-419 (-576))))) ((|#1|) . T)) (((|#2| |#2|) . T)) ((((-576)) . T)) -((($ $) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576))))) +((($ $) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576))))) ((($) . T)) (((|#1|) . T)) -((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) . T) (((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#2|) . T)) -((($) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(|has| |#1| (-928)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) +((($) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +(|has| |#1| (-929)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) ((($) . T) (((-419 (-576))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-145)) . T)) -((((-548)) . T) (((-1179)) . T) (((-227)) . T) (((-390)) . T) (((-907 (-390))) . T)) -(((|#1|) . T)) -((((-227)) . T) (((-876)) . T)) -(-3795 (|has| |#2| (-805)) (|has| |#2| (-861))) -(-3795 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) -(((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-860))) -((($ $) . T) ((#0=(-419 (-576)) #0#) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) -(-3795 (|has| |#1| (-832)) (|has| |#1| (-861))) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) -((((-876)) . T)) -((((-876)) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) -(|has| |#1| (-860)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-548)) . T) (((-1180)) . T) (((-227)) . T) (((-390)) . T) (((-908 (-390))) . T)) +(((|#1|) . T)) +((((-227)) . T) (((-877)) . T)) +(-2748 (|has| |#2| (-806)) (|has| |#2| (-862))) +(-2748 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-861))) +((($ $) . T) ((#0=(-419 (-576)) #0#) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) +(-2748 (|has| |#1| (-833)) (|has| |#1| (-862))) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) +((((-877)) . T)) +((((-877)) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) +(|has| |#1| (-861)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) ((((-326 |#1|)) . T) (((-576)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -((((-576)) . T) (((-884 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((((-876)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) +((((-576)) . T) (((-885 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((($) . T) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((((-419 (-576))) . T) (((-712)) . T) (($) . T)) +((((-877)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) (((|#4|) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((((-876)) . T)) -((((-876)) |has| (-1115 |#1|) (-1121))) -((((-876)) . T) (((-1202)) . T)) +((((-419 (-576))) . T) (((-712)) . T) (($) . T)) +((((-877)) . T)) +((((-877)) |has| (-1116 |#1|) (-1122))) +((((-877)) . T) (((-1203)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1202)) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -(-3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(((|#2| (-494 (-1970 |#1|) (-783))) . T)) -((((-1197)) -3795 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) -(((|#1| (-543 (-1197))) . T)) -((((-1179)) . T) (((-977 (-130))) . T) (((-876)) . T)) -((((-876)) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -(((#0=(-884 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) +((((-1203)) . T)) +(((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) +(-2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(((|#2| (-494 (-3437 |#1|) (-784))) . T)) +((((-1198)) -2748 (|has| (-419 |#2|) (-918 (-1198))) (|has| (-419 |#2|) (-920 (-1198))))) +(((|#1| (-543 (-1198))) . T)) +((((-1180)) . T) (((-978 (-130))) . T) (((-877)) . T)) +((((-877)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +(((#0=(-885 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (|has| |#4| (-379)) (|has| |#3| (-379)) (((|#1|) . T)) -((((-1197)) . T)) +((((-1198)) . T)) ((((-518)) . T)) -((((-884 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-885 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-877)) . T)) +((((-877)) . T)) (((|#1| |#2|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-568)) -((((-576)) . T) (((-419 (-576))) -3795 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-2 (|:| -2411 |#1|) (|:| -4080 |#2|))) . T)) +((((-576)) . T) (((-419 (-576))) -2748 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576))))) ((|#2|) . T) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) (((-879 |#1|)) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) +((((-2 (|:| -3146 |#1|) (|:| -2128 |#2|))) . T)) ((($) . T)) -(((|#1|) . T)) -((((-576)) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T) (($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1197)) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-877)) |has| |#1| (-625 (-877))) ((|#1|) . T)) +((((-576)) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) ((|#1|) . T) (($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) (((-1198)) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-1197)) . T)) +((((-1198)) . T)) (((|#1|) . T)) ((((-576)) . T) (($) . T)) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (((|#1|) . T) (((-576)) . T) (($) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -(|has| |#1| (-1121)) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +(|has| |#1| (-1122)) (((|#1|) . T)) ((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) @@ -115,14 +115,14 @@ ((((-419 (-576))) . T) (($) . T) (((-576)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) (((|#2|) . T) (((-576)) . T) ((|#6|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) ((($ $) . T)) ((($) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) @@ -130,451 +130,452 @@ (((|#1|) . T)) (|has| |#1| (-379)) (((|#1|) . T)) -((((-876)) . T)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +((((-877)) . T)) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -(((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +(((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) ((((-576)) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#1| |#2|) . T)) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) -((($) -3795 (|has| |#1| (-238)) (|has| |#1| (-237)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) +((($) -2748 (|has| |#1| (-238)) (|has| |#1| (-237)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (|has| |#1| (-568)) (((|#1|) . T) (((-576)) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-861))) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3795 (|has| |#1| (-861)) (|has| |#1| (-1121))) -(|has| |#1| (-1121)) -(-3795 (|has| |#1| (-861)) (|has| |#1| (-1121))) -(|has| |#1| (-1121)) -(-3795 (|has| |#1| (-861)) (|has| |#1| (-1121))) -(|has| |#1| (-860)) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-862)) (|has| |#1| (-1122))) +(|has| |#1| (-1122)) +(-2748 (|has| |#1| (-862)) (|has| |#1| (-1122))) +(|has| |#1| (-1122)) +(-2748 (|has| |#1| (-862)) (|has| |#1| (-1122))) +(|has| |#1| (-861)) (((|#1| |#1|) . T)) ((($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-576) (-130)) . T)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T) (((-419 (-576))) . T)) ((((-130)) . T)) -(|has| |#4| (-805)) -(|has| |#4| (-805)) -(|has| |#3| (-805)) -(|has| |#3| (-805)) +(|has| |#4| (-806)) +(|has| |#4| (-806)) +(|has| |#3| (-806)) +(|has| |#3| (-806)) (((|#1| |#2|) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1202)) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-1203)) . T)) (((|#1| |#2|) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) (((-1197) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1197) |#2|)))) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(((|#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) (((-1198) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1198) |#2|)))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) ((((-576)) . T) (((-419 (-576))) . T)) -(((|#1| (-1197) (-1109 (-1197)) (-543 (-1109 (-1197)))) . T)) +(((|#1| (-1198) (-1110 (-1198)) (-543 (-1110 (-1198)))) . T)) ((((-576) |#1|) . T)) ((((-576)) . T)) ((((-576)) . T)) -((((-929 |#1|)) . T)) +((((-930 |#1|)) . T)) (((|#1| (-543 |#2|)) . T)) ((((-576)) . T)) ((((-576)) . T)) (((|#1|) . T)) -(|has| |#2| (-1070)) -(((|#1| (-783)) . T)) -(|has| |#2| (-805)) -(|has| |#2| (-805)) +(|has| |#2| (-1071)) +(((|#1| (-784)) . T)) +(|has| |#2| (-806)) +(|has| |#2| (-806)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1179) |#1|) . T)) -((((-1255 (-576)) $) . T) (((-576) (-130)) . T)) +((((-1180) |#1|) . T)) +((((-1256 (-576)) $) . T) (((-576) (-130)) . T)) (((|#1|) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -(((|#3| (-783)) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) +(((|#3| (-784)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) ((($) . T) (((-419 (-576))) . T)) ((($) . T)) ((($) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-419 (-576))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1121)) +(|has| |#1| (-1122)) ((((-419 (-576))) . T) (((-576)) . T)) -((((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -((((-576)) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T) (($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#2|) . T)) -((((-1197) |#2|) |has| |#2| (-526 (-1197) |#2|)) ((|#2| |#2|) |has| |#2| (-319 |#2|))) +((((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) +((((-576)) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) ((|#1|) . T) (($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#2|) . T)) +((((-1198) |#2|) |has| |#2| (-526 (-1198) |#2|)) ((|#2| |#2|) |has| |#2| (-319 |#2|))) ((((-419 (-576))) . T) (((-576)) . T)) -((((-576)) . T) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1103)) . T) ((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) +((((-576)) . T) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) (((-1104)) . T) ((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (((|#1|) . T) (($) . T)) ((((-576)) . T)) ((((-576)) . T)) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) ((((-576)) . T)) ((((-576)) . T)) ((((-419 (-576))) . T) (($) . T)) -(((#0=(-711) (-1193 #0#)) . T)) +(((#0=(-712) (-1194 #0#)) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#2| (-374)) -((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) -((($) -3795 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) +((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) +((($) -2748 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) (((|#1| |#2|) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#1|) . T)) -((((-1179) |#1|) . T)) +((((-1180) |#1|) . T)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) (((|#3| |#3|) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) (((|#1| |#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) (($) |has| |#2| (-1071)) (((-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) ((((-576) |#1|) . T)) -((((-876)) . T)) -((((-171 (-227))) |has| |#1| (-1043)) (((-171 (-390))) |has| |#1| (-1043)) (((-548)) |has| |#1| (-626 (-548))) (((-1193 |#1|)) . T) (((-907 (-576))) |has| |#1| (-626 (-907 (-576)))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1|) . T)) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-860))) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-860))) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-877)) . T)) +((((-171 (-227))) |has| |#1| (-1044)) (((-171 (-390))) |has| |#1| (-1044)) (((-548)) |has| |#1| (-626 (-548))) (((-1194 |#1|)) . T) (((-908 (-576))) |has| |#1| (-626 (-908 (-576)))) (((-908 (-390))) |has| |#1| (-626 (-908 (-390))))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1|) . T)) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-861))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-861))) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568)))) (|has| |#1| (-374)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T)) ((($) . T)) ((((-130)) . T)) -(-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) -(-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) -((($) -3795 (|has| |#2| (-238)) (|has| |#2| (-237)))) -(|has| |#4| (-1070)) -(|has| |#3| (-1070)) -((((-876)) . T) (((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -((((-876)) . T)) -(((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -(((|#2|) . T) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) . T)) +(-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) +(-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) +((($) -2748 (|has| |#2| (-238)) (|has| |#2| (-237)))) +(|has| |#4| (-1071)) +(|has| |#3| (-1071)) +((((-877)) . T) (((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((((-877)) . T)) +(((|#1|) . T)) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) +(((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) +(((|#2|) . T) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) . T)) (|has| |#1| (-568)) -((((-576)) -3795 (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121))) (|has| |#4| (-1070))) ((|#4|) |has| |#4| (-1121)) (((-419 (-576))) -12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121)))) -((((-576)) -3795 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070))) ((|#3|) |has| |#3| (-1121)) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-576)) -2748 (-12 (|has| |#4| (-1060 (-576))) (|has| |#4| (-1122))) (|has| |#4| (-1071))) ((|#4|) |has| |#4| (-1122)) (((-419 (-576))) -12 (|has| |#4| (-1060 (-419 (-576)))) (|has| |#4| (-1122)))) +((((-576)) -2748 (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122))) (|has| |#3| (-1071))) ((|#3|) |has| |#3| (-1122)) (((-419 (-576))) -12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (|has| |#1| (-568)) -(-3795 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2748 (|has| |#1| (-862)) (|has| |#1| (-1122))) (((|#1|) . T)) (|has| |#1| (-568)) -((((-878 |#1|)) . T)) +((((-879 |#1|)) . T)) (|has| |#1| (-568)) (|has| |#1| (-568)) (((|#2|) . T)) -((((-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1103)) . T)) -((((-711)) . T)) +((((-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (((-1104)) . T)) +((((-712)) . T)) (((|#1|) . T)) -((((-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1109 (-1197))) . T)) -(-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))) +((((-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (((-1110 (-1198))) . T)) +(-12 (|has| |#1| (-1024)) (|has| |#1| (-1224))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-419 (-576))) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) +(-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(((|#4| |#4|) -3795 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1070)))) -(((|#3| |#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) +(((|#4| |#4|) -2748 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1071)))) +(((|#3| |#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071)))) (((|#2|) . T)) (((|#1|) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576))))) -((((-876)) . T)) +((((-548)) |has| |#2| (-626 (-548))) (((-908 (-390))) |has| |#2| (-626 (-908 (-390)))) (((-908 (-576))) |has| |#2| (-626 (-908 (-576))))) +((((-877)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2411 |#1|) (|:| -4080 |#2|))) . T) (((-876)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#1| (-626 (-907 (-576))))) -(((|#4|) -3795 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1070)))) -(((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) -((((-2 (|:| -2411 |#1|) (|:| -4080 |#2|))) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-548)) . T) (((-576)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-656 |#1|)) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) +((((-2 (|:| -3146 |#1|) (|:| -2128 |#2|))) . T) (((-877)) . T)) +((((-548)) |has| |#1| (-626 (-548))) (((-908 (-390))) |has| |#1| (-626 (-908 (-390)))) (((-908 (-576))) |has| |#1| (-626 (-908 (-576))))) +(((|#4|) -2748 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1071)))) +(((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071)))) +((((-2 (|:| -3146 |#1|) (|:| -2128 |#2|))) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-548)) . T) (((-576)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-657 |#1|)) . T)) +(((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) +((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) ((((-419 $) (-419 $)) |has| |#2| (-568)) (($ $) . T) ((|#2| |#2|) . T)) -((($ (-1197)) -3795 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) -((((-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-928)) -((((-1179) (-52)) . T)) -((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T)) -((((-548)) . T) (((-227)) . T) (((-390)) . T) (((-907 (-390))) . T)) -((((-876)) . T)) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +((($ (-1198)) -2748 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) +((((-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-929)) +((((-1180) (-52)) . T)) +((((-576)) |has| #0=(-419 |#2|) (-652 (-576))) ((#0#) . T)) +((((-548)) . T) (((-227)) . T) (((-390)) . T) (((-908 (-390))) . T)) +((((-877)) . T)) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) (((|#1|) |has| |#1| (-174))) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-876)) . T)) -(|has| |#1| (-861)) -(((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1121)) -((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-877)) . T)) +(|has| |#1| (-862)) +(((|#2|) . T) (((-576)) . T) (((-832 |#1|)) . T)) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +(|has| |#1| (-1122)) +((((-930 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +(((|#1|) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) . T) (((-1202)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((((-1202)) . T)) -((($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-877)) . T) (((-1203)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((((-1203)) . T)) +((($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-238)) -((($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1| (-543 (-830 (-1197)))) . T)) -(((|#1| (-992)) . T)) +((($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#1| (-543 (-831 (-1198)))) . T)) +(((|#1| (-993)) . T)) ((((-576)) . T) ((|#2|) . T)) -(|has| |#1| (-860)) -((((-1197)) . T)) -(((#0=(-884 |#1|) $) |has| #0# (-296 #0# #0#))) +(|has| |#1| (-861)) +((((-1198)) . T)) +(((#0=(-885 |#1|) $) |has| #0# (-296 #0# #0#))) ((((-576) |#4|) . T)) ((((-576) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1173)) -((((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) . T)) -(|has| (-1274 |#1| |#2| |#3| |#4|) (-146)) -(|has| (-1274 |#1| |#2| |#3| |#4|) (-148)) +(|has| |#1| (-1174)) +((((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) . T)) +(|has| (-1275 |#1| |#2| |#3| |#4|) (-146)) +(|has| (-1275 |#1| |#2| |#3| |#4|) (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1197)) -12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) +((((-1198)) -12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071)))) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1121)) -((((-1179) |#1|) . T)) +(|has| |#1| (-1122)) +((((-1180) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-1146 |#1| (-1197))) . T) (((-576)) . T) (((-830 (-1197))) . T) (($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-1197)) . T)) +(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) +((((-1147 |#1| (-1198))) . T) (((-576)) . T) (((-831 (-1198))) . T) (($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) (((-1198)) . T)) (|has| |#2| (-379)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1070))) -((((-876)) . T)) -(|has| |#1| (-860)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) #0#) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) -(((|#1|) . T)) -((((-1288 (-350 (-4125) (-4125 (QUOTE X)) (-711)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((#0=(-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) #0#) |has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))))) -((((-876)) . T)) +(((|#2|) |has| |#2| (-1071))) +((((-877)) . T)) +(|has| |#1| (-861)) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((#0=(-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) +(((|#1|) . T)) +((((-1289 (-350 (-3529) (-3529 (QUOTE X)) (-712)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((#0=(-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) #0#) |has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))))) +((((-877)) . T)) ((((-576) |#1|) . T)) -((((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))) (((-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390))))) (((-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) +((((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))) (((-908 (-390))) -12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390))))) (((-908 (-576))) -12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) ((($) . T)) -((((-876)) . T)) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-876)) . T)) +((((-877)) . T)) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((((-877)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-876)) . T)) -((((-876)) . T)) -(|has| (-1273 |#2| |#3| |#4|) (-148)) -(|has| (-1273 |#2| |#3| |#4|) (-146)) -(((|#2|) |has| |#2| (-1121)) (((-576)) -12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-877)) . T)) +((((-877)) . T)) +(|has| (-1274 |#2| |#3| |#4|) (-148)) +(|has| (-1274 |#2| |#3| |#4|) (-146)) +(((|#2|) |has| |#2| (-1122)) (((-576)) -12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (((-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((|#1|) . T)) -(|has| |#1| (-1121)) -((((-876)) . T)) +(|has| |#1| (-1122)) +((((-877)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) (((|#1|) . T)) ((($) . T)) ((((-576) |#1|) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-860))) -((((-876)) |has| |#1| (-1121))) -((($) -3795 (|has| |#1| (-238)) (|has| |#1| (-237)))) -(-3795 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-929 |#1|)) . T)) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-861))) +((((-877)) |has| |#1| (-1122))) +((($) -2748 (|has| |#1| (-238)) (|has| |#1| (-237)))) +(-2748 (|has| |#1| (-485)) (|has| |#1| (-739)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)) (|has| |#1| (-1134))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-930 |#1|)) . T)) ((((-419 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-576) |#1|))) ((((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (|has| |#1| (-374)) -(-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) -(|has| |#1| (-15 * (|#1| (-783) |#1|))) +(|has| |#1| (-15 * (|#1| (-784) |#1|))) ((((-576)) . T)) ((((-576)) . T)) -((((-1163 |#2| (-419 (-971 |#1|)))) . T) (((-419 (-971 |#1|))) . T)) +((((-1164 |#2| (-419 (-972 |#1|)))) . T) (((-419 (-972 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) (((|#1|) . T)) -((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) -((((-876)) . T)) +((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) +((((-877)) . T)) (((|#2|) . T)) -(-3795 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2748 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568)) (((-576)) . T)) -(|has| |#2| (-805)) -(|has| |#2| (-805)) -((((-1280 |#1| |#2| |#3|)) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -((((-1284 |#2|)) . T) (((-1280 |#1| |#2| |#3|)) . T) (((-1252 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(|has| |#2| (-806)) +(|has| |#2| (-806)) +((((-1281 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) +((((-1285 |#2|)) . T) (((-1281 |#1| |#2| |#3|)) . T) (((-1253 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T)) (((|#1|) . T)) -((((-1197)) -12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070)))) +((((-1198)) -12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071)))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -(-3795 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-568)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(-12 (|has| |#1| (-374)) (|has| |#2| (-833))) +(-2748 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((($ $) |has| |#1| (-568)) ((|#1| |#1|) . T)) -((($ (-1197)) -3795 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) -(((#0=(-711) (-1193 #0#)) . T)) +((($ (-1198)) -2748 (|has| (-419 |#2|) (-918 (-1198))) (|has| (-419 |#2|) (-920 (-1198))))) +(((#0=(-712) (-1194 #0#)) . T)) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-876)) . T) (((-1288 |#4|)) . T)) -((((-876)) . T) (((-1288 |#3|)) . T)) +((((-877)) . T) (((-1289 |#4|)) . T)) +((((-877)) . T) (((-1289 |#3|)) . T)) ((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((($) . T)) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1280 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(((|#3|) |has| |#3| (-1070))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(|has| (-1115 |#1|) (-1121)) -(((|#2| (-831 |#1|)) . T)) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1281 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +(((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +(((|#3|) |has| |#3| (-1071))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(|has| (-1116 |#1|) (-1122)) +(((|#2| (-832 |#1|)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) (((|#2|) . T) ((|#6|) . T)) (|has| |#1| (-374)) ((((-576)) . T) ((|#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) (((|#2|) . T) ((|#6|) . T)) -((($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T)) -((($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((#0=(-1103) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-876)) . T)) -((((-929 |#1|)) . T)) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-1104) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-877)) . T)) +((((-930 |#1|)) . T)) ((((-145)) . T)) ((((-145)) . T)) ((((-245 |#1| |#2|) |#2|) . T)) -((((-876)) . T)) -(((|#3|) |has| |#3| (-1121)) (((-576)) -12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +((((-877)) . T)) +(((|#3|) |has| |#3| (-1122)) (((-576)) -12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122))) (((-419 (-576))) -12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (((|#1|) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) ((((-548)) |has| |#1| (-626 (-548)))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) . T)) +((((-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) . T)) (|has| |#1| (-374)) -((((-1202)) . T)) +((((-1203)) . T)) (((|#1|) . T)) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-861))) ((($) . T)) -((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(|has| |#2| (-832)) +((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) +(|has| |#2| (-833)) (|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-860)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +(|has| |#1| (-861)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| (-543 |#3|)) . T)) -((((-876)) . T)) +((((-877)) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) ((((-419 (-576))) . T)) (((|#1|) . T)) -(-3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(-2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((((-419 (-576))) . T)) -((((-1179) |#1|) . T)) +((((-1180) |#1|) . T)) (|has| |#1| (-379)) ((((-576)) . T)) ((((-576)) . T)) (((|#1|) . T) (((-576)) . T)) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-3795 (|has| |#1| (-861)) (|has| |#1| (-1121))) -((((-876)) . T)) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(-2748 (|has| |#1| (-862)) (|has| |#1| (-1122))) +((((-877)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-1197)) -12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))))) +((((-1198)) -12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-876)) . T)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) -((((-1197) #0=(-884 |#1|)) |has| #0# (-526 (-1197) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) +((((-877)) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) +((((-1198) #0=(-885 |#1|)) |has| #0# (-526 (-1198) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) (((|#1|) . T)) ((((-548)) |has| |#1| (-626 (-548)))) ((((-576) |#4|) . T)) ((((-576) |#3|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -(|has| |#2| (-1070)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -(-3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -((((-876)) . T)) -((((-1274 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) +(|has| |#2| (-1071)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +(-2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) +((((-877)) . T)) +((((-1275 |#1| |#2| |#3| |#4|)) . T)) ((((-419 (-576))) . T) (((-576)) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((((-576)) . T)) ((((-576)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +((($) . T) (((-576)) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-576)) -3795 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1121)) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) +((((-576)) -2748 (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071))) ((|#2|) |has| |#2| (-1122)) (((-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -584,302 +585,303 @@ ((($) . T) (((-419 (-576))) . T)) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) +(((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) (((|#1|) |has| |#1| (-568))) ((((-576) |#4|) . T)) ((((-576) |#3|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-876)) . T)) +((((-877)) . T)) ((((-576) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-878 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-879 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1197) $) . T) ((#0# |#1|) . T)) +((($ $) . T) ((#0=(-1198) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-174))) -((($) -3795 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(((|#2| |#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) +((($) -2748 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +(((|#2| |#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071)))) ((((-145)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-379)) (|has| |#2| (-379))) -((((-876)) . T)) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) +((((-877)) . T)) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071)))) (((|#1|) . T)) -((((-876)) . T)) -(|has| |#1| (-1121)) +((((-877)) . T)) +(|has| |#1| (-1122)) (|has| $ (-148)) -((((-1202)) . T)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) -((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) -((($) -3795 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-1203)) . T)) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) +((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) +((($) -2748 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (|has| |#1| (-374)) -(-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) -(|has| |#1| (-15 * (|#1| (-783) |#1|))) -(((|#1|) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) -((((-876)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(-3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -(((|#2| (-543 (-878 |#1|))) . T)) -((((-876)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1|) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(|has| |#1| (-15 * (|#1| (-784) |#1|))) +(((|#1|) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) +((((-877)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(-2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) +(((|#2| (-543 (-879 |#1|))) . T)) +((((-877)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1|) . T)) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((((-593 |#1|)) . T)) ((($) . T)) ((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (((|#1|) . T) (($) . T)) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-1195 |#1| |#2| |#3|)) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -((((-1284 |#2|)) . T) (((-1195 |#1| |#2| |#3|)) . T) (((-1188 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) +((((-1196 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) +((((-1285 |#2|)) . T) (((-1196 |#1| |#2| |#3|)) . T) (((-1189 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568)))) (((|#4|) . T)) (((|#3|) . T)) -((((-884 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-885 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T)) -((((-1197)) -12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) -(-3795 (|has| |#2| (-238)) (|has| |#2| (-237))) +((((-1198)) -12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071)))) +(-2748 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) -((((-878 |#1|)) . T)) -((((-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) ((|#3|) . T)) +((((-879 |#1|)) . T)) +((((-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) ((|#3|) . T)) ((($) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-576)) . T) (((-419 (-576))) -3795 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-576)) . T) (((-419 (-576))) -2748 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576))))) ((|#2|) . T) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) (((-879 |#1|)) . T)) ((((-576) |#2|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1195 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-876)) . T)) -(((|#2|) |has| |#2| (-1070))) -(|has| |#1| (-1121)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1196 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((((-877)) . T)) +(((|#2|) |has| |#2| (-1071))) +(|has| |#1| (-1122)) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +(((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((((-876)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($ (-878 |#1|)) . T)) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((((-877)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((($ (-879 |#1|)) . T)) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) ((($ |#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($ (-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1103)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((($ (-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (($ (-1104)) . T)) ((($) . T)) -(((#0=(-1103) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ (-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1109 (-1197))) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(((#0=(-1104) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ (-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (($ (-1110 (-1198))) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1121)) (((-576)) -12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) +(((|#2|) |has| |#2| (-1122)) (((-576)) -12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (((-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(|has| |#1| (-1121)) +(|has| |#1| (-1122)) (((|#2|) |has| |#1| (-374))) (((|#2|) |has| |#1| (-374))) ((((-576) |#1|) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-419 |#2|) |#3|) . T)) (((|#1| (-419 (-576))) . T)) +(((|#1|) . T) (((-576)) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-876)) . T) (((-1202)) . T)) +((((-877)) . T) (((-1203)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1202)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-1203)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -(((|#2| |#3| (-878 |#1|)) . T)) -((((-1197)) |has| |#2| (-917 (-1197)))) +(((|#2| |#3| (-879 |#1|)) . T)) +((((-1198)) |has| |#2| (-918 (-1198)))) (((|#1|) . T)) (((|#1| (-543 |#2|) |#2|) . T)) -(((|#1| (-783) (-1103)) . T)) +(((|#1| (-784) (-1104)) . T)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(((|#1| (-543 (-1109 (-1197))) (-1109 (-1197))) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +(((|#1| (-543 (-1110 (-1198))) (-1110 (-1198))) . T)) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (((|#2|) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) (((|#1|) . T)) (((|#2|) . T)) -((((-1020 |#1|)) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) -3795 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) -(|has| |#2| (-1070)) -(|has| |#2| (-805)) -(|has| |#2| (-805)) +((((-1021 |#1|)) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2748 (|has| (-1021 |#1|) (-1060 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) +(|has| |#2| (-1071)) +(|has| |#2| (-806)) +(|has| |#2| (-806)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) -((((-908 |#1|)) . T) (((-831 |#1|)) . T)) -((((-831 (-1197))) . T)) +((((-909 |#1|)) . T) (((-832 |#1|)) . T)) +((((-832 (-1198))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-656 (-940))) . T) (((-876)) . T)) -((((-419 (-576))) . T) (((-876)) . T)) -((((-548)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-657 (-941))) . T) (((-877)) . T)) +((((-419 (-576))) . T) (((-877)) . T)) +((((-548)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) (|has| |#1| (-238)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) ((($ $) . T) (((-576) |#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((((-1280 |#1| |#2| |#3|) $) -12 (|has| (-1280 |#1| |#2| |#3|) (-296 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-1281 |#1| |#2| |#3|) $) -12 (|has| (-1281 |#1| |#2| |#3|) (-296 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) ((($ $) . T) (((-419 (-576)) |#1|) . T)) -((((-783) |#1|) . T) (($ $) . T)) -(((|#1|) . T)) -((($ (-1197)) . T)) -(-3795 (|has| |#1| (-832)) (|has| |#1| (-861))) -((((-1161 |#1| |#2|)) |has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) -(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) -(((|#2|) . T) (((-576)) |has| |#2| (-1059 (-576))) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) -(|has| |#1| (-860)) -(((|#1|) . T)) -((((-1197)) -3795 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))))) +((((-784) |#1|) . T) (($ $) . T)) +(((|#1|) . T)) +((($ (-1198)) . T)) +(-2748 (|has| |#1| (-833)) (|has| |#1| (-862))) +((((-1162 |#1| |#2|)) |has| (-1162 |#1| |#2|) (-319 (-1162 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) +(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) +(((|#2|) . T) (((-576)) |has| |#2| (-1060 (-576))) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) +(|has| |#1| (-861)) +(((|#1|) . T)) +((((-1198)) -2748 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-920 (-1198)))))) (((|#1| |#2|) . T)) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-3795 (|has| |#1| (-861)) (|has| |#1| (-1121))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) +(-2748 (|has| |#1| (-862)) (|has| |#1| (-1122))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) (((|#2|) . T)) -((((-876)) -3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-876))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((-1288 |#2|)) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (((-576)) . T) (($) . T)) +((((-877)) -2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-877))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) (((-1289 |#2|)) . T)) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((|#1|) . T) (((-576)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) ((((-576)) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -(|has| |#1| (-1121)) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) +(|has| |#1| (-1122)) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-576) (-145)) . T)) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) (($) |has| |#2| (-1071)) (((-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) ((((-576)) . T)) (((|#1|) . T) ((|#2|) . T) (((-576)) . T)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-576)) . T)) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) +((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) (((-576)) . T)) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) (((|#1|) . T)) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) ((($) . T) (((-576)) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) (((|#2|) |has| |#1| (-374))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((((-1202)) . T)) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-1203)) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1| (-543 #0=(-1197)) #0#) . T)) +(((|#1| (-543 #0=(-1198)) #0#) . T)) (((|#1|) . T) (($) . T)) ((((-576)) . T)) -(((#0=(-419 (-971 |#1|)) #0#) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +(((#0=(-419 (-972 |#1|)) #0#) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) ((((-548)) |has| |#1| (-626 (-548)))) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) (((|#1| |#1|) |has| |#1| (-174))) -(-3795 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((((-419 (-971 |#1|))) . T)) +(-2748 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-419 (-972 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-576)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-1197)) -3795 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -((((-876)) . T)) -((((-876)) . T)) -((((-1274 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1070)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) +((((-1198)) -2748 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +((((-877)) . T)) +((((-877)) . T)) +((((-1275 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1071)) (((-576)) -12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((|#1| |#2|) . T)) -(|has| |#3| (-1070)) -(|has| |#3| (-805)) -(|has| |#3| (-805)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(|has| |#3| (-1071)) +(|has| |#3| (-806)) +(|has| |#3| (-806)) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568)))) (((|#2|) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -(((|#1| (-1178 |#1|)) |has| |#1| (-860))) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +(((|#1| (-1179 |#1|)) |has| |#1| (-861))) ((((-576) |#2|) . T)) -(|has| |#1| (-1121)) +(|has| |#1| (-1122)) (((|#1|) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-1173))) +(-12 (|has| |#1| (-374)) (|has| |#2| (-1174))) ((((-419 (-576))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) ((($) . T) (((-419 (-576))) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) (((|#2|) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576))))) -(((|#4|) -3795 (|has| |#4| (-174)) (|has| |#4| (-374)))) -(((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)))) -((((-876)) . T)) -(((|#1|) . T)) -(-3795 (|has| |#2| (-464)) (|has| |#2| (-928))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-548)) |has| |#2| (-626 (-548))) (((-908 (-390))) |has| |#2| (-626 (-908 (-390)))) (((-908 (-576))) |has| |#2| (-626 (-908 (-576))))) +(((|#4|) -2748 (|has| |#4| (-174)) (|has| |#4| (-374)))) +(((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)))) +((((-877)) . T)) +(((|#1|) . T)) +(-2748 (|has| |#2| (-464)) (|has| |#2| (-929))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-928))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-929))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) . T)) (((|#2|) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-928))) -((($ $) . T) ((#0=(-1197) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-830 (-1197)) |#1|) . T) ((#1# $) . T)) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-928))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-929))) +((($ $) . T) ((#0=(-1198) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-831 (-1198)) |#1|) . T) ((#1# $) . T)) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-929))) ((((-576) |#2|) . T)) -((((-876)) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) +((((-877)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071))) (($) |has| |#3| (-1071)) (((-576)) -12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) ((((-576) |#1|) . T)) (|has| (-419 |#2|) (-148)) (|has| (-419 |#2|) (-146)) @@ -887,95 +889,95 @@ (|has| |#1| (-38 (-419 (-576)))) (((|#1|) . T)) (((|#2|) . T) (($) . T) (((-419 (-576))) . T)) -((((-876)) . T)) +((((-877)) . T)) (|has| |#1| (-568)) (|has| |#1| (-568)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((((-876)) . T)) -((((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((((-877)) . T)) +((((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) . T)) (|has| |#1| (-38 (-419 (-576)))) -((((-400) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) . T)) +((((-400) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) . T)) (|has| |#1| (-38 (-419 (-576)))) -(|has| |#2| (-1173)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-876)) . T) (((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-1237)) . T) (((-876)) . T) (((-1202)) . T)) +(|has| |#2| (-1174)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) +((((-877)) . T) (((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-1238)) . T) (((-877)) . T) (((-1203)) . T)) ((((-117 |#1|)) . T)) -((((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) +((((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) (((|#1|) . T)) -((((-400) (-1179)) . T)) +((((-400) (-1180)) . T)) (|has| |#1| (-568)) -((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) . T)) -((((-783) (-1202)) . T)) -((((-876)) . T)) -((((-831 |#1|)) . T)) +((((-784) (-1203)) . T)) +((((-877)) . T)) +((((-832 |#1|)) . T)) ((($) . T)) -((((-1197) (-52)) . T)) +((((-1198) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-568)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) -((((-656 |#1|)) . T)) -((((-876)) . T)) +((((-657 |#1|)) . T)) +((((-877)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -(-3795 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2748 (|has| |#1| (-862)) (|has| |#1| (-1122))) (((|#2|) |has| |#2| (-319 |#2|))) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(((|#1| (-1193 |#1|)) . T)) +(((|#1| (-1194 |#1|)) . T)) (|has| $ (-148)) (((|#2|) . T)) ((($) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) (|has| |#2| (-379)) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1| |#2|) . T)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -((($) . T) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((((-876)) . T)) -((((-1195 |#1| |#2| |#3|) $) -12 (|has| (-1195 |#1| |#2| |#3|) (-296 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) +((($) . T) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) +((((-877)) . T)) +((((-1196 |#1| |#2| |#3|) $) -12 (|has| (-1196 |#1| |#2| |#3|) (-296 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) ((($ $) . T) (((-419 (-576)) |#1|) . T)) -((((-783) |#1|) . T) (($ $) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((#0=(-1280 |#1| |#2| |#3|) #0#) -12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1197) #0#) -12 (|has| (-1280 |#1| |#2| |#3|) (-526 (-1197) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -(-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) +((((-784) |#1|) . T) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((#0=(-1281 |#1| |#2| |#3|) #0#) -12 (|has| (-1281 |#1| |#2| |#3|) (-319 (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1198) #0#) -12 (|has| (-1281 |#1| |#2| |#3|) (-526 (-1198) (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) +(-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-576)) . T) (($) . T)) -((($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($) . T) (((-576)) . T) ((|#2|) . T)) ((((-576)) . T) (($) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) ((((-419 (-576))) . T) (((-576)) . T)) @@ -983,171 +985,173 @@ ((((-145)) . T)) (((|#1|) . T)) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) ((((-112)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-227)) . #0=(|has| |#1| (-1043))) (((-390)) . #0#)) -((((-876)) . T)) -(((|#1|) . T)) -((((-1202)) . T)) -(|has| |#1| (-832)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-568))) +((((-548)) |has| |#1| (-626 (-548))) (((-227)) . #0=(|has| |#1| (-1044))) (((-390)) . #0#)) +((((-877)) . T)) +(((|#1|) . T)) +((((-1203)) . T)) +(|has| |#1| (-833)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-568))) (|has| |#1| (-568)) -(((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) . T) (((-576)) . T) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) -(|has| |#1| (-928)) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568)))) -(((|#1|) . T)) -(|has| |#1| (-1121)) -((((-876)) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -(|has| |#1| (-861)) -(((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) -((((-576) (-145)) . T) (((-1255 (-576)) $) . T)) +(((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) . T) (((-576)) . T) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) +(|has| |#1| (-929)) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(((|#1|) . T)) +(|has| |#1| (-1122)) +((((-877)) . T)) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-568))) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +(|has| |#1| (-862)) +(((|#1| (-1289 |#1|) (-1289 |#1|)) . T)) +((((-576) (-145)) . T) (((-1256 (-576)) $) . T)) ((($) . T)) -(|has| |#4| (-1070)) -(|has| |#3| (-1070)) -((((-1202)) . T) (((-876)) . T)) -((((-1202)) . T)) -((((-876)) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(((|#1| (-992)) . T)) +(|has| |#4| (-1071)) +(|has| |#3| (-1071)) +((((-1203)) . T) (((-877)) . T)) +((((-1203)) . T)) +((((-877)) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(((|#1| (-993)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(|has| |#2| (-805)) -(|has| |#2| (-805)) +(|has| |#2| (-806)) +(|has| |#2| (-806)) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) -(|has| |#2| (-1070)) -((($) . T) (((-576)) . T) (((-884 |#1|)) . T) (((-419 (-576))) . T)) +(|has| |#2| (-1071)) +((($) . T) (((-576)) . T) (((-885 |#1|)) . T) (((-419 (-576))) . T)) (((|#1|) . T)) -(|has| |#2| (-805)) -(|has| |#2| (-805)) +(|has| |#2| (-806)) +(|has| |#2| (-806)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(-12 (|has| |#1| (-805)) (|has| |#2| (-805))) -(-12 (|has| |#1| (-805)) (|has| |#2| (-805))) -(-3795 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(-12 (|has| |#1| (-806)) (|has| |#2| (-806))) +(-12 (|has| |#1| (-806)) (|has| |#2| (-806))) +(-2748 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-576)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-876)) . T)) -(-3795 (|has| |#1| (-238)) (|has| |#1| (-237))) +((((-877)) . T)) +(-2748 (|has| |#1| (-238)) (|has| |#1| (-237))) (|has| |#1| (-360)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -(|has| |#1| (-840)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((($) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +(|has| |#1| (-841)) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568))) (((|#2|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1121))) -(((|#3|) |has| |#3| (-1121))) +(((|#4|) |has| |#4| (-1122))) +(((|#3|) |has| |#3| (-1122))) (|has| |#3| (-379)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-576)) . T)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -((((-876)) . T)) +((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) (((-576)) . T)) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +((((-877)) . T)) (((|#1| |#2|) . T)) -((((-876)) . T)) -(|has| |#1| (-861)) +((((-877)) . T)) +(|has| |#1| (-862)) (((|#2|) . T)) (((|#2|) . T)) (|has| |#2| (-374)) ((((-419 (-576))) . T) (((-576)) . T)) -((($) -3795 (|has| |#2| (-238)) (|has| |#2| (-237)))) -((($ (-878 |#1|)) . T)) -((($ (-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ |#3|) . T)) +((($) -2748 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((($ (-879 |#1|)) . T)) +((($ (-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (($ |#3|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) (((|#1|) . T)) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($) . T) (((-576)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1| |#1|) |has| |#1| (-174))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) ((((-145)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) (($) |has| |#2| (-1071)) (((-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) ((((-145)) . T)) ((((-145)) . T)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#) ((|#2|) . T) (((-576)) . T)) (((|#1| |#2| |#3|) . T)) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) (((|#1|) |has| |#1| (-174))) (|has| $ (-148)) (|has| $ (-148)) -((((-1202)) . T)) +((((-1203)) . T)) (((|#1|) |has| |#1| (-174))) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -((((-876)) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +((((-877)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1070)) (|has| |#1| (-1133))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1071)) (|has| |#1| (-1134))) ((($ $) |has| |#1| (-296 $ $)) ((|#1| $) |has| |#1| (-296 |#1| |#1|))) (((|#1| (-419 (-576))) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-1197)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1198)) . T)) (|has| |#1| (-568)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-568)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-876)) . T)) +((((-877)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -((((-576) (-419 (-971 |#1|))) . T)) +((((-576) (-419 (-972 |#1|))) . T)) (((|#2|) . T) (($) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(((|#2| (-245 (-1970 |#1|) (-783)) (-878 |#1|)) . T)) +(((|#2| (-245 (-3437 |#1|) (-784)) (-879 |#1|)) . T)) (((|#1| (-543 |#3|) |#3|) . T)) (|has| |#1| (-146)) (((#0=(-419 (-576)) #0#) |has| |#2| (-374)) (($ $) . T)) -((((-884 |#1|)) . T)) -((((-884 |#1|)) . T)) +((((-885 |#1|)) . T)) +((((-885 |#1|)) . T)) (|has| |#1| (-148)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) -((((-876)) . T)) +((((-877)) . T)) (|has| |#1| (-146)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(-3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -(-3795 (|has| |#1| (-360)) (|has| |#1| (-379))) -((((-1163 |#2| |#1|)) . T) ((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(-2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) +(-2748 (|has| |#1| (-360)) (|has| |#1| (-379))) +((((-1164 |#2| |#1|)) . T) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) -(((|#2|) . T) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -(|has| |#3| (-805)) -(|has| |#3| (-805)) -((((-876)) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) +(((|#2|) . T) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +(|has| |#3| (-806)) +(|has| |#3| (-806)) +((((-877)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-711)) . T)) -(|has| |#2| (-1070)) +((((-712)) . T)) +(|has| |#2| (-1071)) (|has| |#1| (-568)) (((|#1|) . T)) (((|#1|) . T)) @@ -1158,65 +1162,65 @@ (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-1197) (-52)) . T)) -((((-1025 10)) . T) (((-419 (-576))) . T) (((-876)) . T)) -((((-548)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-1198) (-52)) . T)) +((((-1026 10)) . T) (((-419 (-576))) . T) (((-877)) . T)) +((((-548)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) (((|#1|) . T)) -((((-1025 16)) . T) (((-419 (-576))) . T) (((-876)) . T)) -((((-548)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-1026 16)) . T) (((-419 (-576))) . T) (((-877)) . T)) +((((-548)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) (((|#1| (-576)) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) (((|#1| |#2|) . T)) -((((-1197)) -3795 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197)))) (((-1103)) . T)) +((((-1198)) -2748 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198)))) (((-1104)) . T)) (((|#1|) . T)) (((|#3|) . T) (((-624 $)) . T)) (((|#1| (-419 (-576))) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((((-576)) -3795 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1121)) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((((-576)) -2748 (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071))) ((|#2|) |has| |#2| (-1122)) (((-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -(((#0=(-1195 |#1| |#2| |#3|) #0#) -12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1197) #0#) -12 (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -((((-876)) . T)) -((((-876)) . T)) +(((#0=(-1196 |#1| |#2| |#3|) #0#) -12 (|has| (-1196 |#1| |#2| |#3|) (-319 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1198) #0#) -12 (|has| (-1196 |#1| |#2| |#3|) (-526 (-1198) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) +((((-877)) . T)) +((((-877)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) |has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))))) -((((-876)) . T)) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) |has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))))) +((((-877)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-1197) (-52)) . T)) -((((-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) +((((-1198) (-52)) . T)) +((((-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) (((|#3|) . T)) -((($ $) . T) ((#0=(-878 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-840)) +((($ $) . T) ((#0=(-879 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-841)) ((($) . T) (((-576)) . T) ((|#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| (-1115 |#1|) (-1121)) -(((|#2| |#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)))) -((((-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) +(|has| (-1116 |#1|) (-1122)) +(((|#2| |#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071)))) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)))) +((((-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071)))) ((((-576)) . T)) -((((-1202)) . T)) -((((-783)) . T)) +((((-1203)) . T)) +((((-784)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-568)) ((((-576)) . T)) (((|#2|) . T)) -((((-876)) . T)) -(((|#1| (-419 (-576)) (-1103)) . T)) +((((-877)) . T)) +(((|#1| (-419 (-576)) (-1104)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (|has| |#1| (-568)) @@ -1225,112 +1229,113 @@ (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) ((($) . T) (((-419 (-576))) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-1202)) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-568))) +((((-1203)) . T)) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-576)) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-568))) (|has| |#1| (-146)) ((((-576)) . T)) (|has| |#1| (-148)) -((($ (-1197)) -3795 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))))) -((($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) -((((-907 (-576))) . T) (((-907 (-390))) . T) (((-548)) . T) (((-1197)) . T)) -((((-876)) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) +((($ (-1198)) -2748 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-920 (-1198)))))) +((($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) +((((-908 (-576))) . T) (((-908 (-390))) . T) (((-548)) . T) (((-1198)) . T)) +((((-877)) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) ((($) . T)) (((|#1|) . T)) -((((-876)) . T)) -(-3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +((((-877)) . T)) +(-2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-174))) -((($) -3795 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-884 |#1|)) . T)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) -(-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) -(|has| |#2| (-1173)) -(((#0=(-52)) . T) (((-2 (|:| -2240 (-1197)) (|:| -2905 #0#))) . T)) +((($) -2748 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((((-885 |#1|)) . T)) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) +(-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) +(|has| |#2| (-1174)) +(((#0=(-52)) . T) (((-2 (|:| -4286 (-1198)) (|:| -4440 #0#))) . T)) (((|#1| |#2|) . T)) -(|has| |#3| (-1070)) -(((|#1| (-576) (-1103)) . T)) -((((-878 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1| (-419 (-576)) (-1103)) . T)) -((((-1197)) . T)) -((($) -3795 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((($) -3795 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) +(|has| |#3| (-1071)) +(((|#1| (-576) (-1104)) . T)) +((((-879 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1| (-419 (-576)) (-1104)) . T)) +((((-1198)) . T)) +((($) -2748 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2748 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) ((((-576) |#2|) . T)) -((($ (-1197)) -3795 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((($ (-1198)) -2748 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-379)) (((|#1| |#1|) . T)) -((((-876)) . T)) -((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) +((((-877)) . T)) +((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) (-12 (|has| |#1| (-379)) (|has| |#2| (-379))) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-379))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (((|#1|) . T)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568)))) (|has| |#1| (-360)) -((((-576)) -3795 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070))) ((|#3|) |has| |#3| (-1121)) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) +((((-576)) -2748 (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122))) (|has| |#3| (-1071))) ((|#3|) |has| |#3| (-1122)) (((-419 (-576))) -12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) (((|#1|) . T)) (((|#1|) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#4|) . T)) -(((|#4|) . T) (((-876)) . T)) -(((|#3|) . T) ((|#2|) . T) (((-576)) . T) ((|#4|) -3795 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1070))) (($) |has| |#4| (-1070))) -(((|#2|) . T) (((-576)) . T) ((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) #0#) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) +(((|#4|) . T) (((-877)) . T)) +(((|#3|) . T) ((|#2|) . T) (((-576)) . T) ((|#4|) -2748 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-739)) (|has| |#4| (-1071))) (($) |has| |#4| (-1071))) +(((|#2|) . T) (((-576)) . T) ((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-739)) (|has| |#3| (-1071))) (($) |has| |#3| (-1071))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((#0=(-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) (|has| |#1| (-568)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((((-876)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-877)) . T)) (((|#1| |#2|) . T)) -(-3795 (|has| |#2| (-464)) (|has| |#2| (-928))) -(-3795 (|has| |#1| (-861)) (|has| |#1| (-1121))) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-928))) +(-2748 (|has| |#2| (-464)) (|has| |#2| (-929))) +(-2748 (|has| |#1| (-862)) (|has| |#1| (-1122))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-929))) +(((|#1|) . T)) ((((-419 (-576))) . T) (((-576)) . T)) ((((-576)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) ((($) . T)) -((((-876)) -12 (|has| |#1| (-1121)) (|has| |#2| (-1121)))) -(((|#1|) . T)) -((((-884 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-876)) . T)) -(((|#3| |#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) -(|has| |#1| (-1043)) -((((-876)) . T)) -(((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070)))) +((((-877)) -12 (|has| |#1| (-1122)) (|has| |#2| (-1122)))) +(((|#1|) . T)) +((((-885 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-877)) . T)) +(((|#3| |#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071)))) +(|has| |#1| (-1044)) +((((-877)) . T)) +(((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071)))) ((((-576) (-112)) . T)) -((((-1202)) . T)) +((((-1203)) . T)) (((|#1|) |has| |#1| (-319 |#1|))) -((((-1202)) . T)) +((((-1203)) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) -((((-1197) $) |has| |#1| (-526 (-1197) $)) (($ $) |has| |#1| (-319 $)) ((|#1| |#1|) |has| |#1| (-319 |#1|)) (((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|))) -((((-1197)) |has| |#1| (-917 (-1197)))) -(-3795 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-360))) +((((-1198) $) |has| |#1| (-526 (-1198) $)) (($ $) |has| |#1| (-319 $)) ((|#1| |#1|) |has| |#1| (-319 |#1|)) (((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|))) +((((-1198)) |has| |#1| (-918 (-1198)))) +(-2748 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-360))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((($) . T)) ((((-400) |#1|) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-360))) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(((|#2|) . T) (((-876)) . T)) -((((-876)) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(((|#2|) . T) (((-877)) . T)) +((((-877)) . T)) (((|#2|) . T)) -((((-929 |#1|)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((((-930 |#1|)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) @@ -1338,250 +1343,250 @@ (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1| |#1|) . T)) -(((#0=(-884 |#1|)) |has| #0# (-319 #0#))) -((((-576)) . T) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1059 (-419 (-576))))) ((|#1|) . T)) +(((#0=(-885 |#1|)) |has| #0# (-319 #0#))) +((((-576)) . T) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1060 (-419 (-576))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-805)) -(|has| |#2| (-805)) +(|has| |#2| (-806)) +(|has| |#2| (-806)) (((|#1|) . T)) -(-12 (|has| |#1| (-805)) (|has| |#2| (-805))) -(-12 (|has| |#1| (-805)) (|has| |#2| (-805))) -(|has| |#2| (-1070)) +(-12 (|has| |#1| (-806)) (|has| |#2| (-806))) +(-12 (|has| |#1| (-806)) (|has| |#2| (-806))) +(|has| |#2| (-1071)) ((($) . T) (((-576)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1223)) +(|has| |#1| (-1224)) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) ((((-419 (-576))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1070))) -(((|#4|) |has| |#4| (-1070))) -(((|#3|) |has| |#3| (-1070))) -(((|#3|) |has| |#3| (-1070))) +(((|#4|) |has| |#4| (-1071))) +(((|#4|) |has| |#4| (-1071))) +(((|#3|) |has| |#3| (-1071))) +(((|#3|) |has| |#3| (-1071))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (|has| |#1| (-374)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) -((((-876)) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) +((((-877)) . T)) +((($ $) . T) ((#0=(-419 (-576)) #0#) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) ((((-548)) |has| |#3| (-626 (-548)))) (((|#1| |#2|) . T)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -((((-701 |#3|)) . T) (((-876)) . T)) -((($) . T) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +(|has| |#1| (-861)) +(|has| |#1| (-861)) +((((-702 |#3|)) . T) (((-877)) . T)) +((($) . T) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (((|#1|) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((($) . T)) -(((#0=(-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) #0#) |has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))))) +(((#0=(-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) #0#) |has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))))) ((((-576) |#3|) . T)) (((|#2|) . T)) ((($) . T)) ((($) . T)) -((((-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1103)) . T)) -(((|#2|) |has| |#2| (-1121))) -((((-876)) -3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-876))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((-1288 |#2|)) . T)) +((((-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (((-1104)) . T)) +(((|#2|) |has| |#2| (-1122))) +((((-877)) -2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-877))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) (((-1289 |#2|)) . T)) ((($) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1179) (-52)) . T)) +((((-1180) (-52)) . T)) (((|#2|) |has| |#2| (-174))) -((($) -3795 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-876)) . T)) +((($) -2748 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((((-877)) . T)) (((|#2|) . T)) -((($) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T)) +((($) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((((-576)) |has| #0=(-419 |#2|) (-652 (-576))) ((#0#) . T)) ((($) . T) (((-576)) . T)) ((((-576) (-145)) . T)) -((((-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T) ((|#1| |#2|) . T)) +((((-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T) ((|#1| |#2|) . T)) ((((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((((-876)) . T)) -((((-929 |#1|)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((((-877)) . T)) +((((-930 |#1|)) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-860)) -((($) -3795 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +(|has| |#1| (-861)) +((($) -2748 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (|has| |#1| (-374)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-860)) -((($) . T) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-1197)) |has| |#1| (-917 (-1197)))) -(|has| |#1| (-860)) +(|has| |#1| (-861)) +((($) . T) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((((-1198)) |has| |#1| (-918 (-1198)))) +(|has| |#1| (-861)) ((((-518)) . T)) -(((|#1| (-1197)) . T)) -(((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) -((((-876)) . T) (((-1202)) . T)) +(((|#1| (-1198)) . T)) +(((|#1| (-1289 |#1|) (-1289 |#1|)) . T)) +((((-877)) . T) (((-1203)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1202)) . T)) -(|has| |#1| (-1121)) -(((|#1| (-1197) (-830 (-1197)) (-543 (-830 (-1197)))) . T)) -((((-419 (-971 |#1|))) . T)) +((((-1203)) . T)) +(|has| |#1| (-1122)) +(((|#1| (-1198) (-831 (-1198)) (-543 (-831 (-1198)))) . T)) +((((-419 (-972 |#1|))) . T)) ((((-548)) . T)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T)) -((((-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T) (((-1255 (-576)) $) . T) ((|#1| |#2|) . T)) +((((-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T) (((-1256 (-576)) $) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-174))) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T)) (((|#1|) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#1| (-626 (-907 (-576))))) -((((-876)) . T)) -((((-884 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#2|) . T) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +((((-548)) |has| |#1| (-626 (-548))) (((-908 (-390))) |has| |#1| (-626 (-908 (-390)))) (((-908 (-576))) |has| |#1| (-626 (-908 (-576))))) +((((-877)) . T)) +((((-885 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +(((|#2|) . T) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) ((((-518)) . T)) ((((-518)) . T)) -((((-1197)) -3795 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) -((((-1197)) -3795 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) +((((-1198)) -2748 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) +((((-1198)) -2748 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (|has| |#1| (-568)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) -(-3795 (|has| |#1| (-238)) (|has| |#1| (-237))) -((((-884 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) +(-2748 (|has| |#1| (-238)) (|has| |#1| (-237))) +((((-885 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) -(|has| |#2| (-1070)) -((((-1179) |#1|) . T)) -(|has| |#1| (-1173)) -((((-977 |#1|)) . T)) -(((#0=(-419 (-576)) #0#) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-576))) (((-576)) |has| |#1| (-1059 (-576))) (((-1197)) |has| |#1| (-1059 (-1197))) ((|#1|) . T)) +(|has| |#2| (-1071)) +((((-1180) |#1|) . T)) +(|has| |#1| (-1174)) +((((-978 |#1|)) . T)) +(((#0=(-419 (-576)) #0#) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) +((((-419 (-576))) |has| |#1| (-1060 (-576))) (((-576)) |has| |#1| (-1060 (-576))) (((-1198)) |has| |#1| (-1060 (-1198))) ((|#1|) . T)) ((($) . T)) ((($) . T)) ((((-576) |#2|) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-576)) |has| |#1| (-901 (-576))) (((-390)) |has| |#1| (-901 (-390)))) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-576)) |has| |#1| (-902 (-576))) (((-390)) |has| |#1| (-902 (-390)))) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-576)) . T)) -((((-656 |#4|)) . T) (((-876)) . T)) +((((-657 |#4|)) . T) (((-877)) . T)) ((((-548)) |has| |#4| (-626 (-548)))) ((((-548)) |has| |#4| (-626 (-548)))) -((((-876)) . T) (((-656 |#4|)) . T)) -((($) |has| |#1| (-860))) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -((((-576)) -3795 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1121)) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) +((((-877)) . T) (((-657 |#4|)) . T)) +((($) |has| |#1| (-861))) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) +((((-576)) -2748 (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071))) ((|#2|) |has| |#2| (-1122)) (((-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((|#1|) . T)) (((|#1|) . T)) -((((-656 |#4|)) . T) (((-876)) . T)) +((((-657 |#4|)) . T) (((-877)) . T)) ((((-548)) |has| |#4| (-626 (-548)))) (((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((((-1197)) |has| (-419 |#2|) (-917 (-1197)))) +((((-1198)) |has| (-419 |#2|) (-918 (-1198)))) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) #0#) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((#0=(-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) ((($) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($) -3795 (|has| |#1| (-238)) (|has| |#1| (-237)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((($) -2748 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) ((($) . T)) ((($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) ((($) . T)) ((($) . T)) -((((-876)) -3795 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-625 (-876))) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1121))) (((-1288 |#3|)) . T)) +((((-877)) -2748 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-625 (-877))) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-739)) (|has| |#3| (-806)) (|has| |#3| (-862)) (|has| |#3| (-1071)) (|has| |#3| (-1122))) (((-1289 |#3|)) . T)) (((|#2|) . T)) ((((-576) |#2|) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) -(((|#2| |#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) +(((|#2| |#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071)))) (((|#2|) . T) (((-576)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T) ((|#2|) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-1179) (-1197) (-576) (-227) (-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T) ((|#2|) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-1180) (-1198) (-576) (-227) (-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-876)) . T)) +((((-877)) . T)) ((((-576) (-112)) . T)) (((|#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) ((((-112)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) ((((-419 (-576))) . T) (($) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) ((($) . T) (((-419 (-576))) . T)) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070)))) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071)))) (|has| $ (-148)) ((((-419 |#2|)) . T)) -((((-419 (-576))) |has| #0=(-419 |#2|) (-1059 (-419 (-576)))) (((-576)) |has| #0# (-1059 (-576))) ((#0#) . T)) +((((-419 (-576))) |has| #0=(-419 |#2|) (-1060 (-419 (-576)))) (((-576)) |has| #0# (-1060 (-576))) ((#0#) . T)) (((|#2| |#2|) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) (((|#1|) . T)) (|has| |#2| (-238)) -((((-876)) . T) (((-1202)) . T)) +((((-877)) . T) (((-1203)) . T)) (((|#2|) . T)) -((((-1202)) . T)) -((((-1197) (-52)) . T)) +((((-1203)) . T)) +((((-1198) (-52)) . T)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -((((-876)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) +((((-877)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) (((|#1| |#1|) . T)) -((((-1197)) |has| |#2| (-917 (-1197)))) +((((-1198)) |has| |#2| (-918 (-1198)))) ((((-130)) . T)) -((((-576) (-112)) . T) (((-1255 (-576)) $) . T)) +((((-576) (-112)) . T) (((-1256 (-576)) $) . T)) (|has| |#1| (-568)) (((|#2|) . T)) (((|#2|) . T)) -((((-908 |#1|)) . T) ((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) -(((|#1|) . T) (((-576)) . T) (((-831 (-1197))) . T)) +((((-909 |#1|)) . T) ((|#2|) . T) (((-576)) . T) (((-832 |#1|)) . T)) +(((|#1|) . T) (((-576)) . T) (((-832 (-1198))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) @@ -1590,69 +1595,69 @@ (|has| |#1| (-38 (-419 (-576)))) (((|#3|) . T)) (|has| |#1| (-38 (-419 (-576)))) -((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) -(((|#1|) . T)) -((((-1025 2)) . T) (((-419 (-576))) . T) (((-876)) . T)) -((((-548)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-1020 |#1|)) . T) ((|#1|) . T)) -((((-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-830 (-1197))) . T)) -((((-876)) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) +(((|#1|) . T)) +((((-1026 2)) . T) (((-419 (-576))) . T) (((-877)) . T)) +((((-548)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-1021 |#1|)) . T) ((|#1|) . T)) +((((-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (((-831 (-1198))) . T)) +((((-877)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) ((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1193 |#1|)) . T)) +(((|#1| (-1194 |#1|)) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-861)) +(|has| |#1| (-862)) (((|#1|) . T) (((-576)) . T) (($) . T)) (((|#2|) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) ((((-576) |#2|) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#2|) . T)) ((((-576) |#3|) . T)) (((|#2|) . T)) -((((-876)) . T)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) -(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) -(-3795 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237)))) +((((-877)) . T)) +(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) +(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) +(-2748 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237)))) (|has| |#1| (-38 (-419 (-576)))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) #0#) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((#0=(-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) (((|#2| |#2|) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-374)) -(((|#2|) . T) (((-576)) |has| |#2| (-1059 (-576))) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) -((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) +(((|#2|) . T) (((-576)) |has| |#2| (-1060 (-576))) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) +((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) (((|#2|) . T)) -((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) (((|#1|) |has| |#1| (-174))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#1| (-1121)) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(|has| |#1| (-1122)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-38 (-419 (-576)))) -((((-1179) (-52)) . T)) +((((-1180) (-52)) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928)))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($ (-1197)) -3795 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197)))) (($ (-1103)) . T)) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($ (-1198)) -2748 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198)))) (($ (-1104)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (((|#2|) |has| |#2| (-174))) (((|#2|) . T)) -((((-576)) -3795 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) ((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) +((((-576)) -2748 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) ((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)) (|has| |#2| (-1071))) (($) |has| |#2| (-1071))) (((|#1|) . T)) ((((-576) |#3|) . T)) ((((-576) (-145)) . T)) ((((-145)) . T)) -((((-876)) . T)) -((((-1202)) . T)) +((((-877)) . T)) +((((-1203)) . T)) ((((-112)) . T)) (|has| |#1| (-148)) (((|#1|) . T)) @@ -1660,127 +1665,127 @@ ((($) . T)) (|has| |#1| (-568)) ((((-576)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (((|#1|) . T)) -((($ (-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) +((($ (-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) +(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) ((((-145)) . T)) -((((-876)) . T)) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-1197) (-52)) . T) (((-1179) (-52)) . T)) +((((-877)) . T)) +((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) +((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) +((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) +((((-1198) (-52)) . T) (((-1180) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (((|#1| |#2|) . T)) -(-3795 (|has| |#2| (-238)) (|has| |#2| (-237))) -((((-576) (-145)) . T) (((-1255 (-576)) $) . T)) -(((#0=(-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) #0#) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) -((($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#1| (-861)) -(((|#2| (-783) (-1103)) . T)) +(-2748 (|has| |#2| (-238)) (|has| |#2| (-237))) +((((-576) (-145)) . T) (((-1256 (-576)) $) . T)) +(((#0=(-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) +((($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(|has| |#1| (-862)) +(((|#2| (-784) (-1104)) . T)) (((|#1| |#2|) . T)) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) -(|has| |#1| (-803)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-1197)) -3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) +(|has| |#1| (-804)) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-568))) +((((-1198)) -2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (((|#1|) |has| |#1| (-174))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-3795 (|has| |#1| (-148)) (-12 (|has| |#1| (-374)) (|has| |#2| (-148)))) +(-2748 (|has| |#1| (-148)) (-12 (|has| |#1| (-374)) (|has| |#2| (-148)))) (((|#4|) . T)) -(-3795 (|has| |#1| (-146)) (-12 (|has| |#1| (-374)) (|has| |#2| (-146)))) -((((-1179) |#1|) . T)) +(-2748 (|has| |#1| (-146)) (-12 (|has| |#1| (-374)) (|has| |#2| (-146)))) +((((-1180) |#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (((|#1|) . T)) ((((-576)) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-576)) . T)) (((|#1| |#2|) . T)) -((((-876)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-877)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (((|#3|) . T)) -((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) -((((-876)) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) +((((-877)) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) (((|#1|) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121))) (((-977 |#1|)) . T)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((((-977 |#1|)) . T)) -(((|#4|) -3795 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)))) -(((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122))) (((-978 |#1|)) . T)) +(|has| |#1| (-861)) +(|has| |#1| (-861)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-978 |#1|)) . T)) +(((|#4|) -2748 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-739)))) +(((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-739)))) (|has| |#2| (-374)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -3795 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1070)))) -(((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070)))) -(((|#2|) |has| |#2| (-1070))) -(((|#2|) |has| |#2| (-1070))) -((((-1179) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) -(((|#2| (-908 |#1|)) . T)) +(((|#4|) -2748 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-739)) (|has| |#4| (-1071)))) +(((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-739)) (|has| |#3| (-1071)))) +(((|#2|) |has| |#2| (-1071))) +(((|#2|) |has| |#2| (-1071))) +((((-1180) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) +(((|#2| (-909 |#1|)) . T)) ((($) . T)) -((($ (-878 |#1|)) . T)) +((($ (-879 |#1|)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) -((((-400) (-1179)) . T)) -((($ (-1197)) . T)) +((((-400) (-1180)) . T)) +((($ (-1198)) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-876)) -3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-876))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) (((-1288 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2240 (-1179)) (|:| -2905 #0#))) . T)) +((((-877)) -2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-877))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) (((-1289 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4286 (-1180)) (|:| -4440 #0#))) . T)) (((|#1|) . T)) -((((-876)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) +((((-877)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) ((((-145)) . T)) (|has| |#2| (-146)) ((((-576)) . T)) (|has| |#2| (-148)) (|has| |#1| (-485)) -(-3795 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) +(-2748 (|has| |#1| (-485)) (|has| |#1| (-739)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) (|has| |#1| (-374)) -((((-876)) . T)) +((((-877)) . T)) (|has| |#1| (-38 (-419 (-576)))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568))) -((((-1202)) . T)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -((((-876)) . T)) +((((-1203)) . T)) +(|has| |#1| (-861)) +(|has| |#1| (-861)) +((((-877)) . T)) (((|#2|) . T)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) +(((|#2|) . T) (((-576)) . T) (((-832 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1197)) |has| |#1| (-917 (-1197)))) +((((-1198)) |has| |#1| (-918 (-1198)))) (((|#2| |#2|) . T)) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-876)) . T)) -((((-876)) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(((|#2| (-494 (-1970 |#1|) (-783)) (-878 |#1|)) . T)) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-877)) . T)) +((((-877)) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(((|#2| (-494 (-3437 |#1|) (-784)) (-879 |#1|)) . T)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) -(((|#1| (-543 (-1197)) (-1197)) . T)) +(((|#1| (-543 (-1198)) (-1198)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) +(-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (|has| |#1| (-146)) @@ -1788,81 +1793,81 @@ (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) . T)) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((((-1197) (-52)) . T)) +((((-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) . T)) +((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((((-1198) (-52)) . T)) ((((-419 (-576)) |#1|) . T) (($ $) . T)) (((|#1| (-576)) . T)) -((((-929 |#1|)) . T)) -(((|#1|) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070))) (($) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)))) -((((-1197)) -3795 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) -(((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +((((-930 |#1|)) . T)) +(((|#1|) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1071))) (($) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)))) +((((-1198)) -2748 (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))))) +(((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) +(|has| |#1| (-862)) +(|has| |#1| (-862)) ((((-576) |#2|) . T)) ((($) . T) (((-576)) . T) ((|#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-576)) . T)) -(|has| |#1| (-861)) -((((-701 |#2|)) . T) (((-876)) . T)) -((((-1280 |#1| |#2| |#3|)) -12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) +(|has| |#1| (-862)) +((((-702 |#2|)) . T) (((-877)) . T)) +((((-1281 |#1| |#2| |#3|)) -12 (|has| (-1281 |#1| |#2| |#3|) (-319 (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) (|has| |#1| (-238)) -(|has| |#1| (-861)) +(|has| |#1| (-862)) (((|#1| |#2|) . T)) -((((-419 (-971 |#1|))) . T)) -((((-992)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) +((((-419 (-972 |#1|))) . T)) +((((-993)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) +(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (((|#1|) |has| |#1| (-174))) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) -(((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)))) -((($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(-3795 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-928))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) +(((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)))) +((($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2748 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-929))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($ |#2|) . T)) -((($ (-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1103)) . T)) +((($ (-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (($ (-1104)) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) ((((-576) |#2|) . T)) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)))) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)))) (|has| |#1| (-360)) -(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) +(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (((|#2|) . T) (((-576)) . T)) ((($) . T) (((-419 (-576))) . T)) ((((-576) (-112)) . T)) -(|has| |#1| (-832)) -(|has| |#1| (-832)) +(|has| |#1| (-833)) +(|has| |#1| (-833)) (((|#1|) . T)) -(-3795 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) +(-2748 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) +(|has| |#1| (-861)) +(|has| |#1| (-861)) +(|has| |#1| (-861)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-360))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((((-1197)) |has| |#1| (-917 (-1197))) (((-1103)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((((-1198)) |has| |#1| (-918 (-1198))) (((-1104)) . T)) (((|#1|) . T)) -(|has| |#1| (-860)) -(((#0=(-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) #0#) |has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(|has| |#1| (-1121)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) +(|has| |#1| (-861)) +(((#0=(-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) #0#) |has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(|has| |#1| (-1122)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -((((-1163 |#2| (-419 (-971 |#1|)))) . T) (((-419 (-971 |#1|))) . T) (((-576)) . T)) +((((-1164 |#2| (-419 (-972 |#1|)))) . T) (((-419 (-972 |#1|))) . T) (((-576)) . T)) (((|#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) @@ -1872,20 +1877,20 @@ (((|#2|) . T)) (((|#1|) . T)) (((|#1| (-543 |#2|) |#2|) . T)) -((((-876)) . T)) -((((-145)) . T) (((-876)) . T)) +((((-877)) . T)) +((((-145)) . T) (((-877)) . T)) ((((-576) |#1|) . T)) -(((|#1| (-783) (-1103)) . T)) +(((|#1| (-784) (-1104)) . T)) (((|#3|) . T)) ((((-145)) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) -3795 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))) ((|#1|) . T)) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) -2748 (|has| |#1| (-861)) (|has| |#1| (-1060 (-576)))) ((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) ((((-145)) . T)) -((((-1197)) -3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) +((((-1198)) -2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -1893,91 +1898,91 @@ (((|#3|) |has| |#3| (-374))) (((|#1|) . T)) (((|#2|) |has| |#1| (-374))) -((((-876)) . T)) -((((-876)) . T)) -((((-878 |#1|)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-879 |#1|)) . T)) (((|#2|) . T)) -(((|#1| (-1193 |#1|)) . T)) -((((-1103)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -((($) . T) ((|#1|) . T) (((-419 (-576))) . T) (((-576)) |has| |#1| (-651 (-576)))) +(((|#1| (-1194 |#1|)) . T)) +((((-1104)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) +((($) . T) ((|#1|) . T) (((-419 (-576))) . T) (((-576)) |has| |#1| (-652 (-576)))) ((($) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568))) (((|#2|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) . T)) -((($) |has| |#1| (-860))) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) -(|has| |#1| (-928)) -((((-1197)) . T)) -((((-876)) . T)) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1280 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((($) |has| |#1| (-861))) +((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) +(|has| |#1| (-929)) +((((-1198)) . T)) +((((-877)) . T)) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) ((((-576) |#2|) . T)) -((($ (-1197)) -3795 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) -((($ (-1197)) -3795 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) -((($) -3795 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((($ (-1198)) -2748 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) +((($ (-1198)) -2748 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) +((($) -2748 (|has| |#1| (-238)) (|has| |#1| (-237)))) ((($) |has| |#1| (-379))) ((($) |has| |#1| (-379))) ((($) |has| |#1| (-379))) (((|#1| |#2|) . T)) -(-3795 (|has| |#2| (-464)) (|has| |#2| (-928))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((#0=(-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) #0#) |has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))))) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-928))) +(-2748 (|has| |#2| (-464)) (|has| |#2| (-929))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((#0=(-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) #0#) |has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-929))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)))) -(|has| |#1| (-861)) +(((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)))) +(|has| |#1| (-862)) (|has| |#1| (-568)) ((((-593 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-3795 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-861)))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-929 |#1|)) . T)) +(-2748 (-12 (|has| |#1| (-374)) (|has| |#2| (-833))) (-12 (|has| |#1| (-374)) (|has| |#2| (-862)))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) +((((-930 |#1|)) . T)) (((|#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-783)) . T)) +(((|#1| (-784)) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) . T)) -((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) -((((-684 |#1|)) . T)) +((((-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) . T)) +((((-576)) |has| #0=(-419 |#2|) (-652 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) +((((-685 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-876)) . T) (((-1202)) . T)) +((((-877)) . T) (((-1203)) . T)) ((((-548)) . T)) -((((-876)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((((-876)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((((-1202)) . T)) +((((-877)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-877)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((((-1203)) . T)) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T)) (((|#3|) . T) (((-576)) . T) (((-624 $)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) (((|#2|) . T)) -(-3795 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1121))) -(|has| |#2| (-1070)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) -(|has| |#1| (-1223)) -(|has| |#1| (-1223)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) -(|has| |#1| (-1223)) -(|has| |#1| (-1223)) +(-2748 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-739)) (|has| |#3| (-806)) (|has| |#3| (-862)) (|has| |#3| (-1071)) (|has| |#3| (-1122))) +(|has| |#2| (-1071)) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) +(|has| |#1| (-1224)) +(|has| |#1| (-1224)) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) +(|has| |#1| (-1224)) +(|has| |#1| (-1224)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-419 |#1|) #1#) . T) ((|#1| |#1|) . T)) @@ -1991,212 +1996,212 @@ (((|#1|) . T)) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-1179) (-52)) . T)) -(|has| |#1| (-1121)) +((((-1180) (-52)) . T)) +(|has| |#1| (-1122)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(-3795 (|has| |#2| (-832)) (|has| |#2| (-861))) +(-2748 (|has| |#2| (-833)) (|has| |#2| (-862))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T)) -((((-783)) . T)) -(-3795 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360))) -((((-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) -(-3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -((((-876)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(|has| |#2| (-928)) +((((-784)) . T)) +(-2748 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360))) +((((-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) +(-2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) +((((-877)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(|has| |#2| (-929)) (|has| |#1| (-374)) -(((|#2|) |has| |#2| (-1121))) +(((|#2|) |has| |#2| (-1122))) ((($) . T) (((-576)) . T)) ((($) . T)) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -((((-548)) . T) (((-419 (-1193 (-576)))) . T) (((-227)) . T) (((-390)) . T)) -((((-390)) . T) (((-227)) . T) (((-876)) . T)) -(|has| |#1| (-928)) -(|has| |#1| (-928)) -((($ (-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-830 (-1197))) . T)) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +((((-548)) . T) (((-419 (-1194 (-576)))) . T) (((-227)) . T) (((-390)) . T)) +((((-390)) . T) (((-227)) . T) (((-877)) . T)) +(|has| |#1| (-929)) +(|has| |#1| (-929)) +((($ (-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (($ (-831 (-1198))) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1121))) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -(|has| |#1| (-928)) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-928))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +(|has| |#1| (-929)) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-929))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070)))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) -((((-1195 |#1| |#2| |#3|)) -12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-928))) -((((-876)) . T)) -((((-876)) . T)) +((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)) (|has| |#2| (-1071)))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) +((((-1196 |#1| |#2| |#3|)) -12 (|has| (-1196 |#1| |#2| |#3|) (-319 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-929))) +((((-877)) . T)) +((((-877)) . T)) ((($ $) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((($) -3795 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237))))) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((($) -2748 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237))))) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((((-992)) . T)) -((((-992)) . T) (((-876)) . T)) +((((-993)) . T)) +((((-993)) . T) (((-877)) . T)) ((($ $) . T)) ((((-576) (-112)) . T)) ((($) . T)) (((|#1|) . T)) ((((-112)) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-576)) . T)) (((|#1| (-576)) . T)) ((($) . T)) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) +(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) +((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1197)) |has| |#1| (-1070))) +((((-1198)) |has| |#1| (-1071))) ((((-576)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-876)) . T)) +((((-877)) . T)) (|has| |#1| (-38 (-419 (-576)))) (((|#1|) . T)) (((|#1| (-576)) . T)) -(((|#1| (-1280 |#1| |#2| |#3|)) . T)) +(((|#1| (-1281 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-419 (-576))) . T)) -(((|#1| (-1252 |#1| |#2| |#3|)) . T)) -((((-876)) . T)) -(|has| |#1| (-1121)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -(((|#1| (-783)) . T)) -((((-1179) |#1|) . T)) +(((|#1| (-1253 |#1| |#2| |#3|)) . T)) +((((-877)) . T)) +(|has| |#1| (-1122)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +(((|#1| (-784)) . T)) +((((-1180) |#1|) . T)) (((|#1|) . T)) ((($) . T)) (|has| |#2| (-148)) (|has| |#2| (-146)) -(((|#1| (-543 (-830 (-1197))) (-830 (-1197))) . T)) -((((-876)) . T)) -((((-1274 |#1| |#2| |#3| |#4|)) . T)) -((((-1274 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1070))) -((((-576) (-112)) . T) (((-1255 (-576)) $) . T)) -((((-876)) |has| |#1| (-1121))) +(((|#1| (-543 (-831 (-1198))) (-831 (-1198))) . T)) +((((-877)) . T)) +((((-1275 |#1| |#2| |#3| |#4|)) . T)) +((((-1275 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1071))) +((((-576) (-112)) . T) (((-1256 (-576)) $) . T)) +((((-877)) |has| |#1| (-1122))) (((|#1|) . T) (((-576)) . T) (($) . T)) ((((-576)) . T)) ((((-576)) . T)) (((|#1|) . T)) ((((-576)) . T)) ((((-576)) . T)) -((((-876)) . T)) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-360))) -((((-876)) . T)) +((((-877)) . T)) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-360))) +((((-877)) . T)) (|has| |#1| (-148)) (((|#3|) . T)) -((((-876)) . T)) -(|has| |#3| (-1070)) -((($) -3795 (|has| |#2| (-238)) (|has| |#2| (-237)))) -((((-1273 |#2| |#3| |#4|)) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T)) -((((-876)) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (((-624 $)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) -3795 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-419 (-971 |#1|))) |has| |#1| (-568)) (((-971 |#1|)) |has| |#1| (-1070)) (((-1197)) . T)) +((((-877)) . T)) +(|has| |#3| (-1071)) +((($) -2748 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((((-1274 |#2| |#3| |#4|)) . T) (((-1275 |#1| |#2| |#3| |#4|)) . T)) +((((-877)) . T)) +((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576)))) (((-624 $)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) -2748 (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) (((-419 (-972 |#1|))) |has| |#1| (-568)) (((-972 |#1|)) |has| |#1| (-1071)) (((-1198)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-783)) . T)) +(((|#1| (-784)) . T)) (((|#1|) . T)) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1|) |has| |#1| (-319 |#1|))) -((((-1274 |#1| |#2| |#3| |#4|)) . T)) -((((-576)) |has| |#1| (-901 (-576))) (((-390)) |has| |#1| (-901 (-390)))) +((((-1275 |#1| |#2| |#3| |#4|)) . T)) +((((-576)) |has| |#1| (-902 (-576))) (((-390)) |has| |#1| (-902 (-390)))) (((|#1|) . T)) -((($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) +((($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (((|#1|) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (((|#1|) . T)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +(((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) (((|#1|) |has| |#1| (-174))) -((((-876)) . T)) +((((-877)) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (|has| |#1| (-568)) -((($ (-1284 |#2|)) . T) (($ (-1197)) -3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) -((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) -((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) +((($ (-1285 |#2|)) . T) (($ (-1198)) -2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) +((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) +((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1121))) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)))) -((((-1273 |#2| |#3| |#4|)) . T)) +(((|#3|) |has| |#3| (-1122))) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)))) +((((-1274 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) -(|has| |#1| (-832)) -(|has| |#1| (-832)) -(((|#1| (-576) (-1103)) . T)) +(|has| |#1| (-833)) +(|has| |#1| (-833)) +(((|#1| (-576) (-1104)) . T)) ((($) |has| |#1| (-319 $)) ((|#1|) |has| |#1| (-319 |#1|))) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(((|#1| (-576) (-1103)) . T)) -(-3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -(((|#1| (-419 (-576)) (-1103)) . T)) -(((|#1| (-783) (-1103)) . T)) (|has| |#1| (-861)) -(((#0=(-929 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) +(|has| |#1| (-861)) +(((|#1| (-576) (-1104)) . T)) +(-2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +(((|#1| (-419 (-576)) (-1104)) . T)) +(((|#1| (-784) (-1104)) . T)) +(|has| |#1| (-862)) +(((#0=(-930 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (((|#2|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-1121)) -((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-1121)) +(|has| |#1| (-1122)) +((((-930 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +(|has| |#1| (-1122)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T) (((-576)) . T)) -((((-576)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)))) +((((-576)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)))) (((|#1|) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((|#2|) |has| |#1| (-374))) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) -((((-701 (-350 (-4125) (-4125 (QUOTE X) (QUOTE HESS)) (-711)))) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-652 (-576)))) ((|#2|) |has| |#1| (-374))) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) +((((-702 (-350 (-3529) (-3529 (QUOTE X) (QUOTE HESS)) (-712)))) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) -(((|#1| |#1|) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070)))) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-1274 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) +(((|#1| |#1|) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1071)))) (((|#1|) . T)) ((((-576)) . T)) ((((-576)) . T)) -(((|#1|) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070)))) +(((|#1|) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1071)))) (((|#2|) |has| |#2| (-374))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)) (((-576)) |has| |#1| (-651 (-576)))) -(|has| |#1| (-861)) +((($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)) (((-576)) |has| |#1| (-652 (-576)))) +(|has| |#1| (-862)) (((|#1|) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (((|#1|) . T) (((-576)) . T)) (((|#2|) . T)) ((((-576)) . T) ((|#3|) . T)) -((((-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) |has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))))) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-928))) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-876)) . T)) -((((-876)) . T)) -((($ (-1197)) -3795 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) -((((-576)) -3795 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) ((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) -((((-548)) . T) (((-576)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-876)) . T)) +((((-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) |has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-929))) +(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) +((((-877)) . T)) +((((-877)) . T)) +((($ (-1198)) -2748 (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))))) +((((-576)) -2748 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) ((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)) (|has| |#2| (-1071))) (($) |has| |#2| (-1071))) +((((-548)) . T) (((-576)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-877)) . T)) ((($) |has| |#1| (-238))) (|has| |#1| (-38 (-419 (-576)))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) @@ -2206,157 +2211,157 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(|has| |#1| (-860)) +(|has| |#1| (-861)) (((|#1| (-576)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1195 |#1| |#2| |#3|)) . T)) +(((|#1| (-1196 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-419 (-576))) . T)) (((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) -(((|#1| (-1188 |#1| |#2| |#3|)) . T)) -(((|#1| (-783)) . T)) +(((|#1| (-1189 |#1| |#2| |#3|)) . T)) +(((|#1| (-784)) . T)) (((|#1|) . T)) -((((-419 (-971 |#1|))) . T)) +((((-419 (-972 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) -((((-419 (-971 |#1|))) . T)) +((((-419 (-972 |#1|))) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) |has| |#1| (-174))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-576)) . T) ((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-1197)) |has| |#1| (-1059 (-1197)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-576)) . T) ((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-1198)) |has| |#1| (-1060 (-1198)))) (((|#1| |#2|) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) -3795 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))) ((|#1|) . T)) -(-3795 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070)))) -(-3795 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) -2748 (|has| |#1| (-861)) (|has| |#1| (-1060 (-576)))) ((|#1|) . T)) +(-2748 (-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1071)))) +(-2748 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))) ((((-145)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (((|#1|) . T)) -(|has| |#2| (-1070)) +(|has| |#2| (-1071)) (((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T)) (((|#2|) . T) ((|#1|) . T) (((-576)) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((($) . T) (((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) (|has| |#1| (-374)) (|has| |#1| (-374)) ((($ |#2|) . T)) (|has| (-419 |#2|) (-238)) -((((-656 |#1|)) . T)) -((($ (-1284 |#2|)) . T) (($ (-1197)) -3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) -((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) -((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) -(|has| |#1| (-928)) -(((|#2|) |has| |#2| (-1070))) -(((|#2|) |has| |#2| (-1070))) +((((-657 |#1|)) . T)) +((($ (-1285 |#2|)) . T) (($ (-1198)) -2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) +((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) +((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) +(|has| |#1| (-929)) +(((|#2|) |has| |#2| (-1071))) +(((|#2|) |has| |#2| (-1071))) (|has| |#1| (-374)) ((($) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) (((|#1|) |has| |#1| (-174))) -((($ (-878 |#1|)) . T)) +((($ (-879 |#1|)) . T)) (((|#1| |#1|) . T)) -((((-884 |#1|)) . T)) -((((-876)) . T)) +((((-885 |#1|)) . T)) +((((-877)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1121))) +(((|#2|) |has| |#2| (-1122))) (((|#1|) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-656 $)) . T) (((-1179)) . T) (((-1197)) . T) (((-576)) . T) (((-227)) . T) (((-876)) . T)) -((((-576)) -3795 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) ((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070))) +((((-657 $)) . T) (((-1180)) . T) (((-1198)) . T) (((-576)) . T) (((-227)) . T) (((-877)) . T)) +((((-576)) -2748 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071))) ((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-739)) (|has| |#3| (-1071))) (($) |has| |#3| (-1071))) ((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T)) (((|#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T)) (((|#1| (-543 |#2|) |#2|) . T)) -((((-876)) . T)) -(((|#1| (-576) (-1103)) . T)) -((((-929 |#1|)) . T)) -((((-876)) . T)) +((((-877)) . T)) +(((|#1| (-576) (-1104)) . T)) +((((-930 |#1|)) . T)) +((((-877)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-419 (-576)) (-1103)) . T)) -(((|#1| (-783) (-1103)) . T)) +(((|#1| (-419 (-576)) (-1104)) . T)) +(((|#1| (-784) (-1104)) . T)) (((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-576)) -3795 (|has| (-419 (-576)) (-1059 (-576))) (|has| |#1| (-1059 (-576)))) (((-419 (-576))) . T)) +(((|#1|) . T) (((-576)) -2748 (|has| (-419 (-576)) (-1060 (-576))) (|has| |#1| (-1060 (-576)))) (((-419 (-576))) . T)) (((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-861)) +(|has| |#1| (-862)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) (|has| |#2| (-238)) -(((|#2| (-543 (-878 |#1|)) (-878 |#1|)) . T)) -((((-876)) . T)) +(((|#2| (-543 (-879 |#1|)) (-879 |#1|)) . T)) +((((-877)) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-876)) . T)) +((((-877)) . T)) (((|#1| |#3|) . T)) -((((-876)) . T)) -(((|#1|) |has| |#1| (-174)) (((-971 |#1|)) . T) (((-576)) . T)) +((((-877)) . T)) +(((|#1|) |has| |#1| (-174)) (((-972 |#1|)) . T) (((-576)) . T)) (((|#1|) |has| |#1| (-174))) -((((-711)) . T)) -((((-711)) . T)) +((((-712)) . T)) +((((-712)) . T)) (((|#2|) |has| |#2| (-174))) -(-3795 (|has| |#1| (-238)) (|has| |#1| (-237))) -((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) -((((-112)) |has| |#1| (-1121)) (((-876)) -3795 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1121)))) +(-2748 (|has| |#1| (-238)) (|has| |#1| (-237))) +((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) +((((-112)) |has| |#1| (-1122)) (((-877)) -2748 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-739)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)) (|has| |#1| (-1134)) (|has| |#1| (-1122)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) . T)) +((((-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-876)) . T)) -((((-1197)) -3795 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) +((((-877)) . T)) +((((-1198)) -2748 (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))))) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-876)) . T)) -((((-711)) . T) (((-419 (-576))) . T) (((-576)) . T)) +((((-877)) . T)) +((((-712)) . T) (((-419 (-576))) . T) (((-576)) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#2|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) . T) (((-576)) . T) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-576) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) ((((-390)) . T)) -((((-711)) . T)) +((((-712)) . T)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) (((|#1|) |has| |#1| (-174))) -((((-419 (-971 |#1|))) . T)) +((((-419 (-972 |#1|))) . T)) (((|#2| |#2|) . T)) -(-3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) (((|#1|) . T)) (((|#2|) . T)) -(((|#3|) |has| |#3| (-1070))) -(|has| |#2| (-928)) -(|has| |#1| (-928)) +(((|#3|) |has| |#3| (-1071))) +(|has| |#2| (-929)) +(|has| |#1| (-929)) (|has| |#1| (-374)) -(((|#3|) |has| |#3| (-1070))) +(((|#3|) |has| |#3| (-1071))) ((($) . T)) -((((-1197)) |has| |#2| (-917 (-1197)))) -(|has| |#1| (-861)) -((((-876)) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -(|has| |#1| (-803)) +((((-1198)) |has| |#2| (-918 (-1198)))) +(|has| |#1| (-862)) +((((-877)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +(|has| |#1| (-804)) ((((-419 (-576))) . T) (($) . T)) (|has| |#1| (-485)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-374)) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1070)) (|has| |#1| (-1133))) -((($) -3795 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360)))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1071)) (|has| |#1| (-1134))) +((($) -2748 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360)))) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) (|has| |#1| (-360)) @@ -2365,9 +2370,9 @@ ((($) . T) (((-576)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(((|#2|) . T) (((-876)) . T)) -(((|#2|) . T) (((-876)) . T)) -((($ (-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) +(((|#2|) . T) (((-877)) . T)) +(((|#2|) . T) (((-877)) . T)) +((($ (-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -2377,23 +2382,23 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-861)) -((((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) . T)) +(|has| |#1| (-862)) +((((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) ((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) ((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (((|#2|) . T)) (|has| |#1| (-15 * (|#1| (-576) |#1|))) (((|#3|) . T)) ((((-117 |#1|)) . T)) (|has| |#1| (-379)) -(-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-861)) -(|has| |#1| (-15 * (|#1| (-783) |#1|))) -(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) +(|has| |#1| (-862)) +(|has| |#1| (-15 * (|#1| (-784) |#1|))) +(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) @@ -2402,57 +2407,57 @@ ((((-576)) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) -((((-876)) . T)) -((((-876)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-907 (-576))) |has| |#1| (-626 (-907 (-576)))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390)))) (((-390)) . #0=(|has| |#1| (-1043))) (((-227)) . #0#)) +((((-877)) . T)) +((((-877)) . T)) +((((-548)) |has| |#1| (-626 (-548))) (((-908 (-576))) |has| |#1| (-626 (-908 (-576)))) (((-908 (-390))) |has| |#1| (-626 (-908 (-390)))) (((-390)) . #0=(|has| |#1| (-1044))) (((-227)) . #0#)) (((|#1|) |has| |#1| (-374))) (((|#1|) |has| |#1| (-374))) -((((-876)) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +((((-877)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) ((($ $) . T) (((-624 $) $) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) -((($) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) -((($) -3795 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((|#1|) -3795 (|has| |#1| (-174)) (|has| |#1| (-1070))) (((-419 (-576))) |has| |#1| (-568)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) -((($) . T) (((-576)) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) +((($) . T) (((-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) +((($) -2748 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) ((|#1|) -2748 (|has| |#1| (-174)) (|has| |#1| (-1071))) (((-419 (-576))) |has| |#1| (-568)) (((-576)) -12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) +((($) . T) (((-576)) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-374)) ((((-390)) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-1197)) -3795 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) -((((-656 (-792 |#1| (-878 |#2|)))) . T) (((-876)) . T)) -((((-548)) |has| (-792 |#1| (-878 |#2|)) (-626 (-548)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-1198)) -2748 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) +((((-657 (-793 |#1| (-879 |#2|)))) . T) (((-877)) . T)) +((((-548)) |has| (-793 |#1| (-879 |#2|)) (-626 (-548)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) ((((-390)) . T)) (((|#1|) |has| |#1| (-174))) -(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) +(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (((|#1|) |has| |#1| (-174))) -((((-876)) . T)) -(-3795 (|has| |#2| (-464)) (|has| |#2| (-928))) +((((-877)) . T)) +(-2748 (|has| |#2| (-464)) (|has| |#2| (-929))) (((|#1|) . T)) ((($) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) ((((-548)) |has| |#1| (-626 (-548)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) -((((-783)) . T)) -(|has| |#1| (-1121)) -((((-576)) -3795 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) ((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) -((((-876)) . T)) -((((-1197)) . T) (((-876)) . T)) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) +((((-784)) . T)) +(|has| |#1| (-1122)) +((((-576)) -2748 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) ((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)) (|has| |#2| (-1071))) (($) |has| |#2| (-1071))) +((((-877)) . T)) +((((-1198)) . T) (((-877)) . T)) ((((-576)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) ((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) ((((-576)) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) -(((#0=(-1273 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (($) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) +(((#0=(-1274 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (($) . T)) ((((-576)) . T)) ((($) . T)) (|has| |#1| (-374)) -(-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) -(-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) +(-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) +(-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) (|has| |#1| (-374)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -2460,88 +2465,88 @@ (|has| |#1| (-238)) (|has| |#1| (-374)) (((|#3|) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-576)) |has| |#2| (-651 (-576))) ((|#2|) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-576)) |has| |#2| (-652 (-576))) ((|#2|) . T)) (|has| |#1| (-146)) ((((-576) |#1|) |has| |#2| (-429 |#1|))) ((((-576) |#1|) |has| |#2| (-429 |#1|))) (((|#2|) . T) (($) . T) (((-576)) . T)) (((|#2|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-862)) +(|has| |#1| (-862)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) -(|has| |#1| (-861)) +(|has| |#1| (-862)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -((((-1163 |#2| |#1|)) . T) ((|#1|) . T) (((-576)) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +((((-1164 |#2| |#1|)) . T) ((|#1|) . T) (((-576)) . T)) (((|#1| |#2|) . T)) -((((-576)) . T) ((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576)))))) -((((-1197)) -3795 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))))) -(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) +((((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576)))))) +((((-1198)) -2748 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))))) +(((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) (((|#2|) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (($) . T) (((-576)) . T)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) -((((-876)) . T)) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) +((((-877)) . T)) ((((-576)) . T)) -(-3795 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) +(-2748 (-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-971 |#1|)) . T) (((-876)) . T)) +((((-972 |#1|)) . T) (((-877)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -3795 (|has| |#1| (-300)) (|has| |#1| (-374))) ((#0=(-419 (-576)) #0#) |has| |#1| (-374))) -((((-971 |#1|)) . T)) -((((-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) . T)) +(((|#1| |#1|) . T) (($ $) -2748 (|has| |#1| (-300)) (|has| |#1| (-374))) ((#0=(-419 (-576)) #0#) |has| |#1| (-374))) +((((-972 |#1|)) . T)) +((((-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) . T)) ((($) . T)) ((((-576) |#1|) . T)) -((((-1197)) |has| (-419 |#2|) (-917 (-1197)))) -(((|#1|) . T) (($) -3795 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) +((((-1198)) |has| (-419 |#2|) (-918 (-1198)))) +(((|#1|) . T) (($) -2748 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) ((((-548)) |has| |#2| (-626 (-548)))) -((((-701 |#2|)) . T) (((-876)) . T)) +((((-702 |#2|)) . T) (((-877)) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) -((((-884 |#1|)) . T)) +(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) +(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) +((((-885 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) -(-3795 (|has| |#4| (-805)) (|has| |#4| (-861))) -(-3795 (|has| |#3| (-805)) (|has| |#3| (-861))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((((-876)) . T)) +(-2748 (|has| |#4| (-806)) (|has| |#4| (-862))) +(-2748 (|has| |#3| (-806)) (|has| |#3| (-862))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-877)) . T)) (((|#1|) . T)) ((($) . T) (((-576)) . T) ((|#2|) . T)) -((((-876)) . T)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) -(((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)))) -(((|#2|) |has| |#2| (-1070))) -(((|#2|) |has| |#2| (-1070))) +((((-877)) . T)) +(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) +(((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)))) +(((|#2|) |has| |#2| (-1071))) +(((|#2|) |has| |#2| (-1071))) (((|#3|) . T)) ((($) . T)) (((|#1|) . T)) ((((-419 |#2|)) . T)) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)))) (((|#1|) . T)) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070)))) -(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) -((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)) (|has| |#2| (-1071)))) +(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) +((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) (((|#1|) . T)) ((($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-1242))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-1243))) ((($) . T)) -((((-419 (-576))) |has| #0=(-419 |#2|) (-1059 (-419 (-576)))) (((-576)) |has| #0# (-1059 (-576))) ((#0#) . T)) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -(((|#1| (-783)) . T)) -(|has| |#1| (-861)) -(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((((-419 (-576))) |has| #0=(-419 |#2|) (-1060 (-419 (-576)))) (((-576)) |has| #0# (-1060 (-576))) ((#0#) . T)) +(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) +(((|#1| (-784)) . T)) +(|has| |#1| (-862)) +(((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-576)) . T)) -((((-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) |has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(|has| |#1| (-860)) -((((-576) $) . T) (((-656 (-576)) $) . T)) +((((-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) |has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(|has| |#1| (-861)) +((((-576) $) . T) (((-657 (-576)) $) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) @@ -2562,90 +2567,90 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) -(-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) +(-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-15 * (|#1| (-783) |#1|))) -((((-1179)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) -((((-876)) . T)) -(((|#2|) . T) (((-576)) . T) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1103)) . T) ((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) +(|has| |#1| (-15 * (|#1| (-784) |#1|))) +((((-1180)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) +((((-877)) . T)) +(((|#2|) . T) (((-576)) . T) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) (((-1104)) . T) ((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (((|#1| |#2|) . T)) ((((-145)) . T)) -((((-792 |#1| (-878 |#2|))) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -(|has| |#1| (-1223)) -((((-876)) . T)) +((((-793 |#1| (-879 |#2|))) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) +(|has| |#1| (-1224)) +((((-877)) . T)) (((|#1|) . T)) -(-3795 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1121))) -((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|))) +(-2748 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-739)) (|has| |#3| (-806)) (|has| |#3| (-862)) (|has| |#3| (-1071)) (|has| |#3| (-1122))) +((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|))) (((|#2|) . T)) (((|#2|) . T)) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-929 |#1|)) . T)) -((($) -3795 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070))))) -((($) -3795 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((((-930 |#1|)) . T)) +((($) -2748 (-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1071))))) +((($) -2748 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071))))) ((($) . T)) -((((-419 (-971 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-419 (-972 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(|has| |#1| (-862)) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-1198)) -2748 (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))))) (|has| |#1| (-861)) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1197)) -3795 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) -(|has| |#1| (-860)) ((((-548)) |has| |#4| (-626 (-548)))) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -((((-876)) . T) (((-656 |#4|)) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +((((-877)) . T) (((-657 |#4|)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (((|#1|) . T)) (|has| |#1| (-374)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) |has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))))) -(-3795 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-861)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) |has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))))) +(-2748 (-12 (|has| |#1| (-374)) (|has| |#2| (-833))) (-12 (|has| |#1| (-374)) (|has| |#2| (-862)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) -((((-684 |#1|)) . T)) -(((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1070)))) +(((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-739)))) +((((-685 |#1|)) . T)) +(((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-739)) (|has| |#3| (-1071)))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) -(-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) +(-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) +(-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) -(|has| |#1| (-860)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) +((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) +(|has| |#1| (-861)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1121)) +(((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) +((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +(|has| |#1| (-1122)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-576)) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -(-3795 (|has| |#2| (-832)) (|has| |#2| (-861))) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2748 (|has| |#2| (-833)) (|has| |#2| (-862))) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) ((((-576)) . T) ((|#1|) . T)) (((|#2|) . T) (($) . T) (((-576)) . T)) (((|#2|) . T)) -((((-1197)) -3795 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((((-1198)) -2748 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) (((|#1| |#1|) . T)) (((|#3|) |has| |#3| (-374))) ((((-419 |#2|)) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#1|) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(((|#1|) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)))) +((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) +(((|#1|) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) @@ -2655,47 +2660,47 @@ (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) |has| |#2| (-374))) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (((|#2|) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((($) . T) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(-3795 (|has| |#1| (-238)) (|has| |#1| (-237))) -(((#0=(-792 |#1| (-878 |#2|)) #0#) |has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|))))) -((($) -3795 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((((-419 (-576))) . T) (((-712)) . T) (($) . T)) +((($) . T) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(-2748 (|has| |#1| (-238)) (|has| |#1| (-237))) +(((#0=(-793 |#1| (-879 |#2|)) #0#) |has| (-793 |#1| (-879 |#2|)) (-319 (-793 |#1| (-879 |#2|))))) +((($) -2748 (|has| |#1| (-238)) (|has| |#1| (-237)))) ((((-576)) . T) (($) . T)) -((((-878 |#1|)) . T)) +((((-879 |#1|)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) -((((-1197)) |has| |#1| (-917 (-1197))) (((-1103)) . T)) -((((-1197)) |has| |#1| (-917 (-1197))) (((-1109 (-1197))) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) -((($ (-1197)) -3795 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) +((((-1198)) |has| |#1| (-918 (-1198))) (((-1104)) . T)) +((((-1198)) |has| |#1| (-918 (-1198))) (((-1110 (-1198))) . T)) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) +((($ (-1198)) -2748 (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))))) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (|has| |#1| (-38 (-419 (-576)))) -(((|#4|) |has| |#4| (-1070)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) -(((|#3|) |has| |#3| (-1070)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) +(((|#4|) |has| |#4| (-1071)) (((-576)) -12 (|has| |#4| (-652 (-576))) (|has| |#4| (-1071)))) +(((|#3|) |has| |#3| (-1071)) (((-576)) -12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (|has| |#1| (-146)) (|has| |#1| (-148)) ((($ $) . T)) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1121))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-739)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)) (|has| |#1| (-1134)) (|has| |#1| (-1122))) (|has| |#1| (-568)) (((|#2|) . T)) ((((-576)) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (((|#1|) . T)) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) ((((-593 |#1|)) . T)) ((($) . T)) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-6 (-4466 "*")))) +(((|#2|) |has| |#2| (-6 (-4468 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) @@ -2705,38 +2710,38 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T) (((-576)) . T)) -((((-1273 |#2| |#3| |#4|)) . T) (((-576)) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (((-576)) -3795 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))) (|has| |#1| (-1070))) ((|#1|) . T) (((-624 $)) . T) (($) |has| |#1| (-568)) (((-419 (-576))) -3795 (|has| |#1| (-568)) (|has| |#1| (-1059 (-419 (-576))))) (((-419 (-971 |#1|))) |has| |#1| (-568)) (((-971 |#1|)) |has| |#1| (-1070)) (((-1197)) . T)) -((((-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) (((-576)) |has| |#2| (-1059 (-576))) ((|#2|) . T) (((-878 |#1|)) . T)) +((((-1274 |#2| |#3| |#4|)) . T) (((-576)) . T) (((-1275 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576)))) (((-576)) -2748 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1060 (-576))) (|has| |#1| (-1071))) ((|#1|) . T) (((-624 $)) . T) (($) |has| |#1| (-568)) (((-419 (-576))) -2748 (|has| |#1| (-568)) (|has| |#1| (-1060 (-419 (-576))))) (((-419 (-972 |#1|))) |has| |#1| (-568)) (((-972 |#1|)) |has| |#1| (-1071)) (((-1198)) . T)) +((((-419 (-576))) |has| |#2| (-1060 (-419 (-576)))) (((-576)) |has| |#2| (-1060 (-576))) ((|#2|) . T) (((-879 |#1|)) . T)) ((($) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T)) -((((-1146 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -((((-1193 |#1|)) . T) (((-1103)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -((((-1146 |#1| (-1197))) . T) (((-1109 (-1197))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-1197)) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-1147 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) +((((-1194 |#1|)) . T) (((-1104)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) +((((-1147 |#1| (-1198))) . T) (((-1110 (-1198))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-1198)) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) ((($) . T)) -(|has| |#1| (-1121)) -((((-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576)))) (((-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390))))) +(|has| |#1| (-1122)) +((((-576)) -12 (|has| |#1| (-902 (-576))) (|has| |#2| (-902 (-576)))) (((-390)) -12 (|has| |#1| (-902 (-390))) (|has| |#2| (-902 (-390))))) (((|#1| |#2|) . T)) -((((-1197) |#1|) . T)) +((((-1198) |#1|) . T)) (((|#4|) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1197) (-52)) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T)) -((((-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) -((((-876)) . T)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1121))) -(((#0=(-1274 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-1198) (-52)) . T)) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) +((((-1274 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) +((((-877)) . T)) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) +(((#0=(-1275 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1| |#1|) |has| |#1| (-174)) ((#0=(-419 (-576)) #0#) |has| |#1| (-568)) (($ $) |has| |#1| (-568))) ((($) |has| |#1| (-15 * (|#1| (-576) |#1|)))) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568))) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) (|has| |#1| (-374)) -((($) |has| |#1| (-860)) (((-576)) -3795 (|has| |#1| (-21)) (|has| |#1| (-860)))) -((($) -3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) +((($) |has| |#1| (-861)) (((-576)) -2748 (|has| |#1| (-21)) (|has| |#1| (-861)))) +((($) -2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -2744,259 +2749,259 @@ (|has| |#1| (-146)) ((((-419 (-576))) . T) (($) . T)) (((|#3|) |has| |#3| (-374))) -((($) |has| |#1| (-15 * (|#1| (-783) |#1|)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) -((((-1197)) . T)) -((($) . T) (((-1273 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576)))) (((-576)) . T)) +((($) |has| |#1| (-15 * (|#1| (-784) |#1|)))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) +((((-1198)) . T)) +((($) . T) (((-1274 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| (-1274 |#2| |#3| |#4|) (-38 (-419 (-576)))) (((-576)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) -(|has| |#1| (-861)) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) +(|has| |#1| (-862)) (((|#2| |#3|) . T)) (((|#1| (-543 |#2|)) . T)) -(((|#1| (-783)) . T)) -(-3795 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -(((|#1| (-543 (-1109 (-1197)))) . T)) +(((|#1| (-784)) . T)) +(-2748 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) +(((|#1| (-543 (-1110 (-1198)))) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(|has| |#2| (-928)) -(-3795 (|has| |#2| (-805)) (|has| |#2| (-861))) -((((-876)) . T)) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) -(((|#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1070)))) -((($ (-1197)) -3795 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) -((($ $) . T) ((#0=(-1273 |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) |has| #0# (-38 (-419 (-576))))) -((((-929 |#1|)) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-832))) +(|has| |#2| (-929)) +(-2748 (|has| |#2| (-806)) (|has| |#2| (-862))) +((((-877)) . T)) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)))) +(((|#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)) (|has| |#2| (-1071)))) +((($ (-1198)) -2748 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) +((($ $) . T) ((#0=(-1274 |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) |has| #0# (-38 (-419 (-576))))) +((((-930 |#1|)) . T)) +(-12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T) (((-576)) . T)) ((($) . T)) -(-3795 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (|has| |#1| (-374)) (|has| |#1| (-374)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1273 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) -(-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374)) (|has| |#1| (-360))) -(-3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) +((($) . T) ((#0=(-1274 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) +(-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) +((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) . T)) +(((|#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|))) . T)) (((|#2|) . T)) (|has| |#2| (-374)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-862)) +(|has| |#1| (-862)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-576)) . T)) (((|#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#2|) |has| |#2| (-174))) -(|has| |#1| (-1121)) +(|has| |#1| (-1122)) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) (((|#1|) . T)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) ((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T) (($) . T)) (((|#3|) . T) (((-576)) . T) (($) . T)) ((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-832)) +(|has| |#2| (-833)) ((($) . T)) (((|#4|) . T)) ((($) . T)) -((($ (-1197)) -3795 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))))) -((((-876)) . T)) -(((|#1| (-543 (-1197))) . T)) +((($ (-1198)) -2748 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))))) +((((-877)) . T)) +(((|#1| (-543 (-1198))) . T)) ((($ $) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) +(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (((|#2|) . T)) -(((|#2|) -3795 (|has| |#2| (-6 (-4466 "*"))) (|has| |#2| (-174)))) -(-3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(|has| |#2| (-928)) -(|has| |#1| (-928)) -((($) -3795 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))))) +(((|#2|) -2748 (|has| |#2| (-6 (-4468 "*"))) (|has| |#2| (-174)))) +(-2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(|has| |#2| (-929)) +(|has| |#1| (-929)) +((($) -2748 (-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1071))))) (((|#2|) |has| |#2| (-174))) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-876)) . T)) -((((-876)) . T)) -((((-548)) . T) (((-576)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-877)) . T)) +((((-877)) . T)) +((((-548)) . T) (((-576)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T)) -((((-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) . T)) +((((-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((((-876)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((((-877)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T)) (((|#1| (-419 (-576))) . T)) (((|#1|) . T)) -(-3795 (|has| |#1| (-300)) (|has| |#1| (-374))) +(-2748 (|has| |#1| (-300)) (|has| |#1| (-374))) ((((-145)) . T)) -((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-860)) -((((-876)) . T)) -((((-876)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-576)) |has| #0=(-419 |#2|) (-652 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) +(|has| |#1| (-861)) +((((-877)) . T)) +((((-877)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-189)) . T) (((-876)) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-189)) . T) (((-877)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-907 (-576))) |has| |#1| (-626 (-907 (-576)))) (((-907 (-390))) |has| |#1| (-626 (-907 (-390))))) -((((-1197) (-52)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-548)) |has| |#1| (-626 (-548))) (((-908 (-576))) |has| |#1| (-626 (-908 (-576)))) (((-908 (-390))) |has| |#1| (-626 (-908 (-390))))) +((((-1198) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($ (-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) -((((-656 (-145))) . T) (((-1179)) . T)) -((((-876)) . T)) -((((-1179)) . T)) -((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(|has| |#1| (-861)) -((((-876)) . T)) +((($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) +((((-657 (-145))) . T) (((-1180)) . T)) +((((-877)) . T)) +((((-1180)) . T)) +((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) +(|has| |#1| (-862)) +((((-877)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) . T)) -((($) -3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) -((((-876)) . T)) +((((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) . T)) +((($) -2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) +((((-877)) . T)) (((|#2|) |has| |#2| (-374))) -((((-876)) . T)) +((((-877)) . T)) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((($) |has| |#1| (-15 * (|#1| (-783) |#1|)))) +((($) |has| |#1| (-15 * (|#1| (-784) |#1|)))) (((|#2|) . T)) ((((-548)) |has| |#4| (-626 (-548)))) -((((-876)) . T) (((-656 |#4|)) . T)) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-877)) . T) (((-657 |#4|)) . T)) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T)) -(|has| |#4| (-1070)) -(|has| |#3| (-1070)) -(|has| |#1| (-1121)) -((((-1197) (-52)) . T)) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(|has| |#4| (-1071)) +(|has| |#3| (-1071)) +(|has| |#1| (-1122)) +((((-1198) (-52)) . T)) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) -(|has| |#1| (-928)) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(|has| |#1| (-928)) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) +(|has| |#1| (-929)) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) +(|has| |#1| (-929)) (((|#1|) . T) (((-576)) . T) (((-419 (-576))) . T) (($) . T)) (((|#2|) . T)) -((($ (-1197)) -3795 (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))))) +((($ (-1198)) -2748 (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))))) (((#0=(-419 (-576)) #0#) . T) (($ $) . T)) ((((-576)) . T)) (((|#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-419 (-576))) . T) (($) . T)) -(((|#1| (-419 (-576)) (-1103)) . T)) -(|has| |#1| (-1121)) +(((|#1| (-419 (-576)) (-1104)) . T)) +(|has| |#1| (-1122)) (|has| |#1| (-568)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(|has| |#1| (-832)) -(((#0=(-929 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(|has| |#1| (-833)) +(((#0=(-930 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) ((((-419 |#2|)) . T)) -(|has| |#1| (-860)) -((((-1224 |#1|)) . T) (((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +(|has| |#1| (-861)) +((((-1225 |#1|)) . T) (((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) (((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-576) #1#) . T) (($ $) . T)) -((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#2|) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) +((((-930 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +(((|#2|) |has| |#2| (-1071)) (((-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (((|#2|) . T)) -((((-876)) . T)) -((((-1197)) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T)) +((((-877)) . T)) +((((-1198)) . T)) +((((-419 (-576))) . T) (((-712)) . T) (($) . T) (((-576)) . T)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-379))) -((((-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) . T)) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-379))) +((((-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) . T)) ((((-576) |#3|) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2240 (-1197)) (|:| -2905 #0#))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4286 (-1198)) (|:| -4440 #0#))) . T)) (|has| |#1| (-360)) ((((-576)) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#1|) . T)) -(((#0=(-1274 |#1| |#2| |#3| |#4|) $) |has| #0# (-296 #0# #0#))) +(((#0=(-1275 |#1| |#2| |#3| |#4|) $) |has| #0# (-296 #0# #0#))) (|has| |#1| (-374)) -(-3795 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) -(((|#1|) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070))) (($) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070))) (((-576)) -3795 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)))) -(((#0=(-1103) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-360))) -(((#0=(-419 (-576)) #0#) . T) ((#1=(-711) #1#) . T) (($ $) . T)) +(-2748 (-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) +(((|#1|) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1071))) (($) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) (((-576)) -2748 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)))) +(((#0=(-1104) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-360))) +(((#0=(-419 (-576)) #0#) . T) ((#1=(-712) #1#) . T) (($ $) . T)) ((((-326 |#1|)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) -((((-876)) . T)) -(|has| |#1| (-1121)) +((((-877)) . T)) +(|has| |#1| (-1122)) (((|#1|) . T)) -(((|#1|) -3795 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) -(((|#1|) -3795 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) +(((|#1|) -2748 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) +(((|#1|) -2748 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) (((|#2|) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T)) +((((-419 (-576))) . T) (((-712)) . T) (($) . T)) ((((-591)) . T)) (((|#3| |#3|) . T)) -((($ (-1197)) -3795 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) -(|has| |#1| (-861)) +((($ (-1198)) -2748 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) +(|has| |#1| (-862)) (|has| |#2| (-238)) -((((-878 |#1|)) . T)) -((((-1197)) |has| |#1| (-917 (-1197))) ((|#3|) . T)) -((((-656 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-1043))) -(|has| |#1| (-861)) +((((-879 |#1|)) . T)) +((((-1198)) |has| |#1| (-918 (-1198))) ((|#3|) . T)) +((((-657 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-374)) (|has| |#2| (-1044))) +(|has| |#1| (-862)) ((((-419 (-576))) . T) (($) . T)) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) ((($) . T) (((-419 (-576))) . T)) -((((-876)) . T)) +((((-877)) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) ((((-576)) . T) (((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T)) (((|#3|) . T)) -(|has| |#1| (-1121)) +(|has| |#1| (-1122)) (((|#2|) . T)) (((|#1|) . T)) -((($) -3795 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((($) -2748 (|has| |#1| (-238)) (|has| |#1| (-237)))) ((((-576)) . T)) -(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (($) . T) (((-576)) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) +(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((|#1|) . T) (($) . T) (((-576)) . T)) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) @@ -3005,40 +3010,40 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T) (((-576)) . T)) (((|#1|) . T) (((-576)) . T)) -(((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) +(((|#1| (-1289 |#1|) (-1289 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-876)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) (((|#2|) . T)) (((|#3|) . T)) (((#0=(-117 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -((((-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) (((-576)) |has| |#2| (-1059 (-576))) ((|#2|) . T) (((-878 |#1|)) . T)) -((((-1146 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#2|) . T)) +((((-419 (-576))) |has| |#2| (-1060 (-419 (-576)))) (((-576)) |has| |#2| (-1060 (-576))) ((|#2|) . T) (((-879 |#1|)) . T)) +((((-1147 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T)) ((($ $) . T)) -((((-684 |#1|)) . T)) -((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) +((((-685 |#1|)) . T)) +((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) ((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) (((-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390))))) +((((-576)) -12 (|has| |#1| (-902 (-576))) (|has| |#3| (-902 (-576)))) (((-390)) -12 (|has| |#1| (-902 (-390))) (|has| |#3| (-902 (-390))))) (((|#2|) . T) ((|#6|) . T)) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) +((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) ((((-145)) . T)) ((($) . T)) -((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) . T) (((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-390)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) . T) (((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T)) -(|has| |#2| (-928)) -(|has| |#1| (-928)) -(|has| |#1| (-928)) -(|has| |#2| (-1043)) +(|has| |#2| (-929)) +(|has| |#1| (-929)) +(|has| |#1| (-929)) +(|has| |#2| (-1044)) ((($) . T)) -(|has| |#1| (-928)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +(|has| |#1| (-929)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (((|#4|) . T)) ((($) . T)) (((|#2|) . T)) @@ -3046,43 +3051,43 @@ (((|#1|) . T) (($) . T)) ((($) . T)) (|has| |#1| (-374)) -((((-929 |#1|)) . T)) +((((-930 |#1|)) . T)) ((($) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) . T)) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) |has| |#1| (-860)) (((-576)) -3795 (|has| |#1| (-21)) (|has| |#1| (-860)))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) |has| |#1| (-861)) (((-576)) -2748 (|has| |#1| (-21)) (|has| |#1| (-861)))) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(-3795 (|has| |#1| (-379)) (|has| |#1| (-861))) +(-2748 (|has| |#1| (-379)) (|has| |#1| (-862))) (((|#1|) . T)) -((((-783)) . T)) -((((-876)) . T)) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-784)) . T)) +((((-877)) . T)) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) ((((-419 |#2|) |#3|) . T)) -(-3795 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) +(-2748 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))) ((($) . T) (((-419 (-576))) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T)) ((((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T)) -((((-783) |#1|) . T)) -(((|#2| (-245 (-1970 |#1|) (-783))) . T)) +((((-784) |#1|) . T)) +(((|#2| (-245 (-3437 |#1|) (-784))) . T)) (((|#1| (-543 |#3|)) . T)) ((((-419 (-576))) . T)) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -((((-1179)) . T) (((-876)) . T)) -(((#0=(-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) #0#) |has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))))) -((((-1179)) . T)) -(|has| |#1| (-928)) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +((((-1180)) . T) (((-877)) . T)) +(((#0=(-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) #0#) |has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))))) +((((-1180)) . T)) +(|has| |#1| (-929)) (|has| |#2| (-374)) (((|#1|) . T) (($) . T) (((-576)) . T)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) ((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#1|) . T)) ((((-390)) . T) (((-576)) . T)) (((#0=(-419 (-576)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) (|has| |#1| (-568)) ((((-419 (-576))) . T) (($) . T)) ((($) . T)) @@ -3090,13 +3095,13 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-3795 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2748 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) (|has| |#1| (-38 (-419 (-576)))) -(-12 (|has| |#1| (-557)) (|has| |#1| (-840))) -((((-876)) . T)) -((((-1197)) -3795 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))))) +(-12 (|has| |#1| (-557)) (|has| |#1| (-841))) +((((-877)) . T)) +((((-1198)) -2748 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1198)))))) (|has| |#1| (-374)) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (|has| |#1| (-374)) ((((-419 (-576))) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) @@ -3105,27 +3110,27 @@ (|has| |#1| (-379)) (|has| |#1| (-379)) ((((-576) |#1|) . T)) -((((-1197)) |has| |#1| (-917 (-1197)))) +((((-1198)) |has| |#1| (-918 (-1198)))) (((|#1|) . T)) -(-3795 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360))) +(-2748 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360))) (((|#2|) |has| |#1| (-374))) (((|#2|) |has| |#1| (-374))) -(-3795 (|has| |#4| (-805)) (|has| |#4| (-861))) -(-3795 (|has| |#3| (-805)) (|has| |#3| (-861))) +(-2748 (|has| |#4| (-806)) (|has| |#4| (-862))) +(-2748 (|has| |#3| (-806)) (|has| |#3| (-862))) ((((-576)) . T) (($) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-1197)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-576)))) (((-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-576))))) +(((|#2|) . T) (((-1198)) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-1198)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-576)))) (((-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-576))))) (((|#2|) . T)) ((($) . T)) -((((-1197) #0=(-1274 |#1| |#2| |#3| |#4|)) |has| #0# (-526 (-1197) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) +((((-1198) #0=(-1275 |#1| |#2| |#3| |#4|)) |has| #0# (-526 (-1198) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) ((((-624 $) $) . T) (($ $) . T)) -((((-171 (-227))) . T) (((-171 (-390))) . T) (((-1193 (-711))) . T) (((-907 (-390))) . T)) +((((-171 (-227))) . T) (((-171 (-390))) . T) (((-1194 (-712))) . T) (((-908 (-390))) . T)) (((|#3|) . T)) (|has| |#1| (-568)) (|has| (-419 |#2|) (-238)) @@ -3133,52 +3138,52 @@ ((($) . T) (((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T)) (((|#3|) . T)) (|has| |#1| (-568)) -((((-876)) . T)) +((((-877)) . T)) ((($ $) . T)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-1197)) |has| |#2| (-917 (-1197)))) +((((-1198)) |has| |#2| (-918 (-1198)))) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(|has| |#1| (-861)) -((((-876)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(|has| |#1| (-862)) +((((-877)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (((|#2|) |has| |#1| (-374))) -((((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-390)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-576))))) +((((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-902 (-390)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-902 (-576))))) (((|#1|) . T)) ((($) . T) (((-576)) . T) ((|#2|) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((|#3|) . T)) -((((-1179)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) +((((-1180)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) (((|#1|) . T)) (|has| |#1| (-374)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-374)) (|has| |#1| (-568)) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) +(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) (((|#2|) . T)) (((|#2|) . T)) -(|has| |#2| (-1070)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +(|has| |#2| (-1071)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (|has| |#1| (-38 (-419 (-576)))) (((|#1| |#2|) . T)) (|has| |#1| (-38 (-419 (-576)))) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-379))) ((($) . T)) (|has| |#1| (-148)) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) ((($) . T)) ((((-593 |#1|)) . T)) ((($) . T)) -((((-1179) |#1|) . T)) +((((-1180) |#1|) . T)) (|has| |#1| (-568)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -3186,101 +3191,101 @@ ((($) . T)) ((((-419 |#2|)) . T)) ((((-419 |#2|)) . T)) -((((-419 (-576))) |has| |#2| (-1059 (-576))) (((-576)) |has| |#2| (-1059 (-576))) (((-1197)) |has| |#2| (-1059 (-1197))) ((|#2|) . T)) +((((-419 (-576))) |has| |#2| (-1060 (-576))) (((-576)) |has| |#2| (-1060 (-576))) (((-1198)) |has| |#2| (-1060 (-1198))) ((|#2|) . T)) (((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-360))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-360))) (|has| |#1| (-148)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T)) -((((-1161 |#1| |#2|)) . T)) +((((-1162 |#1| |#2|)) . T)) (((|#1| (-576)) . T)) (((|#1| (-419 (-576))) . T)) -((((-576)) |has| |#2| (-901 (-576))) (((-390)) |has| |#2| (-901 (-390)))) +((((-576)) |has| |#2| (-902 (-576))) (((-390)) |has| |#2| (-902 (-390)))) (((|#2|) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) ((((-112)) . T)) (((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) (((|#2|) . T)) -((((-876)) . T)) +((((-877)) . T)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((((-1197) (-52)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-1198) (-52)) . T)) ((((-419 |#2|)) . T)) -((((-876)) . T)) -(((|#1|) . T)) -((((-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(|has| |#1| (-803)) -(|has| |#1| (-803)) -((((-876)) . T)) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-876)) . T)) +((((-877)) . T)) +(((|#1|) . T)) +((((-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(|has| |#1| (-804)) +(|has| |#1| (-804)) +((((-877)) . T)) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) +((((-877)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) ((((-115)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-227)) . T) (((-390)) . T) (((-907 (-390))) . T)) -((((-876)) . T)) -((((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-227)) . T) (((-390)) . T) (((-908 (-390))) . T)) +((((-877)) . T)) +((((-1275 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) -((((-876)) . T)) -(-3795 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) -((((-876)) . T)) +((((-877)) . T)) +(-2748 (-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) +((((-877)) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((#0=(-929 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) +(((#0=(-930 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) (((|#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#1|) . T)) -((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-930 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) (|has| |#1| (-374)) -((((-876)) . T)) +((((-877)) . T)) (((|#2|) . T)) ((((-576)) . T)) -((((-1197)) -3795 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) -((((-876)) . T)) +((((-1198)) -2748 (|has| (-419 |#2|) (-918 (-1198))) (|has| (-419 |#2|) (-920 (-1198))))) +((((-877)) . T)) ((((-576)) . T)) -(-3795 (|has| |#2| (-805)) (|has| |#2| (-861))) +(-2748 (|has| |#2| (-806)) (|has| |#2| (-862))) ((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-1179)) . T) (((-548)) . T) (((-576)) . T) (((-907 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-1180)) . T) (((-548)) . T) (((-576)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-877)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) ((#0=(-1273 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((($) . T) ((#0=(-1274 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -((((-576) $) . T) (((-656 (-576)) $) . T)) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-917 (-1197))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1121))) -(|has| |#1| (-1173)) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) +((((-576) $) . T) (((-657 (-576)) $) . T)) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-739)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)) (|has| |#1| (-1134)) (|has| |#1| (-1122))) +(|has| |#1| (-1174)) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T)) -((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-930 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576) |#1|) . T)) (((|#1|) . T)) (((#0=(-117 |#1|) $) |has| #0# (-296 #0# #0#))) (((|#1|) |has| |#1| (-174))) ((((-326 |#1|)) . T) (((-576)) . T)) -(-3795 (|has| |#2| (-238)) (|has| |#2| (-237))) +(-2748 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-115)) . T) ((|#1|) . T)) -((((-876)) . T)) -((((-1197)) -3795 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) +((((-877)) . T)) +((((-1198)) -2748 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) (((|#1|) |has| |#1| (-319 |#1|))) -((((-576) |#1|) . T) (((-1255 (-576)) $) . T)) +((((-576) |#1|) . T) (((-1256 (-576)) $) . T)) (((|#1| |#2|) . T)) -((((-1197) |#1|) . T)) -(((|#1|) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)))) +((((-1198) |#1|) . T)) +(((|#1|) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)))) (((|#1|) . T)) -((($ (-1197)) . T)) -(((|#1|) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1070)))) +((($ (-1198)) . T)) +(((|#1|) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1071)))) ((((-576)) . T) (((-419 (-576))) . T)) (((|#1|) . T)) (|has| |#1| (-568)) @@ -3289,54 +3294,54 @@ (((|#1|) . T)) (((|#1|) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-374)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-374)) (|has| |#1| (-568)) ((($) . T)) -(|has| |#1| (-1121)) -((((-792 |#1| (-878 |#2|))) |has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|))))) -(-3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +(|has| |#1| (-1122)) +((((-793 |#1| (-879 |#2|))) |has| (-793 |#1| (-879 |#2|)) (-319 (-793 |#1| (-879 |#2|))))) +(-2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-928)) +(|has| |#2| (-929)) (((|#1| (-543 |#2|)) . T)) -(((|#1| (-783)) . T)) +(((|#1| (-784)) . T)) (|has| |#1| (-238)) -(((|#1| (-543 (-1109 (-1197)))) . T)) -((($) -3795 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))))) +(((|#1| (-543 (-1110 (-1198)))) . T)) +((($) -2748 (-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1071))))) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) . T)) +((((-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-576)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (|has| |#2| (-374)) -((((-876)) . T)) -((((-876)) . T)) -(-3795 (|has| |#3| (-805)) (|has| |#3| (-861))) -((((-876)) . T)) -((((-1141)) . T) (((-876)) . T)) -((((-548)) . T) (((-876)) . T)) +((((-877)) . T)) +((((-877)) . T)) +(-2748 (|has| |#3| (-806)) (|has| |#3| (-862))) +((((-877)) . T)) +((((-1142)) . T) (((-877)) . T)) +((((-548)) . T) (((-877)) . T)) (((|#1|) . T)) ((($ $) . T) (((-624 $) $) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-576)) . T)) (((|#3|) . T)) -((((-876)) . T)) -(-3795 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-576)) . T) (((-419 (-576))) -3795 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) -((((-1146 |#1| |#2|)) . T) ((|#2|) . T) (($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-576)) . T)) -((((-1193 |#1|)) . T) (((-576)) . T) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) (((-1103)) . T) ((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) -(-3795 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) +((((-877)) . T)) +(-2748 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-576)) . T) (((-419 (-576))) -2748 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576))))) ((|#2|) . T) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) (((-879 |#1|)) . T)) +((((-1147 |#1| |#2|)) . T) ((|#2|) . T) (($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) (((-576)) . T)) +((((-1194 |#1|)) . T) (((-576)) . T) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) (((-1104)) . T) ((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) +(-2748 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) (((#0=(-593 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1146 |#1| (-1197))) . T) (((-576)) . T) (((-1109 (-1197))) . T) (($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) (((-1197)) . T)) +((((-1147 |#1| (-1198))) . T) (((-576)) . T) (((-1110 (-1198))) . T) (($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) (((-1198)) . T)) (((|#1|) |has| |#1| (-174))) -(((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) +(((|#1| (-1289 |#1|) (-1289 |#1|)) . T)) ((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) @@ -3344,132 +3349,132 @@ (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-419 (-576))) . T)) -(((|#2|) |has| |#2| (-6 (-4466 "*")))) +(((|#2|) |has| |#2| (-6 (-4468 "*")))) (((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) (((|#1|) . T)) -((((-876)) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-877)) . T)) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) ((((-304 |#3|)) . T)) (((|#1|) . T)) -((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) +((($) . T) (((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (((|#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-876)) . T)) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#2| (-928)) -(|has| |#1| (-928)) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-876)) . T)) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((((-877)) . T)) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(|has| |#2| (-929)) +(|has| |#1| (-929)) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-877)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) . T)) +((((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3795 (|has| |#2| (-805)) (|has| |#2| (-861))) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) +(-2748 (|has| |#2| (-806)) (|has| |#2| (-862))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -((((-1197)) . T) ((|#1|) . T)) -((((-876)) . T)) +((((-1198)) . T) ((|#1|) . T)) +((((-877)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (((#0=(-419 (-576)) #0#) . T)) ((((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174))) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) (((|#1|) . T)) (((|#1|) . T)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) (((|#1|) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-548)) . T)) -((((-876)) . T)) -((($) -3795 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) -(|has| |#1| (-861)) -((((-876)) . T)) +((((-877)) . T)) +((($) -2748 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071))))) +(|has| |#1| (-862)) +((((-877)) . T)) ((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-929 |#1|)) . T)) -((((-1197)) |has| |#2| (-917 (-1197))) (((-1103)) . T)) -((((-1273 |#2| |#3| |#4|)) . T)) +((((-930 |#1|)) . T)) +((((-1198)) |has| |#2| (-918 (-1198))) (((-1104)) . T)) +((((-1274 |#2| |#3| |#4|)) . T)) ((($) . T) (((-419 (-576))) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -((((-876)) . T)) -(|has| |#1| (-1242)) +(-12 (|has| |#1| (-374)) (|has| |#2| (-833))) +(-12 (|has| |#1| (-374)) (|has| |#2| (-833))) +((((-877)) . T)) +(|has| |#1| (-1243)) (((|#2|) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1197)) |has| |#1| (-917 (-1197)))) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-1198)) |has| |#1| (-918 (-1198)))) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((($) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) +(((|#2|) |has| |#2| (-1071)) (((-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-568)))) (|has| |#1| (-568)) (((|#1|) |has| |#1| (-374))) ((((-576)) . T)) -((((-1197) #0=(-117 |#1|)) |has| #0# (-526 (-1197) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) -(|has| |#1| (-803)) -(|has| |#1| (-803)) -((((-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) -(((|#2|) . T) (((-576)) |has| |#2| (-1059 (-576))) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) -((((-1103)) . T) ((|#2|) . T) (((-576)) |has| |#2| (-1059 (-576))) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) +((((-1198) #0=(-117 |#1|)) |has| #0# (-526 (-1198) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) +(|has| |#1| (-804)) +(|has| |#1| (-804)) +((((-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) +(((|#2|) . T) (((-576)) |has| |#2| (-1060 (-576))) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) +((((-1104)) . T) ((|#2|) . T) (((-576)) |has| |#2| (-1060 (-576))) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (((-576)) . T) (($) . T)) -((((-576) (-783)) . T) ((|#3| (-783)) . T)) +((((-576) (-784)) . T) ((|#3| (-784)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-876)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((((-877)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) ((($) |has| |#1| (-379))) ((($) |has| |#1| (-379))) ((($) |has| |#1| (-379))) -(|has| |#2| (-832)) -(|has| |#2| (-832)) -((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -((($ (-1197)) |has| |#1| (-917 (-1197)))) -(((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -((($) -3795 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) -(((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((((-576)) |has| |#1| (-901 (-576))) (((-390)) |has| |#1| (-901 (-390)))) -(((|#1|) . T)) -((((-884 |#1|)) . T)) -((((-884 |#1|)) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T)) +(|has| |#2| (-833)) +(|has| |#2| (-833)) +((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-652 (-576)))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +((($ (-1198)) |has| |#1| (-918 (-1198)))) +(((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) +((($) -2748 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) +(((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-576)) |has| |#1| (-902 (-576))) (((-390)) |has| |#1| (-902 (-390)))) +(((|#1|) . T)) +((((-885 |#1|)) . T)) +((((-885 |#1|)) . T)) +((((-419 (-576))) . T) (((-712)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-928))) +(-12 (|has| |#1| (-374)) (|has| |#2| (-929))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-374)) (|has| |#1| (-374)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) -(((|#2|) -3795 (|has| |#2| (-6 (-4466 "*"))) (|has| |#2| (-174)))) +(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) +(((|#2|) -2748 (|has| |#2| (-6 (-4468 "*"))) (|has| |#2| (-174)))) (((|#2|) . T)) (|has| |#1| (-374)) (((|#2|) . T)) @@ -3477,495 +3482,499 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-878 |#1|)) . T)) +((((-879 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-783)) . T)) -((((-1197)) . T)) -((((-884 |#1|)) . T)) -(-3795 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) -(-3795 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1070))) -((((-876)) . T)) +(((|#2| (-784)) . T)) +((((-1198)) . T)) +((((-885 |#1|)) . T)) +(-2748 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071))) +(-2748 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-806)) (|has| |#3| (-1071))) +((((-877)) . T)) (((|#1|) . T)) -(-3795 (|has| |#2| (-805)) (|has| |#2| (-861))) -(-3795 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) -((((-884 |#1|)) . T)) +(-2748 (|has| |#2| (-806)) (|has| |#2| (-862))) +(-2748 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))) +((((-885 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) ((($ $) . T) (((-624 $) $) . T)) ((($) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-576)) . T)) (((|#2|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T) (((-576)) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) -((((-876)) . T)) -(((|#1|) . T)) -((((-876)) . T)) -((($) . T) ((|#2|) . T) (((-419 (-576))) . T) (((-576)) |has| |#2| (-651 (-576)))) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-876)) . T)) -(|has| |#2| (-928)) -((((-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576))))) -((((-876)) . T)) -((((-876)) . T)) -(|has| |#1| (-861)) -(((|#3|) |has| |#3| (-1070)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) -((((-1146 |#1| |#2|)) . T) (((-971 |#1|)) |has| |#2| (-626 (-1197))) (((-876)) . T)) -((((-971 |#1|)) |has| |#2| (-626 (-1197))) (((-1179)) -12 (|has| |#1| (-1059 (-576))) (|has| |#2| (-626 (-1197)))) (((-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576))))) (((-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) -((((-1193 |#1|)) . T) (((-876)) . T)) -((((-876)) . T)) -((((-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) (((-576)) |has| |#2| (-1059 (-576))) ((|#2|) . T) (((-878 |#1|)) . T)) -((((-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (((-1103)) . T)) +((((-877)) . T)) +(((|#1|) . T)) +((((-877)) . T)) +((($) . T) ((|#2|) . T) (((-419 (-576))) . T) (((-576)) |has| |#2| (-652 (-576)))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-877)) . T)) +(|has| |#2| (-929)) +((((-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) . T)) +((((-548)) |has| |#2| (-626 (-548))) (((-908 (-390))) |has| |#2| (-626 (-908 (-390)))) (((-908 (-576))) |has| |#2| (-626 (-908 (-576))))) +((((-877)) . T)) +((((-877)) . T)) +(|has| |#1| (-862)) +(((|#3|) |has| |#3| (-1071)) (((-576)) -12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) +((((-1147 |#1| |#2|)) . T) (((-972 |#1|)) |has| |#2| (-626 (-1198))) (((-877)) . T)) +((((-972 |#1|)) |has| |#2| (-626 (-1198))) (((-1180)) -12 (|has| |#1| (-1060 (-576))) (|has| |#2| (-626 (-1198)))) (((-908 (-576))) -12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576))))) (((-908 (-390))) -12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) +((((-1194 |#1|)) . T) (((-877)) . T)) +((((-877)) . T)) +((((-419 (-576))) |has| |#2| (-1060 (-419 (-576)))) (((-576)) |has| |#2| (-1060 (-576))) ((|#2|) . T) (((-879 |#1|)) . T)) +((((-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (((-1104)) . T)) ((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T) (((-1197)) . T)) -((((-876)) . T)) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T) (((-1198)) . T)) +((((-877)) . T)) ((((-576)) . T)) (((|#1|) . T)) ((($) . T)) -((((-390)) |has| |#1| (-901 (-390))) (((-576)) |has| |#1| (-901 (-576)))) +((((-390)) |has| |#1| (-902 (-390))) (((-576)) |has| |#1| (-902 (-576)))) ((((-576)) . T)) (((|#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#1|) . T)) -((((-876)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -((((-656 |#1|)) . T)) +((((-877)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((((-657 |#1|)) . T)) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((($) . T) (((-576)) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) -((((-576)) -3795 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) (($) -3795 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1070))) ((|#1|) -3795 (|has| |#1| (-174)) (|has| |#1| (-1070))) (((-419 (-576))) |has| |#1| (-568))) -((((-1202)) . T)) +((($) . T) (((-576)) . T) (((-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) +((((-576)) -2748 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) (($) -2748 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) ((|#1|) -2748 (|has| |#1| (-174)) (|has| |#1| (-1071))) (((-419 (-576))) |has| |#1| (-568))) +((((-1203)) . T)) ((((-576)) . T) (((-419 (-576))) . T)) -((($ (-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) -((((-1202)) . T)) -((((-1202)) . T)) +((($ (-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) +(((|#1|) . T)) +((((-1203)) . T)) +((((-1203)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -((((-1202)) . T)) +((((-1203)) . T)) (((|#1|) |has| |#1| (-319 |#1|))) ((((-390)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 |#2|) |#3|) . T)) -((((-876)) . T)) (((|#1|) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(((|#2| (-494 (-1970 |#1|) (-783))) . T)) +((((-877)) . T)) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(((|#2| (-494 (-3437 |#1|) (-784))) . T)) ((((-576) |#1|) . T)) -((((-1179)) . T) (((-876)) . T)) +((((-1180)) . T) (((-877)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-543 (-1197))) . T)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(((|#1| (-543 (-1198))) . T)) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) ((((-576)) . T)) (((|#2|) . T)) -((($) -3795 (-12 (|has| |#2| (-238)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))))) +((($) -2748 (-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1071))))) (((|#2|) . T)) -((((-1197)) |has| |#1| (-917 (-1197))) (((-1103)) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) +((((-1198)) |has| |#1| (-918 (-1198))) (((-1104)) . T)) +(((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) (|has| |#1| (-568)) -(((#0=(-1273 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) +(((#0=(-1274 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) ((($) . T) (((-419 (-576))) . T)) ((($) . T)) ((($) . T)) -(-3795 (|has| |#1| (-861)) (|has| |#1| (-1121))) +(-2748 (|has| |#1| (-862)) (|has| |#1| (-1122))) (((|#1|) . T)) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-876)) . T)) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-877)) . T)) ((((-145)) . T)) (((|#1|) . T) (((-419 (-576))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#1|) . T)) -(|has| |#1| (-1173)) -((($ (-1197)) -3795 (|has| (-419 |#2|) (-917 (-1197))) (|has| (-419 |#2|) (-919 (-1197))))) +(|has| |#1| (-1174)) +((($ (-1198)) -2748 (|has| (-419 |#2|) (-918 (-1198))) (|has| (-419 |#2|) (-920 (-1198))))) (((|#1|) . T)) -(((|#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) . T)) +(((|#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|))) . T)) ((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -((((-876)) . T)) -((((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-576)) |has| |#1| (-1059 (-576))) ((|#1|) . T) ((|#2|) . T)) -((((-1103)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576))))) -((((-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390)))) (((-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576))))) -((((-1274 |#1| |#2| |#3| |#4|)) . T)) -((((-1274 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) +((((-877)) . T)) +((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T) ((|#2|) . T)) +((((-1104)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) +((((-390)) -12 (|has| |#1| (-902 (-390))) (|has| |#2| (-902 (-390)))) (((-576)) -12 (|has| |#1| (-902 (-576))) (|has| |#2| (-902 (-576))))) +((((-1275 |#1| |#2| |#3| |#4|)) . T)) +((((-1275 |#1| |#2| |#3| |#4|)) . T)) ((((-576) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) ((($) . T)) -((((-711)) . T)) -((((-792 |#1| (-878 |#2|))) . T)) +((((-712)) . T)) +((((-793 |#1| (-879 |#2|))) . T)) ((((-576)) . T) (($) . T)) ((($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) ((((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1121)) -(|has| |#1| (-1121)) +(|has| |#1| (-1122)) +(|has| |#1| (-1122)) (|has| |#2| (-374)) -(((|#1|) . T) (($) -3795 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) +(((|#1|) . T) (($) -2748 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576)))) -((($) -3795 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((($) -2748 (|has| |#2| (-238)) (|has| |#2| (-237)))) ((((-576)) . T)) -(|has| |#1| (-1121)) -((($ (-1197)) -3795 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) -((((-1197)) -12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070)))) -((((-1197)) -12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070)))) +(|has| |#1| (-1122)) +((($ (-1198)) -2748 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) +((((-1198)) -12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071)))) +((((-1198)) -12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071)))) (((|#1|) . T)) (|has| |#1| (-238)) -(((|#2| (-245 (-1970 |#1|) (-783))) . T)) +(((|#2| (-245 (-3437 |#1|) (-784))) . T)) (((|#1| (-543 |#3|)) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) (((|#1|) . T) (($) . T)) (((|#1| (-543 |#2|)) . T)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) -(((|#1| (-783)) . T)) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) +(((|#1| (-784)) . T)) (|has| |#1| (-568)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1070))) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-876)) . T)) +((((-877)) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(-3795 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) -(-3795 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1070))) -(|has| |#2| (-1070)) +(-2748 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))) +(-2748 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-806)) (|has| |#3| (-1071))) +(|has| |#2| (-1071)) (((|#1|) |has| |#1| (-174))) -(((|#4|) |has| |#4| (-1070))) -(((|#3|) |has| |#3| (-1070))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -((((-576)) . T) (((-419 (-576))) -3795 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))) ((|#2|) . T) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-878 |#1|)) . T)) -((((-1146 |#1| |#2|)) . T) (((-576)) . T) ((|#3|) . T) (($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))) ((|#2|) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +(((|#4|) |has| |#4| (-1071))) +(((|#3|) |has| |#3| (-1071))) +(-12 (|has| |#1| (-374)) (|has| |#2| (-833))) +(-12 (|has| |#1| (-374)) (|has| |#2| (-833))) +((((-576)) . T) (((-419 (-576))) -2748 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576))))) ((|#2|) . T) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) (((-879 |#1|)) . T)) +((((-1147 |#1| |#2|)) . T) (((-576)) . T) ((|#3|) . T) (($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) ((|#2|) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) ((((-548)) |has| |#1| (-626 (-548)))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-1202)) . T)) -((((-684 |#1|)) . T)) +((((-1203)) . T)) +((((-685 |#1|)) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-876)) . T)) -((((-656 $)) . T) (((-1179)) . T) (((-1197)) . T) (((-576)) . T) (((-227)) . T) (((-876)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) +((((-877)) . T)) +((((-657 $)) . T) (((-1180)) . T) (((-1198)) . T) (((-576)) . T) (((-227)) . T) (((-877)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) ((($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) -(((|#4|) |has| |#4| (-1121)) (((-576)) -12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121))) (((-419 (-576))) -12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121)))) -(((|#3|) |has| |#3| (-1121)) (((-576)) -12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (((-419 (-576))) -12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) +(((|#4|) |has| |#4| (-1122)) (((-576)) -12 (|has| |#4| (-1060 (-576))) (|has| |#4| (-1122))) (((-419 (-576))) -12 (|has| |#4| (-1060 (-419 (-576)))) (|has| |#4| (-1122)))) +(((|#3|) |has| |#3| (-1122)) (((-576)) -12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122))) (((-419 (-576))) -12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) (|has| |#2| (-374)) -(((|#2|) |has| |#2| (-1070)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) -(-3795 (|has| |#1| (-379)) (|has| |#1| (-861))) +(((|#2|) |has| |#2| (-1071)) (((-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) +(-2748 (|has| |#1| (-379)) (|has| |#1| (-862))) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1197)) |has| |#1| (-1070))) +((((-1198)) |has| |#1| (-1071))) (|has| |#2| (-374)) (((|#2| |#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) . T)) -((((-876)) |has| |#1| (-1121))) +((((-877)) |has| |#1| (-1122))) ((($) . T)) -((((-1274 |#1| |#2| |#3| |#4|)) . T)) +((((-1275 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-832)) -(|has| |#2| (-832)) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(|has| |#2| (-833)) +(|has| |#2| (-833)) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-374)) (((|#1|) |has| |#2| (-429 |#1|))) (((|#1|) |has| |#2| (-429 |#1|))) -((((-1179)) . T)) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-656 |#1|)) . T) (((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) -((((-1202)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -((((-656 |#1|)) . T)) +((((-1180)) . T)) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-657 |#1|)) . T) (((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) +((((-1203)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((((-657 |#1|)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-876)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1237)) . T) (((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) |has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))))) -(-3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-877)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1238)) . T) (((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) |has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))))) +(-2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((((-576) |#1|) . T)) ((((-576) |#1|) . T)) ((((-576) |#1|) . T)) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((((-576) |#1|) . T)) (((|#1|) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-1197)) |has| |#1| (-917 (-1197))) (((-830 (-1197))) . T)) -(-3795 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1070))) -((((-831 |#1|)) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((((-1198)) |has| |#1| (-918 (-1198))) (((-831 (-1198))) . T)) +(-2748 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-806)) (|has| |#3| (-1071))) +((((-832 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-876)) . T)) -(|has| |#3| (-1070)) +((((-877)) . T)) +(|has| |#3| (-1071)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) (|has| |#1| (-38 (-419 (-576)))) -((((-876)) . T)) -((((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-877)) . T)) +((((-1275 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) +(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) (|has| |#1| (-374)) -(-3795 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238)))) +(-2748 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) -((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) +(((#0=(-419 (-576)) #0#) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) +((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) ((((-326 |#1|)) . T)) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((#0=(-711) (-1193 #0#)) . T)) -((((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) +(((#0=(-712) (-1194 #0#)) . T)) +((((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) (((|#1|) . T) (($) . T) (((-576)) . T) (((-419 (-576))) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-860)) -(((|#2|) . T) (((-1197)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3795 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($ $) . T) ((#0=(-878 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1146 |#1| (-1197))) . T) (((-830 (-1197))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1059 (-576))) (((-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) (((-1197)) . T)) +(|has| |#1| (-861)) +(((|#2|) . T) (((-1198)) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-1198)))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) +(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2748 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((($ $) . T) ((#0=(-879 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1147 |#1| (-1198))) . T) (((-831 (-1198))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-1198)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1103) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1197) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-1109 (-1197)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1104) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1198) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-1110 (-1198)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-576)) |has| |#2| (-651 (-576))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(|has| |#2| (-928)) -((($) . T) ((#0=(-1273 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((($) . T) (((-576)) |has| |#2| (-652 (-576))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +(|has| |#2| (-929)) +((($) . T) ((#0=(-1274 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) (((|#1|) |has| |#1| (-174))) ((((-576) |#1|) . T)) (((|#1|) . T)) -((((-1202)) . T)) -(((#0=(-1274 |#1| |#2| |#3| |#4|)) |has| #0# (-319 #0#))) +((((-1203)) . T)) +(((#0=(-1275 |#1| |#2| |#3| |#4|)) |has| #0# (-319 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2| |#2|) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2| |#2|) |has| |#1| (-374)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) (|has| |#2| (-238)) (|has| $ (-148)) -((((-876)) . T)) -((($) . T) (((-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((((-876)) . T)) -(|has| |#1| (-860)) +((((-877)) . T)) +((($) . T) (((-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) +((((-877)) . T)) +(|has| |#1| (-861)) ((((-130)) . T)) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) -((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T)) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) +((((-419 (-576))) . T) (((-712)) . T) (($) . T) (((-576)) . T)) (((|#1|) . T)) ((((-130)) . T)) -((($ (-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197))))) -((((-876)) . T)) -(-12 (|has| |#1| (-317)) (|has| |#1| (-928))) -(((|#2| (-684 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +((($ (-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) +((((-877)) . T)) +(-12 (|has| |#1| (-317)) (|has| |#1| (-929))) +(((|#2| (-685 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) ((((-419 |#2|) |#3|) . T)) -((((-876)) |has| |#1| (-1121))) +((((-877)) |has| |#1| (-1122))) (((|#4|) . T)) (|has| |#1| (-568)) -((($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) -((((-1197)) -3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) -(((|#1|) . T) (($) -3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) -((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) -(-3795 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) -(((|#1|) . T)) -(((|#1| (-543 (-830 (-1197)))) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -((((-576)) . T) ((|#2|) . T) (($) . T) (((-419 (-576))) . T) (((-1197)) |has| |#2| (-1059 (-1197)))) -(((|#1|) . T)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) -(((|#1|) . T)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) -(-3795 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) -((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) -((($) . T) (((-884 |#1|)) . T) (((-419 (-576))) . T)) -((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) +((($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) +((((-1198)) -2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) +(((|#1|) . T) (($) -2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) +((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) +(-2748 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) +(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) +(((|#1|) . T)) +(((|#1| (-543 (-831 (-1198)))) . T)) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +((((-576)) . T) ((|#2|) . T) (($) . T) (((-419 (-576))) . T) (((-1198)) |has| |#2| (-1060 (-1198)))) +(((|#1|) . T)) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(((|#1|) . T)) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) +(-2748 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))) +((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) +((($) . T) (((-885 |#1|)) . T) (((-419 (-576))) . T)) +((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) (|has| |#1| (-568)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-419 |#2|)) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) (((|#1|) . T)) (((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T)) (((|#2|) . T) (((-419 (-576))) . T) (($) . T)) ((((-576)) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-576) |#1|) . T)) ((($) . T)) ((($) . T)) -((((-876)) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576))))) -((((-876)) . T)) -((((-876)) . T)) -((((-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) (((-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548))))) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -(-3795 (|has| |#1| (-238)) (|has| |#1| (-237))) -(((|#1|) . T) (((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-876)) . T)) +((((-877)) . T)) +((((-548)) |has| |#2| (-626 (-548))) (((-908 (-390))) |has| |#2| (-626 (-908 (-390)))) (((-908 (-576))) |has| |#2| (-626 (-908 (-576))))) +((((-877)) . T)) +((((-877)) . T)) +((((-908 (-576))) -12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#3| (-626 (-908 (-576))))) (((-908 (-390))) -12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#3| (-626 (-908 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548))))) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +(-2748 (|has| |#1| (-238)) (|has| |#1| (-237))) +(((|#1|) . T) (((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-877)) . T)) ((((-115)) . T) ((|#1|) . T) (((-576)) . T)) ((((-130)) . T)) ((($) . T) (((-576)) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928)))) +((((-879 |#2|)) . T)) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) +((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) ((($) . T) (((-576)) . T)) -((($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1125)) . T)) -((((-876)) . T)) -((((-1202)) . T) (((-876)) . T)) -((((-1202)) . T) (((-876)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -((($) -3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) +(((|#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|))) . T)) +((($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-1126)) . T)) +((((-877)) . T)) +((((-1203)) . T) (((-877)) . T)) +((((-1203)) . T) (((-877)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((($) -2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) ((($) . T) (((-576)) . T)) -((($) -3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#2| (-928)) +(|has| |#2| (-929)) +((($) -2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) -((((-876)) . T)) +((((-877)) . T)) (((|#1|) . T)) -((($ $) . T) (((-1197) $) . T)) -((((-1280 |#1| |#2| |#3|)) . T)) -((((-1280 |#1| |#2| |#3|)) |has| |#1| (-374))) -(|has| |#1| (-928)) -((((-1280 |#1| |#2| |#3|)) . T) (((-1252 |#1| |#2| |#3|)) . T)) +((($ $) . T) (((-1198) $) . T)) +((((-1281 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-929)) +((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1281 |#1| |#2| |#3|)) . T) (((-1253 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -((((-1197)) . T) (((-876)) . T)) +((((-1198)) . T) (((-877)) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-174))) -((((-711)) . T)) -((((-711)) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -((((-1202)) . T)) -(-3795 (|has| |#2| (-805)) (|has| |#2| (-861))) +((((-712)) . T)) +((((-712)) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) +((((-1203)) . T)) +(-2748 (|has| |#2| (-806)) (|has| |#2| (-862))) (((|#1|) |has| |#1| (-174))) -((((-1202)) . T)) -((((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-1203)) . T)) +(((|#1| |#1|) . T)) +((((-1275 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) -((((-1202)) . T)) -((((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-1203)) . T)) +((((-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568))) ((((-419 (-576))) . T) (($) . T)) (((|#1| (-576)) . T)) -((($ (-1197)) -3795 (|has| |#1| (-917 (-1197))) (|has| |#1| (-919 (-1197)))) (($ (-1103)) . T)) +(((|#1|) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) +((($ (-1198)) -2748 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (($ (-1104)) . T)) (((|#1|) |has| |#1| (-174))) -((((-1202)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -((((-1202)) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-360))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1202)) . T)) -((((-1202)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +((((-1203)) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-1203)) . T)) +((((-1203)) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) -(-3795 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-174)) (|has| |#1| (-568))) (((|#1| (-576)) . T)) (((|#1| (-419 (-576))) . T)) -(((|#1| (-783)) . T)) +(((|#1| (-784)) . T)) ((((-419 (-576))) . T)) (((|#1| (-543 |#2|) |#2|) . T)) ((((-576) |#1|) . T)) ((((-576) |#1|) . T)) -(-3795 (|has| |#1| (-102)) (|has| |#1| (-1121))) -(-3795 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) +(-2748 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(-2748 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) ((((-576) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-907 (-390))) . T) (((-907 (-576))) . T) (((-1197)) . T) (((-548)) . T)) -(-3795 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1070))) -(-3795 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) -((((-876)) . T)) +((((-908 (-390))) . T) (((-908 (-576))) . T) (((-1198)) . T) (((-548)) . T)) +(-2748 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) +(-2748 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))) +((((-877)) . T)) ((((-576)) . T)) ((((-576)) . T)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-1197)) -12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) -(|has| |#2| (-1070)) -(-3795 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +((((-1198)) -12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071)))) +(|has| |#2| (-1071)) +(-2748 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-374)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1273 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((($) . T) ((#0=(-1274 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) (|has| |#1| (-238)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((($) . T) (((-576)) . T)) ((($) . T) (((-576)) . T)) -((($) . T) ((#0=(-1273 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -((((-876)) . T)) -(((|#1| (-783) (-1103)) . T)) -((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) -((((-1255 (-576)) $) . T) (((-576) |#1|) . T)) +((($) . T) ((#0=(-1274 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((((-877)) . T)) +(((|#1| (-784) (-1104)) . T)) +((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) +((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) -(((|#2|) |has| |#2| (-1070))) +(((|#2|) |has| |#2| (-1071))) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (((-576)) . T)) (((|#2|) . T)) @@ -3973,44 +3982,44 @@ ((((-576)) . T)) ((((-576)) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-1179) (-1197) (-576) (-227) (-876)) . T)) +((((-1180) (-1198) (-576) (-227) (-877)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) ((((-576)) . T) ((|#2|) |has| |#2| (-174))) ((((-115)) . T) ((|#1|) . T) (((-576)) . T)) -(-3795 (|has| |#1| (-360)) (|has| |#1| (-379))) +(-2748 (|has| |#1| (-360)) (|has| |#1| (-379))) (((|#1| |#2|) . T)) ((((-227)) . T)) ((((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-876)) . T)) +((((-877)) . T)) ((($) . T) ((|#1|) . T)) -((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) |has| |#2| (-1121)) (((-576)) -12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (((-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) -(-3795 (|has| |#2| (-238)) (|has| |#2| (-237))) +((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) +((($) . T) (((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#2|) |has| |#2| (-1122)) (((-576)) -12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (((-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) +(-2748 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) (((|#1|) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-861)) (|has| |#1| (-1121)))) -((((-576) $) . T) (((-656 (-576)) $) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) +((((-576) $) . T) (((-657 (-576)) $) . T)) ((($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-928)) -(|has| |#1| (-928)) -((((-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) (((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) (((-907 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-907 (-390))))) (((-907 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-907 (-576))))) (((-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548))))) -((((-876)) . T)) -((((-876)) . T)) +(|has| |#1| (-929)) +(|has| |#1| (-929)) +((((-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1044))) (((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1044))) (((-908 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-908 (-390))))) (((-908 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-908 (-576))))) (((-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548))))) +((((-877)) . T)) +((((-877)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#1|) . T) (((-576)) . T)) -((((-1202)) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-860))) +((((-1203)) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-861))) (((|#2|) . T)) -(-3795 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2748 (|has| |#1| (-21)) (|has| |#1| (-861))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-876)) -3795 (-12 (|has| |#1| (-625 (-876))) (|has| |#2| (-625 (-876)))) (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) +((((-877)) -2748 (-12 (|has| |#1| (-625 (-877))) (|has| |#2| (-625 (-877)))) (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) ((((-419 |#2|) |#3|) . T)) ((((-419 (-576))) . T) (($) . T)) (|has| |#1| (-38 (-419 (-576)))) @@ -4019,140 +4028,141 @@ ((($) . T) (((-576)) . T)) (|has| (-419 |#2|) (-148)) (|has| (-419 |#2|) (-146)) -(-3795 (|has| |#3| (-805)) (|has| |#3| (-861))) +(-2748 (|has| |#3| (-806)) (|has| |#3| (-862))) ((($) . T)) -((((-711)) . T)) +((((-712)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((#0=(-576) #0#) . T)) ((($) . T) (((-419 (-576))) . T)) -(|has| |#4| (-1070)) -(|has| |#3| (-1070)) -((((-876)) . T) (((-1202)) . T)) -(|has| |#4| (-805)) -(|has| |#4| (-805)) -(|has| |#3| (-805)) -(|has| |#3| (-805)) -((((-1202)) . T)) +(|has| |#4| (-1071)) +(|has| |#3| (-1071)) +((((-877)) . T) (((-1203)) . T)) +(|has| |#4| (-806)) +(|has| |#4| (-806)) +(|has| |#3| (-806)) +(|has| |#3| (-806)) +((((-1203)) . T)) ((((-576)) . T)) (((|#2|) . T)) -((((-1197)) -3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) -((((-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) +((((-1198)) -2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) +((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-878 |#1|)) . T)) +((((-879 |#1|)) . T)) (((|#1|) . T)) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-1161 |#1| |#2|)) . T)) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) -(((|#2|) . T) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -((((-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) . T)) +((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1162 |#1| |#2|)) . T)) +((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) +(((|#2|) . T) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +((((-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) . T)) ((($) . T)) -(|has| |#1| (-1043)) -(((|#2|) . T) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) +(|has| |#1| (-1044)) +(((|#2|) . T) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) ((($) . T)) -((((-876)) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-907 (-576))) |has| |#2| (-626 (-907 (-576)))) (((-907 (-390))) |has| |#2| (-626 (-907 (-390)))) (((-390)) . #0=(|has| |#2| (-1043))) (((-227)) . #0#)) +((((-877)) . T)) +((((-548)) |has| |#2| (-626 (-548))) (((-908 (-576))) |has| |#2| (-626 (-908 (-576)))) (((-908 (-390))) |has| |#2| (-626 (-908 (-390)))) (((-390)) . #0=(|has| |#2| (-1044))) (((-227)) . #0#)) ((((-304 |#3|)) . T)) -((((-1197) (-52)) . T)) +((((-1198) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-1197)) -3795 (|has| |#2| (-917 (-1197))) (|has| |#2| (-919 (-1197))))) -((((-876)) . T)) +((((-1198)) -2748 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) +((((-877)) . T)) (((|#2|) . T)) -((((-876)) . T)) +((((-877)) . T)) ((((-419 (-576)) |#1|) . T) (($ $) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((((-1195 |#1| |#2| |#3|)) . T)) -((((-1195 |#1| |#2| |#3|)) . T) (((-1188 |#1| |#2| |#3|)) . T)) -((((-876)) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-419 (-576))) . T) (((-712)) . T) (($) . T)) +((((-1196 |#1| |#2| |#3|)) . T)) +((((-1196 |#1| |#2| |#3|)) . T) (((-1189 |#1| |#2| |#3|)) . T)) +((((-877)) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) ((((-576) |#1|) . T)) -((((-1195 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-374)) -(((|#3|) . T) ((|#2|) . T) ((|#4|) -3795 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1070))) (($) |has| |#4| (-1070)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) -(((|#2|) . T) ((|#3|) -3795 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) -2748 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1071))) (($) |has| |#4| (-1071)) (((-576)) -12 (|has| |#4| (-652 (-576))) (|has| |#4| (-1071)))) +(((|#2|) . T) ((|#3|) -2748 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071))) (($) |has| |#3| (-1071)) (((-576)) -12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((|#1|) . T)) (((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) (((-576)) |has| |#2| (-1059 (-576))) ((|#2|) . T) (((-878 |#1|)) . T)) -((((-1197)) . T) ((|#1|) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) -((((-189)) . T) (((-876)) . T)) -((((-876)) . T)) +((((-419 (-576))) |has| |#2| (-1060 (-419 (-576)))) (((-576)) |has| |#2| (-1060 (-576))) ((|#2|) . T) (((-879 |#1|)) . T)) +((((-1198)) . T) ((|#1|) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) +((((-189)) . T) (((-877)) . T)) +((((-877)) . T)) (((|#1|) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) -((((-130)) . T) (((-876)) . T)) -((((-576) |#1|) . T) (((-1255 (-576)) $) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) +((((-130)) . T) (((-877)) . T)) +((((-576) |#1|) . T) (((-1256 (-576)) $) . T)) +((((-877)) . T)) ((((-130)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) (($ $) . T) (((-576) |#1|) . T)) ((($ $) . T) (((-419 (-576)) |#1|) . T)) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-928))) -((($ (-1197)) |has| |#1| (-1070))) -(-3795 (|has| |#1| (-861)) (|has| |#1| (-1121))) -((((-876)) . T)) -((((-876)) . T)) -((((-876)) . T)) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-929))) +((($ (-1198)) |has| |#1| (-1071))) +(-2748 (|has| |#1| (-862)) (|has| |#1| (-1122))) +((((-877)) . T)) +((((-877)) . T)) +((((-877)) . T)) (((|#1| (-543 |#2|)) . T)) -((((-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) . T)) +((((-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) . T)) ((((-576) (-130)) . T)) (((|#1| (-576)) . T)) (((|#1| (-419 (-576))) . T)) -(((|#1| (-783)) . T)) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) +(((|#1| (-784)) . T)) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) ((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -(-3795 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) -(-3795 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-928))) +((((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +(-2748 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) +(-2748 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((($) . T)) -(((|#2| (-543 (-878 |#1|))) . T)) -((((-1202)) . T)) -((((-1202)) . T)) +(((|#2| (-543 (-879 |#1|))) . T)) +((((-1203)) . T)) +((((-1203)) . T)) ((((-576) |#1|) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) (((|#2|) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-876)) . T) (((-1202)) . T)) -((((-1202)) . T)) -((((-876)) -3795 (|has| |#1| (-625 (-876))) (|has| |#1| (-1121)))) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-877)) . T) (((-1203)) . T)) +((((-1203)) . T)) +((((-877)) -2748 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-1179) |#1|) . T)) +((((-1180) |#1|) . T)) ((((-419 |#2|)) . T)) ((((-419 |#2|)) . T)) (|has| |#1| (-568)) (|has| |#1| (-568)) -((((-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T)) -(((|#2| (-783)) . T)) +((((-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T)) +(((|#2| (-784)) . T)) ((($) . T) ((|#2|) . T)) ((($) . T) (((-419 (-576))) . T)) ((((-419 (-576))) . T) (($) . T)) @@ -4160,36 +4170,36 @@ (((|#1| |#2|) . T)) ((((-576)) . T) (($) . T)) (((|#2| $) |has| |#2| (-296 |#2| |#2|))) -(((|#1| (-656 |#1|)) |has| |#1| (-860))) -(-3795 (|has| |#1| (-238)) (|has| |#1| (-360))) -(-3795 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1284 |#1|)) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1059 (-419 (-576))))) -(|has| |#1| (-1121)) +(((|#1| (-657 |#1|)) |has| |#1| (-861))) +(-2748 (|has| |#1| (-238)) (|has| |#1| (-360))) +(-2748 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-1285 |#1|)) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) +(|has| |#1| (-1122)) (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-1284 |#1|)) . T) (((-576)) . T) (($) -3795 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-928))) (((-1103)) . T) ((|#2|) . T) (((-419 (-576))) -3795 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) -((((-1020 |#1|)) . T) ((|#1|) . T) (((-576)) -3795 (|has| (-1020 |#1|) (-1059 (-576))) (|has| |#1| (-1059 (-576)))) (((-419 (-576))) -3795 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) -((((-929 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((((-1197)) |has| |#1| (-917 (-1197)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) -((((-929 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-1285 |#1|)) . T) (((-576)) . T) (($) -2748 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) (((-1104)) . T) ((|#2|) . T) (((-419 (-576))) -2748 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576)))))) +((((-1021 |#1|)) . T) ((|#1|) . T) (((-576)) -2748 (|has| (-1021 |#1|) (-1060 (-576))) (|has| |#1| (-1060 (-576)))) (((-419 (-576))) -2748 (|has| (-1021 |#1|) (-1060 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) +((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-1198)) |has| |#1| (-918 (-1198)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-930 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1161 |#1| |#2|) #0#) |has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|)))) +(((#0=(-1162 |#1| |#2|) #0#) |has| (-1162 |#1| |#2|) (-319 (-1162 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((#0=(-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) #0#) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) -(-3795 (|has| |#1| (-238)) (|has| |#1| (-237))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((#0=(-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) +(-2748 (|has| |#1| (-238)) (|has| |#1| (-237))) (((#0=(-117 |#1|)) |has| #0# (-319 #0#))) ((($ $) . T)) -(-3795 (|has| |#1| (-861)) (|has| |#1| (-1121))) -((($ $) . T) ((#0=(-878 |#1|) $) . T) ((#0# |#2|) . T)) +(-2748 (|has| |#1| (-862)) (|has| |#1| (-1122))) +((($ $) . T) ((#0=(-879 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-238)) ((|#2| |#1|) |has| |#1| (-238)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-490 . -1121) T) ((-273 . -526) 204890) ((-253 . -526) 204833) ((-250 . -1121) 204783) ((-583 . -111) 204768) ((-543 . -23) T) ((-139 . -1121) T) ((-138 . -1121) T) ((-118 . -319) 204725) ((-134 . -1121) T) ((-1020 . -237) 204676) ((-811 . -1238) T) ((-491 . -526) 204468) ((-689 . -628) 204452) ((-706 . -102) T) ((-1162 . -526) 204371) ((-411 . -237) T) ((-402 . -132) T) ((-1301 . -997) 204340) ((-1045 . -1072) 204277) ((-329 . -864) T) ((-31 . -93) T) ((-614 . -501) 204261) ((-1045 . -652) 204198) ((-633 . -132) T) ((-831 . -858) T) ((-535 . -57) 204148) ((-531 . -526) 204081) ((-362 . -234) 204068) ((-365 . -1072) 204013) ((-59 . -526) 203946) ((-528 . -526) 203879) ((-430 . -917) 203838) ((-171 . -1070) T) ((-509 . -526) 203771) ((-508 . -526) 203704) ((-365 . -652) 203649) ((-811 . -1059) 203429) ((-1261 . -628) 203177) ((-711 . -38) 203142) ((-1115 . -1114) 203126) ((-354 . -360) T) ((-480 . -1238) T) ((-1115 . -1121) 203104) ((-869 . -628) 203001) ((-171 . -248) 202952) ((-171 . -238) 202903) ((-1115 . -1116) 202861) ((-886 . -296) 202819) ((-227 . -807) T) ((-227 . -804) T) ((-706 . -294) NIL) ((-583 . -628) 202791) ((-1171 . -1214) 202770) ((-419 . -1013) 202754) ((-48 . -1072) 202719) ((-713 . -21) T) ((-713 . -25) T) ((-48 . -652) 202684) ((-1303 . -660) 202658) ((-1261 . -336) 202635) ((-1171 . -107) 202585) ((-326 . -161) 202564) ((-326 . -144) 202543) ((-117 . -21) T) ((-40 . -232) 202520) ((-40 . -272) 202497) ((-135 . -25) T) ((-117 . -25) T) ((-1261 . -238) T) ((-1261 . -1070) T) ((-620 . -298) 202473) ((-869 . -1070) T) ((-618 . -1238) T) ((-811 . -349) 202457) ((-487 . -298) 202436) ((-683 . -1238) T) ((-182 . -1238) T) ((-162 . -1238) T) ((-157 . -1238) T) ((-155 . -1238) T) ((-140 . -187) T) ((-118 . -1173) NIL) ((-91 . -625) 202368) ((-489 . -132) T) ((-1186 . -1238) T) ((-1117 . -502) 202349) ((-1117 . -625) 202315) ((-1111 . -502) 202296) ((-1111 . -625) 202262) ((-605 . -1238) T) ((-1094 . -502) 202243) ((-583 . -1070) T) ((-1094 . -625) 202209) ((-674 . -729) 202193) ((-1087 . -502) 202174) ((-1087 . -625) 202140) ((-977 . -298) 202117) ((-60 . -34) T) ((-1083 . -807) T) ((-1083 . -804) T) ((-1057 . -502) 202098) ((-1040 . -502) 202079) ((-828 . -738) T) ((-743 . -47) 202044) ((-635 . -38) 202031) ((-366 . -300) T) ((-363 . -300) T) ((-355 . -300) T) ((-273 . -300) 201962) ((-253 . -300) 201893) ((-1057 . -625) 201859) ((-1045 . -102) T) ((-1040 . -625) 201825) ((-638 . -502) 201806) ((-425 . -738) T) ((-118 . -38) 201751) ((-495 . -502) 201732) ((-638 . -625) 201698) ((-425 . -485) T) ((-220 . -502) 201679) ((-495 . -625) 201645) ((-365 . -102) T) ((-220 . -625) 201611) ((-1232 . -1079) T) ((-354 . -658) 201541) ((-723 . -1079) T) ((-1195 . -47) 201518) ((-1194 . -47) 201488) ((-1188 . -47) 201465) ((-129 . -298) 201440) ((-1056 . -152) 201386) ((-929 . -300) T) ((-1147 . -47) 201358) ((-706 . -319) NIL) ((-527 . -625) 201340) ((-522 . -625) 201322) ((-520 . -625) 201304) ((-497 . -1238) T) ((-337 . -1121) 201254) ((-326 . -911) 201218) ((-323 . -911) NIL) ((-724 . -464) 201149) ((-48 . -102) T) ((-1272 . -296) 201107) ((-1251 . -296) 201007) ((-656 . -678) 200991) ((-656 . -663) 200975) ((-350 . -21) T) ((-350 . -25) T) ((-40 . -360) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-656 . -384) 200959) ((-617 . -502) 200941) ((-614 . -296) 200893) ((-617 . -625) 200860) ((-400 . -102) T) ((-1141 . -144) T) ((-127 . -625) 200792) ((-888 . -1121) T) ((-670 . -423) 200776) ((-743 . -1238) T) ((-726 . -625) 200758) ((-255 . -625) 200725) ((-189 . -625) 200707) ((-163 . -625) 200689) ((-158 . -625) 200671) ((-1303 . -738) T) ((-1123 . -34) T) ((-885 . -807) NIL) ((-885 . -804) NIL) ((-872 . -861) T) ((-743 . -901) NIL) ((-1312 . -132) T) ((-392 . -132) T) ((-907 . -628) 200639) ((-923 . -102) T) ((-743 . -1059) 200515) ((-1195 . -1238) T) ((-1194 . -1238) T) ((-543 . -132) T) ((-1188 . -1238) T) ((-1108 . -423) 200499) ((-1021 . -501) 200483) ((-118 . -412) 200460) ((-1147 . -1238) T) ((-794 . -423) 200444) ((-792 . -423) 200428) ((-962 . -34) T) ((-706 . -1173) NIL) ((-258 . -660) 200248) ((-257 . -660) 200055) ((-829 . -939) 200034) ((-466 . -423) 200018) ((-614 . -19) 200002) ((-1167 . -1231) 199971) ((-1188 . -901) NIL) ((-1188 . -899) 199923) ((-614 . -616) 199900) ((-108 . -864) T) ((-1224 . -625) 199832) ((-1196 . -625) 199814) ((-62 . -407) T) ((-1194 . -1059) 199749) ((-1188 . -1059) 199715) ((-706 . -38) 199665) ((-40 . -658) 199595) ((-486 . -296) 199553) ((-1244 . -625) 199535) ((-743 . -388) 199519) ((-850 . -625) 199501) ((-670 . -1079) T) ((-635 . -919) 199424) ((-1272 . -1023) 199390) ((-448 . -1238) T) ((-1251 . -1023) 199356) ((-256 . -1238) T) ((-1109 . -628) 199340) ((-1084 . -1214) 199315) ((-1097 . -628) 199292) ((-886 . -626) 199099) ((-886 . -625) 199081) ((-118 . -919) NIL) ((-713 . -234) 199068) ((-1210 . -501) 199005) ((-430 . -1043) 198983) ((-48 . -319) 198970) ((-1084 . -107) 198916) ((-491 . -501) 198853) ((-537 . -1238) T) ((-532 . -1238) T) ((-1188 . -349) 198805) ((-1162 . -501) 198776) ((-1188 . -388) 198728) ((-1108 . -1079) T) ((-449 . -102) T) ((-185 . -1121) T) ((-258 . -34) T) ((-257 . -34) T) ((-1179 . -864) T) ((-862 . -628) 198712) ((-794 . -1079) T) ((-792 . -1079) T) ((-743 . -917) 198689) ((-466 . -1079) T) ((-59 . -501) 198673) ((-1055 . -1077) 198647) ((-531 . -501) 198631) ((-528 . -501) 198615) ((-509 . -501) 198599) ((-508 . -501) 198583) ((-250 . -526) 198516) ((-1055 . -111) 198483) ((-1195 . -917) 198396) ((-1194 . -917) 198302) ((-682 . -1133) T) ((-1188 . -917) 198135) ((-657 . -93) T) ((-1147 . -917) 198119) ((-365 . -1173) T) ((-332 . -1077) 198101) ((-31 . -502) 198082) ((-258 . -806) 198061) ((-258 . -805) 198040) ((-257 . -806) 198019) ((-257 . -805) 197998) ((-31 . -625) 197964) ((-50 . -1079) T) ((-258 . -738) 197942) ((-257 . -738) 197920) ((-1232 . -1121) T) ((-682 . -23) T) ((-593 . -1079) T) ((-530 . -1079) T) ((-390 . -1077) 197885) ((-332 . -111) 197860) ((-73 . -394) T) ((-73 . -407) T) ((-1045 . -38) 197797) ((-706 . -412) 197779) ((-99 . -102) T) ((-1317 . -1072) 197766) ((-723 . -1121) T) ((-1134 . -864) 197717) ((-1024 . -146) 197689) ((-1024 . -148) 197661) ((-884 . -658) 197633) ((-390 . -111) 197589) ((-329 . -1242) 197568) ((-486 . -1023) 197534) ((-365 . -38) 197499) ((-40 . -381) 197471) ((-887 . -625) 197343) ((-128 . -126) 197327) ((-122 . -126) 197311) ((-848 . -1077) 197281) ((-845 . -21) 197233) ((-839 . -1077) 197217) ((-845 . -25) 197169) ((-329 . -568) 197120) ((-529 . -628) 197101) ((-576 . -840) T) ((-245 . -1238) T) ((-1055 . -628) 197070) ((-848 . -111) 197035) ((-839 . -111) 197014) ((-1272 . -625) 196996) ((-1251 . -625) 196978) ((-1251 . -626) 196649) ((-1193 . -928) 196628) ((-1146 . -928) 196607) ((-48 . -38) 196572) ((-1310 . -1133) T) ((-548 . -296) 196528) ((-614 . -625) 196440) ((-614 . -626) 196401) ((-1308 . -1133) T) ((-372 . -628) 196385) ((-332 . -628) 196369) ((-1163 . -237) 196320) ((-245 . -1059) 196147) ((-1193 . -660) 196036) ((-1146 . -660) 195925) ((-868 . -660) 195899) ((-730 . -625) 195881) ((-558 . -379) T) ((-1310 . -23) T) ((-706 . -919) NIL) ((-1308 . -23) T) ((-503 . -1121) T) ((-390 . -628) 195831) ((-390 . -630) 195813) ((-1055 . -1070) T) ((-879 . -102) T) ((-1210 . -296) 195792) ((-171 . -379) 195743) ((-1025 . -1238) T) ((-992 . -1238) T) ((-933 . -1238) T) ((-848 . -628) 195697) ((-839 . -628) 195652) ((-44 . -23) T) ((-1317 . -102) T) ((-491 . -296) 195631) ((-598 . -1121) T) ((-1167 . -1130) 195600) ((-439 . -1238) T) ((-1125 . -1124) 195552) ((-402 . -21) T) ((-402 . -25) T) ((-153 . -1133) T) ((-1232 . -729) 195449) ((-1218 . -1121) T) ((-1025 . -899) 195431) ((-1025 . -901) 195413) ((-635 . -232) 195397) ((-635 . -272) 195381) ((-633 . -21) T) ((-299 . -568) T) ((-633 . -25) T) ((-1025 . -1059) 195341) ((-723 . -729) 195306) ((-245 . -388) 195275) ((-390 . -1070) T) ((-225 . -1079) T) ((-118 . -272) 195252) ((-118 . -232) 195229) ((-59 . -296) 195181) ((-153 . -23) T) ((-528 . -296) 195133) ((-337 . -526) 195066) ((-508 . -296) 195018) ((-390 . -248) T) ((-390 . -238) T) ((-848 . -1070) T) ((-839 . -1070) T) ((-724 . -968) 194987) ((-713 . -861) T) ((-624 . -864) T) ((-486 . -625) 194969) ((-1274 . -1072) 194874) ((-592 . -658) 194846) ((-576 . -658) 194818) ((-507 . -658) 194768) ((-839 . -238) 194747) ((-135 . -861) T) ((-1274 . -652) 194639) ((-670 . -1121) T) ((-1210 . -616) 194618) ((-562 . -1214) 194597) ((-347 . -1121) T) ((-329 . -374) 194576) ((-419 . -148) 194555) ((-419 . -146) 194534) ((-983 . -1133) 194433) ((-827 . -1133) 194411) ((-245 . -917) 194343) ((-666 . -866) 194327) ((-491 . -616) 194306) ((-110 . -864) T) ((-536 . -1238) T) ((-562 . -107) 194256) ((-1025 . -388) 194238) ((-1025 . -349) 194220) ((-1197 . -625) 194202) ((-97 . -1121) T) ((-983 . -23) 194013) ((-489 . -21) T) ((-489 . -25) T) ((-827 . -23) 193865) ((-1197 . -626) 193787) ((-59 . -19) 193771) ((-1193 . -738) T) ((-1146 . -738) T) ((-1108 . -1121) T) ((-528 . -19) 193755) ((-508 . -19) 193739) ((-59 . -616) 193716) ((-1024 . -237) 193653) ((-920 . -102) 193603) ((-868 . -738) T) ((-794 . -1121) T) ((-528 . -616) 193580) ((-508 . -616) 193557) ((-792 . -1121) T) ((-792 . -1086) 193524) ((-473 . -1121) T) ((-466 . -1121) T) ((-598 . -729) 193499) ((-661 . -1121) T) ((-1280 . -47) 193476) ((-1274 . -102) T) ((-1273 . -47) 193446) ((-1252 . -47) 193423) ((-1232 . -174) 193374) ((-1194 . -317) 193353) ((-1188 . -317) 193332) ((-1117 . -628) 193313) ((-1111 . -628) 193294) ((-1101 . -568) 193245) ((-1101 . -1242) 193196) ((-1025 . -917) NIL) ((-1094 . -628) 193177) ((-682 . -132) T) ((-639 . -1133) T) ((-1087 . -628) 193158) ((-1057 . -628) 193139) ((-1040 . -628) 193120) ((-726 . -1077) 193090) ((-711 . -658) 193040) ((-284 . -1121) T) ((-85 . -453) T) ((-85 . -407) T) ((-724 . -911) 192943) ((-723 . -174) T) ((-50 . -1121) T) ((-607 . -47) 192920) ((-227 . -660) 192885) ((-593 . -1121) T) ((-530 . -1121) T) ((-499 . -832) T) ((-499 . -939) T) ((-370 . -1242) T) ((-364 . -1242) T) ((-356 . -1242) T) ((-329 . -1133) T) ((-326 . -1072) 192795) ((-323 . -1072) 192724) ((-108 . -1242) T) ((-638 . -628) 192705) ((-370 . -568) T) ((-219 . -939) T) ((-219 . -832) T) ((-326 . -652) 192615) ((-323 . -652) 192544) ((-364 . -568) T) ((-356 . -568) T) ((-495 . -628) 192525) ((-108 . -568) T) ((-1188 . -1043) NIL) ((-670 . -729) 192495) ((-494 . -864) 192446) ((-220 . -628) 192427) ((-329 . -23) T) ((-67 . -1238) T) ((-1021 . -625) 192359) ((-1317 . -1173) T) ((-706 . -272) 192341) ((-706 . -232) 192323) ((-1312 . -21) T) ((-726 . -111) 192288) ((-1312 . -25) T) ((-656 . -34) T) ((-250 . -501) 192272) ((-1310 . -132) T) ((-1308 . -132) T) ((-1301 . -102) T) ((-1284 . -625) 192238) ((-1123 . -1119) 192222) ((-173 . -1121) T) ((-1280 . -1238) T) ((-1273 . -1238) T) ((-1273 . -1059) 192157) ((-1252 . -1238) T) ((-1252 . -901) NIL) ((-971 . -928) 192136) ((-1252 . -899) 192088) ((-1252 . -1059) 192054) ((-1232 . -526) 192021) ((-527 . -628) 192005) ((-1210 . -626) NIL) ((-1210 . -625) 191987) ((-1163 . -1144) 191932) ((-493 . -928) 191911) ((-1108 . -729) 191760) ((-1083 . -660) 191732) ((-971 . -660) 191621) ((-830 . -864) T) ((-794 . -729) 191450) ((-609 . -502) 191431) ((-597 . -502) 191412) ((-609 . -625) 191378) ((-597 . -625) 191344) ((-548 . -625) 191326) ((-591 . -1238) T) ((-548 . -626) 191307) ((-792 . -729) 191156) ((-1098 . -102) T) ((-635 . -658) 191128) ((-392 . -25) T) ((-392 . -21) T) ((-493 . -660) 191017) ((-473 . -729) 190988) ((-466 . -729) 190837) ((-1008 . -102) T) ((-1067 . -1231) 190766) ((-920 . -319) 190704) ((-890 . -93) T) ((-749 . -102) T) ((-118 . -658) 190634) ((-617 . -628) 190616) ((-726 . -628) 190570) ((-693 . -93) T) ((-543 . -25) T) ((-688 . -93) T) ((-676 . -625) 190552) ((-657 . -502) 190533) ((-657 . -625) 190486) ((-142 . -102) T) ((-44 . -132) T) ((-608 . -1238) T) ((-607 . -1238) T) ((-354 . -1079) T) ((-299 . -1133) T) ((-490 . -93) T) ((-419 . -237) 190437) ((-366 . -625) 190419) ((-363 . -625) 190401) ((-355 . -625) 190383) ((-273 . -626) 190131) ((-273 . -625) 190113) ((-253 . -625) 190095) ((-253 . -626) 189956) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1162 . -625) 189938) ((-1141 . -652) 189925) ((-1141 . -1072) 189912) ((-831 . -738) T) ((-831 . -871) T) ((-614 . -298) 189889) ((-593 . -729) 189854) ((-491 . -626) NIL) ((-491 . -625) 189836) ((-530 . -729) 189781) ((-326 . -102) T) ((-323 . -102) T) ((-299 . -23) T) ((-153 . -132) T) ((-929 . -625) 189763) ((-929 . -626) 189745) ((-398 . -738) T) ((-886 . -1077) 189697) ((-886 . -111) 189635) ((-726 . -1070) T) ((-724 . -1264) 189619) ((-706 . -360) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-531 . -625) 189551) ((-390 . -807) T) ((-169 . -1238) T) ((-225 . -1121) T) ((-390 . -804) T) ((-59 . -626) 189512) ((-227 . -806) T) ((-227 . -803) T) ((-59 . -625) 189424) ((-227 . -738) T) ((-528 . -626) 189385) ((-528 . -625) 189297) ((-509 . -625) 189229) ((-508 . -626) 189190) ((-508 . -625) 189102) ((-1101 . -374) 189053) ((-40 . -423) 189030) ((-77 . -1238) T) ((-885 . -928) NIL) ((-370 . -339) 189014) ((-370 . -374) T) ((-364 . -339) 188998) ((-364 . -374) T) ((-356 . -339) 188982) ((-356 . -374) T) ((-326 . -294) 188961) ((-108 . -374) T) ((-70 . -1238) T) ((-1252 . -349) 188913) ((-885 . -660) 188858) ((-1252 . -388) 188810) ((-983 . -132) 188665) ((-827 . -132) 188536) ((-45 . -864) NIL) ((-977 . -663) 188520) ((-1108 . -174) 188431) ((-977 . -384) 188415) ((-1083 . -806) T) ((-1083 . -803) T) ((-886 . -628) 188313) ((-794 . -174) 188204) ((-792 . -174) 188115) ((-828 . -47) 188077) ((-1083 . -738) T) ((-337 . -501) 188061) ((-971 . -738) T) ((-1301 . -319) 187999) ((-1280 . -917) 187912) ((-466 . -174) 187823) ((-250 . -296) 187775) ((-1273 . -917) 187681) ((-1272 . -1077) 187516) ((-1252 . -917) 187349) ((-493 . -738) T) ((-1251 . -1077) 187157) ((-1232 . -300) 187136) ((-1207 . -1238) T) ((-1204 . -379) T) ((-1203 . -379) T) ((-1167 . -152) 187120) ((-1141 . -102) T) ((-1139 . -1121) T) ((-1101 . -23) T) ((-1101 . -1133) T) ((-1096 . -102) T) ((-1078 . -625) 187087) ((-1024 . -421) 187059) ((-946 . -974) T) ((-749 . -319) 186997) ((-75 . -1238) T) ((-676 . -393) 186969) ((-171 . -928) 186922) ((-30 . -974) T) ((-112 . -856) T) ((-1 . -625) 186904) ((-1020 . -911) 186825) ((-129 . -663) 186807) ((-50 . -632) 186791) ((-706 . -658) 186726) ((-607 . -917) 186639) ((-450 . -102) T) ((-129 . -384) 186621) ((-142 . -319) NIL) ((-886 . -1070) T) ((-845 . -861) 186600) ((-81 . -1238) T) ((-723 . -300) T) ((-40 . -1079) T) ((-593 . -174) T) ((-530 . -174) T) ((-523 . -625) 186582) ((-171 . -660) 186456) ((-519 . -625) 186438) ((-362 . -148) 186420) ((-362 . -146) T) ((-370 . -1133) T) ((-364 . -1133) T) ((-356 . -1133) T) ((-1025 . -317) T) ((-933 . -317) T) ((-886 . -248) T) ((-108 . -1133) T) ((-886 . -238) 186399) ((-1272 . -111) 186220) ((-1251 . -111) 186009) ((-250 . -1276) 185993) ((-576 . -860) T) ((-370 . -23) T) ((-365 . -360) T) ((-326 . -319) 185980) ((-323 . -319) 185921) ((-364 . -23) T) ((-329 . -132) T) ((-356 . -23) T) ((-1025 . -1043) T) ((-31 . -628) 185902) ((-108 . -23) T) ((-666 . -1072) 185886) ((-250 . -616) 185863) ((-343 . -1121) T) ((-666 . -652) 185833) ((-1274 . -38) 185725) ((-1261 . -928) 185704) ((-112 . -1121) T) ((-828 . -1238) T) ((-425 . -1238) T) ((-1056 . -102) T) ((-1261 . -660) 185593) ((-885 . -806) NIL) ((-869 . -660) 185567) ((-885 . -803) NIL) ((-828 . -901) NIL) ((-885 . -738) T) ((-1108 . -526) 185440) ((-794 . -526) 185387) ((-792 . -526) 185339) ((-583 . -660) 185326) ((-828 . -1059) 185154) ((-466 . -526) 185097) ((-400 . -401) T) ((-1272 . -628) 184910) ((-1251 . -628) 184658) ((-60 . -1238) T) ((-633 . -861) 184637) ((-512 . -673) T) ((-1167 . -997) 184606) ((-1045 . -658) 184543) ((-1024 . -464) T) ((-711 . -860) T) ((-522 . -804) T) ((-486 . -1077) 184378) ((-512 . -113) T) ((-354 . -1121) T) ((-323 . -1173) NIL) ((-299 . -132) T) ((-406 . -1121) T) ((-884 . -1079) T) ((-706 . -381) 184345) ((-365 . -658) 184275) ((-225 . -632) 184252) ((-337 . -296) 184204) ((-486 . -111) 184025) ((-1272 . -1070) T) ((-1251 . -1070) T) ((-828 . -388) 184009) ((-836 . -1238) T) ((-171 . -738) T) ((-1303 . -1238) T) ((-666 . -102) T) ((-1272 . -248) 183988) ((-1272 . -238) 183940) ((-1251 . -238) 183845) ((-1251 . -248) 183824) ((-1024 . -414) NIL) ((-682 . -651) 183772) ((-326 . -38) 183682) ((-323 . -38) 183611) ((-69 . -625) 183593) ((-329 . -505) 183559) ((-48 . -658) 183509) ((-1210 . -298) 183488) ((-1246 . -861) T) ((-1134 . -1133) 183466) ((-83 . -1238) T) ((-61 . -625) 183448) ((-878 . -864) T) ((-491 . -298) 183427) ((-1303 . -1059) 183404) ((-1185 . -1121) T) ((-1134 . -23) 183256) ((-828 . -917) 183192) ((-1261 . -738) T) ((-1123 . -1238) T) ((-486 . -628) 183018) ((-362 . -237) T) ((-1108 . -300) 182949) ((-985 . -1121) T) ((-908 . -102) T) ((-794 . -300) 182860) ((-337 . -19) 182844) ((-59 . -298) 182821) ((-792 . -300) 182752) ((-869 . -738) T) ((-118 . -860) NIL) ((-528 . -298) 182729) ((-337 . -616) 182706) ((-508 . -298) 182683) ((-466 . -300) 182614) ((-1056 . -319) 182465) ((-890 . -502) 182446) ((-890 . -625) 182412) ((-693 . -502) 182393) ((-583 . -738) T) ((-688 . -502) 182374) ((-693 . -625) 182324) ((-688 . -625) 182290) ((-674 . -625) 182272) ((-490 . -502) 182253) ((-490 . -625) 182219) ((-250 . -626) 182180) ((-250 . -502) 182157) ((-139 . -502) 182138) ((-138 . -502) 182119) ((-134 . -502) 182100) ((-250 . -625) 181992) ((-215 . -102) T) ((-139 . -625) 181958) ((-138 . -625) 181924) ((-134 . -625) 181890) ((-1168 . -34) T) ((-962 . -1238) T) ((-354 . -729) 181835) ((-682 . -25) T) ((-682 . -21) T) ((-1197 . -628) 181816) ((-341 . -1238) T) ((-486 . -1070) T) ((-647 . -429) 181781) ((-619 . -429) 181746) ((-1141 . -1173) T) ((-1273 . -317) 181725) ((-724 . -1072) 181548) ((-593 . -300) T) ((-530 . -300) T) ((-1252 . -317) 181527) ((-486 . -238) 181479) ((-486 . -248) 181458) ((-451 . -1238) T) ((-724 . -652) 181287) ((-1252 . -1043) NIL) ((-1101 . -132) T) ((-886 . -807) 181266) ((-145 . -102) T) ((-40 . -1121) T) ((-886 . -804) 181245) ((-656 . -1031) 181229) ((-592 . -1079) T) ((-576 . -1079) T) ((-507 . -1079) T) ((-419 . -464) T) ((-370 . -132) T) ((-326 . -412) 181213) ((-323 . -412) 181174) ((-364 . -132) T) ((-356 . -132) T) ((-1202 . -1121) T) ((-1141 . -38) 181161) ((-1115 . -625) 181128) ((-108 . -132) T) ((-973 . -1121) T) ((-940 . -1121) T) ((-783 . -1121) T) ((-684 . -1121) T) ((-713 . -148) T) ((-117 . -148) T) ((-1310 . -21) T) ((-1310 . -25) T) ((-1308 . -21) T) ((-1308 . -25) T) ((-676 . -1077) 181112) ((-543 . -861) T) ((-512 . -861) T) ((-376 . -1238) T) ((-366 . -1077) 181064) ((-363 . -1077) 181016) ((-355 . -1077) 180968) ((-258 . -1238) T) ((-257 . -1238) T) ((-273 . -1077) 180811) ((-253 . -1077) 180654) ((-676 . -111) 180633) ((-829 . -1242) 180612) ((-559 . -856) T) ((-326 . -919) 180578) ((-366 . -111) 180516) ((-363 . -111) 180454) ((-355 . -111) 180392) ((-273 . -111) 180221) ((-253 . -111) 180050) ((-323 . -919) NIL) ((-635 . -423) 180034) ((-44 . -21) T) ((-44 . -25) T) ((-924 . -864) 179985) ((-827 . -651) 179891) ((-829 . -568) 179870) ((-499 . -864) T) ((-258 . -1059) 179697) ((-257 . -1059) 179524) ((-127 . -120) 179508) ((-219 . -864) T) ((-929 . -1077) 179473) ((-724 . -102) T) ((-711 . -1079) T) ((-609 . -628) 179454) ((-597 . -628) 179435) ((-548 . -630) 179338) ((-354 . -174) T) ((-153 . -21) T) ((-153 . -25) T) ((-88 . -625) 179320) ((-929 . -111) 179276) ((-40 . -729) 179221) ((-884 . -1121) T) ((-676 . -628) 179198) ((-657 . -628) 179179) ((-366 . -628) 179116) ((-363 . -628) 179053) ((-355 . -628) 178990) ((-559 . -1121) T) ((-337 . -626) 178951) ((-337 . -625) 178863) ((-273 . -628) 178616) ((-253 . -628) 178401) ((-188 . -1238) T) ((-1251 . -804) 178354) ((-1251 . -807) 178307) ((-258 . -388) 178276) ((-257 . -388) 178245) ((-561 . -864) T) ((-666 . -38) 178215) ((-620 . -34) T) ((-494 . -1133) 178193) ((-487 . -34) T) ((-1134 . -132) 178064) ((-983 . -25) 177875) ((-929 . -628) 177825) ((-888 . -625) 177807) ((-983 . -21) 177762) ((-827 . -25) 177595) ((-827 . -21) 177506) ((-1244 . -379) T) ((-635 . -1079) T) ((-1199 . -568) 177485) ((-1193 . -47) 177462) ((-366 . -1070) T) ((-363 . -1070) T) ((-494 . -23) 177314) ((-355 . -1070) T) ((-273 . -1070) T) ((-253 . -1070) T) ((-1146 . -47) 177286) ((-118 . -1079) T) ((-1055 . -660) 177260) ((-977 . -34) T) ((-366 . -238) 177239) ((-366 . -248) T) ((-363 . -238) 177218) ((-363 . -248) T) ((-355 . -238) 177197) ((-355 . -248) T) ((-273 . -336) 177169) ((-253 . -336) 177126) ((-273 . -238) 177105) ((-1178 . -152) 177089) ((-258 . -917) 177021) ((-257 . -917) 176953) ((-1163 . -911) 176874) ((-1103 . -861) T) ((-1255 . -1238) 176852) ((-426 . -1133) T) ((-1075 . -23) T) ((-1045 . -860) T) ((-929 . -1070) T) ((-332 . -660) 176834) ((-713 . -237) T) ((-682 . -234) 176779) ((-1232 . -1023) 176745) ((-1194 . -939) 176724) ((-1188 . -939) 176703) ((-1188 . -832) NIL) ((-1020 . -1072) 176599) ((-986 . -1238) T) ((-929 . -248) T) ((-829 . -374) 176578) ((-396 . -23) T) ((-128 . -1121) 176556) ((-122 . -1121) 176534) ((-929 . -238) T) ((-129 . -34) T) ((-390 . -660) 176499) ((-1020 . -652) 176447) ((-884 . -729) 176434) ((-1317 . -658) 176406) ((-1067 . -152) 176371) ((-1014 . -1238) T) ((-876 . -1238) T) ((-40 . -174) T) ((-706 . -423) 176353) ((-724 . -319) 176340) ((-848 . -660) 176300) ((-839 . -660) 176274) ((-329 . -25) T) ((-329 . -21) T) ((-670 . -296) 176253) ((-592 . -1121) T) ((-576 . -1121) T) ((-507 . -1121) T) ((-1193 . -1238) T) ((-250 . -298) 176230) ((-1146 . -1238) T) ((-868 . -1238) T) ((-323 . -272) 176191) ((-323 . -232) 176152) ((-1243 . -864) T) ((-1193 . -901) NIL) ((-55 . -1121) T) ((-1146 . -901) 176011) ((-130 . -861) T) ((-1193 . -1059) 175891) ((-1146 . -1059) 175774) ((-185 . -625) 175756) ((-868 . -1059) 175652) ((-794 . -296) 175579) ((-829 . -1133) T) ((-1055 . -738) T) ((-1067 . -997) 175508) ((-614 . -663) 175492) ((-1024 . -911) 175399) ((-1020 . -102) T) ((-829 . -23) T) ((-724 . -1173) 175377) ((-706 . -1079) T) ((-614 . -384) 175361) ((-362 . -464) T) ((-354 . -300) T) ((-1289 . -1121) T) ((-254 . -1121) T) ((-411 . -102) T) ((-299 . -21) T) ((-299 . -25) T) ((-372 . -738) T) ((-722 . -1121) T) ((-711 . -1121) T) ((-372 . -485) T) ((-1232 . -625) 175343) ((-1193 . -388) 175327) ((-1146 . -388) 175311) ((-1045 . -423) 175273) ((-142 . -231) 175255) ((-390 . -806) T) ((-390 . -803) T) ((-884 . -174) T) ((-390 . -738) T) ((-723 . -625) 175237) ((-724 . -38) 175066) ((-1288 . -1286) 175050) ((-362 . -414) T) ((-1288 . -1121) 175000) ((-1211 . -1121) T) ((-592 . -729) 174987) ((-576 . -729) 174974) ((-507 . -729) 174939) ((-1274 . -658) 174829) ((-326 . -641) 174808) ((-848 . -738) T) ((-839 . -738) T) ((-1136 . -1238) T) ((-656 . -1238) T) ((-1101 . -651) 174756) ((-1193 . -917) 174699) ((-1146 . -917) 174683) ((-827 . -234) 174574) ((-674 . -1077) 174558) ((-108 . -651) 174540) ((-494 . -132) 174411) ((-1199 . -1133) T) ((-831 . -1238) T) ((-971 . -47) 174380) ((-635 . -1121) T) ((-674 . -111) 174359) ((-503 . -625) 174325) ((-337 . -298) 174302) ((-398 . -1238) T) ((-334 . -1238) T) ((-493 . -47) 174259) ((-1199 . -23) T) ((-118 . -1121) T) ((-103 . -102) 174209) ((-1300 . -1133) T) ((-560 . -861) T) ((-227 . -1238) T) ((-1075 . -132) T) ((-1045 . -1079) T) ((-1300 . -23) T) ((-831 . -1059) 174193) ((-1218 . -625) 174175) ((-1024 . -736) 174147) ((-1141 . -840) T) ((-711 . -729) 174112) ((-598 . -625) 174094) ((-398 . -1059) 174078) ((-365 . -1079) T) ((-396 . -132) T) ((-334 . -1059) 174062) ((-1126 . -1121) T) ((-1101 . -21) T) ((-1101 . -25) T) ((-227 . -901) 174044) ((-1025 . -939) T) ((-91 . -34) T) ((-1025 . -832) T) ((-933 . -939) T) ((-1020 . -319) 174009) ((-890 . -628) 173990) ((-499 . -1242) T) ((-726 . -660) 173950) ((-693 . -628) 173931) ((-688 . -628) 173912) ((-219 . -1242) T) ((-419 . -911) 173833) ((-227 . -1059) 173793) ((-40 . -300) T) ((-499 . -568) T) ((-490 . -628) 173774) ((-370 . -25) T) ((-326 . -658) 173429) ((-323 . -658) 173343) ((-370 . -21) T) ((-364 . -25) T) ((-364 . -21) T) ((-219 . -568) T) ((-356 . -25) T) ((-356 . -21) T) ((-329 . -234) 173289) ((-250 . -628) 173266) ((-139 . -628) 173247) ((-138 . -628) 173228) ((-134 . -628) 173209) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1079) T) ((-592 . -174) T) ((-576 . -174) T) ((-507 . -174) T) ((-1083 . -1238) T) ((-971 . -1238) T) ((-725 . -1238) T) ((-670 . -625) 173191) ((-493 . -1238) T) ((-749 . -748) 173175) ((-347 . -625) 173157) ((-68 . -394) T) ((-68 . -407) T) ((-1123 . -107) 173141) ((-1083 . -901) 173123) ((-971 . -901) 173048) ((-665 . -1133) T) ((-635 . -729) 173035) ((-493 . -901) NIL) ((-1167 . -102) T) ((-1115 . -630) 173019) ((-1083 . -1059) 173001) ((-97 . -625) 172983) ((-489 . -148) T) ((-971 . -1059) 172863) ((-118 . -729) 172808) ((-724 . -919) 172715) ((-665 . -23) T) ((-493 . -1059) 172591) ((-1108 . -626) NIL) ((-1108 . -625) 172573) ((-794 . -626) NIL) ((-794 . -625) 172534) ((-792 . -626) 172168) ((-792 . -625) 172082) ((-1134 . -651) 171988) ((-811 . -864) 171967) ((-473 . -625) 171949) ((-466 . -625) 171931) ((-466 . -626) 171792) ((-1056 . -231) 171738) ((-886 . -928) 171717) ((-127 . -34) T) ((-829 . -132) T) ((-661 . -625) 171699) ((-590 . -102) T) ((-366 . -1307) 171683) ((-363 . -1307) 171667) ((-355 . -1307) 171651) ((-122 . -526) 171584) ((-128 . -526) 171517) ((-523 . -804) T) ((-523 . -807) T) ((-522 . -806) T) ((-103 . -319) 171455) ((-224 . -102) 171405) ((-711 . -174) T) ((-706 . -1121) T) ((-886 . -660) 171321) ((-65 . -395) T) ((-284 . -625) 171303) ((-65 . -407) T) ((-971 . -388) 171287) ((-884 . -300) T) ((-50 . -625) 171269) ((-1020 . -38) 171217) ((-1141 . -658) 171189) ((-593 . -625) 171171) ((-493 . -388) 171155) ((-593 . -626) 171137) ((-530 . -625) 171119) ((-929 . -1307) 171106) ((-885 . -1238) T) ((-713 . -464) T) ((-507 . -526) 171072) ((-1299 . -1238) T) ((-1298 . -1238) T) ((-499 . -374) T) ((-366 . -379) 171051) ((-363 . -379) 171030) ((-355 . -379) 171009) ((-726 . -738) T) ((-219 . -374) T) ((-117 . -464) T) ((-1311 . -1302) 170993) ((-885 . -899) 170970) ((-885 . -901) NIL) ((-983 . -861) 170869) ((-827 . -861) 170820) ((-1245 . -102) T) ((-666 . -668) 170804) ((-1224 . -34) T) ((-173 . -625) 170786) ((-1134 . -25) 170619) ((-1134 . -21) 170530) ((-885 . -1059) 170507) ((-971 . -917) 170488) ((-1261 . -47) 170465) ((-929 . -379) T) ((-605 . -864) T) ((-59 . -663) 170449) ((-528 . -663) 170433) ((-493 . -917) 170410) ((-71 . -453) T) ((-71 . -407) T) ((-508 . -663) 170394) ((-59 . -384) 170378) ((-635 . -174) T) ((-528 . -384) 170362) ((-508 . -384) 170346) ((-558 . -1238) T) ((-839 . -720) 170330) ((-1193 . -317) 170309) ((-1199 . -132) T) ((-1163 . -1072) 170293) ((-118 . -174) T) ((-1163 . -652) 170225) ((-1167 . -319) 170163) ((-171 . -1238) T) ((-1300 . -132) T) ((-1273 . -939) 170142) ((-1252 . -939) 170121) ((-1252 . -832) NIL) ((-880 . -1072) 170091) ((-647 . -756) 170075) ((-619 . -756) 170059) ((-1251 . -928) 170012) ((-1045 . -1121) T) ((-924 . -1133) T) ((-880 . -652) 169982) ((-706 . -729) 169932) ((-915 . -1238) T) ((-885 . -388) 169909) ((-885 . -349) 169886) ((-853 . -1238) T) ((-820 . -1238) T) ((-171 . -899) 169870) ((-171 . -901) 169795) ((-781 . -1238) T) ((-689 . -1238) T) ((-1288 . -526) 169728) ((-1272 . -660) 169625) ((-1101 . -234) 169498) ((-499 . -1133) T) ((-365 . -1121) T) ((-219 . -1133) T) ((-76 . -453) T) ((-76 . -407) T) ((-171 . -1059) 169394) ((-304 . -911) 169351) ((-329 . -861) T) ((-1251 . -660) 169159) ((-886 . -806) 169138) ((-886 . -803) 169117) ((-886 . -738) T) ((-499 . -23) T) ((-370 . -234) 169090) ((-364 . -234) 169063) ((-356 . -234) 169036) ((-176 . -464) T) ((-86 . -453) T) ((-224 . -319) 168974) ((-86 . -407) T) ((-225 . -625) 168956) ((-108 . -234) 168943) ((-219 . -23) T) ((-1312 . -1305) 168922) ((-689 . -1059) 168906) ((-592 . -300) T) ((-576 . -300) T) ((-507 . -300) T) ((-1261 . -1238) T) ((-137 . -482) 168861) ((-869 . -1238) T) ((-666 . -658) 168820) ((-48 . -1121) T) ((-724 . -272) 168804) ((-724 . -232) 168788) ((-885 . -917) NIL) ((-583 . -1238) T) ((-1261 . -901) NIL) ((-904 . -102) T) ((-900 . -102) T) ((-400 . -1121) T) ((-171 . -388) 168772) ((-171 . -349) 168756) ((-1261 . -1059) 168636) ((-869 . -1059) 168532) ((-1163 . -102) T) ((-1020 . -919) 168455) ((-674 . -804) 168434) ((-665 . -132) T) ((-674 . -807) 168413) ((-118 . -526) 168321) ((-583 . -1059) 168303) ((-304 . -1295) 168273) ((-1188 . -864) NIL) ((-880 . -102) T) ((-982 . -568) 168252) ((-1232 . -1077) 168135) ((-1024 . -1072) 168080) ((-494 . -651) 167986) ((-923 . -1121) T) ((-1045 . -729) 167923) ((-723 . -1077) 167888) ((-1024 . -652) 167833) ((-629 . -102) T) ((-614 . -34) T) ((-1168 . -1238) T) ((-1232 . -111) 167702) ((-486 . -660) 167599) ((-365 . -729) 167544) ((-171 . -917) 167503) ((-711 . -300) T) ((-706 . -174) T) ((-723 . -111) 167459) ((-1317 . -1079) T) ((-1261 . -388) 167443) ((-430 . -1242) 167421) ((-1139 . -625) 167403) ((-323 . -860) NIL) ((-430 . -568) T) ((-227 . -317) T) ((-1251 . -803) 167356) ((-1251 . -806) 167309) ((-1272 . -738) T) ((-1251 . -738) T) ((-48 . -729) 167274) ((-227 . -1043) T) ((-1274 . -423) 167240) ((-1261 . -917) 167183) ((-362 . -1295) 167160) ((-1232 . -628) 167042) ((-730 . -738) T) ((-343 . -625) 167024) ((-532 . -864) 167003) ((-1134 . -234) 166894) ((-112 . -625) 166876) ((-112 . -626) 166858) ((-730 . -485) T) ((-723 . -628) 166808) ((-1311 . -1072) 166792) ((-494 . -25) 166625) ((-128 . -501) 166609) ((-122 . -501) 166593) ((-494 . -21) 166504) ((-1311 . -652) 166474) ((-635 . -300) T) ((-598 . -1077) 166449) ((-449 . -1121) T) ((-1083 . -317) T) ((-118 . -300) T) ((-1125 . -102) T) ((-1024 . -102) T) ((-598 . -111) 166417) ((-1232 . -1070) T) ((-1163 . -319) 166355) ((-1083 . -1043) T) ((-1075 . -25) T) ((-66 . -1238) T) ((-907 . -1238) T) ((-1075 . -21) T) ((-723 . -1070) T) ((-396 . -21) T) ((-396 . -25) T) ((-706 . -526) NIL) ((-1045 . -174) T) ((-723 . -248) T) ((-1083 . -557) T) ((-724 . -658) 166265) ((-518 . -102) T) ((-514 . -102) T) ((-365 . -174) T) ((-354 . -625) 166247) ((-419 . -1072) 166199) ((-406 . -625) 166181) ((-1141 . -860) T) ((-486 . -738) T) ((-907 . -1059) 166149) ((-419 . -652) 166101) ((-108 . -861) T) ((-670 . -1077) 166085) ((-499 . -132) T) ((-1274 . -1079) T) ((-219 . -132) T) ((-1178 . -102) 166035) ((-99 . -1121) T) ((-245 . -864) 165986) ((-250 . -678) 165970) ((-250 . -663) 165954) ((-670 . -111) 165933) ((-598 . -628) 165917) ((-326 . -423) 165901) ((-250 . -384) 165885) ((-1180 . -240) 165832) ((-1020 . -272) 165816) ((-1020 . -232) 165800) ((-74 . -1238) T) ((-48 . -174) T) ((-713 . -399) T) ((-713 . -144) T) ((-1311 . -102) T) ((-1219 . -1238) T) ((-1218 . -628) 165782) ((-1109 . -1238) T) ((-1108 . -1077) 165625) ((-1097 . -1238) T) ((-273 . -928) 165604) ((-253 . -928) 165583) ((-794 . -1077) 165406) ((-792 . -1077) 165249) ((-620 . -1238) T) ((-1185 . -625) 165231) ((-1108 . -111) 165060) ((-1067 . -102) T) ((-487 . -1238) T) ((-473 . -1077) 165031) ((-466 . -1077) 164874) ((-676 . -660) 164858) ((-885 . -317) T) ((-794 . -111) 164667) ((-792 . -111) 164496) ((-366 . -660) 164448) ((-363 . -660) 164400) ((-355 . -660) 164352) ((-273 . -660) 164241) ((-253 . -660) 164130) ((-1179 . -861) T) ((-1109 . -1059) 164114) ((-1097 . -1059) 164091) ((-1025 . -864) T) ((-1021 . -34) T) ((-473 . -111) 164052) ((-466 . -111) 163881) ((-992 . -864) T) ((-985 . -625) 163863) ((-982 . -1133) T) ((-977 . -1238) T) ((-127 . -1031) 163847) ((-862 . -1238) T) ((-885 . -1043) NIL) ((-747 . -1133) T) ((-727 . -1133) T) ((-670 . -628) 163765) ((-1288 . -501) 163749) ((-1205 . -1238) T) ((-1204 . -1238) T) ((-1163 . -38) 163709) ((-982 . -23) T) ((-929 . -660) 163674) ((-879 . -1121) T) ((-855 . -102) T) ((-829 . -21) T) ((-647 . -1072) 163658) ((-619 . -1072) 163642) ((-829 . -25) T) ((-747 . -23) T) ((-727 . -23) T) ((-647 . -652) 163626) ((-110 . -673) T) ((-619 . -652) 163610) ((-593 . -1077) 163575) ((-530 . -1077) 163520) ((-229 . -57) 163478) ((-465 . -23) T) ((-419 . -102) T) ((-1203 . -1238) T) ((-270 . -102) T) ((-110 . -113) T) ((-706 . -300) T) ((-880 . -38) 163448) ((-1108 . -628) 163184) ((-593 . -111) 163140) ((-530 . -111) 163069) ((-430 . -1133) T) ((-326 . -1079) 162959) ((-323 . -1079) T) ((-129 . -1238) T) ((-131 . -1238) T) ((-794 . -628) 162707) ((-792 . -628) 162473) ((-670 . -1070) T) ((-1317 . -1121) T) ((-466 . -628) 162258) ((-171 . -317) 162189) ((-430 . -23) T) ((-40 . -625) 162171) ((-40 . -626) 162155) ((-108 . -1013) 162137) ((-117 . -883) 162121) ((-661 . -628) 162105) ((-48 . -526) 162071) ((-1224 . -1031) 162055) ((-1202 . -625) 162022) ((-1210 . -34) T) ((-973 . -625) 161988) ((-940 . -625) 161970) ((-1134 . -861) 161921) ((-783 . -625) 161903) ((-684 . -625) 161885) ((-529 . -1238) T) ((-1261 . -317) 161864) ((-1178 . -319) 161802) ((-1162 . -34) T) ((-491 . -34) T) ((-1113 . -1238) T) ((-489 . -464) T) ((-1055 . -1238) T) ((-1108 . -1070) T) ((-50 . -628) 161771) ((-794 . -1070) T) ((-792 . -1070) T) ((-659 . -240) 161755) ((-644 . -240) 161701) ((-1199 . -21) T) ((-593 . -628) 161651) ((-530 . -628) 161581) ((-494 . -234) 161472) ((-1199 . -25) T) ((-1108 . -336) 161433) ((-466 . -1070) T) ((-1108 . -238) 161412) ((-794 . -336) 161389) ((-794 . -238) T) ((-792 . -336) 161361) ((-743 . -1242) 161340) ((-531 . -34) T) ((-337 . -663) 161324) ((-528 . -34) T) ((-59 . -34) T) ((-509 . -34) T) ((-508 . -34) T) ((-466 . -336) 161303) ((-337 . -384) 161287) ((-372 . -1238) T) ((-332 . -1238) T) ((-1024 . -1173) NIL) ((-743 . -568) 161218) ((-647 . -102) T) ((-619 . -102) T) ((-366 . -738) T) ((-363 . -738) T) ((-355 . -738) T) ((-273 . -738) T) ((-253 . -738) T) ((-390 . -1238) T) ((-1300 . -21) T) ((-1067 . -319) 161126) ((-1300 . -25) T) ((-920 . -1121) 161104) ((-830 . -234) 161091) ((-50 . -1070) T) ((-1195 . -568) 161070) ((-1194 . -1242) 161049) ((-1194 . -568) 161000) ((-1188 . -1242) 160979) ((-1188 . -568) 160930) ((-1045 . -300) T) ((-593 . -1070) T) ((-530 . -1070) T) ((-1024 . -38) 160875) ((-372 . -1059) 160859) ((-332 . -1059) 160843) ((-1020 . -658) 160766) ((-390 . -901) 160748) ((-848 . -1238) T) ((-839 . -1238) T) ((-837 . -1238) T) ((-811 . -1133) T) ((-929 . -738) T) ((-593 . -248) T) ((-593 . -238) T) ((-530 . -238) T) ((-530 . -248) T) ((-1147 . -568) 160727) ((-365 . -300) T) ((-659 . -707) 160711) ((-390 . -1059) 160671) ((-304 . -1072) 160592) ((-350 . -911) 160571) ((-1141 . -1079) T) ((-103 . -126) 160555) ((-304 . -652) 160497) ((-811 . -23) T) ((-1310 . -1305) 160473) ((-1308 . -1305) 160452) ((-1288 . -296) 160404) ((-419 . -319) 160369) ((-1274 . -1121) T) ((-1163 . -919) 160292) ((-884 . -625) 160274) ((-848 . -1059) 160243) ((-205 . -799) T) ((-204 . -799) T) ((-203 . -799) T) ((-202 . -799) T) ((-201 . -799) T) ((-200 . -799) T) ((-199 . -799) T) ((-198 . -799) T) ((-197 . -799) T) ((-196 . -799) T) ((-559 . -625) 160225) ((-507 . -1023) T) ((-283 . -851) T) ((-282 . -851) T) ((-281 . -851) T) ((-280 . -851) T) ((-48 . -300) T) ((-279 . -851) T) ((-278 . -851) T) ((-277 . -851) T) ((-195 . -799) T) ((-624 . -861) T) ((-666 . -423) 160209) ((-682 . -237) 160160) ((-225 . -628) 160122) ((-110 . -861) T) ((-665 . -21) T) ((-665 . -25) T) ((-1311 . -38) 160092) ((-118 . -296) 160043) ((-1288 . -19) 160027) ((-1252 . -864) NIL) ((-1288 . -616) 160004) ((-1301 . -1121) T) ((-362 . -1072) 159949) ((-1098 . -1121) T) ((-1008 . -1121) T) ((-982 . -132) T) ((-829 . -234) 159936) ((-749 . -1121) T) ((-362 . -652) 159881) ((-747 . -132) T) ((-727 . -132) T) ((-523 . -805) T) ((-523 . -806) T) ((-465 . -132) T) ((-419 . -1173) 159859) ((-225 . -1070) T) ((-304 . -102) 159641) ((-142 . -1121) T) ((-711 . -1023) T) ((-1126 . -296) 159597) ((-91 . -1238) T) ((-128 . -625) 159529) ((-122 . -625) 159461) ((-1317 . -174) T) ((-1194 . -374) 159440) ((-1188 . -374) 159419) ((-326 . -1121) T) ((-430 . -132) T) ((-323 . -1121) T) ((-419 . -38) 159371) ((-1154 . -102) T) ((-1274 . -729) 159263) ((-1156 . -1283) T) ((-1117 . -1238) T) ((-1111 . -1238) T) ((-666 . -1079) T) ((-1094 . -1238) T) ((-1087 . -1238) T) ((-1057 . -1238) T) ((-1040 . -1238) T) ((-329 . -146) 159242) ((-329 . -148) 159221) ((-140 . -1121) T) ((-137 . -1121) T) ((-115 . -1121) T) ((-872 . -102) T) ((-638 . -1238) T) ((-495 . -1238) T) ((-592 . -625) 159203) ((-576 . -626) 159102) ((-576 . -625) 159084) ((-507 . -625) 159066) ((-507 . -626) 159011) ((-497 . -23) T) ((-220 . -1238) T) ((-494 . -861) 158962) ((-499 . -651) 158944) ((-984 . -625) 158926) ((-1024 . -919) 158835) ((-219 . -651) 158817) ((-227 . -416) T) ((-674 . -660) 158801) ((-55 . -625) 158783) ((-1193 . -939) 158762) ((-743 . -1133) T) ((-527 . -1238) T) ((-522 . -1238) T) ((-520 . -1238) T) ((-362 . -102) T) ((-1237 . -1104) T) ((-1141 . -856) T) ((-830 . -861) T) ((-743 . -23) T) ((-354 . -1077) 158707) ((-1168 . -107) 158691) ((-1289 . -625) 158673) ((-1195 . -23) T) ((-1195 . -1133) T) ((-1194 . -1133) T) ((-1194 . -23) T) ((-527 . -1059) 158657) ((-1188 . -1133) T) ((-1147 . -1133) T) ((-354 . -111) 158586) ((-1025 . -1242) T) ((-127 . -1238) T) ((-933 . -1242) T) ((-1188 . -23) T) ((-1163 . -272) 158570) ((-706 . -296) NIL) ((-726 . -1238) T) ((-1163 . -232) 158554) ((-1147 . -23) T) ((-1096 . -1121) T) ((-1025 . -568) T) ((-933 . -568) T) ((-255 . -1238) T) ((-189 . -1238) T) ((-163 . -1238) T) ((-158 . -1238) T) ((-254 . -625) 158536) ((-827 . -237) 158433) ((-811 . -132) T) ((-722 . -625) 158415) ((-326 . -729) 158325) ((-323 . -729) 158254) ((-711 . -625) 158236) ((-711 . -626) 158181) ((-419 . -412) 158165) ((-450 . -1121) T) ((-499 . -25) T) ((-499 . -21) T) ((-1141 . -1121) T) ((-219 . -25) T) ((-219 . -21) T) ((-724 . -423) 158149) ((-726 . -1059) 158118) ((-1288 . -625) 158030) ((-1288 . -626) 157991) ((-1274 . -174) T) ((-1211 . -625) 157973) ((-250 . -34) T) ((-354 . -628) 157903) ((-406 . -628) 157885) ((-945 . -995) T) ((-1224 . -1238) T) ((-674 . -803) 157864) ((-674 . -806) 157843) ((-410 . -407) T) ((-535 . -102) 157793) ((-1244 . -1238) T) ((-1056 . -1121) T) ((-419 . -919) 157716) ((-224 . -1016) 157700) ((-850 . -1238) T) ((-516 . -102) T) ((-635 . -625) 157682) ((-45 . -861) NIL) ((-635 . -626) 157659) ((-1056 . -622) 157634) ((-920 . -526) 157567) ((-329 . -237) 157519) ((-354 . -1070) T) ((-118 . -626) NIL) ((-118 . -625) 157501) ((-886 . -1238) T) ((-682 . -429) 157485) ((-682 . -1144) 157430) ((-512 . -152) 157412) ((-354 . -238) T) ((-354 . -248) T) ((-40 . -1077) 157357) ((-886 . -899) 157341) ((-886 . -901) 157266) ((-724 . -1079) T) ((-706 . -1023) NIL) ((-1272 . -47) 157236) ((-1251 . -47) 157213) ((-1162 . -1031) 157184) ((-1141 . -729) 157171) ((-3 . |UnionCategory|) T) ((-1126 . -625) 157153) ((-1101 . -148) 157132) ((-1101 . -146) 157083) ((-1025 . -374) T) ((-985 . -628) 157067) ((-227 . -939) T) ((-40 . -111) 156996) ((-886 . -1059) 156860) ((-1024 . -232) 156837) ((-1024 . -272) 156814) ((-713 . -1072) 156801) ((-933 . -374) T) ((-713 . -652) 156788) ((-329 . -1226) 156754) ((-390 . -317) T) ((-329 . -1223) 156720) ((-326 . -174) 156699) ((-323 . -174) T) ((-620 . -1214) 156675) ((-593 . -1307) 156662) ((-530 . -1307) 156639) ((-117 . -1072) 156626) ((-370 . -148) 156605) ((-370 . -146) 156556) ((-364 . -148) 156535) ((-364 . -146) 156486) ((-356 . -148) 156465) ((-117 . -652) 156452) ((-356 . -146) 156403) ((-329 . -35) 156369) ((-487 . -1214) 156348) ((0 . |EnumerationCategory|) T) ((-329 . -95) 156314) ((-390 . -1043) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 156264) ((-666 . -1121) T) ((-620 . -107) 156211) ((-497 . -132) T) ((-487 . -107) 156161) ((-245 . -1133) 156139) ((-31 . -1238) T) ((-886 . -388) 156123) ((-886 . -349) 156107) ((-245 . -23) 155959) ((-40 . -628) 155889) ((-1301 . -526) 155822) ((-1083 . -939) T) ((-1083 . -832) T) ((-593 . -379) T) ((-530 . -379) T) ((-1280 . -568) 155801) ((-1273 . -1242) 155780) ((-1273 . -568) 155731) ((-1272 . -1238) T) ((-1252 . -1242) 155710) ((-362 . -1173) T) ((-337 . -34) T) ((-44 . -429) 155694) ((-1202 . -628) 155630) ((-887 . -1238) T) ((-402 . -756) 155614) ((-1252 . -568) 155565) ((-1251 . -1238) T) ((-1163 . -658) 155524) ((-743 . -132) T) ((-684 . -628) 155508) ((-1251 . -901) 155381) ((-1251 . -899) 155351) ((-1195 . -132) T) ((-1194 . -132) T) ((-1188 . -132) T) ((-1147 . -132) T) ((-321 . -1104) T) ((-1045 . -1023) T) ((-749 . -526) 155284) ((-1025 . -23) T) ((-1025 . -1133) T) ((-908 . -1121) T) ((-145 . -856) T) ((-1024 . -360) NIL) ((-703 . -625) 155266) ((-962 . -864) 155245) ((-535 . -319) 155183) ((-992 . -23) T) ((-142 . -526) NIL) ((-880 . -658) 155128) ((-933 . -1133) T) ((-933 . -23) T) ((-886 . -917) 155087) ((-362 . -38) 155052) ((-884 . -1077) 155039) ((-341 . -864) T) ((-82 . -625) 155021) ((-40 . -1070) T) ((-884 . -111) 155006) ((-730 . -1238) T) ((-713 . -102) T) ((-706 . -625) 154988) ((-614 . -1238) T) ((-608 . -568) 154967) ((-439 . -1133) T) ((-350 . -1072) 154951) ((-215 . -1121) T) ((-176 . -1072) 154883) ((-486 . -47) 154853) ((-40 . -238) 154825) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-607 . -568) 154804) ((-350 . -652) 154788) ((-706 . -626) 154696) ((-326 . -526) 154662) ((-176 . -652) 154594) ((-323 . -526) 154486) ((-499 . -234) 154473) ((-1272 . -1059) 154457) ((-1251 . -1059) 154243) ((-1020 . -423) 154227) ((-219 . -234) 154214) ((-439 . -23) T) ((-1141 . -174) T) ((-1274 . -300) T) ((-666 . -729) 154184) ((-145 . -1121) T) ((-48 . -1023) T) ((-419 . -272) 154168) ((-419 . -232) 154152) ((-305 . -240) 154102) ((-885 . -939) T) ((-885 . -832) NIL) ((-884 . -628) 154074) ((-258 . -864) 154025) ((-257 . -864) 153976) ((-878 . -861) T) ((-1251 . -349) 153946) ((-1251 . -388) 153916) ((-1101 . -237) 153795) ((-224 . -1142) 153779) ((-304 . -919) 153738) ((-1288 . -298) 153715) ((-370 . -237) 153694) ((-364 . -237) 153673) ((-486 . -1238) T) ((-356 . -237) 153652) ((-108 . -237) T) ((-1232 . -660) 153577) ((-1024 . -658) 153507) ((-982 . -21) T) ((-982 . -25) T) ((-747 . -21) T) ((-747 . -25) T) ((-727 . -21) T) ((-727 . -25) T) ((-723 . -660) 153472) ((-465 . -21) T) ((-465 . -25) T) ((-350 . -102) T) ((-176 . -102) T) ((-1020 . -1079) T) ((-884 . -1070) T) ((-786 . -102) T) ((-1273 . -374) 153451) ((-1272 . -917) 153357) ((-1252 . -374) 153336) ((-1251 . -917) 153187) ((-1197 . -1238) T) ((-1045 . -625) 153169) ((-419 . -840) 153122) ((-1195 . -505) 153088) ((-171 . -939) 153019) ((-1194 . -505) 152985) ((-1188 . -505) 152951) ((-724 . -1121) T) ((-1147 . -505) 152917) ((-592 . -1077) 152904) ((-576 . -1077) 152891) ((-507 . -1077) 152856) ((-326 . -300) 152835) ((-323 . -300) T) ((-365 . -625) 152817) ((-430 . -25) T) ((-430 . -21) T) ((-99 . -296) 152796) ((-592 . -111) 152781) ((-576 . -111) 152766) ((-507 . -111) 152722) ((-1197 . -901) 152689) ((-920 . -501) 152673) ((-48 . -625) 152655) ((-48 . -626) 152600) ((-245 . -132) 152471) ((-1311 . -658) 152430) ((-1261 . -939) 152409) ((-828 . -1242) 152388) ((-400 . -502) 152369) ((-1056 . -526) 152213) ((-400 . -625) 152179) ((-828 . -568) 152110) ((-598 . -660) 152085) ((-273 . -47) 152057) ((-253 . -47) 152014) ((-543 . -521) 151991) ((-592 . -628) 151963) ((-576 . -628) 151935) ((-507 . -628) 151868) ((-1095 . -1238) T) ((-1021 . -1238) T) ((-1280 . -23) T) ((-1280 . -1133) T) ((-1273 . -1133) T) ((-1273 . -23) T) ((-1252 . -1133) T) ((-711 . -1077) 151833) ((-1252 . -23) T) ((-1232 . -738) T) ((-1141 . -300) T) ((-1134 . -237) 151730) ((-1025 . -132) T) ((-1024 . -381) 151702) ((-112 . -379) T) ((-486 . -917) 151608) ((-992 . -132) T) ((-923 . -625) 151590) ((-55 . -628) 151572) ((-91 . -107) 151556) ((-933 . -132) T) ((-924 . -861) 151507) ((-713 . -1173) T) ((-711 . -111) 151463) ((-855 . -658) 151380) ((-608 . -1133) T) ((-607 . -1133) T) ((-724 . -729) 151209) ((-723 . -738) T) ((-811 . -25) T) ((-811 . -21) T) ((-499 . -861) T) ((-609 . -1238) T) ((-597 . -1238) T) ((-592 . -1070) T) ((-219 . -861) T) ((-419 . -658) 151146) ((-576 . -1070) T) ((-548 . -1238) T) ((-507 . -1070) T) ((-608 . -23) T) ((-354 . -1307) 151123) ((-329 . -464) 151102) ((-350 . -319) 151089) ((-607 . -23) T) ((-439 . -132) T) ((-670 . -660) 151063) ((-250 . -1031) 151047) ((-886 . -317) T) ((-1312 . -1302) 151031) ((-783 . -804) T) ((-783 . -807) T) ((-713 . -38) 151018) ((-576 . -238) T) ((-507 . -248) T) ((-507 . -238) T) ((-1301 . -501) 151002) ((-1284 . -1238) T) ((-1171 . -240) 150952) ((-1108 . -928) 150931) ((-117 . -38) 150918) ((-211 . -812) T) ((-210 . -812) T) ((-209 . -812) T) ((-208 . -812) T) ((-886 . -1043) 150896) ((-676 . -1238) T) ((-657 . -1238) T) ((-794 . -928) 150875) ((-792 . -928) 150854) ((-1210 . -1238) T) ((-366 . -1238) T) ((-363 . -1238) T) ((-355 . -1238) T) ((-273 . -1238) T) ((-253 . -1238) T) ((-466 . -928) 150833) ((-749 . -501) 150817) ((-1108 . -660) 150706) ((-711 . -628) 150641) ((-794 . -660) 150530) ((-635 . -1077) 150517) ((-491 . -1238) T) ((-354 . -379) T) ((-142 . -501) 150499) ((-792 . -660) 150388) ((-1162 . -1238) T) ((-561 . -861) T) ((-473 . -660) 150359) ((-273 . -901) 150218) ((-253 . -901) NIL) ((-118 . -1077) 150163) ((-466 . -660) 150052) ((-676 . -1059) 150029) ((-635 . -111) 150014) ((-402 . -1072) 149998) ((-366 . -1059) 149982) ((-363 . -1059) 149966) ((-355 . -1059) 149950) ((-273 . -1059) 149794) ((-253 . -1059) 149670) ((-929 . -1238) T) ((-118 . -111) 149599) ((-59 . -1238) T) ((-402 . -652) 149583) ((-633 . -1072) 149567) ((-531 . -1238) T) ((-528 . -1238) T) ((-509 . -1238) T) ((-508 . -1238) T) ((-449 . -625) 149549) ((-446 . -625) 149531) ((-633 . -652) 149515) ((-3 . -102) T) ((-1048 . -1231) 149484) ((-845 . -102) T) ((-701 . -57) 149442) ((-711 . -1070) T) ((-647 . -658) 149411) ((-619 . -658) 149380) ((-50 . -660) 149354) ((-299 . -464) T) ((-488 . -1231) 149323) ((0 . -102) T) ((-593 . -660) 149288) ((-530 . -660) 149233) ((-49 . -102) T) ((-929 . -1059) 149220) ((-711 . -248) T) ((-1101 . -421) 149199) ((-743 . -651) 149147) ((-1020 . -1121) T) ((-724 . -174) 149038) ((-635 . -628) 148933) ((-499 . -1013) 148915) ((-430 . -234) 148860) ((-273 . -388) 148844) ((-253 . -388) 148828) ((-411 . -1121) T) ((-1047 . -102) 148806) ((-350 . -38) 148790) ((-219 . -1013) 148772) ((-118 . -628) 148702) ((-176 . -38) 148634) ((-1272 . -317) 148613) ((-1251 . -317) 148592) ((-670 . -738) T) ((-99 . -625) 148574) ((-489 . -1072) 148539) ((-1188 . -651) 148491) ((-489 . -652) 148456) ((-656 . -864) 148435) ((-497 . -25) T) ((-497 . -21) T) ((-1251 . -1043) 148387) ((-1078 . -1238) T) ((-1 . -1238) T) ((-635 . -1070) T) ((-390 . -416) T) ((-402 . -102) T) ((-1126 . -630) 148302) ((-273 . -917) 148248) ((-253 . -917) 148225) ((-118 . -1070) T) ((-1108 . -738) T) ((-828 . -1133) T) ((-831 . -864) T) ((-635 . -238) 148204) ((-633 . -102) T) ((-523 . -1238) T) ((-519 . -1238) T) ((-794 . -738) T) ((-792 . -738) T) ((-1243 . -861) T) ((-425 . -1133) T) ((-118 . -248) T) ((-40 . -379) NIL) ((-118 . -238) NIL) ((-398 . -864) 148183) ((-466 . -738) T) ((-828 . -23) T) ((-743 . -25) T) ((-743 . -21) T) ((-682 . -911) 148104) ((-1098 . -296) 148083) ((-78 . -408) T) ((-78 . -407) T) ((-545 . -779) 148065) ((-227 . -864) T) ((-706 . -1077) 148015) ((-1313 . -102) T) ((-1280 . -132) T) ((-1273 . -132) T) ((-1252 . -132) T) ((-1195 . -25) T) ((-1163 . -423) 147999) ((-647 . -378) 147931) ((-619 . -378) 147863) ((-1178 . -1170) 147847) ((-103 . -1121) 147825) ((-1195 . -21) T) ((-1194 . -21) T) ((-879 . -625) 147807) ((-1020 . -729) 147755) ((-225 . -660) 147722) ((-706 . -111) 147656) ((-50 . -738) T) ((-1194 . -25) T) ((-362 . -360) T) ((-1188 . -21) T) ((-1101 . -464) 147607) ((-1188 . -25) T) ((-724 . -526) 147554) ((-593 . -738) T) ((-530 . -738) T) ((-1147 . -21) T) ((-1147 . -25) T) ((-608 . -132) T) ((-607 . -132) T) ((-304 . -658) 147289) ((-494 . -237) 147186) ((-370 . -464) T) ((-364 . -464) T) ((-356 . -464) T) ((-486 . -317) 147165) ((-1246 . -102) T) ((-323 . -296) 147100) ((-108 . -464) T) ((-79 . -453) T) ((-79 . -407) T) ((-489 . -102) T) ((-703 . -628) 147084) ((-1317 . -625) 147066) ((-1317 . -626) 147048) ((-1101 . -414) 147027) ((-1056 . -501) 146958) ((-137 . -296) 146935) ((-576 . -807) T) ((-576 . -804) T) ((-1084 . -240) 146881) ((-1083 . -864) T) ((-725 . -864) T) ((-370 . -414) 146832) ((-364 . -414) 146783) ((-356 . -414) 146734) ((-1303 . -1133) T) ((-1312 . -1072) 146718) ((-392 . -1072) 146702) ((-1312 . -652) 146672) ((-830 . -237) T) ((-392 . -652) 146642) ((-706 . -628) 146577) ((-1303 . -23) T) ((-1290 . -102) T) ((-350 . -919) 146558) ((-177 . -625) 146540) ((-1163 . -1079) T) ((-559 . -379) T) ((-682 . -756) 146524) ((-1199 . -146) 146503) ((-1199 . -148) 146482) ((-1167 . -1121) T) ((-1167 . -1092) 146451) ((-69 . -1238) T) ((-1045 . -1077) 146388) ((-362 . -658) 146318) ((-880 . -1079) T) ((-245 . -651) 146224) ((-706 . -1070) T) ((-365 . -1077) 146169) ((-61 . -1238) T) ((-1045 . -111) 146085) ((-920 . -625) 145996) ((-706 . -248) T) ((-706 . -238) NIL) ((-855 . -860) 145975) ((-711 . -807) T) ((-711 . -804) T) ((-1024 . -423) 145952) ((-365 . -111) 145881) ((-390 . -939) T) ((-419 . -860) 145860) ((-724 . -300) 145771) ((-225 . -738) T) ((-1280 . -505) 145737) ((-1273 . -505) 145703) ((-1252 . -505) 145669) ((-590 . -1121) T) ((-326 . -1023) 145648) ((-224 . -1121) 145626) ((-1245 . -856) T) ((-329 . -994) 145588) ((-105 . -102) T) ((-48 . -1077) 145553) ((-885 . -864) NIL) ((-1312 . -102) T) ((-392 . -102) T) ((-1274 . -625) 145535) ((-1154 . -1155) 145519) ((-1025 . -651) 145501) ((-890 . -1238) T) ((-48 . -111) 145457) ((-693 . -1238) T) ((-688 . -1238) T) ((-674 . -1238) T) ((-827 . -911) 145324) ((-490 . -1238) T) ((-250 . -1238) T) ((-543 . -102) T) ((-512 . -102) T) ((-153 . -1295) 145308) ((-139 . -1238) T) ((-138 . -1238) T) ((-134 . -1238) T) ((-1237 . -102) T) ((-1045 . -628) 145245) ((-829 . -237) T) ((-1193 . -1242) 145224) ((-365 . -628) 145154) ((-1146 . -1242) 145133) ((-245 . -25) 144966) ((-245 . -21) 144877) ((-128 . -120) 144861) ((-122 . -120) 144845) ((-44 . -756) 144829) ((-1193 . -568) 144740) ((-1146 . -568) 144671) ((-1245 . -1121) T) ((-558 . -864) T) ((-1056 . -296) 144646) ((-1187 . -1104) T) ((-1015 . -1104) T) ((-828 . -132) T) ((-118 . -807) NIL) ((-118 . -804) NIL) ((-366 . -317) T) ((-363 . -317) T) ((-355 . -317) T) ((-1115 . -1238) 144624) ((-258 . -1133) 144602) ((-257 . -1133) 144580) ((-1045 . -1070) T) ((-1024 . -1079) T) ((-48 . -628) 144513) ((-354 . -660) 144458) ((-1301 . -625) 144420) ((-1301 . -626) 144381) ((-633 . -38) 144365) ((-1195 . -234) 144318) ((-1194 . -234) 144264) ((-1098 . -625) 144246) ((-1045 . -248) T) ((-365 . -1070) T) ((-827 . -1295) 144216) ((-258 . -23) T) ((-257 . -23) T) ((-1008 . -625) 144198) ((-1188 . -234) 144015) ((-1180 . -152) 143962) ((-749 . -626) 143923) ((-749 . -625) 143905) ((-1025 . -25) T) ((-811 . -861) 143884) ((-1020 . -526) 143796) ((-689 . -864) T) ((-365 . -238) T) ((-365 . -248) T) ((-400 . -628) 143777) ((-929 . -317) T) ((-142 . -625) 143759) ((-142 . -626) 143718) ((-329 . -911) 143622) ((-1025 . -21) T) ((-992 . -25) T) ((-933 . -21) T) ((-933 . -25) T) ((-439 . -21) T) ((-439 . -25) T) ((-855 . -423) 143606) ((-48 . -1070) T) ((-1310 . -1302) 143590) ((-1308 . -1302) 143574) ((-1056 . -616) 143549) ((-326 . -626) 143410) ((-326 . -625) 143392) ((-323 . -626) NIL) ((-323 . -625) 143374) ((-48 . -248) T) ((-48 . -238) T) ((-666 . -296) 143335) ((-562 . -240) 143285) ((-583 . -864) T) ((-140 . -625) 143252) ((-137 . -625) 143234) ((-115 . -625) 143216) ((-489 . -38) 143181) ((-1312 . -1309) 143160) ((-1303 . -132) T) ((-1311 . -1079) T) ((-1103 . -102) T) ((-88 . -1238) T) ((-512 . -319) NIL) ((-1021 . -107) 143144) ((-904 . -1121) T) ((-900 . -1121) T) ((-1288 . -663) 143128) ((-1288 . -384) 143112) ((-337 . -1238) T) ((-605 . -861) T) ((-1163 . -1121) T) ((-1163 . -1074) 143052) ((-103 . -526) 142985) ((-946 . -625) 142967) ((-354 . -738) T) ((-30 . -625) 142949) ((-880 . -1121) T) ((-855 . -1079) 142928) ((-40 . -660) 142835) ((-227 . -1242) T) ((-419 . -1079) T) ((-1179 . -152) 142817) ((-1020 . -300) 142768) ((-888 . -1238) T) ((-629 . -1121) T) ((-227 . -568) T) ((-329 . -1269) 142752) ((-329 . -1266) 142722) ((-713 . -658) 142694) ((-1210 . -1214) 142673) ((-1096 . -625) 142655) ((-1210 . -107) 142605) ((-659 . -152) 142589) ((-644 . -152) 142535) ((-117 . -658) 142507) ((-491 . -1214) 142486) ((-499 . -148) T) ((-499 . -146) NIL) ((-1141 . -626) 142401) ((-450 . -625) 142383) ((-219 . -148) T) ((-219 . -146) NIL) ((-1141 . -625) 142365) ((-130 . -102) T) ((-52 . -102) T) ((-1252 . -651) 142317) ((-491 . -107) 142267) ((-1014 . -23) T) ((-1312 . -38) 142237) ((-1193 . -1133) T) ((-1146 . -1133) T) ((-1083 . -1242) T) ((-245 . -234) 142128) ((-321 . -102) T) ((-868 . -1133) T) ((-971 . -1242) 142107) ((-493 . -1242) 142086) ((-1083 . -568) T) ((-971 . -568) 142017) ((-1193 . -23) T) ((-1172 . -1104) T) ((-1146 . -23) T) ((-868 . -23) T) ((-493 . -568) 141948) ((-1163 . -729) 141880) ((-682 . -1072) 141864) ((-1167 . -526) 141797) ((-682 . -652) 141781) ((-1056 . -626) NIL) ((-1056 . -625) 141763) ((-96 . -1104) T) ((-1317 . -1077) 141750) ((-880 . -729) 141720) ((-1317 . -111) 141705) ((-1232 . -47) 141674) ((-1188 . -861) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1125 . -1121) T) ((-1024 . -1121) T) ((-62 . -625) 141656) ((-1101 . -911) 141525) ((-1045 . -804) T) ((-1045 . -807) T) ((-1280 . -25) T) ((-1280 . -21) T) ((-1273 . -21) T) ((-1273 . -25) T) ((-884 . -660) 141512) ((-1252 . -21) T) ((-1252 . -25) T) ((-1048 . -152) 141496) ((-1025 . -234) 141483) ((-886 . -832) 141462) ((-886 . -939) T) ((-724 . -296) 141389) ((-608 . -21) T) ((-350 . -658) 141348) ((-108 . -911) NIL) ((-608 . -25) T) ((-607 . -21) T) ((-176 . -658) 141265) ((-40 . -738) T) ((-224 . -526) 141198) ((-607 . -25) T) ((-488 . -152) 141182) ((-475 . -152) 141166) ((-185 . -1238) T) ((-940 . -806) T) ((-940 . -738) T) ((-783 . -805) T) ((-783 . -806) T) ((-518 . -1121) T) ((-514 . -1121) T) ((-783 . -738) T) ((-227 . -374) T) ((-1310 . -1072) 141150) ((-1308 . -1072) 141134) ((-1310 . -652) 141104) ((-1178 . -1121) 141082) ((-885 . -1242) T) ((-1308 . -652) 141052) ((-1109 . -864) T) ((-666 . -625) 141034) ((-885 . -568) T) ((-706 . -379) NIL) ((-44 . -1072) 141018) ((-1317 . -628) 141000) ((-1311 . -1121) T) ((-682 . -102) T) ((-370 . -1295) 140984) ((-364 . -1295) 140968) ((-44 . -652) 140952) ((-356 . -1295) 140936) ((-560 . -102) T) ((-1232 . -1238) T) ((-532 . -861) 140915) ((-723 . -1238) T) ((-977 . -864) 140894) ((-862 . -864) T) ((-499 . -237) T) ((-219 . -237) T) ((-1067 . -1121) T) ((-829 . -464) 140873) ((-153 . -1072) 140857) ((-1067 . -1092) 140786) ((-1048 . -997) 140755) ((-831 . -1133) T) ((-1024 . -729) 140700) ((-153 . -652) 140684) ((-398 . -1133) T) ((-488 . -997) 140653) ((-475 . -997) 140622) ((-1204 . -864) T) ((-110 . -152) 140604) ((-73 . -625) 140586) ((-908 . -625) 140568) ((-1203 . -864) T) ((-1101 . -736) 140547) ((-1317 . -1070) T) ((-828 . -651) 140495) ((-304 . -1079) 140437) ((-171 . -1242) 140342) ((-227 . -1133) T) ((-334 . -23) T) ((-1188 . -1013) 140294) ((-1274 . -1077) 140199) ((-855 . -1121) T) ((-129 . -864) T) ((-1147 . -752) 140178) ((-1272 . -939) 140157) ((-1251 . -939) 140136) ((-884 . -738) T) ((-171 . -568) 140047) ((-592 . -660) 140034) ((-576 . -660) 140006) ((-419 . -1121) T) ((-270 . -1121) T) ((-215 . -625) 139988) ((-507 . -660) 139938) ((-227 . -23) T) ((-1251 . -832) 139891) ((-1310 . -102) T) ((-503 . -1238) T) ((-365 . -1307) 139868) ((-1308 . -102) T) ((-1274 . -111) 139760) ((-1134 . -911) 139627) ((-827 . -1072) 139528) ((-827 . -652) 139450) ((-145 . -625) 139432) ((-1014 . -132) T) ((-44 . -102) T) ((-245 . -861) 139383) ((-598 . -1238) T) ((-1261 . -1242) 139362) ((-103 . -501) 139346) ((-1311 . -729) 139316) ((-1108 . -47) 139277) ((-1083 . -1133) T) ((-971 . -1133) T) ((-128 . -34) T) ((-122 . -34) T) ((-1261 . -568) 139188) ((-794 . -47) 139165) ((-792 . -47) 139137) ((-1218 . -1238) T) ((-1193 . -132) T) ((-365 . -379) T) ((-493 . -1133) T) ((-1146 . -132) T) ((-885 . -374) T) ((-466 . -47) 139116) ((-868 . -132) T) ((-332 . -864) 139095) ((-153 . -102) T) ((-1083 . -23) T) ((-971 . -23) T) ((-583 . -568) T) ((-828 . -25) T) ((-828 . -21) T) ((-1163 . -526) 139028) ((-604 . -1104) T) ((-598 . -1059) 139012) ((-1274 . -628) 138886) ((-493 . -23) T) ((-362 . -1079) T) ((-390 . -864) T) ((-1232 . -917) 138867) ((-682 . -319) 138805) ((-1280 . -234) 138758) ((-1134 . -1295) 138728) ((-711 . -660) 138693) ((-1025 . -861) T) ((-1024 . -174) T) ((-982 . -146) 138672) ((-647 . -1121) T) ((-619 . -1121) T) ((-982 . -148) 138651) ((-747 . -148) 138630) ((-747 . -146) 138609) ((-670 . -1238) T) ((-992 . -861) T) ((-1273 . -234) 138555) ((-1252 . -234) 138372) ((-845 . -658) 138289) ((-486 . -939) 138268) ((-347 . -1238) T) ((-329 . -1072) 138103) ((-326 . -1077) 138013) ((-323 . -1077) 137942) ((-1020 . -296) 137900) ((-419 . -729) 137852) ((-329 . -652) 137693) ((-607 . -234) 137646) ((-713 . -860) T) ((-1274 . -1070) T) ((-326 . -111) 137542) ((-323 . -111) 137455) ((-97 . -1238) T) ((-983 . -102) T) ((-827 . -102) 137187) ((-724 . -626) NIL) ((-724 . -625) 137169) ((-1274 . -336) 137113) ((-670 . -1059) 137009) ((-1108 . -1238) T) ((-1056 . -298) 136984) ((-592 . -738) T) ((-576 . -806) T) ((-171 . -374) 136935) ((-576 . -803) T) ((-576 . -738) T) ((-507 . -738) T) ((-794 . -1238) T) ((-792 . -1238) T) ((-1167 . -501) 136919) ((-473 . -1238) T) ((-466 . -1238) T) ((-1310 . -1309) 136895) ((-1108 . -901) NIL) ((-885 . -1133) T) ((-118 . -928) NIL) ((-1308 . -1309) 136874) ((-661 . -1238) T) ((-794 . -901) NIL) ((-792 . -901) 136733) ((-1303 . -25) T) ((-1303 . -21) T) ((-1235 . -102) 136711) ((-1127 . -407) T) ((-635 . -660) 136698) ((-466 . -901) NIL) ((-687 . -102) 136648) ((-1108 . -1059) 136475) ((-885 . -23) T) ((-794 . -1059) 136334) ((-792 . -1059) 136191) ((-118 . -660) 136136) ((-466 . -1059) 136012) ((-284 . -1238) T) ((-326 . -628) 135576) ((-323 . -628) 135459) ((-50 . -1238) T) ((-402 . -658) 135428) ((-661 . -1059) 135412) ((-639 . -102) T) ((-593 . -1238) T) ((-530 . -1238) T) ((-224 . -501) 135396) ((-1288 . -34) T) ((-633 . -658) 135355) ((-299 . -1072) 135342) ((-137 . -628) 135326) ((-299 . -652) 135313) ((-647 . -729) 135297) ((-619 . -729) 135281) ((-682 . -38) 135241) ((-329 . -102) T) ((-1141 . -1077) 135228) ((-85 . -625) 135210) ((-50 . -1059) 135194) ((-1108 . -388) 135178) ((-794 . -388) 135162) ((-711 . -738) T) ((-711 . -806) T) ((-711 . -803) T) ((-60 . -57) 135124) ((-593 . -1059) 135111) ((-530 . -1059) 135088) ((-173 . -1238) T) ((-334 . -132) T) ((-326 . -1070) 134978) ((-323 . -1070) T) ((-171 . -1133) T) ((-792 . -388) 134962) ((-45 . -152) 134912) ((-1025 . -1013) 134894) ((-466 . -388) 134878) ((-419 . -174) T) ((-326 . -248) 134857) ((-323 . -248) T) ((-323 . -238) NIL) ((-304 . -1121) 134639) ((-227 . -132) T) ((-1141 . -111) 134624) ((-171 . -23) T) ((-811 . -148) 134603) ((-811 . -146) 134582) ((-258 . -651) 134488) ((-257 . -651) 134394) ((-329 . -294) 134360) ((-1178 . -526) 134293) ((-489 . -658) 134243) ((-494 . -911) 134110) ((-1154 . -1121) T) ((-227 . -1081) T) ((-827 . -319) 134048) ((-1108 . -917) 133983) ((-794 . -917) 133926) ((-792 . -917) 133910) ((-1310 . -38) 133880) ((-1308 . -38) 133850) ((-1261 . -1133) T) ((-869 . -1133) T) ((-466 . -917) 133827) ((-872 . -1121) T) ((-1261 . -23) T) ((-1141 . -628) 133799) ((-1083 . -132) T) ((-869 . -23) T) ((-583 . -1133) T) ((-635 . -738) T) ((-522 . -864) T) ((-366 . -939) T) ((-363 . -939) T) ((-299 . -102) T) ((-355 . -939) T) ((-991 . -1104) T) ((-971 . -132) T) ((-828 . -234) 133744) ((-118 . -806) NIL) ((-118 . -803) NIL) ((-118 . -738) T) ((-1067 . -526) 133645) ((-706 . -928) NIL) ((-583 . -23) T) ((-493 . -132) T) ((-430 . -237) 133596) ((-687 . -319) 133534) ((-225 . -1238) T) ((-647 . -773) T) ((-619 . -773) T) ((-1252 . -861) NIL) ((-1101 . -1072) 133444) ((-1024 . -300) T) ((-706 . -660) 133394) ((-258 . -25) T) ((-362 . -1121) T) ((-258 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-153 . -38) 133378) ((-2 . -102) T) ((-929 . -939) T) ((-1101 . -652) 133246) ((-494 . -1295) 133216) ((-1141 . -1070) T) ((-723 . -317) T) ((-370 . -1072) 133168) ((-364 . -1072) 133120) ((-356 . -1072) 133072) ((-370 . -652) 133024) ((-225 . -1059) 133001) ((-364 . -652) 132953) ((-108 . -1072) 132903) ((-356 . -652) 132855) ((-304 . -729) 132797) ((-713 . -1079) T) ((-499 . -464) T) ((-419 . -526) 132709) ((-108 . -652) 132659) ((-219 . -464) T) ((-1141 . -238) T) ((-305 . -152) 132609) ((-1020 . -626) 132570) ((-1020 . -625) 132552) ((-1010 . -625) 132534) ((-117 . -1079) T) ((-666 . -1077) 132518) ((-227 . -505) T) ((-411 . -625) 132500) ((-411 . -626) 132477) ((-1075 . -1295) 132447) ((-666 . -111) 132426) ((-682 . -919) 132349) ((-1163 . -501) 132333) ((-1312 . -658) 132292) ((-392 . -658) 132261) ((-63 . -453) T) ((-63 . -407) T) ((-1180 . -102) T) ((-885 . -132) T) ((-496 . -102) 132211) ((-1139 . -1238) T) ((-1244 . -864) T) ((-1317 . -379) T) ((-1101 . -102) T) ((-1082 . -102) T) ((-362 . -729) 132156) ((-886 . -864) 132107) ((-743 . -148) 132086) ((-743 . -146) 132065) ((-666 . -628) 131983) ((-1045 . -660) 131920) ((-535 . -1121) 131898) ((-370 . -102) T) ((-364 . -102) T) ((-356 . -102) T) ((-108 . -102) T) ((-516 . -1121) T) ((-365 . -660) 131843) ((-1193 . -651) 131791) ((-1146 . -651) 131739) ((-396 . -521) 131718) ((-845 . -860) 131697) ((-706 . -738) T) ((-390 . -1242) T) ((-343 . -1238) T) ((-1252 . -1013) 131649) ((-350 . -1079) T) ((-112 . -1238) T) ((-176 . -1079) T) ((-103 . -625) 131581) ((-1195 . -146) 131560) ((-1195 . -148) 131539) ((-390 . -568) T) ((-1194 . -148) 131518) ((-1194 . -146) 131497) ((-1188 . -146) 131404) ((-419 . -300) T) ((-1188 . -148) 131311) ((-1147 . -148) 131290) ((-1147 . -146) 131269) ((-329 . -38) 131110) ((-171 . -132) T) ((-323 . -807) NIL) ((-323 . -804) NIL) ((-666 . -1070) T) ((-48 . -660) 131060) ((-1134 . -1072) 130961) ((-908 . -628) 130938) ((-1134 . -652) 130860) ((-1187 . -102) T) ((-1015 . -102) T) ((-1014 . -21) T) ((-128 . -1031) 130844) ((-122 . -1031) 130828) ((-1014 . -25) T) ((-920 . -120) 130812) ((-1179 . -102) T) ((-1261 . -132) T) ((-1251 . -864) 130711) ((-1193 . -25) T) ((-1193 . -21) T) ((-1180 . -319) 130506) ((-354 . -1238) T) ((-1146 . -25) T) ((-869 . -132) T) ((-406 . -1238) T) ((-1146 . -21) T) ((-868 . -25) T) ((-868 . -21) T) ((-794 . -317) 130485) ((-1178 . -501) 130469) ((-1171 . -152) 130419) ((-1167 . -625) 130381) ((-659 . -102) 130331) ((-644 . -102) T) ((-1167 . -626) 130292) ((-583 . -132) T) ((-633 . -860) 130271) ((-1045 . -803) T) ((-1045 . -806) T) ((-1045 . -738) T) ((-827 . -919) 130140) ((-724 . -1077) 129963) ((-614 . -864) 129942) ((-496 . -319) 129880) ((-465 . -429) 129850) ((-362 . -174) T) ((-299 . -38) 129837) ((-258 . -234) 129728) ((-257 . -234) 129619) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-354 . -1059) 129596) ((-277 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-724 . -111) 129405) ((-365 . -738) T) ((-682 . -272) 129389) ((-682 . -232) 129373) ((-593 . -317) T) ((-530 . -317) T) ((-304 . -526) 129322) ((-1185 . -1238) T) ((-108 . -319) NIL) ((-72 . -407) T) ((-1134 . -102) 129054) ((-845 . -423) 129038) ((-1141 . -807) T) ((-1141 . -804) T) ((-713 . -1121) T) ((-590 . -625) 129020) ((-390 . -374) T) ((-171 . -505) 128998) ((-224 . -625) 128930) ((-135 . -1121) T) ((-117 . -1121) T) ((-985 . -1238) T) ((-48 . -738) T) ((-1067 . -501) 128895) ((-142 . -437) 128877) ((-142 . -379) T) ((-1048 . -102) T) ((-524 . -521) 128856) ((-724 . -628) 128612) ((-1245 . -625) 128594) ((-1202 . -1238) T) ((-1202 . -1059) 128530) ((-1195 . -237) 128489) ((-488 . -102) T) ((-475 . -102) T) ((-1194 . -237) 128441) ((-1188 . -237) 128264) ((-1055 . -1133) T) ((-329 . -919) 128170) ((-1197 . -864) T) ((-1195 . -35) 128136) ((-1195 . -95) 128102) ((-1195 . -1226) 128068) ((-1195 . -1223) 128034) ((-1194 . -1223) 128000) ((-1194 . -1226) 127966) ((-1194 . -95) 127932) ((-1194 . -35) 127898) ((-1188 . -1223) 127864) ((-1188 . -1226) 127830) ((-1179 . -319) NIL) ((-89 . -408) T) ((-89 . -407) T) ((-1101 . -1173) 127809) ((-40 . -1238) T) ((-1188 . -95) 127775) ((-1055 . -23) T) ((-1188 . -35) 127741) ((-583 . -505) T) ((-1147 . -35) 127707) ((-1147 . -95) 127673) ((-1147 . -1226) 127639) ((-1147 . -1223) 127605) ((-372 . -1133) T) ((-370 . -1173) 127584) ((-364 . -1173) 127563) ((-356 . -1173) 127542) ((-1125 . -296) 127498) ((-973 . -1238) T) ((-940 . -1238) T) ((-108 . -1173) T) ((-845 . -1079) 127477) ((-783 . -1238) T) ((-659 . -319) 127415) ((-644 . -319) 127266) ((-684 . -1238) T) ((-724 . -1070) T) ((-1083 . -651) 127248) ((-1101 . -38) 127116) ((-971 . -651) 127064) ((-1025 . -148) T) ((-1025 . -146) NIL) ((-390 . -1133) T) ((-334 . -25) T) ((-332 . -23) T) ((-962 . -861) 127043) ((-724 . -336) 127020) ((-493 . -651) 126968) ((-40 . -1059) 126856) ((-724 . -238) T) ((-713 . -729) 126843) ((-350 . -1121) T) ((-176 . -1121) T) ((-341 . -861) T) ((-430 . -464) 126793) ((-390 . -23) T) ((-370 . -38) 126758) ((-364 . -38) 126723) ((-356 . -38) 126688) ((-80 . -453) T) ((-80 . -407) T) ((-227 . -25) T) ((-227 . -21) T) ((-848 . -1133) T) ((-108 . -38) 126638) ((-839 . -1133) T) ((-786 . -1121) T) ((-117 . -729) 126625) ((-684 . -1059) 126609) ((-624 . -102) T) ((-848 . -23) T) ((-839 . -23) T) ((-1178 . -296) 126561) ((-1134 . -319) 126499) ((-494 . -1072) 126400) ((-1123 . -240) 126384) ((-64 . -408) T) ((-64 . -407) T) ((-1172 . -102) T) ((-110 . -102) T) ((-494 . -652) 126306) ((-40 . -388) 126283) ((-96 . -102) T) ((-665 . -866) 126267) ((-1193 . -234) 126254) ((-1156 . -1104) T) ((-1083 . -21) T) ((-1083 . -25) T) ((-1075 . -1072) 126238) ((-827 . -272) 126207) ((-827 . -232) 126176) ((-971 . -25) T) ((-971 . -21) T) ((-1141 . -379) T) ((-1075 . -652) 126118) ((-633 . -1079) T) ((-1048 . -319) 126056) ((-904 . -625) 126038) ((-682 . -658) 125997) ((-493 . -25) T) ((-493 . -21) T) ((-396 . -1072) 125981) ((-900 . -625) 125963) ((-884 . -1238) T) ((-535 . -526) 125896) ((-258 . -861) 125847) ((-257 . -861) 125798) ((-396 . -652) 125768) ((-885 . -651) 125745) ((-488 . -319) 125683) ((-559 . -1238) T) ((-475 . -319) 125621) ((-362 . -300) T) ((-1178 . -1276) 125605) ((-1163 . -625) 125567) ((-1163 . -626) 125528) ((-1161 . -102) T) ((-1020 . -1077) 125424) ((-40 . -917) 125376) ((-1178 . -616) 125353) ((-1317 . -660) 125340) ((-1084 . -152) 125286) ((-499 . -911) NIL) ((-880 . -502) 125263) ((-1020 . -111) 125145) ((-886 . -1242) T) ((-219 . -911) NIL) ((-350 . -729) 125129) ((-880 . -625) 125091) ((-176 . -729) 125023) ((-886 . -568) T) ((-419 . -296) 124981) ((-245 . -237) 124878) ((-108 . -412) 124860) ((-84 . -395) T) ((-84 . -407) T) ((-713 . -174) T) ((-629 . -625) 124842) ((-99 . -738) T) ((-494 . -102) 124574) ((-99 . -485) T) ((-117 . -174) T) ((-1310 . -658) 124533) ((-1308 . -658) 124492) ((-171 . -651) 124440) ((-1101 . -919) 124311) ((-1075 . -102) T) ((-1020 . -628) 124201) ((-885 . -25) T) ((-827 . -243) 124180) ((-885 . -21) T) ((-830 . -102) T) ((-44 . -658) 124123) ((-1025 . -237) T) ((-426 . -102) T) ((-396 . -102) T) ((-110 . -319) NIL) ((-229 . -102) 124073) ((-128 . -1238) T) ((-122 . -1238) T) ((-108 . -919) NIL) ((-829 . -1072) 124024) ((-59 . -864) 124003) ((-829 . -652) 123945) ((-528 . -864) 123924) ((-508 . -864) 123903) ((-1055 . -132) T) ((-682 . -378) 123887) ((-153 . -658) 123846) ((-1317 . -738) T) ((-647 . -296) 123804) ((-619 . -296) 123762) ((-1280 . -146) 123741) ((-1261 . -651) 123689) ((-1020 . -1070) T) ((-1125 . -625) 123671) ((-1024 . -625) 123653) ((-592 . -1238) T) ((-576 . -1238) T) ((-507 . -1238) T) ((-527 . -23) T) ((-522 . -23) T) ((-354 . -317) T) ((-520 . -23) T) ((-332 . -132) T) ((-3 . -1121) T) ((-1024 . -626) 123637) ((-1020 . -248) 123616) ((-1020 . -238) 123595) ((-1280 . -148) 123574) ((-1273 . -148) 123553) ((-845 . -1121) T) ((-1273 . -146) 123532) ((-1272 . -1242) 123511) ((-1252 . -146) 123418) ((-1252 . -148) 123325) ((-1251 . -1242) 123304) ((-390 . -132) T) ((-227 . -234) 123291) ((-176 . -174) T) ((-576 . -901) 123273) ((0 . -1121) T) ((-171 . -21) T) ((-171 . -25) T) ((-55 . -1238) T) ((-49 . -1121) T) ((-1274 . -660) 123178) ((-1272 . -568) 123129) ((-726 . -1133) T) ((-1251 . -568) 123080) ((-576 . -1059) 123062) ((-607 . -148) 123041) ((-607 . -146) 123020) ((-507 . -1059) 122963) ((-1156 . -1158) T) ((-87 . -395) T) ((-87 . -407) T) ((-886 . -374) T) ((-848 . -132) T) ((-839 . -132) T) ((-983 . -658) 122907) ((-726 . -23) T) ((-518 . -625) 122873) ((-514 . -625) 122855) ((-827 . -658) 122634) ((-1312 . -1079) T) ((-390 . -1081) T) ((-1047 . -1121) 122612) ((-55 . -1059) 122594) ((-920 . -34) T) ((-494 . -319) 122532) ((-604 . -102) T) ((-1178 . -626) 122493) ((-1178 . -625) 122425) ((-1199 . -1072) 122308) ((-45 . -102) T) ((-829 . -102) T) ((-1199 . -652) 122205) ((-1289 . -1238) T) ((-1261 . -25) T) ((-1261 . -21) T) ((-1083 . -234) 122192) ((-869 . -25) T) ((-523 . -864) T) ((-254 . -1238) T) ((-44 . -378) 122176) ((-869 . -21) T) ((-743 . -464) 122127) ((-1311 . -625) 122109) ((-722 . -1238) T) ((-711 . -1238) T) ((-1300 . -1072) 122079) ((-1075 . -319) 122017) ((-683 . -1104) T) ((-618 . -1104) T) ((-402 . -1121) T) ((-583 . -25) T) ((-583 . -21) T) ((-182 . -1104) T) ((-162 . -1104) T) ((-157 . -1104) T) ((-155 . -1104) T) ((-1300 . -652) 121987) ((-633 . -1121) T) ((-711 . -901) 121969) ((-1288 . -1238) T) ((-229 . -319) 121907) ((-145 . -379) T) ((-1211 . -1238) T) ((-1067 . -626) 121849) ((-1067 . -625) 121792) ((-323 . -928) NIL) ((-1246 . -856) T) ((-1134 . -919) 121661) ((-711 . -1059) 121606) ((-723 . -939) T) ((-486 . -1242) 121585) ((-1194 . -464) 121564) ((-1188 . -464) 121543) ((-340 . -102) T) ((-886 . -1133) T) ((-329 . -658) 121425) ((-326 . -660) 121154) ((-323 . -660) 121083) ((-486 . -568) 121034) ((-350 . -526) 121000) ((-562 . -152) 120950) ((-40 . -317) T) ((-855 . -625) 120932) ((-713 . -300) T) ((-886 . -23) T) ((-390 . -505) T) ((-1101 . -272) 120902) ((-1101 . -232) 120872) ((-524 . -102) T) ((-419 . -626) 120679) ((-419 . -625) 120661) ((-270 . -625) 120643) ((-117 . -300) T) ((-1274 . -738) T) ((-635 . -1238) T) ((-1313 . -1121) T) ((-1272 . -374) 120622) ((-1251 . -374) 120601) ((-1301 . -34) T) ((-1246 . -1121) T) ((-118 . -1238) T) ((-108 . -272) 120583) ((-108 . -232) 120565) ((-1199 . -102) T) ((-489 . -1121) T) ((-535 . -501) 120549) ((-749 . -34) T) ((-665 . -1072) 120533) ((-665 . -652) 120503) ((-885 . -234) NIL) ((-142 . -34) T) ((-118 . -899) 120480) ((-118 . -901) NIL) ((-635 . -1059) 120363) ((-1300 . -102) T) ((-1280 . -237) 120322) ((-656 . -861) 120301) ((-1273 . -237) 120253) ((-1252 . -237) 120076) ((-305 . -102) T) ((-724 . -379) 120055) ((-118 . -1059) 120032) ((-402 . -729) 120016) ((-607 . -237) 119975) ((-633 . -729) 119959) ((-1126 . -1238) T) ((-45 . -319) 119763) ((-828 . -146) 119742) ((-828 . -148) 119721) ((-299 . -658) 119693) ((-1311 . -393) 119672) ((-831 . -861) T) ((-1290 . -1121) T) ((-1180 . -231) 119619) ((-398 . -861) 119598) ((-1280 . -35) 119564) ((-1280 . -1226) 119530) ((-1280 . -1223) 119496) ((-1273 . -1223) 119462) ((-527 . -132) T) ((-1273 . -1226) 119428) ((-1252 . -1223) 119394) ((-1252 . -1226) 119360) ((-1280 . -95) 119326) ((-1273 . -95) 119292) ((-430 . -911) 119213) ((-647 . -625) 119182) ((-619 . -625) 119151) ((-227 . -861) T) ((-1273 . -35) 119117) ((-1272 . -1133) T) ((-1252 . -95) 119083) ((-1141 . -660) 119055) ((-1252 . -35) 119021) ((-1251 . -1133) T) ((-605 . -152) 119003) ((-1101 . -360) 118982) ((-176 . -300) T) ((-118 . -388) 118959) ((-118 . -349) 118936) ((-171 . -234) 118861) ((-884 . -317) T) ((-323 . -806) NIL) ((-323 . -803) NIL) ((-326 . -738) 118710) ((-323 . -738) T) ((-486 . -374) 118689) ((-370 . -360) 118668) ((-364 . -360) 118647) ((-356 . -360) 118626) ((-326 . -485) 118605) ((-1272 . -23) T) ((-1251 . -23) T) ((-730 . -1133) T) ((-726 . -132) T) ((-665 . -102) T) ((-489 . -729) 118570) ((-674 . -864) 118549) ((-45 . -292) 118499) ((-105 . -1121) T) ((-68 . -625) 118481) ((-250 . -864) 118460) ((-991 . -102) T) ((-878 . -102) T) ((-635 . -917) 118419) ((-1312 . -1121) T) ((-392 . -1121) T) ((-1261 . -234) 118406) ((-1237 . -1121) T) ((-82 . -1238) T) ((-1134 . -272) 118375) ((-1083 . -861) T) ((-118 . -917) NIL) ((-794 . -939) 118354) ((-725 . -861) T) ((-543 . -1121) T) ((-512 . -1121) T) ((-366 . -1242) T) ((-363 . -1242) T) ((-355 . -1242) T) ((-273 . -1242) 118333) ((-253 . -1242) 118312) ((-545 . -874) T) ((-1134 . -232) 118281) ((-1179 . -840) T) ((-1163 . -1077) 118265) ((-402 . -773) T) ((-706 . -1238) T) ((-703 . -1059) 118249) ((-366 . -568) T) ((-363 . -568) T) ((-355 . -568) T) ((-273 . -568) 118180) ((-253 . -568) 118111) ((-537 . -1104) T) ((-1163 . -111) 118090) ((-465 . -756) 118060) ((-880 . -1077) 118030) ((-829 . -38) 117972) ((-706 . -899) 117954) ((-706 . -901) 117936) ((-305 . -319) 117740) ((-1178 . -298) 117717) ((-929 . -1242) T) ((-1101 . -658) 117612) ((-1025 . -464) T) ((-682 . -423) 117596) ((-880 . -111) 117561) ((-933 . -464) T) ((-706 . -1059) 117506) ((-929 . -568) T) ((-545 . -625) 117488) ((-593 . -939) T) ((-499 . -1072) 117438) ((-486 . -1133) T) ((-530 . -939) T) ((-494 . -919) 117307) ((-65 . -625) 117289) ((-219 . -1072) 117239) ((-499 . -652) 117189) ((-370 . -658) 117126) ((-364 . -658) 117063) ((-356 . -658) 117000) ((-644 . -231) 116946) ((-219 . -652) 116896) ((-108 . -658) 116846) ((-486 . -23) T) ((-1141 . -806) T) ((-886 . -132) T) ((-1141 . -803) T) ((-1303 . -1305) 116825) ((-1141 . -738) T) ((-666 . -660) 116799) ((-304 . -625) 116540) ((-1163 . -628) 116458) ((-1056 . -34) T) ((-828 . -237) 116409) ((-592 . -317) T) ((-576 . -317) T) ((-507 . -317) T) ((-1312 . -729) 116379) ((-706 . -388) 116361) ((-706 . -349) 116343) ((-489 . -174) T) ((-392 . -729) 116313) ((-880 . -628) 116248) ((-885 . -861) NIL) ((-576 . -1043) T) ((-507 . -1043) T) ((-1154 . -625) 116230) ((-1134 . -243) 116209) ((-216 . -102) T) ((-1171 . -102) T) ((-71 . -625) 116191) ((-1045 . -1238) T) ((-1163 . -1070) T) ((-1199 . -38) 116088) ((-872 . -625) 116070) ((-576 . -557) T) ((-682 . -1079) T) ((-743 . -968) 116023) ((-1163 . -238) 116002) ((-365 . -1238) T) ((-1103 . -1121) T) ((-1055 . -25) T) ((-1055 . -21) T) ((-1024 . -1077) 115947) ((-337 . -864) 115926) ((-924 . -102) T) ((-880 . -1070) T) ((-706 . -917) NIL) ((-366 . -339) 115910) ((-366 . -374) T) ((-363 . -339) 115894) ((-363 . -374) T) ((-355 . -339) 115878) ((-355 . -374) T) ((-499 . -102) T) ((-1300 . -38) 115848) ((-558 . -861) T) ((-535 . -699) 115798) ((-219 . -102) T) ((-1045 . -1059) 115678) ((-1024 . -111) 115607) ((-1195 . -994) 115576) ((-1194 . -994) 115538) ((-532 . -152) 115522) ((-1101 . -381) 115501) ((-362 . -625) 115483) ((-332 . -21) T) ((-365 . -1059) 115460) ((-332 . -25) T) ((-1188 . -994) 115429) ((-48 . -1238) T) ((-76 . -625) 115411) ((-1147 . -994) 115378) ((-711 . -317) T) ((-130 . -856) T) ((-929 . -374) T) ((-390 . -25) T) ((-390 . -21) T) ((-929 . -339) 115365) ((-86 . -625) 115347) ((-711 . -1043) T) ((-689 . -861) T) ((-400 . -1238) T) ((-1272 . -132) T) ((-1251 . -132) T) ((-920 . -1031) 115331) ((-848 . -21) T) ((-48 . -1059) 115274) ((-848 . -25) T) ((-839 . -25) T) ((-839 . -21) T) ((-1134 . -658) 115053) ((-1310 . -1079) T) ((-561 . -102) T) ((-1308 . -1079) T) ((-666 . -738) T) ((-1125 . -630) 114956) ((-1024 . -628) 114886) ((-1311 . -1077) 114870) ((-923 . -1238) T) ((-827 . -423) 114839) ((-103 . -120) 114823) ((-130 . -1121) T) ((-52 . -1121) T) ((-945 . -625) 114805) ((-885 . -1013) 114782) ((-835 . -102) T) ((-1311 . -111) 114761) ((-743 . -911) 114736) ((-665 . -38) 114706) ((-583 . -861) T) ((-366 . -1133) T) ((-363 . -1133) T) ((-355 . -1133) T) ((-273 . -1133) T) ((-253 . -1133) T) ((-1171 . -319) 114510) ((-1109 . -234) 114497) ((-635 . -317) 114476) ((-676 . -23) T) ((-536 . -1104) T) ((-321 . -1121) T) ((-494 . -272) 114445) ((-494 . -232) 114414) ((-153 . -1079) T) ((-366 . -23) T) ((-363 . -23) T) ((-355 . -23) T) ((-118 . -317) T) ((-273 . -23) T) ((-253 . -23) T) ((-1024 . -1070) T) ((-724 . -928) 114393) ((-1195 . -911) 114281) ((-1194 . -911) 114162) ((-1188 . -911) 113898) ((-1178 . -628) 113875) ((-1024 . -238) 113847) ((-1024 . -248) T) ((-1147 . -911) 113829) ((-118 . -1043) NIL) ((-929 . -1133) T) ((-1273 . -464) 113808) ((-1252 . -464) 113787) ((-535 . -625) 113719) ((-724 . -660) 113608) ((-419 . -1077) 113560) ((-516 . -625) 113542) ((-929 . -23) T) ((-499 . -319) NIL) ((-1311 . -628) 113498) ((-486 . -132) T) ((-219 . -319) NIL) ((-419 . -111) 113436) ((-827 . -1079) 113414) ((-749 . -1119) 113398) ((-1272 . -505) 113364) ((-1251 . -505) 113330) ((-449 . -1238) T) ((-560 . -856) T) ((-142 . -1119) 113312) ((-489 . -300) T) ((-1311 . -1070) T) ((-258 . -237) 113209) ((-257 . -237) 113106) ((-1243 . -102) T) ((-1084 . -102) T) ((-855 . -628) 112974) ((-512 . -526) NIL) ((-494 . -243) 112953) ((-419 . -628) 112851) ((-982 . -1072) 112734) ((-747 . -1072) 112704) ((-982 . -652) 112601) ((-1193 . -146) 112580) ((-747 . -652) 112550) ((-465 . -1072) 112520) ((-1193 . -148) 112499) ((-1146 . -148) 112478) ((-1146 . -146) 112457) ((-647 . -1077) 112441) ((-619 . -1077) 112425) ((-465 . -652) 112395) ((-1195 . -1279) 112379) ((-1195 . -1266) 112356) ((-1194 . -1271) 112317) ((-682 . -1121) T) ((-682 . -1074) 112257) ((-1194 . -1266) 112227) ((-560 . -1121) T) ((-499 . -1173) T) ((-1194 . -1269) 112211) ((-1188 . -1250) 112172) ((-830 . -275) 112156) ((-219 . -1173) T) ((-354 . -939) T) ((-99 . -1238) T) ((-647 . -111) 112135) ((-619 . -111) 112114) ((-1188 . -1266) 112091) ((-855 . -1070) 112070) ((-1188 . -1248) 112054) ((-527 . -25) T) ((-507 . -312) T) ((-523 . -23) T) ((-522 . -25) T) ((-520 . -25) T) ((-519 . -23) T) ((-430 . -1072) 112028) ((-419 . -1070) T) ((-329 . -1079) T) ((-706 . -317) T) ((-430 . -652) 112002) ((-108 . -860) T) ((-724 . -738) T) ((-419 . -248) T) ((-419 . -238) 111981) ((-390 . -234) 111968) ((-499 . -38) 111918) ((-219 . -38) 111868) ((-486 . -505) 111834) ((-1245 . -379) T) ((-1179 . -1165) T) ((-1122 . -102) T) ((-839 . -234) 111807) ((-713 . -625) 111789) ((-713 . -626) 111704) ((-726 . -21) T) ((-726 . -25) T) ((-1156 . -102) T) ((-494 . -658) 111483) ((-245 . -911) 111350) ((-135 . -625) 111332) ((-117 . -625) 111314) ((-158 . -25) T) ((-1310 . -1121) T) ((-886 . -651) 111262) ((-1308 . -1121) T) ((-879 . -1238) T) ((-982 . -102) T) ((-747 . -102) T) ((-727 . -102) T) ((-465 . -102) T) ((-828 . -464) 111213) ((-44 . -1121) T) ((-1109 . -861) T) ((-1084 . -319) 111064) ((-676 . -132) T) ((-1075 . -658) 111033) ((-682 . -729) 111017) ((-299 . -1079) T) ((-366 . -132) T) ((-363 . -132) T) ((-355 . -132) T) ((-273 . -132) T) ((-253 . -132) T) ((-396 . -658) 110986) ((-1317 . -1238) T) ((-430 . -102) T) ((-153 . -1121) T) ((-45 . -231) 110936) ((-1025 . -911) NIL) ((-811 . -1072) 110920) ((-977 . -861) 110899) ((-1020 . -660) 110801) ((-811 . -652) 110785) ((-245 . -1295) 110755) ((-1045 . -317) T) ((-304 . -1077) 110676) ((-929 . -132) T) ((-40 . -939) T) ((-499 . -412) 110658) ((-365 . -317) T) ((-219 . -412) 110640) ((-1101 . -423) 110624) ((-304 . -111) 110540) ((-1204 . -861) T) ((-1203 . -861) T) ((-886 . -25) T) ((-886 . -21) T) ((-1274 . -47) 110484) ((-350 . -625) 110466) ((-1193 . -237) T) ((-227 . -148) T) ((-176 . -625) 110448) ((-786 . -625) 110430) ((-129 . -861) T) ((-620 . -240) 110377) ((-487 . -240) 110327) ((-1310 . -729) 110297) ((-48 . -317) T) ((-1308 . -729) 110267) ((-65 . -628) 110196) ((-983 . -1121) T) ((-827 . -1121) 109948) ((-322 . -102) T) ((-920 . -1238) T) ((-48 . -1043) T) ((-1251 . -651) 109856) ((-701 . -102) 109806) ((-44 . -729) 109790) ((-562 . -102) T) ((-304 . -628) 109721) ((-67 . -394) T) ((-499 . -919) NIL) ((-67 . -407) T) ((-284 . -864) T) ((-219 . -919) NIL) ((-674 . -23) T) ((-829 . -658) 109657) ((-682 . -773) T) ((-1235 . -1121) 109635) ((-362 . -1077) 109580) ((-687 . -1121) 109558) ((-1083 . -148) T) ((-971 . -148) 109537) ((-971 . -146) 109516) ((-811 . -102) T) ((-153 . -729) 109500) ((-493 . -148) 109479) ((-493 . -146) 109458) ((-362 . -111) 109387) ((-1101 . -1079) T) ((-332 . -861) 109366) ((-1280 . -994) 109335) ((-1274 . -1238) T) ((-639 . -1121) T) ((-1273 . -994) 109297) ((-523 . -132) T) ((-519 . -132) T) ((-305 . -231) 109247) ((-370 . -1079) T) ((-364 . -1079) T) ((-356 . -1079) T) ((-304 . -1070) 109189) ((-1252 . -994) 109158) ((-390 . -861) T) ((-108 . -1079) T) ((-1020 . -738) T) ((-884 . -939) T) ((-855 . -807) 109137) ((-855 . -804) 109116) ((-430 . -319) 109055) ((-480 . -102) T) ((-607 . -994) 109024) ((-329 . -1121) T) ((-419 . -807) 109003) ((-419 . -804) 108982) ((-512 . -501) 108964) ((-1274 . -1059) 108930) ((-1272 . -21) T) ((-1272 . -25) T) ((-1251 . -21) T) ((-1251 . -25) T) ((-827 . -729) 108872) ((-362 . -628) 108802) ((-711 . -416) T) ((-1301 . -1238) T) ((-1134 . -423) 108771) ((-1098 . -1238) T) ((-618 . -102) T) ((-1024 . -379) NIL) ((-1008 . -1238) T) ((-683 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1199 . -658) 108681) ((-749 . -1238) T) ((-743 . -1072) 108524) ((-44 . -773) T) ((-743 . -652) 108373) ((-605 . -102) T) ((-665 . -668) 108357) ((-77 . -408) T) ((-77 . -407) T) ((-142 . -1238) T) ((-885 . -148) T) ((-885 . -146) NIL) ((-1300 . -658) 108302) ((-1280 . -911) 108190) ((-1273 . -911) 108071) ((-1237 . -93) T) ((-362 . -1070) T) ((-227 . -237) T) ((-70 . -394) T) ((-70 . -407) T) ((-1186 . -102) T) ((-682 . -526) 108004) ((-1252 . -911) 107740) ((-1232 . -568) 107719) ((-701 . -319) 107657) ((-982 . -38) 107554) ((-1201 . -625) 107536) ((-747 . -38) 107506) ((-562 . -319) 107310) ((-1195 . -1072) 107193) ((-326 . -1238) T) ((-362 . -238) T) ((-362 . -248) T) ((-323 . -1238) T) ((-299 . -1121) T) ((-1194 . -1072) 107028) ((-1188 . -1072) 106818) ((-1147 . -1072) 106701) ((-1195 . -652) 106598) ((-1194 . -652) 106439) ((-723 . -1242) T) ((-1188 . -652) 106235) ((-1178 . -663) 106219) ((-1147 . -652) 106116) ((-831 . -397) 106100) ((-723 . -568) T) ((-607 . -911) 106011) ((-326 . -899) 105995) ((-326 . -901) 105920) ((-323 . -899) 105881) ((-140 . -1238) T) ((-137 . -1238) T) ((-115 . -1238) T) ((-323 . -901) NIL) ((-811 . -319) 105846) ((-329 . -729) 105687) ((-398 . -397) 105671) ((-334 . -333) 105648) ((-497 . -102) T) ((-486 . -25) T) ((-486 . -21) T) ((-430 . -38) 105622) ((-326 . -1059) 105285) ((-227 . -1223) T) ((-227 . -1226) T) ((-3 . -625) 105267) ((-323 . -1059) 105197) ((-886 . -234) 105142) ((-2 . -1121) T) ((-2 . |RecordCategory|) T) ((-1134 . -1079) 105120) ((-845 . -625) 105102) ((-1083 . -237) T) ((-592 . -939) T) ((-576 . -832) T) ((-576 . -939) T) ((-507 . -939) T) ((-137 . -1059) 105086) ((-227 . -95) T) ((-171 . -148) 105065) ((-75 . -453) T) ((0 . -625) 105047) ((-75 . -407) T) ((-171 . -146) 104998) ((-227 . -35) T) ((-49 . -625) 104980) ((-489 . -1079) T) ((-499 . -272) 104962) ((-499 . -232) 104944) ((-496 . -989) 104928) ((-219 . -272) 104910) ((-219 . -232) 104892) ((-81 . -453) T) ((-81 . -407) T) ((-1167 . -34) T) ((-743 . -102) T) ((-665 . -658) 104851) ((-1047 . -625) 104818) ((-512 . -296) 104768) ((-326 . -388) 104737) ((-323 . -388) 104698) ((-323 . -349) 104659) ((-1106 . -625) 104641) ((-828 . -968) 104588) ((-674 . -132) T) ((-1261 . -146) 104567) ((-1261 . -148) 104546) ((-1195 . -102) T) ((-1194 . -102) T) ((-1188 . -102) T) ((-1180 . -1121) T) ((-1147 . -102) T) ((-1096 . -1238) T) ((-224 . -34) T) ((-299 . -729) 104533) ((-1280 . -1279) 104517) ((-1180 . -622) 104493) ((-605 . -319) NIL) ((-1280 . -1266) 104470) ((-1171 . -231) 104420) ((-496 . -1121) 104398) ((-450 . -1238) T) ((-402 . -625) 104380) ((-522 . -861) T) ((-1141 . -1238) T) ((-1273 . -1271) 104341) ((-1273 . -1266) 104311) ((-1273 . -1269) 104295) ((-1252 . -1250) 104256) ((-1252 . -1266) 104233) ((-1252 . -1248) 104217) ((-1195 . -294) 104183) ((-633 . -625) 104165) ((-1194 . -294) 104131) ((-711 . -939) T) ((-1188 . -294) 104097) ((-1147 . -294) 104063) ((-1141 . -901) 104045) ((-1101 . -1121) T) ((-1082 . -1121) T) ((-48 . -312) T) ((-326 . -917) 104011) ((-323 . -917) NIL) ((-1082 . -1089) 103990) ((-811 . -38) 103974) ((-273 . -651) 103922) ((-112 . -864) T) ((-253 . -651) 103870) ((-713 . -1077) 103857) ((-607 . -1266) 103834) ((-1141 . -1059) 103816) ((-329 . -174) 103747) ((-370 . -1121) T) ((-364 . -1121) T) ((-356 . -1121) T) ((-512 . -19) 103729) ((-1123 . -152) 103713) ((-885 . -237) NIL) ((-108 . -1121) T) ((-117 . -1077) 103700) ((-723 . -374) T) ((-512 . -616) 103675) ((-713 . -111) 103660) ((-1313 . -625) 103627) ((-1313 . -502) 103609) ((-1272 . -234) 103555) ((-1251 . -234) 103408) ((-448 . -102) T) ((-890 . -1283) T) ((-256 . -102) T) ((-45 . -1170) 103358) ((-117 . -111) 103343) ((-1290 . -625) 103325) ((-1261 . -237) T) ((-1246 . -625) 103307) ((-1244 . -861) T) ((-647 . -732) T) ((-619 . -732) T) ((-1232 . -1133) T) ((-1232 . -23) T) ((-1193 . -464) 103238) ((-1188 . -319) 103123) ((-1187 . -1121) T) ((-827 . -526) 103056) ((-1056 . -1238) T) ((-245 . -1072) 102957) ((-1179 . -1121) T) ((-1163 . -660) 102895) ((-962 . -152) 102879) ((-1147 . -319) 102866) ((-1146 . -464) 102817) ((-245 . -652) 102739) ((-1108 . -568) 102670) ((-1108 . -1242) 102649) ((-1101 . -729) 102517) ((-537 . -102) T) ((-532 . -102) 102447) ((-1025 . -1072) 102397) ((-1015 . -1121) T) ((-828 . -911) 102293) ((-794 . -1242) 102272) ((-792 . -1242) 102251) ((-62 . -1238) T) ((-489 . -625) 102203) ((-489 . -626) 102125) ((-794 . -568) 102036) ((-792 . -568) 101967) ((-743 . -319) 101954) ((-713 . -628) 101926) ((-494 . -423) 101895) ((-635 . -939) 101874) ((-466 . -1242) 101853) ((-687 . -526) 101786) ((-676 . -25) T) ((-410 . -625) 101768) ((-676 . -21) T) ((-466 . -568) 101699) ((-430 . -919) 101622) ((-366 . -25) T) ((-366 . -21) T) ((-363 . -25) T) ((-118 . -939) T) ((-118 . -832) NIL) ((-363 . -21) T) ((-355 . -25) T) ((-355 . -21) T) ((-273 . -25) T) ((-273 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -237) 101553) ((-83 . -395) T) ((-83 . -407) T) ((-135 . -628) 101535) ((-117 . -628) 101507) ((-1025 . -652) 101457) ((-962 . -1001) 101441) ((-933 . -652) 101393) ((-933 . -1072) 101345) ((-929 . -21) T) ((-929 . -25) T) ((-886 . -861) 101296) ((-880 . -660) 101256) ((-723 . -1133) T) ((-723 . -23) T) ((-713 . -1070) T) ((-713 . -238) T) ((-299 . -174) T) ((-666 . -1238) T) ((-321 . -93) T) ((-659 . -1121) 101234) ((-644 . -622) 101209) ((-644 . -1121) T) ((-593 . -1242) T) ((-593 . -568) T) ((-530 . -1242) T) ((-530 . -568) T) ((-499 . -658) 101159) ((-486 . -234) 101105) ((-439 . -1072) 101089) ((-439 . -652) 101073) ((-370 . -729) 101025) ((-364 . -729) 100977) ((-350 . -1077) 100961) ((-356 . -729) 100913) ((-350 . -111) 100892) ((-176 . -1077) 100824) ((-176 . -111) 100735) ((-108 . -729) 100685) ((-219 . -658) 100635) ((-283 . -1121) T) ((-282 . -1121) T) ((-281 . -1121) T) ((-280 . -1121) T) ((-279 . -1121) T) ((-278 . -1121) T) ((-277 . -1121) T) ((-214 . -1121) T) ((-213 . -1121) T) ((-171 . -1226) 100613) ((-171 . -1223) 100591) ((-211 . -1121) T) ((-210 . -1121) T) ((-117 . -1070) T) ((-209 . -1121) T) ((-208 . -1121) T) ((-205 . -1121) T) ((-204 . -1121) T) ((-203 . -1121) T) ((-202 . -1121) T) ((-201 . -1121) T) ((-200 . -1121) T) ((-199 . -1121) T) ((-198 . -1121) T) ((-197 . -1121) T) ((-196 . -1121) T) ((-195 . -1121) T) ((-245 . -102) 100323) ((-171 . -35) 100301) ((-171 . -95) 100279) ((-666 . -1059) 100175) ((-494 . -1079) 100153) ((-1134 . -1121) 99905) ((-1163 . -34) T) ((-682 . -501) 99889) ((-73 . -1238) T) ((-105 . -625) 99871) ((-908 . -1238) T) ((-1312 . -625) 99853) ((-392 . -625) 99835) ((-350 . -628) 99787) ((-176 . -628) 99704) ((-1237 . -502) 99685) ((-743 . -38) 99534) ((-583 . -1226) T) ((-583 . -1223) T) ((-543 . -625) 99516) ((-532 . -319) 99454) ((-512 . -625) 99436) ((-512 . -626) 99418) ((-1237 . -625) 99384) ((-1188 . -1173) NIL) ((-215 . -1238) T) ((-1048 . -1092) 99353) ((-1048 . -1121) T) ((-1025 . -102) T) ((-992 . -102) T) ((-933 . -102) T) ((-908 . -1059) 99330) ((-1163 . -738) T) ((-1024 . -660) 99237) ((-488 . -1121) T) ((-475 . -1121) T) ((-598 . -23) T) ((-583 . -35) T) ((-583 . -95) T) ((-439 . -102) T) ((-1084 . -231) 99183) ((-1195 . -38) 99080) ((-1194 . -38) 98921) ((-940 . -864) T) ((-880 . -738) T) ((-783 . -864) T) ((-706 . -939) T) ((-684 . -864) T) ((-523 . -25) T) ((-519 . -21) T) ((-519 . -25) T) ((-1188 . -38) 98717) ((-350 . -1070) T) ((-145 . -1238) T) ((-1101 . -174) T) ((-176 . -1070) T) ((-1147 . -38) 98614) ((-724 . -47) 98591) ((-370 . -174) T) ((-364 . -174) T) ((-531 . -57) 98565) ((-509 . -57) 98515) ((-362 . -1307) 98492) ((-227 . -464) T) ((-329 . -300) 98443) ((-356 . -174) T) ((-176 . -248) T) ((-1251 . -861) 98342) ((-108 . -174) T) ((-886 . -1013) 98326) ((-670 . -1133) T) ((-593 . -374) T) ((-593 . -339) 98313) ((-530 . -339) 98290) ((-530 . -374) T) ((-326 . -317) 98269) ((-323 . -317) T) ((-614 . -861) 98248) ((-1134 . -729) 98190) ((-532 . -292) 98174) ((-670 . -23) T) ((-430 . -232) 98158) ((-430 . -272) 98142) ((-323 . -1043) NIL) ((-347 . -23) T) ((-103 . -1031) 98126) ((-45 . -36) 98105) ((-624 . -1121) T) ((-362 . -379) T) ((-536 . -102) T) ((-507 . -27) T) ((-245 . -319) 98043) ((-1108 . -1133) T) ((-1311 . -660) 98017) ((-794 . -1133) T) ((-792 . -1133) T) ((-1199 . -423) 98001) ((-466 . -1133) T) ((-1083 . -464) T) ((-1172 . -1121) T) ((-971 . -464) 97952) ((-1136 . -1104) T) ((-110 . -1121) T) ((-1108 . -23) T) ((-1180 . -526) 97735) ((-829 . -1079) T) ((-794 . -23) T) ((-792 . -23) T) ((-493 . -464) 97686) ((-473 . -23) T) ((-392 . -393) 97665) ((-366 . -234) 97638) ((-363 . -234) 97611) ((-355 . -234) 97584) ((-466 . -23) T) ((-273 . -234) 97529) ((-258 . -911) 97396) ((-257 . -911) 97263) ((-96 . -1121) T) ((-724 . -1238) T) ((-682 . -296) 97240) ((-496 . -526) 97173) ((-1280 . -1072) 97056) ((-1280 . -652) 96953) ((-1273 . -652) 96794) ((-1273 . -1072) 96629) ((-1252 . -652) 96425) ((-1252 . -1072) 96215) ((-299 . -300) T) ((-1103 . -625) 96197) ((-559 . -864) T) ((-1103 . -626) 96178) ((-419 . -928) 96157) ((-1232 . -132) T) ((-50 . -1133) T) ((-1188 . -412) 96109) ((-1045 . -939) T) ((-1024 . -738) T) ((-855 . -660) 96082) ((-724 . -901) NIL) ((-608 . -1072) 96042) ((-593 . -1133) T) ((-530 . -1133) T) ((-607 . -1072) 95925) ((-1178 . -34) T) ((-1025 . -319) NIL) ((-827 . -501) 95909) ((-608 . -652) 95882) ((-365 . -939) T) ((-607 . -652) 95779) ((-929 . -234) 95766) ((-419 . -660) 95682) ((-50 . -23) T) ((-723 . -132) T) ((-724 . -1059) 95562) ((-593 . -23) T) ((-108 . -526) NIL) ((-530 . -23) T) ((-171 . -421) 95533) ((-1161 . -1121) T) ((-1303 . -1302) 95517) ((-743 . -919) 95494) ((-713 . -807) T) ((-713 . -804) T) ((-1141 . -317) T) ((-390 . -148) T) ((-290 . -625) 95476) ((-289 . -625) 95458) ((-1251 . -1013) 95428) ((-48 . -939) T) ((-687 . -501) 95412) ((-258 . -1295) 95382) ((-257 . -1295) 95352) ((-1109 . -237) T) ((-1197 . -861) T) ((-1141 . -1043) T) ((-1067 . -34) T) ((-848 . -148) 95331) ((-848 . -146) 95310) ((-749 . -107) 95294) ((-624 . -133) T) ((-1199 . -1079) T) ((-494 . -1121) 95046) ((-1195 . -919) 94959) ((-1194 . -919) 94865) ((-1188 . -919) 94626) ((-885 . -464) T) ((-85 . -1238) T) ((-142 . -107) 94608) ((-1147 . -919) 94592) ((-724 . -388) 94576) ((-845 . -628) 94444) ((-1311 . -738) T) ((-1300 . -1079) T) ((-1280 . -102) T) ((-1141 . -557) T) ((-591 . -102) T) ((-130 . -502) 94426) ((-1273 . -102) T) ((-402 . -1077) 94410) ((-1193 . -968) 94379) ((-44 . -296) 94356) ((-130 . -625) 94323) ((-52 . -625) 94305) ((-1146 . -968) 94272) ((-665 . -423) 94256) ((-1252 . -102) T) ((-1179 . -526) NIL) ((-674 . -25) T) ((-633 . -1077) 94240) ((-674 . -21) T) ((-982 . -658) 94150) ((-747 . -658) 94095) ((-727 . -658) 94067) ((-402 . -111) 94046) ((-224 . -261) 94030) ((-1075 . -1074) 93970) ((-1075 . -1121) T) ((-1025 . -1173) T) ((-830 . -1121) T) ((-465 . -658) 93885) ((-647 . -660) 93869) ((-633 . -111) 93848) ((-619 . -660) 93832) ((-354 . -1242) T) ((-608 . -102) T) ((-321 . -502) 93813) ((-598 . -132) T) ((-607 . -102) T) ((-426 . -1121) T) ((-396 . -1121) T) ((-321 . -625) 93779) ((-229 . -1121) 93757) ((-659 . -526) 93690) ((-644 . -526) 93534) ((-845 . -1070) 93513) ((-656 . -152) 93497) ((-354 . -568) T) ((-724 . -917) 93440) ((-562 . -231) 93390) ((-1280 . -294) 93356) ((-1273 . -294) 93322) ((-1101 . -300) 93273) ((-576 . -864) T) ((-499 . -860) T) ((-225 . -1133) T) ((-1252 . -294) 93239) ((-1232 . -505) 93205) ((-1025 . -38) 93155) ((-219 . -860) T) ((-430 . -658) 93114) ((-933 . -38) 93066) ((-855 . -806) 93045) ((-855 . -803) 93024) ((-855 . -738) 93003) ((-370 . -300) T) ((-364 . -300) T) ((-356 . -300) T) ((-171 . -464) 92934) ((-439 . -38) 92918) ((-225 . -23) T) ((-108 . -300) T) ((-419 . -806) 92897) ((-419 . -803) 92876) ((-419 . -738) T) ((-512 . -298) 92851) ((-489 . -1077) 92816) ((-670 . -132) T) ((-633 . -628) 92785) ((-1134 . -526) 92718) ((-347 . -132) T) ((-171 . -414) 92697) ((-494 . -729) 92639) ((-827 . -296) 92616) ((-489 . -111) 92572) ((-665 . -1079) T) ((-1193 . -911) 92475) ((-1146 . -911) 92457) ((-828 . -1072) 92300) ((-1299 . -1104) T) ((-1261 . -464) 92231) ((-828 . -652) 92080) ((-1298 . -1104) T) ((-1108 . -132) T) ((-1075 . -729) 92022) ((-1048 . -526) 91955) ((-794 . -132) T) ((-792 . -132) T) ((-711 . -864) T) ((-583 . -464) T) ((-633 . -1070) T) ((-604 . -1121) T) ((-545 . -175) T) ((-473 . -132) T) ((-466 . -132) T) ((-390 . -237) T) ((-1020 . -1238) T) ((-45 . -1121) T) ((-396 . -729) 91925) ((-829 . -1121) T) ((-488 . -526) 91858) ((-475 . -526) 91791) ((-1313 . -628) 91773) ((-465 . -378) 91743) ((-45 . -622) 91722) ((-411 . -1238) T) ((-326 . -312) T) ((-1288 . -864) 91701) ((-839 . -237) 91680) ((-489 . -628) 91630) ((-1252 . -319) 91515) ((-682 . -625) 91477) ((-59 . -861) 91456) ((-1025 . -412) 91438) ((-560 . -625) 91420) ((-811 . -658) 91379) ((-827 . -616) 91356) ((-528 . -861) 91335) ((-508 . -861) 91314) ((-1020 . -1059) 91210) ((-40 . -1242) T) ((-245 . -919) 91079) ((-50 . -132) T) ((-593 . -132) T) ((-530 . -132) T) ((-304 . -660) 90939) ((-354 . -339) 90916) ((-354 . -374) T) ((-332 . -333) 90893) ((-329 . -296) 90851) ((-40 . -568) T) ((-390 . -1223) T) ((-390 . -1226) T) ((-1056 . -1214) 90826) ((-1210 . -240) 90776) ((-1188 . -232) 90728) ((-1188 . -272) 90680) ((-340 . -1121) T) ((-390 . -95) T) ((-390 . -35) T) ((-1056 . -107) 90626) ((-489 . -1070) T) ((-1312 . -1077) 90610) ((-491 . -240) 90560) ((-1180 . -501) 90494) ((-1303 . -1072) 90478) ((-392 . -1077) 90462) ((-1303 . -652) 90432) ((-828 . -102) T) ((-489 . -248) T) ((-726 . -148) 90411) ((-726 . -146) 90390) ((-118 . -864) NIL) ((-496 . -501) 90374) ((-497 . -346) 90343) ((-524 . -1121) 90294) ((-1312 . -111) 90273) ((-1020 . -388) 90257) ((-425 . -102) T) ((-392 . -111) 90236) ((-1020 . -349) 90220) ((-288 . -1004) 90204) ((-287 . -1004) 90188) ((-1025 . -919) NIL) ((-1310 . -625) 90170) ((-1308 . -625) 90152) ((-110 . -526) NIL) ((-1193 . -1264) 90136) ((-868 . -866) 90120) ((-1199 . -1121) T) ((-103 . -1238) T) ((-971 . -968) 90081) ((-829 . -729) 90023) ((-1252 . -1173) NIL) ((-493 . -968) 89968) ((-1083 . -144) T) ((-60 . -102) 89918) ((-44 . -625) 89900) ((-78 . -625) 89882) ((-362 . -660) 89827) ((-1300 . -1121) T) ((-523 . -861) T) ((-299 . -296) 89806) ((-354 . -1133) T) ((-305 . -1121) T) ((-1020 . -917) 89765) ((-305 . -622) 89744) ((-1312 . -628) 89693) ((-1280 . -38) 89590) ((-1273 . -38) 89431) ((-1252 . -38) 89227) ((-499 . -1079) T) ((-392 . -628) 89211) ((-219 . -1079) T) ((-354 . -23) T) ((-153 . -625) 89193) ((-845 . -807) 89172) ((-845 . -804) 89151) ((-1237 . -628) 89132) ((-608 . -38) 89105) ((-607 . -38) 89002) ((-884 . -568) T) ((-225 . -132) T) ((-329 . -1023) 88968) ((-79 . -625) 88950) ((-724 . -317) 88929) ((-304 . -738) 88831) ((-836 . -102) T) ((-878 . -856) T) ((-304 . -485) 88810) ((-1303 . -102) T) ((-40 . -374) T) ((-886 . -148) 88789) ((-497 . -658) 88771) ((-886 . -146) 88750) ((-1179 . -501) 88732) ((-1312 . -1070) T) ((-494 . -526) 88665) ((-1167 . -1238) T) ((-983 . -625) 88647) ((-659 . -501) 88631) ((-644 . -501) 88562) ((-827 . -625) 88255) ((-48 . -27) T) ((-1199 . -729) 88152) ((-971 . -911) 88131) ((-665 . -1121) T) ((-875 . -874) T) ((-448 . -375) 88105) ((-743 . -658) 88015) ((-493 . -911) 87990) ((-1123 . -102) T) ((-991 . -1121) T) ((-878 . -1121) T) ((-828 . -319) 87977) ((-545 . -539) T) ((-545 . -588) T) ((-1308 . -393) 87949) ((-706 . -864) T) ((-1075 . -526) 87882) ((-1180 . -296) 87858) ((-245 . -272) 87827) ((-245 . -232) 87796) ((-258 . -1072) 87697) ((-257 . -1072) 87598) ((-1300 . -729) 87568) ((-1187 . -93) T) ((-1015 . -93) T) ((-829 . -174) 87547) ((-258 . -652) 87469) ((-257 . -652) 87391) ((-1235 . -502) 87368) ((-590 . -1238) T) ((-229 . -526) 87301) ((-633 . -807) 87280) ((-633 . -804) 87259) ((-1235 . -625) 87171) ((-224 . -1238) T) ((-687 . -625) 87103) ((-1195 . -658) 87013) ((-1178 . -1031) 86997) ((-962 . -102) 86927) ((-362 . -738) T) ((-875 . -625) 86909) ((-1194 . -658) 86791) ((-1188 . -658) 86628) ((-1147 . -658) 86538) ((-1252 . -412) 86490) ((-1134 . -501) 86474) ((-60 . -319) 86412) ((-341 . -102) T) ((-1232 . -21) T) ((-1232 . -25) T) ((-40 . -1133) T) ((-723 . -21) T) ((-639 . -625) 86394) ((-527 . -333) 86373) ((-723 . -25) T) ((-451 . -102) T) ((-108 . -296) NIL) ((-940 . -1133) T) ((-40 . -23) T) ((-783 . -1133) T) ((-576 . -1242) T) ((-507 . -1242) T) ((-1025 . -272) 86355) ((-329 . -625) 86337) ((-1025 . -232) 86319) ((-171 . -167) 86303) ((-592 . -568) T) ((-576 . -568) T) ((-507 . -568) T) ((-783 . -23) T) ((-1272 . -148) 86282) ((-1272 . -146) 86261) ((-1180 . -616) 86237) ((-1251 . -146) 86162) ((-1048 . -501) 86146) ((-1245 . -1238) T) ((-1251 . -148) 86071) ((-1303 . -1309) 86050) ((-885 . -911) NIL) ((-488 . -501) 86034) ((-475 . -501) 86018) ((-535 . -34) T) ((-665 . -729) 85988) ((-1280 . -919) 85901) ((-1273 . -919) 85807) ((-1252 . -919) 85568) ((-112 . -988) T) ((-1199 . -174) 85519) ((-674 . -861) 85498) ((-376 . -102) T) ((-607 . -919) 85411) ((-245 . -243) 85390) ((-258 . -102) T) ((-257 . -102) T) ((-1261 . -968) 85359) ((-250 . -861) 85338) ((-1045 . -864) T) ((-828 . -38) 85187) ((-45 . -526) 84979) ((-1179 . -296) 84929) ((-216 . -1121) T) ((-1171 . -1121) T) ((-886 . -237) 84880) ((-1171 . -622) 84859) ((-598 . -25) T) ((-598 . -21) T) ((-1123 . -319) 84797) ((-982 . -423) 84781) ((-711 . -1242) T) ((-644 . -296) 84734) ((-1108 . -651) 84682) ((-924 . -1121) T) ((-794 . -651) 84630) ((-792 . -651) 84578) ((-354 . -132) T) ((-299 . -625) 84560) ((-884 . -1133) T) ((-711 . -568) T) ((-130 . -628) 84542) ((-466 . -651) 84490) ((-171 . -911) 84411) ((-924 . -922) 84395) ((-390 . -464) T) ((-499 . -1121) T) ((-962 . -319) 84333) ((-713 . -660) 84305) ((-561 . -856) T) ((-219 . -1121) T) ((-326 . -939) 84284) ((-323 . -939) T) ((-323 . -832) NIL) ((-402 . -732) T) ((-884 . -23) T) ((-117 . -660) 84271) ((-486 . -146) 84250) ((-430 . -423) 84234) ((-486 . -148) 84213) ((-110 . -501) 84195) ((-321 . -628) 84176) ((-2 . -625) 84158) ((-188 . -102) T) ((-1179 . -19) 84140) ((-1179 . -616) 84115) ((-670 . -21) T) ((-670 . -25) T) ((-605 . -1165) T) ((-1134 . -296) 84092) ((-347 . -25) T) ((-347 . -21) T) ((-904 . -1238) T) ((-900 . -1238) T) ((-1310 . -1077) 84076) ((-245 . -658) 83855) ((-507 . -374) T) ((-1308 . -1077) 83839) ((-1303 . -38) 83809) ((-1272 . -1223) 83775) ((-1272 . -1226) 83741) ((-1261 . -911) 83644) ((-1193 . -1072) 83467) ((-1163 . -1238) T) ((-1146 . -1072) 83310) ((-868 . -1072) 83294) ((-644 . -616) 83269) ((-1272 . -95) 83235) ((-1272 . -237) 83187) ((-1255 . -102) 83165) ((-1193 . -652) 82994) ((-1146 . -652) 82843) ((-868 . -652) 82813) ((-1252 . -232) 82765) ((-1108 . -25) T) ((-561 . -1121) T) ((-1108 . -21) T) ((-982 . -1079) T) ((-543 . -804) T) ((-543 . -807) T) ((-118 . -1242) T) ((-880 . -1238) T) ((-635 . -568) T) ((-794 . -25) T) ((-794 . -21) T) ((-792 . -21) T) ((-792 . -25) T) ((-747 . -1079) T) ((-727 . -1079) T) ((-682 . -1077) 82749) ((-529 . -1104) T) ((-473 . -25) T) ((-118 . -568) T) ((-473 . -21) T) ((-466 . -25) T) ((-466 . -21) T) ((-1252 . -272) 82701) ((-1172 . -93) T) ((-1163 . -1059) 82597) ((-829 . -300) 82576) ((-1251 . -1223) 82542) ((-835 . -1121) T) ((-985 . -988) T) ((-682 . -111) 82521) ((-629 . -1238) T) ((-305 . -526) 82313) ((-1251 . -1226) 82279) ((-1251 . -237) 82138) ((-1246 . -379) T) ((-258 . -319) 82076) ((-257 . -319) 82014) ((-1243 . -856) T) ((-1180 . -626) NIL) ((-1180 . -625) 81996) ((-1163 . -388) 81980) ((-1141 . -832) T) ((-1141 . -939) T) ((-96 . -93) T) ((-1134 . -616) 81957) ((-1101 . -626) 81941) ((-1101 . -625) 81923) ((-1025 . -658) 81873) ((-933 . -658) 81810) ((-827 . -298) 81787) ((-496 . -625) 81719) ((-620 . -152) 81666) ((-499 . -729) 81616) ((-430 . -1079) T) ((-494 . -501) 81600) ((-439 . -658) 81559) ((-337 . -861) 81538) ((-350 . -660) 81512) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -729) 81462) ((-171 . -736) 81433) ((-176 . -660) 81365) ((-593 . -21) T) ((-593 . -25) T) ((-530 . -25) T) ((-530 . -21) T) ((-487 . -152) 81315) ((-1082 . -625) 81297) ((-1014 . -102) T) ((-876 . -102) T) ((-828 . -919) 81197) ((-811 . -423) 81160) ((-40 . -132) T) ((-711 . -374) T) ((-713 . -738) T) ((-713 . -806) T) ((-713 . -803) T) ((-214 . -912) T) ((-592 . -1133) T) ((-576 . -1133) T) ((-507 . -1133) T) ((-370 . -625) 81142) ((-364 . -625) 81124) ((-356 . -625) 81106) ((-66 . -408) T) ((-66 . -407) T) ((-108 . -626) 81036) ((-108 . -625) 80978) ((-213 . -912) T) ((-977 . -152) 80962) ((-783 . -132) T) ((-682 . -628) 80880) ((-135 . -738) T) ((-117 . -738) T) ((-1272 . -35) 80846) ((-1075 . -501) 80830) ((-592 . -23) T) ((-576 . -23) T) ((-507 . -23) T) ((-1251 . -95) 80796) ((-1251 . -35) 80762) ((-1193 . -102) T) ((-1146 . -102) T) ((-868 . -102) T) ((-229 . -501) 80746) ((-1310 . -111) 80725) ((-1308 . -111) 80704) ((-44 . -1077) 80688) ((-1311 . -1238) T) ((-1310 . -628) 80634) ((-1310 . -1070) T) ((-1308 . -628) 80563) ((-1308 . -1070) T) ((-1261 . -1264) 80547) ((-869 . -866) 80531) ((-1199 . -300) 80510) ((-1125 . -1238) T) ((-110 . -296) 80460) ((-1024 . -1238) T) ((-129 . -152) 80442) ((-1163 . -917) 80401) ((-44 . -111) 80380) ((-1243 . -1121) T) ((-1202 . -1283) T) ((-1188 . -860) NIL) ((-1187 . -502) 80361) ((-682 . -1070) T) ((-1187 . -625) 80327) ((-1179 . -625) 80309) ((-486 . -237) 80261) ((-1084 . -622) 80236) ((-1015 . -502) 80217) ((-74 . -453) T) ((-74 . -407) T) ((-1084 . -1121) T) ((-153 . -1077) 80201) ((-1015 . -625) 80167) ((-682 . -238) 80146) ((-583 . -566) 80130) ((-366 . -148) 80109) ((-366 . -146) 80060) ((-363 . -148) 80039) ((-363 . -146) 79990) ((-355 . -148) 79969) ((-355 . -146) 79920) ((-273 . -146) 79899) ((-273 . -148) 79878) ((-253 . -148) 79857) ((-118 . -374) T) ((-253 . -146) 79836) ((-1179 . -626) NIL) ((-153 . -111) 79815) ((-1024 . -1059) 79703) ((-1178 . -1238) T) ((-706 . -1242) T) ((-811 . -1079) T) ((-711 . -1133) T) ((-1024 . -388) 79680) ((-518 . -1238) T) ((-514 . -1238) T) ((-929 . -146) T) ((-929 . -148) 79662) ((-884 . -132) T) ((-827 . -1077) 79583) ((-711 . -23) T) ((-706 . -568) T) ((-227 . -1072) 79548) ((-659 . -625) 79480) ((-659 . -626) 79441) ((-644 . -626) NIL) ((-644 . -625) 79423) ((-499 . -174) T) ((-227 . -652) 79388) ((-219 . -174) T) ((-225 . -21) T) ((-225 . -25) T) ((-486 . -1226) 79354) ((-486 . -1223) 79320) ((-283 . -625) 79302) ((-282 . -625) 79284) ((-281 . -625) 79266) ((-280 . -625) 79248) ((-279 . -625) 79230) ((-512 . -663) 79212) ((-278 . -625) 79194) ((-350 . -738) T) ((-277 . -625) 79176) ((-110 . -19) 79158) ((-176 . -738) T) ((-512 . -384) 79140) ((-214 . -625) 79122) ((-532 . -1170) 79106) ((-512 . -124) T) ((-110 . -616) 79081) ((-213 . -625) 79063) ((-486 . -35) 79029) ((-486 . -95) 78995) ((-211 . -625) 78977) ((-210 . -625) 78959) ((-209 . -625) 78941) ((-208 . -625) 78923) ((-205 . -625) 78905) ((-204 . -625) 78887) ((-203 . -625) 78869) ((-202 . -625) 78851) ((-201 . -625) 78833) ((-200 . -625) 78815) ((-199 . -625) 78797) ((-548 . -1124) 78749) ((-198 . -625) 78731) ((-197 . -625) 78713) ((-45 . -501) 78650) ((-196 . -625) 78632) ((-195 . -625) 78614) ((-153 . -628) 78583) ((-1136 . -102) T) ((-827 . -111) 78499) ((-656 . -102) 78429) ((-494 . -296) 78406) ((-1311 . -1059) 78390) ((-1134 . -625) 78083) ((-1122 . -1121) T) ((-1067 . -1238) T) ((-1193 . -319) 78070) ((-1083 . -1072) 78057) ((-1156 . -1121) T) ((-971 . -1072) 77900) ((-1146 . -319) 77887) ((-1117 . -1104) T) ((-635 . -1133) T) ((-1083 . -652) 77874) ((-1111 . -1104) T) ((-971 . -652) 77723) ((-1108 . -234) 77668) ((-493 . -1072) 77511) ((-1094 . -1104) T) ((-1087 . -1104) T) ((-1057 . -1104) T) ((-1040 . -1104) T) ((-118 . -1133) T) ((-493 . -652) 77360) ((-794 . -234) 77347) ((-831 . -102) T) ((-638 . -1104) T) ((-635 . -23) T) ((-1171 . -526) 77139) ((-495 . -1104) T) ((-982 . -1121) T) ((-398 . -102) T) ((-334 . -102) T) ((-220 . -1104) T) ((-855 . -1238) T) ((-153 . -1070) T) ((-743 . -423) 77123) ((-118 . -23) T) ((-1024 . -917) 77075) ((-747 . -1121) T) ((-727 . -1121) T) ((-1280 . -658) 76985) ((-1273 . -658) 76867) ((-465 . -1121) T) ((-419 . -1238) T) ((-326 . -442) 76851) ((-604 . -93) T) ((-1048 . -626) 76812) ((-270 . -1238) T) ((-1045 . -1242) T) ((-227 . -102) T) ((-1048 . -625) 76774) ((-828 . -272) 76758) ((-828 . -232) 76742) ((-827 . -628) 76540) ((-1252 . -658) 76377) ((-1045 . -568) T) ((-845 . -660) 76350) ((-365 . -1242) T) ((-488 . -625) 76312) ((-488 . -626) 76273) ((-475 . -626) 76234) ((-475 . -625) 76196) ((-608 . -658) 76155) ((-419 . -899) 76139) ((-329 . -1077) 75974) ((-419 . -901) 75899) ((-607 . -658) 75809) ((-855 . -1059) 75705) ((-499 . -526) NIL) ((-494 . -616) 75682) ((-593 . -234) 75669) ((-365 . -568) T) ((-530 . -234) 75656) ((-219 . -526) NIL) ((-886 . -464) T) ((-430 . -1121) T) ((-419 . -1059) 75520) ((-329 . -111) 75341) ((-706 . -374) T) ((-227 . -294) T) ((-1235 . -628) 75318) ((-48 . -1242) T) ((-1193 . -1173) 75296) ((-1180 . -298) 75272) ((-1083 . -102) T) ((-971 . -102) T) ((-827 . -1070) 75250) ((-592 . -132) T) ((-576 . -132) T) ((-507 . -132) T) ((-366 . -237) 75229) ((-363 . -237) 75208) ((-355 . -237) 75187) ((-48 . -568) T) ((-885 . -1072) 75132) ((-273 . -237) 75083) ((-827 . -238) 75035) ((-326 . -27) 75014) ((-258 . -919) 74883) ((-257 . -919) 74752) ((-255 . -847) 74734) ((-189 . -847) 74716) ((-725 . -102) T) ((-305 . -501) 74653) ((-885 . -652) 74598) ((-493 . -102) T) ((-743 . -1079) T) ((-624 . -625) 74580) ((-624 . -626) 74441) ((-419 . -388) 74425) ((-419 . -349) 74409) ((-1193 . -38) 74238) ((-1146 . -38) 74087) ((-329 . -628) 73913) ((-929 . -237) T) ((-647 . -1238) T) ((-619 . -1238) T) ((-868 . -38) 73883) ((-402 . -660) 73867) ((-656 . -319) 73805) ((-1172 . -502) 73786) ((-1172 . -625) 73752) ((-982 . -729) 73649) ((-747 . -729) 73619) ((-633 . -660) 73593) ((-224 . -107) 73577) ((-45 . -296) 73477) ((-322 . -1121) T) ((-299 . -1077) 73464) ((-110 . -625) 73446) ((-110 . -626) 73428) ((-465 . -729) 73398) ((-828 . -260) 73337) ((-701 . -1121) 73315) ((-562 . -1121) T) ((-1195 . -1079) T) ((-1194 . -1079) T) ((-96 . -502) 73296) ((-1188 . -1079) T) ((-299 . -111) 73281) ((-1147 . -1079) T) ((-562 . -622) 73260) ((-96 . -625) 73226) ((-1025 . -860) T) ((-229 . -699) 73184) ((-706 . -1133) T) ((-1232 . -752) 73160) ((-1045 . -374) T) ((-850 . -847) 73142) ((-845 . -806) 73121) ((-419 . -917) 73080) ((-329 . -1070) T) ((-354 . -25) T) ((-354 . -21) T) ((-171 . -1072) 72990) ((-68 . -1238) T) ((-845 . -803) 72969) ((-430 . -729) 72943) ((-811 . -1121) T) ((-724 . -939) 72922) ((-711 . -132) T) ((-171 . -652) 72750) ((-706 . -23) T) ((-499 . -300) T) ((-845 . -738) 72729) ((-329 . -238) 72681) ((-329 . -248) 72660) ((-219 . -300) T) ((-130 . -379) T) ((-1272 . -464) 72639) ((-1251 . -464) 72618) ((-365 . -339) 72595) ((-365 . -374) T) ((-1161 . -625) 72577) ((-45 . -1276) 72527) ((-885 . -102) T) ((-656 . -292) 72511) ((-711 . -1081) T) ((-1299 . -102) T) ((-1298 . -102) T) ((-489 . -660) 72476) ((-480 . -1121) T) ((-45 . -616) 72401) ((-1179 . -298) 72376) ((-299 . -628) 72348) ((-40 . -651) 72287) ((-1261 . -1072) 72110) ((-869 . -1072) 72094) ((-48 . -374) T) ((-1127 . -625) 72076) ((-1261 . -652) 71905) ((-869 . -652) 71875) ((-644 . -298) 71850) ((-828 . -658) 71760) ((-583 . -1072) 71747) ((-494 . -625) 71440) ((-245 . -423) 71409) ((-1193 . -919) 71316) ((-1186 . -1121) T) ((-971 . -319) 71303) ((-583 . -652) 71290) ((-65 . -1238) T) ((-1154 . -1238) T) ((-1146 . -919) 71274) ((-1134 . -298) 71251) ((-1084 . -526) 71095) ((-683 . -1121) T) ((-635 . -132) T) ((-618 . -1121) T) ((-493 . -319) 71082) ((-558 . -102) T) ((-118 . -132) T) ((-299 . -1070) T) ((-182 . -1121) T) ((-162 . -1121) T) ((-157 . -1121) T) ((-155 . -1121) T) ((-465 . -773) T) ((-31 . -1104) T) ((-982 . -174) 71033) ((-1123 . -231) 71017) ((-991 . -93) T) ((-1101 . -1077) 70927) ((-1075 . -625) 70889) ((-633 . -738) T) ((-633 . -806) 70868) ((-605 . -1121) T) ((-633 . -803) 70847) ((-305 . -296) 70826) ((-304 . -1238) T) ((-1075 . -626) 70787) ((-1045 . -1133) T) ((-323 . -864) NIL) ((-171 . -102) T) ((-284 . -861) T) ((-1101 . -111) 70683) ((-830 . -625) 70665) ((-1045 . -23) T) ((-1024 . -317) T) ((-915 . -102) T) ((-811 . -729) 70649) ((-370 . -1077) 70601) ((-365 . -1133) T) ((-364 . -1077) 70553) ((-426 . -625) 70535) ((-396 . -625) 70517) ((-356 . -1077) 70469) ((-229 . -625) 70401) ((-853 . -102) T) ((-820 . -102) T) ((-108 . -1077) 70351) ((-781 . -102) T) ((-689 . -102) T) ((-115 . -864) T) ((-486 . -464) 70330) ((-430 . -174) T) ((-370 . -111) 70268) ((-364 . -111) 70206) ((-356 . -111) 70144) ((-258 . -272) 70113) ((-258 . -232) 70082) ((-257 . -272) 70051) ((-257 . -232) 70020) ((-365 . -23) T) ((-71 . -1238) T) ((-227 . -38) 69985) ((-108 . -111) 69919) ((-40 . -25) T) ((-40 . -21) T) ((-682 . -732) T) ((-171 . -294) 69897) ((-48 . -1133) T) ((-872 . -1238) T) ((-940 . -25) T) ((-783 . -25) T) ((-1312 . -660) 69871) ((-1171 . -501) 69808) ((-497 . -1121) T) ((-1303 . -658) 69767) ((-1261 . -102) T) ((-1083 . -1173) T) ((-869 . -102) T) ((-245 . -1079) 69745) ((-983 . -804) 69698) ((-983 . -807) 69651) ((-392 . -660) 69635) ((-48 . -23) T) ((-827 . -807) 69614) ((-827 . -804) 69593) ((-560 . -379) T) ((-305 . -616) 69572) ((-489 . -738) T) ((-583 . -102) T) ((-1101 . -628) 69390) ((-255 . -187) T) ((-189 . -187) T) ((-885 . -319) 69347) ((-665 . -296) 69326) ((-112 . -673) T) ((-362 . -1238) T) ((-370 . -628) 69263) ((-364 . -628) 69200) ((-356 . -628) 69137) ((-76 . -1238) T) ((-108 . -628) 69087) ((-112 . -113) T) ((-1083 . -38) 69074) ((-676 . -385) 69053) ((-971 . -38) 68902) ((-743 . -1121) T) ((-493 . -38) 68751) ((-86 . -1238) T) ((-604 . -502) 68732) ((-1252 . -860) NIL) ((-1195 . -1121) T) ((-583 . -294) T) ((-1194 . -1121) T) ((-604 . -625) 68698) ((-1188 . -1121) T) ((-1141 . -864) T) ((-1101 . -1070) T) ((-362 . -1059) 68675) ((-829 . -502) 68659) ((-1025 . -1079) T) ((-45 . -625) 68641) ((-45 . -626) NIL) ((-933 . -1079) T) ((-829 . -625) 68610) ((-1168 . -102) 68560) ((-1101 . -248) 68511) ((-439 . -1079) T) ((-370 . -1070) T) ((-364 . -1070) T) ((-376 . -375) 68488) ((-356 . -1070) T) ((-354 . -234) 68475) ((-258 . -243) 68454) ((-257 . -243) 68433) ((-1101 . -238) 68358) ((-1147 . -1121) T) ((-304 . -917) 68317) ((-108 . -1070) T) ((-706 . -132) T) ((-430 . -526) 68159) ((-370 . -238) 68138) ((-370 . -248) T) ((-44 . -732) T) ((-364 . -238) 68117) ((-364 . -248) T) ((-356 . -238) 68096) ((-356 . -248) T) ((-1187 . -628) 68077) ((-171 . -319) 68042) ((-108 . -248) T) ((-108 . -238) T) ((-1015 . -628) 68023) ((-329 . -804) T) ((-884 . -21) T) ((-884 . -25) T) ((-419 . -317) T) ((-512 . -34) T) ((-110 . -298) 67998) ((-1134 . -1077) 67919) ((-885 . -1173) NIL) ((-340 . -625) 67901) ((-419 . -1043) 67879) ((-1134 . -111) 67795) ((-703 . -1283) T) ((-448 . -1121) T) ((-256 . -1121) T) ((-1312 . -738) T) ((-63 . -625) 67777) ((-885 . -38) 67722) ((-614 . -152) 67706) ((-535 . -1238) T) ((-524 . -625) 67646) ((-1261 . -319) 67633) ((-743 . -729) 67482) ((-543 . -805) T) ((-543 . -806) T) ((-576 . -651) 67464) ((-507 . -651) 67424) ((-516 . -1238) T) ((-366 . -464) T) ((-363 . -464) T) ((-355 . -464) T) ((-273 . -464) 67375) ((-537 . -1121) T) ((-532 . -1121) 67325) ((-253 . -464) 67276) ((-1171 . -296) 67255) ((-1199 . -625) 67237) ((-701 . -526) 67170) ((-982 . -300) 67149) ((-562 . -526) 66941) ((-258 . -658) 66789) ((-257 . -658) 66624) ((-1300 . -625) 66593) ((-1300 . -502) 66577) ((-1195 . -729) 66474) ((-1193 . -272) 66458) ((-1193 . -232) 66442) ((-1134 . -628) 66240) ((-171 . -1173) 66219) ((-1194 . -729) 66060) ((-1188 . -729) 65856) ((-985 . -113) T) ((-907 . -102) T) ((-1178 . -686) 65840) ((-1147 . -729) 65737) ((-1045 . -132) T) ((-366 . -414) 65688) ((-363 . -414) 65639) ((-355 . -414) 65590) ((-983 . -379) 65543) ((-811 . -526) 65455) ((-305 . -626) NIL) ((-305 . -625) 65437) ((-929 . -464) T) ((-924 . -296) 65416) ((-827 . -379) 65395) ((-522 . -521) 65374) ((-520 . -521) 65353) ((-886 . -911) 65274) ((-499 . -296) NIL) ((-494 . -298) 65251) ((-430 . -300) T) ((-365 . -132) T) ((-219 . -296) NIL) ((-706 . -505) NIL) ((-99 . -1133) T) ((-40 . -234) 65182) ((-171 . -38) 65010) ((-971 . -919) 64991) ((-1272 . -994) 64953) ((-1168 . -319) 64891) ((-493 . -919) 64868) ((-1251 . -994) 64837) ((-929 . -414) T) ((-1134 . -1070) 64815) ((-1274 . -568) T) ((-1171 . -616) 64794) ((-112 . -861) T) ((-1084 . -501) 64725) ((-592 . -21) T) ((-592 . -25) T) ((-576 . -21) T) ((-576 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-1261 . -1173) 64703) ((-1134 . -238) 64655) ((-48 . -132) T) ((-1219 . -102) T) ((-245 . -1121) 64407) ((-885 . -412) 64384) ((-1109 . -102) T) ((-1097 . -102) T) ((-908 . -864) T) ((-620 . -102) T) ((-487 . -102) T) ((-1261 . -38) 64213) ((-869 . -38) 64183) ((-1055 . -1072) 64157) ((-743 . -174) 64068) ((-665 . -625) 64050) ((-657 . -1104) T) ((-1055 . -652) 64034) ((-583 . -38) 64021) ((-991 . -502) 64002) ((-991 . -625) 63968) ((-977 . -102) 63898) ((-878 . -625) 63880) ((-878 . -626) 63802) ((-605 . -526) NIL) ((-862 . -102) T) ((-1317 . -1133) T) ((-1280 . -1079) T) ((-1273 . -1079) T) ((-1272 . -911) 63706) ((-1252 . -1079) T) ((-1251 . -911) 63501) ((-1232 . -148) 63480) ((-332 . -1072) 63462) ((-1232 . -146) 63441) ((-1205 . -102) T) ((-1204 . -102) T) ((-1203 . -102) T) ((-1195 . -174) 63392) ((-332 . -652) 63374) ((-713 . -1238) T) ((-1194 . -174) 63305) ((-1188 . -174) 63236) ((-1172 . -628) 63217) ((-1147 . -174) 63168) ((-608 . -1079) T) ((-607 . -1079) T) ((-1025 . -1121) T) ((-992 . -1121) T) ((-390 . -1072) 63133) ((-135 . -1238) T) ((-117 . -1238) T) ((-933 . -1121) T) ((-885 . -919) NIL) ((-390 . -652) 63098) ((-145 . -864) T) ((-811 . -809) 63082) ((-711 . -25) T) ((-711 . -21) T) ((-118 . -651) 63059) ((-713 . -901) 63041) ((-439 . -1121) T) ((-326 . -1242) 63020) ((-323 . -1242) T) ((-171 . -412) 63004) ((-848 . -1072) 62974) ((-486 . -994) 62936) ((-129 . -102) T) ((-72 . -625) 62918) ((-131 . -102) T) ((-839 . -1072) 62902) ((-108 . -807) T) ((-108 . -804) T) ((-713 . -1059) 62884) ((-326 . -568) 62863) ((-323 . -568) T) ((-848 . -652) 62833) ((-839 . -652) 62803) ((-1317 . -23) T) ((-135 . -1059) 62785) ((-96 . -628) 62766) ((-1014 . -658) 62748) ((-494 . -1077) 62669) ((-45 . -298) 62594) ((-245 . -729) 62536) ((-529 . -102) T) ((-494 . -111) 62452) ((-1113 . -102) 62422) ((-1055 . -102) T) ((-1193 . -658) 62332) ((-1146 . -658) 62242) ((-868 . -658) 62201) ((-656 . -840) 62180) ((-743 . -526) 62123) ((-1075 . -1077) 62107) ((-171 . -919) 62030) ((-1156 . -93) T) ((-1084 . -296) 62005) ((-635 . -21) T) ((-635 . -25) T) ((-536 . -1121) T) ((-682 . -660) 61943) ((-372 . -102) T) ((-332 . -102) T) ((-396 . -1077) 61927) ((-1075 . -111) 61906) ((-828 . -423) 61890) ((-118 . -25) T) ((-89 . -625) 61872) ((-118 . -21) T) ((-620 . -319) 61667) ((-1171 . -626) NIL) ((-487 . -319) 61471) ((-350 . -1238) T) ((-176 . -1238) T) ((-396 . -111) 61450) ((-390 . -102) T) ((-216 . -625) 61432) ((-1171 . -625) 61414) ((-786 . -1238) T) ((-1188 . -526) 61183) ((-1025 . -729) 61133) ((-1147 . -526) 61103) ((-933 . -729) 61055) ((-494 . -628) 60853) ((-362 . -317) T) ((-1210 . -152) 60803) ((-486 . -911) 60684) ((-977 . -319) 60622) ((-848 . -102) T) ((-439 . -729) 60606) ((-227 . -840) T) ((-839 . -102) T) ((-837 . -102) T) ((-1310 . -660) 60580) ((-1272 . -1271) 60559) ((-491 . -152) 60509) ((-1272 . -1266) 60479) ((-1141 . -1242) T) ((-350 . -1059) 60446) ((-1272 . -1269) 60430) ((-1261 . -919) 60337) ((-1251 . -1250) 60316) ((-80 . -625) 60298) ((-924 . -625) 60280) ((-1251 . -1266) 60257) ((-1141 . -568) T) ((-940 . -861) T) ((-783 . -861) T) ((-684 . -861) T) ((-499 . -626) 60187) ((-499 . -625) 60128) ((-390 . -294) T) ((-1251 . -1248) 60112) ((-1274 . -1133) T) ((-219 . -626) 60042) ((-219 . -625) 59983) ((-1084 . -616) 59958) ((-830 . -628) 59942) ((-576 . -234) 59929) ((-528 . -152) 59913) ((-59 . -152) 59897) ((-508 . -152) 59881) ((-507 . -234) 59868) ((-370 . -1307) 59852) ((-364 . -1307) 59836) ((-356 . -1307) 59820) ((-326 . -374) 59799) ((-323 . -374) T) ((-494 . -1070) 59777) ((-706 . -651) 59759) ((-1308 . -660) 59733) ((-129 . -319) NIL) ((-1274 . -23) T) ((-701 . -501) 59717) ((-64 . -625) 59699) ((-1134 . -807) 59678) ((-1134 . -804) 59657) ((-562 . -501) 59594) ((-682 . -34) T) ((-494 . -238) 59546) ((-305 . -298) 59525) ((-828 . -1079) T) ((-44 . -660) 59483) ((-1101 . -379) 59434) ((-743 . -300) 59365) ((-532 . -526) 59298) ((-829 . -1077) 59249) ((-1108 . -146) 59228) ((-561 . -625) 59210) ((-370 . -379) 59189) ((-364 . -379) 59168) ((-356 . -379) 59147) ((-1108 . -148) 59126) ((-987 . -1238) T) ((-885 . -272) 59103) ((-885 . -232) 59080) ((-829 . -111) 59022) ((-794 . -146) 59001) ((-273 . -968) 58968) ((-253 . -968) 58913) ((-794 . -148) 58892) ((-792 . -146) 58871) ((-792 . -148) 58850) ((-153 . -660) 58824) ((-591 . -1121) T) ((-465 . -296) 58787) ((-466 . -148) 58766) ((-466 . -146) 58745) ((-682 . -738) T) ((-835 . -625) 58727) ((-1280 . -1121) T) ((-1273 . -1121) T) ((-1252 . -1121) T) ((-1232 . -1226) 58693) ((-1232 . -1223) 58659) ((-1195 . -300) 58638) ((-1194 . -300) 58589) ((-1188 . -300) 58540) ((-1147 . -300) 58519) ((-350 . -917) 58500) ((-1025 . -174) T) ((-933 . -174) T) ((-706 . -21) T) ((-706 . -25) T) ((-227 . -658) 58450) ((-608 . -1121) T) ((-607 . -1121) T) ((-486 . -1269) 58434) ((-486 . -1266) 58404) ((-430 . -296) 58332) ((-559 . -861) T) ((-326 . -1133) 58181) ((-323 . -1133) T) ((-1232 . -35) 58147) ((-1232 . -95) 58113) ((-84 . -625) 58095) ((-91 . -102) 58045) ((-1317 . -132) T) ((-726 . -1072) 58015) ((-604 . -628) 57996) ((-593 . -146) T) ((-593 . -148) 57978) ((-530 . -148) 57960) ((-530 . -146) T) ((-726 . -652) 57930) ((-326 . -23) 57782) ((-40 . -353) 57756) ((-323 . -23) T) ((-829 . -628) 57670) ((-1179 . -663) 57652) ((-1303 . -1079) T) ((-1179 . -384) 57634) ((-1117 . -102) T) ((-827 . -660) 57467) ((-1111 . -102) T) ((-1094 . -102) T) ((-171 . -272) 57451) ((-171 . -232) 57435) ((-1087 . -102) T) ((-1057 . -102) T) ((-1040 . -102) T) ((-605 . -501) 57417) ((-638 . -102) T) ((-245 . -526) 57350) ((-495 . -102) T) ((-1310 . -738) T) ((-1308 . -738) T) ((-220 . -102) T) ((-1199 . -1077) 57233) ((-1300 . -111) 57198) ((-1300 . -1077) 57168) ((-1083 . -658) 57140) ((-1280 . -729) 57037) ((-971 . -658) 56947) ((-1273 . -729) 56788) ((-1199 . -111) 56657) ((-1055 . -38) 56641) ((-890 . -1104) T) ((-875 . -175) T) ((-493 . -658) 56551) ((-273 . -911) 56457) ((-253 . -911) 56432) ((-829 . -1070) T) ((-693 . -1104) T) ((-688 . -1104) T) ((-635 . -234) 56377) ((-527 . -102) T) ((-522 . -102) T) ((-48 . -651) 56337) ((-520 . -102) T) ((-490 . -1104) T) ((-118 . -234) NIL) ((-3 . -1238) T) ((-139 . -1104) T) ((-138 . -1104) T) ((-134 . -1104) T) ((-845 . -1238) T) ((-829 . -238) T) ((-829 . -248) 56316) ((-1261 . -272) 56300) ((-1261 . -232) 56284) ((-1020 . -864) 56263) ((-1243 . -625) 56245) ((-562 . -296) 56224) ((-1084 . -626) NIL) ((-1084 . -625) 56206) ((-618 . -93) T) ((-683 . -93) T) ((0 . -1238) T) ((-49 . -1238) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1252 . -729) 56002) ((-1024 . -939) T) ((-153 . -738) T) ((-1199 . -628) 55855) ((-1134 . -379) 55834) ((-1045 . -25) T) ((-1025 . -526) NIL) ((-258 . -423) 55803) ((-257 . -423) 55772) ((-1045 . -21) T) ((-886 . -1072) 55724) ((-608 . -729) 55697) ((-607 . -729) 55594) ((-811 . -296) 55552) ((-127 . -102) 55502) ((-845 . -1059) 55398) ((-171 . -840) 55377) ((-329 . -660) 55274) ((-827 . -34) T) ((-726 . -102) T) ((-1141 . -1133) T) ((-1047 . -1238) T) ((-886 . -652) 55226) ((-390 . -38) 55191) ((-365 . -25) T) ((-365 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-366 . -1295) 55175) ((-363 . -1295) 55159) ((-355 . -1295) 55143) ((-171 . -360) 55122) ((-576 . -861) T) ((-1108 . -237) 55073) ((-1141 . -23) T) ((-87 . -625) 55055) ((-794 . -237) T) ((-713 . -317) T) ((-848 . -38) 55025) ((-839 . -38) 54995) ((-1300 . -628) 54937) ((-1274 . -132) T) ((-1171 . -298) 54916) ((-983 . -738) 54815) ((-983 . -805) 54768) ((-983 . -806) 54721) ((-117 . -317) T) ((-91 . -319) 54659) ((-687 . -34) T) ((-562 . -616) 54638) ((-48 . -25) T) ((-48 . -21) T) ((-827 . -806) 54617) ((-827 . -805) 54596) ((-713 . -1043) T) ((-665 . -1077) 54580) ((-885 . -658) 54510) ((-827 . -738) 54488) ((-402 . -1238) T) ((-983 . -485) 54441) ((-494 . -807) 54420) ((-494 . -804) 54399) ((-929 . -1295) 54386) ((-1199 . -1070) T) ((-633 . -1238) T) ((-665 . -111) 54365) ((-1199 . -336) 54342) ((-1224 . -102) 54292) ((-1122 . -625) 54274) ((-713 . -557) T) ((-828 . -1121) T) ((-593 . -237) T) ((-530 . -237) T) ((-1300 . -1070) T) ((-1156 . -502) 54255) ((-1244 . -102) T) ((-425 . -1121) T) ((-1156 . -625) 54221) ((-258 . -1079) 54199) ((-257 . -1079) 54177) ((-850 . -102) T) ((-299 . -660) 54164) ((-605 . -296) 54114) ((-701 . -699) 54072) ((-1313 . -1238) T) ((-1288 . -861) 54051) ((-982 . -625) 54033) ((-886 . -102) T) ((-747 . -625) 54015) ((-727 . -625) 53997) ((-1280 . -174) 53948) ((-1273 . -174) 53879) ((-1252 . -174) 53810) ((-711 . -861) T) ((-1025 . -300) T) ((-465 . -625) 53792) ((-639 . -738) T) ((-60 . -1121) 53770) ((-250 . -152) 53754) ((-1272 . -652) 53595) ((-933 . -300) T) ((-1045 . -1033) T) ((-639 . -485) T) ((-724 . -1242) 53574) ((-706 . -234) NIL) ((-665 . -628) 53492) ((-171 . -658) 53387) ((-1272 . -1072) 53222) ((-608 . -174) 53201) ((-607 . -174) 53152) ((-1251 . -652) 52966) ((-1251 . -1072) 52774) ((-1246 . -1238) T) ((-724 . -568) 52685) ((-419 . -832) 52664) ((-419 . -939) T) ((-329 . -806) T) ((-489 . -1238) T) ((-991 . -628) 52645) ((-329 . -738) T) ((-656 . -1170) 52629) ((-430 . -625) 52611) ((-430 . -626) 52518) ((-110 . -663) 52500) ((-326 . -132) 52371) ((-176 . -317) T) ((-127 . -319) 52309) ((-410 . -1238) T) ((-110 . -384) 52291) ((-323 . -132) T) ((-69 . -407) T) ((-110 . -124) T) ((-532 . -501) 52275) ((-666 . -1133) T) ((-605 . -19) 52257) ((-61 . -453) T) ((-61 . -407) T) ((-836 . -1121) T) ((-605 . -616) 52232) ((-489 . -1059) 52192) ((-665 . -1070) T) ((-666 . -23) T) ((-1303 . -1121) T) ((-31 . -102) T) ((-1261 . -658) 52102) ((-869 . -658) 52061) ((-828 . -729) 51910) ((-1290 . -1238) T) ((-589 . -874) T) ((-583 . -658) 51882) ((-118 . -861) NIL) ((-1193 . -423) 51866) ((-1146 . -423) 51850) ((-868 . -423) 51834) ((-887 . -102) 51785) ((-1272 . -102) T) ((-1252 . -526) 51554) ((-1251 . -102) T) ((-1224 . -319) 51492) ((-1195 . -296) 51457) ((-1194 . -296) 51415) ((-537 . -93) T) ((-1188 . -296) 51243) ((-322 . -625) 51225) ((-1123 . -1121) T) ((-1101 . -660) 51099) ((-723 . -464) T) ((-701 . -625) 51031) ((-299 . -738) T) ((-108 . -928) NIL) ((-701 . -626) 50992) ((-613 . -625) 50974) ((-589 . -625) 50956) ((-562 . -626) NIL) ((-562 . -625) 50938) ((-541 . -625) 50920) ((-523 . -521) 50899) ((-499 . -1077) 50849) ((-486 . -1072) 50684) ((-519 . -521) 50663) ((-486 . -652) 50504) ((-219 . -1077) 50454) ((-370 . -660) 50406) ((-364 . -660) 50358) ((-227 . -860) T) ((-356 . -660) 50310) ((-614 . -102) 50240) ((-499 . -111) 50174) ((-494 . -379) 50153) ((-108 . -660) 50103) ((-365 . -234) 50090) ((-245 . -501) 50074) ((-354 . -148) 50056) ((-354 . -146) T) ((-171 . -381) 50027) ((-962 . -1286) 50011) ((-105 . -1238) T) ((-219 . -111) 49945) ((-886 . -319) 49910) ((-962 . -1121) 49860) ((-811 . -626) 49821) ((-811 . -625) 49803) ((-730 . -102) T) ((-1312 . -1238) T) ((-392 . -1238) T) ((-341 . -1121) T) ((-216 . -628) 49780) ((-1141 . -132) T) ((-1303 . -729) 49750) ((-726 . -38) 49720) ((-326 . -505) 49699) ((-543 . -1238) T) ((-512 . -1238) T) ((-1272 . -294) 49665) ((-1251 . -294) 49631) ((-337 . -152) 49615) ((-451 . -1121) T) ((-1237 . -1238) T) ((-1084 . -298) 49590) ((-1245 . -864) T) ((-48 . -234) 49577) ((-1180 . -34) T) ((-1312 . -1059) 49554) ((-496 . -34) T) ((-480 . -625) 49536) ((-256 . -296) 49510) ((-392 . -1059) 49494) ((-1193 . -1079) T) ((-1146 . -1079) T) ((-868 . -1079) T) ((-1083 . -860) T) ((-499 . -628) 49444) ((-219 . -628) 49394) ((-828 . -174) 49305) ((-532 . -296) 49257) ((-1280 . -300) 49236) ((-1219 . -375) 49210) ((-1109 . -275) 49194) ((-683 . -502) 49175) ((-683 . -625) 49141) ((-618 . -502) 49122) ((-118 . -1013) 49099) ((-618 . -625) 49049) ((-486 . -102) T) ((-182 . -502) 49030) ((-182 . -625) 48996) ((-162 . -502) 48977) ((-162 . -625) 48943) ((-157 . -502) 48924) ((-155 . -502) 48905) ((-157 . -625) 48871) ((-376 . -1121) T) ((-258 . -1121) T) ((-257 . -1121) T) ((-155 . -625) 48837) ((-1273 . -300) 48788) ((-1252 . -300) 48739) ((-886 . -1173) 48717) ((-1195 . -1023) 48683) ((-620 . -375) 48623) ((-1194 . -1023) 48589) ((-620 . -231) 48536) ((-706 . -861) T) ((-605 . -625) 48518) ((-605 . -626) NIL) ((-487 . -231) 48468) ((-499 . -1070) T) ((-1188 . -1023) 48434) ((-88 . -452) T) ((-88 . -407) T) ((-219 . -1070) T) ((-1147 . -1023) 48400) ((-1101 . -738) T) ((-724 . -1133) T) ((-608 . -300) 48379) ((-607 . -300) 48358) ((-499 . -248) T) ((-499 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1186 . -625) 48340) ((-886 . -38) 48292) ((-370 . -738) T) ((-364 . -738) T) ((-356 . -738) T) ((-108 . -806) T) ((-108 . -803) T) ((-724 . -23) T) ((-108 . -738) T) ((-532 . -1276) 48276) ((-1317 . -25) T) ((-486 . -294) 48242) ((-1317 . -21) T) ((-1251 . -319) 48181) ((-1197 . -102) T) ((-40 . -146) 48153) ((-40 . -148) 48125) ((-532 . -616) 48102) ((-1134 . -660) 47935) ((-614 . -319) 47873) ((-45 . -663) 47823) ((-45 . -678) 47773) ((-45 . -384) 47723) ((-1179 . -34) T) ((-885 . -860) NIL) ((-666 . -132) T) ((-497 . -625) 47705) ((-245 . -296) 47682) ((-1103 . -1238) T) ((-188 . -1121) T) ((-1108 . -464) 47633) ((-828 . -526) 47507) ((-794 . -464) 47438) ((-676 . -1072) 47422) ((-659 . -34) T) ((-644 . -34) T) ((-676 . -652) 47406) ((-366 . -1072) 47358) ((-354 . -237) T) ((-363 . -1072) 47310) ((-355 . -1072) 47262) ((-273 . -1072) 47105) ((-253 . -1072) 46948) ((-792 . -464) 46899) ((-366 . -652) 46851) ((-363 . -652) 46803) ((-355 . -652) 46755) ((-273 . -652) 46604) ((-253 . -652) 46453) ((-466 . -464) 46404) ((-971 . -423) 46388) ((-743 . -625) 46370) ((-258 . -729) 46312) ((-257 . -729) 46254) ((-743 . -626) 46115) ((-493 . -423) 46099) ((-350 . -312) T) ((-536 . -93) T) ((-362 . -939) T) ((-1021 . -102) 46049) ((-929 . -1072) 46014) ((-1045 . -861) T) ((-60 . -526) 45947) ((-929 . -652) 45912) ((-1251 . -1173) 45864) ((-1025 . -296) NIL) ((-227 . -1079) T) ((-390 . -840) T) ((-1134 . -34) T) ((-593 . -464) T) ((-530 . -464) T) ((-1255 . -1114) 45848) ((-1255 . -1121) 45826) ((-245 . -616) 45803) ((-1255 . -1116) 45760) ((-1195 . -625) 45742) ((-1194 . -625) 45724) ((-1188 . -625) 45706) ((-1188 . -626) NIL) ((-1147 . -625) 45688) ((-886 . -412) 45672) ((-609 . -102) T) ((-597 . -102) T) ((-548 . -102) T) ((-1272 . -38) 45513) ((-1251 . -38) 45327) ((-130 . -1238) T) ((-52 . -1238) T) ((-884 . -148) T) ((-593 . -414) T) ((-530 . -414) T) ((-1284 . -102) T) ((-1274 . -21) T) ((-1274 . -25) T) ((-1210 . -102) T) ((-1134 . -806) 45306) ((-1134 . -805) 45285) ((-1014 . -1121) T) ((-1048 . -34) T) ((-876 . -1121) T) ((-1134 . -738) 45263) ((-676 . -102) T) ((-657 . -102) T) ((-562 . -298) 45242) ((-488 . -34) T) ((-475 . -34) T) ((-366 . -102) T) ((-363 . -102) T) ((-321 . -1238) T) ((-355 . -102) T) ((-273 . -102) T) ((-253 . -102) T) ((-489 . -317) T) ((-1083 . -1079) T) ((-971 . -1079) T) ((-326 . -651) 45148) ((-323 . -651) 45109) ((-1193 . -1121) T) ((-493 . -1079) T) ((-491 . -102) T) ((-448 . -625) 45091) ((-1146 . -1121) T) ((-256 . -625) 45073) ((-868 . -1121) T) ((-1162 . -102) T) ((-828 . -300) 45004) ((-982 . -1077) 44887) ((-489 . -1043) T) ((-886 . -919) 44810) ((-747 . -1077) 44780) ((-1055 . -658) 44739) ((-1168 . -1142) 44723) ((-465 . -1077) 44693) ((-1123 . -526) 44626) ((-982 . -111) 44495) ((-929 . -102) T) ((-40 . -237) 44432) ((-747 . -111) 44397) ((-537 . -502) 44378) ((-537 . -625) 44344) ((-59 . -102) 44274) ((-532 . -626) 44235) ((-532 . -625) 44147) ((-531 . -102) 44097) ((-528 . -102) 44027) ((-509 . -102) 43977) ((-508 . -102) 43907) ((-465 . -111) 43870) ((-332 . -658) 43852) ((-514 . -864) T) ((-430 . -1077) 43826) ((-1232 . -994) 43788) ((-1020 . -1133) T) ((-390 . -658) 43738) ((-1156 . -628) 43719) ((-962 . -526) 43652) ((-499 . -807) T) ((-486 . -38) 43493) ((-430 . -111) 43460) ((-499 . -804) T) ((-1021 . -319) 43398) ((-219 . -807) T) ((-219 . -804) T) ((-1020 . -23) T) ((-724 . -132) T) ((-1251 . -412) 43368) ((-848 . -658) 43313) ((-839 . -658) 43272) ((-326 . -25) 43124) ((-171 . -423) 43108) ((-326 . -21) 42979) ((-323 . -25) T) ((-323 . -21) T) ((-878 . -379) T) ((-982 . -628) 42832) ((-110 . -34) T) ((-747 . -628) 42788) ((-727 . -628) 42770) ((-494 . -660) 42603) ((-885 . -1079) T) ((-605 . -298) 42578) ((-592 . -148) T) ((-576 . -148) T) ((-507 . -148) T) ((-1193 . -729) 42407) ((-1078 . -102) 42385) ((-1146 . -729) 42234) ((-1141 . -651) 42216) ((-868 . -729) 42186) ((-682 . -1238) T) ((-1 . -102) T) ((-560 . -1238) T) ((-430 . -628) 42094) ((-245 . -625) 41787) ((-1136 . -1121) T) ((-1261 . -423) 41771) ((-1210 . -319) 41575) ((-982 . -1070) T) ((-747 . -1070) T) ((-727 . -1070) T) ((-656 . -1121) 41525) ((-1075 . -660) 41509) ((-869 . -423) 41493) ((-523 . -102) T) ((-519 . -102) T) ((-273 . -319) 41480) ((-253 . -319) 41467) ((-1272 . -919) 41373) ((-982 . -336) 41352) ((-1251 . -919) 41149) ((-396 . -660) 41133) ((-855 . -864) 41112) ((-682 . -1059) 41008) ((-491 . -319) 40812) ((-258 . -526) 40745) ((-257 . -526) 40678) ((-1162 . -319) 40604) ((-419 . -864) 40555) ((-1232 . -911) 40534) ((-831 . -1121) T) ((-811 . -1077) 40518) ((-1280 . -296) 40483) ((-1273 . -296) 40441) ((-1252 . -296) 40269) ((-398 . -1121) T) ((-334 . -1121) T) ((-430 . -1070) T) ((-171 . -1079) T) ((-59 . -319) 40207) ((-811 . -111) 40186) ((-607 . -296) 40151) ((-531 . -319) 40089) ((-528 . -319) 40027) ((-509 . -319) 39965) ((-508 . -319) 39903) ((-430 . -238) 39882) ((-494 . -34) T) ((-227 . -1121) T) ((-1025 . -626) 39812) ((-1025 . -625) 39772) ((-992 . -625) 39732) ((-933 . -625) 39714) ((-711 . -148) T) ((-1310 . -1238) T) ((-1308 . -1238) T) ((-713 . -939) T) ((-713 . -832) T) ((-439 . -625) 39696) ((-1141 . -21) T) ((-1141 . -25) T) ((-682 . -388) 39680) ((-117 . -939) T) ((-886 . -272) 39664) ((-886 . -232) 39648) ((-44 . -1238) T) ((-78 . -1238) T) ((-127 . -126) 39632) ((-1075 . -34) T) ((-1310 . -1059) 39606) ((-1308 . -1059) 39563) ((-1261 . -1079) T) ((-869 . -1079) T) ((-366 . -1173) 39542) ((-363 . -1173) 39521) ((-355 . -1173) 39500) ((-494 . -806) 39479) ((-494 . -805) 39458) ((-229 . -34) T) ((-494 . -738) 39436) ((-811 . -628) 39282) ((-674 . -1072) 39266) ((-60 . -501) 39250) ((-583 . -1079) T) ((-1193 . -174) 39141) ((-674 . -652) 39125) ((-486 . -919) 39031) ((-153 . -1238) T) ((-1146 . -174) 38942) ((-1083 . -1121) T) ((-1108 . -968) 38887) ((-971 . -1121) T) ((-829 . -660) 38838) ((-794 . -968) 38807) ((-725 . -1121) T) ((-792 . -968) 38774) ((-528 . -292) 38758) ((-682 . -917) 38717) ((-493 . -1121) T) ((-466 . -968) 38684) ((-79 . -1238) T) ((-366 . -38) 38649) ((-363 . -38) 38614) ((-355 . -38) 38579) ((-273 . -38) 38428) ((-253 . -38) 38277) ((-929 . -1173) T) ((-536 . -502) 38258) ((-635 . -148) 38237) ((-635 . -146) 38216) ((-536 . -625) 38182) ((-118 . -148) T) ((-118 . -146) NIL) ((-426 . -738) T) ((-811 . -1070) T) ((-576 . -237) T) ((-507 . -237) T) ((-354 . -464) T) ((-1280 . -1023) 38148) ((-1273 . -1023) 38114) ((-1252 . -1023) 38080) ((-929 . -38) 38045) ((-227 . -729) 38010) ((-1020 . -132) T) ((-329 . -47) 37980) ((-40 . -421) 37952) ((-141 . -625) 37934) ((-983 . -1238) T) ((-827 . -1238) T) ((-176 . -939) T) ((-561 . -379) T) ((-726 . -658) 37879) ((-618 . -628) 37860) ((-354 . -414) T) ((-683 . -628) 37841) ((-323 . -234) NIL) ((-182 . -628) 37822) ((-162 . -628) 37803) ((-157 . -628) 37784) ((-155 . -628) 37765) ((-532 . -298) 37742) ((-1251 . -232) 37712) ((-1251 . -272) 37682) ((-1235 . -1238) 37660) ((-1199 . -660) 37585) ((-890 . -102) T) ((-827 . -1059) 37412) ((-45 . -34) T) ((-693 . -102) T) ((-688 . -102) T) ((-674 . -102) T) ((-666 . -21) T) ((-666 . -25) T) ((-1123 . -501) 37396) ((-687 . -1238) T) ((-490 . -102) T) ((-250 . -102) 37326) ((-558 . -856) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1108 . -911) 37221) ((-885 . -1121) T) ((-1193 . -526) 37168) ((-1083 . -729) 37155) ((-794 . -911) 37058) ((-743 . -1077) 36901) ((-792 . -911) 36883) ((-971 . -729) 36732) ((-1146 . -526) 36684) ((-1299 . -1121) T) ((-1298 . -1121) T) ((-466 . -911) 36659) ((-493 . -729) 36508) ((-67 . -625) 36490) ((-639 . -1238) T) ((-743 . -111) 36319) ((-962 . -501) 36303) ((-1300 . -660) 36263) ((-1195 . -1077) 36146) ((-829 . -738) T) ((-1194 . -1077) 35981) ((-1188 . -1077) 35771) ((-329 . -1238) T) ((-1147 . -1077) 35654) ((-1024 . -1242) T) ((-1115 . -102) 35632) ((-827 . -388) 35601) ((-591 . -625) 35583) ((-558 . -1121) T) ((-1024 . -568) T) ((-1195 . -111) 35452) ((-1194 . -111) 35273) ((-1188 . -111) 35042) ((-1147 . -111) 34911) ((-1126 . -1124) 34875) ((-390 . -860) T) ((-1280 . -625) 34857) ((-1273 . -625) 34839) ((-886 . -658) 34776) ((-1252 . -625) 34758) ((-1252 . -626) NIL) ((-245 . -298) 34735) ((-40 . -464) T) ((-227 . -174) T) ((-171 . -1121) T) ((-743 . -628) 34520) ((-706 . -148) T) ((-706 . -146) NIL) ((-608 . -625) 34502) ((-607 . -625) 34484) ((-1141 . -234) 34471) ((-915 . -1121) T) ((-853 . -1121) T) ((-820 . -1121) T) ((-273 . -919) 34381) ((-253 . -919) 34358) ((-781 . -1121) T) ((-689 . -1121) T) ((-670 . -866) 34342) ((-635 . -237) 34293) ((-827 . -917) 34225) ((-872 . -864) T) ((-1243 . -379) T) ((-40 . -414) NIL) ((-118 . -237) NIL) ((-1195 . -628) 34107) ((-1141 . -673) T) ((-885 . -729) 34052) ((-258 . -501) 34036) ((-257 . -501) 34020) ((-1194 . -628) 33763) ((-1188 . -628) 33558) ((-724 . -651) 33506) ((-665 . -660) 33480) ((-1147 . -628) 33362) ((-305 . -34) T) ((-1141 . -113) T) ((-743 . -1070) T) ((-593 . -1295) 33349) ((-530 . -1295) 33326) ((-1261 . -1121) T) ((-1193 . -300) 33237) ((-1146 . -300) 33168) ((-1083 . -174) T) ((-299 . -1238) T) ((-869 . -1121) T) ((-971 . -174) 33079) ((-794 . -1264) 33063) ((-656 . -526) 32996) ((-77 . -625) 32978) ((-743 . -336) 32943) ((-1199 . -738) T) ((-583 . -1121) T) ((-493 . -174) 32854) ((-250 . -319) 32792) ((-1163 . -1133) T) ((-70 . -625) 32774) ((-1300 . -738) T) ((-1195 . -1070) T) ((-1194 . -1070) T) ((-1188 . -1070) T) ((-337 . -102) 32704) ((-1163 . -23) T) ((-2 . -1238) T) ((-1147 . -1070) T) ((-91 . -1142) 32688) ((-880 . -1133) T) ((-1195 . -238) 32647) ((-1194 . -248) 32626) ((-1194 . -238) 32578) ((-1188 . -238) 32465) ((-1188 . -248) 32444) ((-329 . -917) 32350) ((-880 . -23) T) ((-171 . -729) 32178) ((-419 . -1242) T) ((-1122 . -379) T) ((-1024 . -374) T) ((-884 . -464) T) ((-1045 . -148) T) ((-962 . -296) 32130) ((-323 . -861) NIL) ((-1272 . -658) 32012) ((-888 . -102) T) ((-1251 . -658) 31867) ((-724 . -25) T) ((-419 . -568) T) ((-724 . -21) T) ((-537 . -628) 31848) ((-365 . -148) 31830) ((-365 . -146) T) ((-1168 . -1121) 31808) ((-465 . -732) T) ((-75 . -625) 31790) ((-115 . -861) T) ((-250 . -292) 31774) ((-245 . -1077) 31695) ((-81 . -625) 31677) ((-747 . -379) 31630) ((-1197 . -840) T) ((-749 . -240) 31614) ((-1180 . -1238) T) ((-142 . -240) 31596) ((-245 . -111) 31512) ((-1261 . -729) 31341) ((-48 . -148) T) ((-885 . -174) T) ((-869 . -729) 31311) ((-496 . -1238) T) ((-971 . -526) 31258) ((-665 . -738) T) ((-583 . -729) 31245) ((-1055 . -1079) T) ((-706 . -237) NIL) ((-493 . -526) 31188) ((-962 . -19) 31172) ((-962 . -616) 31149) ((-1101 . -1238) T) ((-1082 . -1238) T) ((-828 . -626) NIL) ((-828 . -625) 31131) ((-1232 . -652) 31028) ((-1232 . -1072) 30911) ((-1025 . -1077) 30861) ((-425 . -625) 30843) ((-258 . -296) 30820) ((-370 . -1238) T) ((-364 . -1238) T) ((-356 . -1238) T) ((-257 . -296) 30797) ((-499 . -928) NIL) ((-326 . -29) 30767) ((-108 . -1238) T) ((-1024 . -1133) T) ((-219 . -928) NIL) ((-1101 . -1059) 30663) ((-933 . -1077) 30615) ((-1025 . -111) 30549) ((-1024 . -23) T) ((-723 . -1072) 30514) ((-933 . -111) 30452) ((-749 . -707) 30436) ((-723 . -652) 30401) ((-273 . -272) 30385) ((-273 . -232) 30369) ((-439 . -1077) 30353) ((-390 . -1079) T) ((-245 . -628) 30151) ((-706 . -1226) NIL) ((-499 . -660) 30101) ((-486 . -658) 29983) ((-108 . -899) 29965) ((-108 . -901) 29947) ((-706 . -1223) NIL) ((-219 . -660) 29897) ((-370 . -1059) 29881) ((-364 . -1059) 29865) ((-337 . -319) 29803) ((-356 . -1059) 29787) ((-227 . -300) T) ((-439 . -111) 29766) ((-60 . -625) 29698) ((-171 . -174) T) ((-1141 . -861) T) ((-108 . -1059) 29658) ((-907 . -1121) T) ((-848 . -1079) T) ((-839 . -1079) T) ((-706 . -35) NIL) ((-706 . -95) NIL) ((-323 . -1013) 29619) ((-185 . -102) T) ((-1311 . -1133) T) ((-1311 . -23) T) ((-592 . -464) T) ((-576 . -464) T) ((-507 . -464) T) ((-1303 . -625) 29601) ((-1261 . -174) 29492) ((-1232 . -102) T) ((-419 . -374) T) ((-1219 . -1121) T) ((-1210 . -231) 29442) ((-1204 . -856) T) ((-1203 . -856) T) ((-1187 . -1238) T) ((-245 . -1070) 29420) ((-1015 . -1238) T) ((-1171 . -34) T) ((-1188 . -804) NIL) ((-1188 . -807) NIL) ((-1179 . -1238) T) ((-489 . -939) T) ((-1020 . -651) 29368) ((-258 . -616) 29345) ((-257 . -616) 29322) ((-1163 . -132) T) ((-1123 . -626) 29283) ((-1101 . -388) 29267) ((-885 . -526) 29175) ((-245 . -238) 29127) ((-1123 . -625) 29109) ((-1109 . -1121) T) ((-1025 . -628) 29059) ((-1101 . -917) 28992) ((-933 . -628) 28929) ((-836 . -625) 28911) ((-1097 . -1121) T) ((-1083 . -300) T) ((-1025 . -248) T) ((-1025 . -238) T) ((-1025 . -1070) T) ((-977 . -1121) 28861) ((-971 . -300) 28792) ((-439 . -628) 28761) ((-108 . -388) 28743) ((-108 . -349) 28725) ((-933 . -1070) T) ((-933 . -248) T) ((-811 . -379) 28704) ((-723 . -102) T) ((-713 . -864) T) ((-659 . -1238) T) ((-644 . -1238) T) ((-620 . -1121) T) ((-620 . -622) 28680) ((-598 . -1072) 28655) ((-493 . -300) 28586) ((-583 . -174) T) ((-337 . -292) 28570) ((-365 . -237) T) ((-598 . -652) 28545) ((-366 . -360) 28524) ((-363 . -360) 28503) ((-355 . -360) 28482) ((-214 . -1238) T) ((-83 . -625) 28464) ((-213 . -1238) T) ((-211 . -1238) T) ((-210 . -1238) T) ((-209 . -1238) T) ((-208 . -1238) T) ((-205 . -1238) T) ((-204 . -1238) T) ((-203 . -1238) T) ((-202 . -1238) T) ((-487 . -1121) T) ((-201 . -1238) T) ((-273 . -260) 28426) ((-200 . -1238) T) ((-199 . -1238) T) ((-198 . -1238) T) ((-197 . -1238) T) ((-196 . -1238) T) ((-487 . -622) 28405) ((-195 . -1238) T) ((-283 . -1238) T) ((-282 . -1238) T) ((-281 . -1238) T) ((-280 . -1238) T) ((-491 . -231) 28355) ((-279 . -1238) T) ((-278 . -1238) T) ((-277 . -1238) T) ((-439 . -1070) T) ((-880 . -132) T) ((-855 . -1133) 28334) ((-48 . -237) T) ((-711 . -464) T) ((-108 . -917) NIL) ((-135 . -864) T) ((-1232 . -294) 28300) ((-1134 . -1238) T) ((-886 . -860) 28279) ((-1020 . -25) T) ((-924 . -738) T) ((-171 . -526) 28191) ((-1020 . -21) T) ((-924 . -485) T) ((-419 . -1133) T) ((-499 . -806) T) ((-499 . -803) T) ((-929 . -360) T) ((-499 . -738) T) ((-219 . -806) T) ((-219 . -803) T) ((-724 . -234) 28178) ((-219 . -738) T) ((-855 . -23) 28130) ((-1205 . -1121) T) ((-670 . -1072) 28114) ((-1204 . -1121) T) ((-536 . -628) 28095) ((-1203 . -1121) T) ((-329 . -317) 28074) ((-1056 . -240) 28020) ((-670 . -652) 27990) ((-419 . -23) T) ((-962 . -626) 27951) ((-962 . -625) 27863) ((-656 . -501) 27847) ((-45 . -1031) 27797) ((-1134 . -1059) 27624) ((-629 . -988) T) ((-503 . -102) T) ((-341 . -625) 27606) ((-1014 . -296) 27573) ((-605 . -663) 27555) ((-129 . -1121) T) ((-131 . -1121) T) ((-605 . -384) 27537) ((-354 . -1295) 27514) ((-451 . -625) 27496) ((-1261 . -526) 27443) ((-1108 . -1072) 27286) ((-1048 . -1238) T) ((-885 . -300) T) ((-1193 . -296) 27213) ((-1108 . -652) 27062) ((-1021 . -1016) 27046) ((-794 . -1072) 26869) ((-792 . -1072) 26712) ((-794 . -652) 26541) ((-792 . -652) 26390) ((-488 . -1238) T) ((-475 . -1238) T) ((-598 . -102) T) ((-473 . -1072) 26361) ((-466 . -1072) 26204) ((-676 . -658) 26173) ((-635 . -464) 26152) ((-473 . -652) 26123) ((-466 . -652) 25972) ((-366 . -658) 25909) ((-363 . -658) 25846) ((-355 . -658) 25783) ((-273 . -658) 25693) ((-253 . -658) 25603) ((-1303 . -393) 25575) ((-529 . -1121) T) ((-118 . -464) T) ((-1218 . -102) T) ((-1113 . -1121) 25545) ((-1055 . -1121) T) ((-1136 . -93) T) ((-908 . -861) T) ((-1280 . -111) 25414) ((-362 . -1242) T) ((-1280 . -1077) 25297) ((-1134 . -388) 25266) ((-1273 . -1077) 25101) ((-1252 . -1077) 24891) ((-1273 . -111) 24712) ((-1252 . -111) 24481) ((-1232 . -319) 24468) ((-1024 . -132) T) ((-929 . -658) 24418) ((-376 . -625) 24400) ((-362 . -568) T) ((-299 . -317) T) ((-608 . -1077) 24360) ((-607 . -1077) 24243) ((-593 . -1072) 24208) ((-530 . -1072) 24153) ((-372 . -1121) T) ((-332 . -1121) T) ((-258 . -625) 24114) ((-257 . -625) 24075) ((-593 . -652) 24040) ((-530 . -652) 23985) ((-706 . -421) 23952) ((-647 . -23) T) ((-619 . -23) T) ((-40 . -911) 23859) ((-670 . -102) T) ((-608 . -111) 23812) ((-607 . -111) 23681) ((-390 . -1121) T) ((-347 . -102) T) ((-171 . -300) 23592) ((-1251 . -860) 23545) ((-726 . -1079) T) ((-624 . -1238) T) ((-1168 . -526) 23478) ((-1211 . -847) 23462) ((-1134 . -917) 23394) ((-848 . -1121) T) ((-839 . -1121) T) ((-837 . -1121) T) ((-97 . -102) T) ((-145 . -861) T) ((-624 . -899) 23378) ((-1172 . -1238) T) ((-110 . -1238) T) ((-1108 . -102) T) ((-1084 . -34) T) ((-794 . -102) T) ((-792 . -102) T) ((-1280 . -628) 23260) ((-1273 . -628) 23003) ((-473 . -102) T) ((-466 . -102) T) ((-1252 . -628) 22798) ((-96 . -1238) T) ((-245 . -807) 22777) ((-245 . -804) 22756) ((-661 . -102) T) ((-608 . -628) 22714) ((-607 . -628) 22596) ((-1261 . -300) 22507) ((-676 . -646) 22491) ((-188 . -625) 22473) ((-656 . -296) 22425) ((-1055 . -729) 22409) ((-583 . -300) T) ((-982 . -660) 22334) ((-1311 . -132) T) ((-747 . -660) 22294) ((-727 . -660) 22281) ((-284 . -102) T) ((-465 . -660) 22211) ((-50 . -102) T) ((-593 . -102) T) ((-530 . -102) T) ((-1280 . -1070) T) ((-1273 . -1070) T) ((-1252 . -1070) T) ((-1161 . -1238) T) ((-519 . -658) 22193) ((-332 . -729) 22175) ((-1280 . -238) 22134) ((-1273 . -248) 22113) ((-1273 . -238) 22065) ((-1252 . -238) 21952) ((-1252 . -248) 21931) ((-1232 . -38) 21828) ((-608 . -1070) T) ((-607 . -1070) T) ((-1025 . -807) T) ((-1025 . -804) T) ((-992 . -807) T) ((-992 . -804) T) ((-886 . -1079) T) ((-109 . -625) 21810) ((-706 . -464) T) ((-390 . -729) 21775) ((-430 . -660) 21749) ((-884 . -883) 21733) ((-723 . -38) 21698) ((-607 . -238) 21657) ((-40 . -736) 21629) ((-362 . -339) 21606) ((-362 . -374) T) ((-1101 . -317) 21557) ((-304 . -1133) 21438) ((-1127 . -1238) T) ((-1020 . -234) 21383) ((-173 . -102) T) ((-1255 . -625) 21350) ((-855 . -132) 21302) ((-848 . -729) 21272) ((-656 . -1276) 21256) ((-839 . -729) 21226) ((-656 . -616) 21203) ((-494 . -1238) T) ((-370 . -317) T) ((-364 . -317) T) ((-356 . -317) T) ((-411 . -234) 21190) ((-419 . -132) T) ((-532 . -678) 21174) ((-108 . -317) T) ((-304 . -23) 21057) ((-532 . -663) 21041) ((-706 . -414) NIL) ((-532 . -384) 21025) ((-301 . -625) 21007) ((-91 . -1121) 20985) ((-108 . -1043) T) ((-576 . -144) T) ((-1288 . -152) 20969) ((-494 . -1059) 20796) ((-1274 . -146) 20757) ((-1274 . -148) 20718) ((-1075 . -1238) T) ((-1299 . -93) T) ((-1014 . -625) 20700) ((-830 . -1238) T) ((-876 . -625) 20682) ((-828 . -1077) 20525) ((-1298 . -93) T) ((-1193 . -626) NIL) ((-1117 . -1121) T) ((-1111 . -1121) T) ((-1108 . -319) 20512) ((-426 . -1238) T) ((-396 . -1238) T) ((-1094 . -1121) T) ((-229 . -1238) T) ((-1087 . -1121) T) ((-1057 . -1121) T) ((-1040 . -1121) T) ((-794 . -319) 20499) ((-792 . -319) 20486) ((-1193 . -625) 20468) ((-828 . -111) 20297) ((-1146 . -625) 20279) ((-638 . -1121) T) ((-589 . -175) T) ((-541 . -175) T) ((-466 . -319) 20266) ((-495 . -1121) T) ((-1146 . -626) 20014) ((-1055 . -174) T) ((-962 . -298) 19991) ((-220 . -1121) T) ((-868 . -625) 19973) ((-620 . -526) 19756) ((-81 . -628) 19697) ((-830 . -1059) 19681) ((-487 . -526) 19473) ((-845 . -864) 19452) ((-982 . -738) T) ((-747 . -738) T) ((-727 . -738) T) ((-362 . -1133) T) ((-1200 . -625) 19434) ((-225 . -102) T) ((-494 . -388) 19403) ((-527 . -1121) T) ((-522 . -1121) T) ((-520 . -1121) T) ((-811 . -660) 19377) ((-1045 . -464) T) ((-977 . -526) 19310) ((-362 . -23) T) ((-647 . -132) T) ((-619 . -132) T) ((-365 . -464) T) ((-245 . -379) 19289) ((-390 . -174) T) ((-1272 . -1079) T) ((-1251 . -1079) T) ((-227 . -1023) T) ((-828 . -628) 19026) ((-711 . -399) T) ((-430 . -738) T) ((-713 . -1242) T) ((-1163 . -651) 18974) ((-592 . -883) 18958) ((-1303 . -1077) 18942) ((-1180 . -1214) 18918) ((-713 . -568) T) ((-127 . -1121) 18896) ((-726 . -1121) T) ((-670 . -38) 18866) ((-494 . -917) 18798) ((-255 . -1121) T) ((-189 . -1121) T) ((-365 . -414) T) ((-326 . -148) 18777) ((-326 . -146) 18756) ((-117 . -568) T) ((-129 . -526) NIL) ((-323 . -148) 18712) ((-323 . -146) 18668) ((-48 . -464) T) ((-163 . -1121) T) ((-158 . -1121) T) ((-1180 . -107) 18615) ((-794 . -1173) 18593) ((-1303 . -111) 18572) ((-701 . -34) T) ((-604 . -1238) T) ((-562 . -34) T) ((-496 . -107) 18556) ((-258 . -298) 18533) ((-257 . -298) 18510) ((-1244 . -856) T) ((-885 . -296) 18461) ((-45 . -1238) T) ((-1232 . -919) 18442) ((-829 . -1238) T) ((-828 . -1070) T) ((-633 . -864) 18421) ((-674 . -658) 18390) ((-1199 . -47) 18367) ((-828 . -336) 18329) ((-1108 . -38) 18178) ((-828 . -238) 18157) ((-794 . -38) 17986) ((-792 . -38) 17835) ((-1136 . -502) 17816) ((-466 . -38) 17665) ((-1136 . -625) 17631) ((-1139 . -102) T) ((-656 . -626) 17592) ((-656 . -625) 17504) ((-593 . -1173) T) ((-530 . -1173) T) ((-1168 . -501) 17488) ((-354 . -1072) 17433) ((-1224 . -1121) 17411) ((-1163 . -25) T) ((-1163 . -21) T) ((-354 . -652) 17356) ((-1303 . -628) 17305) ((-340 . -1238) T) ((-486 . -1079) T) ((-1244 . -1121) T) ((-1252 . -804) NIL) ((-1252 . -807) NIL) ((-1020 . -861) 17284) ((-850 . -1121) T) ((-831 . -625) 17266) ((-880 . -21) T) ((-880 . -25) T) ((-811 . -738) T) ((-176 . -1242) T) ((-593 . -38) 17231) ((-530 . -38) 17196) ((-398 . -625) 17178) ((-343 . -102) T) ((-334 . -625) 17160) ((-171 . -296) 17118) ((-1246 . -864) T) ((-63 . -1238) T) ((-112 . -102) T) ((-886 . -1121) T) ((-524 . -1238) T) ((-176 . -568) T) ((-726 . -729) 17088) ((-304 . -132) 16971) ((-227 . -625) 16953) ((-227 . -626) 16883) ((-1024 . -651) 16822) ((-1303 . -1070) T) ((-1199 . -1238) T) ((-1141 . -148) T) ((-644 . -1214) 16797) ((-743 . -928) 16776) ((-605 . -34) T) ((-659 . -107) 16760) ((-644 . -107) 16706) ((-1300 . -1238) T) ((-635 . -911) 16627) ((-1261 . -296) 16554) ((-743 . -660) 16443) ((-305 . -1238) T) ((-1199 . -1059) 16339) ((-962 . -630) 16316) ((-589 . -588) T) ((-589 . -539) T) ((-541 . -539) T) ((-118 . -911) NIL) ((-1188 . -928) NIL) ((-1083 . -626) 16231) ((-1083 . -625) 16213) ((-971 . -625) 16195) ((-725 . -502) 16145) ((-354 . -102) T) ((-258 . -1077) 16066) ((-257 . -1077) 15987) ((-406 . -102) T) ((-31 . -1121) T) ((-971 . -626) 15848) ((-725 . -625) 15783) ((-1301 . -1231) 15752) ((-493 . -625) 15734) ((-493 . -626) 15595) ((-273 . -423) 15579) ((-253 . -423) 15563) ((-323 . -237) NIL) ((-258 . -111) 15479) ((-257 . -111) 15395) ((-1195 . -660) 15320) ((-1194 . -660) 15217) ((-1188 . -660) 15069) ((-1147 . -660) 14994) ((-362 . -132) T) ((-82 . -453) T) ((-82 . -407) T) ((-1024 . -25) T) ((-1024 . -21) T) ((-887 . -1121) 14945) ((-40 . -1072) 14890) ((-886 . -729) 14842) ((-40 . -652) 14787) ((-390 . -300) T) ((-171 . -1023) 14738) ((-1108 . -919) 14637) ((-706 . -399) T) ((-1020 . -1018) 14621) ((-713 . -1133) T) ((-706 . -167) 14603) ((-794 . -919) 14510) ((-792 . -919) 14494) ((-1272 . -1121) T) ((-1251 . -1121) T) ((-1185 . -102) T) ((-326 . -1223) 14473) ((-326 . -1226) 14452) ((-466 . -919) 14429) ((-326 . -978) 14408) ((-135 . -1133) T) ((-117 . -1133) T) ((-991 . -1238) T) ((-878 . -1238) T) ((-713 . -23) T) ((-665 . -1238) T) ((-614 . -1286) 14392) ((-614 . -1121) 14342) ((-543 . -864) T) ((-512 . -864) T) ((-326 . -95) 14321) ((-91 . -526) 14254) ((-176 . -374) T) ((-258 . -628) 14052) ((-257 . -628) 13850) ((-326 . -35) 13829) ((-620 . -501) 13763) ((-135 . -23) T) ((-117 . -23) T) ((-985 . -102) T) ((-730 . -1121) T) ((-487 . -501) 13700) ((-419 . -651) 13648) ((-665 . -1059) 13544) ((-977 . -501) 13528) ((-366 . -1079) T) ((-363 . -1079) T) ((-355 . -1079) T) ((-273 . -1079) T) ((-253 . -1079) T) ((-885 . -626) NIL) ((-885 . -625) 13510) ((-1299 . -502) 13491) ((-1298 . -502) 13472) ((-1311 . -21) T) ((-1299 . -625) 13438) ((-1298 . -625) 13404) ((-583 . -1023) T) ((-743 . -738) T) ((-1311 . -25) T) ((-258 . -1070) 13382) ((-257 . -1070) 13360) ((-72 . -1238) T) ((-1163 . -234) 13305) ((-258 . -238) 13257) ((-257 . -238) 13209) ((-1141 . -237) T) ((-40 . -102) T) ((-929 . -1079) T) ((-706 . -911) NIL) ((-1202 . -102) T) ((-129 . -501) 13191) ((-1195 . -738) T) ((-1194 . -738) T) ((-1188 . -738) T) ((-1188 . -803) NIL) ((-1188 . -806) NIL) ((-973 . -102) T) ((-940 . -102) T) ((-884 . -1072) 13178) ((-1147 . -738) T) ((-783 . -102) T) ((-684 . -102) T) ((-884 . -652) 13165) ((-558 . -625) 13147) ((-486 . -1121) T) ((-350 . -1133) T) ((-176 . -1133) T) ((-329 . -939) 13126) ((-1272 . -729) 12967) ((-886 . -174) T) ((-1251 . -729) 12781) ((-855 . -21) 12733) ((-855 . -25) 12685) ((-250 . -1170) 12669) ((-127 . -526) 12602) ((-419 . -25) T) ((-419 . -21) T) ((-350 . -23) T) ((-171 . -626) 12368) ((-171 . -625) 12350) ((-176 . -23) T) ((-656 . -298) 12327) ((-532 . -34) T) ((-915 . -625) 12309) ((-89 . -1238) T) ((-853 . -625) 12291) ((-820 . -625) 12273) ((-781 . -625) 12255) ((-689 . -625) 12237) ((-245 . -660) 12070) ((-629 . -113) T) ((-1197 . -1121) T) ((-1193 . -1077) 11893) ((-216 . -1238) T) ((-1171 . -1238) T) ((-1146 . -1077) 11736) ((-868 . -1077) 11720) ((-1103 . -864) T) ((-1255 . -630) 11704) ((-1193 . -111) 11513) ((-1146 . -111) 11342) ((-868 . -111) 11321) ((-1245 . -861) T) ((-1261 . -626) NIL) ((-1261 . -625) 11303) ((-354 . -1173) T) ((-869 . -625) 11285) ((-1097 . -296) 11264) ((-1232 . -658) 11174) ((-80 . -1238) T) ((-924 . -1238) T) ((-1224 . -526) 11107) ((-1025 . -928) NIL) ((-1108 . -272) 11091) ((-620 . -296) 11067) ((-1108 . -232) 11051) ((-499 . -1238) T) ((-583 . -625) 11033) ((-487 . -296) 11012) ((-1025 . -660) 10962) ((-529 . -93) T) ((-1024 . -234) 10893) ((-219 . -1238) T) ((-977 . -296) 10845) ((-884 . -102) T) ((-299 . -939) T) ((-829 . -317) 10824) ((-794 . -272) 10808) ((-794 . -232) 10792) ((-933 . -660) 10744) ((-723 . -658) 10694) ((-706 . -736) 10661) ((-647 . -21) T) ((-647 . -25) T) ((-619 . -21) T) ((-559 . -102) T) ((-354 . -38) 10626) ((-499 . -899) 10608) ((-499 . -901) 10590) ((-486 . -729) 10431) ((-64 . -1238) T) ((-219 . -899) 10413) ((-219 . -901) 10395) ((-619 . -25) T) ((-439 . -660) 10369) ((-1193 . -628) 10138) ((-499 . -1059) 10098) ((-886 . -526) 10010) ((-1146 . -628) 9802) ((-868 . -628) 9720) ((-219 . -1059) 9680) ((-245 . -34) T) ((-1021 . -1121) 9658) ((-592 . -1072) 9645) ((-576 . -1072) 9632) ((-507 . -1072) 9597) ((-1272 . -174) 9528) ((-1251 . -174) 9459) ((-592 . -652) 9446) ((-576 . -652) 9433) ((-507 . -652) 9398) ((-724 . -146) 9377) ((-724 . -148) 9356) ((-130 . -864) T) ((-713 . -132) T) ((-561 . -1238) T) ((-137 . -477) 9333) ((-1168 . -625) 9265) ((-670 . -668) 9249) ((-129 . -296) 9199) ((-117 . -132) T) ((-489 . -1242) T) ((-620 . -616) 9175) ((-487 . -616) 9154) ((-609 . -1121) T) ((-347 . -346) 9123) ((-597 . -1121) T) ((-548 . -1121) T) ((-489 . -568) T) ((-1193 . -1070) T) ((-1146 . -1070) T) ((-868 . -1070) T) ((-835 . -1238) T) ((-245 . -806) 9102) ((-245 . -805) 9081) ((-1193 . -336) 9058) ((-245 . -738) 9036) ((-977 . -19) 9020) ((-499 . -388) 9002) ((-499 . -349) 8984) ((-1146 . -336) 8956) ((-365 . -1295) 8933) ((-219 . -388) 8915) ((-219 . -349) 8897) ((-977 . -616) 8874) ((-1193 . -238) T) ((-1284 . -1121) T) ((-676 . -1121) T) ((-657 . -1121) T) ((-1210 . -1121) T) ((-1108 . -260) 8811) ((-598 . -658) 8771) ((-366 . -1121) T) ((-363 . -1121) T) ((-355 . -1121) T) ((-273 . -1121) T) ((-253 . -1121) T) ((-84 . -1238) T) ((-128 . -102) 8721) ((-122 . -102) 8671) ((-1251 . -526) 8531) ((-1210 . -622) 8510) ((-1162 . -1121) T) ((-1136 . -628) 8491) ((-1101 . -939) 8442) ((-491 . -1121) T) ((-1025 . -806) T) ((-1025 . -803) T) ((-491 . -622) 8421) ((-258 . -807) 8400) ((-258 . -804) 8379) ((-257 . -807) 8358) ((-40 . -1173) NIL) ((-257 . -804) 8337) ((-1025 . -738) T) ((-129 . -19) 8319) ((-992 . -806) T) ((-711 . -1072) 8284) ((-933 . -738) T) ((-929 . -1121) T) ((-907 . -625) 8266) ((-129 . -616) 8241) ((-711 . -652) 8206) ((-91 . -501) 8190) ((-499 . -917) NIL) ((-886 . -300) T) ((-227 . -1077) 8155) ((-848 . -296) 8134) ((-219 . -917) NIL) ((-845 . -1133) 8113) ((-59 . -1121) 8063) ((-531 . -1121) 8041) ((-528 . -1121) 7991) ((-509 . -1121) 7969) ((-508 . -1121) 7919) ((-592 . -102) T) ((-576 . -102) T) ((-507 . -102) T) ((-486 . -174) 7850) ((-370 . -939) T) ((-364 . -939) T) ((-356 . -939) T) ((-227 . -111) 7806) ((-845 . -23) 7758) ((-439 . -738) T) ((-108 . -939) T) ((-40 . -38) 7703) ((-108 . -832) T) ((-593 . -360) T) ((-530 . -360) T) ((-670 . -658) 7662) ((-326 . -464) 7641) ((-323 . -464) T) ((-614 . -526) 7574) ((-419 . -234) 7519) ((-350 . -132) T) ((-176 . -132) T) ((-304 . -25) 7383) ((-304 . -21) 7266) ((-45 . -1214) 7245) ((-66 . -625) 7227) ((-55 . -102) T) ((-347 . -658) 7209) ((-1289 . -102) T) ((-1288 . -102) 7139) ((-1280 . -660) 7064) ((-1273 . -660) 6961) ((-45 . -107) 6911) ((-831 . -628) 6895) ((-1252 . -660) 6747) ((-1252 . -928) NIL) ((-1243 . -1238) T) ((-1219 . -625) 6729) ((-1211 . -102) T) ((-1123 . -437) 6713) ((-1123 . -379) 6692) ((-398 . -628) 6676) ((-334 . -628) 6660) ((-1117 . -93) T) ((-1108 . -658) 6570) ((-1084 . -1238) T) ((-1083 . -1077) 6557) ((-1083 . -111) 6542) ((-971 . -111) 6371) ((-971 . -1077) 6214) ((-794 . -658) 6124) ((-792 . -658) 6034) ((-676 . -729) 6018) ((-635 . -1072) 6005) ((-635 . -652) 5992) ((-560 . -864) T) ((-493 . -1077) 5835) ((-489 . -374) T) ((-473 . -658) 5791) ((-466 . -658) 5701) ((-227 . -628) 5651) ((-366 . -729) 5603) ((-363 . -729) 5555) ((-118 . -1072) 5500) ((-355 . -729) 5452) ((-273 . -729) 5301) ((-253 . -729) 5150) ((-1111 . -93) T) ((-1094 . -93) T) ((-118 . -652) 5095) ((-1087 . -93) T) ((-962 . -663) 5079) ((-1078 . -1121) 5057) ((-493 . -111) 4886) ((-1057 . -93) T) ((-1040 . -93) T) ((-962 . -384) 4870) ((-254 . -102) T) ((-982 . -47) 4849) ((-74 . -625) 4831) ((-724 . -237) T) ((-722 . -102) T) ((-711 . -102) T) ((-1 . -1121) T) ((-633 . -1133) T) ((-1109 . -625) 4813) ((-638 . -93) T) ((-1097 . -625) 4795) ((-929 . -729) 4760) ((-127 . -501) 4744) ((-495 . -93) T) ((-633 . -23) T) ((-402 . -23) T) ((-87 . -1238) T) ((-220 . -93) T) ((-620 . -625) 4726) ((-620 . -626) NIL) ((-487 . -626) NIL) ((-487 . -625) 4708) ((-362 . -25) T) ((-362 . -21) T) ((-50 . -658) 4667) ((-523 . -1121) T) ((-519 . -1121) T) ((-122 . -319) 4605) ((-128 . -319) 4543) ((-608 . -660) 4517) ((-607 . -660) 4442) ((-593 . -658) 4392) ((-227 . -1070) T) ((-530 . -658) 4322) ((-1083 . -628) 4294) ((-390 . -1023) T) ((-227 . -248) T) ((-227 . -238) T) ((-862 . -502) 4278) ((-1083 . -630) 4259) ((-977 . -626) 4220) ((-977 . -625) 4132) ((-971 . -628) 3921) ((-862 . -625) 3905) ((-884 . -38) 3892) ((-725 . -628) 3842) ((-1272 . -300) 3793) ((-1251 . -300) 3744) ((-493 . -628) 3529) ((-1141 . -464) T) ((-514 . -861) T) ((-326 . -1160) 3508) ((-1122 . -1238) T) ((-1020 . -148) 3487) ((-1020 . -146) 3466) ((-507 . -319) 3453) ((-1205 . -625) 3435) ((-305 . -1214) 3414) ((-1204 . -625) 3396) ((-1156 . -1238) T) ((-1203 . -625) 3378) ((-885 . -1077) 3323) ((-489 . -1133) T) ((-140 . -847) 3305) ((-115 . -847) 3286) ((-1224 . -501) 3270) ((-1083 . -1070) T) ((-635 . -102) T) ((-982 . -1238) T) ((-971 . -1070) T) ((-258 . -379) 3249) ((-257 . -379) 3228) ((-885 . -111) 3157) ((-305 . -107) 3107) ((-131 . -625) 3089) ((-129 . -626) NIL) ((-129 . -625) 3033) ((-118 . -102) T) ((-747 . -1238) T) ((-727 . -1238) T) ((-489 . -23) T) ((-465 . -1238) T) ((-493 . -1070) T) ((-1083 . -238) T) ((-971 . -336) 3002) ((-40 . -919) 2911) ((-493 . -336) 2868) ((-366 . -174) T) ((-363 . -174) T) ((-355 . -174) T) ((-273 . -174) 2779) ((-253 . -174) 2690) ((-982 . -1059) 2586) ((-529 . -502) 2567) ((-747 . -1059) 2538) ((-529 . -625) 2504) ((-430 . -1238) T) ((-1126 . -102) T) ((-1113 . -625) 2463) ((-1055 . -625) 2445) ((-706 . -1072) 2395) ((-1301 . -152) 2379) ((-1299 . -628) 2360) ((-1298 . -628) 2341) ((-1293 . -625) 2323) ((-1280 . -738) T) ((-706 . -652) 2273) ((-1273 . -738) T) ((-1252 . -803) NIL) ((-1252 . -806) NIL) ((-171 . -1077) 2183) ((-929 . -174) T) ((-885 . -628) 2113) ((-1252 . -738) T) ((-1024 . -353) 2087) ((-225 . -658) 2039) ((-1021 . -526) 1972) ((-855 . -861) 1951) ((-576 . -1173) T) ((-486 . -300) 1902) ((-608 . -738) T) ((-372 . -625) 1884) ((-332 . -625) 1866) ((-430 . -1059) 1762) ((-607 . -738) T) ((-419 . -861) 1713) ((-171 . -111) 1609) ((-845 . -132) 1561) ((-1288 . -319) 1499) ((-749 . -152) 1483) ((-983 . -864) 1382) ((-827 . -864) 1333) ((-499 . -317) T) ((-390 . -625) 1300) ((-532 . -1031) 1284) ((-390 . -626) 1198) ((-219 . -317) T) ((-142 . -152) 1180) ((-726 . -296) 1159) ((-499 . -1043) T) ((-592 . -38) 1146) ((-576 . -38) 1133) ((-507 . -38) 1098) ((-219 . -1043) T) ((-885 . -1070) T) ((-848 . -625) 1080) ((-839 . -625) 1062) ((-837 . -625) 1044) ((-828 . -928) 1023) ((-1312 . -1133) T) ((-322 . -1238) T) ((-1261 . -1077) 846) ((-869 . -1077) 830) ((-885 . -248) T) ((-885 . -238) NIL) ((-701 . -1238) T) ((-1312 . -23) T) ((-828 . -660) 719) ((-562 . -1238) T) ((-430 . -349) 703) ((-583 . -1077) 690) ((-1261 . -111) 499) ((-713 . -651) 481) ((-869 . -111) 460) ((-392 . -23) T) ((-171 . -628) 238) ((-1210 . -526) 30) ((-890 . -1121) T) ((-693 . -1121) T) ((-688 . -1121) T) ((-674 . -1121) T))
\ No newline at end of file +(((-490 . -1122) T) ((-273 . -526) 205115) ((-253 . -526) 205058) ((-250 . -1122) 205008) ((-583 . -111) 204993) ((-543 . -23) T) ((-139 . -1122) T) ((-138 . -1122) T) ((-118 . -319) 204950) ((-134 . -1122) T) ((-1021 . -237) 204901) ((-812 . -1239) T) ((-491 . -526) 204693) ((-690 . -628) 204677) ((-707 . -102) T) ((-1163 . -526) 204596) ((-411 . -237) T) ((-402 . -132) T) ((-1302 . -998) 204565) ((-1046 . -1073) 204502) ((-329 . -865) T) ((-31 . -93) T) ((-614 . -501) 204486) ((-1046 . -653) 204423) ((-633 . -132) T) ((-832 . -859) T) ((-535 . -57) 204373) ((-531 . -526) 204306) ((-362 . -234) 204293) ((-365 . -1073) 204238) ((-59 . -526) 204171) ((-528 . -526) 204104) ((-430 . -918) 204063) ((-171 . -1071) T) ((-509 . -526) 203996) ((-508 . -526) 203929) ((-365 . -653) 203874) ((-812 . -1060) 203654) ((-1262 . -628) 203402) ((-712 . -38) 203367) ((-1116 . -1115) 203351) ((-354 . -360) T) ((-480 . -1239) T) ((-1116 . -1122) 203329) ((-870 . -628) 203226) ((-171 . -248) 203177) ((-171 . -238) 203128) ((-1116 . -1117) 203086) ((-887 . -296) 203044) ((-227 . -808) T) ((-227 . -805) T) ((-707 . -294) NIL) ((-583 . -628) 203016) ((-1172 . -1215) 202995) ((-419 . -1014) 202979) ((-48 . -1073) 202944) ((-714 . -21) T) ((-714 . -25) T) ((-48 . -653) 202909) ((-1304 . -661) 202883) ((-1262 . -336) 202860) ((-1172 . -107) 202810) ((-326 . -161) 202789) ((-326 . -144) 202768) ((-117 . -21) T) ((-40 . -232) 202745) ((-40 . -272) 202722) ((-135 . -25) T) ((-117 . -25) T) ((-1262 . -238) T) ((-1262 . -1071) T) ((-620 . -298) 202698) ((-870 . -1071) T) ((-618 . -1239) T) ((-812 . -349) 202682) ((-487 . -298) 202661) ((-684 . -1239) T) ((-182 . -1239) T) ((-162 . -1239) T) ((-157 . -1239) T) ((-155 . -1239) T) ((-140 . -187) T) ((-118 . -1174) NIL) ((-91 . -625) 202593) ((-489 . -132) T) ((-1187 . -1239) T) ((-1118 . -502) 202574) ((-1118 . -625) 202540) ((-1112 . -502) 202521) ((-1112 . -625) 202487) ((-605 . -1239) T) ((-1095 . -502) 202468) ((-583 . -1071) T) ((-1095 . -625) 202434) ((-675 . -730) 202418) ((-1088 . -502) 202399) ((-1088 . -625) 202365) ((-978 . -298) 202342) ((-60 . -34) T) ((-1084 . -808) T) ((-1084 . -805) T) ((-1058 . -502) 202323) ((-1041 . -502) 202304) ((-829 . -739) T) ((-744 . -47) 202269) ((-635 . -38) 202256) ((-366 . -300) T) ((-363 . -300) T) ((-355 . -300) T) ((-273 . -300) 202187) ((-253 . -300) 202118) ((-1058 . -625) 202084) ((-1046 . -102) T) ((-1041 . -625) 202050) ((-638 . -502) 202031) ((-425 . -739) T) ((-118 . -38) 201976) ((-495 . -502) 201957) ((-638 . -625) 201923) ((-425 . -485) T) ((-220 . -502) 201904) ((-495 . -625) 201870) ((-365 . -102) T) ((-220 . -625) 201836) ((-1233 . -1080) T) ((-354 . -659) 201766) ((-724 . -1080) T) ((-1196 . -47) 201743) ((-1195 . -47) 201713) ((-1189 . -47) 201690) ((-129 . -298) 201665) ((-1057 . -152) 201611) ((-930 . -300) T) ((-1148 . -47) 201583) ((-707 . -319) NIL) ((-527 . -625) 201565) ((-522 . -625) 201547) ((-520 . -625) 201529) ((-497 . -1239) T) ((-337 . -1122) 201479) ((-326 . -912) 201443) ((-323 . -912) NIL) ((-725 . -464) 201374) ((-48 . -102) T) ((-1273 . -296) 201332) ((-1252 . -296) 201232) ((-657 . -679) 201216) ((-657 . -664) 201200) ((-350 . -21) T) ((-350 . -25) T) ((-40 . -360) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-657 . -384) 201184) ((-617 . -502) 201166) ((-651 . -625) 201148) ((-614 . -296) 201100) ((-617 . -625) 201067) ((-400 . -102) T) ((-1142 . -144) T) ((-127 . -625) 200999) ((-889 . -1122) T) ((-671 . -423) 200983) ((-744 . -1239) T) ((-727 . -625) 200965) ((-255 . -625) 200932) ((-189 . -625) 200914) ((-163 . -625) 200896) ((-158 . -625) 200878) ((-1304 . -739) T) ((-1124 . -34) T) ((-886 . -808) NIL) ((-886 . -805) NIL) ((-873 . -862) T) ((-744 . -902) NIL) ((-1313 . -132) T) ((-392 . -132) T) ((-908 . -628) 200846) ((-924 . -102) T) ((-744 . -1060) 200722) ((-1196 . -1239) T) ((-1195 . -1239) T) ((-543 . -132) T) ((-1189 . -1239) T) ((-1109 . -423) 200706) ((-1022 . -501) 200690) ((-118 . -412) 200667) ((-1148 . -1239) T) ((-795 . -423) 200651) ((-793 . -423) 200635) ((-963 . -34) T) ((-707 . -1174) NIL) ((-258 . -661) 200455) ((-257 . -661) 200262) ((-830 . -940) 200241) ((-466 . -423) 200225) ((-614 . -19) 200209) ((-1168 . -1232) 200178) ((-1189 . -902) NIL) ((-1189 . -900) 200130) ((-614 . -616) 200107) ((-108 . -865) T) ((-1225 . -625) 200039) ((-1197 . -625) 200021) ((-62 . -407) T) ((-1195 . -1060) 199956) ((-1189 . -1060) 199922) ((-707 . -38) 199872) ((-40 . -659) 199802) ((-486 . -296) 199760) ((-1245 . -625) 199742) ((-744 . -388) 199726) ((-851 . -625) 199708) ((-671 . -1080) T) ((-635 . -920) 199631) ((-1273 . -1024) 199597) ((-448 . -1239) T) ((-1252 . -1024) 199563) ((-256 . -1239) T) ((-1110 . -628) 199547) ((-1085 . -1215) 199522) ((-1098 . -628) 199499) ((-887 . -626) 199306) ((-887 . -625) 199288) ((-118 . -920) NIL) ((-714 . -234) 199275) ((-1211 . -501) 199212) ((-430 . -1044) 199190) ((-48 . -319) 199177) ((-1085 . -107) 199123) ((-491 . -501) 199060) ((-537 . -1239) T) ((-532 . -1239) T) ((-1189 . -349) 199012) ((-1163 . -501) 198983) ((-1189 . -388) 198935) ((-1109 . -1080) T) ((-449 . -102) T) ((-185 . -1122) T) ((-258 . -34) T) ((-257 . -34) T) ((-1180 . -865) T) ((-863 . -628) 198919) ((-795 . -1080) T) ((-793 . -1080) T) ((-744 . -918) 198896) ((-466 . -1080) T) ((-59 . -501) 198880) ((-1056 . -1078) 198854) ((-531 . -501) 198838) ((-528 . -501) 198822) ((-509 . -501) 198806) ((-508 . -501) 198790) ((-250 . -526) 198723) ((-1056 . -111) 198690) ((-1196 . -918) 198603) ((-1195 . -918) 198509) ((-683 . -1134) T) ((-1189 . -918) 198342) ((-658 . -93) T) ((-1148 . -918) 198326) ((-365 . -1174) T) ((-332 . -1078) 198308) ((-31 . -502) 198289) ((-258 . -807) 198268) ((-258 . -806) 198247) ((-257 . -807) 198226) ((-257 . -806) 198205) ((-31 . -625) 198171) ((-50 . -1080) T) ((-258 . -739) 198149) ((-257 . -739) 198127) ((-1233 . -1122) T) ((-683 . -23) T) ((-593 . -1080) T) ((-530 . -1080) T) ((-390 . -1078) 198092) ((-332 . -111) 198067) ((-73 . -394) T) ((-73 . -407) T) ((-1046 . -38) 198004) ((-707 . -412) 197986) ((-99 . -102) T) ((-1318 . -1073) 197973) ((-724 . -1122) T) ((-1135 . -865) 197924) ((-1025 . -146) 197896) ((-1025 . -148) 197868) ((-885 . -659) 197840) ((-390 . -111) 197796) ((-329 . -1243) 197775) ((-486 . -1024) 197741) ((-365 . -38) 197706) ((-40 . -381) 197678) ((-888 . -625) 197550) ((-128 . -126) 197534) ((-122 . -126) 197518) ((-849 . -1078) 197488) ((-846 . -21) 197440) ((-840 . -1078) 197424) ((-846 . -25) 197376) ((-329 . -568) 197327) ((-529 . -628) 197308) ((-576 . -841) T) ((-245 . -1239) T) ((-1056 . -628) 197277) ((-849 . -111) 197242) ((-840 . -111) 197221) ((-1273 . -625) 197203) ((-1252 . -625) 197185) ((-1252 . -626) 196856) ((-1194 . -929) 196835) ((-1147 . -929) 196814) ((-48 . -38) 196779) ((-1311 . -1134) T) ((-548 . -296) 196735) ((-614 . -625) 196647) ((-614 . -626) 196608) ((-1309 . -1134) T) ((-372 . -628) 196592) ((-332 . -628) 196576) ((-1164 . -237) 196527) ((-245 . -1060) 196354) ((-1194 . -661) 196243) ((-1147 . -661) 196132) ((-869 . -661) 196106) ((-731 . -625) 196088) ((-558 . -379) T) ((-1311 . -23) T) ((-707 . -920) NIL) ((-1309 . -23) T) ((-503 . -1122) T) ((-390 . -628) 196038) ((-390 . -630) 196020) ((-1056 . -1071) T) ((-880 . -102) T) ((-1211 . -296) 195999) ((-171 . -379) 195950) ((-1026 . -1239) T) ((-993 . -1239) T) ((-934 . -1239) T) ((-849 . -628) 195904) ((-840 . -628) 195859) ((-44 . -23) T) ((-1318 . -102) T) ((-491 . -296) 195838) ((-598 . -1122) T) ((-1168 . -1131) 195807) ((-439 . -1239) T) ((-1126 . -1125) 195759) ((-402 . -21) T) ((-402 . -25) T) ((-153 . -1134) T) ((-1233 . -730) 195656) ((-1219 . -1122) T) ((-1026 . -900) 195638) ((-1026 . -902) 195620) ((-635 . -232) 195604) ((-635 . -272) 195588) ((-633 . -21) T) ((-299 . -568) T) ((-633 . -25) T) ((-1026 . -1060) 195548) ((-724 . -730) 195513) ((-245 . -388) 195482) ((-390 . -1071) T) ((-225 . -1080) T) ((-118 . -272) 195459) ((-118 . -232) 195436) ((-59 . -296) 195388) ((-153 . -23) T) ((-528 . -296) 195340) ((-337 . -526) 195273) ((-508 . -296) 195225) ((-390 . -248) T) ((-390 . -238) T) ((-849 . -1071) T) ((-840 . -1071) T) ((-725 . -969) 195194) ((-714 . -862) T) ((-624 . -865) T) ((-486 . -625) 195176) ((-1275 . -1073) 195081) ((-592 . -659) 195053) ((-576 . -659) 195025) ((-507 . -659) 194975) ((-840 . -238) 194954) ((-135 . -862) T) ((-1275 . -653) 194846) ((-671 . -1122) T) ((-1211 . -616) 194825) ((-562 . -1215) 194804) ((-347 . -1122) T) ((-329 . -374) 194783) ((-419 . -148) 194762) ((-419 . -146) 194741) ((-984 . -1134) 194640) ((-828 . -1134) 194618) ((-245 . -918) 194550) ((-667 . -867) 194534) ((-491 . -616) 194513) ((-110 . -865) T) ((-536 . -1239) T) ((-562 . -107) 194463) ((-1026 . -388) 194445) ((-1026 . -349) 194427) ((-1198 . -625) 194409) ((-97 . -1122) T) ((-984 . -23) 194220) ((-489 . -21) T) ((-489 . -25) T) ((-828 . -23) 194072) ((-1198 . -626) 193994) ((-59 . -19) 193978) ((-1194 . -739) T) ((-1147 . -739) T) ((-1109 . -1122) T) ((-528 . -19) 193962) ((-508 . -19) 193946) ((-59 . -616) 193923) ((-1025 . -237) 193860) ((-921 . -102) 193810) ((-869 . -739) T) ((-795 . -1122) T) ((-528 . -616) 193787) ((-508 . -616) 193764) ((-793 . -1122) T) ((-793 . -1087) 193731) ((-473 . -1122) T) ((-466 . -1122) T) ((-598 . -730) 193706) ((-662 . -1122) T) ((-1281 . -47) 193683) ((-1275 . -102) T) ((-1274 . -47) 193653) ((-1253 . -47) 193630) ((-1233 . -174) 193581) ((-1195 . -317) 193560) ((-1189 . -317) 193539) ((-1118 . -628) 193520) ((-1112 . -628) 193501) ((-1102 . -568) 193452) ((-1102 . -1243) 193403) ((-1095 . -628) 193384) ((-1026 . -918) NIL) ((-1088 . -628) 193365) ((-683 . -132) T) ((-639 . -1134) T) ((-1058 . -628) 193346) ((-1041 . -628) 193327) ((-727 . -1078) 193297) ((-725 . -912) 193200) ((-712 . -659) 193150) ((-284 . -1122) T) ((-85 . -453) T) ((-85 . -407) T) ((-724 . -174) T) ((-651 . -1078) 193134) ((-50 . -1122) T) ((-607 . -47) 193111) ((-227 . -661) 193076) ((-593 . -1122) T) ((-530 . -1122) T) ((-499 . -833) T) ((-499 . -940) T) ((-370 . -1243) T) ((-364 . -1243) T) ((-356 . -1243) T) ((-329 . -1134) T) ((-326 . -1073) 192986) ((-323 . -1073) 192915) ((-108 . -1243) T) ((-638 . -628) 192896) ((-370 . -568) T) ((-219 . -940) T) ((-219 . -833) T) ((-326 . -653) 192806) ((-323 . -653) 192735) ((-364 . -568) T) ((-356 . -568) T) ((-651 . -111) 192714) ((-1318 . -1174) T) ((-495 . -628) 192695) ((-108 . -568) T) ((-1189 . -1044) NIL) ((-671 . -730) 192665) ((-494 . -865) 192616) ((-220 . -628) 192597) ((-329 . -23) T) ((-67 . -1239) T) ((-1022 . -625) 192529) ((-1313 . -21) T) ((-707 . -272) 192511) ((-707 . -232) 192493) ((-1313 . -25) T) ((-727 . -111) 192458) ((-1311 . -132) T) ((-657 . -34) T) ((-250 . -501) 192442) ((-1309 . -132) T) ((-1302 . -102) T) ((-1285 . -625) 192408) ((-1281 . -1239) T) ((-1124 . -1120) 192392) ((-173 . -1122) T) ((-1274 . -1239) T) ((-1274 . -1060) 192327) ((-1253 . -1239) T) ((-1253 . -902) NIL) ((-1253 . -900) 192279) ((-972 . -929) 192258) ((-1253 . -1060) 192224) ((-1233 . -526) 192191) ((-1211 . -626) NIL) ((-527 . -628) 192175) ((-1211 . -625) 192157) ((-1164 . -1145) 192102) ((-1109 . -730) 191951) ((-493 . -929) 191930) ((-1099 . -102) T) ((-1084 . -661) 191902) ((-972 . -661) 191791) ((-831 . -865) T) ((-795 . -730) 191620) ((-609 . -502) 191601) ((-597 . -502) 191582) ((-609 . -625) 191548) ((-597 . -625) 191514) ((-548 . -625) 191496) ((-591 . -1239) T) ((-548 . -626) 191477) ((-793 . -730) 191326) ((-1068 . -1232) 191255) ((-635 . -659) 191227) ((-392 . -25) T) ((-392 . -21) T) ((-493 . -661) 191116) ((-473 . -730) 191087) ((-466 . -730) 190936) ((-1009 . -102) T) ((-921 . -319) 190874) ((-891 . -93) T) ((-750 . -102) T) ((-651 . -628) 190851) ((-118 . -659) 190781) ((-617 . -628) 190763) ((-727 . -628) 190717) ((-694 . -93) T) ((-543 . -25) T) ((-689 . -93) T) ((-677 . -625) 190699) ((-658 . -502) 190680) ((-658 . -625) 190633) ((-142 . -102) T) ((-44 . -132) T) ((-608 . -1239) T) ((-607 . -1239) T) ((-354 . -1080) T) ((-299 . -1134) T) ((-490 . -93) T) ((-419 . -237) 190584) ((-366 . -625) 190566) ((-363 . -625) 190548) ((-355 . -625) 190530) ((-273 . -626) 190278) ((-273 . -625) 190260) ((-253 . -625) 190242) ((-253 . -626) 190103) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1163 . -625) 190085) ((-1142 . -653) 190072) ((-1142 . -1073) 190059) ((-832 . -739) T) ((-832 . -872) T) ((-614 . -298) 190036) ((-593 . -730) 190001) ((-491 . -626) NIL) ((-491 . -625) 189983) ((-530 . -730) 189928) ((-326 . -102) T) ((-323 . -102) T) ((-299 . -23) T) ((-153 . -132) T) ((-930 . -625) 189910) ((-930 . -626) 189892) ((-398 . -739) T) ((-887 . -1078) 189844) ((-887 . -111) 189782) ((-727 . -1071) T) ((-725 . -1265) 189766) ((-707 . -360) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-531 . -625) 189698) ((-390 . -808) T) ((-169 . -1239) T) ((-225 . -1122) T) ((-390 . -805) T) ((-59 . -626) 189659) ((-227 . -807) T) ((-227 . -804) T) ((-59 . -625) 189571) ((-227 . -739) T) ((-528 . -626) 189532) ((-528 . -625) 189444) ((-509 . -625) 189376) ((-508 . -626) 189337) ((-508 . -625) 189249) ((-1102 . -374) 189200) ((-40 . -423) 189177) ((-77 . -1239) T) ((-886 . -929) NIL) ((-370 . -339) 189161) ((-370 . -374) T) ((-364 . -339) 189145) ((-364 . -374) T) ((-356 . -339) 189129) ((-356 . -374) T) ((-326 . -294) 189108) ((-108 . -374) T) ((-70 . -1239) T) ((-1253 . -349) 189060) ((-886 . -661) 189005) ((-1253 . -388) 188957) ((-984 . -132) 188812) ((-828 . -132) 188683) ((-45 . -865) NIL) ((-978 . -664) 188667) ((-1109 . -174) 188578) ((-978 . -384) 188562) ((-1084 . -807) T) ((-1084 . -804) T) ((-887 . -628) 188460) ((-795 . -174) 188351) ((-793 . -174) 188262) ((-829 . -47) 188224) ((-1084 . -739) T) ((-337 . -501) 188208) ((-972 . -739) T) ((-1302 . -319) 188146) ((-1281 . -918) 188059) ((-466 . -174) 187970) ((-250 . -296) 187922) ((-1274 . -918) 187828) ((-1273 . -1078) 187663) ((-1253 . -918) 187496) ((-493 . -739) T) ((-1252 . -1078) 187304) ((-1233 . -300) 187283) ((-1208 . -1239) T) ((-1205 . -379) T) ((-1204 . -379) T) ((-1168 . -152) 187267) ((-1142 . -102) T) ((-1140 . -1122) T) ((-1102 . -23) T) ((-1102 . -1134) T) ((-1097 . -102) T) ((-1079 . -625) 187234) ((-1025 . -421) 187206) ((-947 . -975) T) ((-750 . -319) 187144) ((-75 . -1239) T) ((-677 . -393) 187116) ((-171 . -929) 187069) ((-30 . -975) T) ((-112 . -857) T) ((-1 . -625) 187051) ((-1021 . -912) 186972) ((-129 . -664) 186954) ((-50 . -632) 186938) ((-707 . -659) 186873) ((-607 . -918) 186786) ((-450 . -102) T) ((-129 . -384) 186768) ((-142 . -319) NIL) ((-887 . -1071) T) ((-846 . -862) 186747) ((-81 . -1239) T) ((-724 . -300) T) ((-40 . -1080) T) ((-593 . -174) T) ((-530 . -174) T) ((-523 . -625) 186729) ((-171 . -661) 186603) ((-519 . -625) 186585) ((-362 . -148) 186567) ((-362 . -146) T) ((-370 . -1134) T) ((-364 . -1134) T) ((-356 . -1134) T) ((-1026 . -317) T) ((-934 . -317) T) ((-887 . -248) T) ((-108 . -1134) T) ((-887 . -238) 186546) ((-1273 . -111) 186367) ((-1252 . -111) 186156) ((-250 . -1277) 186140) ((-576 . -861) T) ((-370 . -23) T) ((-365 . -360) T) ((-326 . -319) 186127) ((-323 . -319) 186068) ((-364 . -23) T) ((-329 . -132) T) ((-356 . -23) T) ((-1026 . -1044) T) ((-31 . -628) 186049) ((-108 . -23) T) ((-667 . -1073) 186033) ((-250 . -616) 186010) ((-343 . -1122) T) ((-667 . -653) 185980) ((-1275 . -38) 185872) ((-1262 . -929) 185851) ((-112 . -1122) T) ((-829 . -1239) T) ((-425 . -1239) T) ((-1057 . -102) T) ((-1262 . -661) 185740) ((-886 . -807) NIL) ((-870 . -661) 185714) ((-886 . -804) NIL) ((-829 . -902) NIL) ((-886 . -739) T) ((-1109 . -526) 185587) ((-795 . -526) 185534) ((-793 . -526) 185486) ((-583 . -661) 185473) ((-829 . -1060) 185301) ((-466 . -526) 185244) ((-400 . -401) T) ((-1273 . -628) 185057) ((-1252 . -628) 184805) ((-60 . -1239) T) ((-633 . -862) 184784) ((-512 . -674) T) ((-1168 . -998) 184753) ((-1046 . -659) 184690) ((-1025 . -464) T) ((-712 . -861) T) ((-522 . -805) T) ((-486 . -1078) 184525) ((-512 . -113) T) ((-354 . -1122) T) ((-323 . -1174) NIL) ((-299 . -132) T) ((-406 . -1122) T) ((-885 . -1080) T) ((-707 . -381) 184492) ((-365 . -659) 184422) ((-225 . -632) 184399) ((-337 . -296) 184351) ((-486 . -111) 184172) ((-1273 . -1071) T) ((-1252 . -1071) T) ((-829 . -388) 184156) ((-837 . -1239) T) ((-171 . -739) T) ((-1304 . -1239) T) ((-667 . -102) T) ((-1273 . -248) 184135) ((-1273 . -238) 184087) ((-1252 . -238) 183992) ((-1252 . -248) 183971) ((-1025 . -414) NIL) ((-683 . -652) 183919) ((-326 . -38) 183829) ((-323 . -38) 183758) ((-69 . -625) 183740) ((-329 . -505) 183706) ((-48 . -659) 183656) ((-1211 . -298) 183635) ((-1247 . -862) T) ((-1135 . -1134) 183613) ((-83 . -1239) T) ((-61 . -625) 183595) ((-879 . -865) T) ((-491 . -298) 183574) ((-1304 . -1060) 183551) ((-1186 . -1122) T) ((-1135 . -23) 183403) ((-829 . -918) 183339) ((-1262 . -739) T) ((-1124 . -1239) T) ((-486 . -628) 183165) ((-362 . -237) T) ((-1109 . -300) 183096) ((-986 . -1122) T) ((-909 . -102) T) ((-795 . -300) 183007) ((-337 . -19) 182991) ((-59 . -298) 182968) ((-793 . -300) 182899) ((-870 . -739) T) ((-118 . -861) NIL) ((-528 . -298) 182876) ((-337 . -616) 182853) ((-508 . -298) 182830) ((-466 . -300) 182761) ((-1057 . -319) 182612) ((-891 . -502) 182593) ((-891 . -625) 182559) ((-694 . -502) 182540) ((-583 . -739) T) ((-689 . -502) 182521) ((-694 . -625) 182471) ((-689 . -625) 182437) ((-675 . -625) 182419) ((-490 . -502) 182400) ((-490 . -625) 182366) ((-250 . -626) 182327) ((-250 . -502) 182304) ((-139 . -502) 182285) ((-138 . -502) 182266) ((-134 . -502) 182247) ((-250 . -625) 182139) ((-215 . -102) T) ((-139 . -625) 182105) ((-138 . -625) 182071) ((-134 . -625) 182037) ((-1169 . -34) T) ((-963 . -1239) T) ((-354 . -730) 181982) ((-683 . -25) T) ((-683 . -21) T) ((-1198 . -628) 181963) ((-341 . -1239) T) ((-486 . -1071) T) ((-647 . -429) 181928) ((-619 . -429) 181893) ((-1142 . -1174) T) ((-1274 . -317) 181872) ((-725 . -1073) 181695) ((-593 . -300) T) ((-530 . -300) T) ((-1253 . -317) 181674) ((-486 . -238) 181626) ((-486 . -248) 181605) ((-451 . -1239) T) ((-725 . -653) 181434) ((-1253 . -1044) NIL) ((-1102 . -132) T) ((-887 . -808) 181413) ((-145 . -102) T) ((-40 . -1122) T) ((-887 . -805) 181392) ((-657 . -1032) 181376) ((-592 . -1080) T) ((-576 . -1080) T) ((-507 . -1080) T) ((-419 . -464) T) ((-370 . -132) T) ((-326 . -412) 181360) ((-323 . -412) 181321) ((-364 . -132) T) ((-356 . -132) T) ((-1203 . -1122) T) ((-1142 . -38) 181308) ((-1116 . -625) 181275) ((-108 . -132) T) ((-974 . -1122) T) ((-941 . -1122) T) ((-784 . -1122) T) ((-685 . -1122) T) ((-714 . -148) T) ((-117 . -148) T) ((-1311 . -21) T) ((-1311 . -25) T) ((-1309 . -21) T) ((-1309 . -25) T) ((-677 . -1078) 181259) ((-543 . -862) T) ((-512 . -862) T) ((-376 . -1239) T) ((-366 . -1078) 181211) ((-363 . -1078) 181163) ((-355 . -1078) 181115) ((-258 . -1239) T) ((-257 . -1239) T) ((-273 . -1078) 180958) ((-253 . -1078) 180801) ((-677 . -111) 180780) ((-830 . -1243) 180759) ((-559 . -857) T) ((-326 . -920) 180725) ((-366 . -111) 180663) ((-363 . -111) 180601) ((-355 . -111) 180539) ((-273 . -111) 180368) ((-253 . -111) 180197) ((-323 . -920) NIL) ((-635 . -423) 180181) ((-44 . -21) T) ((-44 . -25) T) ((-925 . -865) 180132) ((-828 . -652) 180038) ((-830 . -568) 180017) ((-499 . -865) T) ((-258 . -1060) 179844) ((-257 . -1060) 179671) ((-127 . -120) 179655) ((-219 . -865) T) ((-930 . -1078) 179620) ((-725 . -102) T) ((-712 . -1080) T) ((-609 . -628) 179601) ((-597 . -628) 179582) ((-548 . -630) 179485) ((-354 . -174) T) ((-153 . -21) T) ((-153 . -25) T) ((-88 . -625) 179467) ((-930 . -111) 179423) ((-40 . -730) 179368) ((-885 . -1122) T) ((-677 . -628) 179345) ((-658 . -628) 179326) ((-366 . -628) 179263) ((-363 . -628) 179200) ((-355 . -628) 179137) ((-559 . -1122) T) ((-337 . -626) 179098) ((-337 . -625) 179010) ((-273 . -628) 178763) ((-253 . -628) 178548) ((-188 . -1239) T) ((-1252 . -805) 178501) ((-1252 . -808) 178454) ((-258 . -388) 178423) ((-257 . -388) 178392) ((-561 . -865) T) ((-667 . -38) 178362) ((-620 . -34) T) ((-494 . -1134) 178340) ((-487 . -34) T) ((-1135 . -132) 178211) ((-984 . -25) 178022) ((-930 . -628) 177972) ((-889 . -625) 177954) ((-984 . -21) 177909) ((-828 . -25) 177742) ((-828 . -21) 177653) ((-1245 . -379) T) ((-635 . -1080) T) ((-1200 . -568) 177632) ((-1194 . -47) 177609) ((-366 . -1071) T) ((-363 . -1071) T) ((-494 . -23) 177461) ((-355 . -1071) T) ((-273 . -1071) T) ((-253 . -1071) T) ((-1147 . -47) 177433) ((-118 . -1080) T) ((-1056 . -661) 177407) ((-978 . -34) T) ((-366 . -238) 177386) ((-366 . -248) T) ((-363 . -238) 177365) ((-363 . -248) T) ((-355 . -238) 177344) ((-355 . -248) T) ((-273 . -336) 177316) ((-253 . -336) 177273) ((-273 . -238) 177252) ((-1179 . -152) 177236) ((-258 . -918) 177168) ((-257 . -918) 177100) ((-1164 . -912) 177021) ((-1104 . -862) T) ((-1256 . -1239) 176999) ((-426 . -1134) T) ((-1076 . -23) T) ((-1046 . -861) T) ((-930 . -1071) T) ((-332 . -661) 176981) ((-714 . -237) T) ((-683 . -234) 176926) ((-1233 . -1024) 176892) ((-1195 . -940) 176871) ((-1189 . -940) 176850) ((-1189 . -833) NIL) ((-1021 . -1073) 176746) ((-987 . -1239) T) ((-930 . -248) T) ((-830 . -374) 176725) ((-396 . -23) T) ((-128 . -1122) 176703) ((-122 . -1122) 176681) ((-930 . -238) T) ((-129 . -34) T) ((-390 . -661) 176646) ((-1021 . -653) 176594) ((-885 . -730) 176581) ((-1318 . -659) 176553) ((-1068 . -152) 176518) ((-1015 . -1239) T) ((-877 . -1239) T) ((-40 . -174) T) ((-707 . -423) 176500) ((-725 . -319) 176487) ((-849 . -661) 176447) ((-840 . -661) 176421) ((-329 . -25) T) ((-329 . -21) T) ((-671 . -296) 176400) ((-592 . -1122) T) ((-576 . -1122) T) ((-507 . -1122) T) ((-1194 . -1239) T) ((-250 . -298) 176377) ((-1147 . -1239) T) ((-869 . -1239) T) ((-323 . -272) 176338) ((-323 . -232) 176299) ((-1244 . -865) T) ((-1194 . -902) NIL) ((-55 . -1122) T) ((-1147 . -902) 176158) ((-130 . -862) T) ((-1194 . -1060) 176038) ((-1147 . -1060) 175921) ((-185 . -625) 175903) ((-869 . -1060) 175799) ((-795 . -296) 175726) ((-830 . -1134) T) ((-1056 . -739) T) ((-1068 . -998) 175655) ((-614 . -664) 175639) ((-1025 . -912) 175546) ((-1021 . -102) T) ((-830 . -23) T) ((-725 . -1174) 175524) ((-707 . -1080) T) ((-614 . -384) 175508) ((-362 . -464) T) ((-354 . -300) T) ((-1290 . -1122) T) ((-254 . -1122) T) ((-411 . -102) T) ((-299 . -21) T) ((-299 . -25) T) ((-372 . -739) T) ((-723 . -1122) T) ((-712 . -1122) T) ((-372 . -485) T) ((-1233 . -625) 175490) ((-1194 . -388) 175474) ((-1147 . -388) 175458) ((-1046 . -423) 175420) ((-142 . -231) 175402) ((-390 . -807) T) ((-390 . -804) T) ((-885 . -174) T) ((-390 . -739) T) ((-724 . -625) 175384) ((-725 . -38) 175213) ((-1289 . -1287) 175197) ((-362 . -414) T) ((-1289 . -1122) 175147) ((-1212 . -1122) T) ((-592 . -730) 175134) ((-576 . -730) 175121) ((-507 . -730) 175086) ((-1275 . -659) 174976) ((-326 . -641) 174955) ((-849 . -739) T) ((-840 . -739) T) ((-1137 . -1239) T) ((-657 . -1239) T) ((-1102 . -652) 174903) ((-1194 . -918) 174846) ((-1147 . -918) 174830) ((-828 . -234) 174721) ((-675 . -1078) 174705) ((-108 . -652) 174687) ((-494 . -132) 174558) ((-1200 . -1134) T) ((-832 . -1239) T) ((-972 . -47) 174527) ((-635 . -1122) T) ((-675 . -111) 174506) ((-503 . -625) 174472) ((-337 . -298) 174449) ((-398 . -1239) T) ((-334 . -1239) T) ((-493 . -47) 174406) ((-1200 . -23) T) ((-118 . -1122) T) ((-103 . -102) 174356) ((-1301 . -1134) T) ((-560 . -862) T) ((-227 . -1239) T) ((-1076 . -132) T) ((-1046 . -1080) T) ((-1301 . -23) T) ((-1219 . -625) 174338) ((-832 . -1060) 174322) ((-1142 . -841) T) ((-1025 . -737) 174294) ((-1127 . -1122) T) ((-712 . -730) 174259) ((-598 . -625) 174241) ((-398 . -1060) 174225) ((-365 . -1080) T) ((-396 . -132) T) ((-334 . -1060) 174209) ((-1102 . -21) T) ((-1102 . -25) T) ((-1026 . -833) T) ((-227 . -902) 174191) ((-1026 . -940) T) ((-91 . -34) T) ((-1021 . -319) 174156) ((-934 . -940) T) ((-891 . -628) 174137) ((-727 . -661) 174097) ((-499 . -1243) T) ((-694 . -628) 174078) ((-689 . -628) 174059) ((-651 . -661) 174043) ((-219 . -1243) T) ((-419 . -912) 173964) ((-227 . -1060) 173924) ((-40 . -300) T) ((-499 . -568) T) ((-490 . -628) 173905) ((-370 . -25) T) ((-326 . -659) 173560) ((-323 . -659) 173474) ((-370 . -21) T) ((-364 . -25) T) ((-364 . -21) T) ((-219 . -568) T) ((-356 . -25) T) ((-356 . -21) T) ((-329 . -234) 173420) ((-250 . -628) 173397) ((-139 . -628) 173378) ((-138 . -628) 173359) ((-134 . -628) 173340) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1080) T) ((-592 . -174) T) ((-576 . -174) T) ((-507 . -174) T) ((-1084 . -1239) T) ((-972 . -1239) T) ((-726 . -1239) T) ((-671 . -625) 173322) ((-493 . -1239) T) ((-750 . -749) 173306) ((-347 . -625) 173288) ((-68 . -394) T) ((-68 . -407) T) ((-1124 . -107) 173272) ((-1084 . -902) 173254) ((-972 . -902) 173179) ((-666 . -1134) T) ((-635 . -730) 173166) ((-493 . -902) NIL) ((-1168 . -102) T) ((-1116 . -630) 173150) ((-1084 . -1060) 173132) ((-97 . -625) 173114) ((-489 . -148) T) ((-972 . -1060) 172994) ((-118 . -730) 172939) ((-725 . -920) 172846) ((-666 . -23) T) ((-493 . -1060) 172722) ((-1109 . -626) NIL) ((-1109 . -625) 172704) ((-795 . -626) NIL) ((-795 . -625) 172665) ((-793 . -626) 172299) ((-793 . -625) 172213) ((-1135 . -652) 172119) ((-812 . -865) 172098) ((-473 . -625) 172080) ((-466 . -625) 172062) ((-466 . -626) 171923) ((-1057 . -231) 171869) ((-887 . -929) 171848) ((-127 . -34) T) ((-830 . -132) T) ((-662 . -625) 171830) ((-590 . -102) T) ((-366 . -1308) 171814) ((-363 . -1308) 171798) ((-355 . -1308) 171782) ((-122 . -526) 171715) ((-128 . -526) 171648) ((-523 . -805) T) ((-523 . -808) T) ((-522 . -807) T) ((-103 . -319) 171586) ((-224 . -102) 171536) ((-712 . -174) T) ((-707 . -1122) T) ((-887 . -661) 171452) ((-65 . -395) T) ((-284 . -625) 171434) ((-65 . -407) T) ((-972 . -388) 171418) ((-885 . -300) T) ((-50 . -625) 171400) ((-1021 . -38) 171348) ((-1142 . -659) 171320) ((-593 . -625) 171302) ((-493 . -388) 171286) ((-593 . -626) 171268) ((-530 . -625) 171250) ((-930 . -1308) 171237) ((-886 . -1239) T) ((-714 . -464) T) ((-507 . -526) 171203) ((-1300 . -1239) T) ((-1299 . -1239) T) ((-499 . -374) T) ((-366 . -379) 171182) ((-363 . -379) 171161) ((-355 . -379) 171140) ((-727 . -739) T) ((-219 . -374) T) ((-117 . -464) T) ((-1312 . -1303) 171124) ((-886 . -900) 171101) ((-886 . -902) NIL) ((-984 . -862) 171000) ((-828 . -862) 170951) ((-1246 . -102) T) ((-667 . -669) 170935) ((-1225 . -34) T) ((-173 . -625) 170917) ((-1135 . -25) 170750) ((-1135 . -21) 170661) ((-886 . -1060) 170638) ((-972 . -918) 170619) ((-1262 . -47) 170596) ((-930 . -379) T) ((-605 . -865) T) ((-59 . -664) 170580) ((-528 . -664) 170564) ((-493 . -918) 170541) ((-71 . -453) T) ((-71 . -407) T) ((-508 . -664) 170525) ((-59 . -384) 170509) ((-635 . -174) T) ((-528 . -384) 170493) ((-508 . -384) 170477) ((-558 . -1239) T) ((-840 . -721) 170461) ((-1194 . -317) 170440) ((-1200 . -132) T) ((-1164 . -1073) 170424) ((-118 . -174) T) ((-1164 . -653) 170356) ((-1168 . -319) 170294) ((-171 . -1239) T) ((-1301 . -132) T) ((-1274 . -940) 170273) ((-1253 . -940) 170252) ((-1253 . -833) NIL) ((-881 . -1073) 170222) ((-647 . -757) 170206) ((-619 . -757) 170190) ((-1252 . -929) 170143) ((-1046 . -1122) T) ((-925 . -1134) T) ((-881 . -653) 170113) ((-707 . -730) 170063) ((-916 . -1239) T) ((-886 . -388) 170040) ((-886 . -349) 170017) ((-854 . -1239) T) ((-821 . -1239) T) ((-171 . -900) 170001) ((-171 . -902) 169926) ((-782 . -1239) T) ((-690 . -1239) T) ((-1289 . -526) 169859) ((-1273 . -661) 169756) ((-1102 . -234) 169629) ((-499 . -1134) T) ((-365 . -1122) T) ((-219 . -1134) T) ((-76 . -453) T) ((-76 . -407) T) ((-171 . -1060) 169525) ((-304 . -912) 169482) ((-329 . -862) T) ((-1252 . -661) 169290) ((-887 . -807) 169269) ((-887 . -804) 169248) ((-887 . -739) T) ((-499 . -23) T) ((-370 . -234) 169221) ((-364 . -234) 169194) ((-356 . -234) 169167) ((-176 . -464) T) ((-86 . -453) T) ((-224 . -319) 169105) ((-86 . -407) T) ((-225 . -625) 169087) ((-108 . -234) 169074) ((-219 . -23) T) ((-1313 . -1306) 169053) ((-690 . -1060) 169037) ((-592 . -300) T) ((-576 . -300) T) ((-507 . -300) T) ((-1262 . -1239) T) ((-137 . -482) 168992) ((-870 . -1239) T) ((-667 . -659) 168951) ((-48 . -1122) T) ((-725 . -272) 168935) ((-725 . -232) 168919) ((-886 . -918) NIL) ((-583 . -1239) T) ((-1262 . -902) NIL) ((-905 . -102) T) ((-901 . -102) T) ((-400 . -1122) T) ((-171 . -388) 168903) ((-171 . -349) 168887) ((-1262 . -1060) 168767) ((-870 . -1060) 168663) ((-1164 . -102) T) ((-1021 . -920) 168586) ((-675 . -805) 168565) ((-666 . -132) T) ((-675 . -808) 168544) ((-118 . -526) 168452) ((-583 . -1060) 168434) ((-304 . -1296) 168404) ((-1189 . -865) NIL) ((-881 . -102) T) ((-983 . -568) 168383) ((-1233 . -1078) 168266) ((-1025 . -1073) 168211) ((-494 . -652) 168117) ((-924 . -1122) T) ((-1046 . -730) 168054) ((-724 . -1078) 168019) ((-1025 . -653) 167964) ((-629 . -102) T) ((-614 . -34) T) ((-1169 . -1239) T) ((-1233 . -111) 167833) ((-486 . -661) 167730) ((-365 . -730) 167675) ((-171 . -918) 167634) ((-712 . -300) T) ((-707 . -174) T) ((-724 . -111) 167590) ((-1318 . -1080) T) ((-1262 . -388) 167574) ((-430 . -1243) 167552) ((-1140 . -625) 167534) ((-323 . -861) NIL) ((-430 . -568) T) ((-227 . -317) T) ((-1252 . -804) 167487) ((-1252 . -807) 167440) ((-1273 . -739) T) ((-1252 . -739) T) ((-48 . -730) 167405) ((-227 . -1044) T) ((-1275 . -423) 167371) ((-1262 . -918) 167314) ((-362 . -1296) 167291) ((-1233 . -628) 167173) ((-731 . -739) T) ((-343 . -625) 167155) ((-532 . -865) 167134) ((-1135 . -234) 167025) ((-112 . -625) 167007) ((-112 . -626) 166989) ((-731 . -485) T) ((-724 . -628) 166939) ((-1312 . -1073) 166923) ((-494 . -25) 166756) ((-128 . -501) 166740) ((-122 . -501) 166724) ((-494 . -21) 166635) ((-1312 . -653) 166605) ((-635 . -300) T) ((-598 . -1078) 166580) ((-449 . -1122) T) ((-1084 . -317) T) ((-118 . -300) T) ((-1126 . -102) T) ((-1025 . -102) T) ((-598 . -111) 166548) ((-1233 . -1071) T) ((-1164 . -319) 166486) ((-1084 . -1044) T) ((-1076 . -25) T) ((-66 . -1239) T) ((-908 . -1239) T) ((-1076 . -21) T) ((-724 . -1071) T) ((-396 . -21) T) ((-396 . -25) T) ((-707 . -526) NIL) ((-1046 . -174) T) ((-724 . -248) T) ((-1084 . -557) T) ((-725 . -659) 166396) ((-518 . -102) T) ((-514 . -102) T) ((-365 . -174) T) ((-354 . -625) 166378) ((-419 . -1073) 166330) ((-406 . -625) 166312) ((-1142 . -861) T) ((-486 . -739) T) ((-908 . -1060) 166280) ((-419 . -653) 166232) ((-108 . -862) T) ((-671 . -1078) 166216) ((-499 . -132) T) ((-1275 . -1080) T) ((-219 . -132) T) ((-1179 . -102) 166166) ((-99 . -1122) T) ((-245 . -865) 166117) ((-250 . -679) 166101) ((-250 . -664) 166085) ((-671 . -111) 166064) ((-598 . -628) 166048) ((-326 . -423) 166032) ((-250 . -384) 166016) ((-1181 . -240) 165963) ((-1021 . -272) 165947) ((-1021 . -232) 165931) ((-74 . -1239) T) ((-48 . -174) T) ((-714 . -399) T) ((-714 . -144) T) ((-1312 . -102) T) ((-1220 . -1239) T) ((-1219 . -628) 165913) ((-1110 . -1239) T) ((-1109 . -1078) 165756) ((-1098 . -1239) T) ((-273 . -929) 165735) ((-253 . -929) 165714) ((-795 . -1078) 165537) ((-793 . -1078) 165380) ((-620 . -1239) T) ((-1186 . -625) 165362) ((-1109 . -111) 165191) ((-1068 . -102) T) ((-487 . -1239) T) ((-473 . -1078) 165162) ((-466 . -1078) 165005) ((-677 . -661) 164989) ((-886 . -317) T) ((-795 . -111) 164798) ((-793 . -111) 164627) ((-366 . -661) 164579) ((-363 . -661) 164531) ((-355 . -661) 164483) ((-273 . -661) 164372) ((-253 . -661) 164261) ((-1180 . -862) T) ((-1110 . -1060) 164245) ((-1098 . -1060) 164222) ((-1026 . -865) T) ((-1022 . -34) T) ((-473 . -111) 164183) ((-466 . -111) 164012) ((-993 . -865) T) ((-986 . -625) 163994) ((-983 . -1134) T) ((-978 . -1239) T) ((-127 . -1032) 163978) ((-863 . -1239) T) ((-886 . -1044) NIL) ((-748 . -1134) T) ((-728 . -1134) T) ((-671 . -628) 163896) ((-1289 . -501) 163880) ((-1206 . -1239) T) ((-1205 . -1239) T) ((-1164 . -38) 163840) ((-983 . -23) T) ((-930 . -661) 163805) ((-880 . -1122) T) ((-856 . -102) T) ((-830 . -21) T) ((-647 . -1073) 163789) ((-619 . -1073) 163773) ((-830 . -25) T) ((-748 . -23) T) ((-728 . -23) T) ((-647 . -653) 163757) ((-110 . -674) T) ((-619 . -653) 163741) ((-593 . -1078) 163706) ((-530 . -1078) 163651) ((-229 . -57) 163609) ((-465 . -23) T) ((-419 . -102) T) ((-1204 . -1239) T) ((-270 . -102) T) ((-110 . -113) T) ((-707 . -300) T) ((-881 . -38) 163579) ((-1109 . -628) 163315) ((-593 . -111) 163271) ((-530 . -111) 163200) ((-430 . -1134) T) ((-326 . -1080) 163090) ((-323 . -1080) T) ((-129 . -1239) T) ((-131 . -1239) T) ((-795 . -628) 162838) ((-793 . -628) 162604) ((-671 . -1071) T) ((-1318 . -1122) T) ((-466 . -628) 162389) ((-171 . -317) 162320) ((-430 . -23) T) ((-40 . -625) 162302) ((-40 . -626) 162286) ((-108 . -1014) 162268) ((-117 . -884) 162252) ((-662 . -628) 162236) ((-48 . -526) 162202) ((-1225 . -1032) 162186) ((-1203 . -625) 162153) ((-1211 . -34) T) ((-974 . -625) 162119) ((-941 . -625) 162101) ((-1135 . -862) 162052) ((-784 . -625) 162034) ((-685 . -625) 162016) ((-529 . -1239) T) ((-1262 . -317) 161995) ((-1179 . -319) 161933) ((-1163 . -34) T) ((-491 . -34) T) ((-1114 . -1239) T) ((-489 . -464) T) ((-1056 . -1239) T) ((-1109 . -1071) T) ((-50 . -628) 161902) ((-795 . -1071) T) ((-793 . -1071) T) ((-660 . -240) 161886) ((-644 . -240) 161832) ((-1200 . -21) T) ((-593 . -628) 161782) ((-530 . -628) 161712) ((-494 . -234) 161603) ((-1200 . -25) T) ((-1109 . -336) 161564) ((-466 . -1071) T) ((-1109 . -238) 161543) ((-795 . -336) 161520) ((-795 . -238) T) ((-793 . -336) 161492) ((-744 . -1243) 161471) ((-531 . -34) T) ((-337 . -664) 161455) ((-528 . -34) T) ((-59 . -34) T) ((-509 . -34) T) ((-508 . -34) T) ((-466 . -336) 161434) ((-337 . -384) 161418) ((-372 . -1239) T) ((-332 . -1239) T) ((-1025 . -1174) NIL) ((-744 . -568) 161349) ((-647 . -102) T) ((-619 . -102) T) ((-366 . -739) T) ((-363 . -739) T) ((-355 . -739) T) ((-273 . -739) T) ((-253 . -739) T) ((-390 . -1239) T) ((-1301 . -21) T) ((-1068 . -319) 161257) ((-1301 . -25) T) ((-921 . -1122) 161235) ((-831 . -234) 161222) ((-50 . -1071) T) ((-1196 . -568) 161201) ((-1195 . -1243) 161180) ((-1195 . -568) 161131) ((-1189 . -1243) 161110) ((-1189 . -568) 161061) ((-1046 . -300) T) ((-593 . -1071) T) ((-530 . -1071) T) ((-1025 . -38) 161006) ((-372 . -1060) 160990) ((-332 . -1060) 160974) ((-1021 . -659) 160897) ((-390 . -902) 160879) ((-849 . -1239) T) ((-840 . -1239) T) ((-838 . -1239) T) ((-812 . -1134) T) ((-930 . -739) T) ((-593 . -248) T) ((-593 . -238) T) ((-530 . -238) T) ((-530 . -248) T) ((-1148 . -568) 160858) ((-365 . -300) T) ((-660 . -708) 160842) ((-390 . -1060) 160802) ((-304 . -1073) 160723) ((-350 . -912) 160702) ((-1142 . -1080) T) ((-103 . -126) 160686) ((-304 . -653) 160628) ((-812 . -23) T) ((-1311 . -1306) 160604) ((-1309 . -1306) 160583) ((-1289 . -296) 160535) ((-419 . -319) 160500) ((-1275 . -1122) T) ((-1164 . -920) 160423) ((-885 . -625) 160405) ((-849 . -1060) 160374) ((-205 . -800) T) ((-204 . -800) T) ((-203 . -800) T) ((-202 . -800) T) ((-201 . -800) T) ((-200 . -800) T) ((-199 . -800) T) ((-198 . -800) T) ((-197 . -800) T) ((-196 . -800) T) ((-559 . -625) 160356) ((-507 . -1024) T) ((-283 . -852) T) ((-282 . -852) T) ((-281 . -852) T) ((-280 . -852) T) ((-48 . -300) T) ((-279 . -852) T) ((-278 . -852) T) ((-277 . -852) T) ((-195 . -800) T) ((-624 . -862) T) ((-667 . -423) 160340) ((-683 . -237) 160291) ((-225 . -628) 160253) ((-110 . -862) T) ((-666 . -21) T) ((-666 . -25) T) ((-1312 . -38) 160223) ((-118 . -296) 160174) ((-1289 . -19) 160158) ((-1253 . -865) NIL) ((-1289 . -616) 160135) ((-1302 . -1122) T) ((-362 . -1073) 160080) ((-1099 . -1122) T) ((-1009 . -1122) T) ((-983 . -132) T) ((-830 . -234) 160067) ((-750 . -1122) T) ((-362 . -653) 160012) ((-748 . -132) T) ((-728 . -132) T) ((-523 . -806) T) ((-523 . -807) T) ((-465 . -132) T) ((-419 . -1174) 159990) ((-225 . -1071) T) ((-304 . -102) 159772) ((-142 . -1122) T) ((-712 . -1024) T) ((-1127 . -296) 159728) ((-91 . -1239) T) ((-128 . -625) 159660) ((-122 . -625) 159592) ((-1318 . -174) T) ((-1195 . -374) 159571) ((-1189 . -374) 159550) ((-326 . -1122) T) ((-430 . -132) T) ((-323 . -1122) T) ((-419 . -38) 159502) ((-1155 . -102) T) ((-1275 . -730) 159394) ((-1157 . -1284) T) ((-1118 . -1239) T) ((-1112 . -1239) T) ((-667 . -1080) T) ((-1095 . -1239) T) ((-1088 . -1239) T) ((-1058 . -1239) T) ((-1041 . -1239) T) ((-329 . -146) 159373) ((-329 . -148) 159352) ((-140 . -1122) T) ((-137 . -1122) T) ((-115 . -1122) T) ((-873 . -102) T) ((-638 . -1239) T) ((-495 . -1239) T) ((-592 . -625) 159334) ((-576 . -626) 159233) ((-576 . -625) 159215) ((-507 . -625) 159197) ((-507 . -626) 159142) ((-497 . -23) T) ((-220 . -1239) T) ((-494 . -862) 159093) ((-499 . -652) 159075) ((-985 . -625) 159057) ((-1025 . -920) 158966) ((-219 . -652) 158948) ((-227 . -416) T) ((-675 . -661) 158932) ((-55 . -625) 158914) ((-1194 . -940) 158893) ((-744 . -1134) T) ((-527 . -1239) T) ((-522 . -1239) T) ((-520 . -1239) T) ((-362 . -102) T) ((-1238 . -1105) T) ((-1142 . -857) T) ((-831 . -862) T) ((-744 . -23) T) ((-354 . -1078) 158838) ((-1169 . -107) 158822) ((-1290 . -625) 158804) ((-651 . -1239) T) ((-1196 . -23) T) ((-1196 . -1134) T) ((-1195 . -1134) T) ((-1195 . -23) T) ((-527 . -1060) 158788) ((-1189 . -1134) T) ((-1148 . -1134) T) ((-354 . -111) 158717) ((-1026 . -1243) T) ((-127 . -1239) T) ((-934 . -1243) T) ((-1189 . -23) T) ((-1164 . -272) 158701) ((-707 . -296) NIL) ((-727 . -1239) T) ((-1164 . -232) 158685) ((-1148 . -23) T) ((-1097 . -1122) T) ((-1026 . -568) T) ((-934 . -568) T) ((-255 . -1239) T) ((-189 . -1239) T) ((-163 . -1239) T) ((-158 . -1239) T) ((-254 . -625) 158667) ((-828 . -237) 158564) ((-812 . -132) T) ((-723 . -625) 158546) ((-326 . -730) 158456) ((-323 . -730) 158385) ((-712 . -625) 158367) ((-712 . -626) 158312) ((-419 . -412) 158296) ((-450 . -1122) T) ((-499 . -25) T) ((-499 . -21) T) ((-1142 . -1122) T) ((-219 . -25) T) ((-219 . -21) T) ((-725 . -423) 158280) ((-727 . -1060) 158249) ((-1289 . -625) 158161) ((-1289 . -626) 158122) ((-1275 . -174) T) ((-1212 . -625) 158104) ((-250 . -34) T) ((-354 . -628) 158034) ((-406 . -628) 158016) ((-946 . -996) T) ((-1225 . -1239) T) ((-675 . -804) 157995) ((-675 . -807) 157974) ((-410 . -407) T) ((-535 . -102) 157924) ((-1245 . -1239) T) ((-1057 . -1122) T) ((-419 . -920) 157847) ((-224 . -1017) 157831) ((-851 . -1239) T) ((-516 . -102) T) ((-635 . -625) 157813) ((-45 . -862) NIL) ((-635 . -626) 157790) ((-1057 . -622) 157765) ((-921 . -526) 157698) ((-329 . -237) 157650) ((-354 . -1071) T) ((-118 . -626) NIL) ((-118 . -625) 157632) ((-887 . -1239) T) ((-683 . -429) 157616) ((-683 . -1145) 157561) ((-512 . -152) 157543) ((-354 . -238) T) ((-354 . -248) T) ((-40 . -1078) 157488) ((-887 . -900) 157472) ((-887 . -902) 157397) ((-725 . -1080) T) ((-707 . -1024) NIL) ((-1273 . -47) 157367) ((-1252 . -47) 157344) ((-1163 . -1032) 157315) ((-1142 . -730) 157302) ((-3 . |UnionCategory|) T) ((-1127 . -625) 157284) ((-1102 . -148) 157263) ((-1102 . -146) 157214) ((-1026 . -374) T) ((-986 . -628) 157198) ((-227 . -940) T) ((-40 . -111) 157127) ((-887 . -1060) 156991) ((-1025 . -232) 156968) ((-1025 . -272) 156945) ((-714 . -1073) 156932) ((-934 . -374) T) ((-714 . -653) 156919) ((-329 . -1227) 156885) ((-390 . -317) T) ((-329 . -1224) 156851) ((-326 . -174) 156830) ((-323 . -174) T) ((-620 . -1215) 156806) ((-593 . -1308) 156793) ((-530 . -1308) 156770) ((-117 . -1073) 156757) ((-370 . -148) 156736) ((-370 . -146) 156687) ((-364 . -148) 156666) ((-364 . -146) 156617) ((-356 . -148) 156596) ((-117 . -653) 156583) ((-356 . -146) 156534) ((-329 . -35) 156500) ((-487 . -1215) 156479) ((0 . |EnumerationCategory|) T) ((-329 . -95) 156445) ((-390 . -1044) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 156395) ((-667 . -1122) T) ((-620 . -107) 156342) ((-497 . -132) T) ((-487 . -107) 156292) ((-245 . -1134) 156270) ((-31 . -1239) T) ((-887 . -388) 156254) ((-887 . -349) 156238) ((-245 . -23) 156090) ((-40 . -628) 156020) ((-1302 . -526) 155953) ((-1084 . -940) T) ((-1084 . -833) T) ((-593 . -379) T) ((-530 . -379) T) ((-1281 . -568) 155932) ((-1274 . -1243) 155911) ((-1274 . -568) 155862) ((-1273 . -1239) T) ((-1253 . -1243) 155841) ((-362 . -1174) T) ((-337 . -34) T) ((-44 . -429) 155825) ((-1203 . -628) 155761) ((-888 . -1239) T) ((-402 . -757) 155745) ((-1253 . -568) 155696) ((-1252 . -1239) T) ((-1164 . -659) 155655) ((-744 . -132) T) ((-685 . -628) 155639) ((-1252 . -902) 155512) ((-1252 . -900) 155482) ((-1196 . -132) T) ((-1195 . -132) T) ((-1189 . -132) T) ((-1148 . -132) T) ((-321 . -1105) T) ((-1046 . -1024) T) ((-750 . -526) 155415) ((-1026 . -23) T) ((-1026 . -1134) T) ((-909 . -1122) T) ((-145 . -857) T) ((-1025 . -360) NIL) ((-704 . -625) 155397) ((-963 . -865) 155376) ((-535 . -319) 155314) ((-993 . -23) T) ((-142 . -526) NIL) ((-881 . -659) 155259) ((-934 . -1134) T) ((-934 . -23) T) ((-887 . -918) 155218) ((-362 . -38) 155183) ((-885 . -1078) 155170) ((-341 . -865) T) ((-82 . -625) 155152) ((-40 . -1071) T) ((-885 . -111) 155137) ((-731 . -1239) T) ((-714 . -102) T) ((-707 . -625) 155119) ((-614 . -1239) T) ((-608 . -568) 155098) ((-439 . -1134) T) ((-350 . -1073) 155082) ((-215 . -1122) T) ((-176 . -1073) 155014) ((-486 . -47) 154984) ((-40 . -238) 154956) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-607 . -568) 154935) ((-350 . -653) 154919) ((-707 . -626) 154827) ((-326 . -526) 154793) ((-176 . -653) 154725) ((-323 . -526) 154617) ((-499 . -234) 154604) ((-1273 . -1060) 154588) ((-1252 . -1060) 154374) ((-1021 . -423) 154358) ((-219 . -234) 154345) ((-439 . -23) T) ((-1142 . -174) T) ((-1275 . -300) T) ((-667 . -730) 154315) ((-145 . -1122) T) ((-48 . -1024) T) ((-419 . -272) 154299) ((-419 . -232) 154283) ((-305 . -240) 154233) ((-886 . -940) T) ((-886 . -833) NIL) ((-885 . -628) 154205) ((-258 . -865) 154156) ((-257 . -865) 154107) ((-879 . -862) T) ((-1252 . -349) 154077) ((-1252 . -388) 154047) ((-1102 . -237) 153926) ((-224 . -1143) 153910) ((-304 . -920) 153869) ((-1289 . -298) 153846) ((-370 . -237) 153825) ((-364 . -237) 153804) ((-486 . -1239) T) ((-356 . -237) 153783) ((-108 . -237) T) ((-1233 . -661) 153708) ((-1025 . -659) 153638) ((-983 . -21) T) ((-983 . -25) T) ((-748 . -21) T) ((-748 . -25) T) ((-728 . -21) T) ((-728 . -25) T) ((-724 . -661) 153603) ((-465 . -21) T) ((-465 . -25) T) ((-350 . -102) T) ((-176 . -102) T) ((-1021 . -1080) T) ((-885 . -1071) T) ((-787 . -102) T) ((-1274 . -374) 153582) ((-1273 . -918) 153488) ((-1253 . -374) 153467) ((-1252 . -918) 153318) ((-1198 . -1239) T) ((-1046 . -625) 153300) ((-419 . -841) 153253) ((-1196 . -505) 153219) ((-171 . -940) 153150) ((-1195 . -505) 153116) ((-1189 . -505) 153082) ((-725 . -1122) T) ((-1148 . -505) 153048) ((-592 . -1078) 153035) ((-576 . -1078) 153022) ((-507 . -1078) 152987) ((-326 . -300) 152966) ((-323 . -300) T) ((-365 . -625) 152948) ((-430 . -25) T) ((-430 . -21) T) ((-99 . -296) 152927) ((-592 . -111) 152912) ((-576 . -111) 152897) ((-507 . -111) 152853) ((-1198 . -902) 152820) ((-921 . -501) 152804) ((-48 . -625) 152786) ((-48 . -626) 152731) ((-245 . -132) 152602) ((-1312 . -659) 152561) ((-1262 . -940) 152540) ((-829 . -1243) 152519) ((-400 . -502) 152500) ((-1057 . -526) 152344) ((-400 . -625) 152310) ((-829 . -568) 152241) ((-598 . -661) 152216) ((-273 . -47) 152188) ((-253 . -47) 152145) ((-543 . -521) 152122) ((-592 . -628) 152094) ((-576 . -628) 152066) ((-507 . -628) 151999) ((-1096 . -1239) T) ((-1022 . -1239) T) ((-1281 . -23) T) ((-1281 . -1134) T) ((-1274 . -1134) T) ((-1274 . -23) T) ((-1253 . -1134) T) ((-712 . -1078) 151964) ((-1253 . -23) T) ((-1233 . -739) T) ((-1142 . -300) T) ((-1135 . -237) 151861) ((-1026 . -132) T) ((-1025 . -381) 151833) ((-112 . -379) T) ((-486 . -918) 151739) ((-993 . -132) T) ((-924 . -625) 151721) ((-55 . -628) 151703) ((-91 . -107) 151687) ((-934 . -132) T) ((-925 . -862) 151638) ((-714 . -1174) T) ((-712 . -111) 151594) ((-856 . -659) 151511) ((-608 . -1134) T) ((-607 . -1134) T) ((-725 . -730) 151340) ((-724 . -739) T) ((-812 . -25) T) ((-812 . -21) T) ((-499 . -862) T) ((-609 . -1239) T) ((-597 . -1239) T) ((-592 . -1071) T) ((-219 . -862) T) ((-419 . -659) 151277) ((-576 . -1071) T) ((-548 . -1239) T) ((-507 . -1071) T) ((-608 . -23) T) ((-354 . -1308) 151254) ((-329 . -464) 151233) ((-350 . -319) 151220) ((-607 . -23) T) ((-439 . -132) T) ((-671 . -661) 151194) ((-250 . -1032) 151178) ((-887 . -317) T) ((-1313 . -1303) 151162) ((-784 . -805) T) ((-784 . -808) T) ((-714 . -38) 151149) ((-576 . -238) T) ((-507 . -248) T) ((-507 . -238) T) ((-1302 . -501) 151133) ((-1285 . -1239) T) ((-1172 . -240) 151083) ((-1109 . -929) 151062) ((-117 . -38) 151049) ((-211 . -813) T) ((-210 . -813) T) ((-209 . -813) T) ((-208 . -813) T) ((-887 . -1044) 151027) ((-677 . -1239) T) ((-658 . -1239) T) ((-795 . -929) 151006) ((-793 . -929) 150985) ((-1211 . -1239) T) ((-366 . -1239) T) ((-363 . -1239) T) ((-355 . -1239) T) ((-273 . -1239) T) ((-253 . -1239) T) ((-466 . -929) 150964) ((-750 . -501) 150948) ((-1109 . -661) 150837) ((-712 . -628) 150772) ((-795 . -661) 150661) ((-635 . -1078) 150648) ((-491 . -1239) T) ((-354 . -379) T) ((-142 . -501) 150630) ((-793 . -661) 150519) ((-1163 . -1239) T) ((-561 . -862) T) ((-473 . -661) 150490) ((-273 . -902) 150349) ((-253 . -902) NIL) ((-118 . -1078) 150294) ((-466 . -661) 150183) ((-677 . -1060) 150160) ((-635 . -111) 150145) ((-402 . -1073) 150129) ((-366 . -1060) 150113) ((-363 . -1060) 150097) ((-355 . -1060) 150081) ((-273 . -1060) 149925) ((-253 . -1060) 149801) ((-930 . -1239) T) ((-118 . -111) 149730) ((-59 . -1239) T) ((-402 . -653) 149714) ((-633 . -1073) 149698) ((-531 . -1239) T) ((-528 . -1239) T) ((-509 . -1239) T) ((-508 . -1239) T) ((-449 . -625) 149680) ((-446 . -625) 149662) ((-633 . -653) 149646) ((-3 . -102) T) ((-1049 . -1232) 149615) ((-846 . -102) T) ((-702 . -57) 149573) ((-712 . -1071) T) ((-647 . -659) 149542) ((-619 . -659) 149511) ((-50 . -661) 149485) ((-299 . -464) T) ((-488 . -1232) 149454) ((0 . -102) T) ((-593 . -661) 149419) ((-530 . -661) 149364) ((-49 . -102) T) ((-930 . -1060) 149351) ((-712 . -248) T) ((-1102 . -421) 149330) ((-744 . -652) 149278) ((-1021 . -1122) T) ((-725 . -174) 149169) ((-635 . -628) 149064) ((-499 . -1014) 149046) ((-430 . -234) 148991) ((-273 . -388) 148975) ((-253 . -388) 148959) ((-411 . -1122) T) ((-1048 . -102) 148937) ((-350 . -38) 148921) ((-219 . -1014) 148903) ((-118 . -628) 148833) ((-176 . -38) 148765) ((-1273 . -317) 148744) ((-1252 . -317) 148723) ((-671 . -739) T) ((-99 . -625) 148705) ((-489 . -1073) 148670) ((-1189 . -652) 148622) ((-489 . -653) 148587) ((-657 . -865) 148566) ((-497 . -25) T) ((-497 . -21) T) ((-1252 . -1044) 148518) ((-1079 . -1239) T) ((-1 . -1239) T) ((-635 . -1071) T) ((-390 . -416) T) ((-402 . -102) T) ((-1127 . -630) 148433) ((-273 . -918) 148379) ((-253 . -918) 148356) ((-118 . -1071) T) ((-1109 . -739) T) ((-829 . -1134) T) ((-832 . -865) T) ((-635 . -238) 148335) ((-633 . -102) T) ((-523 . -1239) T) ((-519 . -1239) T) ((-795 . -739) T) ((-793 . -739) T) ((-1244 . -862) T) ((-425 . -1134) T) ((-118 . -248) T) ((-40 . -379) NIL) ((-118 . -238) NIL) ((-398 . -865) 148314) ((-466 . -739) T) ((-829 . -23) T) ((-744 . -25) T) ((-744 . -21) T) ((-683 . -912) 148235) ((-1099 . -296) 148214) ((-78 . -408) T) ((-78 . -407) T) ((-545 . -780) 148196) ((-227 . -865) T) ((-707 . -1078) 148146) ((-1314 . -102) T) ((-1281 . -132) T) ((-1274 . -132) T) ((-1253 . -132) T) ((-1196 . -25) T) ((-1164 . -423) 148130) ((-647 . -378) 148062) ((-619 . -378) 147994) ((-1179 . -1171) 147978) ((-103 . -1122) 147956) ((-1196 . -21) T) ((-1195 . -21) T) ((-880 . -625) 147938) ((-1021 . -730) 147886) ((-225 . -661) 147853) ((-707 . -111) 147787) ((-50 . -739) T) ((-1195 . -25) T) ((-362 . -360) T) ((-1189 . -21) T) ((-1102 . -464) 147738) ((-1189 . -25) T) ((-725 . -526) 147685) ((-593 . -739) T) ((-530 . -739) T) ((-1148 . -21) T) ((-1148 . -25) T) ((-608 . -132) T) ((-607 . -132) T) ((-304 . -659) 147420) ((-494 . -237) 147317) ((-370 . -464) T) ((-364 . -464) T) ((-356 . -464) T) ((-486 . -317) 147296) ((-1247 . -102) T) ((-323 . -296) 147231) ((-108 . -464) T) ((-79 . -453) T) ((-79 . -407) T) ((-489 . -102) T) ((-704 . -628) 147215) ((-1318 . -625) 147197) ((-1318 . -626) 147179) ((-1102 . -414) 147158) ((-1057 . -501) 147089) ((-137 . -296) 147066) ((-576 . -808) T) ((-576 . -805) T) ((-1085 . -240) 147012) ((-1084 . -865) T) ((-726 . -865) T) ((-370 . -414) 146963) ((-364 . -414) 146914) ((-356 . -414) 146865) ((-1304 . -1134) T) ((-1313 . -1073) 146849) ((-392 . -1073) 146833) ((-1313 . -653) 146803) ((-831 . -237) T) ((-392 . -653) 146773) ((-707 . -628) 146708) ((-1304 . -23) T) ((-1291 . -102) T) ((-350 . -920) 146689) ((-177 . -625) 146671) ((-1164 . -1080) T) ((-559 . -379) T) ((-683 . -757) 146655) ((-1200 . -146) 146634) ((-1200 . -148) 146613) ((-1168 . -1122) T) ((-1168 . -1093) 146582) ((-69 . -1239) T) ((-1046 . -1078) 146519) ((-362 . -659) 146449) ((-881 . -1080) T) ((-245 . -652) 146355) ((-707 . -1071) T) ((-365 . -1078) 146300) ((-61 . -1239) T) ((-1046 . -111) 146216) ((-921 . -625) 146127) ((-707 . -248) T) ((-707 . -238) NIL) ((-856 . -861) 146106) ((-712 . -808) T) ((-712 . -805) T) ((-1025 . -423) 146083) ((-365 . -111) 146012) ((-390 . -940) T) ((-419 . -861) 145991) ((-725 . -300) 145902) ((-225 . -739) T) ((-1281 . -505) 145868) ((-1274 . -505) 145834) ((-1253 . -505) 145800) ((-590 . -1122) T) ((-326 . -1024) 145779) ((-224 . -1122) 145757) ((-1246 . -857) T) ((-329 . -995) 145719) ((-105 . -102) T) ((-48 . -1078) 145684) ((-886 . -865) NIL) ((-1313 . -102) T) ((-392 . -102) T) ((-1275 . -625) 145666) ((-1155 . -1156) 145650) ((-1026 . -652) 145632) ((-891 . -1239) T) ((-48 . -111) 145588) ((-694 . -1239) T) ((-689 . -1239) T) ((-675 . -1239) T) ((-828 . -912) 145455) ((-490 . -1239) T) ((-250 . -1239) T) ((-543 . -102) T) ((-512 . -102) T) ((-153 . -1296) 145439) ((-139 . -1239) T) ((-138 . -1239) T) ((-134 . -1239) T) ((-1238 . -102) T) ((-1046 . -628) 145376) ((-830 . -237) T) ((-1194 . -1243) 145355) ((-365 . -628) 145285) ((-1147 . -1243) 145264) ((-245 . -25) 145097) ((-245 . -21) 145008) ((-128 . -120) 144992) ((-122 . -120) 144976) ((-44 . -757) 144960) ((-1194 . -568) 144871) ((-1147 . -568) 144802) ((-1246 . -1122) T) ((-558 . -865) T) ((-1057 . -296) 144777) ((-1188 . -1105) T) ((-1016 . -1105) T) ((-829 . -132) T) ((-118 . -808) NIL) ((-118 . -805) NIL) ((-366 . -317) T) ((-363 . -317) T) ((-355 . -317) T) ((-1116 . -1239) 144755) ((-258 . -1134) 144733) ((-257 . -1134) 144711) ((-1046 . -1071) T) ((-1025 . -1080) T) ((-48 . -628) 144644) ((-354 . -661) 144589) ((-1302 . -625) 144551) ((-1302 . -626) 144512) ((-633 . -38) 144496) ((-1196 . -234) 144449) ((-1195 . -234) 144395) ((-1099 . -625) 144377) ((-1046 . -248) T) ((-365 . -1071) T) ((-828 . -1296) 144347) ((-258 . -23) T) ((-257 . -23) T) ((-1009 . -625) 144329) ((-1189 . -234) 144146) ((-1181 . -152) 144093) ((-750 . -626) 144054) ((-750 . -625) 144036) ((-1026 . -25) T) ((-812 . -862) 144015) ((-1021 . -526) 143927) ((-690 . -865) T) ((-365 . -238) T) ((-365 . -248) T) ((-400 . -628) 143908) ((-930 . -317) T) ((-142 . -625) 143890) ((-142 . -626) 143849) ((-329 . -912) 143753) ((-1026 . -21) T) ((-993 . -25) T) ((-934 . -21) T) ((-934 . -25) T) ((-439 . -21) T) ((-439 . -25) T) ((-856 . -423) 143737) ((-48 . -1071) T) ((-1311 . -1303) 143721) ((-1309 . -1303) 143705) ((-1057 . -616) 143680) ((-326 . -626) 143541) ((-326 . -625) 143523) ((-323 . -626) NIL) ((-323 . -625) 143505) ((-48 . -248) T) ((-48 . -238) T) ((-667 . -296) 143466) ((-562 . -240) 143416) ((-583 . -865) T) ((-140 . -625) 143383) ((-137 . -625) 143365) ((-115 . -625) 143347) ((-489 . -38) 143312) ((-1313 . -1310) 143291) ((-1304 . -132) T) ((-1312 . -1080) T) ((-1104 . -102) T) ((-88 . -1239) T) ((-512 . -319) NIL) ((-1022 . -107) 143275) ((-905 . -1122) T) ((-901 . -1122) T) ((-1289 . -664) 143259) ((-1289 . -384) 143243) ((-337 . -1239) T) ((-605 . -862) T) ((-1164 . -1122) T) ((-1164 . -1075) 143183) ((-103 . -526) 143116) ((-947 . -625) 143098) ((-354 . -739) T) ((-30 . -625) 143080) ((-881 . -1122) T) ((-856 . -1080) 143059) ((-40 . -661) 142966) ((-227 . -1243) T) ((-419 . -1080) T) ((-1180 . -152) 142948) ((-1021 . -300) 142899) ((-889 . -1239) T) ((-629 . -1122) T) ((-227 . -568) T) ((-329 . -1270) 142883) ((-329 . -1267) 142853) ((-714 . -659) 142825) ((-1211 . -1215) 142804) ((-1097 . -625) 142786) ((-1211 . -107) 142736) ((-660 . -152) 142720) ((-644 . -152) 142666) ((-117 . -659) 142638) ((-491 . -1215) 142617) ((-499 . -148) T) ((-499 . -146) NIL) ((-1142 . -626) 142532) ((-450 . -625) 142514) ((-219 . -148) T) ((-219 . -146) NIL) ((-1142 . -625) 142496) ((-130 . -102) T) ((-52 . -102) T) ((-1253 . -652) 142448) ((-491 . -107) 142398) ((-1015 . -23) T) ((-1313 . -38) 142368) ((-1194 . -1134) T) ((-1147 . -1134) T) ((-1084 . -1243) T) ((-245 . -234) 142259) ((-321 . -102) T) ((-869 . -1134) T) ((-972 . -1243) 142238) ((-493 . -1243) 142217) ((-1084 . -568) T) ((-972 . -568) 142148) ((-1194 . -23) T) ((-1173 . -1105) T) ((-1147 . -23) T) ((-869 . -23) T) ((-493 . -568) 142079) ((-1164 . -730) 142011) ((-683 . -1073) 141995) ((-1168 . -526) 141928) ((-683 . -653) 141912) ((-1057 . -626) NIL) ((-1057 . -625) 141894) ((-96 . -1105) T) ((-1318 . -1078) 141881) ((-881 . -730) 141851) ((-1318 . -111) 141836) ((-1233 . -47) 141805) ((-1189 . -862) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1126 . -1122) T) ((-1025 . -1122) T) ((-62 . -625) 141787) ((-1102 . -912) 141656) ((-1046 . -805) T) ((-1046 . -808) T) ((-1281 . -25) T) ((-1281 . -21) T) ((-1274 . -21) T) ((-1274 . -25) T) ((-885 . -661) 141643) ((-1253 . -21) T) ((-1253 . -25) T) ((-1049 . -152) 141627) ((-1026 . -234) 141614) ((-887 . -833) 141593) ((-887 . -940) T) ((-725 . -296) 141520) ((-608 . -21) T) ((-350 . -659) 141479) ((-108 . -912) NIL) ((-608 . -25) T) ((-607 . -21) T) ((-176 . -659) 141396) ((-40 . -739) T) ((-224 . -526) 141329) ((-607 . -25) T) ((-488 . -152) 141313) ((-475 . -152) 141297) ((-185 . -1239) T) ((-941 . -807) T) ((-941 . -739) T) ((-784 . -806) T) ((-784 . -807) T) ((-518 . -1122) T) ((-514 . -1122) T) ((-784 . -739) T) ((-227 . -374) T) ((-1311 . -1073) 141281) ((-1309 . -1073) 141265) ((-1311 . -653) 141235) ((-1179 . -1122) 141213) ((-886 . -1243) T) ((-1309 . -653) 141183) ((-1110 . -865) T) ((-667 . -625) 141165) ((-886 . -568) T) ((-707 . -379) NIL) ((-44 . -1073) 141149) ((-1318 . -628) 141131) ((-1312 . -1122) T) ((-683 . -102) T) ((-370 . -1296) 141115) ((-364 . -1296) 141099) ((-44 . -653) 141083) ((-356 . -1296) 141067) ((-560 . -102) T) ((-1233 . -1239) T) ((-532 . -862) 141046) ((-724 . -1239) T) ((-978 . -865) 141025) ((-863 . -865) T) ((-499 . -237) T) ((-219 . -237) T) ((-1068 . -1122) T) ((-830 . -464) 141004) ((-153 . -1073) 140988) ((-1068 . -1093) 140917) ((-1049 . -998) 140886) ((-832 . -1134) T) ((-1025 . -730) 140831) ((-153 . -653) 140815) ((-398 . -1134) T) ((-488 . -998) 140784) ((-475 . -998) 140753) ((-1205 . -865) T) ((-110 . -152) 140735) ((-73 . -625) 140717) ((-909 . -625) 140699) ((-1204 . -865) T) ((-1102 . -737) 140678) ((-1318 . -1071) T) ((-829 . -652) 140626) ((-304 . -1080) 140568) ((-171 . -1243) 140473) ((-227 . -1134) T) ((-334 . -23) T) ((-1189 . -1014) 140425) ((-1275 . -1078) 140330) ((-856 . -1122) T) ((-129 . -865) T) ((-1148 . -753) 140309) ((-1273 . -940) 140288) ((-1252 . -940) 140267) ((-885 . -739) T) ((-171 . -568) 140178) ((-592 . -661) 140165) ((-576 . -661) 140137) ((-419 . -1122) T) ((-270 . -1122) T) ((-215 . -625) 140119) ((-507 . -661) 140069) ((-227 . -23) T) ((-1252 . -833) 140022) ((-1311 . -102) T) ((-503 . -1239) T) ((-365 . -1308) 139999) ((-1309 . -102) T) ((-1275 . -111) 139891) ((-1135 . -912) 139758) ((-828 . -1073) 139659) ((-828 . -653) 139581) ((-145 . -625) 139563) ((-1015 . -132) T) ((-44 . -102) T) ((-245 . -862) 139514) ((-598 . -1239) T) ((-1262 . -1243) 139493) ((-103 . -501) 139477) ((-1312 . -730) 139447) ((-1109 . -47) 139408) ((-1084 . -1134) T) ((-972 . -1134) T) ((-128 . -34) T) ((-122 . -34) T) ((-1262 . -568) 139319) ((-795 . -47) 139296) ((-793 . -47) 139268) ((-1219 . -1239) T) ((-1194 . -132) T) ((-365 . -379) T) ((-493 . -1134) T) ((-1147 . -132) T) ((-886 . -374) T) ((-466 . -47) 139247) ((-869 . -132) T) ((-332 . -865) 139226) ((-153 . -102) T) ((-1084 . -23) T) ((-972 . -23) T) ((-583 . -568) T) ((-829 . -25) T) ((-829 . -21) T) ((-1164 . -526) 139159) ((-604 . -1105) T) ((-598 . -1060) 139143) ((-1275 . -628) 139017) ((-493 . -23) T) ((-362 . -1080) T) ((-390 . -865) T) ((-1233 . -918) 138998) ((-683 . -319) 138936) ((-1281 . -234) 138889) ((-1135 . -1296) 138859) ((-712 . -661) 138824) ((-1026 . -862) T) ((-1025 . -174) T) ((-983 . -146) 138803) ((-647 . -1122) T) ((-619 . -1122) T) ((-983 . -148) 138782) ((-748 . -148) 138761) ((-748 . -146) 138740) ((-671 . -1239) T) ((-993 . -862) T) ((-1274 . -234) 138686) ((-1253 . -234) 138503) ((-846 . -659) 138420) ((-486 . -940) 138399) ((-347 . -1239) T) ((-329 . -1073) 138234) ((-326 . -1078) 138144) ((-323 . -1078) 138073) ((-1021 . -296) 138031) ((-419 . -730) 137983) ((-329 . -653) 137824) ((-607 . -234) 137777) ((-714 . -861) T) ((-1275 . -1071) T) ((-326 . -111) 137673) ((-323 . -111) 137586) ((-97 . -1239) T) ((-984 . -102) T) ((-828 . -102) 137318) ((-725 . -626) NIL) ((-725 . -625) 137300) ((-1275 . -336) 137244) ((-671 . -1060) 137140) ((-1109 . -1239) T) ((-1057 . -298) 137115) ((-592 . -739) T) ((-576 . -807) T) ((-171 . -374) 137066) ((-576 . -804) T) ((-576 . -739) T) ((-507 . -739) T) ((-795 . -1239) T) ((-793 . -1239) T) ((-1168 . -501) 137050) ((-473 . -1239) T) ((-466 . -1239) T) ((-1311 . -1310) 137026) ((-1109 . -902) NIL) ((-886 . -1134) T) ((-118 . -929) NIL) ((-1309 . -1310) 137005) ((-662 . -1239) T) ((-795 . -902) NIL) ((-793 . -902) 136864) ((-1304 . -25) T) ((-1304 . -21) T) ((-1236 . -102) 136842) ((-1128 . -407) T) ((-635 . -661) 136829) ((-466 . -902) NIL) ((-688 . -102) 136779) ((-1109 . -1060) 136606) ((-886 . -23) T) ((-795 . -1060) 136465) ((-793 . -1060) 136322) ((-118 . -661) 136267) ((-466 . -1060) 136143) ((-284 . -1239) T) ((-326 . -628) 135707) ((-323 . -628) 135590) ((-50 . -1239) T) ((-402 . -659) 135559) ((-662 . -1060) 135543) ((-639 . -102) T) ((-593 . -1239) T) ((-530 . -1239) T) ((-224 . -501) 135527) ((-1289 . -34) T) ((-633 . -659) 135486) ((-299 . -1073) 135473) ((-137 . -628) 135457) ((-299 . -653) 135444) ((-647 . -730) 135428) ((-619 . -730) 135412) ((-683 . -38) 135372) ((-329 . -102) T) ((-1142 . -1078) 135359) ((-85 . -625) 135341) ((-50 . -1060) 135325) ((-1109 . -388) 135309) ((-795 . -388) 135293) ((-712 . -739) T) ((-712 . -807) T) ((-712 . -804) T) ((-60 . -57) 135255) ((-593 . -1060) 135242) ((-530 . -1060) 135219) ((-173 . -1239) T) ((-334 . -132) T) ((-326 . -1071) 135109) ((-323 . -1071) T) ((-171 . -1134) T) ((-793 . -388) 135093) ((-45 . -152) 135043) ((-1026 . -1014) 135025) ((-466 . -388) 135009) ((-419 . -174) T) ((-326 . -248) 134988) ((-323 . -248) T) ((-323 . -238) NIL) ((-304 . -1122) 134770) ((-227 . -132) T) ((-1142 . -111) 134755) ((-171 . -23) T) ((-812 . -148) 134734) ((-812 . -146) 134713) ((-258 . -652) 134619) ((-257 . -652) 134525) ((-329 . -294) 134491) ((-1179 . -526) 134424) ((-489 . -659) 134374) ((-494 . -912) 134241) ((-1155 . -1122) T) ((-227 . -1082) T) ((-828 . -319) 134179) ((-1109 . -918) 134114) ((-795 . -918) 134057) ((-793 . -918) 134041) ((-1311 . -38) 134011) ((-1309 . -38) 133981) ((-1262 . -1134) T) ((-870 . -1134) T) ((-466 . -918) 133958) ((-873 . -1122) T) ((-1262 . -23) T) ((-1142 . -628) 133930) ((-1084 . -132) T) ((-870 . -23) T) ((-583 . -1134) T) ((-635 . -739) T) ((-522 . -865) T) ((-366 . -940) T) ((-363 . -940) T) ((-299 . -102) T) ((-355 . -940) T) ((-992 . -1105) T) ((-972 . -132) T) ((-829 . -234) 133875) ((-118 . -807) NIL) ((-118 . -804) NIL) ((-118 . -739) T) ((-1068 . -526) 133776) ((-707 . -929) NIL) ((-583 . -23) T) ((-493 . -132) T) ((-430 . -237) 133727) ((-688 . -319) 133665) ((-225 . -1239) T) ((-647 . -774) T) ((-619 . -774) T) ((-1253 . -862) NIL) ((-1102 . -1073) 133575) ((-1025 . -300) T) ((-707 . -661) 133525) ((-258 . -25) T) ((-362 . -1122) T) ((-258 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-153 . -38) 133509) ((-2 . -102) T) ((-930 . -940) T) ((-1102 . -653) 133377) ((-494 . -1296) 133347) ((-1142 . -1071) T) ((-724 . -317) T) ((-370 . -1073) 133299) ((-364 . -1073) 133251) ((-356 . -1073) 133203) ((-370 . -653) 133155) ((-225 . -1060) 133132) ((-364 . -653) 133084) ((-108 . -1073) 133034) ((-356 . -653) 132986) ((-304 . -730) 132928) ((-714 . -1080) T) ((-499 . -464) T) ((-419 . -526) 132840) ((-108 . -653) 132790) ((-219 . -464) T) ((-1142 . -238) T) ((-305 . -152) 132740) ((-1021 . -626) 132701) ((-1021 . -625) 132683) ((-1011 . -625) 132665) ((-117 . -1080) T) ((-667 . -1078) 132649) ((-227 . -505) T) ((-411 . -625) 132631) ((-411 . -626) 132608) ((-1076 . -1296) 132578) ((-667 . -111) 132557) ((-683 . -920) 132480) ((-1164 . -501) 132464) ((-1313 . -659) 132423) ((-392 . -659) 132392) ((-63 . -453) T) ((-63 . -407) T) ((-1181 . -102) T) ((-886 . -132) T) ((-496 . -102) 132342) ((-1140 . -1239) T) ((-1245 . -865) T) ((-1318 . -379) T) ((-1102 . -102) T) ((-1083 . -102) T) ((-362 . -730) 132287) ((-887 . -865) 132238) ((-744 . -148) 132217) ((-744 . -146) 132196) ((-667 . -628) 132114) ((-1046 . -661) 132051) ((-535 . -1122) 132029) ((-370 . -102) T) ((-364 . -102) T) ((-356 . -102) T) ((-108 . -102) T) ((-516 . -1122) T) ((-365 . -661) 131974) ((-1194 . -652) 131922) ((-1147 . -652) 131870) ((-396 . -521) 131849) ((-846 . -861) 131828) ((-707 . -739) T) ((-390 . -1243) T) ((-343 . -1239) T) ((-1253 . -1014) 131780) ((-350 . -1080) T) ((-112 . -1239) T) ((-176 . -1080) T) ((-103 . -625) 131712) ((-1196 . -146) 131691) ((-1196 . -148) 131670) ((-390 . -568) T) ((-1195 . -148) 131649) ((-1195 . -146) 131628) ((-1189 . -146) 131535) ((-419 . -300) T) ((-1189 . -148) 131442) ((-1148 . -148) 131421) ((-1148 . -146) 131400) ((-329 . -38) 131241) ((-171 . -132) T) ((-323 . -808) NIL) ((-323 . -805) NIL) ((-667 . -1071) T) ((-48 . -661) 131191) ((-1135 . -1073) 131092) ((-909 . -628) 131069) ((-1135 . -653) 130991) ((-1188 . -102) T) ((-1016 . -102) T) ((-1015 . -21) T) ((-128 . -1032) 130975) ((-122 . -1032) 130959) ((-1015 . -25) T) ((-921 . -120) 130943) ((-1180 . -102) T) ((-1262 . -132) T) ((-1252 . -865) 130842) ((-1194 . -25) T) ((-1194 . -21) T) ((-1181 . -319) 130637) ((-354 . -1239) T) ((-1147 . -25) T) ((-870 . -132) T) ((-406 . -1239) T) ((-1147 . -21) T) ((-869 . -25) T) ((-869 . -21) T) ((-795 . -317) 130616) ((-1179 . -501) 130600) ((-1172 . -152) 130550) ((-1168 . -625) 130512) ((-660 . -102) 130462) ((-644 . -102) T) ((-1168 . -626) 130423) ((-583 . -132) T) ((-633 . -861) 130402) ((-1046 . -804) T) ((-1046 . -807) T) ((-1046 . -739) T) ((-828 . -920) 130271) ((-725 . -1078) 130094) ((-614 . -865) 130073) ((-496 . -319) 130011) ((-465 . -429) 129981) ((-362 . -174) T) ((-299 . -38) 129968) ((-258 . -234) 129859) ((-257 . -234) 129750) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-354 . -1060) 129727) ((-277 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-725 . -111) 129536) ((-365 . -739) T) ((-683 . -272) 129520) ((-683 . -232) 129504) ((-593 . -317) T) ((-530 . -317) T) ((-304 . -526) 129453) ((-1186 . -1239) T) ((-108 . -319) NIL) ((-72 . -407) T) ((-1135 . -102) 129185) ((-846 . -423) 129169) ((-1142 . -808) T) ((-1142 . -805) T) ((-714 . -1122) T) ((-590 . -625) 129151) ((-390 . -374) T) ((-171 . -505) 129129) ((-224 . -625) 129061) ((-135 . -1122) T) ((-117 . -1122) T) ((-986 . -1239) T) ((-48 . -739) T) ((-1068 . -501) 129026) ((-142 . -437) 129008) ((-142 . -379) T) ((-1049 . -102) T) ((-524 . -521) 128987) ((-725 . -628) 128743) ((-1246 . -625) 128725) ((-1203 . -1239) T) ((-1203 . -1060) 128661) ((-1196 . -237) 128620) ((-488 . -102) T) ((-475 . -102) T) ((-1195 . -237) 128572) ((-1189 . -237) 128395) ((-1056 . -1134) T) ((-329 . -920) 128301) ((-1198 . -865) T) ((-1196 . -35) 128267) ((-1196 . -95) 128233) ((-1196 . -1227) 128199) ((-1196 . -1224) 128165) ((-1195 . -1224) 128131) ((-1195 . -1227) 128097) ((-1195 . -95) 128063) ((-1195 . -35) 128029) ((-1189 . -1224) 127995) ((-1189 . -1227) 127961) ((-1180 . -319) NIL) ((-89 . -408) T) ((-89 . -407) T) ((-1102 . -1174) 127940) ((-40 . -1239) T) ((-1189 . -95) 127906) ((-1056 . -23) T) ((-1189 . -35) 127872) ((-583 . -505) T) ((-1148 . -35) 127838) ((-1148 . -95) 127804) ((-1148 . -1227) 127770) ((-1148 . -1224) 127736) ((-372 . -1134) T) ((-370 . -1174) 127715) ((-364 . -1174) 127694) ((-356 . -1174) 127673) ((-1126 . -296) 127629) ((-974 . -1239) T) ((-941 . -1239) T) ((-108 . -1174) T) ((-846 . -1080) 127608) ((-784 . -1239) T) ((-660 . -319) 127546) ((-644 . -319) 127397) ((-685 . -1239) T) ((-725 . -1071) T) ((-1084 . -652) 127379) ((-1102 . -38) 127247) ((-972 . -652) 127195) ((-1026 . -148) T) ((-1026 . -146) NIL) ((-390 . -1134) T) ((-334 . -25) T) ((-332 . -23) T) ((-963 . -862) 127174) ((-725 . -336) 127151) ((-493 . -652) 127099) ((-40 . -1060) 126987) ((-725 . -238) T) ((-714 . -730) 126974) ((-350 . -1122) T) ((-176 . -1122) T) ((-341 . -862) T) ((-430 . -464) 126924) ((-390 . -23) T) ((-370 . -38) 126889) ((-364 . -38) 126854) ((-356 . -38) 126819) ((-80 . -453) T) ((-80 . -407) T) ((-227 . -25) T) ((-227 . -21) T) ((-849 . -1134) T) ((-108 . -38) 126769) ((-840 . -1134) T) ((-787 . -1122) T) ((-117 . -730) 126756) ((-685 . -1060) 126740) ((-624 . -102) T) ((-849 . -23) T) ((-840 . -23) T) ((-1179 . -296) 126692) ((-1135 . -319) 126630) ((-494 . -1073) 126531) ((-1124 . -240) 126515) ((-64 . -408) T) ((-64 . -407) T) ((-1173 . -102) T) ((-110 . -102) T) ((-494 . -653) 126437) ((-40 . -388) 126414) ((-96 . -102) T) ((-666 . -867) 126398) ((-1194 . -234) 126385) ((-1157 . -1105) T) ((-1084 . -21) T) ((-1084 . -25) T) ((-1076 . -1073) 126369) ((-828 . -272) 126338) ((-828 . -232) 126307) ((-972 . -25) T) ((-972 . -21) T) ((-1142 . -379) T) ((-1076 . -653) 126249) ((-633 . -1080) T) ((-1049 . -319) 126187) ((-905 . -625) 126169) ((-683 . -659) 126128) ((-493 . -25) T) ((-493 . -21) T) ((-396 . -1073) 126112) ((-901 . -625) 126094) ((-885 . -1239) T) ((-535 . -526) 126027) ((-258 . -862) 125978) ((-257 . -862) 125929) ((-396 . -653) 125899) ((-886 . -652) 125876) ((-488 . -319) 125814) ((-559 . -1239) T) ((-475 . -319) 125752) ((-362 . -300) T) ((-1179 . -1277) 125736) ((-1164 . -625) 125698) ((-1164 . -626) 125659) ((-1162 . -102) T) ((-1021 . -1078) 125555) ((-40 . -918) 125507) ((-1179 . -616) 125484) ((-1318 . -661) 125471) ((-1085 . -152) 125417) ((-499 . -912) NIL) ((-881 . -502) 125394) ((-1021 . -111) 125276) ((-887 . -1243) T) ((-219 . -912) NIL) ((-350 . -730) 125260) ((-881 . -625) 125222) ((-176 . -730) 125154) ((-887 . -568) T) ((-419 . -296) 125112) ((-245 . -237) 125009) ((-108 . -412) 124991) ((-84 . -395) T) ((-84 . -407) T) ((-714 . -174) T) ((-629 . -625) 124973) ((-99 . -739) T) ((-494 . -102) 124705) ((-99 . -485) T) ((-117 . -174) T) ((-1311 . -659) 124664) ((-1309 . -659) 124623) ((-171 . -652) 124571) ((-1102 . -920) 124442) ((-1076 . -102) T) ((-1021 . -628) 124332) ((-886 . -25) T) ((-828 . -243) 124311) ((-886 . -21) T) ((-831 . -102) T) ((-44 . -659) 124254) ((-1026 . -237) T) ((-426 . -102) T) ((-396 . -102) T) ((-110 . -319) NIL) ((-229 . -102) 124204) ((-128 . -1239) T) ((-122 . -1239) T) ((-108 . -920) NIL) ((-830 . -1073) 124155) ((-59 . -865) 124134) ((-830 . -653) 124076) ((-528 . -865) 124055) ((-508 . -865) 124034) ((-1056 . -132) T) ((-683 . -378) 124018) ((-153 . -659) 123977) ((-1318 . -739) T) ((-647 . -296) 123935) ((-619 . -296) 123893) ((-1281 . -146) 123872) ((-1262 . -652) 123820) ((-1021 . -1071) T) ((-1126 . -625) 123802) ((-1025 . -625) 123784) ((-592 . -1239) T) ((-576 . -1239) T) ((-507 . -1239) T) ((-527 . -23) T) ((-522 . -23) T) ((-354 . -317) T) ((-520 . -23) T) ((-332 . -132) T) ((-3 . -1122) T) ((-1025 . -626) 123768) ((-1021 . -248) 123747) ((-1021 . -238) 123726) ((-1281 . -148) 123705) ((-1274 . -148) 123684) ((-846 . -1122) T) ((-1274 . -146) 123663) ((-1273 . -1243) 123642) ((-1253 . -146) 123549) ((-1253 . -148) 123456) ((-1252 . -1243) 123435) ((-390 . -132) T) ((-227 . -234) 123422) ((-176 . -174) T) ((-576 . -902) 123404) ((0 . -1122) T) ((-171 . -21) T) ((-171 . -25) T) ((-55 . -1239) T) ((-49 . -1122) T) ((-1275 . -661) 123309) ((-1273 . -568) 123260) ((-1252 . -568) 123211) ((-727 . -1134) T) ((-651 . -23) T) ((-576 . -1060) 123193) ((-607 . -148) 123172) ((-607 . -146) 123151) ((-507 . -1060) 123094) ((-1157 . -1159) T) ((-87 . -395) T) ((-87 . -407) T) ((-887 . -374) T) ((-849 . -132) T) ((-840 . -132) T) ((-984 . -659) 123038) ((-727 . -23) T) ((-518 . -625) 123004) ((-514 . -625) 122986) ((-828 . -659) 122765) ((-1313 . -1080) T) ((-390 . -1082) T) ((-1048 . -1122) 122743) ((-55 . -1060) 122725) ((-921 . -34) T) ((-494 . -319) 122663) ((-604 . -102) T) ((-1179 . -626) 122624) ((-1179 . -625) 122556) ((-1200 . -1073) 122439) ((-45 . -102) T) ((-830 . -102) T) ((-1200 . -653) 122336) ((-1290 . -1239) T) ((-1262 . -25) T) ((-1262 . -21) T) ((-1084 . -234) 122323) ((-870 . -25) T) ((-523 . -865) T) ((-254 . -1239) T) ((-44 . -378) 122307) ((-870 . -21) T) ((-744 . -464) 122258) ((-1312 . -625) 122240) ((-723 . -1239) T) ((-712 . -1239) T) ((-1301 . -1073) 122210) ((-1076 . -319) 122148) ((-684 . -1105) T) ((-618 . -1105) T) ((-402 . -1122) T) ((-583 . -25) T) ((-583 . -21) T) ((-182 . -1105) T) ((-162 . -1105) T) ((-157 . -1105) T) ((-155 . -1105) T) ((-1301 . -653) 122118) ((-633 . -1122) T) ((-712 . -902) 122100) ((-1289 . -1239) T) ((-229 . -319) 122038) ((-145 . -379) T) ((-1212 . -1239) T) ((-1068 . -626) 121980) ((-1068 . -625) 121923) ((-323 . -929) NIL) ((-1247 . -857) T) ((-1135 . -920) 121792) ((-712 . -1060) 121737) ((-724 . -940) T) ((-486 . -1243) 121716) ((-1195 . -464) 121695) ((-1189 . -464) 121674) ((-340 . -102) T) ((-887 . -1134) T) ((-329 . -659) 121556) ((-326 . -661) 121285) ((-323 . -661) 121214) ((-486 . -568) 121165) ((-350 . -526) 121131) ((-562 . -152) 121081) ((-40 . -317) T) ((-856 . -625) 121063) ((-714 . -300) T) ((-887 . -23) T) ((-390 . -505) T) ((-1102 . -272) 121033) ((-1102 . -232) 121003) ((-524 . -102) T) ((-419 . -626) 120810) ((-419 . -625) 120792) ((-270 . -625) 120774) ((-117 . -300) T) ((-1275 . -739) T) ((-635 . -1239) T) ((-1314 . -1122) T) ((-1273 . -374) 120753) ((-1252 . -374) 120732) ((-1302 . -34) T) ((-1247 . -1122) T) ((-118 . -1239) T) ((-108 . -272) 120714) ((-108 . -232) 120696) ((-1200 . -102) T) ((-489 . -1122) T) ((-535 . -501) 120680) ((-750 . -34) T) ((-666 . -1073) 120664) ((-666 . -653) 120634) ((-886 . -234) NIL) ((-142 . -34) T) ((-118 . -900) 120611) ((-118 . -902) NIL) ((-635 . -1060) 120494) ((-1301 . -102) T) ((-1281 . -237) 120453) ((-657 . -862) 120432) ((-1274 . -237) 120384) ((-1253 . -237) 120207) ((-305 . -102) T) ((-725 . -379) 120186) ((-118 . -1060) 120163) ((-402 . -730) 120147) ((-607 . -237) 120106) ((-633 . -730) 120090) ((-1127 . -1239) T) ((-45 . -319) 119894) ((-829 . -146) 119873) ((-829 . -148) 119852) ((-299 . -659) 119824) ((-1312 . -393) 119803) ((-832 . -862) T) ((-1291 . -1122) T) ((-1181 . -231) 119750) ((-398 . -862) 119729) ((-1281 . -35) 119695) ((-1281 . -1227) 119661) ((-1281 . -1224) 119627) ((-1274 . -1224) 119593) ((-527 . -132) T) ((-1274 . -1227) 119559) ((-1253 . -1224) 119525) ((-1253 . -1227) 119491) ((-1281 . -95) 119457) ((-1274 . -95) 119423) ((-430 . -912) 119344) ((-647 . -625) 119313) ((-619 . -625) 119282) ((-227 . -862) T) ((-1274 . -35) 119248) ((-1273 . -1134) T) ((-1253 . -95) 119214) ((-1142 . -661) 119186) ((-1253 . -35) 119152) ((-1252 . -1134) T) ((-605 . -152) 119134) ((-1102 . -360) 119113) ((-176 . -300) T) ((-118 . -388) 119090) ((-118 . -349) 119067) ((-171 . -234) 118992) ((-885 . -317) T) ((-323 . -807) NIL) ((-323 . -804) NIL) ((-326 . -739) 118841) ((-323 . -739) T) ((-651 . -132) T) ((-486 . -374) 118820) ((-370 . -360) 118799) ((-364 . -360) 118778) ((-356 . -360) 118757) ((-326 . -485) 118736) ((-1273 . -23) T) ((-1252 . -23) T) ((-731 . -1134) T) ((-727 . -132) T) ((-666 . -102) T) ((-489 . -730) 118701) ((-675 . -865) 118680) ((-45 . -292) 118630) ((-105 . -1122) T) ((-68 . -625) 118612) ((-250 . -865) 118591) ((-992 . -102) T) ((-879 . -102) T) ((-635 . -918) 118550) ((-1313 . -1122) T) ((-392 . -1122) T) ((-1262 . -234) 118537) ((-1238 . -1122) T) ((-82 . -1239) T) ((-1135 . -272) 118506) ((-1084 . -862) T) ((-118 . -918) NIL) ((-795 . -940) 118485) ((-726 . -862) T) ((-543 . -1122) T) ((-512 . -1122) T) ((-366 . -1243) T) ((-363 . -1243) T) ((-355 . -1243) T) ((-273 . -1243) 118464) ((-253 . -1243) 118443) ((-545 . -875) T) ((-1135 . -232) 118412) ((-1180 . -841) T) ((-1164 . -1078) 118396) ((-402 . -774) T) ((-707 . -1239) T) ((-704 . -1060) 118380) ((-366 . -568) T) ((-363 . -568) T) ((-355 . -568) T) ((-273 . -568) 118311) ((-253 . -568) 118242) ((-537 . -1105) T) ((-1164 . -111) 118221) ((-465 . -757) 118191) ((-881 . -1078) 118161) ((-830 . -38) 118103) ((-707 . -900) 118085) ((-707 . -902) 118067) ((-305 . -319) 117871) ((-1179 . -298) 117848) ((-930 . -1243) T) ((-1102 . -659) 117743) ((-1026 . -464) T) ((-683 . -423) 117727) ((-881 . -111) 117692) ((-934 . -464) T) ((-707 . -1060) 117637) ((-930 . -568) T) ((-545 . -625) 117619) ((-593 . -940) T) ((-499 . -1073) 117569) ((-486 . -1134) T) ((-530 . -940) T) ((-494 . -920) 117438) ((-65 . -625) 117420) ((-219 . -1073) 117370) ((-499 . -653) 117320) ((-370 . -659) 117257) ((-364 . -659) 117194) ((-356 . -659) 117131) ((-644 . -231) 117077) ((-219 . -653) 117027) ((-108 . -659) 116977) ((-486 . -23) T) ((-1142 . -807) T) ((-887 . -132) T) ((-1142 . -804) T) ((-1304 . -1306) 116956) ((-1142 . -739) T) ((-667 . -661) 116930) ((-304 . -625) 116671) ((-1164 . -628) 116589) ((-1057 . -34) T) ((-829 . -237) 116540) ((-592 . -317) T) ((-576 . -317) T) ((-507 . -317) T) ((-1313 . -730) 116510) ((-707 . -388) 116492) ((-707 . -349) 116474) ((-489 . -174) T) ((-392 . -730) 116444) ((-881 . -628) 116379) ((-886 . -862) NIL) ((-576 . -1044) T) ((-507 . -1044) T) ((-1155 . -625) 116361) ((-1135 . -243) 116340) ((-216 . -102) T) ((-1172 . -102) T) ((-71 . -625) 116322) ((-1046 . -1239) T) ((-1164 . -1071) T) ((-1200 . -38) 116219) ((-873 . -625) 116201) ((-576 . -557) T) ((-683 . -1080) T) ((-744 . -969) 116154) ((-1164 . -238) 116133) ((-365 . -1239) T) ((-1104 . -1122) T) ((-1056 . -25) T) ((-1056 . -21) T) ((-1025 . -1078) 116078) ((-337 . -865) 116057) ((-925 . -102) T) ((-881 . -1071) T) ((-707 . -918) NIL) ((-366 . -339) 116041) ((-366 . -374) T) ((-363 . -339) 116025) ((-363 . -374) T) ((-355 . -339) 116009) ((-355 . -374) T) ((-499 . -102) T) ((-1301 . -38) 115979) ((-558 . -862) T) ((-535 . -700) 115929) ((-219 . -102) T) ((-1046 . -1060) 115809) ((-1025 . -111) 115738) ((-1196 . -995) 115707) ((-1195 . -995) 115669) ((-532 . -152) 115653) ((-1102 . -381) 115632) ((-362 . -625) 115614) ((-332 . -21) T) ((-365 . -1060) 115591) ((-332 . -25) T) ((-1189 . -995) 115560) ((-48 . -1239) T) ((-76 . -625) 115542) ((-1148 . -995) 115509) ((-712 . -317) T) ((-130 . -857) T) ((-930 . -374) T) ((-390 . -25) T) ((-390 . -21) T) ((-930 . -339) 115496) ((-86 . -625) 115478) ((-712 . -1044) T) ((-690 . -862) T) ((-400 . -1239) T) ((-1273 . -132) T) ((-1252 . -132) T) ((-921 . -1032) 115462) ((-849 . -21) T) ((-48 . -1060) 115405) ((-849 . -25) T) ((-840 . -25) T) ((-840 . -21) T) ((-1135 . -659) 115184) ((-1311 . -1080) T) ((-561 . -102) T) ((-1309 . -1080) T) ((-667 . -739) T) ((-1126 . -630) 115087) ((-1025 . -628) 115017) ((-1312 . -1078) 115001) ((-924 . -1239) T) ((-828 . -423) 114970) ((-103 . -120) 114954) ((-130 . -1122) T) ((-52 . -1122) T) ((-946 . -625) 114936) ((-886 . -1014) 114913) ((-836 . -102) T) ((-1312 . -111) 114892) ((-744 . -912) 114867) ((-666 . -38) 114837) ((-583 . -862) T) ((-366 . -1134) T) ((-363 . -1134) T) ((-355 . -1134) T) ((-273 . -1134) T) ((-253 . -1134) T) ((-1172 . -319) 114641) ((-1110 . -234) 114628) ((-635 . -317) 114607) ((-677 . -23) T) ((-536 . -1105) T) ((-321 . -1122) T) ((-494 . -272) 114576) ((-494 . -232) 114545) ((-153 . -1080) T) ((-366 . -23) T) ((-363 . -23) T) ((-355 . -23) T) ((-118 . -317) T) ((-273 . -23) T) ((-253 . -23) T) ((-1025 . -1071) T) ((-725 . -929) 114524) ((-1196 . -912) 114412) ((-1195 . -912) 114293) ((-1189 . -912) 114029) ((-1179 . -628) 114006) ((-1025 . -238) 113978) ((-1025 . -248) T) ((-1148 . -912) 113960) ((-118 . -1044) NIL) ((-930 . -1134) T) ((-1274 . -464) 113939) ((-1253 . -464) 113918) ((-535 . -625) 113850) ((-725 . -661) 113739) ((-419 . -1078) 113691) ((-516 . -625) 113673) ((-930 . -23) T) ((-499 . -319) NIL) ((-1312 . -628) 113629) ((-486 . -132) T) ((-219 . -319) NIL) ((-419 . -111) 113567) ((-828 . -1080) 113545) ((-750 . -1120) 113529) ((-1273 . -505) 113495) ((-1252 . -505) 113461) ((-449 . -1239) T) ((-560 . -857) T) ((-142 . -1120) 113443) ((-489 . -300) T) ((-1312 . -1071) T) ((-258 . -237) 113340) ((-257 . -237) 113237) ((-1244 . -102) T) ((-1085 . -102) T) ((-856 . -628) 113105) ((-512 . -526) NIL) ((-494 . -243) 113084) ((-419 . -628) 112982) ((-983 . -1073) 112865) ((-748 . -1073) 112835) ((-983 . -653) 112732) ((-1194 . -146) 112711) ((-748 . -653) 112681) ((-465 . -1073) 112651) ((-1194 . -148) 112630) ((-1147 . -148) 112609) ((-1147 . -146) 112588) ((-647 . -1078) 112572) ((-619 . -1078) 112556) ((-465 . -653) 112526) ((-1196 . -1280) 112510) ((-1196 . -1267) 112487) ((-1195 . -1272) 112448) ((-683 . -1122) T) ((-683 . -1075) 112388) ((-1195 . -1267) 112358) ((-560 . -1122) T) ((-499 . -1174) T) ((-1195 . -1270) 112342) ((-1189 . -1251) 112303) ((-831 . -275) 112287) ((-219 . -1174) T) ((-354 . -940) T) ((-99 . -1239) T) ((-647 . -111) 112266) ((-619 . -111) 112245) ((-1189 . -1267) 112222) ((-856 . -1071) 112201) ((-1189 . -1249) 112185) ((-527 . -25) T) ((-507 . -312) T) ((-523 . -23) T) ((-522 . -25) T) ((-520 . -25) T) ((-519 . -23) T) ((-430 . -1073) 112159) ((-419 . -1071) T) ((-329 . -1080) T) ((-707 . -317) T) ((-430 . -653) 112133) ((-108 . -861) T) ((-725 . -739) T) ((-419 . -248) T) ((-419 . -238) 112112) ((-390 . -234) 112099) ((-499 . -38) 112049) ((-219 . -38) 111999) ((-486 . -505) 111965) ((-651 . -21) T) ((-651 . -25) T) ((-1246 . -379) T) ((-1180 . -1166) T) ((-1123 . -102) T) ((-840 . -234) 111938) ((-714 . -625) 111920) ((-714 . -626) 111835) ((-727 . -21) T) ((-727 . -25) T) ((-1157 . -102) T) ((-494 . -659) 111614) ((-245 . -912) 111481) ((-135 . -625) 111463) ((-117 . -625) 111445) ((-158 . -25) T) ((-1311 . -1122) T) ((-887 . -652) 111393) ((-1309 . -1122) T) ((-880 . -1239) T) ((-983 . -102) T) ((-748 . -102) T) ((-728 . -102) T) ((-465 . -102) T) ((-829 . -464) 111344) ((-44 . -1122) T) ((-1110 . -862) T) ((-1085 . -319) 111195) ((-677 . -132) T) ((-1076 . -659) 111164) ((-683 . -730) 111148) ((-299 . -1080) T) ((-366 . -132) T) ((-363 . -132) T) ((-355 . -132) T) ((-273 . -132) T) ((-253 . -132) T) ((-396 . -659) 111117) ((-1318 . -1239) T) ((-430 . -102) T) ((-153 . -1122) T) ((-45 . -231) 111067) ((-1026 . -912) NIL) ((-812 . -1073) 111051) ((-978 . -862) 111030) ((-1021 . -661) 110932) ((-812 . -653) 110916) ((-245 . -1296) 110886) ((-1046 . -317) T) ((-304 . -1078) 110807) ((-930 . -132) T) ((-40 . -940) T) ((-499 . -412) 110789) ((-365 . -317) T) ((-219 . -412) 110771) ((-1102 . -423) 110755) ((-304 . -111) 110671) ((-1205 . -862) T) ((-1204 . -862) T) ((-887 . -25) T) ((-887 . -21) T) ((-1275 . -47) 110615) ((-350 . -625) 110597) ((-1194 . -237) T) ((-227 . -148) T) ((-176 . -625) 110579) ((-787 . -625) 110561) ((-129 . -862) T) ((-620 . -240) 110508) ((-487 . -240) 110458) ((-1311 . -730) 110428) ((-48 . -317) T) ((-1309 . -730) 110398) ((-65 . -628) 110327) ((-984 . -1122) T) ((-828 . -1122) 110079) ((-322 . -102) T) ((-921 . -1239) T) ((-48 . -1044) T) ((-1252 . -652) 109987) ((-702 . -102) 109937) ((-44 . -730) 109921) ((-562 . -102) T) ((-304 . -628) 109852) ((-67 . -394) T) ((-499 . -920) NIL) ((-67 . -407) T) ((-284 . -865) T) ((-219 . -920) NIL) ((-675 . -23) T) ((-830 . -659) 109788) ((-683 . -774) T) ((-1236 . -1122) 109766) ((-362 . -1078) 109711) ((-688 . -1122) 109689) ((-1084 . -148) T) ((-972 . -148) 109668) ((-972 . -146) 109647) ((-812 . -102) T) ((-153 . -730) 109631) ((-493 . -148) 109610) ((-493 . -146) 109589) ((-362 . -111) 109518) ((-1102 . -1080) T) ((-332 . -862) 109497) ((-1281 . -995) 109466) ((-1275 . -1239) T) ((-639 . -1122) T) ((-1274 . -995) 109428) ((-523 . -132) T) ((-519 . -132) T) ((-305 . -231) 109378) ((-370 . -1080) T) ((-364 . -1080) T) ((-356 . -1080) T) ((-304 . -1071) 109320) ((-1253 . -995) 109289) ((-390 . -862) T) ((-108 . -1080) T) ((-1021 . -739) T) ((-885 . -940) T) ((-856 . -808) 109268) ((-856 . -805) 109247) ((-430 . -319) 109186) ((-480 . -102) T) ((-607 . -995) 109155) ((-329 . -1122) T) ((-419 . -808) 109134) ((-419 . -805) 109113) ((-512 . -501) 109095) ((-1275 . -1060) 109061) ((-1273 . -21) T) ((-1273 . -25) T) ((-1252 . -21) T) ((-1252 . -25) T) ((-828 . -730) 109003) ((-362 . -628) 108933) ((-712 . -416) T) ((-1302 . -1239) T) ((-1135 . -423) 108902) ((-1099 . -1239) T) ((-618 . -102) T) ((-1025 . -379) NIL) ((-1009 . -1239) T) ((-684 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1200 . -659) 108812) ((-750 . -1239) T) ((-744 . -1073) 108655) ((-44 . -774) T) ((-744 . -653) 108504) ((-605 . -102) T) ((-666 . -669) 108488) ((-77 . -408) T) ((-77 . -407) T) ((-142 . -1239) T) ((-886 . -148) T) ((-886 . -146) NIL) ((-1301 . -659) 108433) ((-1281 . -912) 108321) ((-1274 . -912) 108202) ((-1238 . -93) T) ((-362 . -1071) T) ((-227 . -237) T) ((-70 . -394) T) ((-70 . -407) T) ((-1187 . -102) T) ((-683 . -526) 108135) ((-1253 . -912) 107871) ((-1233 . -568) 107850) ((-702 . -319) 107788) ((-983 . -38) 107685) ((-1202 . -625) 107667) ((-748 . -38) 107637) ((-562 . -319) 107441) ((-1196 . -1073) 107324) ((-326 . -1239) T) ((-362 . -238) T) ((-362 . -248) T) ((-323 . -1239) T) ((-299 . -1122) T) ((-1195 . -1073) 107159) ((-1189 . -1073) 106949) ((-1148 . -1073) 106832) ((-1196 . -653) 106729) ((-1195 . -653) 106570) ((-724 . -1243) T) ((-1189 . -653) 106366) ((-1179 . -664) 106350) ((-1148 . -653) 106247) ((-832 . -397) 106231) ((-724 . -568) T) ((-607 . -912) 106142) ((-326 . -900) 106126) ((-326 . -902) 106051) ((-323 . -900) 106012) ((-140 . -1239) T) ((-137 . -1239) T) ((-115 . -1239) T) ((-323 . -902) NIL) ((-812 . -319) 105977) ((-329 . -730) 105818) ((-398 . -397) 105802) ((-334 . -333) 105779) ((-497 . -102) T) ((-486 . -25) T) ((-486 . -21) T) ((-430 . -38) 105753) ((-326 . -1060) 105416) ((-227 . -1224) T) ((-227 . -1227) T) ((-3 . -625) 105398) ((-323 . -1060) 105328) ((-887 . -234) 105273) ((-2 . -1122) T) ((-2 . |RecordCategory|) T) ((-1135 . -1080) 105251) ((-846 . -625) 105233) ((-1084 . -237) T) ((-592 . -940) T) ((-576 . -833) T) ((-576 . -940) T) ((-507 . -940) T) ((-137 . -1060) 105217) ((-227 . -95) T) ((-171 . -148) 105196) ((-75 . -453) T) ((0 . -625) 105178) ((-75 . -407) T) ((-171 . -146) 105129) ((-227 . -35) T) ((-49 . -625) 105111) ((-489 . -1080) T) ((-499 . -272) 105093) ((-499 . -232) 105075) ((-496 . -990) 105059) ((-219 . -272) 105041) ((-219 . -232) 105023) ((-81 . -453) T) ((-81 . -407) T) ((-1168 . -34) T) ((-744 . -102) T) ((-666 . -659) 104982) ((-1048 . -625) 104949) ((-512 . -296) 104899) ((-326 . -388) 104868) ((-323 . -388) 104829) ((-323 . -349) 104790) ((-1107 . -625) 104772) ((-829 . -969) 104719) ((-675 . -132) T) ((-1262 . -146) 104698) ((-1262 . -148) 104677) ((-1196 . -102) T) ((-1195 . -102) T) ((-1189 . -102) T) ((-1181 . -1122) T) ((-1148 . -102) T) ((-1097 . -1239) T) ((-224 . -34) T) ((-299 . -730) 104664) ((-1281 . -1280) 104648) ((-1181 . -622) 104624) ((-605 . -319) NIL) ((-1281 . -1267) 104601) ((-1172 . -231) 104551) ((-496 . -1122) 104529) ((-450 . -1239) T) ((-402 . -625) 104511) ((-522 . -862) T) ((-1142 . -1239) T) ((-1274 . -1272) 104472) ((-1274 . -1267) 104442) ((-1274 . -1270) 104426) ((-1253 . -1251) 104387) ((-1253 . -1267) 104364) ((-1253 . -1249) 104348) ((-1196 . -294) 104314) ((-633 . -625) 104296) ((-1195 . -294) 104262) ((-712 . -940) T) ((-1189 . -294) 104228) ((-1148 . -294) 104194) ((-1142 . -902) 104176) ((-1102 . -1122) T) ((-1083 . -1122) T) ((-48 . -312) T) ((-326 . -918) 104142) ((-323 . -918) NIL) ((-1083 . -1090) 104121) ((-812 . -38) 104105) ((-273 . -652) 104053) ((-112 . -865) T) ((-253 . -652) 104001) ((-714 . -1078) 103988) ((-607 . -1267) 103965) ((-1142 . -1060) 103947) ((-329 . -174) 103878) ((-370 . -1122) T) ((-364 . -1122) T) ((-356 . -1122) T) ((-512 . -19) 103860) ((-1124 . -152) 103844) ((-886 . -237) NIL) ((-108 . -1122) T) ((-117 . -1078) 103831) ((-724 . -374) T) ((-512 . -616) 103806) ((-714 . -111) 103791) ((-1314 . -625) 103758) ((-1314 . -502) 103740) ((-1273 . -234) 103686) ((-1252 . -234) 103539) ((-448 . -102) T) ((-891 . -1284) T) ((-256 . -102) T) ((-45 . -1171) 103489) ((-117 . -111) 103474) ((-1291 . -625) 103456) ((-1262 . -237) T) ((-1247 . -625) 103438) ((-1245 . -862) T) ((-647 . -733) T) ((-619 . -733) T) ((-1233 . -1134) T) ((-1233 . -23) T) ((-1194 . -464) 103369) ((-1189 . -319) 103254) ((-1188 . -1122) T) ((-828 . -526) 103187) ((-1057 . -1239) T) ((-245 . -1073) 103088) ((-1180 . -1122) T) ((-1164 . -661) 103026) ((-963 . -152) 103010) ((-1148 . -319) 102997) ((-1147 . -464) 102948) ((-245 . -653) 102870) ((-1109 . -568) 102801) ((-1109 . -1243) 102780) ((-1102 . -730) 102648) ((-537 . -102) T) ((-532 . -102) 102578) ((-1026 . -1073) 102528) ((-1016 . -1122) T) ((-829 . -912) 102424) ((-795 . -1243) 102403) ((-793 . -1243) 102382) ((-62 . -1239) T) ((-489 . -625) 102334) ((-489 . -626) 102256) ((-795 . -568) 102167) ((-793 . -568) 102098) ((-744 . -319) 102085) ((-714 . -628) 102057) ((-494 . -423) 102026) ((-635 . -940) 102005) ((-466 . -1243) 101984) ((-688 . -526) 101917) ((-677 . -25) T) ((-410 . -625) 101899) ((-677 . -21) T) ((-466 . -568) 101830) ((-430 . -920) 101753) ((-366 . -25) T) ((-366 . -21) T) ((-363 . -25) T) ((-118 . -940) T) ((-118 . -833) NIL) ((-363 . -21) T) ((-355 . -25) T) ((-355 . -21) T) ((-273 . -25) T) ((-273 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -237) 101684) ((-83 . -395) T) ((-83 . -407) T) ((-135 . -628) 101666) ((-117 . -628) 101638) ((-1026 . -653) 101588) ((-963 . -1002) 101572) ((-934 . -653) 101524) ((-934 . -1073) 101476) ((-930 . -21) T) ((-930 . -25) T) ((-887 . -862) 101427) ((-881 . -661) 101387) ((-724 . -1134) T) ((-724 . -23) T) ((-714 . -1071) T) ((-714 . -238) T) ((-299 . -174) T) ((-667 . -1239) T) ((-321 . -93) T) ((-660 . -1122) 101365) ((-644 . -622) 101340) ((-644 . -1122) T) ((-593 . -1243) T) ((-593 . -568) T) ((-530 . -1243) T) ((-530 . -568) T) ((-499 . -659) 101290) ((-486 . -234) 101236) ((-439 . -1073) 101220) ((-439 . -653) 101204) ((-370 . -730) 101156) ((-364 . -730) 101108) ((-350 . -1078) 101092) ((-356 . -730) 101044) ((-350 . -111) 101023) ((-176 . -1078) 100955) ((-176 . -111) 100866) ((-108 . -730) 100816) ((-219 . -659) 100766) ((-283 . -1122) T) ((-282 . -1122) T) ((-281 . -1122) T) ((-280 . -1122) T) ((-279 . -1122) T) ((-278 . -1122) T) ((-277 . -1122) T) ((-214 . -1122) T) ((-213 . -1122) T) ((-171 . -1227) 100744) ((-171 . -1224) 100722) ((-211 . -1122) T) ((-210 . -1122) T) ((-117 . -1071) T) ((-209 . -1122) T) ((-208 . -1122) T) ((-205 . -1122) T) ((-204 . -1122) T) ((-203 . -1122) T) ((-202 . -1122) T) ((-201 . -1122) T) ((-200 . -1122) T) ((-199 . -1122) T) ((-198 . -1122) T) ((-197 . -1122) T) ((-196 . -1122) T) ((-195 . -1122) T) ((-245 . -102) 100454) ((-171 . -35) 100432) ((-171 . -95) 100410) ((-667 . -1060) 100306) ((-494 . -1080) 100284) ((-1135 . -1122) 100036) ((-1164 . -34) T) ((-683 . -501) 100020) ((-73 . -1239) T) ((-105 . -625) 100002) ((-909 . -1239) T) ((-1313 . -625) 99984) ((-392 . -625) 99966) ((-350 . -628) 99918) ((-176 . -628) 99835) ((-1238 . -502) 99816) ((-744 . -38) 99665) ((-583 . -1227) T) ((-583 . -1224) T) ((-543 . -625) 99647) ((-532 . -319) 99585) ((-512 . -625) 99567) ((-512 . -626) 99549) ((-1238 . -625) 99515) ((-1189 . -1174) NIL) ((-215 . -1239) T) ((-1049 . -1093) 99484) ((-1049 . -1122) T) ((-1026 . -102) T) ((-993 . -102) T) ((-934 . -102) T) ((-909 . -1060) 99461) ((-1164 . -739) T) ((-1025 . -661) 99368) ((-488 . -1122) T) ((-475 . -1122) T) ((-598 . -23) T) ((-583 . -35) T) ((-583 . -95) T) ((-439 . -102) T) ((-1085 . -231) 99314) ((-1196 . -38) 99211) ((-1195 . -38) 99052) ((-941 . -865) T) ((-881 . -739) T) ((-784 . -865) T) ((-707 . -940) T) ((-685 . -865) T) ((-523 . -25) T) ((-519 . -21) T) ((-519 . -25) T) ((-1189 . -38) 98848) ((-350 . -1071) T) ((-145 . -1239) T) ((-1102 . -174) T) ((-176 . -1071) T) ((-1148 . -38) 98745) ((-725 . -47) 98722) ((-370 . -174) T) ((-364 . -174) T) ((-531 . -57) 98696) ((-509 . -57) 98646) ((-362 . -1308) 98623) ((-227 . -464) T) ((-329 . -300) 98574) ((-356 . -174) T) ((-176 . -248) T) ((-1252 . -862) 98473) ((-108 . -174) T) ((-887 . -1014) 98457) ((-671 . -1134) T) ((-593 . -374) T) ((-593 . -339) 98444) ((-530 . -339) 98421) ((-530 . -374) T) ((-326 . -317) 98400) ((-323 . -317) T) ((-614 . -862) 98379) ((-1135 . -730) 98321) ((-532 . -292) 98305) ((-671 . -23) T) ((-430 . -232) 98289) ((-430 . -272) 98273) ((-323 . -1044) NIL) ((-347 . -23) T) ((-103 . -1032) 98257) ((-45 . -36) 98236) ((-624 . -1122) T) ((-362 . -379) T) ((-536 . -102) T) ((-507 . -27) T) ((-245 . -319) 98174) ((-1109 . -1134) T) ((-1312 . -661) 98148) ((-795 . -1134) T) ((-793 . -1134) T) ((-1200 . -423) 98132) ((-466 . -1134) T) ((-1084 . -464) T) ((-1173 . -1122) T) ((-972 . -464) 98083) ((-1137 . -1105) T) ((-110 . -1122) T) ((-1109 . -23) T) ((-1181 . -526) 97866) ((-830 . -1080) T) ((-795 . -23) T) ((-793 . -23) T) ((-493 . -464) 97817) ((-473 . -23) T) ((-392 . -393) 97796) ((-366 . -234) 97769) ((-363 . -234) 97742) ((-355 . -234) 97715) ((-466 . -23) T) ((-273 . -234) 97660) ((-258 . -912) 97527) ((-257 . -912) 97394) ((-96 . -1122) T) ((-725 . -1239) T) ((-683 . -296) 97371) ((-496 . -526) 97304) ((-1281 . -1073) 97187) ((-1281 . -653) 97084) ((-1274 . -653) 96925) ((-1274 . -1073) 96760) ((-1253 . -653) 96556) ((-1253 . -1073) 96346) ((-299 . -300) T) ((-1104 . -625) 96328) ((-559 . -865) T) ((-1104 . -626) 96309) ((-419 . -929) 96288) ((-1233 . -132) T) ((-50 . -1134) T) ((-1189 . -412) 96240) ((-1046 . -940) T) ((-1025 . -739) T) ((-856 . -661) 96213) ((-725 . -902) NIL) ((-608 . -1073) 96173) ((-593 . -1134) T) ((-530 . -1134) T) ((-607 . -1073) 96056) ((-1179 . -34) T) ((-1026 . -319) NIL) ((-828 . -501) 96040) ((-608 . -653) 96013) ((-365 . -940) T) ((-607 . -653) 95910) ((-930 . -234) 95897) ((-419 . -661) 95813) ((-50 . -23) T) ((-724 . -132) T) ((-725 . -1060) 95693) ((-593 . -23) T) ((-108 . -526) NIL) ((-530 . -23) T) ((-171 . -421) 95664) ((-1162 . -1122) T) ((-1304 . -1303) 95648) ((-744 . -920) 95625) ((-714 . -808) T) ((-714 . -805) T) ((-1142 . -317) T) ((-390 . -148) T) ((-290 . -625) 95607) ((-289 . -625) 95589) ((-1252 . -1014) 95559) ((-48 . -940) T) ((-688 . -501) 95543) ((-258 . -1296) 95513) ((-257 . -1296) 95483) ((-1110 . -237) T) ((-1198 . -862) T) ((-1142 . -1044) T) ((-1068 . -34) T) ((-849 . -148) 95462) ((-849 . -146) 95441) ((-750 . -107) 95425) ((-624 . -133) T) ((-1200 . -1080) T) ((-494 . -1122) 95177) ((-1196 . -920) 95090) ((-1195 . -920) 94996) ((-1189 . -920) 94757) ((-886 . -464) T) ((-85 . -1239) T) ((-142 . -107) 94739) ((-1148 . -920) 94723) ((-725 . -388) 94707) ((-846 . -628) 94575) ((-1312 . -739) T) ((-1301 . -1080) T) ((-1281 . -102) T) ((-1142 . -557) T) ((-591 . -102) T) ((-130 . -502) 94557) ((-1274 . -102) T) ((-402 . -1078) 94541) ((-1194 . -969) 94510) ((-44 . -296) 94487) ((-130 . -625) 94454) ((-52 . -625) 94436) ((-1147 . -969) 94403) ((-666 . -423) 94387) ((-1253 . -102) T) ((-1180 . -526) NIL) ((-675 . -25) T) ((-633 . -1078) 94371) ((-675 . -21) T) ((-983 . -659) 94281) ((-748 . -659) 94226) ((-728 . -659) 94198) ((-402 . -111) 94177) ((-224 . -261) 94161) ((-1076 . -1075) 94101) ((-1076 . -1122) T) ((-1026 . -1174) T) ((-831 . -1122) T) ((-465 . -659) 94016) ((-647 . -661) 94000) ((-633 . -111) 93979) ((-619 . -661) 93963) ((-354 . -1243) T) ((-608 . -102) T) ((-321 . -502) 93944) ((-598 . -132) T) ((-607 . -102) T) ((-426 . -1122) T) ((-396 . -1122) T) ((-321 . -625) 93910) ((-229 . -1122) 93888) ((-660 . -526) 93821) ((-644 . -526) 93665) ((-846 . -1071) 93644) ((-657 . -152) 93628) ((-354 . -568) T) ((-725 . -918) 93571) ((-562 . -231) 93521) ((-1281 . -294) 93487) ((-1274 . -294) 93453) ((-1102 . -300) 93404) ((-576 . -865) T) ((-499 . -861) T) ((-225 . -1134) T) ((-1253 . -294) 93370) ((-1233 . -505) 93336) ((-1026 . -38) 93286) ((-219 . -861) T) ((-430 . -659) 93245) ((-934 . -38) 93197) ((-856 . -807) 93176) ((-856 . -804) 93155) ((-856 . -739) 93134) ((-370 . -300) T) ((-364 . -300) T) ((-356 . -300) T) ((-171 . -464) 93065) ((-439 . -38) 93049) ((-225 . -23) T) ((-108 . -300) T) ((-419 . -807) 93028) ((-419 . -804) 93007) ((-419 . -739) T) ((-512 . -298) 92982) ((-489 . -1078) 92947) ((-671 . -132) T) ((-633 . -628) 92916) ((-1135 . -526) 92849) ((-347 . -132) T) ((-171 . -414) 92828) ((-494 . -730) 92770) ((-828 . -296) 92747) ((-489 . -111) 92703) ((-666 . -1080) T) ((-1194 . -912) 92606) ((-1147 . -912) 92588) ((-829 . -1073) 92431) ((-1300 . -1105) T) ((-1262 . -464) 92362) ((-829 . -653) 92211) ((-1299 . -1105) T) ((-1109 . -132) T) ((-1076 . -730) 92153) ((-1049 . -526) 92086) ((-795 . -132) T) ((-793 . -132) T) ((-712 . -865) T) ((-583 . -464) T) ((-633 . -1071) T) ((-604 . -1122) T) ((-545 . -175) T) ((-473 . -132) T) ((-466 . -132) T) ((-390 . -237) T) ((-1021 . -1239) T) ((-45 . -1122) T) ((-396 . -730) 92056) ((-830 . -1122) T) ((-488 . -526) 91989) ((-475 . -526) 91922) ((-1314 . -628) 91904) ((-465 . -378) 91874) ((-45 . -622) 91853) ((-411 . -1239) T) ((-326 . -312) T) ((-1289 . -865) 91832) ((-840 . -237) 91811) ((-489 . -628) 91761) ((-1253 . -319) 91646) ((-683 . -625) 91608) ((-59 . -862) 91587) ((-1026 . -412) 91569) ((-560 . -625) 91551) ((-812 . -659) 91510) ((-828 . -616) 91487) ((-528 . -862) 91466) ((-508 . -862) 91445) ((-1021 . -1060) 91341) ((-40 . -1243) T) ((-245 . -920) 91210) ((-50 . -132) T) ((-593 . -132) T) ((-530 . -132) T) ((-304 . -661) 91070) ((-354 . -339) 91047) ((-354 . -374) T) ((-332 . -333) 91024) ((-329 . -296) 90982) ((-40 . -568) T) ((-390 . -1224) T) ((-390 . -1227) T) ((-1057 . -1215) 90957) ((-1211 . -240) 90907) ((-1189 . -232) 90859) ((-1189 . -272) 90811) ((-340 . -1122) T) ((-390 . -95) T) ((-390 . -35) T) ((-1057 . -107) 90757) ((-489 . -1071) T) ((-1313 . -1078) 90741) ((-491 . -240) 90691) ((-1181 . -501) 90625) ((-1304 . -1073) 90609) ((-392 . -1078) 90593) ((-1304 . -653) 90563) ((-829 . -102) T) ((-489 . -248) T) ((-727 . -148) 90542) ((-727 . -146) 90521) ((-118 . -865) NIL) ((-496 . -501) 90505) ((-497 . -346) 90474) ((-524 . -1122) 90425) ((-1313 . -111) 90404) ((-1021 . -388) 90388) ((-425 . -102) T) ((-392 . -111) 90367) ((-1021 . -349) 90351) ((-288 . -1005) 90335) ((-287 . -1005) 90319) ((-1026 . -920) NIL) ((-1311 . -625) 90301) ((-1309 . -625) 90283) ((-110 . -526) NIL) ((-1194 . -1265) 90267) ((-869 . -867) 90251) ((-1200 . -1122) T) ((-103 . -1239) T) ((-972 . -969) 90212) ((-830 . -730) 90154) ((-1253 . -1174) NIL) ((-493 . -969) 90099) ((-1084 . -144) T) ((-60 . -102) 90049) ((-44 . -625) 90031) ((-78 . -625) 90013) ((-362 . -661) 89958) ((-1301 . -1122) T) ((-523 . -862) T) ((-299 . -296) 89937) ((-354 . -1134) T) ((-305 . -1122) T) ((-1021 . -918) 89896) ((-305 . -622) 89875) ((-1313 . -628) 89824) ((-1281 . -38) 89721) ((-1274 . -38) 89562) ((-1253 . -38) 89358) ((-499 . -1080) T) ((-392 . -628) 89342) ((-219 . -1080) T) ((-354 . -23) T) ((-153 . -625) 89324) ((-846 . -808) 89303) ((-846 . -805) 89282) ((-1238 . -628) 89263) ((-608 . -38) 89236) ((-607 . -38) 89133) ((-885 . -568) T) ((-225 . -132) T) ((-329 . -1024) 89099) ((-79 . -625) 89081) ((-725 . -317) 89060) ((-304 . -739) 88962) ((-837 . -102) T) ((-879 . -857) T) ((-304 . -485) 88941) ((-1304 . -102) T) ((-40 . -374) T) ((-887 . -148) 88920) ((-497 . -659) 88902) ((-887 . -146) 88881) ((-1180 . -501) 88863) ((-1313 . -1071) T) ((-494 . -526) 88796) ((-1168 . -1239) T) ((-984 . -625) 88778) ((-660 . -501) 88762) ((-644 . -501) 88693) ((-828 . -625) 88386) ((-48 . -27) T) ((-1200 . -730) 88283) ((-972 . -912) 88262) ((-666 . -1122) T) ((-876 . -875) T) ((-448 . -375) 88236) ((-744 . -659) 88146) ((-493 . -912) 88121) ((-1124 . -102) T) ((-992 . -1122) T) ((-879 . -1122) T) ((-829 . -319) 88108) ((-545 . -539) T) ((-545 . -588) T) ((-1309 . -393) 88080) ((-707 . -865) T) ((-1076 . -526) 88013) ((-1181 . -296) 87989) ((-245 . -272) 87958) ((-245 . -232) 87927) ((-258 . -1073) 87828) ((-257 . -1073) 87729) ((-1301 . -730) 87699) ((-1188 . -93) T) ((-1016 . -93) T) ((-830 . -174) 87678) ((-258 . -653) 87600) ((-257 . -653) 87522) ((-1236 . -502) 87499) ((-590 . -1239) T) ((-229 . -526) 87432) ((-633 . -808) 87411) ((-633 . -805) 87390) ((-1236 . -625) 87302) ((-224 . -1239) T) ((-688 . -625) 87234) ((-1196 . -659) 87144) ((-1179 . -1032) 87128) ((-963 . -102) 87058) ((-362 . -739) T) ((-876 . -625) 87040) ((-1195 . -659) 86922) ((-1189 . -659) 86759) ((-1148 . -659) 86669) ((-1253 . -412) 86621) ((-1135 . -501) 86605) ((-60 . -319) 86543) ((-341 . -102) T) ((-1233 . -21) T) ((-1233 . -25) T) ((-40 . -1134) T) ((-724 . -21) T) ((-639 . -625) 86525) ((-527 . -333) 86504) ((-724 . -25) T) ((-451 . -102) T) ((-108 . -296) NIL) ((-941 . -1134) T) ((-40 . -23) T) ((-784 . -1134) T) ((-576 . -1243) T) ((-507 . -1243) T) ((-1026 . -272) 86486) ((-329 . -625) 86468) ((-1026 . -232) 86450) ((-171 . -167) 86434) ((-592 . -568) T) ((-576 . -568) T) ((-507 . -568) T) ((-784 . -23) T) ((-1273 . -148) 86413) ((-1273 . -146) 86392) ((-1181 . -616) 86368) ((-1252 . -146) 86293) ((-1049 . -501) 86277) ((-1246 . -1239) T) ((-1252 . -148) 86202) ((-1304 . -1310) 86181) ((-886 . -912) NIL) ((-488 . -501) 86165) ((-475 . -501) 86149) ((-535 . -34) T) ((-666 . -730) 86119) ((-1281 . -920) 86032) ((-1274 . -920) 85938) ((-1253 . -920) 85699) ((-112 . -989) T) ((-1200 . -174) 85650) ((-675 . -862) 85629) ((-376 . -102) T) ((-607 . -920) 85542) ((-245 . -243) 85521) ((-258 . -102) T) ((-257 . -102) T) ((-1262 . -969) 85490) ((-250 . -862) 85469) ((-1046 . -865) T) ((-829 . -38) 85318) ((-45 . -526) 85110) ((-1180 . -296) 85060) ((-216 . -1122) T) ((-1172 . -1122) T) ((-887 . -237) 85011) ((-1172 . -622) 84990) ((-598 . -25) T) ((-598 . -21) T) ((-1124 . -319) 84928) ((-983 . -423) 84912) ((-712 . -1243) T) ((-644 . -296) 84865) ((-1109 . -652) 84813) ((-925 . -1122) T) ((-795 . -652) 84761) ((-793 . -652) 84709) ((-354 . -132) T) ((-299 . -625) 84691) ((-885 . -1134) T) ((-712 . -568) T) ((-130 . -628) 84673) ((-466 . -652) 84621) ((-171 . -912) 84542) ((-925 . -923) 84526) ((-390 . -464) T) ((-499 . -1122) T) ((-963 . -319) 84464) ((-714 . -661) 84436) ((-561 . -857) T) ((-219 . -1122) T) ((-326 . -940) 84415) ((-323 . -940) T) ((-323 . -833) NIL) ((-402 . -733) T) ((-885 . -23) T) ((-117 . -661) 84402) ((-486 . -146) 84381) ((-430 . -423) 84365) ((-486 . -148) 84344) ((-110 . -501) 84326) ((-321 . -628) 84307) ((-2 . -625) 84289) ((-188 . -102) T) ((-1180 . -19) 84271) ((-1180 . -616) 84246) ((-671 . -21) T) ((-671 . -25) T) ((-605 . -1166) T) ((-1135 . -296) 84223) ((-347 . -25) T) ((-347 . -21) T) ((-905 . -1239) T) ((-901 . -1239) T) ((-1311 . -1078) 84207) ((-245 . -659) 83986) ((-507 . -374) T) ((-1309 . -1078) 83970) ((-1304 . -38) 83940) ((-1273 . -1224) 83906) ((-1273 . -1227) 83872) ((-1262 . -912) 83775) ((-1194 . -1073) 83598) ((-1164 . -1239) T) ((-1147 . -1073) 83441) ((-869 . -1073) 83425) ((-644 . -616) 83400) ((-1273 . -95) 83366) ((-1273 . -237) 83318) ((-1256 . -102) 83296) ((-1194 . -653) 83125) ((-1147 . -653) 82974) ((-869 . -653) 82944) ((-1253 . -232) 82896) ((-1109 . -25) T) ((-561 . -1122) T) ((-1109 . -21) T) ((-983 . -1080) T) ((-543 . -805) T) ((-543 . -808) T) ((-118 . -1243) T) ((-881 . -1239) T) ((-635 . -568) T) ((-795 . -25) T) ((-795 . -21) T) ((-793 . -21) T) ((-793 . -25) T) ((-748 . -1080) T) ((-728 . -1080) T) ((-683 . -1078) 82880) ((-529 . -1105) T) ((-473 . -25) T) ((-118 . -568) T) ((-473 . -21) T) ((-466 . -25) T) ((-466 . -21) T) ((-1253 . -272) 82832) ((-1173 . -93) T) ((-1164 . -1060) 82728) ((-830 . -300) 82707) ((-1252 . -1224) 82673) ((-836 . -1122) T) ((-986 . -989) T) ((-683 . -111) 82652) ((-629 . -1239) T) ((-305 . -526) 82444) ((-1252 . -1227) 82410) ((-1252 . -237) 82269) ((-1247 . -379) T) ((-258 . -319) 82207) ((-257 . -319) 82145) ((-1244 . -857) T) ((-1181 . -626) NIL) ((-1181 . -625) 82127) ((-1164 . -388) 82111) ((-1142 . -833) T) ((-1142 . -940) T) ((-96 . -93) T) ((-1135 . -616) 82088) ((-1102 . -626) 82072) ((-1102 . -625) 82054) ((-1026 . -659) 82004) ((-934 . -659) 81941) ((-828 . -298) 81918) ((-496 . -625) 81850) ((-620 . -152) 81797) ((-499 . -730) 81747) ((-430 . -1080) T) ((-494 . -501) 81731) ((-439 . -659) 81690) ((-337 . -862) 81669) ((-350 . -661) 81643) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -730) 81593) ((-171 . -737) 81564) ((-176 . -661) 81496) ((-593 . -21) T) ((-593 . -25) T) ((-530 . -25) T) ((-530 . -21) T) ((-487 . -152) 81446) ((-1083 . -625) 81428) ((-1015 . -102) T) ((-877 . -102) T) ((-829 . -920) 81328) ((-812 . -423) 81291) ((-40 . -132) T) ((-712 . -374) T) ((-714 . -739) T) ((-714 . -807) T) ((-714 . -804) T) ((-214 . -913) T) ((-592 . -1134) T) ((-576 . -1134) T) ((-507 . -1134) T) ((-370 . -625) 81273) ((-364 . -625) 81255) ((-356 . -625) 81237) ((-66 . -408) T) ((-66 . -407) T) ((-108 . -626) 81167) ((-108 . -625) 81109) ((-213 . -913) T) ((-978 . -152) 81093) ((-784 . -132) T) ((-683 . -628) 81011) ((-135 . -739) T) ((-117 . -739) T) ((-1273 . -35) 80977) ((-1076 . -501) 80961) ((-592 . -23) T) ((-576 . -23) T) ((-507 . -23) T) ((-1252 . -95) 80927) ((-1252 . -35) 80893) ((-1194 . -102) T) ((-1147 . -102) T) ((-869 . -102) T) ((-229 . -501) 80877) ((-1311 . -111) 80856) ((-1309 . -111) 80835) ((-44 . -1078) 80819) ((-1312 . -1239) T) ((-1311 . -628) 80765) ((-1311 . -1071) T) ((-1309 . -628) 80694) ((-1309 . -1071) T) ((-1262 . -1265) 80678) ((-870 . -867) 80662) ((-1200 . -300) 80641) ((-1126 . -1239) T) ((-110 . -296) 80591) ((-1025 . -1239) T) ((-129 . -152) 80573) ((-1164 . -918) 80532) ((-44 . -111) 80511) ((-1244 . -1122) T) ((-1203 . -1284) T) ((-1189 . -861) NIL) ((-1188 . -502) 80492) ((-683 . -1071) T) ((-1188 . -625) 80458) ((-1180 . -625) 80440) ((-486 . -237) 80392) ((-1085 . -622) 80367) ((-1016 . -502) 80348) ((-74 . -453) T) ((-74 . -407) T) ((-1085 . -1122) T) ((-153 . -1078) 80332) ((-1016 . -625) 80298) ((-683 . -238) 80277) ((-583 . -566) 80261) ((-366 . -148) 80240) ((-366 . -146) 80191) ((-363 . -148) 80170) ((-363 . -146) 80121) ((-355 . -148) 80100) ((-355 . -146) 80051) ((-273 . -146) 80030) ((-273 . -148) 80009) ((-253 . -148) 79988) ((-118 . -374) T) ((-253 . -146) 79967) ((-1180 . -626) NIL) ((-153 . -111) 79946) ((-1025 . -1060) 79834) ((-1179 . -1239) T) ((-707 . -1243) T) ((-812 . -1080) T) ((-712 . -1134) T) ((-1025 . -388) 79811) ((-518 . -1239) T) ((-514 . -1239) T) ((-930 . -146) T) ((-930 . -148) 79793) ((-885 . -132) T) ((-828 . -1078) 79714) ((-712 . -23) T) ((-707 . -568) T) ((-227 . -1073) 79679) ((-660 . -625) 79611) ((-660 . -626) 79572) ((-644 . -626) NIL) ((-644 . -625) 79554) ((-499 . -174) T) ((-227 . -653) 79519) ((-219 . -174) T) ((-225 . -21) T) ((-225 . -25) T) ((-486 . -1227) 79485) ((-486 . -1224) 79451) ((-283 . -625) 79433) ((-282 . -625) 79415) ((-281 . -625) 79397) ((-280 . -625) 79379) ((-279 . -625) 79361) ((-512 . -664) 79343) ((-278 . -625) 79325) ((-350 . -739) T) ((-277 . -625) 79307) ((-110 . -19) 79289) ((-176 . -739) T) ((-512 . -384) 79271) ((-214 . -625) 79253) ((-532 . -1171) 79237) ((-512 . -124) T) ((-110 . -616) 79212) ((-213 . -625) 79194) ((-486 . -35) 79160) ((-486 . -95) 79126) ((-211 . -625) 79108) ((-210 . -625) 79090) ((-209 . -625) 79072) ((-208 . -625) 79054) ((-205 . -625) 79036) ((-204 . -625) 79018) ((-203 . -625) 79000) ((-202 . -625) 78982) ((-201 . -625) 78964) ((-200 . -625) 78946) ((-199 . -625) 78928) ((-548 . -1125) 78880) ((-198 . -625) 78862) ((-197 . -625) 78844) ((-45 . -501) 78781) ((-196 . -625) 78763) ((-195 . -625) 78745) ((-153 . -628) 78714) ((-1137 . -102) T) ((-828 . -111) 78630) ((-657 . -102) 78560) ((-494 . -296) 78537) ((-1312 . -1060) 78521) ((-1135 . -625) 78214) ((-1123 . -1122) T) ((-1068 . -1239) T) ((-1194 . -319) 78201) ((-1084 . -1073) 78188) ((-1157 . -1122) T) ((-972 . -1073) 78031) ((-1147 . -319) 78018) ((-1118 . -1105) T) ((-635 . -1134) T) ((-1084 . -653) 78005) ((-1112 . -1105) T) ((-972 . -653) 77854) ((-1109 . -234) 77799) ((-493 . -1073) 77642) ((-1095 . -1105) T) ((-1088 . -1105) T) ((-1058 . -1105) T) ((-1041 . -1105) T) ((-118 . -1134) T) ((-493 . -653) 77491) ((-795 . -234) 77478) ((-832 . -102) T) ((-638 . -1105) T) ((-635 . -23) T) ((-1172 . -526) 77270) ((-495 . -1105) T) ((-983 . -1122) T) ((-398 . -102) T) ((-334 . -102) T) ((-220 . -1105) T) ((-856 . -1239) T) ((-153 . -1071) T) ((-744 . -423) 77254) ((-118 . -23) T) ((-1025 . -918) 77206) ((-748 . -1122) T) ((-728 . -1122) T) ((-1281 . -659) 77116) ((-1274 . -659) 76998) ((-465 . -1122) T) ((-419 . -1239) T) ((-326 . -442) 76982) ((-604 . -93) T) ((-1049 . -626) 76943) ((-270 . -1239) T) ((-1046 . -1243) T) ((-227 . -102) T) ((-1049 . -625) 76905) ((-829 . -272) 76889) ((-829 . -232) 76873) ((-828 . -628) 76671) ((-1253 . -659) 76508) ((-1046 . -568) T) ((-846 . -661) 76481) ((-365 . -1243) T) ((-488 . -625) 76443) ((-488 . -626) 76404) ((-475 . -626) 76365) ((-475 . -625) 76327) ((-608 . -659) 76286) ((-419 . -900) 76270) ((-329 . -1078) 76105) ((-419 . -902) 76030) ((-607 . -659) 75940) ((-856 . -1060) 75836) ((-499 . -526) NIL) ((-494 . -616) 75813) ((-593 . -234) 75800) ((-365 . -568) T) ((-530 . -234) 75787) ((-219 . -526) NIL) ((-887 . -464) T) ((-430 . -1122) T) ((-419 . -1060) 75651) ((-329 . -111) 75472) ((-707 . -374) T) ((-227 . -294) T) ((-1236 . -628) 75449) ((-48 . -1243) T) ((-1194 . -1174) 75427) ((-1181 . -298) 75403) ((-1084 . -102) T) ((-972 . -102) T) ((-828 . -1071) 75381) ((-592 . -132) T) ((-576 . -132) T) ((-507 . -132) T) ((-366 . -237) 75360) ((-363 . -237) 75339) ((-355 . -237) 75318) ((-48 . -568) T) ((-886 . -1073) 75263) ((-273 . -237) 75214) ((-828 . -238) 75166) ((-326 . -27) 75145) ((-258 . -920) 75014) ((-257 . -920) 74883) ((-255 . -848) 74865) ((-189 . -848) 74847) ((-726 . -102) T) ((-305 . -501) 74784) ((-886 . -653) 74729) ((-493 . -102) T) ((-744 . -1080) T) ((-624 . -625) 74711) ((-624 . -626) 74572) ((-419 . -388) 74556) ((-419 . -349) 74540) ((-1194 . -38) 74369) ((-1147 . -38) 74218) ((-329 . -628) 74044) ((-930 . -237) T) ((-647 . -1239) T) ((-619 . -1239) T) ((-869 . -38) 74014) ((-402 . -661) 73998) ((-657 . -319) 73936) ((-1173 . -502) 73917) ((-1173 . -625) 73883) ((-983 . -730) 73780) ((-748 . -730) 73750) ((-633 . -661) 73724) ((-224 . -107) 73708) ((-45 . -296) 73608) ((-322 . -1122) T) ((-299 . -1078) 73595) ((-110 . -625) 73577) ((-110 . -626) 73559) ((-465 . -730) 73529) ((-829 . -260) 73468) ((-702 . -1122) 73446) ((-562 . -1122) T) ((-1196 . -1080) T) ((-1195 . -1080) T) ((-96 . -502) 73427) ((-1189 . -1080) T) ((-299 . -111) 73412) ((-1148 . -1080) T) ((-562 . -622) 73391) ((-96 . -625) 73357) ((-1026 . -861) T) ((-229 . -700) 73315) ((-707 . -1134) T) ((-1233 . -753) 73291) ((-1046 . -374) T) ((-851 . -848) 73273) ((-846 . -807) 73252) ((-419 . -918) 73211) ((-329 . -1071) T) ((-354 . -25) T) ((-354 . -21) T) ((-171 . -1073) 73121) ((-68 . -1239) T) ((-846 . -804) 73100) ((-430 . -730) 73074) ((-812 . -1122) T) ((-725 . -940) 73053) ((-712 . -132) T) ((-171 . -653) 72881) ((-707 . -23) T) ((-499 . -300) T) ((-846 . -739) 72860) ((-329 . -238) 72812) ((-329 . -248) 72791) ((-219 . -300) T) ((-130 . -379) T) ((-1273 . -464) 72770) ((-1252 . -464) 72749) ((-365 . -339) 72726) ((-365 . -374) T) ((-1162 . -625) 72708) ((-45 . -1277) 72658) ((-886 . -102) T) ((-657 . -292) 72642) ((-712 . -1082) T) ((-1300 . -102) T) ((-1299 . -102) T) ((-489 . -661) 72607) ((-480 . -1122) T) ((-45 . -616) 72532) ((-1180 . -298) 72507) ((-299 . -628) 72479) ((-40 . -652) 72418) ((-1262 . -1073) 72241) ((-870 . -1073) 72225) ((-48 . -374) T) ((-1128 . -625) 72207) ((-1262 . -653) 72036) ((-870 . -653) 72006) ((-644 . -298) 71981) ((-829 . -659) 71891) ((-583 . -1073) 71878) ((-494 . -625) 71571) ((-245 . -423) 71540) ((-1194 . -920) 71447) ((-1187 . -1122) T) ((-972 . -319) 71434) ((-583 . -653) 71421) ((-65 . -1239) T) ((-1155 . -1239) T) ((-1147 . -920) 71405) ((-1135 . -298) 71382) ((-1085 . -526) 71226) ((-684 . -1122) T) ((-635 . -132) T) ((-618 . -1122) T) ((-493 . -319) 71213) ((-558 . -102) T) ((-118 . -132) T) ((-299 . -1071) T) ((-182 . -1122) T) ((-162 . -1122) T) ((-157 . -1122) T) ((-155 . -1122) T) ((-465 . -774) T) ((-31 . -1105) T) ((-983 . -174) 71164) ((-1124 . -231) 71148) ((-992 . -93) T) ((-1102 . -1078) 71058) ((-1076 . -625) 71020) ((-633 . -739) T) ((-633 . -807) 70999) ((-605 . -1122) T) ((-633 . -804) 70978) ((-305 . -296) 70957) ((-304 . -1239) T) ((-1076 . -626) 70918) ((-1046 . -1134) T) ((-323 . -865) NIL) ((-171 . -102) T) ((-284 . -862) T) ((-1102 . -111) 70814) ((-831 . -625) 70796) ((-1046 . -23) T) ((-1025 . -317) T) ((-916 . -102) T) ((-812 . -730) 70780) ((-370 . -1078) 70732) ((-365 . -1134) T) ((-364 . -1078) 70684) ((-426 . -625) 70666) ((-396 . -625) 70648) ((-356 . -1078) 70600) ((-229 . -625) 70532) ((-854 . -102) T) ((-821 . -102) T) ((-108 . -1078) 70482) ((-782 . -102) T) ((-690 . -102) T) ((-115 . -865) T) ((-486 . -464) 70461) ((-430 . -174) T) ((-370 . -111) 70399) ((-364 . -111) 70337) ((-356 . -111) 70275) ((-258 . -272) 70244) ((-258 . -232) 70213) ((-257 . -272) 70182) ((-257 . -232) 70151) ((-365 . -23) T) ((-71 . -1239) T) ((-227 . -38) 70116) ((-108 . -111) 70050) ((-40 . -25) T) ((-40 . -21) T) ((-683 . -733) T) ((-171 . -294) 70028) ((-48 . -1134) T) ((-873 . -1239) T) ((-941 . -25) T) ((-784 . -25) T) ((-1313 . -661) 70002) ((-1172 . -501) 69939) ((-497 . -1122) T) ((-1304 . -659) 69898) ((-1262 . -102) T) ((-1084 . -1174) T) ((-870 . -102) T) ((-245 . -1080) 69876) ((-984 . -805) 69829) ((-984 . -808) 69782) ((-392 . -661) 69766) ((-48 . -23) T) ((-828 . -808) 69745) ((-828 . -805) 69724) ((-560 . -379) T) ((-305 . -616) 69703) ((-489 . -739) T) ((-583 . -102) T) ((-1102 . -628) 69521) ((-255 . -187) T) ((-189 . -187) T) ((-886 . -319) 69478) ((-666 . -296) 69457) ((-112 . -674) T) ((-362 . -1239) T) ((-370 . -628) 69394) ((-364 . -628) 69331) ((-356 . -628) 69268) ((-76 . -1239) T) ((-108 . -628) 69218) ((-112 . -113) T) ((-1084 . -38) 69205) ((-677 . -385) 69184) ((-972 . -38) 69033) ((-744 . -1122) T) ((-493 . -38) 68882) ((-86 . -1239) T) ((-604 . -502) 68863) ((-1253 . -861) NIL) ((-1196 . -1122) T) ((-583 . -294) T) ((-1195 . -1122) T) ((-604 . -625) 68829) ((-1189 . -1122) T) ((-1142 . -865) T) ((-1102 . -1071) T) ((-362 . -1060) 68806) ((-830 . -502) 68790) ((-1026 . -1080) T) ((-45 . -625) 68772) ((-45 . -626) NIL) ((-934 . -1080) T) ((-830 . -625) 68741) ((-1169 . -102) 68691) ((-1102 . -248) 68642) ((-439 . -1080) T) ((-370 . -1071) T) ((-364 . -1071) T) ((-376 . -375) 68619) ((-356 . -1071) T) ((-354 . -234) 68606) ((-258 . -243) 68585) ((-257 . -243) 68564) ((-1102 . -238) 68489) ((-1148 . -1122) T) ((-304 . -918) 68448) ((-108 . -1071) T) ((-707 . -132) T) ((-430 . -526) 68290) ((-370 . -238) 68269) ((-370 . -248) T) ((-44 . -733) T) ((-364 . -238) 68248) ((-364 . -248) T) ((-356 . -238) 68227) ((-356 . -248) T) ((-1188 . -628) 68208) ((-171 . -319) 68173) ((-108 . -248) T) ((-108 . -238) T) ((-1016 . -628) 68154) ((-329 . -805) T) ((-885 . -21) T) ((-885 . -25) T) ((-419 . -317) T) ((-512 . -34) T) ((-110 . -298) 68129) ((-1135 . -1078) 68050) ((-886 . -1174) NIL) ((-340 . -625) 68032) ((-419 . -1044) 68010) ((-1135 . -111) 67926) ((-704 . -1284) T) ((-448 . -1122) T) ((-256 . -1122) T) ((-1313 . -739) T) ((-63 . -625) 67908) ((-886 . -38) 67853) ((-614 . -152) 67837) ((-535 . -1239) T) ((-524 . -625) 67777) ((-1262 . -319) 67764) ((-744 . -730) 67613) ((-543 . -806) T) ((-543 . -807) T) ((-576 . -652) 67595) ((-507 . -652) 67555) ((-516 . -1239) T) ((-651 . -1296) 67539) ((-366 . -464) T) ((-363 . -464) T) ((-355 . -464) T) ((-273 . -464) 67490) ((-537 . -1122) T) ((-532 . -1122) 67440) ((-253 . -464) 67391) ((-1172 . -296) 67370) ((-1200 . -625) 67352) ((-702 . -526) 67285) ((-983 . -300) 67264) ((-562 . -526) 67056) ((-258 . -659) 66904) ((-257 . -659) 66739) ((-1301 . -625) 66708) ((-1301 . -502) 66692) ((-1196 . -730) 66589) ((-1194 . -272) 66573) ((-1194 . -232) 66557) ((-1135 . -628) 66355) ((-171 . -1174) 66334) ((-1195 . -730) 66175) ((-1189 . -730) 65971) ((-986 . -113) T) ((-908 . -102) T) ((-1179 . -687) 65955) ((-1148 . -730) 65852) ((-1046 . -132) T) ((-366 . -414) 65803) ((-363 . -414) 65754) ((-355 . -414) 65705) ((-984 . -379) 65658) ((-812 . -526) 65570) ((-305 . -626) NIL) ((-305 . -625) 65552) ((-930 . -464) T) ((-925 . -296) 65531) ((-828 . -379) 65510) ((-522 . -521) 65489) ((-520 . -521) 65468) ((-887 . -912) 65389) ((-499 . -296) NIL) ((-494 . -298) 65366) ((-430 . -300) T) ((-365 . -132) T) ((-219 . -296) NIL) ((-707 . -505) NIL) ((-99 . -1134) T) ((-40 . -234) 65297) ((-171 . -38) 65125) ((-972 . -920) 65106) ((-1273 . -995) 65068) ((-1169 . -319) 65006) ((-493 . -920) 64983) ((-1252 . -995) 64952) ((-930 . -414) T) ((-1135 . -1071) 64930) ((-1275 . -568) T) ((-1172 . -616) 64909) ((-112 . -862) T) ((-1085 . -501) 64840) ((-592 . -21) T) ((-592 . -25) T) ((-576 . -21) T) ((-576 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-1262 . -1174) 64818) ((-1135 . -238) 64770) ((-48 . -132) T) ((-1220 . -102) T) ((-245 . -1122) 64522) ((-886 . -412) 64499) ((-1110 . -102) T) ((-1098 . -102) T) ((-909 . -865) T) ((-620 . -102) T) ((-487 . -102) T) ((-1262 . -38) 64328) ((-870 . -38) 64298) ((-1056 . -1073) 64272) ((-744 . -174) 64183) ((-666 . -625) 64165) ((-658 . -1105) T) ((-1056 . -653) 64149) ((-583 . -38) 64136) ((-992 . -502) 64117) ((-992 . -625) 64083) ((-978 . -102) 64013) ((-879 . -625) 63995) ((-879 . -626) 63917) ((-605 . -526) NIL) ((-863 . -102) T) ((-1318 . -1134) T) ((-1281 . -1080) T) ((-1274 . -1080) T) ((-1273 . -912) 63821) ((-1253 . -1080) T) ((-1252 . -912) 63616) ((-1233 . -148) 63595) ((-332 . -1073) 63577) ((-1233 . -146) 63556) ((-1206 . -102) T) ((-1205 . -102) T) ((-1204 . -102) T) ((-1196 . -174) 63507) ((-332 . -653) 63489) ((-714 . -1239) T) ((-1195 . -174) 63420) ((-1189 . -174) 63351) ((-1173 . -628) 63332) ((-1148 . -174) 63283) ((-608 . -1080) T) ((-607 . -1080) T) ((-1026 . -1122) T) ((-993 . -1122) T) ((-390 . -1073) 63248) ((-135 . -1239) T) ((-117 . -1239) T) ((-934 . -1122) T) ((-886 . -920) NIL) ((-390 . -653) 63213) ((-145 . -865) T) ((-812 . -810) 63197) ((-712 . -25) T) ((-712 . -21) T) ((-118 . -652) 63174) ((-714 . -902) 63156) ((-439 . -1122) T) ((-326 . -1243) 63135) ((-323 . -1243) T) ((-171 . -412) 63119) ((-849 . -1073) 63089) ((-486 . -995) 63051) ((-129 . -102) T) ((-72 . -625) 63033) ((-131 . -102) T) ((-840 . -1073) 63017) ((-108 . -808) T) ((-108 . -805) T) ((-714 . -1060) 62999) ((-326 . -568) 62978) ((-323 . -568) T) ((-849 . -653) 62948) ((-840 . -653) 62918) ((-1318 . -23) T) ((-135 . -1060) 62900) ((-96 . -628) 62881) ((-1015 . -659) 62863) ((-494 . -1078) 62784) ((-45 . -298) 62709) ((-245 . -730) 62651) ((-529 . -102) T) ((-494 . -111) 62567) ((-1114 . -102) 62537) ((-1056 . -102) T) ((-1194 . -659) 62447) ((-1147 . -659) 62357) ((-869 . -659) 62316) ((-657 . -841) 62295) ((-744 . -526) 62238) ((-1076 . -1078) 62222) ((-171 . -920) 62145) ((-1157 . -93) T) ((-1085 . -296) 62120) ((-635 . -21) T) ((-635 . -25) T) ((-536 . -1122) T) ((-683 . -661) 62058) ((-372 . -102) T) ((-332 . -102) T) ((-396 . -1078) 62042) ((-1076 . -111) 62021) ((-829 . -423) 62005) ((-118 . -25) T) ((-89 . -625) 61987) ((-118 . -21) T) ((-620 . -319) 61782) ((-1172 . -626) NIL) ((-487 . -319) 61586) ((-350 . -1239) T) ((-176 . -1239) T) ((-396 . -111) 61565) ((-390 . -102) T) ((-216 . -625) 61547) ((-1172 . -625) 61529) ((-787 . -1239) T) ((-1189 . -526) 61298) ((-1026 . -730) 61248) ((-1148 . -526) 61218) ((-934 . -730) 61170) ((-494 . -628) 60968) ((-362 . -317) T) ((-1211 . -152) 60918) ((-486 . -912) 60799) ((-978 . -319) 60737) ((-849 . -102) T) ((-439 . -730) 60721) ((-227 . -841) T) ((-840 . -102) T) ((-838 . -102) T) ((-1311 . -661) 60695) ((-1273 . -1272) 60674) ((-491 . -152) 60624) ((-1273 . -1267) 60594) ((-1142 . -1243) T) ((-350 . -1060) 60561) ((-1273 . -1270) 60545) ((-1262 . -920) 60452) ((-1252 . -1251) 60431) ((-80 . -625) 60413) ((-925 . -625) 60395) ((-1252 . -1267) 60372) ((-1142 . -568) T) ((-941 . -862) T) ((-784 . -862) T) ((-685 . -862) T) ((-499 . -626) 60302) ((-499 . -625) 60243) ((-390 . -294) T) ((-1252 . -1249) 60227) ((-1275 . -1134) T) ((-219 . -626) 60157) ((-219 . -625) 60098) ((-1085 . -616) 60073) ((-831 . -628) 60057) ((-576 . -234) 60044) ((-528 . -152) 60028) ((-59 . -152) 60012) ((-508 . -152) 59996) ((-507 . -234) 59983) ((-370 . -1308) 59967) ((-364 . -1308) 59951) ((-356 . -1308) 59935) ((-326 . -374) 59914) ((-323 . -374) T) ((-494 . -1071) 59892) ((-707 . -652) 59874) ((-1309 . -661) 59848) ((-129 . -319) NIL) ((-1275 . -23) T) ((-702 . -501) 59832) ((-64 . -625) 59814) ((-1135 . -808) 59793) ((-1135 . -805) 59772) ((-562 . -501) 59709) ((-683 . -34) T) ((-494 . -238) 59661) ((-305 . -298) 59640) ((-829 . -1080) T) ((-44 . -661) 59598) ((-1102 . -379) 59549) ((-744 . -300) 59480) ((-532 . -526) 59413) ((-830 . -1078) 59364) ((-1109 . -146) 59343) ((-561 . -625) 59325) ((-370 . -379) 59304) ((-364 . -379) 59283) ((-356 . -379) 59262) ((-1109 . -148) 59241) ((-988 . -1239) T) ((-886 . -272) 59218) ((-886 . -232) 59195) ((-830 . -111) 59137) ((-795 . -146) 59116) ((-273 . -969) 59083) ((-253 . -969) 59028) ((-795 . -148) 59007) ((-793 . -146) 58986) ((-793 . -148) 58965) ((-153 . -661) 58939) ((-591 . -1122) T) ((-465 . -296) 58902) ((-466 . -148) 58881) ((-466 . -146) 58860) ((-683 . -739) T) ((-836 . -625) 58842) ((-1281 . -1122) T) ((-1274 . -1122) T) ((-1253 . -1122) T) ((-1233 . -1227) 58808) ((-1233 . -1224) 58774) ((-1196 . -300) 58753) ((-1195 . -300) 58704) ((-1189 . -300) 58655) ((-1148 . -300) 58634) ((-1026 . -174) T) ((-350 . -918) 58615) ((-934 . -174) T) ((-707 . -21) T) ((-707 . -25) T) ((-651 . -1073) 58599) ((-651 . -653) 58583) ((-227 . -659) 58533) ((-608 . -1122) T) ((-607 . -1122) T) ((-486 . -1270) 58517) ((-486 . -1267) 58487) ((-430 . -296) 58415) ((-559 . -862) T) ((-326 . -1134) 58264) ((-323 . -1134) T) ((-1233 . -35) 58230) ((-1233 . -95) 58196) ((-84 . -625) 58178) ((-91 . -102) 58128) ((-1318 . -132) T) ((-727 . -1073) 58098) ((-604 . -628) 58079) ((-593 . -146) T) ((-593 . -148) 58061) ((-530 . -148) 58043) ((-530 . -146) T) ((-727 . -653) 58013) ((-326 . -23) 57865) ((-40 . -353) 57839) ((-323 . -23) T) ((-830 . -628) 57753) ((-1180 . -664) 57735) ((-1304 . -1080) T) ((-1180 . -384) 57717) ((-1118 . -102) T) ((-828 . -661) 57550) ((-1112 . -102) T) ((-1095 . -102) T) ((-171 . -272) 57534) ((-171 . -232) 57518) ((-1088 . -102) T) ((-1058 . -102) T) ((-1041 . -102) T) ((-605 . -501) 57500) ((-638 . -102) T) ((-245 . -526) 57433) ((-495 . -102) T) ((-1311 . -739) T) ((-1309 . -739) T) ((-220 . -102) T) ((-1200 . -1078) 57316) ((-1301 . -111) 57281) ((-1301 . -1078) 57251) ((-1084 . -659) 57223) ((-1281 . -730) 57120) ((-972 . -659) 57030) ((-1274 . -730) 56871) ((-1200 . -111) 56740) ((-1056 . -38) 56724) ((-891 . -1105) T) ((-876 . -175) T) ((-493 . -659) 56634) ((-273 . -912) 56540) ((-253 . -912) 56515) ((-830 . -1071) T) ((-694 . -1105) T) ((-689 . -1105) T) ((-635 . -234) 56460) ((-527 . -102) T) ((-522 . -102) T) ((-48 . -652) 56420) ((-520 . -102) T) ((-490 . -1105) T) ((-118 . -234) NIL) ((-3 . -1239) T) ((-139 . -1105) T) ((-138 . -1105) T) ((-134 . -1105) T) ((-846 . -1239) T) ((-830 . -238) T) ((-830 . -248) 56399) ((-1262 . -272) 56383) ((-1262 . -232) 56367) ((-1021 . -865) 56346) ((-1244 . -625) 56328) ((-562 . -296) 56307) ((-1085 . -626) NIL) ((-1085 . -625) 56289) ((-618 . -93) T) ((-684 . -93) T) ((0 . -1239) T) ((-49 . -1239) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1253 . -730) 56085) ((-1025 . -940) T) ((-1200 . -628) 55938) ((-153 . -739) T) ((-1135 . -379) 55917) ((-651 . -102) T) ((-1046 . -25) T) ((-1026 . -526) NIL) ((-258 . -423) 55886) ((-257 . -423) 55855) ((-1046 . -21) T) ((-887 . -1073) 55807) ((-608 . -730) 55780) ((-607 . -730) 55677) ((-812 . -296) 55635) ((-127 . -102) 55585) ((-846 . -1060) 55481) ((-171 . -841) 55460) ((-329 . -661) 55357) ((-828 . -34) T) ((-727 . -102) T) ((-1142 . -1134) T) ((-1048 . -1239) T) ((-887 . -653) 55309) ((-390 . -38) 55274) ((-365 . -25) T) ((-365 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-366 . -1296) 55258) ((-363 . -1296) 55242) ((-355 . -1296) 55226) ((-171 . -360) 55205) ((-576 . -862) T) ((-1109 . -237) 55156) ((-1142 . -23) T) ((-87 . -625) 55138) ((-795 . -237) T) ((-714 . -317) T) ((-849 . -38) 55108) ((-840 . -38) 55078) ((-1301 . -628) 55020) ((-1275 . -132) T) ((-1172 . -298) 54999) ((-984 . -739) 54898) ((-984 . -806) 54851) ((-984 . -807) 54804) ((-117 . -317) T) ((-91 . -319) 54742) ((-688 . -34) T) ((-562 . -616) 54721) ((-48 . -25) T) ((-48 . -21) T) ((-828 . -807) 54700) ((-828 . -806) 54679) ((-714 . -1044) T) ((-666 . -1078) 54663) ((-886 . -659) 54593) ((-828 . -739) 54571) ((-402 . -1239) T) ((-984 . -485) 54524) ((-494 . -808) 54503) ((-494 . -805) 54482) ((-930 . -1296) 54469) ((-1200 . -1071) T) ((-633 . -1239) T) ((-666 . -111) 54448) ((-1200 . -336) 54425) ((-1225 . -102) 54375) ((-1123 . -625) 54357) ((-714 . -557) T) ((-829 . -1122) T) ((-593 . -237) T) ((-530 . -237) T) ((-1301 . -1071) T) ((-1157 . -502) 54338) ((-1245 . -102) T) ((-425 . -1122) T) ((-1157 . -625) 54304) ((-258 . -1080) 54282) ((-257 . -1080) 54260) ((-851 . -102) T) ((-299 . -661) 54247) ((-605 . -296) 54197) ((-702 . -700) 54155) ((-1314 . -1239) T) ((-1289 . -862) 54134) ((-983 . -625) 54116) ((-887 . -102) T) ((-748 . -625) 54098) ((-728 . -625) 54080) ((-1281 . -174) 54031) ((-1274 . -174) 53962) ((-1253 . -174) 53893) ((-712 . -862) T) ((-1026 . -300) T) ((-465 . -625) 53875) ((-639 . -739) T) ((-60 . -1122) 53853) ((-250 . -152) 53837) ((-1273 . -653) 53678) ((-934 . -300) T) ((-1046 . -1034) T) ((-639 . -485) T) ((-725 . -1243) 53657) ((-707 . -234) NIL) ((-666 . -628) 53575) ((-171 . -659) 53470) ((-1273 . -1073) 53305) ((-608 . -174) 53284) ((-607 . -174) 53235) ((-1252 . -653) 53049) ((-1252 . -1073) 52857) ((-1247 . -1239) T) ((-725 . -568) 52768) ((-419 . -833) 52747) ((-419 . -940) T) ((-329 . -807) T) ((-489 . -1239) T) ((-992 . -628) 52728) ((-329 . -739) T) ((-657 . -1171) 52712) ((-430 . -625) 52694) ((-430 . -626) 52601) ((-110 . -664) 52583) ((-326 . -132) 52454) ((-176 . -317) T) ((-127 . -319) 52392) ((-410 . -1239) T) ((-110 . -384) 52374) ((-323 . -132) T) ((-69 . -407) T) ((-110 . -124) T) ((-532 . -501) 52358) ((-667 . -1134) T) ((-605 . -19) 52340) ((-61 . -453) T) ((-61 . -407) T) ((-837 . -1122) T) ((-605 . -616) 52315) ((-489 . -1060) 52275) ((-666 . -1071) T) ((-667 . -23) T) ((-1304 . -1122) T) ((-31 . -102) T) ((-1262 . -659) 52185) ((-870 . -659) 52144) ((-829 . -730) 51993) ((-1291 . -1239) T) ((-589 . -875) T) ((-583 . -659) 51965) ((-118 . -862) NIL) ((-1194 . -423) 51949) ((-1147 . -423) 51933) ((-869 . -423) 51917) ((-888 . -102) 51868) ((-1273 . -102) T) ((-1253 . -526) 51637) ((-1252 . -102) T) ((-1225 . -319) 51575) ((-1196 . -296) 51540) ((-1195 . -296) 51498) ((-537 . -93) T) ((-1189 . -296) 51326) ((-322 . -625) 51308) ((-1124 . -1122) T) ((-1102 . -661) 51182) ((-724 . -464) T) ((-702 . -625) 51114) ((-299 . -739) T) ((-108 . -929) NIL) ((-702 . -626) 51075) ((-613 . -625) 51057) ((-589 . -625) 51039) ((-562 . -626) NIL) ((-562 . -625) 51021) ((-541 . -625) 51003) ((-523 . -521) 50982) ((-499 . -1078) 50932) ((-486 . -1073) 50767) ((-519 . -521) 50746) ((-486 . -653) 50587) ((-219 . -1078) 50537) ((-370 . -661) 50489) ((-364 . -661) 50441) ((-227 . -861) T) ((-356 . -661) 50393) ((-614 . -102) 50323) ((-499 . -111) 50257) ((-494 . -379) 50236) ((-108 . -661) 50186) ((-365 . -234) 50173) ((-245 . -501) 50157) ((-354 . -148) 50139) ((-354 . -146) T) ((-171 . -381) 50110) ((-963 . -1287) 50094) ((-105 . -1239) T) ((-219 . -111) 50028) ((-887 . -319) 49993) ((-963 . -1122) 49943) ((-812 . -626) 49904) ((-812 . -625) 49886) ((-731 . -102) T) ((-1313 . -1239) T) ((-392 . -1239) T) ((-341 . -1122) T) ((-216 . -628) 49863) ((-1142 . -132) T) ((-1304 . -730) 49833) ((-727 . -38) 49803) ((-326 . -505) 49782) ((-543 . -1239) T) ((-512 . -1239) T) ((-1273 . -294) 49748) ((-1252 . -294) 49714) ((-337 . -152) 49698) ((-451 . -1122) T) ((-1238 . -1239) T) ((-1085 . -298) 49673) ((-1246 . -865) T) ((-48 . -234) 49660) ((-1181 . -34) T) ((-1313 . -1060) 49637) ((-496 . -34) T) ((-480 . -625) 49619) ((-256 . -296) 49593) ((-392 . -1060) 49577) ((-1194 . -1080) T) ((-1147 . -1080) T) ((-869 . -1080) T) ((-1084 . -861) T) ((-499 . -628) 49527) ((-219 . -628) 49477) ((-829 . -174) 49388) ((-532 . -296) 49340) ((-1281 . -300) 49319) ((-1220 . -375) 49293) ((-1110 . -275) 49277) ((-684 . -502) 49258) ((-684 . -625) 49224) ((-618 . -502) 49205) ((-118 . -1014) 49182) ((-618 . -625) 49132) ((-486 . -102) T) ((-182 . -502) 49113) ((-182 . -625) 49079) ((-162 . -502) 49060) ((-162 . -625) 49026) ((-157 . -502) 49007) ((-155 . -502) 48988) ((-157 . -625) 48954) ((-376 . -1122) T) ((-258 . -1122) T) ((-257 . -1122) T) ((-155 . -625) 48920) ((-1274 . -300) 48871) ((-1253 . -300) 48822) ((-887 . -1174) 48800) ((-1196 . -1024) 48766) ((-620 . -375) 48706) ((-1195 . -1024) 48672) ((-620 . -231) 48619) ((-707 . -862) T) ((-605 . -625) 48601) ((-605 . -626) NIL) ((-487 . -231) 48551) ((-499 . -1071) T) ((-1189 . -1024) 48517) ((-88 . -452) T) ((-88 . -407) T) ((-219 . -1071) T) ((-1148 . -1024) 48483) ((-1102 . -739) T) ((-725 . -1134) T) ((-608 . -300) 48462) ((-607 . -300) 48441) ((-499 . -248) T) ((-499 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1187 . -625) 48423) ((-887 . -38) 48375) ((-370 . -739) T) ((-364 . -739) T) ((-356 . -739) T) ((-108 . -807) T) ((-108 . -804) T) ((-725 . -23) T) ((-108 . -739) T) ((-532 . -1277) 48359) ((-1318 . -25) T) ((-486 . -294) 48325) ((-1318 . -21) T) ((-1252 . -319) 48264) ((-1198 . -102) T) ((-40 . -146) 48236) ((-40 . -148) 48208) ((-532 . -616) 48185) ((-1135 . -661) 48018) ((-614 . -319) 47956) ((-45 . -664) 47906) ((-45 . -679) 47856) ((-45 . -384) 47806) ((-1180 . -34) T) ((-886 . -861) NIL) ((-667 . -132) T) ((-497 . -625) 47788) ((-245 . -296) 47765) ((-1104 . -1239) T) ((-188 . -1122) T) ((-1109 . -464) 47716) ((-829 . -526) 47590) ((-795 . -464) 47521) ((-677 . -1073) 47505) ((-660 . -34) T) ((-644 . -34) T) ((-677 . -653) 47489) ((-366 . -1073) 47441) ((-354 . -237) T) ((-363 . -1073) 47393) ((-355 . -1073) 47345) ((-273 . -1073) 47188) ((-253 . -1073) 47031) ((-793 . -464) 46982) ((-366 . -653) 46934) ((-363 . -653) 46886) ((-355 . -653) 46838) ((-273 . -653) 46687) ((-253 . -653) 46536) ((-466 . -464) 46487) ((-972 . -423) 46471) ((-744 . -625) 46453) ((-258 . -730) 46395) ((-257 . -730) 46337) ((-744 . -626) 46198) ((-493 . -423) 46182) ((-350 . -312) T) ((-536 . -93) T) ((-362 . -940) T) ((-1022 . -102) 46132) ((-930 . -1073) 46097) ((-1046 . -862) T) ((-60 . -526) 46030) ((-930 . -653) 45995) ((-1252 . -1174) 45947) ((-1026 . -296) NIL) ((-227 . -1080) T) ((-390 . -841) T) ((-1135 . -34) T) ((-593 . -464) T) ((-530 . -464) T) ((-1256 . -1115) 45931) ((-1256 . -1122) 45909) ((-245 . -616) 45886) ((-1256 . -1117) 45843) ((-1196 . -625) 45825) ((-1195 . -625) 45807) ((-1189 . -625) 45789) ((-1189 . -626) NIL) ((-1148 . -625) 45771) ((-887 . -412) 45755) ((-609 . -102) T) ((-597 . -102) T) ((-548 . -102) T) ((-1273 . -38) 45596) ((-1252 . -38) 45410) ((-130 . -1239) T) ((-52 . -1239) T) ((-885 . -148) T) ((-593 . -414) T) ((-530 . -414) T) ((-1285 . -102) T) ((-1275 . -21) T) ((-1275 . -25) T) ((-1211 . -102) T) ((-1135 . -807) 45389) ((-1135 . -806) 45368) ((-1015 . -1122) T) ((-1049 . -34) T) ((-877 . -1122) T) ((-1135 . -739) 45346) ((-677 . -102) T) ((-658 . -102) T) ((-562 . -298) 45325) ((-488 . -34) T) ((-475 . -34) T) ((-366 . -102) T) ((-363 . -102) T) ((-321 . -1239) T) ((-355 . -102) T) ((-273 . -102) T) ((-253 . -102) T) ((-489 . -317) T) ((-1084 . -1080) T) ((-972 . -1080) T) ((-326 . -652) 45231) ((-323 . -652) 45192) ((-1194 . -1122) T) ((-493 . -1080) T) ((-491 . -102) T) ((-448 . -625) 45174) ((-1147 . -1122) T) ((-256 . -625) 45156) ((-869 . -1122) T) ((-1163 . -102) T) ((-829 . -300) 45087) ((-983 . -1078) 44970) ((-489 . -1044) T) ((-887 . -920) 44893) ((-748 . -1078) 44863) ((-1056 . -659) 44822) ((-1169 . -1143) 44806) ((-465 . -1078) 44776) ((-1124 . -526) 44709) ((-983 . -111) 44578) ((-930 . -102) T) ((-40 . -237) 44515) ((-748 . -111) 44480) ((-537 . -502) 44461) ((-537 . -625) 44427) ((-59 . -102) 44357) ((-532 . -626) 44318) ((-532 . -625) 44230) ((-531 . -102) 44180) ((-528 . -102) 44110) ((-509 . -102) 44060) ((-508 . -102) 43990) ((-465 . -111) 43953) ((-332 . -659) 43935) ((-514 . -865) T) ((-430 . -1078) 43909) ((-1233 . -995) 43871) ((-1021 . -1134) T) ((-390 . -659) 43821) ((-1157 . -628) 43802) ((-963 . -526) 43735) ((-499 . -808) T) ((-486 . -38) 43576) ((-430 . -111) 43543) ((-499 . -805) T) ((-1022 . -319) 43481) ((-219 . -808) T) ((-219 . -805) T) ((-1021 . -23) T) ((-725 . -132) T) ((-1252 . -412) 43451) ((-849 . -659) 43396) ((-840 . -659) 43355) ((-326 . -25) 43207) ((-171 . -423) 43191) ((-326 . -21) 43062) ((-323 . -25) T) ((-323 . -21) T) ((-879 . -379) T) ((-983 . -628) 42915) ((-110 . -34) T) ((-748 . -628) 42871) ((-728 . -628) 42853) ((-494 . -661) 42686) ((-886 . -1080) T) ((-605 . -298) 42661) ((-592 . -148) T) ((-576 . -148) T) ((-507 . -148) T) ((-1194 . -730) 42490) ((-1079 . -102) 42468) ((-1147 . -730) 42317) ((-1142 . -652) 42299) ((-869 . -730) 42269) ((-683 . -1239) T) ((-1 . -102) T) ((-560 . -1239) T) ((-430 . -628) 42177) ((-245 . -625) 41870) ((-1137 . -1122) T) ((-1262 . -423) 41854) ((-1211 . -319) 41658) ((-983 . -1071) T) ((-748 . -1071) T) ((-728 . -1071) T) ((-657 . -1122) 41608) ((-1076 . -661) 41592) ((-870 . -423) 41576) ((-523 . -102) T) ((-519 . -102) T) ((-273 . -319) 41563) ((-253 . -319) 41550) ((-1273 . -920) 41456) ((-983 . -336) 41435) ((-1252 . -920) 41232) ((-396 . -661) 41216) ((-856 . -865) 41195) ((-683 . -1060) 41091) ((-491 . -319) 40895) ((-258 . -526) 40828) ((-257 . -526) 40761) ((-1163 . -319) 40687) ((-419 . -865) 40638) ((-1233 . -912) 40617) ((-832 . -1122) T) ((-812 . -1078) 40601) ((-1281 . -296) 40566) ((-1274 . -296) 40524) ((-1253 . -296) 40352) ((-398 . -1122) T) ((-334 . -1122) T) ((-430 . -1071) T) ((-171 . -1080) T) ((-59 . -319) 40290) ((-812 . -111) 40269) ((-607 . -296) 40234) ((-531 . -319) 40172) ((-528 . -319) 40110) ((-509 . -319) 40048) ((-508 . -319) 39986) ((-430 . -238) 39965) ((-494 . -34) T) ((-227 . -1122) T) ((-1026 . -626) 39895) ((-1026 . -625) 39855) ((-993 . -625) 39815) ((-934 . -625) 39797) ((-712 . -148) T) ((-1311 . -1239) T) ((-1309 . -1239) T) ((-714 . -940) T) ((-714 . -833) T) ((-439 . -625) 39779) ((-1142 . -21) T) ((-1142 . -25) T) ((-683 . -388) 39763) ((-117 . -940) T) ((-887 . -272) 39747) ((-887 . -232) 39731) ((-44 . -1239) T) ((-78 . -1239) T) ((-127 . -126) 39715) ((-1076 . -34) T) ((-1311 . -1060) 39689) ((-1309 . -1060) 39646) ((-1262 . -1080) T) ((-870 . -1080) T) ((-366 . -1174) 39625) ((-363 . -1174) 39604) ((-355 . -1174) 39583) ((-494 . -807) 39562) ((-494 . -806) 39541) ((-229 . -34) T) ((-494 . -739) 39519) ((-812 . -628) 39365) ((-675 . -1073) 39349) ((-60 . -501) 39333) ((-583 . -1080) T) ((-1194 . -174) 39224) ((-675 . -653) 39208) ((-486 . -920) 39114) ((-153 . -1239) T) ((-1147 . -174) 39025) ((-1084 . -1122) T) ((-1109 . -969) 38970) ((-972 . -1122) T) ((-830 . -661) 38921) ((-795 . -969) 38890) ((-726 . -1122) T) ((-793 . -969) 38857) ((-528 . -292) 38841) ((-683 . -918) 38800) ((-493 . -1122) T) ((-466 . -969) 38767) ((-79 . -1239) T) ((-366 . -38) 38732) ((-363 . -38) 38697) ((-355 . -38) 38662) ((-273 . -38) 38511) ((-253 . -38) 38360) ((-930 . -1174) T) ((-536 . -502) 38341) ((-635 . -148) 38320) ((-635 . -146) 38299) ((-536 . -625) 38265) ((-118 . -148) T) ((-118 . -146) NIL) ((-426 . -739) T) ((-812 . -1071) T) ((-576 . -237) T) ((-507 . -237) T) ((-354 . -464) T) ((-1281 . -1024) 38231) ((-1274 . -1024) 38197) ((-1253 . -1024) 38163) ((-930 . -38) 38128) ((-227 . -730) 38093) ((-1021 . -132) T) ((-651 . -659) 38062) ((-329 . -47) 38032) ((-40 . -421) 38004) ((-141 . -625) 37986) ((-984 . -1239) T) ((-828 . -1239) T) ((-176 . -940) T) ((-561 . -379) T) ((-727 . -659) 37931) ((-618 . -628) 37912) ((-354 . -414) T) ((-684 . -628) 37893) ((-323 . -234) NIL) ((-182 . -628) 37874) ((-162 . -628) 37855) ((-157 . -628) 37836) ((-155 . -628) 37817) ((-532 . -298) 37794) ((-1252 . -232) 37764) ((-1252 . -272) 37734) ((-1236 . -1239) 37712) ((-1200 . -661) 37637) ((-891 . -102) T) ((-828 . -1060) 37464) ((-45 . -34) T) ((-694 . -102) T) ((-689 . -102) T) ((-675 . -102) T) ((-667 . -21) T) ((-667 . -25) T) ((-1124 . -501) 37448) ((-688 . -1239) T) ((-490 . -102) T) ((-250 . -102) 37378) ((-558 . -857) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1109 . -912) 37273) ((-886 . -1122) T) ((-1194 . -526) 37220) ((-1084 . -730) 37207) ((-795 . -912) 37110) ((-744 . -1078) 36953) ((-793 . -912) 36935) ((-972 . -730) 36784) ((-1147 . -526) 36736) ((-1300 . -1122) T) ((-1299 . -1122) T) ((-466 . -912) 36711) ((-493 . -730) 36560) ((-67 . -625) 36542) ((-639 . -1239) T) ((-744 . -111) 36371) ((-963 . -501) 36355) ((-1301 . -661) 36315) ((-1196 . -1078) 36198) ((-830 . -739) T) ((-1195 . -1078) 36033) ((-1189 . -1078) 35823) ((-329 . -1239) T) ((-1148 . -1078) 35706) ((-1025 . -1243) T) ((-1116 . -102) 35684) ((-828 . -388) 35653) ((-591 . -625) 35635) ((-558 . -1122) T) ((-1025 . -568) T) ((-1196 . -111) 35504) ((-1195 . -111) 35325) ((-1189 . -111) 35094) ((-1148 . -111) 34963) ((-1127 . -1125) 34927) ((-390 . -861) T) ((-1281 . -625) 34909) ((-1274 . -625) 34891) ((-887 . -659) 34828) ((-1253 . -625) 34810) ((-1253 . -626) NIL) ((-245 . -298) 34787) ((-40 . -464) T) ((-227 . -174) T) ((-171 . -1122) T) ((-744 . -628) 34572) ((-707 . -148) T) ((-707 . -146) NIL) ((-608 . -625) 34554) ((-607 . -625) 34536) ((-1142 . -234) 34523) ((-916 . -1122) T) ((-854 . -1122) T) ((-821 . -1122) T) ((-273 . -920) 34433) ((-253 . -920) 34410) ((-782 . -1122) T) ((-690 . -1122) T) ((-671 . -867) 34394) ((-635 . -237) 34345) ((-828 . -918) 34277) ((-873 . -865) T) ((-1244 . -379) T) ((-40 . -414) NIL) ((-118 . -237) NIL) ((-1196 . -628) 34159) ((-1142 . -674) T) ((-886 . -730) 34104) ((-258 . -501) 34088) ((-257 . -501) 34072) ((-1195 . -628) 33815) ((-1189 . -628) 33610) ((-725 . -652) 33558) ((-666 . -661) 33532) ((-1148 . -628) 33414) ((-305 . -34) T) ((-1142 . -113) T) ((-744 . -1071) T) ((-593 . -1296) 33401) ((-530 . -1296) 33378) ((-1262 . -1122) T) ((-1194 . -300) 33289) ((-1147 . -300) 33220) ((-1084 . -174) T) ((-299 . -1239) T) ((-870 . -1122) T) ((-972 . -174) 33131) ((-795 . -1265) 33115) ((-657 . -526) 33048) ((-77 . -625) 33030) ((-744 . -336) 32995) ((-1200 . -739) T) ((-583 . -1122) T) ((-493 . -174) 32906) ((-250 . -319) 32844) ((-1164 . -1134) T) ((-70 . -625) 32826) ((-1301 . -739) T) ((-1196 . -1071) T) ((-1195 . -1071) T) ((-1189 . -1071) T) ((-337 . -102) 32756) ((-1164 . -23) T) ((-2 . -1239) T) ((-1148 . -1071) T) ((-91 . -1143) 32740) ((-881 . -1134) T) ((-1196 . -238) 32699) ((-1195 . -248) 32678) ((-1195 . -238) 32630) ((-1189 . -238) 32517) ((-1189 . -248) 32496) ((-329 . -918) 32402) ((-881 . -23) T) ((-171 . -730) 32230) ((-419 . -1243) T) ((-1123 . -379) T) ((-1025 . -374) T) ((-885 . -464) T) ((-1046 . -148) T) ((-963 . -296) 32182) ((-323 . -862) NIL) ((-1273 . -659) 32064) ((-889 . -102) T) ((-1252 . -659) 31919) ((-725 . -25) T) ((-419 . -568) T) ((-725 . -21) T) ((-537 . -628) 31900) ((-365 . -148) 31882) ((-365 . -146) T) ((-1169 . -1122) 31860) ((-465 . -733) T) ((-75 . -625) 31842) ((-115 . -862) T) ((-250 . -292) 31826) ((-245 . -1078) 31747) ((-81 . -625) 31729) ((-748 . -379) 31682) ((-1198 . -841) T) ((-750 . -240) 31666) ((-1181 . -1239) T) ((-142 . -240) 31648) ((-245 . -111) 31564) ((-1262 . -730) 31393) ((-48 . -148) T) ((-886 . -174) T) ((-870 . -730) 31363) ((-496 . -1239) T) ((-972 . -526) 31310) ((-666 . -739) T) ((-583 . -730) 31297) ((-1056 . -1080) T) ((-707 . -237) NIL) ((-493 . -526) 31240) ((-963 . -19) 31224) ((-963 . -616) 31201) ((-1102 . -1239) T) ((-1083 . -1239) T) ((-829 . -626) NIL) ((-829 . -625) 31183) ((-1233 . -653) 31080) ((-1233 . -1073) 30963) ((-1026 . -1078) 30913) ((-425 . -625) 30895) ((-258 . -296) 30872) ((-370 . -1239) T) ((-364 . -1239) T) ((-356 . -1239) T) ((-257 . -296) 30849) ((-499 . -929) NIL) ((-326 . -29) 30819) ((-108 . -1239) T) ((-1025 . -1134) T) ((-219 . -929) NIL) ((-1102 . -1060) 30715) ((-934 . -1078) 30667) ((-1026 . -111) 30601) ((-1025 . -23) T) ((-724 . -1073) 30566) ((-934 . -111) 30504) ((-750 . -708) 30488) ((-724 . -653) 30453) ((-273 . -272) 30437) ((-273 . -232) 30421) ((-439 . -1078) 30405) ((-390 . -1080) T) ((-245 . -628) 30203) ((-707 . -1227) NIL) ((-499 . -661) 30153) ((-486 . -659) 30035) ((-108 . -900) 30017) ((-108 . -902) 29999) ((-707 . -1224) NIL) ((-219 . -661) 29949) ((-370 . -1060) 29933) ((-364 . -1060) 29917) ((-337 . -319) 29855) ((-356 . -1060) 29839) ((-227 . -300) T) ((-439 . -111) 29818) ((-60 . -625) 29750) ((-171 . -174) T) ((-1142 . -862) T) ((-108 . -1060) 29710) ((-908 . -1122) T) ((-849 . -1080) T) ((-840 . -1080) T) ((-707 . -35) NIL) ((-707 . -95) NIL) ((-323 . -1014) 29671) ((-185 . -102) T) ((-1312 . -1134) T) ((-1312 . -23) T) ((-592 . -464) T) ((-576 . -464) T) ((-507 . -464) T) ((-1304 . -625) 29653) ((-1262 . -174) 29544) ((-1233 . -102) T) ((-419 . -374) T) ((-1220 . -1122) T) ((-1211 . -231) 29494) ((-1205 . -857) T) ((-1204 . -857) T) ((-1188 . -1239) T) ((-245 . -1071) 29472) ((-1016 . -1239) T) ((-1172 . -34) T) ((-1189 . -805) NIL) ((-1189 . -808) NIL) ((-1180 . -1239) T) ((-489 . -940) T) ((-1021 . -652) 29420) ((-258 . -616) 29397) ((-257 . -616) 29374) ((-1164 . -132) T) ((-1124 . -626) 29335) ((-1102 . -388) 29319) ((-886 . -526) 29227) ((-245 . -238) 29179) ((-1124 . -625) 29161) ((-1110 . -1122) T) ((-1026 . -628) 29111) ((-1102 . -918) 29044) ((-934 . -628) 28981) ((-837 . -625) 28963) ((-1098 . -1122) T) ((-1084 . -300) T) ((-1026 . -248) T) ((-1026 . -238) T) ((-1026 . -1071) T) ((-978 . -1122) 28913) ((-972 . -300) 28844) ((-439 . -628) 28813) ((-108 . -388) 28795) ((-108 . -349) 28777) ((-934 . -1071) T) ((-934 . -248) T) ((-812 . -379) 28756) ((-724 . -102) T) ((-714 . -865) T) ((-660 . -1239) T) ((-644 . -1239) T) ((-620 . -1122) T) ((-620 . -622) 28732) ((-598 . -1073) 28707) ((-493 . -300) 28638) ((-583 . -174) T) ((-337 . -292) 28622) ((-365 . -237) T) ((-598 . -653) 28597) ((-366 . -360) 28576) ((-363 . -360) 28555) ((-355 . -360) 28534) ((-214 . -1239) T) ((-83 . -625) 28516) ((-213 . -1239) T) ((-211 . -1239) T) ((-210 . -1239) T) ((-209 . -1239) T) ((-208 . -1239) T) ((-205 . -1239) T) ((-204 . -1239) T) ((-203 . -1239) T) ((-202 . -1239) T) ((-487 . -1122) T) ((-201 . -1239) T) ((-273 . -260) 28478) ((-200 . -1239) T) ((-199 . -1239) T) ((-198 . -1239) T) ((-197 . -1239) T) ((-196 . -1239) T) ((-487 . -622) 28457) ((-195 . -1239) T) ((-283 . -1239) T) ((-282 . -1239) T) ((-281 . -1239) T) ((-280 . -1239) T) ((-491 . -231) 28407) ((-279 . -1239) T) ((-278 . -1239) T) ((-277 . -1239) T) ((-439 . -1071) T) ((-881 . -132) T) ((-856 . -1134) 28386) ((-48 . -237) T) ((-712 . -464) T) ((-108 . -918) NIL) ((-135 . -865) T) ((-1233 . -294) 28352) ((-1135 . -1239) T) ((-887 . -861) 28331) ((-1021 . -25) T) ((-925 . -739) T) ((-171 . -526) 28243) ((-1021 . -21) T) ((-925 . -485) T) ((-419 . -1134) T) ((-499 . -807) T) ((-499 . -804) T) ((-930 . -360) T) ((-499 . -739) T) ((-219 . -807) T) ((-219 . -804) T) ((-725 . -234) 28230) ((-219 . -739) T) ((-856 . -23) 28182) ((-1206 . -1122) T) ((-671 . -1073) 28166) ((-1205 . -1122) T) ((-536 . -628) 28147) ((-1204 . -1122) T) ((-329 . -317) 28126) ((-1057 . -240) 28072) ((-671 . -653) 28042) ((-419 . -23) T) ((-963 . -626) 28003) ((-963 . -625) 27915) ((-657 . -501) 27899) ((-45 . -1032) 27849) ((-1135 . -1060) 27676) ((-629 . -989) T) ((-503 . -102) T) ((-341 . -625) 27658) ((-1015 . -296) 27625) ((-605 . -664) 27607) ((-129 . -1122) T) ((-131 . -1122) T) ((-605 . -384) 27589) ((-354 . -1296) 27566) ((-451 . -625) 27548) ((-1262 . -526) 27495) ((-1109 . -1073) 27338) ((-1049 . -1239) T) ((-886 . -300) T) ((-1194 . -296) 27265) ((-1109 . -653) 27114) ((-1022 . -1017) 27098) ((-795 . -1073) 26921) ((-793 . -1073) 26764) ((-795 . -653) 26593) ((-793 . -653) 26442) ((-488 . -1239) T) ((-475 . -1239) T) ((-598 . -102) T) ((-473 . -1073) 26413) ((-466 . -1073) 26256) ((-677 . -659) 26225) ((-635 . -464) 26204) ((-473 . -653) 26175) ((-466 . -653) 26024) ((-366 . -659) 25961) ((-363 . -659) 25898) ((-355 . -659) 25835) ((-273 . -659) 25745) ((-253 . -659) 25655) ((-1304 . -393) 25627) ((-529 . -1122) T) ((-118 . -464) T) ((-1219 . -102) T) ((-1114 . -1122) 25597) ((-1056 . -1122) T) ((-1137 . -93) T) ((-909 . -862) T) ((-1281 . -111) 25466) ((-362 . -1243) T) ((-1281 . -1078) 25349) ((-1135 . -388) 25318) ((-1274 . -1078) 25153) ((-1253 . -1078) 24943) ((-1274 . -111) 24764) ((-1253 . -111) 24533) ((-1233 . -319) 24520) ((-1025 . -132) T) ((-930 . -659) 24470) ((-376 . -625) 24452) ((-362 . -568) T) ((-299 . -317) T) ((-608 . -1078) 24412) ((-607 . -1078) 24295) ((-593 . -1073) 24260) ((-530 . -1073) 24205) ((-372 . -1122) T) ((-332 . -1122) T) ((-258 . -625) 24166) ((-257 . -625) 24127) ((-593 . -653) 24092) ((-530 . -653) 24037) ((-707 . -421) 24004) ((-647 . -23) T) ((-619 . -23) T) ((-40 . -912) 23911) ((-671 . -102) T) ((-608 . -111) 23864) ((-607 . -111) 23733) ((-390 . -1122) T) ((-347 . -102) T) ((-171 . -300) 23644) ((-1252 . -861) 23597) ((-727 . -1080) T) ((-624 . -1239) T) ((-1169 . -526) 23530) ((-1212 . -848) 23514) ((-1135 . -918) 23446) ((-849 . -1122) T) ((-840 . -1122) T) ((-838 . -1122) T) ((-97 . -102) T) ((-145 . -862) T) ((-624 . -900) 23430) ((-1173 . -1239) T) ((-110 . -1239) T) ((-1109 . -102) T) ((-1085 . -34) T) ((-795 . -102) T) ((-793 . -102) T) ((-1281 . -628) 23312) ((-1274 . -628) 23055) ((-473 . -102) T) ((-466 . -102) T) ((-1253 . -628) 22850) ((-96 . -1239) T) ((-245 . -808) 22829) ((-245 . -805) 22808) ((-662 . -102) T) ((-608 . -628) 22766) ((-607 . -628) 22648) ((-1262 . -300) 22559) ((-677 . -646) 22543) ((-188 . -625) 22525) ((-657 . -296) 22477) ((-1056 . -730) 22461) ((-583 . -300) T) ((-983 . -661) 22386) ((-1312 . -132) T) ((-748 . -661) 22346) ((-728 . -661) 22333) ((-284 . -102) T) ((-465 . -661) 22263) ((-50 . -102) T) ((-593 . -102) T) ((-530 . -102) T) ((-1281 . -1071) T) ((-1274 . -1071) T) ((-1253 . -1071) T) ((-1162 . -1239) T) ((-519 . -659) 22245) ((-332 . -730) 22227) ((-1281 . -238) 22186) ((-1274 . -248) 22165) ((-1274 . -238) 22117) ((-1253 . -238) 22004) ((-1253 . -248) 21983) ((-1233 . -38) 21880) ((-608 . -1071) T) ((-607 . -1071) T) ((-1026 . -808) T) ((-1026 . -805) T) ((-993 . -808) T) ((-993 . -805) T) ((-887 . -1080) T) ((-109 . -625) 21862) ((-707 . -464) T) ((-390 . -730) 21827) ((-430 . -661) 21801) ((-885 . -884) 21785) ((-724 . -38) 21750) ((-607 . -238) 21709) ((-40 . -737) 21681) ((-362 . -339) 21658) ((-362 . -374) T) ((-1102 . -317) 21609) ((-304 . -1134) 21490) ((-1128 . -1239) T) ((-1021 . -234) 21435) ((-173 . -102) T) ((-1256 . -625) 21402) ((-856 . -132) 21354) ((-849 . -730) 21324) ((-657 . -1277) 21308) ((-840 . -730) 21278) ((-657 . -616) 21255) ((-494 . -1239) T) ((-370 . -317) T) ((-364 . -317) T) ((-356 . -317) T) ((-411 . -234) 21242) ((-419 . -132) T) ((-532 . -679) 21226) ((-108 . -317) T) ((-304 . -23) 21109) ((-532 . -664) 21093) ((-707 . -414) NIL) ((-532 . -384) 21077) ((-301 . -625) 21059) ((-91 . -1122) 21037) ((-108 . -1044) T) ((-576 . -144) T) ((-1289 . -152) 21021) ((-494 . -1060) 20848) ((-1275 . -146) 20809) ((-1275 . -148) 20770) ((-1076 . -1239) T) ((-1300 . -93) T) ((-1015 . -625) 20752) ((-831 . -1239) T) ((-877 . -625) 20734) ((-829 . -1078) 20577) ((-1299 . -93) T) ((-1194 . -626) NIL) ((-1118 . -1122) T) ((-1112 . -1122) T) ((-1109 . -319) 20564) ((-426 . -1239) T) ((-396 . -1239) T) ((-1095 . -1122) T) ((-229 . -1239) T) ((-1088 . -1122) T) ((-1058 . -1122) T) ((-1041 . -1122) T) ((-795 . -319) 20551) ((-793 . -319) 20538) ((-1194 . -625) 20520) ((-829 . -111) 20349) ((-1147 . -625) 20331) ((-638 . -1122) T) ((-589 . -175) T) ((-541 . -175) T) ((-466 . -319) 20318) ((-495 . -1122) T) ((-1147 . -626) 20066) ((-1056 . -174) T) ((-963 . -298) 20043) ((-220 . -1122) T) ((-869 . -625) 20025) ((-620 . -526) 19808) ((-81 . -628) 19749) ((-831 . -1060) 19733) ((-487 . -526) 19525) ((-846 . -865) 19504) ((-983 . -739) T) ((-748 . -739) T) ((-728 . -739) T) ((-362 . -1134) T) ((-1201 . -625) 19486) ((-225 . -102) T) ((-494 . -388) 19455) ((-527 . -1122) T) ((-522 . -1122) T) ((-520 . -1122) T) ((-812 . -661) 19429) ((-1046 . -464) T) ((-978 . -526) 19362) ((-362 . -23) T) ((-647 . -132) T) ((-619 . -132) T) ((-365 . -464) T) ((-245 . -379) 19341) ((-390 . -174) T) ((-1273 . -1080) T) ((-1252 . -1080) T) ((-227 . -1024) T) ((-829 . -628) 19078) ((-712 . -399) T) ((-430 . -739) T) ((-714 . -1243) T) ((-1164 . -652) 19026) ((-651 . -1122) T) ((-592 . -884) 19010) ((-1304 . -1078) 18994) ((-1181 . -1215) 18970) ((-714 . -568) T) ((-127 . -1122) 18948) ((-727 . -1122) T) ((-671 . -38) 18918) ((-494 . -918) 18850) ((-255 . -1122) T) ((-189 . -1122) T) ((-365 . -414) T) ((-326 . -148) 18829) ((-326 . -146) 18808) ((-117 . -568) T) ((-129 . -526) NIL) ((-323 . -148) 18764) ((-323 . -146) 18720) ((-48 . -464) T) ((-163 . -1122) T) ((-158 . -1122) T) ((-1181 . -107) 18667) ((-795 . -1174) 18645) ((-1304 . -111) 18624) ((-702 . -34) T) ((-604 . -1239) T) ((-562 . -34) T) ((-496 . -107) 18608) ((-258 . -298) 18585) ((-257 . -298) 18562) ((-1245 . -857) T) ((-886 . -296) 18513) ((-45 . -1239) T) ((-1233 . -920) 18494) ((-830 . -1239) T) ((-829 . -1071) T) ((-633 . -865) 18473) ((-675 . -659) 18442) ((-1200 . -47) 18419) ((-829 . -336) 18381) ((-1109 . -38) 18230) ((-829 . -238) 18209) ((-795 . -38) 18038) ((-793 . -38) 17887) ((-1137 . -502) 17868) ((-466 . -38) 17717) ((-1137 . -625) 17683) ((-1140 . -102) T) ((-657 . -626) 17644) ((-657 . -625) 17556) ((-593 . -1174) T) ((-530 . -1174) T) ((-1169 . -501) 17540) ((-354 . -1073) 17485) ((-1225 . -1122) 17463) ((-1164 . -25) T) ((-1164 . -21) T) ((-354 . -653) 17408) ((-1304 . -628) 17357) ((-340 . -1239) T) ((-486 . -1080) T) ((-1245 . -1122) T) ((-1253 . -805) NIL) ((-1253 . -808) NIL) ((-1021 . -862) 17336) ((-881 . -21) T) ((-851 . -1122) T) ((-832 . -625) 17318) ((-881 . -25) T) ((-812 . -739) T) ((-651 . -730) 17302) ((-176 . -1243) T) ((-593 . -38) 17267) ((-530 . -38) 17232) ((-398 . -625) 17214) ((-343 . -102) T) ((-334 . -625) 17196) ((-171 . -296) 17154) ((-1247 . -865) T) ((-63 . -1239) T) ((-112 . -102) T) ((-887 . -1122) T) ((-524 . -1239) T) ((-176 . -568) T) ((-727 . -730) 17124) ((-304 . -132) 17007) ((-227 . -625) 16989) ((-227 . -626) 16919) ((-1025 . -652) 16858) ((-1304 . -1071) T) ((-1200 . -1239) T) ((-1142 . -148) T) ((-644 . -1215) 16833) ((-744 . -929) 16812) ((-605 . -34) T) ((-660 . -107) 16796) ((-644 . -107) 16742) ((-1301 . -1239) T) ((-635 . -912) 16663) ((-1262 . -296) 16590) ((-744 . -661) 16479) ((-305 . -1239) T) ((-1200 . -1060) 16375) ((-963 . -630) 16352) ((-589 . -588) T) ((-589 . -539) T) ((-541 . -539) T) ((-118 . -912) NIL) ((-1189 . -929) NIL) ((-1084 . -626) 16267) ((-1084 . -625) 16249) ((-972 . -625) 16231) ((-726 . -502) 16181) ((-354 . -102) T) ((-258 . -1078) 16102) ((-257 . -1078) 16023) ((-406 . -102) T) ((-31 . -1122) T) ((-972 . -626) 15884) ((-726 . -625) 15819) ((-1302 . -1232) 15788) ((-493 . -625) 15770) ((-493 . -626) 15631) ((-273 . -423) 15615) ((-253 . -423) 15599) ((-323 . -237) NIL) ((-258 . -111) 15515) ((-257 . -111) 15431) ((-1196 . -661) 15356) ((-1195 . -661) 15253) ((-1189 . -661) 15105) ((-1148 . -661) 15030) ((-362 . -132) T) ((-82 . -453) T) ((-82 . -407) T) ((-1025 . -25) T) ((-1025 . -21) T) ((-888 . -1122) 14981) ((-40 . -1073) 14926) ((-887 . -730) 14878) ((-40 . -653) 14823) ((-390 . -300) T) ((-171 . -1024) 14774) ((-1109 . -920) 14673) ((-707 . -399) T) ((-1021 . -1019) 14657) ((-714 . -1134) T) ((-707 . -167) 14639) ((-795 . -920) 14546) ((-793 . -920) 14530) ((-1273 . -1122) T) ((-1252 . -1122) T) ((-1186 . -102) T) ((-326 . -1224) 14509) ((-326 . -1227) 14488) ((-466 . -920) 14465) ((-326 . -979) 14444) ((-135 . -1134) T) ((-117 . -1134) T) ((-992 . -1239) T) ((-879 . -1239) T) ((-714 . -23) T) ((-666 . -1239) T) ((-614 . -1287) 14428) ((-614 . -1122) 14378) ((-543 . -865) T) ((-512 . -865) T) ((-326 . -95) 14357) ((-91 . -526) 14290) ((-176 . -374) T) ((-258 . -628) 14088) ((-257 . -628) 13886) ((-326 . -35) 13865) ((-620 . -501) 13799) ((-135 . -23) T) ((-117 . -23) T) ((-986 . -102) T) ((-731 . -1122) T) ((-487 . -501) 13736) ((-419 . -652) 13684) ((-666 . -1060) 13580) ((-978 . -501) 13564) ((-366 . -1080) T) ((-363 . -1080) T) ((-355 . -1080) T) ((-273 . -1080) T) ((-253 . -1080) T) ((-886 . -626) NIL) ((-886 . -625) 13546) ((-1300 . -502) 13527) ((-1299 . -502) 13508) ((-1312 . -21) T) ((-1300 . -625) 13474) ((-1299 . -625) 13440) ((-583 . -1024) T) ((-744 . -739) T) ((-1312 . -25) T) ((-258 . -1071) 13418) ((-257 . -1071) 13396) ((-72 . -1239) T) ((-1164 . -234) 13341) ((-258 . -238) 13293) ((-257 . -238) 13245) ((-1142 . -237) T) ((-40 . -102) T) ((-930 . -1080) T) ((-707 . -912) NIL) ((-1203 . -102) T) ((-129 . -501) 13227) ((-1196 . -739) T) ((-1195 . -739) T) ((-1189 . -739) T) ((-1189 . -804) NIL) ((-1189 . -807) NIL) ((-974 . -102) T) ((-941 . -102) T) ((-885 . -1073) 13214) ((-1148 . -739) T) ((-784 . -102) T) ((-685 . -102) T) ((-885 . -653) 13201) ((-558 . -625) 13183) ((-486 . -1122) T) ((-350 . -1134) T) ((-176 . -1134) T) ((-329 . -940) 13162) ((-1273 . -730) 13003) ((-887 . -174) T) ((-1252 . -730) 12817) ((-856 . -21) 12769) ((-856 . -25) 12721) ((-250 . -1171) 12705) ((-127 . -526) 12638) ((-419 . -25) T) ((-419 . -21) T) ((-350 . -23) T) ((-171 . -626) 12404) ((-171 . -625) 12386) ((-176 . -23) T) ((-657 . -298) 12363) ((-532 . -34) T) ((-916 . -625) 12345) ((-89 . -1239) T) ((-854 . -625) 12327) ((-821 . -625) 12309) ((-782 . -625) 12291) ((-690 . -625) 12273) ((-245 . -661) 12106) ((-629 . -113) T) ((-1198 . -1122) T) ((-1194 . -1078) 11929) ((-216 . -1239) T) ((-1172 . -1239) T) ((-1147 . -1078) 11772) ((-869 . -1078) 11756) ((-1104 . -865) T) ((-1256 . -630) 11740) ((-1194 . -111) 11549) ((-1147 . -111) 11378) ((-869 . -111) 11357) ((-1246 . -862) T) ((-1262 . -626) NIL) ((-1262 . -625) 11339) ((-354 . -1174) T) ((-870 . -625) 11321) ((-1098 . -296) 11300) ((-1233 . -659) 11210) ((-80 . -1239) T) ((-925 . -1239) T) ((-1225 . -526) 11143) ((-1026 . -929) NIL) ((-1109 . -272) 11127) ((-620 . -296) 11103) ((-1109 . -232) 11087) ((-499 . -1239) T) ((-583 . -625) 11069) ((-487 . -296) 11048) ((-1026 . -661) 10998) ((-529 . -93) T) ((-1025 . -234) 10929) ((-219 . -1239) T) ((-978 . -296) 10881) ((-885 . -102) T) ((-299 . -940) T) ((-830 . -317) 10860) ((-795 . -272) 10844) ((-795 . -232) 10828) ((-934 . -661) 10780) ((-724 . -659) 10730) ((-707 . -737) 10697) ((-647 . -21) T) ((-647 . -25) T) ((-619 . -21) T) ((-559 . -102) T) ((-354 . -38) 10662) ((-499 . -900) 10644) ((-499 . -902) 10626) ((-486 . -730) 10467) ((-64 . -1239) T) ((-219 . -900) 10449) ((-219 . -902) 10431) ((-619 . -25) T) ((-439 . -661) 10405) ((-1194 . -628) 10174) ((-499 . -1060) 10134) ((-887 . -526) 10046) ((-1147 . -628) 9838) ((-869 . -628) 9756) ((-219 . -1060) 9716) ((-245 . -34) T) ((-1022 . -1122) 9694) ((-592 . -1073) 9681) ((-576 . -1073) 9668) ((-507 . -1073) 9633) ((-1273 . -174) 9564) ((-1252 . -174) 9495) ((-592 . -653) 9482) ((-576 . -653) 9469) ((-507 . -653) 9434) ((-725 . -146) 9413) ((-725 . -148) 9392) ((-130 . -865) T) ((-714 . -132) T) ((-561 . -1239) T) ((-137 . -477) 9369) ((-1169 . -625) 9301) ((-671 . -669) 9285) ((-129 . -296) 9235) ((-117 . -132) T) ((-489 . -1243) T) ((-620 . -616) 9211) ((-487 . -616) 9190) ((-609 . -1122) T) ((-347 . -346) 9159) ((-597 . -1122) T) ((-548 . -1122) T) ((-489 . -568) T) ((-1194 . -1071) T) ((-1147 . -1071) T) ((-869 . -1071) T) ((-836 . -1239) T) ((-245 . -807) 9138) ((-245 . -806) 9117) ((-1194 . -336) 9094) ((-245 . -739) 9072) ((-978 . -19) 9056) ((-499 . -388) 9038) ((-499 . -349) 9020) ((-1147 . -336) 8992) ((-365 . -1296) 8969) ((-219 . -388) 8951) ((-219 . -349) 8933) ((-978 . -616) 8910) ((-1194 . -238) T) ((-1285 . -1122) T) ((-677 . -1122) T) ((-658 . -1122) T) ((-1211 . -1122) T) ((-1109 . -260) 8847) ((-598 . -659) 8807) ((-366 . -1122) T) ((-363 . -1122) T) ((-355 . -1122) T) ((-273 . -1122) T) ((-253 . -1122) T) ((-84 . -1239) T) ((-128 . -102) 8757) ((-122 . -102) 8707) ((-1252 . -526) 8567) ((-1211 . -622) 8546) ((-1163 . -1122) T) ((-1137 . -628) 8527) ((-1102 . -940) 8478) ((-491 . -1122) T) ((-1026 . -807) T) ((-1026 . -804) T) ((-491 . -622) 8457) ((-258 . -808) 8436) ((-258 . -805) 8415) ((-257 . -808) 8394) ((-40 . -1174) NIL) ((-257 . -805) 8373) ((-1026 . -739) T) ((-129 . -19) 8355) ((-993 . -807) T) ((-712 . -1073) 8320) ((-934 . -739) T) ((-930 . -1122) T) ((-908 . -625) 8302) ((-129 . -616) 8277) ((-712 . -653) 8242) ((-91 . -501) 8226) ((-499 . -918) NIL) ((-887 . -300) T) ((-227 . -1078) 8191) ((-849 . -296) 8170) ((-219 . -918) NIL) ((-846 . -1134) 8149) ((-59 . -1122) 8099) ((-531 . -1122) 8077) ((-528 . -1122) 8027) ((-509 . -1122) 8005) ((-508 . -1122) 7955) ((-592 . -102) T) ((-576 . -102) T) ((-507 . -102) T) ((-486 . -174) 7886) ((-370 . -940) T) ((-364 . -940) T) ((-356 . -940) T) ((-227 . -111) 7842) ((-846 . -23) 7794) ((-439 . -739) T) ((-108 . -940) T) ((-40 . -38) 7739) ((-108 . -833) T) ((-593 . -360) T) ((-530 . -360) T) ((-671 . -659) 7698) ((-326 . -464) 7677) ((-323 . -464) T) ((-614 . -526) 7610) ((-419 . -234) 7555) ((-350 . -132) T) ((-176 . -132) T) ((-304 . -25) 7419) ((-304 . -21) 7302) ((-45 . -1215) 7281) ((-66 . -625) 7263) ((-55 . -102) T) ((-347 . -659) 7245) ((-1290 . -102) T) ((-1289 . -102) 7175) ((-1281 . -661) 7100) ((-1274 . -661) 6997) ((-45 . -107) 6947) ((-832 . -628) 6931) ((-1253 . -661) 6783) ((-1253 . -929) NIL) ((-1244 . -1239) T) ((-1220 . -625) 6765) ((-1212 . -102) T) ((-1124 . -437) 6749) ((-1124 . -379) 6728) ((-398 . -628) 6712) ((-334 . -628) 6696) ((-1118 . -93) T) ((-1109 . -659) 6606) ((-1085 . -1239) T) ((-1084 . -1078) 6593) ((-1084 . -111) 6578) ((-972 . -111) 6407) ((-972 . -1078) 6250) ((-795 . -659) 6160) ((-793 . -659) 6070) ((-677 . -730) 6054) ((-635 . -1073) 6041) ((-635 . -653) 6028) ((-560 . -865) T) ((-493 . -1078) 5871) ((-489 . -374) T) ((-473 . -659) 5827) ((-466 . -659) 5737) ((-227 . -628) 5687) ((-366 . -730) 5639) ((-363 . -730) 5591) ((-118 . -1073) 5536) ((-355 . -730) 5488) ((-273 . -730) 5337) ((-253 . -730) 5186) ((-1112 . -93) T) ((-1095 . -93) T) ((-118 . -653) 5131) ((-1088 . -93) T) ((-963 . -664) 5115) ((-1079 . -1122) 5093) ((-493 . -111) 4922) ((-1058 . -93) T) ((-1041 . -93) T) ((-963 . -384) 4906) ((-254 . -102) T) ((-983 . -47) 4885) ((-74 . -625) 4867) ((-725 . -237) T) ((-723 . -102) T) ((-712 . -102) T) ((-1 . -1122) T) ((-633 . -1134) T) ((-1110 . -625) 4849) ((-638 . -93) T) ((-1098 . -625) 4831) ((-930 . -730) 4796) ((-127 . -501) 4780) ((-495 . -93) T) ((-633 . -23) T) ((-402 . -23) T) ((-87 . -1239) T) ((-220 . -93) T) ((-620 . -625) 4762) ((-620 . -626) NIL) ((-487 . -626) NIL) ((-487 . -625) 4744) ((-362 . -25) T) ((-362 . -21) T) ((-50 . -659) 4703) ((-523 . -1122) T) ((-519 . -1122) T) ((-122 . -319) 4641) ((-128 . -319) 4579) ((-608 . -661) 4553) ((-607 . -661) 4478) ((-593 . -659) 4428) ((-227 . -1071) T) ((-530 . -659) 4358) ((-1084 . -628) 4330) ((-390 . -1024) T) ((-227 . -248) T) ((-227 . -238) T) ((-863 . -502) 4314) ((-1084 . -630) 4295) ((-978 . -626) 4256) ((-978 . -625) 4168) ((-972 . -628) 3957) ((-863 . -625) 3905) ((-885 . -38) 3892) ((-726 . -628) 3842) ((-1273 . -300) 3793) ((-1252 . -300) 3744) ((-493 . -628) 3529) ((-1142 . -464) T) ((-514 . -862) T) ((-326 . -1161) 3508) ((-1123 . -1239) T) ((-1021 . -148) 3487) ((-1021 . -146) 3466) ((-507 . -319) 3453) ((-1206 . -625) 3435) ((-305 . -1215) 3414) ((-1205 . -625) 3396) ((-1157 . -1239) T) ((-1204 . -625) 3378) ((-886 . -1078) 3323) ((-489 . -1134) T) ((-140 . -848) 3305) ((-115 . -848) 3286) ((-1225 . -501) 3270) ((-1084 . -1071) T) ((-635 . -102) T) ((-983 . -1239) T) ((-972 . -1071) T) ((-258 . -379) 3249) ((-257 . -379) 3228) ((-886 . -111) 3157) ((-305 . -107) 3107) ((-131 . -625) 3089) ((-129 . -626) NIL) ((-129 . -625) 3033) ((-118 . -102) T) ((-748 . -1239) T) ((-728 . -1239) T) ((-489 . -23) T) ((-465 . -1239) T) ((-493 . -1071) T) ((-1084 . -238) T) ((-972 . -336) 3002) ((-40 . -920) 2911) ((-493 . -336) 2868) ((-366 . -174) T) ((-363 . -174) T) ((-355 . -174) T) ((-273 . -174) 2779) ((-253 . -174) 2690) ((-983 . -1060) 2586) ((-529 . -502) 2567) ((-748 . -1060) 2538) ((-529 . -625) 2504) ((-430 . -1239) T) ((-1127 . -102) T) ((-1114 . -625) 2463) ((-1056 . -625) 2445) ((-707 . -1073) 2395) ((-1302 . -152) 2379) ((-1300 . -628) 2360) ((-1299 . -628) 2341) ((-1294 . -625) 2323) ((-1281 . -739) T) ((-707 . -653) 2273) ((-1274 . -739) T) ((-1253 . -804) NIL) ((-1253 . -807) NIL) ((-171 . -1078) 2183) ((-930 . -174) T) ((-886 . -628) 2113) ((-1253 . -739) T) ((-1025 . -353) 2087) ((-225 . -659) 2039) ((-1022 . -526) 1972) ((-856 . -862) 1951) ((-576 . -1174) T) ((-486 . -300) 1902) ((-608 . -739) T) ((-372 . -625) 1884) ((-332 . -625) 1866) ((-430 . -1060) 1762) ((-607 . -739) T) ((-419 . -862) 1713) ((-171 . -111) 1609) ((-846 . -132) 1561) ((-1289 . -319) 1499) ((-750 . -152) 1483) ((-984 . -865) 1382) ((-828 . -865) 1333) ((-499 . -317) T) ((-390 . -625) 1300) ((-532 . -1032) 1284) ((-390 . -626) 1198) ((-219 . -317) T) ((-142 . -152) 1180) ((-727 . -296) 1159) ((-499 . -1044) T) ((-592 . -38) 1146) ((-576 . -38) 1133) ((-507 . -38) 1098) ((-219 . -1044) T) ((-886 . -1071) T) ((-849 . -625) 1080) ((-840 . -625) 1062) ((-838 . -625) 1044) ((-829 . -929) 1023) ((-1313 . -1134) T) ((-322 . -1239) T) ((-1262 . -1078) 846) ((-870 . -1078) 830) ((-886 . -248) T) ((-886 . -238) NIL) ((-702 . -1239) T) ((-1313 . -23) T) ((-829 . -661) 719) ((-562 . -1239) T) ((-430 . -349) 703) ((-583 . -1078) 690) ((-1262 . -111) 499) ((-714 . -652) 481) ((-870 . -111) 460) ((-392 . -23) T) ((-171 . -628) 238) ((-1211 . -526) 30) ((-891 . -1122) T) ((-694 . -1122) T) ((-689 . -1122) T) ((-675 . -1122) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 66f3d8fd..ec825864 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3486852426) -(4467 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3486916216) +(4469 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -230,7 +230,7 @@ |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| - |RationalFunctionLimitPackage| |LinearDependence| + |RationalFunctionLimitPackage| |LinearDependence| |LinearElement| |LinearlyExplicitRingOver| |LinearSet| |ListToMap| |ListFunctions2| |ListFunctions3| |List| |Literal| |LeftLinearSet| |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| @@ -488,669 +488,666 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |overlap| |generateIrredPoly| |rst| |leftTrim| - |rightOne| |realEigenvalues| |distribute| |B1solve| - |multiEuclideanTree| |setrest!| |ode2| |generalizedEigenvector| - |radicalSimplify| |s20acf| |reindex| |rischNormalize| |makeSketch| - |rightDiscriminant| |frst| |irreducibleFactors| |c02agf| |normalise| - |idealiser| |skewSFunction| |normalizedAssociate| - |factorSquareFreeByRecursion| |binomial| - |removeRoughlyRedundantFactorsInPols| |quadraticForm| |mathieu24| - |subPolSet?| |contains?| |edf2efi| |e04mbf| |bezoutResultant| - |collectQuasiMonic| |controlPanel| |tubeRadius| - |internalLastSubResultant| |mantissa| |mapSolve| |errorKind| - |putProperties| |lllip| |curryRight| |An| |symmetricPower| - |virtualDegree| |gcdprim| |complexNumeric| |infix| |listBranches| - |singular?| |toseInvertibleSet| |errorInfo| - |semiSubResultantGcdEuclidean1| |listYoungTableaus| |linkToFortran| - |belong?| |sylvesterSequence| |generalInfiniteProduct| |cAsinh| - |externalList| |elaborateFile| |leftUnits| |OMgetType| |kernels| - |index?| |ODESolve| |enqueue!| |separateFactors| |legendreP| - |gcdPrimitive| |ptFunc| |lighting| |sinh2csch| |rootPower| - |quadratic?| |rational| |operator| |createPrimitiveNormalPoly| - |leftRank| |algebraicDecompose| |nextNormalPrimitivePoly| |hasHi| - |quotientByP| |e02ddf| |removeSuperfluousQuasiComponents| |tanNa| - |inrootof| |cAsech| |drawCurves| |diagonal?| |sincos| |dmpToP| - |integralDerivationMatrix| |varList| |back| |insertMatch| |univariate| - |arg1| |lagrange| |solid| |leadingBasisTerm| |cExp| |modifyPoint| - |cartesian| |wordInGenerators| |qinterval| |intersect| |unitNormal| - |arg2| |unprotectedRemoveRedundantFactors| |selectODEIVPRoutines| - |f02adf| |taylorRep| |cAsin| Y |coerceListOfPairs| |schwerpunkt| - |univariatePolynomials| |pushup| |makeSeries| |extractIfCan| |e01bgf| - |imagE| |iflist2Result| |decreasePrecision| |nthExpon| |packageCall| - |factor| |conditions| |monicRightFactorIfCan| |unaryFunction| - |complexEigenvalues| |f04asf| |expandTrigProducts| |sequences| - |mkAnswer| |qqq| |sqrt| |unexpand| |pointLists| |match| |palgRDE| - |qroot| |c05adf| |extendedResultant| |leftZero| |cAtan| |curryLeft| - |purelyAlgebraicLeadingMonomial?| |real| |prepareSubResAlgo| - |linearMatrix| |mapExpon| |getGoodPrime| |oddInfiniteProduct| |tree| - |regularRepresentation| |lazyResidueClass| |acothIfCan| |repeating| - |imag| |orbits| |lifting1| |modulus| |roughBasicSet| - |createRandomElement| |kmax| |directProduct| |matrixDimensions| - |intcompBasis| |writeInt8!| |leftCharacteristicPolynomial| |ord| - |inverseIntegralMatrix| |rootsOf| |df2ef| |f01ref| |minPoints3D| - |options| |oblateSpheroidal| |constant?| |fortranInteger| - |mapBivariate| |compactFraction| |listConjugateBases| |rarrow| |birth| - |functionIsFracPolynomial?| |noKaratsuba| - |setLegalFortranSourceExtensions| |brace| |eigenMatrix| |presuper| - |radix| |scopes| |pToHdmp| |epilogue| |graeffe| |iicoth| |moebius| - |destruct| |var1Steps| |sign| |fintegrate| |deleteRoutine!| - |subTriSet?| |iisin| |elaboration| |string| |solveInField| - |fractRadix| |sqfree| |updatF| |primlimitedint| |sequence| |cCos| - |innerSolve1| |reverse!| |linearPart| |elliptic| |primextintfrac| - |prod| |initializeGroupForWordProblem| |create| |children| - |macroExpand| |plus| |f02xef| |orbit| |prologue| |addmod| |convert| - |summation| |f01rdf| |degreeSubResultantEuclidean| |blue| |stirling1| - |isConnected?| |rightZero| |monomial| |normalDenom| - |uncouplingMatrices| |csc2sin| |makeYoungTableau| |UpTriBddDenomInv| - |indicialEquationAtInfinity| |OMconnectTCP| |extractClosed| |ptree| - |multivariate| |d03faf| |lintgcd| |flatten| |rightPower| |d02cjf| - |tan2trig| |rightCharacteristicPolynomial| |irVar| |times| |leftRecip| - |variables| |linearlyDependent?| |escape| |sturmSequence| |iiasec| - |addPoint2| |exactQuotient| |mathieu12| |currentScope| |shrinkable| - |permutation| |cothIfCan| |close| |goto| |viewZoomDefault| |s18acf| - |green| |member?| |quote| |changeName| |minIndex| |meshFun2Var| - |principalIdeal| |isExpt| |principalAncestors| |makeFloatFunction| - |xn| |closed| |splitSquarefree| |display| |f02fjf| |diagonal| |expr| - |sumSquares| |monom| |setErrorBound| |OMgetEndBVar| |minus!| |e02daf| - |setScreenResolution3D| |byteBuffer| |solveLinearPolynomialEquation| - |squareTop| |toseLastSubResultant| |powern| |taylor| |omError| - |genericLeftTrace| |coleman| |minPoly| |permutationRepresentation| - |hex| |removeCosSq| |autoReduced?| |laurent| |clearTheFTable| - |inverseLaplace| |atanIfCan| |categoryMode| |e02zaf| |eq?| |common| - |rationalFunction| |puiseux| |selectPolynomials| - |reducedContinuedFraction| |musserTrials| |aQuadratic| |simplifyLog| - |variable| |satisfy?| |ramified?| |startTable!| |bombieriNorm| - |showSummary| |thenBranch| |input| |subHeight| |cycle| |cosIfCan| - |outerProduct| |iterators| |critBonD| |inRadical?| |inv| |inR?| - |basicSet| |setProperties| |cAcoth| |library| |nary?| - |LazardQuotient2| |f02aff| |ground?| |HenselLift| |OMreceive| - |factorset| |rootNormalize| |mainCharacterization| |useNagFunctions| - |id| |ground| |adaptive| |getDatabase| |dual| |value| |optimize| - |pquo| |pushNewContour| |createNormalPrimitivePoly| |bsolve| |lo| - |infLex?| |applyRules| |iisinh| |leadingMonomial| |central?| |iiacosh| - |lazyPseudoQuotient| |basisOfCommutingElements| |showAttributes| - |splitDenominator| |monicDecomposeIfCan| |euclideanGroebner| |f07adf| - |internal?| |leadingCoefficient| |mapmult| |OMgetAtp| - |isAbsolutelyIrreducible?| |polynomialZeros| |car| |jordanAdmissible?| - |assert| |numberOfOperations| |bandedJacobian| - |createLowComplexityNormalBasis| |repSq| |style| |shuffle| - |lexTriangular| |ratPoly| |att2Result| |mapUnivariateIfCan| - |mainMonomial| |pair?| |makeCos| |janko2| |messagePrint| |leftNorm| - |stoseSquareFreePart| |algebraic?| |noLinearFactor?| |parent| - |dualSignature| |OMgetAttr| |outputMeasure| |recolor| - |viewWriteAvailable| |f04adf| |lazyEvaluate| - |semiResultantReduitEuclidean| |componentUpperBound| |f04jgf| - |OMputObject| |Lazard| |genericRightNorm| |lyndon?| |var1StepsDefault| - |algebraicVariables| |first| |createLowComplexityTable| |setImagSteps| - |monicDivide| |every?| |genericRightMinimalPolynomial| |Is| - |var2StepsDefault| |readIfCan!| |rest| |subtractIfCan| |iiexp| - |reduction| |minset| |cycleSplit!| |quasiRegular?| |totalGroebner| - |besselJ| |alternating| |exponentialOrder| |cCsch| |lhs| - |setLabelValue| |createThreeSpace| |fortranLiteral| |s17aff| |qfactor| - |genericPosition| |modularGcdPrimitive| |rhs| |numberOfDivisors| - |constructor| |mainCoefficients| |primitivePart| |primes| - |discriminant| |subst| |reducedQPowers| |radicalEigenvectors| - |quasiComponent| |sumOfKthPowerDivisors| |rightExtendedGcd| - |readInt32!| |invmultisect| |highCommonTerms| |solveLinear| - |currentEnv| |mdeg| |legendre| |bat| |sparsityIF| |hasSolution?| - |identity| |ReduceOrder| |f01rcf| |ridHack1| |eulerPhi| - |compiledFunction| |cycleRagits| |midpoints| |subscript| |readInt16!| - |mesh?| |mapUp!| |univariateSolve| |imagI| |infiniteProduct| - |numericalOptimization| |middle| |lieAdmissible?| |trapezoidalo| - |iicos| |leftRankPolynomial| |li| |maxIndex| |nextsubResultant2| - |symmetricDifference| |LagrangeInterpolation| |safetyMargin| |romberg| - |pushucoef| |exponential| |pushuconst| |rotate| |iiGamma| |coerceL| - |rubiksGroup| |e01sbf| |fortranCarriageReturn| |OMputAtp| |f02aef| - |determinant| UP2UTS |range| |operators| |iicsc| |recip| |s20adf| - |exprex| |compound?| |s21bcf| |objects| |crest| - |removeRoughlyRedundantFactorsInContents| |e02bbf| - |factorGroebnerBasis| |selectMultiDimensionalRoutines| |interReduce| - |setCondition!| |maxPoints| |problemPoints| |typeList| |exQuo| - |setEpilogue!| |base| |defineProperty| |alphanumeric?| |outputArgs| - |updatD| |ScanFloatIgnoreSpaces| |dot| |newLine| |quadraticNorm| - |node?| |df2st| |badNum| |interval| |conjug| |sncndn| |less?| - |multinomial| |pushdterm| |symbolIfCan| |e02ahf| |prepareDecompose| - |subSet| |type| |associatedEquations| |complexSolve| |palglimint0| - |rem| |support| |exp1| |map!| |cAcosh| |iisech| |string?| - |validExponential| |binomThmExpt| |mapCoef| |groebnerIdeal| - |lastSubResultantEuclidean| |OMconnOutDevice| |quo| |binaryFunction| - |qsetelt!| |modTree| |coth2trigh| |dim| |updateStatus!| |f01brf| - |stronglyReduce| |fortranLogical| |red| |internalIntegrate| - |moreAlgebraic?| |inc| |OMopenFile| |test| |width| - |rewriteSetByReducingWithParticularGenerators| |normalizeIfCan| - |refine| |fullPartialFraction| |square?| |reducedSystem| - |semiSubResultantGcdEuclidean2| |triangSolve| |div| |generators| - |moduleSum| |s13acf| |conditionsForIdempotents| |normalized?| - |complex?| |c05pbf| |exprHasAlgebraicWeight| |removeDuplicates!| - |meshPar2Var| |content| |firstDenom| |exquo| |adaptive3D?| - |halfExtendedResultant1| |position!| |laurentRep| |OMgetBind| - |measure| |push| |select!| |solveid| |redmat| ~= |airyAi| - |closedCurve| |pattern| |tanSum| |getMatch| |hasoln| |branchPoint?| - |viewPhiDefault| |LyndonWordsList| |cyclicEqual?| |writeUInt8!| - |acotIfCan| |#| |countable?| |acsch| |basisOfRightAnnihilator| - |inputBinaryFile| |pomopo!| |fixedPointExquo| |aQuartic| |table| - |tracePowMod| ~ |laurentIfCan| |mainForm| |numberOfVariables| - |partialDenominators| |associatedSystem| |matrixGcd| |identification| - |palgintegrate| |rules| |iitan| |new| |readInt8!| |delta| - |fractionFreeGauss!| |prefix| |vedf2vef| |argument| |obj| |pointColor| - |previous| |changeBase| |e01bef| |exponential1| |principal?| - |completeEchelonBasis| |algint| |ratDsolve| |specialTrigs| - |viewport3D| |kovacic| |cache| |message| |flexible?| |optional| - |directSum| |doubleFloatFormat| |rowEch| |numberOfMonomials| - |increase| |critT| |entry?| |/\\| |selectFiniteRoutines| |atoms| - |polCase| |figureUnits| |distance| |weight| |possiblyNewVariety?| - |numberOfIrreduciblePoly| |leadingIdeal| |setelt!| |\\/| - |numberOfChildren| |cubic| |definingEquations| |sinhIfCan| |bumptab| - |eof?| |primintegrate| |external?| |moebiusMu| |cLog| |isOpen?| - |constantOperator| |insertRoot!| |OMgetEndAtp| - |zeroSetSplitIntoTriangularSystems| |bfEntry| |resultantEuclideannaif| - |search| |rotatex| |boundOfCauchy| |startPolynomial| |groebgen| |has?| - |antisymmetric?| |splitConstant| |lex| |fortranComplex| |f01qdf| - |nextLatticePermutation| |tableForDiscreteLogarithm| |contract| - |cycleElt| |differentialVariables| |LiePolyIfCan| |space| |mkPrim| - |removeSquaresIfCan| |leviCivitaSymbol| |lfunc| |lambda| - |selectsecond| |aCubic| |ScanFloatIgnoreSpacesIfCan| |writeLine!| - |rightRankPolynomial| |bitLength| |SFunction| |quadratic| - |fortranCharacter| |iicot| |e02dff| |toroidal| |normal01| - |stopTableInvSet!| |genericLeftTraceForm| |linearAssociatedOrder| - |semiResultantEuclidean2| |trailingCoefficient| |printHeader| - |totalDifferential| |rk4| |rootOfIrreduciblePoly| |separate| - |functionIsContinuousAtEndPoints| |removeRedundantFactorsInContents| - |goodPoint| |superHeight| |e01sef| |left| |parametersOf| - |nativeModuleExtension| |rur| |level| |karatsubaDivide| - |removeRoughlyRedundantFactorsInPol| |iiabs| |leftAlternative?| - |connectTo| |leftTraceMatrix| |right| |iiacsc| - |stripCommentsAndBlanks| |laplace| |conjugate| |partialFraction| F - |call| |argumentListOf| |setfirst!| |rischDE| |bright| - |findConstructor| |rightGcd| |decomposeFunc| |printingInfo?| |iiacoth| - |inf| |OMUnknownCD?| |clearTheSymbolTable| |groebner?| |totalLex| - |top!| |delay| |derivative| |OMUnknownSymbol?| |seriesToOutputForm| - |lazyPseudoRemainder| |jokerMode| |gcdPolynomial| |hitherPlane| - |viewThetaDefault| |eval| |resetAttributeButtons| |twoFactor| - |ip4Address| |isOp| |droot| |rootSplit| |flagFactor| |approxSqrt| - |coefChoose| |zero| |exp| |setAdaptive| |univcase| |roughBase?| - |leftReducedSystem| |f02agf| |nextIrreduciblePoly| |subResultantGcd| - |trigs2explogs| |SturmHabichtMultiple| |infieldint| |generalLambert| - |dAndcExp| |perfectNthRoot| |d01gbf| |prime?| |OMwrite| |redPo| - |createNormalElement| |isList| |And| |stFunc2| |error| |iitanh| - |mainDefiningPolynomial| |atom?| |csubst| |setValue!| |setchildren!| - |s17ajf| |mathieu23| |Or| |leftExactQuotient| |seed| |lazyGintegrate| - |Ci| |minimumDegree| |linearDependenceOverZ| |primaryDecomp| |nsqfree| - |degree| |freeOf?| |Not| |midpoint| |headReduced?| |size| - |resetVariableOrder| |quasiRegular| |inverseIntegralMatrixAtInfinity| - |integralMatrix| |conjunction| |float?| |reorder| |bfKeys| - |removeCoshSq| |hexDigit?| |homogeneous?| |colorDef| |sup| |f02abf| - |clipWithRanges| |zeroDimPrime?| |s21bbf| |symbol| - |purelyTranscendental?| |replaceKthElement| |e01saf| - |stoseInvertible?sqfreg| |getProperties| |nextSubsetGray| - |setAttributeButtonStep| |block| |idealSimplify| |putColorInfo| - |expression| |doubleResultant| |iilog| |sts2stst| |extension| - |substring?| |leftMult| |ipow| |rk4qc| |systemCommand| |key| - |maxPoints3D| |tanh2trigh| |isAtom| |integer| |double| |zerosOf| - |adjoint| |npcoef| |ParCond| |imaginary| |graphState| |numerator| - |makeSUP| |iiasinh| |iiasech| |fTable| |Gamma| |getlo| |suffix?| - |checkRur| |rk4a| |addBadValue| |filename| |continuedFraction| - |positiveSolve| |unparse| |getButtonValue| |f07fef| - |dimensionOfIrreducibleRepresentation| |mathieu22| |e02gaf| - |structuralConstants| |dihedralGroup| |OMlistCDs| |showTheSymbolTable| - |realEigenvectors| |laplacian| |e04fdf| |positive?| |enumerate| - |prefix?| |sech2cosh| |alternative?| |exprToGenUPS| |resetBadValues| - |null| |parse| |aromberg| |purelyAlgebraic?| |partialNumerators| - |bit?| |lyndonIfCan| |vspace| |initial| |rectangularMatrix| - |headRemainder| |stopTableGcd!| |palglimint| |not| |zoom| - |stiffnessAndStabilityFactor| |deref| |youngDiagram| |node| - |addMatchRestricted| |dominantTerm| |nil?| |knownInfBasis| - |setleaves!| |dihedral| |and| |recoverAfterFail| |reducedForm| - |combineFeatureCompatibility| |bitCoef| |cycles| |retract| - |endSubProgram| |possiblyInfinite?| |number?| |strongGenerators| - |prindINFO| |OMputString| |or| |axesColorDefault| |declare!| - |shellSort| |elRow1!| |balancedFactorisation| |hyperelliptic| - |elColumn2!| |raisePolynomial| |viewpoint| |component| |delete| - |cyclotomicFactorization| |recur| |leftUnit| |complexLimit| - |generalizedContinuumHypothesisAssumed| |internalAugment| - |drawComplexVectorField| |s17ahf| |lieAlgebra?| |box| |makeEq| - |airyBi| |characteristicSerie| |perfectSquare?| |s17aef| |infix?| - |exptMod| |keys| |listOfMonoms| |setMinPoints3D| - |rationalApproximation| |drawToScale| |symmetricGroup| ** |iidsum| - |poisson| |mask| |getSyntaxFormsFromFile| |lazyPquo| - |subResultantsChain| |abs| |randomR| |algintegrate| |getPickedPoints| - |fixedPoint| |predicate| |extract!| |OMgetEndObject| |karatsuba| - |nand| |zeroDim?| |c06gcf| |OMgetObject| |plot| |sort| |f02awf| - |multiple?| |getProperty| |infRittWu?| |semicolonSeparate| |s17def| - |readLine!| |squareMatrix| |ode1| |unitCanonical| |vconcat| - |printInfo!| |readBytes!| |limitPlus| |iibinom| |magnitude| - |finiteBasis| |gensym| |outputGeneral| |wronskianMatrix| |binary| - |segment| |sPol| |dmp2rfi| |tanintegrate| |psolve| |iiacot| - |testModulus| |copy!| |swapRows!| |index| |bernoulliB| |tab| - |outputFloating| |signatureAst| |functionIsOscillatory| - |stronglyReduced?| |encodingDirectory| |extend| - |topFortranOutputStack| |torsionIfCan| |routines| |map| |outputFixed| - |qualifier| |realRoots| |coercePreimagesImages| |edf2fi| |permanent| - |complementaryBasis| |makeTerm| |chebyshevU| |tRange| |getMeasure| - |void| |appendPoint| FG2F |nilFactor| |debug3D| |pushdown| |equation| - |xCoord| |s19aaf| |OMencodingSGML| |algebraicOf| - |removeRedundantFactors| |latex| |pair| |basisOfLeftNucloid| |euler| - |mkIntegral| |OMgetInteger| |selectNonFiniteRoutines| - |selectOptimizationRoutines| |expintfldpoly| |rightMult| - |symmetricSquare| |removeZero| |expextendedint| - |rewriteSetWithReduction| |relationsIdeal| |overbar| |makeResult| - |readUInt8!| |OMsend| |closedCurve?| |rootOf| |nlde| |imagi| |zag| - |e01baf| |OMsupportsCD?| |rationalPoint?| |parameters| |maxint| - |iterationVar| |patternMatch| |tubeRadiusDefault| |uniform01| |Beta| - |close!| |setref| |cylindrical| |putGraph| |log10| |one?| - |stoseInvertible?| |f02axf| |invertibleSet| |splitNodeOf!| |say| - |genericRightTrace| |oddintegers| |csch2sinh| |algSplitSimple| - |represents| SEGMENT |bezoutDiscriminant| |reduceLODE| - |multiEuclidean| |sh| |perfectSqrt| |interpretString| |lowerCase?| - |degreePartition| |distdfact| |multMonom| |datalist| |backOldPos| - |Frobenius| |clip| |linears| |dark| |ldf2vmf| |reset| - |cyclotomicDecomposition| |forLoop| |just| |pointColorDefault| - |lSpaceBasis| |LowTriBddDenomInv| |critM| |stoseInvertible?reg| - |coHeight| |integralCoordinates| |basisOfMiddleNucleus| |duplicates?| - |mergeFactors| |identityMatrix| |alphabetic?| |leftLcm| |failed| - |setTex!| |expIfCan| |setEmpty!| |transcendent?| |processTemplate| - |write| |digits| |internalSubPolSet?| |failed?| |nextPrime| |any?| - |whileLoop| |palgextint| |dfRange| |readLineIfCan!| |reopen!| - |generator| |save| |getBadValues| |simpleBounds?| - |removeRedundantFactorsInPols| |makeVariable| |primintfldpoly| - |d01amf| |cotIfCan| |headAst| |reduced?| |maxrow| |digit?| - |rightDivide| |numberOfImproperPartitions| |selectAndPolynomials| - |headReduce| |mappingMode| |eulerE| |toseSquareFreePart| - |internalIntegrate0| |cTanh| |pol| |stoseIntegralLastSubResultant| - |leastPower| |lexico| |polygon?| |powerSum| |supRittWu?| |option?| - |e04ycf| |LazardQuotient| |OMputEndAtp| |numberOfComponents| - |direction| |irreducibleRepresentation| |functorData| |besselI| - |components| |realSolve| |patternMatchTimes| |extractProperty| - |completeEval| |trim| |digit| |nextColeman| |norm| |nonSingularModel| - |taylorQuoByVar| |jordanAlgebra?| |idealiserMatrix| |radPoly| - |sayLength| |preprocess| |delete!| |rdregime| |shallowExpand| |nil| - |prevPrime| |log| |substitute| |kroneckerDelta| |bracket| |asinIfCan| - |ffactor| |linearlyDependentOverZ?| |irreducible?| |primitive?| - |invmod| |ListOfTerms| |gcdcofactprim| |d01apf| |digamma| - |palgextint0| |normalizedDivide| |unrankImproperPartitions0| - |totalDegree| |maxRowIndex| |increasePrecision| |wholePart| - |OMputInteger| |hostByteOrder| |leftMinimalPolynomial| |convergents| - |float| |modularGcd| |upperCase!| |leftTrace| |traceMatrix| - |associatorDependence| |groebSolve| |padecf| |generalizedInverse| - |approximate| |basisOfLeftNucleus| |heap| |basisOfCenter| |isPlus| - |coshIfCan| |curve?| |complex| |critB| |lflimitedint| |graphs| |apply| - |pole?| |genericLeftNorm| |incr| |Nul| |squareFreePart| |mpsode| - |iFTable| |makeViewport3D| |antisymmetricTensors| |push!| - |karatsubaOnce| |shiftRight| |constant| |removeSuperfluousCases| |hi| - |zeroVector| |OMputFloat| |readable?| |leftDivide| |primitivePart!| - |halfExtendedSubResultantGcd2| |quotient| |companionBlocks| - |minimumExponent| |f02akf| |weierstrass| |integralRepresents| - |viewport2D| |imports| |monomials| |root?| |bounds| |s19adf| |numer| - |baseRDE| |firstNumer| |calcRanges| |repeatUntilLoop| |perspective| - |euclideanNormalForm| |roman| |rationalPoints| |elRow2!| |denom| - |expint| |high| |f04maf| |fractionPart| |inconsistent?| - |showIntensityFunctions| |basis| |ode| |evaluateInverse| |coefficient| - |formula| |lift| |halfExtendedResultant2| |disjunction| |d02bbf| - |shiftLeft| |open?| |collectUnder| |isAnd| |factorAndSplit| - |minColIndex| |useSingleFactorBound| |tValues| |reduce| |pi| |froot| - |cosh2sech| |squareFreePolynomial| |contours| |c06gsf| |rotatey| - |points| GE |cAcos| |vectorise| |rischDEsys| - |unrankImproperPartitions1| |insertTop!| |e02akf| |infinity| - |RittWuCompare| |zeroSetSplit| |selectSumOfSquaresRoutines| - |complement| GT |setScreenResolution| |cyclicSubmodule| |merge!| - |interpolate| |OMencodingUnknown| |merge| |OMbindTCP| |writeByte!| - |countRealRoots| |monicRightDivide| LE |conjugates| |resize| - |safeFloor| |newSubProgram| |precision| |nrows| |overset?| - |mainSquareFreePart| |balancedBinaryTree| |quoted?| |unary?| - |optional?| LT |concat| |OMgetString| |clikeUniv| |capacity| |arity| - |kernel| |ncols| |definingInequation| |extractSplittingLeaf| - |dimensionsOf| |wordsForStrongGenerators| |irCtor| |part?| |bottom!| - |realZeros| |uniform| |cycleEntry| |prolateSpheroidal| |complexRoots| - |list| |copies| |OMgetApp| |mapMatrixIfCan| |real?| |imagj| |axes| - |generalizedContinuumHypothesisAssumed?| |acosIfCan| |draw| - |nextPrimitivePoly| |eisensteinIrreducible?| |optAttributes| - |pseudoDivide| |hermite| |rightQuotient| |aspFilename| |wholeRagits| - |character?| |minRowIndex| |zeroDimPrimary?| |indicialEquations| - |basisOfRightNucleus| |point?| |zeroSquareMatrix| |zeroOf| - |euclideanSize| |cAcsc| |eyeDistance| |lyndon| |fortran| - |OMsupportsSymbol?| |polynomial| |point| |allRootsOf| |setStatus!| - |morphism| |mainPrimitivePart| |primeFrobenius| |remove| - |jacobiIdentity?| |localReal?| |derivationCoordinates| |ScanArabic| - |removeSinSq| |SturmHabichtCoefficients| |triangularSystems| |ref| - |upDateBranches| |stirling2| |rowEchelon| |createPrimitivePoly| - |getVariableOrder| |innerEigenvectors| |coord| |mainValue| |host| - |lazyVariations| |makeObject| |simplify| |unitVector| - |integralAtInfinity?| |hostPlatform| GF2FG |last| |simplifyExp| |lp| - |lfextendedint| |s17dcf| |geometric| |stoseInternalLastSubResultant| - |byte| |clipParametric| |sizePascalTriangle| |e02bcf| |series| |coef| - |indices| |SturmHabicht| |assoc| |in?| |split!| |d03eef| - |probablyZeroDim?| |shiftRoots| |increment| |f02bjf| |denominators| - |normalize| |mainKernel| |setIntersection| |twist| |rdHack1| |simpson| - |row| |constantOpIfCan| |normal?| |antiAssociative?| |OMcloseConn| - |entries| |findBinding| |split| |numberOfFactors| - |useEisensteinCriterion?| |lastSubResultantElseSplit| |makeprod| - |acscIfCan| |acoshIfCan| |intensity| |phiCoord| |list?| |scale| - |sumOfSquares| |isQuotient| |cross| |shape| |d02kef| |OMgetEndApp| - |weights| |entry| |getZechTable| |min| |chvar| |unitsColorDefault| - |characteristic| |members| |mapGen| |c06fuf| |lazyPrem| - |initiallyReduced?| |any| |exportedOperators| |d01aqf| |sorted?| - |critMonD1| |getOperator| |infinityNorm| |chiSquare| - |partialQuotients| |null?| |factor1| |univariatePolynomialsGcds| - |doubleRank| |commonDenominator| |removeIrreducibleRedundantFactors| - |limitedint| |setColumn!| |setPredicates| |parabolic| - |nextsousResultant2| |cyclePartition| |oddlambert| - |reduceBasisAtInfinity| |useEisensteinCriterion| |smith| |mappingAst| - |bytes| |branchIfCan| |changeNameToObjf| |iicosh| |unit| |addPoint| - |constantRight| |padicallyExpand| |before?| |BumInSepFFE| |function| - |sinIfCan| |c06fqf| |height| |script| |tanh2coth| |getIdentifier| - |singleFactorBound| |quartic| |bumptab1| |rightMinimalPolynomial| - |directory| |f01bsf| |attributeData| |listLoops| |pdf2ef| |ran| - |supDimElseRittWu?| |resultant| |oneDimensionalArray| - |lineColorDefault| |equality| |cyclic?| |leastAffineMultiple| - |currentCategoryFrame| |subscriptedVariables| |completeHensel| - |setRow!| |e04naf| |solid?| |retractIfCan| |ignore?| |s17dhf| - |lazyIrreducibleFactors| |initTable!| |s17akf| - |exprHasWeightCosWXorSinWX| |tex| |modifyPointData| |rightUnit| - |fortranLinkerArgs| |constDsolve| |paraboloidal| |indicialEquation| - |f04arf| |se2rfi| |basisOfCentroid| |nextPrimitiveNormalPoly| - |iiatanh| |myDegree| |numeric| |clearTheIFTable| |rightLcm| - |viewDeltaYDefault| |s21bdf| |OMgetVariable| |insertBottom!| - |minGbasis| |d02ejf| |isEquiv| |radical| |d01asf| |chainSubResultants| - |top| |makeop| |wordInStrongGenerators| |create3Space| |transpose| - UTS2UP |intChoose| |label| |stiffnessAndStabilityOfODEIF| - |enterPointData| |nthr| |tableau| |swap| |continue| |coth2tanh| - |const| |s14abf| |selectfirst| |tubePoints| |computeCycleLength| - |checkForZero| |logpart| |realElementary| |jacobian| |ratDenom| - |e04gcf| |normFactors| EQ |paren| |d02bhf| |c05nbf| |d03edf| - |indiceSubResultant| |monic?| |makeSin| |head| |solveLinearlyOverQ| - |stopMusserTrials| |unknown| |sn| |outlineRender| |OMreadFile| - |someBasis| |floor| |flexibleArray| |linSolve| |readUInt16!| |d01bbf| - |prinpolINFO| |asechIfCan| |nodes| |whatInfinity| |divisorCascade| - |upperBound| |alphabetic| |d01anf| |zeroDimensional?| |OMputVariable| - |iroot| |writable?| |generalizedEigenvectors| |lcm| |lexGroebner| - |secIfCan| |shallowCopy| |integerBound| |pToDmp| |addMatch| - |cycleLength| |leastMonomial| |outputAsScript| |printInfo| - |eigenvector| |corrPoly| |toScale| |e04ucf| |dictionary| |cfirst| - |cap| |frobenius| |tail| |measure2Result| |innerSolve| |e02bef| - |append| |getExplanations| |readUInt32!| |pdct| |eigenvectors| - |positiveRemainder| |inputOutputBinaryFile| |removeSinhSq| - |plenaryPower| |length| |option| |divergence| |stFunc1| |divideIfCan| - |minPoints| |zero?| |gcd| |hash| |elements| |edf2ef| |declare| - |category| |normalElement| |mergeDifference| |orthonormalBasis| - |replace| |scripts| |integral?| |count| |leftFactorIfCan| |OMgetBVar| - |false| |makingStats?| |complexForm| |domain| |subCase?| |mapdiv| - |monomialIntPoly| |complexElementary| |e02ajf| |nonLinearPart| - |rightRegularRepresentation| |semiResultantEuclideannaif| |collect| - |leadingCoefficientRicDE| |debug| |elaborate| |package| |c02aff| - |firstSubsetGray| |monomRDEsys| |newReduc| |comparison| - |unknownEndian| |selectIntegrationRoutines| - |solveLinearPolynomialEquationByFractions| |s15aef| |setTopPredicate| - D |ellipticCylindrical| |coerceP| |saturate| |ScanRoman| |clipSurface| - |powerAssociative?| |iprint| |simpsono| |pop!| |unravel| |discreteLog| - |dioSolve| |sample| |computeCycleEntry| |pow| |leftOne| |gcdcofact| - |iteratedInitials| |OMputEndError| |transcendentalDecompose| |redPol| - |semiIndiceSubResultantEuclidean| |acschIfCan| |dimension| - |complexNumericIfCan| |traverse| |expenseOfEvaluation| - |useSingleFactorBound?| |rowEchelonLocal| |tube| |center| |mkcomm| - |rotate!| |hclf| |c06frf| |complete| |returnTypeOf| |s14baf| - |inHallBasis?| |blankSeparate| |difference| |exponents| - |monomialIntegrate| |explicitlyEmpty?| |isOr| |tanIfCan| |connect| - |plus!| |explicitEntries?| |relativeApprox| |ideal| |subNodeOf?| - |extendedIntegrate| |leaf?| |simplifyPower| |genus| |systemSizeIF| - |more?| |getGraph| |normalForm| |copyInto!| |quoByVar| |setPosition| - |slash| |bindings| |leftDiscriminant| |showClipRegion| |divisor| - |nthRootIfCan| |contractSolve| |sdf2lst| |setFormula!| |d01ajf| - |light| |generic?| |brillhartTrials| |reduceByQuasiMonic| |rightUnits| - |iExquo| |e01sff| |extendIfCan| |elementary| |mainVariables| |quatern| - |besselY| |factorsOfDegree| |coefficients| |constantIfCan| |monomRDE| - |f02wef| |nextNormalPoly| |llprop| |LiePoly| |d01fcf| |print| - |getOperands| |df2mf| |regime| |makeMulti| |normDeriv2| - |alternatingGroup| |lfintegrate| |multiplyCoefficients| |fibonacci| - |resolve| |cot2tan| |rightFactorIfCan| |anticoord| |lambert| - |maxColIndex| |showTheRoutinesTable| |rename| |gbasis| |condition| - |palgLODE| |leftRemainder| |isobaric?| |ricDsolve| - |radicalOfLeftTraceForm| |setPrologue!| |bothWays| |torsion?| - |printCode| |e02agf| |submod| |symbol?| |OMputSymbol| |po| - |indiceSubResultantEuclidean| |unmakeSUP| |localAbs| |notelem| - |augment| |predicates| |internalSubQuasiComponent?| - |linearPolynomials| |resetNew| |hcrf| |mesh| |primitiveMonomials| - |goodnessOfFit| |expt| |intPatternMatch| |OMencodingBinary| |unit?| - |leftPower| |diff| |integralBasisAtInfinity| |atrapezoidal| |empty| - |comment| |cyclicParents| |reductum| |iisqrt2| |setDifference| - |normInvertible?| |exactQuotient!| |getMultiplicationTable| - |internalDecompose| |buildSyntax| |f04mcf| |linear| - |numberOfPrimitivePoly| |setButtonValue| |eigenvalues| |negative?| - |lquo| |decompose| |step| |critMTonD1| |fglmIfCan| |extractBottom!| - |log2| |dequeue!| |iifact| |iisqrt3| |getConstant| |polyPart| |c06gbf| - |surface| |rroot| |createIrreduciblePoly| |bitTruth| - |currentSubProgram| |makeUnit| |normalDeriv| |meshPar1Var| |d02gbf| - |bernoulli| |s19abf| |henselFact| |decrease| |physicalLength| |Aleph| - |sum| |innerint| |read!| |imagk| |s18aff| |certainlySubVariety?| - |minrank| |order| |getRef| |cyclicGroup| |lfextlimint| |erf| - |setprevious!| |c06ekf| |asinhIfCan| |palgint0| |front| - |identitySquareMatrix| |hMonic| |putProperty| |countRealRootsMultiple| - |d01alf| |symmetricRemainder| |intermediateResultsIF| |infinite?| - |trace2PowMod| |rombergo| |eq| |showTheIFTable| |reseed| |tablePow| - |rename!| |fullDisplay| |shift| |insert| |nonQsign| |rootSimp| - |resultantReduit| |limit| |Hausdorff| |iter| |f01qef| |cyclotomic| - |approxNthRoot| |polygamma| |permutationGroup| |ravel| |dilog| - |thetaCoord| |output| |hasPredicate?| |roughSubIdeal?| - |printStatement| |resultantReduitEuclidean| |bezoutMatrix| |iiperm| - |radicalEigenvector| |factorsOfCyclicGroupSize| |matrix| - |evenInfiniteProduct| |sin| |nthExponent| |reshape| |s17dlf| - |pointSizeDefault| |leftRegularRepresentation| |randnum| |nullary?| - |c06ecf| |rangePascalTriangle| |vertConcat| |FormatArabic| |cos| - |optpair| |factorials| |enterInCache| |curveColorPalette| |solve1| - |integerIfCan| |leftScalarTimes!| |relerror| |OMgetFloat| - |writeBytes!| |tan| |edf2df| |mapDown!| |f04qaf| |primextendedint| - |setMinPoints| |matrixConcat3D| |revert| |second| |quotedOperators| - |closeComponent| |addPointLast| |cn| |cot| |compile| |OMputAttr| - |prinshINFO| |bat1| |isMult| |quasiMonic?| |transform| - |subresultantVector| |third| |extractTop!| |FormatRoman| |seriesSolve| - |sec| |algebraicCoefficients?| |OMclose| |inGroundField?| |dequeue| - |sechIfCan| |categoryFrame| |closed?| |mix| |plotPolar| |ocf2ocdf| - |commutative?| |returns| |csc| |integers| |update| |mainVariable| - |returnType!| |units| |makeViewport2D| |e01bhf| |laguerre| |separant| - |denomRicDE| |antiCommutator| |fixedPoints| |asin| |superscript| - |reducedDiscriminant| |RemainderList| |LyndonBasis| |inverse| - |polyRDE| |primPartElseUnitCanonical!| |numberOfComputedEntries| - |rewriteIdealWithRemainder| |factors| |acos| |yellow| |lprop| - |explicitlyFinite?| |numerators| |maximumExponent| |universe| - |diagonals| |constantCoefficientRicDE| |crushedSet| |totalfract| - |factorFraction| |atan| |basisOfLeftAnnihilator| |f2st| - |tryFunctionalDecomposition| |signature| |getOrder| |removeZeroes| - |hdmpToDmp| |setStatus| |sort!| |OMputApp| |deriv| |zCoord| |acot| - |noncommutativeJordanAlgebra?| |redpps| |rationalIfCan| - |completeHermite| |restorePrecision| |generate| |super| |readByte!| - |upperCase| |expenseOfEvaluationIF| |compBound| |iiacsch| |code| - |asec| |leftQuotient| |position| |cardinality| |scalarMatrix| - |beauzamyBound| |asimpson| |polar| |tubePointsDefault| |gethi| - |mulmod| |operation| |fortranLiteralLine| |acsc| |incrementBy| - |nextItem| |palgLODE0| |iCompose| |divisors| |reverseLex| - |primPartElseUnitCanonical| |stoseInvertibleSet| |scanOneDimSubspaces| - |internalInfRittWu?| |remainder| |sinh| |mat| |e02baf| |polyRicDE| - |integralLastSubResultant| |c06eaf| |expand| |sin?| - |transcendenceDegree| |lowerBound| |changeWeightLevel| |rowEchLocal| - |cosh| |scalarTypeOf| |Si| |f04faf| |monicLeftDivide| |filterWhile| - |fixPredicate| |sortConstraints| |cCosh| |noValueMode| |OMgetEndBind| - |localUnquote| |tanh| |conical| |rewriteIdealWithHeadRemainder| - |squareFree| |filterUntil| |denominator| |rightRecip| |padicFraction| - |callForm?| |move| |setRealSteps| |tanAn| |withPredicates| |coth| - |d01akf| |resultantEuclidean| |bivariate?| |select| |curve| - |lookupFunction| |pointData| |showArrayValues| |tan2cot| |extendedint| - |OMgetError| |irreducibleFactor| |sech| |var2Steps| |finite?| - |rightFactorCandidate| |odd?| |empty?| |usingTable?| - |pointColorPalette| |viewPosDefault| |child| - |genericLeftMinimalPolynomial| |csch| |doublyTransitive?| - |lazyIntegrate| |elem?| |cosSinInfo| |associator| |diophantineSystem| - |setVariableOrder| |squareFreeLexTriangular| |asinh| |heapSort| - |removeConstantTerm| |mapUnivariate| |findCycle| - |stoseInvertibleSetsqfreg| |iipow| |OMgetEndAttr| |atanhIfCan| - |gderiv| |acosh| |topPredicate| |bumprow| |cup| |e02adf| |outputAsTex| - |initiallyReduce| |userOrdered?| |init| |getCurve| |setlast!| |atanh| - |cond| |partition| |region| |swap!| |e02def| |horizConcat| |neglist| - |showFortranOutputStack| |listRepresentation| |f01mcf| |acoth| - |variable?| |antiCommutative?| |makeRecord| |stFuncN| |fortranReal| - |singRicDE| |f2df| |selectPDERoutines| |asech| |s17adf| - |startTableGcd!| |ef2edf| |badValues| |presub| |s01eaf| - |factorPolynomial| |pastel| |physicalLength!| |irDef| |cSech| - |voidMode| |powers| |hermiteH| |s17acf| |ParCondList| |OMmakeConn| - |leftGcd| |multiple| |btwFact| |unvectorise| |insert!| |sec2cos| - |hypergeometric0F1| |dom| |applyQuote| |shufflein| |LyndonWordsList1| - |subspace| |numericIfCan| |set| |lifting| |stoseInvertibleSetreg| - |youngGroup| |finiteBound| |iomode| |mindeg| |constantLeft| - |primitiveElement| |numberOfComposites| |reflect| - |genericLeftDiscriminant| BY |computeBasis| |nthFlag| - |rightScalarTimes!| |graphImage| |qelt| |parts| |fracPart| - |complexIntegrate| |consnewpol| |safeCeiling| |nothing| |addiag| - |semiDiscriminantEuclidean| |divideIfCan!| |c06fpf| |qsetelt| - |startTableInvSet!| |computePowers| |ruleset| |fillPascalTriangle| - |sinhcosh| |power| |lowerPolynomial| |repeating?| |deepExpand| - |xRange| |inspect| |socf2socdf| |setUnion| |rightRemainder| - |tanhIfCan| |sqfrFactor| |explimitedint| |trapezoidal| |title| - |approximants| |yRange| |viewDefaults| |typeForm| |dec| - |outputBinaryFile| |semiResultantEuclidean1| |s18aef| - |complexNormalize| |subresultantSequence| |lazyPseudoDivide| - |mainExpression| |zRange| |solveRetract| |binaryTree| |suchThat| - |abelianGroup| |deepestTail| |groebnerFactorize| |OMReadError?| - |sylvesterMatrix| |choosemon| RF2UTS |radicalEigenvalues| |OMputBVar| - |max| |rightTraceMatrix| |generalTwoFactor| |e| |bivariatePolynomials| - |weighted| |whitePoint| |mapExponents| NOT |cAcot| |lookup| - |medialSet| |rightNorm| |groebner| |rootPoly| |hspace| |setOrder| - |PollardSmallFactor| OR |cSec| |prinb| |polyred| |double?| - |viewSizeDefault| |OMgetEndError| |s17dgf| |createGenericMatrix| - |setright!| |properties| AND |setAdaptive3D| |cscIfCan| |lowerCase!| - |show| |constantToUnaryFunction| |palginfieldint| - |brillhartIrreducible?| |setMaxPoints| |aLinear| |expPot| |setOfMinN| - |translate| |cSin| |wrregime| |mainVariable?| |monicModulo| |open| - |sub| |element?| |pile| |clipPointsDefault| |PDESolve| |e01daf| - |deepestInitial| |rationalPower| |trace| - |semiLastSubResultantEuclidean| |showAllElements| |extensionDegree| - |check| |mathieu11| |isPower| |OMputEndObject| |column| - |removeDuplicates| |sizeMultiplication| |iiacos| |pr2dmp| - |mightHaveRoots| |cos2sec| |largest| |tubePlot| |subNode?| |UP2ifCan| - |createNormalPoly| |deepCopy| |symFunc| |besselK| |generalSqFr| - |resultantnaif| |evaluate| |fortranTypeOf| |rangeIsFinite| |bitand| - |setProperty| |over| |char| |qPot| |splitLinear| |equiv| |operations| - |argscript| |chiSquare1| |changeMeasure| |commutator| |remove!| - |bitior| |showScalarValues| |cschIfCan| |localIntegralBasis| |nullary| - |printStats!| |rightRank| |modularFactor| |definingPolynomial| - |clearTable!| |queue| |status| |result| |cAsec| - |tryFunctionalDecomposition?| |sin2csc| |divide| |low| |invertible?| - |drawStyle| |setPoly| |graphStates| |pseudoRemainder| |drawComplex| - |dmpToHdmp| |rootBound| |d02raf| |genericRightDiscriminant| |nodeOf?| - |cSinh| |changeVar| |doubleDisc| |accuracyIF| * |bipolarCylindrical| - |iisec| |lepol| |showTheFTable| |subResultantGcdEuclidean| - |printTypes| |subResultantChain| |exprToXXP| |wholeRadix| - |createMultiplicationTable| |gradient| |generic| |commaSeparate| - |s14aaf| |triangular?| |linearAssociatedLog| - |standardBasisOfCyclicSubmodule| |prem| |logIfCan| |symbolTable| - |internalZeroSetSplit| |elseBranch| |squareFreePrim| |integral| - |htrigs| |meatAxe| |shanksDiscLogAlgorithm| |dflist| - |exprHasLogarithmicWeights| |integer?| |upperCase?| |interpret| = - |compdegd| |OMputEndApp| |power!| |expandPower| |associative?| - |OMputError| |OMParseError?| |coordinate| |pointPlot| - |pushFortranOutputStack| |kind| |triangulate| |binding| |clipBoolean| - |s21baf| |even?| |exprToUPS| |quickSort| |compose| |computeInt| - |popFortranOutputStack| |op| |postfix| < |nor| |complexExpand| - |BasicMethod| |factorSFBRlcUnit| |loadNativeModule| |lazy?| |cTan| - |s13adf| |prime| |outputAsFortran| |singularAtInfinity?| > - |critpOrder| |OMencodingXML| |basisOfNucleus| |reify| |isImplies| - |hessian| |implies| |f04mbf| <= |nullity| |screenResolution3D| - |parametric?| |leadingTerm| |palgint| |viewDeltaXDefault| |rotatez| - |algDsolve| |setMaxPoints3D| |factorOfDegree| >= |rspace| |partitions| - |setLength!| |parabolicCylindrical| |startStats!| - |basisOfRightNucloid| |taylorIfCan| |invertibleElseSplit?| - |clearCache| |nthRoot| |complexZeros| |singularitiesOf| - |incrementKthElement| |trigs| |linearAssociatedExp| - |integralMatrixAtInfinity| |logical?| |absolutelyIrreducible?| - |gramschmidt| |minimize| |roughUnitIdeal?| |deleteProperty!| - |univariate?| |mr| |tab1| |factorByRecursion| |concat!| |collectUpper| - |categories| |union| + |mirror| |OMlistSymbols| |tensorProduct| - |OMputEndAttr| |lazyPremWithDefault| |elliptic?| |setnext!| |trunc| - |Vectorise| |makeFR| - |rightTrace| |SturmHabichtSequence| - |generalPosition| |rootDirectory| |OMread| |arbitrary| |asecIfCan| - |chineseRemainder| |pmComplexintegrate| / |c06ebf| LODO2FUN |isTimes| - |cdr| |arrayStack| |parents| |varselect| |conditionP| |yCoord| - |scripted?| |cons| |cyclicCopy| |nthCoef| |explogs2trigs| |s18dcf| - |rational?| |OMputBind| |logGamma| |changeThreshhold| - |complexEigenvectors| |OMserve| |iiasin| |vark| |duplicates| - |leadingIndex| |terms| |reciprocalPolynomial| |pack!| |root| |schema| - |fortranDouble| |setsubMatrix!| |exponent| |ceiling| |endOfFile?| - |rootRadius| |subset?| |rquo| |curveColor| |truncate| |OMopenString| - |pureLex| |OMputEndBVar| |clearDenominator| |iiatan| |setClipValue| - |rCoord| |quasiMonicPolynomials| |vector| |irForm| |c06gqf| - |inverseColeman| |sumOfDivisors| |monomial?| |expintegrate| |comp| - |extendedSubResultantGcd| |composite| |extractIndex| |differentiate| - |pascalTriangle| |makeGraphImage| |s19acf| |s13aaf| - |factorSquareFreePolynomial| |coerce| |maxrank| |dn| |factorList| - |UnVectorise| |source| |semiDegreeSubResultantEuclidean| |exists?| - |doubleComplex?| |littleEndian| |characteristicSet| |pmintegrate| - |construct| |commutativeEquality| |coerceS| |key?| - |exteriorDifferential| |moduloP| |color| |stack| |credPol| - |associates?| |rank| |halfExtendedSubResultantGcd1| |biRank| |solve| - |showRegion| |cCoth| |normalizeAtInfinity| |cCot| - |genericRightTraceForm| |testDim| |f02bbf| |ldf2lst| |isNot| - |primlimintfrac| |name| |e02bdf| |listexp| |areEquivalent?| |f01maf| - |symmetric?| |leftExtendedGcd| |bag| |e04dgf| |nthFactor| |body| - |f01qcf| |fortranDoubleComplex| |cAcsch| |weakBiRank| |subMatrix| - |toseInvertible?| |domainTemplate| |showAll?| |untab| |outputList| - |powmod| |target| |nextSublist| |bubbleSort!| |round| |nextPartition| - |next| |perfectNthPower?| |leftFactor| |fmecg| |s17agf| |lowerCase| - |palgRDE0| |f02aaf| F2FG |numericalIntegration| |leaves| |s18def| - |module| |sturmVariationsOf| |patternVariable| |permutations| - |linear?| |totolex| |OMputEndBind| |leader| |numberOfFractionalTerms| - |tanQ| |ramifiedAtInfinity?| |wreath| |e02dcf| |pseudoQuotient| - |leadingExponent| |fixedDivisor| |reverse| |lists| |lllp| |pdf2df| - |overlabel| |polarCoordinates| |separateDegrees| |imagK| - |numberOfNormalPoly| |f04axf| |radicalSolve| |squareFreeFactors| - |GospersMethod| |opeval| |LyndonCoordinates| |checkPrecision| |find| - |hasTopPredicate?| |numberOfHues| |createPrimitiveElement| |typeLists| - |monicCompleteDecompose| |univariatePolynomial| |is?| |port| |ddFact| - |chebyshevT| |cRationalPower| |constantKernel| |numFunEvals| |size?| - |ksec| |screenResolution| |particularSolution| |cot2trig| |distFact| - |e04jaf| |getMultiplicationMatrix| |representationType| - |completeSmith| |hexDigit| |t| |rightExactQuotient| - |solveLinearPolynomialEquationByRecursion| |curry| - |stoseLastSubResultant| |getStream| |normal| |bits| |prefixRagits| - |jacobi| |binarySearchTree| |outputSpacing| |subQuasiComponent?| - |OMunhandledSymbol| |anfactor| |mvar| |setvalue!| |build| |assign| - |rootProduct| |branchPointAtInfinity?| |viewWriteDefault| |fill!| - |setelt| |binaryTournament| |algebraicSort| |extractPoint| - |mainMonomials| |setClosed| |environment| |retractable?| |charthRoot| - |fortranCompilerName| |degreeSubResultant| |rule| |rk4f| |df2fi| - |composites| |quasiAlgebraicSet| |expandLog| |arguments| |setleft!| - |copy| |fi2df| |interactiveEnv| |primeFactor| |ratpart| - |divideExponents| |minimalPolynomial| |f04atf| |child?| |xor| - |cycleTail| |property| |stopTable!| |lfinfieldint| |supersub| |shade| - |denomLODE| |polygon| |case| |symmetricProduct| |depth| - |infieldIntegrate| |f07fdf| |makeCrit| |minPol| |alphanumeric| |Zero| - |coordinates| |multisect| |stosePrepareSubResAlgo| |nthFractionalTerm| - |fractRagits| |write!| |limitedIntegrate| |d02gaf| |One| |diag| |scan| - |mindegTerm| |true| |match?| |multiplyExponents| |integralBasis| - |bringDown| |zeroMatrix| |product| |autoCoerce| |trueEqual| |Ei| - |OMconnInDevice| |cAtanh| |multiset| |graphCurves| |cCsc| - |unitNormalize| |discriminantEuclidean| |setFieldInfo| |f07aef| - |listOfLists| |times!| |octon| |leadingSupport| |bandedHessian| - |cPower| |hdmpToP| |harmonic| |outputForm| |firstUncouplingMatrix| - |dimensions| |plusInfinity| |roughEqualIdeals?| - |characteristicPolynomial| |diagonalMatrix| |clearFortranOutputStack| - |getCode| |nullSpace| |linearDependence| |maxdeg| |minusInfinity| - |createMultiplicationMatrix| |slex| |coerceImages| |elt| |random| - |KrullNumber| |factorial| |e02aef| |randomLC| |imagJ| |hconcat| - |expressIdealMember| |selectOrPolynomials| |baseRDEsys| |bigEndian| - |lastSubResultant| |fprindINFO| |diagonalProduct| |d01gaf| |spherical| - |sizeLess?| |initials| |pleskenSplit| |minordet| |createZechTable| - |scaleRoots| |symmetricTensors| |rightAlternative?| |OMsetEncoding| - |mainContent| |bipolar| |extendedEuclidean| |insertionSort!| |charpol| - |evenlambert| |iicsch| |signAround| |OMreadStr| |trivialIdeal?| - |s15adf| |int| |yCoordinates| |numberOfCycles| |decimal| |parseString| - |hue| |integrate| |rootKerSimp| |variationOfParameters| - |bivariateSLPEBR| |symbolTableOf| |argumentList!| |laguerreL| - |radicalRoots| |HermiteIntegrate| |cyclic| |linGenPos| |OMgetSymbol| - |invertIfCan| |colorFunction| |e01bff| |ranges| |newTypeLists| - |cyclicEntries| |adaptive?| |iidprod| |numFunEvals3D| |swapColumns!| - |s18adf| |rightTrim| |f02ajf| |factorSquareFree| |charClass| - |rewriteIdealWithQuasiMonicGenerators| |Lazard2| |loopPoints| |tower| - |stop| |pade| |nil| |infinite| |arbitraryExponent| |approximate| - |complex| |shallowMutable| |canonical| |noetherian| |central| - |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| - |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| - |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| - |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |sup| |unmakeSUP| |meatAxe| |mainValue| |setRow!| + |arg2| |alphabetic?| |exp1| |string| |finite?| |getStream| + |listYoungTableaus| |localAbs| |f02abf| |shanksDiscLogAlgorithm| + |host| |cAcosh| |e04naf| |leftLcm| |rightFactorCandidate| |say| |bits| + |putProperties| |packageCall| |clipWithRanges| |notelem| |dflist| + |lazyVariations| |conditions| |solid?| |iisech| |odd?| |setTex!| + |prefixRagits| |lllip| |monicRightFactorIfCan| |zeroDimPrime?| + |augment| |exprHasLogarithmicWeights| |simplify| |title| |ignore?| + |match| |expIfCan| |string?| |empty?| |reset| |jacobi| |unaryFunction| + |s21bbf| |predicates| |integer?| |unitVector| |setEmpty!| + |usingTable?| |binarySearchTree| |complexEigenvalues| |upperCase?| + |purelyTranscendental?| |internalSubQuasiComponent?| |arguments| + |integralAtInfinity?| |s17aff| |pointColorPalette| |write| + |transcendent?| |outputSpacing| |inc| |f04asf| |linearPolynomials| + |replaceKthElement| |compdegd| |hostPlatform| |e| |qfactor| |save| + |processTemplate| |viewPosDefault| |subQuasiComponent?| + |expandTrigProducts| |e01saf| |resetNew| GF2FG |OMputEndApp| + |genericPosition| |nothing| |digits| |child| |OMunhandledSymbol| + |sequences| |power!| |simplifyExp| |modularGcdPrimitive| + |genericLeftMinimalPolynomial| |internalSubPolSet?| |anfactor| + |mkAnswer| |functionIsContinuousAtEndPoints| |redPol| |lfextendedint| + |expandPower| |numberOfDivisors| |top| |doublyTransitive?| |failed?| + |mvar| |operation| |qqq| |semiIndiceSubResultantEuclidean| + |removeRedundantFactorsInContents| |associative?| |s17dcf| + |mainCoefficients| |continue| |nextPrime| |lazyIntegrate| |setvalue!| + |unexpand| |goodPoint| |acschIfCan| |OMputError| |geometric| + |primitivePart| |sn| |build| |parts| |pointLists| |superHeight| + |dimension| |OMParseError?| |stoseInternalLastSubResultant| |primes| + |inverse| |extend| |assign| ** |palgRDE| |hash| |e01sef| + |complexNumericIfCan| |clipParametric| |coordinate| |discriminant| + |topFortranOutputStack| |polyRDE| |rootProduct| |count| |qroot| + |traverse| |parametersOf| |sizePascalTriangle| |pointPlot| + |reducedQPowers| |torsionIfCan| |primPartElseUnitCanonical!| + |branchPointAtInfinity?| |c05adf| |expenseOfEvaluation| + |nativeModuleExtension| |radicalEigenvectors| + |numberOfComputedEntries| |routines| |viewWriteDefault| + |extendedResultant| |useSingleFactorBound?| |rur| |rotatey| + |clipPointsDefault| |constant| |quasiComponent| |outputFixed| + |rewriteIdealWithRemainder| |fill!| |leftZero| |rowEchelonLocal| + |karatsubaDivide| |PDESolve| |points| |sumOfKthPowerDivisors| + |factors| |qualifier| |mantissa| |binaryTournament| |cAtan| + |removeRoughlyRedundantFactorsInPol| |tube| |cAcos| |e01daf| + |rightExtendedGcd| |yellow| |realRoots| |mkcomm| |curryLeft| + |skewSFunction| |iiabs| |deepestInitial| |vectorise| |readInt32!| + |coercePreimagesImages| |lprop| |testDim| |gcdPrimitive| + |leftAlternative?| |purelyAlgebraicLeadingMonomial?| + |normalizedAssociate| |rotate!| |rischDEsys| |rationalPower| + |invmultisect| |edf2fi| |explicitlyFinite?| |f02bbf| + |prepareSubResAlgo| |hclf| |connectTo| |semiLastSubResultantEuclidean| + |unrankImproperPartitions1| |highCommonTerms| |numerators| |permanent| + |ldf2lst| |ptFunc| |linearMatrix| |leftTraceMatrix| |c06frf| + |insertTop!| |showAllElements| |solveLinear| |complementaryBasis| + |maximumExponent| |lighting| |isNot| |mapExpon| |iiacsc| |complete| + |e02akf| |extensionDegree| |mdeg| |universe| |makeTerm| + |primlimintfrac| |checkPrecision| |getGoodPrime| |returnTypeOf| + |stripCommentsAndBlanks| |RittWuCompare| |check| |legendre| + |chebyshevU| |diagonals| |e02bdf| |oddInfiniteProduct| |laplace| + |s14baf| |mathieu11| |zeroSetSplit| |bat| |constantCoefficientRicDE| + |tRange| |leader| |listexp| |regularRepresentation| |inHallBasis?| + |categories| |conjugate| |isPower| |selectSumOfSquaresRoutines| + |numer| |sparsityIF| |listBranches| |retractIfCan| |crushedSet| + |getMeasure| |areEquivalent?| |lazyResidueClass| |blankSeparate| + |partialFraction| |complement| |OMputEndObject| |denom| |singular?| + |hasSolution?| |appendPoint| |totalfract| |f01maf| |acothIfCan| |call| + |difference| |setScreenResolution| |column| |identity| FG2F + |factorFraction| |symmetric?| |repeating| |exponents| |argumentListOf| + |removeDuplicates| |cyclicSubmodule| |pi| |ReduceOrder| + |basisOfLeftAnnihilator| |nilFactor| |leftExtendedGcd| |orbits| + |monomialIntegrate| |setfirst!| |sizeMultiplication| |merge!| + |infinity| |f01rcf| |f2st| |debug3D| |bag| |concat| |lifting1| |step| + |explicitlyEmpty?| |rischDE| |iiacos| |interpolate| |ridHack1| + |tryFunctionalDecomposition| |pushdown| |e04dgf| |modulus| + |findConstructor| |isOr| |OMencodingUnknown| |pr2dmp| |eulerPhi| + |xCoord| |getOrder| |nthFactor| |roughBasicSet| |rightGcd| |tanIfCan| + |mightHaveRoots| |merge| |kernel| |compiledFunction| |s19aaf| + |removeZeroes| |f01qcf| |createRandomElement| |decomposeFunc| + |connect| |OMbindTCP| |cos2sec| |list| |ptree| |cycleRagits| + |OMencodingSGML| |hdmpToDmp| |fortranDoubleComplex| |lhs| |init| + |kmax| |plus!| |printingInfo?| |writeByte!| |largest| |draw| + |midpoints| |clearCache| |setStatus| |algebraicOf| |cAcsch| |rhs| + |matrixDimensions| |iiacoth| |explicitEntries?| |tubePlot| + |countRealRoots| |subscript| |sort!| |removeRedundantFactors| + |weakBiRank| |intcompBasis| |inf| |relativeApprox| |monicRightDivide| + |subNode?| |readInt16!| |OMputApp| |latex| |subMatrix| |currentEnv| + |writeInt8!| |ideal| |OMUnknownCD?| |UP2ifCan| |conjugates| |mesh?| + |basisOfLeftNucloid| |deriv| |toseInvertible?| + |leftCharacteristicPolynomial| |subNodeOf?| |clearTheSymbolTable| + |createNormalPoly| |resize| |makeObject| |mapUp!| |euler| |zCoord| + |domainTemplate| |ord| |groebner?| |extendedIntegrate| |safeFloor| + |deepCopy| |coef| |univariateSolve| |mkIntegral| + |noncommutativeJordanAlgebra?| |showAll?| |inverseIntegralMatrix| + |qelt| |totalLex| |leaf?| |symFunc| |newSubProgram| |directory| + |imagI| |OMgetInteger| |redpps| |untab| |rootsOf| |qsetelt| |top!| + |simplifyPower| |overset?| |besselK| |infiniteProduct| |rationalIfCan| + |selectNonFiniteRoutines| |powmod| |df2ef| |genus| |xRange| |delay| + |mainSquareFreePart| |generalSqFr| |numericalOptimization| + |selectOptimizationRoutines| |completeHermite| |nextSublist| + |balancedBinaryTree| |kind| |f01ref| |derivative| |systemSizeIF| + |resultantnaif| |yRange| |middle| |expintfldpoly| |restorePrecision| + |bubbleSort!| |op| |evaluate| |minPoints3D| |OMUnknownSymbol?| |more?| + |quoted?| |zRange| |kernels| |lieAdmissible?| |box| |readByte!| + |rightMult| |round| |unary?| |oblateSpheroidal| |seriesToOutputForm| + |getGraph| |map!| |fortranTypeOf| |symmetricSquare| |trapezoidalo| + |operator| |upperCase| |nextPartition| |rangeIsFinite| |constant?| + |lazyPseudoRemainder| |normalForm| |qsetelt!| |optional?| SEGMENT + |iicos| |expenseOfEvaluationIF| |removeZero| |perfectNthPower?| + |fortranInteger| |copyInto!| |jokerMode| |setProperty| |OMgetString| + |leftRankPolynomial| |compBound| |expextendedint| |univariate| + |leftFactor| |mapBivariate| |gcdPolynomial| |quoByVar| |over| + |clikeUniv| |sort| |maxIndex| |iiacsch| |rewriteSetWithReduction| + |fmecg| |capacity| |compactFraction| |setPosition| |hitherPlane| + |qPot| |rational| |dec| |nextsubResultant2| |relationsIdeal| + |leftQuotient| |s17agf| |listConjugateBases| |union| |slash| + |viewThetaDefault| |splitLinear| |arity| |cardinality| + |symmetricDifference| |factor| |overbar| |lowerCase| + |resetAttributeButtons| |rarrow| |leftDiscriminant| |equiv| + |definingInequation| |acsch| |LagrangeInterpolation| |sqrt| + |makeResult| |scalarMatrix| |palgRDE0| |birth| |twoFactor| + |showClipRegion| |extractSplittingLeaf| |argscript| |comp| |random| + |beauzamyBound| |safetyMargin| |readUInt8!| |real| |f02aaf| + |functionIsFracPolynomial?| |linearElement| |divisor| |ip4Address| + |dimensionsOf| |chiSquare1| |romberg| |imag| |asimpson| |OMsend| F2FG + |properties| |noKaratsuba| |isOp| |nthRootIfCan| + |wordsForStrongGenerators| |changeMeasure| |copy| |polar| |pushucoef| + |directProduct| |closedCurve?| |numericalIntegration| |super| |droot| + |setLegalFortranSourceExtensions| |contractSolve| |translate| |irCtor| + |commutator| |exponential| |rootOf| |tubePointsDefault| |s18def| + |eigenMatrix| |rootSplit| |sdf2lst| |part?| |remove!| |gethi| + |pushuconst| |brace| |nlde| |module| |bottom!| |setFormula!| + |flagFactor| |factorSquareFreeByRecursion| |showScalarValues| |mulmod| + |rotate| |destruct| |imagi| |sturmVariationsOf| |approxSqrt| |d01ajf| + |cschIfCan| |realZeros| |binomial| |iiGamma| |fortranLiteralLine| + |zag| |patternVariable| |match?| |erf| |coefChoose| + |removeRoughlyRedundantFactorsInPols| |light| |uniform| + |localIntegralBasis| |autoCoerce| |coerceL| |e01baf| |nextItem| + |permutations| |nullary| |generic?| |setAdaptive| |quadraticForm| + |cycleEntry| |palgLODE0| |OMsupportsCD?| |linear?| |brillhartTrials| + |prolateSpheroidal| |univcase| |mathieu24| |printStats!| + |createLowComplexityNormalBasis| |expand| |rationalPoint?| |iCompose| + |monomial| |totolex| |dilog| |rightRank| |roughBase?| + |reduceByQuasiMonic| |complexRoots| |subPolSet?| |repSq| |filterWhile| + |divisors| |maxint| |multivariate| |OMputEndBind| |close| |sin| + |copies| |modularFactor| |rightUnits| |leftReducedSystem| |contains?| + F |style| |filterUntil| |variables| |reverseLex| |iterationVar| + |numberOfFractionalTerms| |cos| |edf2efi| |OMgetApp| + |definingPolynomial| |shuffle| |select| |patternMatch| + |primPartElseUnitCanonical| |tanQ| |display| |tan| |eof?| |stFunc1| + |mapMatrixIfCan| |e04mbf| |clearTable!| |lexTriangular| |symbolTable| + |stoseInvertibleSet| |tubeRadiusDefault| |ramifiedAtInfinity?| |cot| + |primintegrate| |divideIfCan| |bezoutResultant| |queue| |real?| + |ratPoly| |scanOneDimSubspaces| |uniform01| |wreath| |sec| |external?| + |minPoints| |imagj| |status| |collectQuasiMonic| |att2Result| + |pushFortranOutputStack| |e02dcf| |csc| |moebiusMu| |zero?| |cAsec| + |axes| |controlPanel| |popFortranOutputStack| |mapUnivariateIfCan| + |drawToScale| |optpair| |debug| |taylor| |pseudoQuotient| |asin| + |predicate| |cLog| |elements| |generalizedContinuumHypothesisAssumed?| + |tubeRadius| |tryFunctionalDecomposition?| |mainMonomial| + |outputAsFortran| |factorials| |symmetricGroup| D |laurent| + |leadingExponent| |input| |acos| |edf2ef| |isOpen?| |acosIfCan| + |internalLastSubResultant| |sin2csc| |pair?| |iidsum| |enterInCache| + |puiseux| |library| |fixedDivisor| |atan| |constantOperator| + |normalElement| EQ |makeCos| |curveColorPalette| |poisson| |lllp| + |acot| |insertRoot!| |mergeDifference| |subresultantSequence| + |karatsubaOnce| |janko2| |solve1| |getSyntaxFormsFromFile| |inv| + |pdf2df| |asec| |OMgetEndAtp| |orthonormalBasis| |lazyPseudoDivide| + |shiftRight| |messagePrint| |integerIfCan| |lazyPquo| |ground?| + |overlabel| |acsc| |replace| |zeroSetSplitIntoTriangularSystems| + |removeSuperfluousCases| |mainExpression| |leftNorm| + |leftScalarTimes!| |subResultantsChain| |ground| |set| |sinh| + |bfEntry| |integral?| |zeroVector| |solveRetract| + |stoseSquareFreePart| |relerror| |abs| |exponent| |leadingMonomial| + |sylvesterSequence| |cosh| |resultantEuclideannaif| |leftFactorIfCan| + |binaryTree| |OMputFloat| |double| |algebraic?| |OMgetFloat| |randomR| + |ceiling| |leadingCoefficient| |generalInfiniteProduct| |tanh| + |rotatex| |OMgetBVar| |readable?| |abelianGroup| |size| + |noLinearFactor?| |algintegrate| |writeBytes!| |endOfFile?| + |primitiveMonomials| |parameters| |coth| |boundOfCauchy| + |makingStats?| |leftDivide| |deepestTail| |rootRadius| |parent| + |edf2df| |getPickedPoints| |print| |reductum| |sech| |startPolynomial| + |complexForm| |groebnerFactorize| |primitivePart!| |extendedEuclidean| + |dualSignature| |mapDown!| |fixedPoint| |resolve| |subset?| |csch| + |groebgen| |subCase?| |OMReadError?| |halfExtendedSubResultantGcd2| + |insertionSort!| |OMgetAttr| |extract!| |f04qaf| |rquo| |has?| |asinh| + |mapdiv| |true| |sylvesterMatrix| |quotient| |category| |charpol| + |outputMeasure| |vector| |primextendedint| |OMgetEndObject| + |curveColor| |cAsinh| |domain| |monomialIntPoly| |antisymmetric?| + |choosemon| |companionBlocks| |optional| |evenlambert| |recolor| + |differentiate| |setMinPoints| |karatsuba| |truncate| |externalList| + |package| |splitConstant| |complexElementary| |minimumExponent| RF2UTS + |iicsch| |declare!| |viewWriteAvailable| |nand| |matrixConcat3D| + |OMopenString| |insert| |e02ajf| |lex| |f02akf| |radicalEigenvalues| + |signAround| |f04adf| |zeroDim?| |revert| |pureLex| |show| + |nonLinearPart| |fortranComplex| |OMputBVar| |weierstrass| |OMreadStr| + |lazyEvaluate| |c06gcf| |quotedOperators| |search| |OMputEndBVar| + |rightRegularRepresentation| |f01qdf| |integralRepresents| |max| + |trivialIdeal?| |node| |semiResultantReduitEuclidean| |OMgetObject| + |closeComponent| |clearDenominator| |trace| + |semiResultantEuclideannaif| |nextLatticePermutation| + |rightTraceMatrix| |viewport2D| |s15adf| |componentUpperBound| |plot| + |addPointLast| |iiatan| |tableForDiscreteLogarithm| |collect| + |imports| |generalTwoFactor| |yCoordinates| |f04jgf| |f02awf| + |OMputAttr| |setClipValue| |stop| |contract| |leadingCoefficientRicDE| + |monomials| |bivariatePolynomials| |numberOfCycles| |OMputObject| + |prinshINFO| |multiple?| |rCoord| |elaborate| |cycleElt| |weighted| + |root?| |decimal| |segment| |Lazard| |getProperty| |bat1| + |quasiMonicPolynomials| |formula| |flatten| |differentialVariables| + |c02aff| |whitePoint| |bounds| |parseString| |genericRightNorm| + |isMult| |infRittWu?| |irForm| |firstSubsetGray| |LiePolyIfCan| + |mapExponents| |s19adf| |hue| |lyndon?| |semicolonSeparate| + |quasiMonic?| |c06gqf| |isQuotient| |space| |monomRDEsys| |cAcot| + |baseRDE| |integrate| |var1StepsDefault| |transform| |s17def| + |inverseColeman| |newReduc| |mkPrim| |lookup| |firstNumer| + |rootKerSimp| |algebraicVariables| |subresultantVector| |readLine!| + |sumOfDivisors| |nrows| |comparison| |removeSquaresIfCan| |calcRanges| + |medialSet| |variationOfParameters| |createLowComplexityTable| + |extractTop!| |squareMatrix| |monomial?| |ncols| |unknownEndian| + |leviCivitaSymbol| |repeatUntilLoop| |rightNorm| |bivariateSLPEBR| + |setImagSteps| |FormatRoman| |ode1| |expintegrate| |lfunc| + |selectIntegrationRoutines| |groebner| |perspective| |symbolTableOf| + |seriesSolve| |monicDivide| |unitCanonical| |extendedSubResultantGcd| + |height| |units| |log10| |solveLinearPolynomialEquationByFractions| + |selectsecond| |rootPoly| |euclideanNormalForm| |argumentList!| + |equation| |every?| |vconcat| |algebraicCoefficients?| |composite| + |bitand| |s15aef| |aCubic| |hspace| |roman| |laguerreL| + |genericRightMinimalPolynomial| |OMclose| |printInfo!| |extractIndex| + |outerProduct| |bitior| |ScanFloatIgnoreSpacesIfCan| |setTopPredicate| + |rationalPoints| |setOrder| |radicalRoots| |Is| |readBytes!| + |inGroundField?| |pascalTriangle| |leaves| |ellipticCylindrical| + |writeLine!| |PollardSmallFactor| |elRow2!| |HermiteIntegrate| + |var2StepsDefault| |dequeue| |limitPlus| |makeGraphImage| |coerceP| + |rightRankPolynomial| |cSec| |expint| |cyclic| |readIfCan!| |iibinom| + |sechIfCan| |macroExpand| |s19acf| |elaborateFile| |saturate| + |bitLength| |prinb| |high| |linGenPos| |subtractIfCan| |categoryFrame| + |magnitude| |s13aaf| |leftUnits| |SFunction| |ScanRoman| |f04maf| + |polyred| |OMgetSymbol| |iiexp| |finiteBasis| |closed?| + |factorSquareFreePolynomial| |double?| |quadratic| |clipSurface| + |fractionPart| |rule| |invertIfCan| |declare| |reduction| |gensym| + |mix| |maxrank| |common| |powerAssociative?| |fortranCharacter| + |inconsistent?| |viewSizeDefault| |colorFunction| |minset| + |outputGeneral| |plotPolar| |dn| |iicot| |iprint| + |showIntensityFunctions| |OMgetEndError| |e01bff| |cycleSplit!| + |ocf2ocdf| |wronskianMatrix| |factorList| |e02dff| |simpsono| |basis| + |s17dgf| |ranges| |quasiRegular?| |commutative?| |binary| + |UnVectorise| |toroidal| |pop!| |createGenericMatrix| |ode| + |newTypeLists| |returns| |totalGroebner| |sPol| |matrix| + |semiDegreeSubResultantEuclidean| |unravel| |normal01| |setright!| + |evaluateInverse| |cyclicEntries| |besselJ| |dmp2rfi| |integers| + |exists?| |discreteLog| |stopTableInvSet!| |setAdaptive3D| + |coefficient| |adaptive?| |alternating| |tanintegrate| |mainVariable| + |doubleComplex?| |dioSolve| |genericLeftTraceForm| + |halfExtendedResultant2| |cscIfCan| |iidprod| Y |exponentialOrder| + |psolve| |returnType!| |littleEndian| |linearAssociatedOrder| |sample| + |label| |disjunction| |lowerCase!| |numFunEvals3D| |cCsch| |iiacot| + |makeViewport2D| |characteristicSet| |computeCycleEntry| + |semiResultantEuclidean2| |constantToUnaryFunction| |d02bbf| + |swapColumns!| |setLabelValue| |testModulus| |e01bhf| |pmintegrate| + |trailingCoefficient| |pow| |palginfieldint| |shiftLeft| |s18adf| + |createThreeSpace| |copy!| |laguerre| |commutativeEquality| |leftOne| + |result| |printHeader| |brillhartIrreducible?| |open?| |f02ajf| + |fortranLiteral| |separant| |swapRows!| |coerceS| |totalDifferential| + |gcdcofact| |setMaxPoints| |collectUnder| |factorSquareFree| + |bernoulliB| |denomRicDE| |key?| |rk4| |iteratedInitials| |isAnd| + |aLinear| |charClass| |rationalFunction| |antiCommutator| |tab| + |exteriorDifferential| |rootOfIrreduciblePoly| |OMputEndError| + |factorAndSplit| |expPot| |rewriteIdealWithQuasiMonicGenerators| + |selectPolynomials| |outputFloating| |fixedPoints| |constructor| + |moduloP| |transcendentalDecompose| |separate| |minColIndex| + |setOfMinN| |Lazard2| |reducedContinuedFraction| |signatureAst| + |superscript| |color| |bindings| |option| |useSingleFactorBound| + |cSin| |loopPoints| |musserTrials| |functionIsOscillatory| + |showSummary| |reducedDiscriminant| |credPol| |sum| |writeUInt8!| + |indiceSubResultant| |wrregime| |tValues| |pade| |aQuadratic| + |stronglyReduced?| |RemainderList| |associates?| |acotIfCan| |monic?| + |froot| |mainVariable?| |simplifyLog| |encodingDirectory| + |showAttributes| |LyndonBasis| |halfExtendedSubResultantGcd1| + |countable?| |makeSin| |makeRecord| |monicModulo| |cosh2sech| + |satisfy?| |lp| |biRank| |basisOfRightAnnihilator| |head| |sub| + |squareFreePolynomial| |ramified?| |partialNumerators| + |certainlySubVariety?| |solve| |inputBinaryFile| |name| + |solveLinearlyOverQ| |element?| |contours| |startTable!| |bit?| + |minrank| |rightTrim| |showRegion| |pomopo!| |stopMusserTrials| |body| + |c06gsf| |pile| |bombieriNorm| |lyndonIfCan| |order| |cCoth| + |leftTrim| |fixedPointExquo| |outlineRender| |null| |thenBranch| + |getRef| |vspace| |normalizeAtInfinity| |stack| |OMreadFile| + |aQuartic| |sayLength| |OMmakeConn| |not| |subHeight| |cyclicGroup| + |rectangularMatrix| |cCot| BY |tracePowMod| |someBasis| |leftGcd| + |preprocess| |and| |cycle| |lfextlimint| |headRemainder| + |genericRightTraceForm| |cn| |floor| |laurentIfCan| |delete!| + |btwFact| |or| |cosIfCan| |setprevious!| |stopTableGcd!| + |flexibleArray| |mainForm| |rdregime| |unvectorise| |xor| |critBonD| + |palglimint| |c06ekf| |roughUnitIdeal?| |shallowExpand| |linSolve| + |numberOfVariables| |insert!| |signature| |dim| |case| |inRadical?| + |asinhIfCan| |zoom| |assert| |deleteProperty!| |partialDenominators| + |readUInt16!| |port| |prevPrime| |sec2cos| |pattern| |Zero| |inR?| + |stiffnessAndStabilityFactor| |palgint0| |univariate?| + |associatedSystem| |d01bbf| |hypergeometric0F1| |substitute| |One| + |basicSet| |front| |deref| |tab1| |prinpolINFO| |matrixGcd| |t| + |kroneckerDelta| |shufflein| |cAtanh| |shift| NOT |setProperties| + |identitySquareMatrix| |youngDiagram| |output| |factorByRecursion| + |identification| |asechIfCan| |LyndonWordsList1| |bracket| |multiset| + OR |cAcoth| |hMonic| |addMatchRestricted| |concat!| |palgintegrate| + |nodes| |asinIfCan| |subspace| |message| |graphCurves| AND |nary?| + |putProperty| |dominantTerm| |symmetricPower| |collectUpper| |iitan| + |whatInfinity| |ffactor| |numericIfCan| |cCsc| |LazardQuotient2| + |countRealRootsMultiple| |nil?| |virtualDegree| |mirror| + |divisorCascade| |readInt8!| |lifting| |linearlyDependentOverZ?| + |unitNormalize| |elt| |f02aff| |knownInfBasis| |d01alf| + |OMlistSymbols| |fortran| |fractionFreeGauss!| |upperBound| + |irreducible?| |stoseInvertibleSetreg| |discriminantEuclidean| + |HenselLift| |setleaves!| |symmetricRemainder| |tensorProduct| |level| + |alphabetic| |vedf2vef| |primitive?| |youngGroup| |setFieldInfo| + |OMreceive| |dihedral| |intermediateResultsIF| |OMputEndAttr| + |argument| |d01anf| |finiteBound| |invmod| |f07aef| |factorset| + |infinite?| |recoverAfterFail| |lazyPremWithDefault| |cons| + |pointColor| |zeroDimensional?| |iomode| |ListOfTerms| |listOfLists| + |rootNormalize| |reducedForm| |trace2PowMod| |elliptic?| |cond| + |OMputVariable| |changeBase| |gcdcofactprim| |mindeg| |times!| + |retract| |mainCharacterization| |combineFeatureCompatibility| + |rombergo| |setnext!| |iroot| |e01bef| |constantLeft| |d01apf| |octon| + |useNagFunctions| |bitCoef| |showTheIFTable| |trunc| |writable?| + |exponential1| |primitiveElement| |digamma| |leadingSupport| |second| + * |adaptive| |cycles| |reseed| |Vectorise| |generalizedEigenvectors| + |principal?| |palgextint0| |numberOfComposites| |bandedHessian| + |third| |getDatabase| |tablePow| |endSubProgram| |makeFR| + |lexGroebner| |completeEchelonBasis| |reflect| |normalizedDivide| + |cPower| |dual| |rename!| |possiblyInfinite?| |rightTrace| |source| + |void| |algint| |secIfCan| |genericLeftDiscriminant| + |unrankImproperPartitions0| |hdmpToP| = |pquo| |number?| |fullDisplay| + |SturmHabichtSequence| |ratDsolve| |shallowCopy| |computeBasis| + |totalDegree| |harmonic| |pushNewContour| |strongGenerators| + |nonQsign| |generalPosition| |integerBound| |specialTrigs| |nthFlag| + |maxRowIndex| |outputForm| |createNormalPrimitivePoly| < |rootSimp| + |prindINFO| |script| |rootDirectory| |plusInfinity| |pToDmp| + |viewport3D| |increasePrecision| |rightScalarTimes!| + |firstUncouplingMatrix| |char| > |bsolve| |OMputString| + |resultantReduit| |OMread| |graphImage| |minusInfinity| |kovacic| + |addMatch| |systemCommand| |wholePart| |dimensions| <= |infLex?| + |limit| |axesColorDefault| |arbitrary| |target| |flexible?| + |linkToFortran| |cycleLength| |fracPart| |OMputInteger| + |roughEqualIdeals?| |applyRules| >= |shellSort| |Hausdorff| + |asecIfCan| |tex| |complexIntegrate| |directSum| |leastMonomial| + |belong?| |hostByteOrder| |characteristicPolynomial| |expr| |iisinh| + |elRow1!| |f01qef| |chineseRemainder| |leftMinimalPolynomial| + |doubleFloatFormat| |outputAsScript| |consnewpol| |normal| + |diagonalMatrix| |central?| |balancedFactorisation| |cyclotomic| + |pmComplexintegrate| |convergents| |eigenvector| |rowEch| + |safeCeiling| |linear| |clearFortranOutputStack| |iiacosh| + + |hyperelliptic| |approxNthRoot| |c06ebf| |type| |corrPoly| + |numberOfMonomials| |modularGcd| |addiag| |getCode| + |lazyPseudoQuotient| - |float| |elColumn2!| |polygamma| LODO2FUN + |increase| |toScale| |semiDiscriminantEuclidean| |upperCase!| + |polynomial| |nullSpace| |variable| |basisOfCommutingElements| / + |raisePolynomial| |permutationGroup| |isTimes| |critT| |e04ucf| + |leftTrace| |divideIfCan!| |linearDependence| |iterators| + |splitDenominator| |thetaCoord| |viewpoint| |cdr| |dictionary| + |entry?| |traceMatrix| |c06fpf| |maxdeg| |monicDecomposeIfCan| + |component| |hasPredicate?| |arrayStack| |selectFiniteRoutines| + |cfirst| |associatorDependence| |startTableInvSet!| + |createMultiplicationMatrix| |euclideanGroebner| + |cyclotomicFactorization| |roughSubIdeal?| |varselect| |cap| |atoms| + |groebSolve| |computePowers| |id| |slex| |f07adf| |printStatement| + |recur| |conditionP| |value| |fillPascalTriangle| |polCase| + |frobenius| |length| |symbol| |padecf| |coerceImages| |lo| |internal?| + |leftUnit| |resultantReduitEuclidean| |yCoord| |measure2Result| + |figureUnits| |generalizedInverse| |scripts| |expression| |sinhcosh| + |KrullNumber| |mapSolve| |mapmult| |bezoutMatrix| |complexLimit| + |scripted?| |basisOfLeftNucleus| |innerSolve| |distance| |integer| + |power| |factorial| |OMgetAtp| |errorKind| GE + |generalizedContinuumHypothesisAssumed| |iiperm| |cyclicCopy| |weight| + |e02bef| |lowerPolynomial| |heap| |e02aef| |isAbsolutelyIrreducible?| + GT |radicalEigenvector| |internalAugment| |nthCoef| + |possiblyNewVariety?| |getExplanations| |basisOfCenter| |repeating?| + |randomLC| |polynomialZeros| LE |drawComplexVectorField| + |factorsOfCyclicGroupSize| |explogs2trigs| |numberOfIrreduciblePoly| + |readUInt32!| |deepExpand| |isPlus| |imagJ| |car| LT |s17ahf| + |evenInfiniteProduct| |s18dcf| |leadingIdeal| |pdct| |depth| |inspect| + |coshIfCan| |hconcat| |jordanAdmissible?| |lieAlgebra?| |nthExponent| + |rational?| |eigenvectors| |setelt!| |socf2socdf| |curve?| + |expressIdealMember| |numberOfOperations| |makeEq| |s17dlf| + |OMputBind| |positiveRemainder| |numberOfChildren| |critB| |setUnion| + |selectOrPolynomials| |bandedJacobian| |airyBi| |pointSizeDefault| + |logGamma| |lflimitedint| |inputOutputBinaryFile| |cubic| |keys| + |rightRemainder| |baseRDEsys| |leftRegularRepresentation| + |characteristicSerie| |changeThreshhold| |definingEquations| + |removeSinhSq| |tanhIfCan| |graphs| |bigEndian| |index| |irVar| + |perfectSquare?| |randnum| |complexEigenvectors| |sqfrFactor| + |plenaryPower| |sinhIfCan| |numeric| |pole?| |lastSubResultant| + |leftRecip| |nullary?| |s17aef| |OMserve| |genericLeftNorm| |radical| + |divergence| |bumptab| |explimitedint| |hasHi| |fprindINFO| + |linearlyDependent?| |exptMod| |c06ecf| |iiasin| |Nul| |quotientByP| + |trapezoidal| |pair| |diagonalProduct| |escape| |tree| |open| + |rangePascalTriangle| |listOfMonoms| |vark| |validExponential| + |s17dhf| |bright| |approximants| |e02ddf| |squareFreePart| |d01gaf| + |sturmSequence| |vertConcat| |setMinPoints3D| |duplicates| + |binomThmExpt| |lazyIrreducibleFactors| + |removeSuperfluousQuasiComponents| |mpsode| |viewDefaults| |spherical| + |iiasec| |rationalApproximation| |FormatArabic| |leadingIndex| + |mapCoef| |eval| |initTable!| |tanNa| |iFTable| |outputBinaryFile| + |sizeLess?| |addPoint2| |terms| |groebnerIdeal| |s17akf| |inrootof| + |semiResultantEuclidean1| |makeViewport3D| |initials| |operations| + |exactQuotient| |hcrf| |stoseInvertible?sqfreg| |reciprocalPolynomial| + |exprHasWeightCosWXorSinWX| |lastSubResultantEuclidean| |cAsech| + |s18aef| |antisymmetricTensors| |pleskenSplit| |mathieu12| + |getProperties| |mesh| |interpret| |pack!| |error| |OMconnOutDevice| + |modifyPointData| |parents| |drawCurves| |push!| |complexNormalize| + |minordet| |currentScope| |nextSubsetGray| |goodnessOfFit| |root| + |rightUnit| |binaryFunction| |diagonal?| |createZechTable| + |shrinkable| |setAttributeButtonStep| |expt| |schema| |optimize| + |modTree| |fortranLinkerArgs| |any?| |elem?| |sincos| |scaleRoots| + |permutation| |block| |intPatternMatch| |function| |fortranDouble| + |constDsolve| |coth2trigh| |whileLoop| |cosSinInfo| |dmpToP| + |symmetricTensors| |cothIfCan| |OMencodingBinary| |idealSimplify| + |setsubMatrix!| |paraboloidal| |updateStatus!| |palgextint| + |associator| |integralDerivationMatrix| |rightAlternative?| |width| + |goto| |putColorInfo| |unit?| |dfRange| |f01brf| |indicialEquation| + |rules| |diophantineSystem| |back| |OMsetEncoding| |viewZoomDefault| + |doubleResultant| |leftPower| |e02bcf| |triangulate| |f04arf| + |stronglyReduce| |readLineIfCan!| |setVariableOrder| |insertMatch| + |mainContent| |s18acf| |iilog| |diff| |binding| |indices| + |fortranLogical| |se2rfi| |reopen!| |squareFreeLexTriangular| + |lagrange| |bipolar| |green| |integralBasisAtInfinity| |sts2stst| + |clipBoolean| |SturmHabicht| |basisOfCentroid| |red| |heapSort| + |getBadValues| |solid| |member?| |extension| |atrapezoidal| |in?| + |s21baf| |mr| |nextPrimitiveNormalPoly| |internalIntegrate| + |simpleBounds?| |removeConstantTerm| |leadingBasisTerm| + |algebraicSort| |quote| |leftMult| |empty| |even?| |split!| + |toseInvertibleSet| |iiatanh| |moreAlgebraic?| |mapUnivariate| + |removeRedundantFactorsInPols| |cExp| |extractPoint| |changeName| + |ipow| |cyclicParents| |exprToUPS| |d03eef| |rem| |errorInfo| + |myDegree| |OMopenFile| |makeVariable| |findCycle| |mainMonomials| + |modifyPoint| |minIndex| |iisqrt2| |rk4qc| |quickSort| + |probablyZeroDim?| |cartesian| |quo| |clearTheIFTable| + |rewriteSetByReducingWithParticularGenerators| |primintfldpoly| + |stoseInvertibleSetsqfreg| |setClosed| |varList| |meshFun2Var| + |setDifference| |maxPoints3D| |shiftRoots| |compose| |outputList| + |normalizeIfCan| |rightLcm| |iipow| |d01amf| |environment| + |wordInGenerators| |lcm| |principalIdeal| |normInvertible?| + |tanh2trigh| |computeInt| |increment| |overlap| |delete| |div| + |refine| |viewDeltaYDefault| |OMgetEndAttr| |cotIfCan| |qinterval| + |retractable?| |isExpt| |isAtom| |exactQuotient!| |f02bjf| |postfix| + |fullPartialFraction| |exquo| |headAst| |s21bdf| |generateIrredPoly| + |atanhIfCan| |charthRoot| |intersect| |principalAncestors| |zerosOf| + |getMultiplicationTable| |append| |nor| |denominators| |unitNormal| ~= + |OMgetVariable| |square?| |gderiv| |reduced?| |rst| + |fortranCompilerName| |makeFloatFunction| |gcd| |adjoint| + |internalDecompose| |complexExpand| |normalize| |insertBottom!| |#| + |rightOne| |reducedSystem| |topPredicate| |maxrow| + |degreeSubResultant| |unprotectedRemoveRedundantFactors| |sinh2csch| + |xn| |npcoef| |false| |buildSyntax| |mainKernel| |BasicMethod| + |digit?| ~ |minGbasis| |semiSubResultantGcdEuclidean2| + |realEigenvalues| |bumprow| |rk4f| |selectODEIVPRoutines| |rootPower| + |closed| |f04mcf| |ParCond| |setIntersection| |factorSFBRlcUnit| + |ravel| |cup| |d02ejf| |triangSolve| |distribute| |rightDivide| + |df2fi| |f02adf| |splitSquarefree| |imaginary| |numberOfPrimitivePoly| + |lazy?| |twist| |reshape| |e02adf| |generators| |isEquiv| |B1solve| + |numberOfImproperPartitions| |composites| |taylorRep| |f02fjf| + |setButtonValue| |graphState| |cTan| |rdHack1| |multiEuclideanTree| + |moduleSum| |/\\| |cAsin| |d01asf| |selectAndPolynomials| + |outputAsTex| |quasiAlgebraicSet| |ODESolve| |diagonal| |eigenvalues| + |numerator| |s13adf| |simpson| |\\/| |s13acf| |chainSubResultants| + |expandLog| |setrest!| |initiallyReduce| |headReduce| + |coerceListOfPairs| |enqueue!| |apply| |coerce| |sumSquares| + |negative?| |makeSUP| |prime| |row| |setleft!| + |conditionsForIdempotents| |makeop| |mappingMode| |userOrdered?| + |schwerpunkt| |ode2| |first| |construct| |setErrorBound| |iiasinh| + |lquo| |constantOpIfCan| |singularAtInfinity?| + |generalizedEigenvector| |wordInStrongGenerators| |normalized?| + |eulerE| |getCurve| |fi2df| |univariatePolynomials| |rest| + |OMgetEndBVar| |iiasech| |decompose| |critpOrder| |normal?| + |interactiveEnv| |complex?| |plus| |radicalSimplify| |create3Space| + |toseSquareFreePart| |setlast!| |update| |pushup| |minus!| + |critMTonD1| |fTable| |antiAssociative?| |OMencodingXML| |primeFactor| + |c05pbf| |transpose| |internalIntegrate0| |partition| |makeSeries| + |s20acf| |e02daf| |fglmIfCan| |Gamma| |basisOfNucleus| |OMcloseConn| + |reindex| |exprHasAlgebraicWeight| UTS2UP |cTanh| |region| |ratpart| + |extractIfCan| |setScreenResolution3D| |extractBottom!| |getlo| + |reify| |entries| |rischNormalize| |pol| |removeDuplicates!| + |intChoose| |swap!| |e01bgf| |divideExponents| |times| |byteBuffer| + |log2| |checkRur| |isImplies| |findBinding| |makeSketch| + |stiffnessAndStabilityOfODEIF| |meshPar2Var| |e02def| + |stoseIntegralLastSubResultant| |minimalPolynomial| |imagE| + |solveLinearPolynomialEquation| |rk4a| |dequeue!| |hessian| |split| + |iflist2Result| |rightDiscriminant| |leastPower| |content| + |enterPointData| |horizConcat| |separateFactors| |f04atf| |position| + |squareTop| |iifact| |addBadValue| |numberOfFactors| |implies| + |neglist| |decreasePrecision| |firstDenom| |nthr| |frst| |lexico| + |child?| |legendreP| |createPrimitiveNormalPoly| + |toseLastSubResultant| |iisqrt3| |continuedFraction| + |useEisensteinCriterion?| |f04mbf| |showFortranOutputStack| |nthExpon| + |adaptive3D?| |tableau| |irreducibleFactors| |polygon?| |cycleTail| + |monom| |lift| |leftRank| |powern| |getConstant| |positiveSolve| + |nullity| |lastSubResultantElseSplit| |powerSum| |swap| + |halfExtendedResultant1| |c02agf| |listRepresentation| |property| + |loadNativeModule| |omError| |reduce| |algebraicDecompose| |point| + |polyPart| |unparse| |screenResolution3D| |makeprod| |position!| + |coth2tanh| |f01mcf| |supRittWu?| |stopTable!| + |nextNormalPrimitivePoly| |genericLeftTrace| |getButtonValue| |c06gbf| + |parametric?| |acscIfCan| |const| |laurentRep| |option?| |variable?| + |lfinfieldint| |coleman| |f07fef| |surface| |leadingTerm| |acoshIfCan| + |s14abf| |OMgetBind| |antiCommutative?| |e04ycf| |supersub| |minPoly| + |series| |dimensionOfIrreducibleRepresentation| |rroot| |palgint| + |intensity| |measure| |selectfirst| |LazardQuotient| |stFuncN| |shade| + |comment| |log| |permutationRepresentation| |createIrreduciblePoly| + |mathieu22| |phiCoord| |viewDeltaXDefault| |center| |push| + |tubePoints| |fortranReal| |OMputEndAtp| |denomLODE| |setelt| |hex| + |bitTruth| |e02gaf| |rotatez| |list?| |computeCycleLength| |select!| + |singRicDE| |numberOfComponents| |polygon| |removeCosSq| + |structuralConstants| |currentSubProgram| |algDsolve| |scale| + |checkForZero| |solveid| |f2df| |direction| |symmetricProduct| |min| + |autoReduced?| |makeUnit| |dihedralGroup| |sumOfSquares| + |setMaxPoints3D| |logpart| |redmat| |irreducibleRepresentation| + |selectPDERoutines| |infieldIntegrate| |normalise| |clearTheFTable| + |normalDeriv| |OMlistCDs| |factorOfDegree| |cross| |realElementary| + |airyAi| |functorData| |s17adf| |idealiser| |f07fdf| |inverseLaplace| + |meshPar1Var| |showTheSymbolTable| |rspace| |shape| |jacobian| + |closedCurve| |startTableGcd!| |besselI| |makeCrit| |atanIfCan| + |d02gbf| |realEigenvectors| |d02kef| |partitions| |ratDenom| |tanSum| + |ef2edf| |components| |minPol| |byte| |categoryMode| |laplacian| + |bernoulli| |setLength!| |OMgetEndApp| |e04gcf| |getMatch| |badValues| + |realSolve| |zero| |alphanumeric| |parabolicCylindrical| |reverse| + |e02zaf| |e04fdf| |s19abf| |weights| |curryRight| |normFactors| + |hasoln| |presub| |patternMatchTimes| |coordinates| |eq?| + |getZechTable| |li| |positive?| |henselFact| |An| |startStats!| + |branchPoint?| |s01eaf| |paren| |extractProperty| |And| |multisect| + |basisOfRightNucloid| |decrease| |enumerate| |chvar| |unknown| + |completeEval| |d02bhf| |viewPhiDefault| |factorPolynomial| |Or| + |stosePrepareSubResAlgo| |presuper| |physicalLength| |sech2cosh| + |taylorIfCan| |unitsColorDefault| |LyndonWordsList| |c05nbf| |pastel| + |trim| |Not| |nthFractionalTerm| |radix| |Aleph| |alternative?| + |characteristic| |invertibleElseSplit?| |d03edf| |cyclicEqual?| + |digit| |physicalLength!| |fractRagits| |scopes| |innerint| + |exprToGenUPS| |members| |nthRoot| |irDef| |nextColeman| |write!| + |int| |pToHdmp| |read!| |resetBadValues| |complexZeros| |mapGen| + |rubiksGroup| |chiSquare| |cSech| |norm| |limitedIntegrate| |epilogue| + |aromberg| |imagk| |singularitiesOf| |c06fuf| |partialQuotients| + |e01sbf| |nonSingularModel| |voidMode| |d02gaf| |graeffe| |s18aff| + |purelyAlgebraic?| |lazyPrem| |incrementKthElement| + |fortranCarriageReturn| |null?| |taylorQuoByVar| |powers| |diag| + |iicoth| |trigs| |initiallyReduced?| |factor1| |OMputAtp| |test| + |jordanAlgebra?| |hermiteH| |scan| |moebius| |remove| |iExquo| + |f02agf| |exportedOperators| |linearAssociatedExp| |f02aef| + |univariatePolynomialsGcds| |idealiserMatrix| |s17acf| |mindegTerm| + |var1Steps| |nextIrreduciblePoly| |e01sff| |integralMatrixAtInfinity| + |d01aqf| |doubleRank| |determinant| |radPoly| |ParCondList| + |multiplyExponents| |last| |sign| |extendIfCan| |subResultantGcd| + |sorted?| |logical?| |commonDenominator| UP2UTS |integralBasis| + |assoc| |fintegrate| |elementary| |trigs2explogs| + |absolutelyIrreducible?| |critMonD1| |range| + |removeIrreducibleRedundantFactors| |internalInfRittWu?| |Beta| + |condition| |tower| |bringDown| |deleteRoutine!| |mainVariables| + |SturmHabichtMultiple| |gramschmidt| |getOperator| |operators| + |limitedint| |close!| |remainder| |zeroMatrix| |infieldint| + |subTriSet?| |precision| |quatern| |minimize| |infinityNorm| |prefix| + |setColumn!| |iicsc| |mat| |setref| |product| |iisin| |besselY| + |generalLambert| |setPredicates| |recip| |cylindrical| |e02baf| + |trueEqual| |elaboration| |factorsOfDegree| |dAndcExp| + |nextPrimitivePoly| |divide| |obj| |parabolic| |s20adf| |eq| + |polyRicDE| |putGraph| |Ei| |solveInField| |perfectNthRoot| + |coefficients| |eisensteinIrreducible?| |low| |cache| |iter| |exprex| + |nextsousResultant2| |one?| |integralLastSubResultant| + |complexNumeric| |OMconnInDevice| |fractRadix| |constantIfCan| + |d01gbf| |optAttributes| |invertible?| |cyclePartition| |compound?| + |c06eaf| |stoseInvertible?| |sqfree| |monomRDE| |prime?| + |pseudoDivide| |drawStyle| |s21bcf| |oddlambert| |sin?| |f02axf| + |polarCoordinates| |updatF| |f02wef| |OMwrite| |setPoly| |hermite| + |reduceBasisAtInfinity| |crest| |invertibleSet| |transcendenceDegree| + |separateDegrees| |primlimitedint| |nextNormalPoly| |redPo| + |rightQuotient| |graphStates| |useEisensteinCriterion| + |removeRoughlyRedundantFactorsInContents| |splitNodeOf!| |lowerBound| + |imagK| |quadratic?| |sequence| |createNormalElement| |llprop| + |aspFilename| |pseudoRemainder| |subst| |e02bbf| |smith| + |genericRightTrace| |changeWeightLevel| |numberOfNormalPoly| |cCos| + |LiePoly| |isList| |drawComplex| |wholeRagits| |factorGroebnerBasis| + |mappingAst| |exp| |rowEchLocal| |oddintegers| |f04axf| |innerSolve1| + |d01fcf| |substring?| |stFunc2| |character?| |dmpToHdmp| |bytes| + |selectMultiDimensionalRoutines| |scalarTypeOf| |csch2sinh| + |radicalSolve| |map| |reverse!| |iitanh| |getOperands| |rootBound| + |minRowIndex| |interReduce| |branchIfCan| |algSplitSimple| |Si| + |squareFreeFactors| |table| |generator| |linearPart| |df2mf| + |mainDefiningPolynomial| |suffix?| |zeroDimPrimary?| |d02raf| |nil| + |changeNameToObjf| |setCondition!| |represents| |f04faf| + |GospersMethod| |new| |acosh| |any| |elliptic| |regime| |atom?| + |genericRightDiscriminant| |indicialEquations| |bezoutDiscriminant| + |iicosh| |maxPoints| |compile| |monicLeftDivide| |opeval| |atanh| + |primextintfrac| |makeMulti| |csubst| |prefix?| |basisOfRightNucleus| + |nodeOf?| |objects| |problemPoints| |unit| |reduceLODE| |fixPredicate| + |LyndonCoordinates| |acoth| |prod| |normDeriv2| |setValue!| |cSinh| + |point?| |base| |approximate| |addPoint| |typeList| |sortConstraints| + |multiEuclidean| |find| |convert| |asech| + |initializeGroupForWordProblem| |alternatingGroup| |setchildren!| + |zeroSquareMatrix| |changeVar| |complex| |constantRight| |exQuo| + |cCosh| |sh| |hasTopPredicate?| |create| |lfintegrate| |s17ajf| + |zeroOf| |doubleDisc| |padicallyExpand| |setEpilogue!| |perfectSqrt| + |noValueMode| |numberOfHues| |multiple| |children| |mathieu23| + |multiplyCoefficients| |accuracyIF| |euclideanSize| |failed| |before?| + |defineProperty| |OMgetEndBind| |interpretString| + |createPrimitiveElement| |applyQuote| |f02xef| |fibonacci| + |leftExactQuotient| |bipolarCylindrical| |cAcsc| |alphanumeric?| + |BumInSepFFE| |localUnquote| |lowerCase?| |typeLists| |infix?| |orbit| + |seed| |cot2tan| |iisec| |eyeDistance| |outputArgs| |sinIfCan| + |conical| |degreePartition| |monicCompleteDecompose| |incr| |mask| + |prologue| |lazyGintegrate| |rightFactorIfCan| |lepol| |lyndon| + |updatD| |c06fqf| |distdfact| |rewriteIdealWithHeadRemainder| + |univariatePolynomial| |ruleset| |hi| |addmod| |Ci| |anticoord| + |showTheFTable| |OMsupportsSymbol?| |ScanFloatIgnoreSpaces| + |tanh2coth| |multMonom| |squareFree| |is?| |left| |summation| + |minimumDegree| |lambert| |subResultantGcdEuclidean| |allRootsOf| + |getIdentifier| |dot| |backOldPos| |denominator| |ddFact| |right| + |f01rdf| |maxColIndex| |linearDependenceOverZ| |setStatus!| + |printTypes| |newLine| |singleFactorBound| |rightRecip| |Frobenius| + |chebyshevT| |suchThat| |degreeSubResultantEuclidean| |primaryDecomp| + |showTheRoutinesTable| |morphism| |subResultantChain| |quadraticNorm| + |quartic| |clip| |padicFraction| |cRationalPower| |blue| |nsqfree| + |rename| |exprToXXP| |mainPrimitivePart| |previous| |delta| |node?| + |bumptab1| |callForm?| |linears| |constantKernel| |stirling1| + |typeForm| |gbasis| |degree| |primeFrobenius| |wholeRadix| |initial| + |df2st| |rightMinimalPolynomial| |dark| |move| |numFunEvals| + |isConnected?| |freeOf?| |palgLODE| |createMultiplicationTable| + |jacobiIdentity?| |next| |f01bsf| |badNum| |setRealSteps| |ldf2vmf| + |size?| |datalist| |key| |rightZero| |leftRemainder| |midpoint| + |localReal?| |gradient| |attributeData| |interval| + |cyclotomicDecomposition| |tanAn| |ksec| |normalDenom| |isobaric?| + |headReduced?| |generic| |derivationCoordinates| |conjug| |listLoops| + |forLoop| |withPredicates| |screenResolution| |filename| + |uncouplingMatrices| |ricDsolve| |resetVariableOrder| |ScanArabic| + |commaSeparate| |OMgetType| |sncndn| |pdf2ef| |just| |d01akf| + |particularSolution| |csc2sin| |radicalOfLeftTraceForm| |quasiRegular| + |s14aaf| |removeSinSq| |index?| |ran| |less?| |resultantEuclidean| + |pointColorDefault| |cot2trig| |parse| |makeYoungTableau| + |inverseIntegralMatrixAtInfinity| |setPrologue!| |triangular?| + |SturmHabichtCoefficients| |multinomial| |lambda| |code| + |supDimElseRittWu?| |lSpaceBasis| |bivariate?| |distFact| |rank| + |generate| |UpTriBddDenomInv| |integralMatrix| |bothWays| + |linearAssociatedLog| |triangularSystems| |pushdterm| |resultant| + |curve| |LowTriBddDenomInv| |e04jaf| |indicialEquationAtInfinity| + |torsion?| |conjunction| |ref| |standardBasisOfCyclicSubmodule| + |oneDimensionalArray| |symbolIfCan| |lookupFunction| |critM| + |getMultiplicationMatrix| |incrementBy| |OMconnectTCP| |printCode| + |float?| |prem| |upDateBranches| |e02ahf| |lineColorDefault| + |stoseInvertible?reg| |pointData| |representationType| |extractClosed| + |reorder| |e02agf| |stirling2| |logIfCan| |equality| + |prepareDecompose| |showArrayValues| |coHeight| |completeSmith| + |d03faf| |bfKeys| |submod| |rowEchelon| |internalZeroSetSplit| + |subSet| |cyclic?| |integralCoordinates| |tan2cot| |hexDigit| + |lintgcd| |symbol?| |printInfo| |removeCoshSq| |createPrimitivePoly| + |elseBranch| |associatedEquations| |leastAffineMultiple| + |basisOfMiddleNucleus| |extendedint| |rightExactQuotient| |gcdprim| + |rightPower| |hexDigit?| |OMputSymbol| |squareFreePrim| + |getVariableOrder| |complexSolve| |duplicates?| |currentCategoryFrame| + |OMgetError| |options| |solveLinearPolynomialEquationByRecursion| + |homogeneous?| |lists| |d02cjf| |infix| |innerEigenvectors| |po| + |tail| |integral| |dom| |subscriptedVariables| |palglimint0| + |irreducibleFactor| |mergeFactors| |curry| |tan2trig| + |indiceSubResultantEuclidean| |colorDef| |coord| |htrigs| + |completeHensel| |arg1| |entry| |support| |var2Steps| |identityMatrix| + |semiSubResultantGcdEuclidean1| |stoseLastSubResultant| + |rightCharacteristicPolynomial| |nil| |infinite| |arbitraryExponent| + |approximate| |complex| |shallowMutable| |canonical| |noetherian| + |central| |partiallyOrderedSet| |arbitraryPrecision| + |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| + |additiveValuation| |unitsKnown| |canonicalUnitNormal| + |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| + |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 62c230a1..43073be2 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5444 +1,5448 @@ -(3262821 . 3486852448) -((-2919 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-3519 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4268 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-1255 (-576)) |#2|) 44)) (-1542 (($ $) 80)) (-2721 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3539 (((-576) (-1 (-112) |#2|) $) 27) (((-576) |#2| $) NIL) (((-576) |#2| $ (-576)) 96)) (-3722 (((-656 |#2|) $) 13)) (-2748 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-1898 (($ (-1 |#2| |#2|) $) 37)) (-2423 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-3386 (($ |#2| $ (-576)) NIL) (($ $ $ (-576)) 67)) (-4220 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-1759 (((-112) (-1 (-112) |#2|) $) 23)) (-4369 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL) (($ $ (-1255 (-576))) 66)) (-2335 (($ $ (-576)) 76) (($ $ (-1255 (-576))) 75)) (-3127 (((-783) (-1 (-112) |#2|) $) 34) (((-783) |#2| $) NIL)) (-3218 (($ $ $ (-576)) 69)) (-4287 (($ $) 68)) (-4125 (($ (-656 |#2|)) 73)) (-2767 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-656 $)) 85)) (-4113 (((-876) $) 92)) (-2543 (((-112) (-1 (-112) |#2|) $) 22)) (-3939 (((-112) $ $) 95)) (-3963 (((-112) $ $) 99))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -3963 ((-112) |#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1542 (|#1| |#1|)) (-15 -3218 (|#1| |#1| |#1| (-576))) (-15 -2919 ((-112) |#1|)) (-15 -2748 (|#1| |#1| |#1|)) (-15 -3539 ((-576) |#2| |#1| (-576))) (-15 -3539 ((-576) |#2| |#1|)) (-15 -3539 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2919 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4268 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -2335 (|#1| |#1| (-1255 (-576)))) (-15 -2335 (|#1| |#1| (-576))) (-15 -2423 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2767 (|#1| (-656 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -4369 (|#1| |#1| (-1255 (-576)))) (-15 -4125 (|#1| (-656 |#2|))) (-15 -4220 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4369 (|#2| |#1| (-576))) (-15 -4369 (|#2| |#1| (-576) |#2|)) (-15 -4268 (|#2| |#1| (-576) |#2|)) (-15 -3127 ((-783) |#2| |#1|)) (-15 -3722 ((-656 |#2|) |#1|)) (-15 -3127 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1759 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1898 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4287 (|#1| |#1|))) (-19 |#2|) (-1238)) (T -18)) +(3264121 . 3486916241) +((-3925 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-1698 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3719 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-1256 (-576)) |#2|) 44)) (-4072 (($ $) 80)) (-3662 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3619 (((-576) (-1 (-112) |#2|) $) 27) (((-576) |#2| $) NIL) (((-576) |#2| $ (-576)) 96)) (-1448 (((-657 |#2|) $) 13)) (-1661 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-1799 (($ (-1 |#2| |#2|) $) 37)) (-4071 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2225 (($ |#2| $ (-576)) NIL) (($ $ $ (-576)) 67)) (-4135 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2372 (((-112) (-1 (-112) |#2|) $) 23)) (-2780 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL) (($ $ (-1256 (-576))) 66)) (-3395 (($ $ (-576)) 76) (($ $ (-1256 (-576))) 75)) (-1469 (((-784) (-1 (-112) |#2|) $) 34) (((-784) |#2| $) NIL)) (-1818 (($ $ $ (-576)) 69)) (-1899 (($ $) 68)) (-3529 (($ (-657 |#2|)) 73)) (-1637 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-657 $)) 85)) (-3515 (((-877) $) 92)) (-3258 (((-112) (-1 (-112) |#2|) $) 22)) (-2881 (((-112) $ $) 95)) (-2901 (((-112) $ $) 99))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -2901 ((-112) |#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1698 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -1818 (|#1| |#1| |#1| (-576))) (-15 -3925 ((-112) |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -3619 ((-576) |#2| |#1| (-576))) (-15 -3619 ((-576) |#2| |#1|)) (-15 -3619 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3925 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1661 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3719 (|#2| |#1| (-1256 (-576)) |#2|)) (-15 -2225 (|#1| |#1| |#1| (-576))) (-15 -2225 (|#1| |#2| |#1| (-576))) (-15 -3395 (|#1| |#1| (-1256 (-576)))) (-15 -3395 (|#1| |#1| (-576))) (-15 -4071 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1637 (|#1| (-657 |#1|))) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#2| |#1|)) (-15 -1637 (|#1| |#1| |#2|)) (-15 -2780 (|#1| |#1| (-1256 (-576)))) (-15 -3529 (|#1| (-657 |#2|))) (-15 -4135 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2780 (|#2| |#1| (-576))) (-15 -2780 (|#2| |#1| (-576) |#2|)) (-15 -3719 (|#2| |#1| (-576) |#2|)) (-15 -1469 ((-784) |#2| |#1|)) (-15 -1448 ((-657 |#2|) |#1|)) (-15 -1469 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -2372 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3258 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1799 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1899 (|#1| |#1|))) (-19 |#2|) (-1239)) (T -18)) NIL -(-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -3963 ((-112) |#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1542 (|#1| |#1|)) (-15 -3218 (|#1| |#1| |#1| (-576))) (-15 -2919 ((-112) |#1|)) (-15 -2748 (|#1| |#1| |#1|)) (-15 -3539 ((-576) |#2| |#1| (-576))) (-15 -3539 ((-576) |#2| |#1|)) (-15 -3539 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2919 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4268 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -2335 (|#1| |#1| (-1255 (-576)))) (-15 -2335 (|#1| |#1| (-576))) (-15 -2423 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2767 (|#1| (-656 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -4369 (|#1| |#1| (-1255 (-576)))) (-15 -4125 (|#1| (-656 |#2|))) (-15 -4220 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4369 (|#2| |#1| (-576))) (-15 -4369 (|#2| |#1| (-576) |#2|)) (-15 -4268 (|#2| |#1| (-576) |#2|)) (-15 -3127 ((-783) |#2| |#1|)) (-15 -3722 ((-656 |#2|) |#1|)) (-15 -3127 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1759 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1898 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4287 (|#1| |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3657 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465))))) (-2380 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-4234 (((-112) $ (-783)) 8)) (-4268 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-1542 (($ $) 93 (|has| $ (-6 -4465)))) (-4204 (($ $) 103)) (-3841 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) 52)) (-3539 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1991 (($ (-783) |#1|) 70)) (-3215 (((-112) $ (-783)) 9)) (-1605 (((-576) $) 44 (|has| (-576) (-861)))) (-2907 (($ $ $) 85 (|has| |#1| (-861)))) (-2748 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1829 (((-576) $) 45 (|has| (-576) (-861)))) (-3777 (($ $ $) 86 (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3386 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2863 (((-656 (-576)) $) 47)) (-1389 (((-112) (-576) $) 48)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1755 ((|#1| $) 43 (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4267 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) 49)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-2335 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3218 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-4287 (($ $) 13)) (-1556 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 72)) (-2767 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3975 (((-112) $ $) 89 (|has| |#1| (-861)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3984 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3963 (((-112) $ $) 90 (|has| |#1| (-861)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-19 |#1|) (-141) (-1238)) (T -19)) +(-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -2901 ((-112) |#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1698 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -1818 (|#1| |#1| |#1| (-576))) (-15 -3925 ((-112) |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -3619 ((-576) |#2| |#1| (-576))) (-15 -3619 ((-576) |#2| |#1|)) (-15 -3619 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3925 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1661 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3719 (|#2| |#1| (-1256 (-576)) |#2|)) (-15 -2225 (|#1| |#1| |#1| (-576))) (-15 -2225 (|#1| |#2| |#1| (-576))) (-15 -3395 (|#1| |#1| (-1256 (-576)))) (-15 -3395 (|#1| |#1| (-576))) (-15 -4071 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1637 (|#1| (-657 |#1|))) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#2| |#1|)) (-15 -1637 (|#1| |#1| |#2|)) (-15 -2780 (|#1| |#1| (-1256 (-576)))) (-15 -3529 (|#1| (-657 |#2|))) (-15 -4135 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2780 (|#2| |#1| (-576))) (-15 -2780 (|#2| |#1| (-576) |#2|)) (-15 -3719 (|#2| |#1| (-576) |#2|)) (-15 -1469 ((-784) |#2| |#1|)) (-15 -1448 ((-657 |#2|) |#1|)) (-15 -1469 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -2372 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3258 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1799 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1899 (|#1| |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3590 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-1698 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4467))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4467))))) (-1832 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-4284 (((-112) $ (-784)) 8)) (-3719 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 60 (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-4072 (($ $) 93 (|has| $ (-6 -4467)))) (-3796 (($ $) 103)) (-1620 (($ $) 80 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#1| $) 79 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) 52)) (-3619 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1122)))) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-4096 (($ (-784) |#1|) 70)) (-1786 (((-112) $ (-784)) 9)) (-3363 (((-576) $) 44 (|has| (-576) (-862)))) (-3740 (($ $ $) 85 (|has| |#1| (-862)))) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1833 (((-576) $) 45 (|has| (-576) (-862)))) (-2249 (($ $ $) 86 (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-2225 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3309 (((-657 (-576)) $) 47)) (-4324 (((-112) (-576) $) 48)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3528 ((|#1| $) 43 (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1495 (($ $ |#1|) 42 (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) 49)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1256 (-576))) 71)) (-3395 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1818 (($ $ $ (-576)) 94 (|has| $ (-6 -4467)))) (-1899 (($ $) 13)) (-4136 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 72)) (-1637 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) 87 (|has| |#1| (-862)))) (-2913 (((-112) $ $) 89 (|has| |#1| (-862)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2925 (((-112) $ $) 88 (|has| |#1| (-862)))) (-2901 (((-112) $ $) 90 (|has| |#1| (-862)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-19 |#1|) (-141) (-1239)) (T -19)) NIL -(-13 (-384 |t#1|) (-10 -7 (-6 -4465))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T)) -((-1765 (((-3 $ "failed") $ $) 12)) (-4037 (($ $) NIL) (($ $ $) 9)) (* (($ (-940) $) NIL) (($ (-783) $) 16) (($ (-576) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -1765 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-21)) (T -20)) +(-13 (-384 |t#1|) (-10 -7 (-6 -4467))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1122) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862))) ((-1239) . T)) +((-2423 (((-3 $ "failed") $ $) 12)) (-2982 (($ $) NIL) (($ $ $) 9)) (* (($ (-941) $) NIL) (($ (-784) $) 16) (($ (-576) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2423 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -1765 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) +(-10 -8 (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2423 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24))) (((-21) (-141)) (T -21)) -((-4037 (*1 *1 *1) (-4 *1 (-21))) (-4037 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-132) (-658 (-576)) (-10 -8 (-15 -4037 ($ $)) (-15 -4037 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-1121) . T) ((-1238) . T)) -((-3114 (((-112) $) 10)) (-3170 (($) 15)) (* (($ (-940) $) 14) (($ (-783) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -3114 ((-112) |#1|)) (-15 -3170 (|#1|)) (-15 * (|#1| (-940) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -3114 ((-112) |#1|)) (-15 -3170 (|#1|)) (-15 * (|#1| (-940) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) +((-2982 (*1 *1 *1) (-4 *1 (-21))) (-2982 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-132) (-659 (-576)) (-10 -8 (-15 -2982 ($ $)) (-15 -2982 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-1122) . T) ((-1239) . T)) +((-2044 (((-112) $) 10)) (-2515 (($) 15)) (* (($ (-941) $) 14) (($ (-784) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-784) |#1|)) (-15 -2044 ((-112) |#1|)) (-15 -2515 (|#1|)) (-15 * (|#1| (-941) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-784) |#1|)) (-15 -2044 ((-112) |#1|)) (-15 -2515 (|#1|)) (-15 * (|#1| (-941) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16))) (((-23) (-141)) (T -23)) -((-4313 (*1 *1) (-4 *1 (-23))) (-3170 (*1 *1) (-4 *1 (-23))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783))))) -(-13 (-25) (-10 -8 (-15 (-4313) ($) -2666) (-15 -3170 ($) -2666) (-15 -3114 ((-112) $)) (-15 * ($ (-783) $)))) -(((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((* (($ (-940) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-940) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-940) |#1|))) -((-1957 (((-112) $ $) 7)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14))) +((-2716 (*1 *1) (-4 *1 (-23))) (-2515 (*1 *1) (-4 *1 (-23))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-784))))) +(-13 (-25) (-10 -8 (-15 (-2716) ($) -1491) (-15 -2515 ($) -1491) (-15 -2044 ((-112) $)) (-15 * ($ (-784) $)))) +(((-25) . T) ((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((* (($ (-941) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-941) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-941) |#1|))) +((-3423 (((-112) $ $) 7)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14))) (((-25) (-141)) (T -25)) -((-4026 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-940))))) -(-13 (-1121) (-10 -8 (-15 -4026 ($ $ $)) (-15 * ($ (-940) $)))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-2246 (((-656 $) (-971 $)) 32) (((-656 $) (-1193 $)) 16) (((-656 $) (-1193 $) (-1197)) 20)) (-2811 (($ (-971 $)) 30) (($ (-1193 $)) 11) (($ (-1193 $) (-1197)) 60)) (-1499 (((-656 $) (-971 $)) 33) (((-656 $) (-1193 $)) 18) (((-656 $) (-1193 $) (-1197)) 19)) (-2467 (($ (-971 $)) 31) (($ (-1193 $)) 13) (($ (-1193 $) (-1197)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -2246 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -2246 ((-656 |#1|) (-1193 |#1|))) (-15 -2246 ((-656 |#1|) (-971 |#1|))) (-15 -2811 (|#1| (-1193 |#1|) (-1197))) (-15 -2811 (|#1| (-1193 |#1|))) (-15 -2811 (|#1| (-971 |#1|))) (-15 -1499 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -1499 ((-656 |#1|) (-1193 |#1|))) (-15 -1499 ((-656 |#1|) (-971 |#1|))) (-15 -2467 (|#1| (-1193 |#1|) (-1197))) (-15 -2467 (|#1| (-1193 |#1|))) (-15 -2467 (|#1| (-971 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -2246 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -2246 ((-656 |#1|) (-1193 |#1|))) (-15 -2246 ((-656 |#1|) (-971 |#1|))) (-15 -2811 (|#1| (-1193 |#1|) (-1197))) (-15 -2811 (|#1| (-1193 |#1|))) (-15 -2811 (|#1| (-971 |#1|))) (-15 -1499 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -1499 ((-656 |#1|) (-1193 |#1|))) (-15 -1499 ((-656 |#1|) (-971 |#1|))) (-15 -2467 (|#1| (-1193 |#1|) (-1197))) (-15 -2467 (|#1| (-1193 |#1|))) (-15 -2467 (|#1| (-971 |#1|)))) -((-1957 (((-112) $ $) 7)) (-2246 (((-656 $) (-971 $)) 88) (((-656 $) (-1193 $)) 87) (((-656 $) (-1193 $) (-1197)) 86)) (-2811 (($ (-971 $)) 91) (($ (-1193 $)) 90) (($ (-1193 $) (-1197)) 89)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 81)) (-3589 (((-430 $) $) 80)) (-1462 (($ $) 100)) (-4386 (((-112) $ $) 65)) (-3170 (($) 18 T CONST)) (-1499 (((-656 $) (-971 $)) 94) (((-656 $) (-1193 $)) 93) (((-656 $) (-1193 $) (-1197)) 92)) (-2467 (($ (-971 $)) 97) (($ (-1193 $)) 96) (($ (-1193 $) (-1197)) 95)) (-1895 (($ $ $) 61)) (-1851 (((-3 $ "failed") $) 37)) (-1908 (($ $ $) 62)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-2171 (((-112) $) 79)) (-2486 (((-112) $) 35)) (-4005 (($ $ (-576)) 99)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 78)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-1452 (((-430 $) $) 82)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2812 (((-783) $) 64)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ $) 73)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-2971 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-941))))) +(-13 (-1122) (-10 -8 (-15 -2971 ($ $ $)) (-15 * ($ (-941) $)))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3417 (((-657 $) (-972 $)) 32) (((-657 $) (-1194 $)) 16) (((-657 $) (-1194 $) (-1198)) 20)) (-4152 (($ (-972 $)) 30) (($ (-1194 $)) 11) (($ (-1194 $) (-1198)) 60)) (-1751 (((-657 $) (-972 $)) 33) (((-657 $) (-1194 $)) 18) (((-657 $) (-1194 $) (-1198)) 19)) (-1913 (($ (-972 $)) 31) (($ (-1194 $)) 13) (($ (-1194 $) (-1198)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -3417 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -3417 ((-657 |#1|) (-1194 |#1|))) (-15 -3417 ((-657 |#1|) (-972 |#1|))) (-15 -4152 (|#1| (-1194 |#1|) (-1198))) (-15 -4152 (|#1| (-1194 |#1|))) (-15 -4152 (|#1| (-972 |#1|))) (-15 -1751 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -1751 ((-657 |#1|) (-1194 |#1|))) (-15 -1751 ((-657 |#1|) (-972 |#1|))) (-15 -1913 (|#1| (-1194 |#1|) (-1198))) (-15 -1913 (|#1| (-1194 |#1|))) (-15 -1913 (|#1| (-972 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -3417 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -3417 ((-657 |#1|) (-1194 |#1|))) (-15 -3417 ((-657 |#1|) (-972 |#1|))) (-15 -4152 (|#1| (-1194 |#1|) (-1198))) (-15 -4152 (|#1| (-1194 |#1|))) (-15 -4152 (|#1| (-972 |#1|))) (-15 -1751 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -1751 ((-657 |#1|) (-1194 |#1|))) (-15 -1751 ((-657 |#1|) (-972 |#1|))) (-15 -1913 (|#1| (-1194 |#1|) (-1198))) (-15 -1913 (|#1| (-1194 |#1|))) (-15 -1913 (|#1| (-972 |#1|)))) +((-3423 (((-112) $ $) 7)) (-3417 (((-657 $) (-972 $)) 88) (((-657 $) (-1194 $)) 87) (((-657 $) (-1194 $) (-1198)) 86)) (-4152 (($ (-972 $)) 91) (($ (-1194 $)) 90) (($ (-1194 $) (-1198)) 89)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 81)) (-4215 (((-430 $) $) 80)) (-1866 (($ $) 100)) (-3210 (((-112) $ $) 65)) (-2515 (($) 18 T CONST)) (-1751 (((-657 $) (-972 $)) 94) (((-657 $) (-1194 $)) 93) (((-657 $) (-1194 $) (-1198)) 92)) (-1913 (($ (-972 $)) 97) (($ (-1194 $)) 96) (($ (-1194 $) (-1198)) 95)) (-3355 (($ $ $) 61)) (-3969 (((-3 $ "failed") $) 37)) (-3369 (($ $ $) 62)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-4009 (((-112) $) 79)) (-3994 (((-112) $) 35)) (-3856 (($ $ (-576)) 99)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 78)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-1856 (((-430 $) $) 82)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-4164 (((-784) $) 64)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ $) 73)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-27) (-141)) (T -27)) -((-2467 (*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) (-2467 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-2811 (*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) (-2811 (*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) (-2811 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-2246 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) (-5 *2 (-656 *1))))) -(-13 (-374) (-1023) (-10 -8 (-15 -2467 ($ (-971 $))) (-15 -2467 ($ (-1193 $))) (-15 -2467 ($ (-1193 $) (-1197))) (-15 -1499 ((-656 $) (-971 $))) (-15 -1499 ((-656 $) (-1193 $))) (-15 -1499 ((-656 $) (-1193 $) (-1197))) (-15 -2811 ($ (-971 $))) (-15 -2811 ($ (-1193 $))) (-15 -2811 ($ (-1193 $) (-1197))) (-15 -2246 ((-656 $) (-971 $))) (-15 -2246 ((-656 $) (-1193 $))) (-15 -2246 ((-656 $) (-1193 $) (-1197))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1023) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-2246 (((-656 $) (-971 $)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-1193 $) (-1197)) 55) (((-656 $) $) 22) (((-656 $) $ (-1197)) 46)) (-2811 (($ (-971 $)) NIL) (($ (-1193 $)) NIL) (($ (-1193 $) (-1197)) 57) (($ $) 20) (($ $ (-1197)) 40)) (-1499 (((-656 $) (-971 $)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-1193 $) (-1197)) 53) (((-656 $) $) 18) (((-656 $) $ (-1197)) 48)) (-2467 (($ (-971 $)) NIL) (($ (-1193 $)) NIL) (($ (-1193 $) (-1197)) NIL) (($ $) 15) (($ $ (-1197)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -2246 ((-656 |#1|) |#1| (-1197))) (-15 -2811 (|#1| |#1| (-1197))) (-15 -2246 ((-656 |#1|) |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -1499 ((-656 |#1|) |#1| (-1197))) (-15 -2467 (|#1| |#1| (-1197))) (-15 -1499 ((-656 |#1|) |#1|)) (-15 -2467 (|#1| |#1|)) (-15 -2246 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -2246 ((-656 |#1|) (-1193 |#1|))) (-15 -2246 ((-656 |#1|) (-971 |#1|))) (-15 -2811 (|#1| (-1193 |#1|) (-1197))) (-15 -2811 (|#1| (-1193 |#1|))) (-15 -2811 (|#1| (-971 |#1|))) (-15 -1499 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -1499 ((-656 |#1|) (-1193 |#1|))) (-15 -1499 ((-656 |#1|) (-971 |#1|))) (-15 -2467 (|#1| (-1193 |#1|) (-1197))) (-15 -2467 (|#1| (-1193 |#1|))) (-15 -2467 (|#1| (-971 |#1|)))) (-29 |#2|) (-568)) (T -28)) -NIL -(-10 -8 (-15 -2246 ((-656 |#1|) |#1| (-1197))) (-15 -2811 (|#1| |#1| (-1197))) (-15 -2246 ((-656 |#1|) |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -1499 ((-656 |#1|) |#1| (-1197))) (-15 -2467 (|#1| |#1| (-1197))) (-15 -1499 ((-656 |#1|) |#1|)) (-15 -2467 (|#1| |#1|)) (-15 -2246 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -2246 ((-656 |#1|) (-1193 |#1|))) (-15 -2246 ((-656 |#1|) (-971 |#1|))) (-15 -2811 (|#1| (-1193 |#1|) (-1197))) (-15 -2811 (|#1| (-1193 |#1|))) (-15 -2811 (|#1| (-971 |#1|))) (-15 -1499 ((-656 |#1|) (-1193 |#1|) (-1197))) (-15 -1499 ((-656 |#1|) (-1193 |#1|))) (-15 -1499 ((-656 |#1|) (-971 |#1|))) (-15 -2467 (|#1| (-1193 |#1|) (-1197))) (-15 -2467 (|#1| (-1193 |#1|))) (-15 -2467 (|#1| (-971 |#1|)))) -((-1957 (((-112) $ $) 7)) (-2246 (((-656 $) (-971 $)) 88) (((-656 $) (-1193 $)) 87) (((-656 $) (-1193 $) (-1197)) 86) (((-656 $) $) 138) (((-656 $) $ (-1197)) 136)) (-2811 (($ (-971 $)) 91) (($ (-1193 $)) 90) (($ (-1193 $) (-1197)) 89) (($ $) 139) (($ $ (-1197)) 137)) (-3114 (((-112) $) 17)) (-1585 (((-656 (-1197)) $) 207)) (-1421 (((-419 (-1193 $)) $ (-624 $)) 239 (|has| |#1| (-568)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-4442 (((-656 (-624 $)) $) 170)) (-1765 (((-3 $ "failed") $ $) 20)) (-1791 (($ $ (-656 (-624 $)) (-656 $)) 160) (($ $ (-656 (-304 $))) 159) (($ $ (-304 $)) 158)) (-2658 (($ $) 81)) (-3589 (((-430 $) $) 80)) (-1462 (($ $) 100)) (-4386 (((-112) $ $) 65)) (-3170 (($) 18 T CONST)) (-1499 (((-656 $) (-971 $)) 94) (((-656 $) (-1193 $)) 93) (((-656 $) (-1193 $) (-1197)) 92) (((-656 $) $) 142) (((-656 $) $ (-1197)) 140)) (-2467 (($ (-971 $)) 97) (($ (-1193 $)) 96) (($ (-1193 $) (-1197)) 95) (($ $) 143) (($ $ (-1197)) 141)) (-2982 (((-3 (-971 |#1|) "failed") $) 258 (|has| |#1| (-1070))) (((-3 (-419 (-971 |#1|)) "failed") $) 241 (|has| |#1| (-568))) (((-3 |#1| "failed") $) 203) (((-3 (-576) "failed") $) 200 (|has| |#1| (-1059 (-576)))) (((-3 (-1197) "failed") $) 194) (((-3 (-624 $) "failed") $) 145) (((-3 (-419 (-576)) "failed") $) 133 (-3795 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-2317 (((-971 |#1|) $) 257 (|has| |#1| (-1070))) (((-419 (-971 |#1|)) $) 240 (|has| |#1| (-568))) ((|#1| $) 202) (((-576) $) 201 (|has| |#1| (-1059 (-576)))) (((-1197) $) 193) (((-624 $) $) 144) (((-419 (-576)) $) 134 (-3795 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-1895 (($ $ $) 61)) (-1930 (((-701 |#1|) (-701 $)) 246 (|has| |#1| (-1070))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 245 (|has| |#1| (-1070))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 132 (-3795 (-2311 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2311 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (((-701 (-576)) (-701 $)) 131 (-3795 (-2311 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2311 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-1851 (((-3 $ "failed") $) 37)) (-1908 (($ $ $) 62)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-2171 (((-112) $) 79)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 199 (|has| |#1| (-901 (-390)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 198 (|has| |#1| (-901 (-576))))) (-3043 (($ (-656 $)) 164) (($ $) 163)) (-1849 (((-656 (-115)) $) 171)) (-1401 (((-115) (-115)) 172)) (-2486 (((-112) $) 35)) (-3616 (((-112) $) 192 (|has| $ (-1059 (-576))))) (-2252 (($ $) 224 (|has| |#1| (-1070)))) (-2687 (((-1146 |#1| (-624 $)) $) 223 (|has| |#1| (-1070)))) (-4005 (($ $ (-576)) 99)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1634 (((-1193 $) (-624 $)) 189 (|has| $ (-1070)))) (-2423 (($ (-1 $ $) (-624 $)) 178)) (-2875 (((-3 (-624 $) "failed") $) 168)) (-2160 (((-701 |#1|) (-1288 $)) 248 (|has| |#1| (-1070))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 247 (|has| |#1| (-1070))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 130 (-3795 (-2311 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2311 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (((-701 (-576)) (-1288 $)) 129 (-3795 (-2311 (|has| |#1| (-1070)) (|has| |#1| (-651 (-576)))) (-2311 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-1388 (((-656 (-624 $)) $) 169)) (-2772 (($ (-115) (-656 $)) 177) (($ (-115) $) 176)) (-4050 (((-3 (-656 $) "failed") $) 218 (|has| |#1| (-1133)))) (-3838 (((-3 (-2 (|:| |val| $) (|:| -4080 (-576))) "failed") $) 227 (|has| |#1| (-1070)))) (-2646 (((-3 (-656 $) "failed") $) 220 (|has| |#1| (-25)))) (-3453 (((-3 (-2 (|:| -2862 (-576)) (|:| |var| (-624 $))) "failed") $) 221 (|has| |#1| (-25)))) (-1608 (((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $ (-1197)) 226 (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $ (-115)) 225 (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $) 219 (|has| |#1| (-1133)))) (-4227 (((-112) $ (-1197)) 175) (((-112) $ (-115)) 174)) (-1669 (($ $) 78)) (-2955 (((-783) $) 167)) (-3116 (((-1141) $) 11)) (-1678 (((-112) $) 205)) (-1686 ((|#1| $) 206)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-2197 (((-112) $ (-1197)) 180) (((-112) $ $) 179)) (-1452 (((-430 $) $) 82)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3955 (((-112) $) 191 (|has| $ (-1059 (-576))))) (-2145 (($ $ (-1197) (-783) (-1 $ $)) 231 (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ (-656 $))) 230 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 229 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) 228 (|has| |#1| (-1070))) (($ $ (-656 (-115)) (-656 $) (-1197)) 217 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1197)) 216 (|has| |#1| (-626 (-548)))) (($ $) 215 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197))) 214 (|has| |#1| (-626 (-548)))) (($ $ (-1197)) 213 (|has| |#1| (-626 (-548)))) (($ $ (-115) (-1 $ $)) 188) (($ $ (-115) (-1 $ (-656 $))) 187) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 186) (($ $ (-656 (-115)) (-656 (-1 $ $))) 185) (($ $ (-1197) (-1 $ $)) 184) (($ $ (-1197) (-1 $ (-656 $))) 183) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 182) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 181) (($ $ (-656 $) (-656 $)) 152) (($ $ $ $) 151) (($ $ (-304 $)) 150) (($ $ (-656 (-304 $))) 149) (($ $ (-656 (-624 $)) (-656 $)) 148) (($ $ (-624 $) $) 147)) (-2812 (((-783) $) 64)) (-4369 (($ (-115) (-656 $)) 157) (($ (-115) $ $ $ $) 156) (($ (-115) $ $ $) 155) (($ (-115) $ $) 154) (($ (-115) $) 153)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63)) (-1328 (($ $ $) 166) (($ $) 165)) (-4107 (($ $ (-656 (-1197)) (-656 (-783))) 253 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 252 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 251 (|has| |#1| (-1070))) (($ $ (-1197)) 249 (|has| |#1| (-1070)))) (-3591 (($ $) 234 (|has| |#1| (-568)))) (-2697 (((-1146 |#1| (-624 $)) $) 233 (|has| |#1| (-568)))) (-3881 (($ $) 190 (|has| $ (-1070)))) (-1556 (((-548) $) 262 (|has| |#1| (-626 (-548)))) (($ (-430 $)) 232 (|has| |#1| (-568))) (((-907 (-390)) $) 197 (|has| |#1| (-626 (-907 (-390))))) (((-907 (-576)) $) 196 (|has| |#1| (-626 (-907 (-576)))))) (-2117 (($ $ $) 261 (|has| |#1| (-485)))) (-3871 (($ $ $) 260 (|has| |#1| (-485)))) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-971 |#1|)) 259 (|has| |#1| (-1070))) (($ (-419 (-971 |#1|))) 242 (|has| |#1| (-568))) (($ (-419 (-971 (-419 |#1|)))) 238 (|has| |#1| (-568))) (($ (-971 (-419 |#1|))) 237 (|has| |#1| (-568))) (($ (-419 |#1|)) 236 (|has| |#1| (-568))) (($ (-1146 |#1| (-624 $))) 222 (|has| |#1| (-1070))) (($ |#1|) 204) (($ (-1197)) 195) (($ (-624 $)) 146)) (-4276 (((-3 $ "failed") $) 244 (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-2345 (($ (-656 $)) 162) (($ $) 161)) (-1380 (((-112) (-115)) 173)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-3699 (($ (-1197) (-656 $)) 212) (($ (-1197) $ $ $ $) 211) (($ (-1197) $ $ $) 210) (($ (-1197) $ $) 209) (($ (-1197) $) 208)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-656 (-1197)) (-656 (-783))) 256 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 255 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 254 (|has| |#1| (-1070))) (($ $ (-1197)) 250 (|has| |#1| (-1070)))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ $) 73) (($ (-1146 |#1| (-624 $)) (-1146 |#1| (-624 $))) 235 (|has| |#1| (-568)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 243 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1070))))) +((-1913 (*1 *1 *2) (-12 (-5 *2 (-972 *1)) (-4 *1 (-27)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-27)))) (-1913 (*1 *1 *2 *3) (-12 (-5 *2 (-1194 *1)) (-5 *3 (-1198)) (-4 *1 (-27)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-972 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-1194 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) (-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *1)) (-5 *4 (-1198)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-972 *1)) (-4 *1 (-27)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-27)))) (-4152 (*1 *1 *2 *3) (-12 (-5 *2 (-1194 *1)) (-5 *3 (-1198)) (-4 *1 (-27)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-972 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-1194 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *1)) (-5 *4 (-1198)) (-4 *1 (-27)) (-5 *2 (-657 *1))))) +(-13 (-374) (-1024) (-10 -8 (-15 -1913 ($ (-972 $))) (-15 -1913 ($ (-1194 $))) (-15 -1913 ($ (-1194 $) (-1198))) (-15 -1751 ((-657 $) (-972 $))) (-15 -1751 ((-657 $) (-1194 $))) (-15 -1751 ((-657 $) (-1194 $) (-1198))) (-15 -4152 ($ (-972 $))) (-15 -4152 ($ (-1194 $))) (-15 -4152 ($ (-1194 $) (-1198))) (-15 -3417 ((-657 $) (-972 $))) (-15 -3417 ((-657 $) (-1194 $))) (-15 -3417 ((-657 $) (-1194 $) (-1198))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1024) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) +((-3417 (((-657 $) (-972 $)) NIL) (((-657 $) (-1194 $)) NIL) (((-657 $) (-1194 $) (-1198)) 55) (((-657 $) $) 22) (((-657 $) $ (-1198)) 46)) (-4152 (($ (-972 $)) NIL) (($ (-1194 $)) NIL) (($ (-1194 $) (-1198)) 57) (($ $) 20) (($ $ (-1198)) 40)) (-1751 (((-657 $) (-972 $)) NIL) (((-657 $) (-1194 $)) NIL) (((-657 $) (-1194 $) (-1198)) 53) (((-657 $) $) 18) (((-657 $) $ (-1198)) 48)) (-1913 (($ (-972 $)) NIL) (($ (-1194 $)) NIL) (($ (-1194 $) (-1198)) NIL) (($ $) 15) (($ $ (-1198)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -3417 ((-657 |#1|) |#1| (-1198))) (-15 -4152 (|#1| |#1| (-1198))) (-15 -3417 ((-657 |#1|) |#1|)) (-15 -4152 (|#1| |#1|)) (-15 -1751 ((-657 |#1|) |#1| (-1198))) (-15 -1913 (|#1| |#1| (-1198))) (-15 -1751 ((-657 |#1|) |#1|)) (-15 -1913 (|#1| |#1|)) (-15 -3417 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -3417 ((-657 |#1|) (-1194 |#1|))) (-15 -3417 ((-657 |#1|) (-972 |#1|))) (-15 -4152 (|#1| (-1194 |#1|) (-1198))) (-15 -4152 (|#1| (-1194 |#1|))) (-15 -4152 (|#1| (-972 |#1|))) (-15 -1751 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -1751 ((-657 |#1|) (-1194 |#1|))) (-15 -1751 ((-657 |#1|) (-972 |#1|))) (-15 -1913 (|#1| (-1194 |#1|) (-1198))) (-15 -1913 (|#1| (-1194 |#1|))) (-15 -1913 (|#1| (-972 |#1|)))) (-29 |#2|) (-568)) (T -28)) +NIL +(-10 -8 (-15 -3417 ((-657 |#1|) |#1| (-1198))) (-15 -4152 (|#1| |#1| (-1198))) (-15 -3417 ((-657 |#1|) |#1|)) (-15 -4152 (|#1| |#1|)) (-15 -1751 ((-657 |#1|) |#1| (-1198))) (-15 -1913 (|#1| |#1| (-1198))) (-15 -1751 ((-657 |#1|) |#1|)) (-15 -1913 (|#1| |#1|)) (-15 -3417 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -3417 ((-657 |#1|) (-1194 |#1|))) (-15 -3417 ((-657 |#1|) (-972 |#1|))) (-15 -4152 (|#1| (-1194 |#1|) (-1198))) (-15 -4152 (|#1| (-1194 |#1|))) (-15 -4152 (|#1| (-972 |#1|))) (-15 -1751 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -1751 ((-657 |#1|) (-1194 |#1|))) (-15 -1751 ((-657 |#1|) (-972 |#1|))) (-15 -1913 (|#1| (-1194 |#1|) (-1198))) (-15 -1913 (|#1| (-1194 |#1|))) (-15 -1913 (|#1| (-972 |#1|)))) +((-3423 (((-112) $ $) 7)) (-3417 (((-657 $) (-972 $)) 88) (((-657 $) (-1194 $)) 87) (((-657 $) (-1194 $) (-1198)) 86) (((-657 $) $) 138) (((-657 $) $ (-1198)) 136)) (-4152 (($ (-972 $)) 91) (($ (-1194 $)) 90) (($ (-1194 $) (-1198)) 89) (($ $) 139) (($ $ (-1198)) 137)) (-2044 (((-112) $) 17)) (-1998 (((-657 (-1198)) $) 207)) (-1825 (((-419 (-1194 $)) $ (-624 $)) 239 (|has| |#1| (-568)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-3941 (((-657 (-624 $)) $) 170)) (-2423 (((-3 $ "failed") $ $) 20)) (-4043 (($ $ (-657 (-624 $)) (-657 $)) 160) (($ $ (-657 (-304 $))) 159) (($ $ (-304 $)) 158)) (-3188 (($ $) 81)) (-4215 (((-430 $) $) 80)) (-1866 (($ $) 100)) (-3210 (((-112) $ $) 65)) (-2515 (($) 18 T CONST)) (-1751 (((-657 $) (-972 $)) 94) (((-657 $) (-1194 $)) 93) (((-657 $) (-1194 $) (-1198)) 92) (((-657 $) $) 142) (((-657 $) $ (-1198)) 140)) (-1913 (($ (-972 $)) 97) (($ (-1194 $)) 96) (($ (-1194 $) (-1198)) 95) (($ $) 143) (($ $ (-1198)) 141)) (-1593 (((-3 (-972 |#1|) "failed") $) 258 (|has| |#1| (-1071))) (((-3 (-419 (-972 |#1|)) "failed") $) 241 (|has| |#1| (-568))) (((-3 |#1| "failed") $) 203) (((-3 (-576) "failed") $) 200 (|has| |#1| (-1060 (-576)))) (((-3 (-1198) "failed") $) 194) (((-3 (-624 $) "failed") $) 145) (((-3 (-419 (-576)) "failed") $) 133 (-2748 (-12 (|has| |#1| (-1060 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1060 (-419 (-576))))))) (-2830 (((-972 |#1|) $) 257 (|has| |#1| (-1071))) (((-419 (-972 |#1|)) $) 240 (|has| |#1| (-568))) ((|#1| $) 202) (((-576) $) 201 (|has| |#1| (-1060 (-576)))) (((-1198) $) 193) (((-624 $) $) 144) (((-419 (-576)) $) 134 (-2748 (-12 (|has| |#1| (-1060 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1060 (-419 (-576))))))) (-3355 (($ $ $) 61)) (-3439 (((-702 |#1|) (-702 $)) 246 (|has| |#1| (-1071))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 245 (|has| |#1| (-1071))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 132 (-2748 (-2675 (|has| |#1| (-1071)) (|has| |#1| (-652 (-576)))) (-2675 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (((-702 (-576)) (-702 $)) 131 (-2748 (-2675 (|has| |#1| (-1071)) (|has| |#1| (-652 (-576)))) (-2675 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))))) (-3969 (((-3 $ "failed") $) 37)) (-3369 (($ $ $) 62)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-4009 (((-112) $) 79)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 199 (|has| |#1| (-902 (-390)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 198 (|has| |#1| (-902 (-576))))) (-3816 (($ (-657 $)) 164) (($ $) 163)) (-3948 (((-657 (-115)) $) 171)) (-1803 (((-115) (-115)) 172)) (-3994 (((-112) $) 35)) (-1354 (((-112) $) 192 (|has| $ (-1060 (-576))))) (-3502 (($ $) 224 (|has| |#1| (-1071)))) (-1590 (((-1147 |#1| (-624 $)) $) 223 (|has| |#1| (-1071)))) (-3856 (($ $ (-576)) 99)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3695 (((-1194 $) (-624 $)) 189 (|has| $ (-1071)))) (-4071 (($ (-1 $ $) (-624 $)) 178)) (-3449 (((-3 (-624 $) "failed") $) 168)) (-1993 (((-702 |#1|) (-1289 $)) 248 (|has| |#1| (-1071))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 247 (|has| |#1| (-1071))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 130 (-2748 (-2675 (|has| |#1| (-1071)) (|has| |#1| (-652 (-576)))) (-2675 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (((-702 (-576)) (-1289 $)) 129 (-2748 (-2675 (|has| |#1| (-1071)) (|has| |#1| (-652 (-576)))) (-2675 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))))) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-1789 (((-657 (-624 $)) $) 169)) (-1662 (($ (-115) (-657 $)) 177) (($ (-115) $) 176)) (-2998 (((-3 (-657 $) "failed") $) 218 (|has| |#1| (-1134)))) (-1588 (((-3 (-2 (|:| |val| $) (|:| -2128 (-576))) "failed") $) 227 (|has| |#1| (-1071)))) (-3097 (((-3 (-657 $) "failed") $) 220 (|has| |#1| (-25)))) (-2303 (((-3 (-2 (|:| -1735 (-576)) (|:| |var| (-624 $))) "failed") $) 221 (|has| |#1| (-25)))) (-3403 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $ (-1198)) 226 (|has| |#1| (-1071))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $ (-115)) 225 (|has| |#1| (-1071))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $) 219 (|has| |#1| (-1134)))) (-4216 (((-112) $ (-1198)) 175) (((-112) $ (-115)) 174)) (-2098 (($ $) 78)) (-2363 (((-784) $) 167)) (-1460 (((-1142) $) 11)) (-2108 (((-112) $) 205)) (-2118 ((|#1| $) 206)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-4275 (((-112) $ (-1198)) 180) (((-112) $ $) 179)) (-1856 (((-430 $) $) 82)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-3341 (((-112) $) 191 (|has| $ (-1060 (-576))))) (-3205 (($ $ (-1198) (-784) (-1 $ $)) 231 (|has| |#1| (-1071))) (($ $ (-1198) (-784) (-1 $ (-657 $))) 230 (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ (-657 $)))) 229 (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ $))) 228 (|has| |#1| (-1071))) (($ $ (-657 (-115)) (-657 $) (-1198)) 217 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1198)) 216 (|has| |#1| (-626 (-548)))) (($ $) 215 (|has| |#1| (-626 (-548)))) (($ $ (-657 (-1198))) 214 (|has| |#1| (-626 (-548)))) (($ $ (-1198)) 213 (|has| |#1| (-626 (-548)))) (($ $ (-115) (-1 $ $)) 188) (($ $ (-115) (-1 $ (-657 $))) 187) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) 186) (($ $ (-657 (-115)) (-657 (-1 $ $))) 185) (($ $ (-1198) (-1 $ $)) 184) (($ $ (-1198) (-1 $ (-657 $))) 183) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) 182) (($ $ (-657 (-1198)) (-657 (-1 $ $))) 181) (($ $ (-657 $) (-657 $)) 152) (($ $ $ $) 151) (($ $ (-304 $)) 150) (($ $ (-657 (-304 $))) 149) (($ $ (-657 (-624 $)) (-657 $)) 148) (($ $ (-624 $) $) 147)) (-4164 (((-784) $) 64)) (-2780 (($ (-115) (-657 $)) 157) (($ (-115) $ $ $ $) 156) (($ (-115) $ $ $) 155) (($ (-115) $ $) 154) (($ (-115) $) 153)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63)) (-3469 (($ $ $) 166) (($ $) 165)) (-2209 (($ $ (-657 (-1198)) (-657 (-784))) 253 (|has| |#1| (-1071))) (($ $ (-1198) (-784)) 252 (|has| |#1| (-1071))) (($ $ (-657 (-1198))) 251 (|has| |#1| (-1071))) (($ $ (-1198)) 249 (|has| |#1| (-1071)))) (-4226 (($ $) 234 (|has| |#1| (-568)))) (-1602 (((-1147 |#1| (-624 $)) $) 233 (|has| |#1| (-568)))) (-2005 (($ $) 190 (|has| $ (-1071)))) (-4136 (((-548) $) 262 (|has| |#1| (-626 (-548)))) (($ (-430 $)) 232 (|has| |#1| (-568))) (((-908 (-390)) $) 197 (|has| |#1| (-626 (-908 (-390))))) (((-908 (-576)) $) 196 (|has| |#1| (-626 (-908 (-576)))))) (-1587 (($ $ $) 261 (|has| |#1| (-485)))) (-1911 (($ $ $) 260 (|has| |#1| (-485)))) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-972 |#1|)) 259 (|has| |#1| (-1071))) (($ (-419 (-972 |#1|))) 242 (|has| |#1| (-568))) (($ (-419 (-972 (-419 |#1|)))) 238 (|has| |#1| (-568))) (($ (-972 (-419 |#1|))) 237 (|has| |#1| (-568))) (($ (-419 |#1|)) 236 (|has| |#1| (-568))) (($ (-1147 |#1| (-624 $))) 222 (|has| |#1| (-1071))) (($ |#1|) 204) (($ (-1198)) 195) (($ (-624 $)) 146)) (-3414 (((-3 $ "failed") $) 244 (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-1791 (($ (-657 $)) 162) (($ $) 161)) (-2946 (((-112) (-115)) 173)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-4171 (($ (-1198) (-657 $)) 212) (($ (-1198) $ $ $ $) 211) (($ (-1198) $ $ $) 210) (($ (-1198) $ $) 209) (($ (-1198) $) 208)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-657 (-1198)) (-657 (-784))) 256 (|has| |#1| (-1071))) (($ $ (-1198) (-784)) 255 (|has| |#1| (-1071))) (($ $ (-657 (-1198))) 254 (|has| |#1| (-1071))) (($ $ (-1198)) 250 (|has| |#1| (-1071)))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ $) 73) (($ (-1147 |#1| (-624 $)) (-1147 |#1| (-624 $))) 235 (|has| |#1| (-568)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 243 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1071))))) (((-29 |#1|) (-141) (-568)) (T -29)) -((-2467 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-1499 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-2467 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-1499 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4)))) (-2811 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-2246 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-2811 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-2246 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-442 |t#1|) (-10 -8 (-15 -2467 ($ $)) (-15 -1499 ((-656 $) $)) (-15 -2467 ($ $ (-1197))) (-15 -1499 ((-656 $) $ (-1197))) (-15 -2811 ($ $)) (-15 -2246 ((-656 $) $)) (-15 -2811 ($ $ (-1197))) (-15 -2246 ((-656 $) $ (-1197))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 #1=(-419 (-971 |#1|))) |has| |#1| (-568)) ((-628 (-576)) . T) ((-628 #2=(-624 $)) . T) ((-628 #3=(-971 |#1|)) |has| |#1| (-1070)) ((-628 #4=(-1197)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-248) . T) ((-300) . T) ((-317) . T) ((-319 $) . T) ((-312) . T) ((-374) . T) ((-388 |#1|) |has| |#1| (-1070)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-442 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) -3795 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-658 $) . T) ((-660 #0#) . T) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-660 |#1|) -3795 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) . T) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-651 |#1|) |has| |#1| (-1070)) ((-729 #0#) . T) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) . T) ((-738) . T) ((-911 $ #6=(-1197)) |has| |#1| (-1070)) ((-917 #6#) |has| |#1| (-1070)) ((-919 #6#) |has| |#1| (-1070)) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-939) . T) ((-1023) . T) ((-1059 (-419 (-576))) -3795 (|has| |#1| (-1059 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) ((-1059 #1#) |has| |#1| (-568)) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #2#) . T) ((-1059 #3#) |has| |#1| (-1070)) ((-1059 #4#) . T) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) |has| |#1| (-174)) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) |has| |#1| (-174)) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-3753 (((-1115 (-227)) $) NIL)) (-3742 (((-1115 (-227)) $) NIL)) (-1927 (($ $ (-227)) 164)) (-1338 (($ (-971 (-576)) (-1197) (-1197) (-1115 (-419 (-576))) (-1115 (-419 (-576)))) 104)) (-1373 (((-656 (-656 (-962 (-227)))) $) 180)) (-4113 (((-876) $) 194))) -(((-30) (-13 (-974) (-10 -8 (-15 -1338 ($ (-971 (-576)) (-1197) (-1197) (-1115 (-419 (-576))) (-1115 (-419 (-576))))) (-15 -1927 ($ $ (-227)))))) (T -30)) -((-1338 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-971 (-576))) (-5 *3 (-1197)) (-5 *4 (-1115 (-419 (-576)))) (-5 *1 (-30)))) (-1927 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) -(-13 (-974) (-10 -8 (-15 -1338 ($ (-971 (-576)) (-1197) (-1197) (-1115 (-419 (-576))) (-1115 (-419 (-576))))) (-15 -1927 ($ $ (-227))))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4159 (((-1156) $) 11)) (-2950 (((-112) $ $) NIL)) (-1869 (((-1156) $) 9)) (-3939 (((-112) $ $) NIL))) -(((-31) (-13 (-1104) (-10 -8 (-15 -1869 ((-1156) $)) (-15 -4159 ((-1156) $))))) (T -31)) -((-1869 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31))))) -(-13 (-1104) (-10 -8 (-15 -1869 ((-1156) $)) (-15 -4159 ((-1156) $)))) -((-2467 ((|#2| (-1193 |#2|) (-1197)) 41)) (-1401 (((-115) (-115)) 55)) (-1634 (((-1193 |#2|) (-624 |#2|)) 149 (|has| |#1| (-1059 (-576))))) (-3073 ((|#2| |#1| (-576)) 137 (|has| |#1| (-1059 (-576))))) (-1411 ((|#2| (-1193 |#2|) |#2|) 29)) (-2150 (((-876) (-656 |#2|)) 86)) (-3881 ((|#2| |#2|) 144 (|has| |#1| (-1059 (-576))))) (-1380 (((-112) (-115)) 17)) (** ((|#2| |#2| (-419 (-576))) 103 (|has| |#1| (-1059 (-576)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -2467 (|#2| (-1193 |#2|) (-1197))) (-15 -1401 ((-115) (-115))) (-15 -1380 ((-112) (-115))) (-15 -1411 (|#2| (-1193 |#2|) |#2|)) (-15 -2150 ((-876) (-656 |#2|))) (IF (|has| |#1| (-1059 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -1634 ((-1193 |#2|) (-624 |#2|))) (-15 -3881 (|#2| |#2|)) (-15 -3073 (|#2| |#1| (-576)))) |%noBranch|)) (-568) (-442 |#1|)) (T -32)) -((-3073 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1059 *4)) (-4 *3 (-568)))) (-3881 (*1 *2 *2) (-12 (-4 *3 (-1059 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-442 *3)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1059 (-576))) (-4 *4 (-568)) (-5 *2 (-1193 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1059 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) (-5 *2 (-876)) (-5 *1 (-32 *4 *5)))) (-1411 (*1 *2 *3 *2) (-12 (-5 *3 (-1193 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-442 *4)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *2)) (-5 *4 (-1197)) (-4 *2 (-442 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))) -(-10 -7 (-15 -2467 (|#2| (-1193 |#2|) (-1197))) (-15 -1401 ((-115) (-115))) (-15 -1380 ((-112) (-115))) (-15 -1411 (|#2| (-1193 |#2|) |#2|)) (-15 -2150 ((-876) (-656 |#2|))) (IF (|has| |#1| (-1059 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -1634 ((-1193 |#2|) (-624 |#2|))) (-15 -3881 (|#2| |#2|)) (-15 -3073 (|#2| |#1| (-576)))) |%noBranch|)) -((-4234 (((-112) $ (-783)) 20)) (-3170 (($) 10)) (-3215 (((-112) $ (-783)) 19)) (-1884 (((-112) $ (-783)) 17)) (-1645 (((-112) $ $) 8)) (-3617 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -3170 (|#1|)) (-15 -4234 ((-112) |#1| (-783))) (-15 -3215 ((-112) |#1| (-783))) (-15 -1884 ((-112) |#1| (-783))) (-15 -3617 ((-112) |#1|)) (-15 -1645 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3170 (|#1|)) (-15 -4234 ((-112) |#1| (-783))) (-15 -3215 ((-112) |#1| (-783))) (-15 -1884 ((-112) |#1| (-783))) (-15 -3617 ((-112) |#1|)) (-15 -1645 ((-112) |#1| |#1|))) -((-4234 (((-112) $ (-783)) 8)) (-3170 (($) 7 T CONST)) (-3215 (((-112) $ (-783)) 9)) (-1884 (((-112) $ (-783)) 10)) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4287 (($ $) 13)) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) +((-1913 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-1751 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-657 *1)) (-4 *1 (-29 *3)))) (-1913 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-1751 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *2 (-657 *1)) (-4 *1 (-29 *4)))) (-4152 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-3417 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-657 *1)) (-4 *1 (-29 *3)))) (-4152 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-3417 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *2 (-657 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-442 |t#1|) (-10 -8 (-15 -1913 ($ $)) (-15 -1751 ((-657 $) $)) (-15 -1913 ($ $ (-1198))) (-15 -1751 ((-657 $) $ (-1198))) (-15 -4152 ($ $)) (-15 -3417 ((-657 $) $)) (-15 -4152 ($ $ (-1198))) (-15 -3417 ((-657 $) $ (-1198))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 #1=(-419 (-972 |#1|))) |has| |#1| (-568)) ((-628 (-576)) . T) ((-628 #2=(-624 $)) . T) ((-628 #3=(-972 |#1|)) |has| |#1| (-1071)) ((-628 #4=(-1198)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-908 (-390))) |has| |#1| (-626 (-908 (-390)))) ((-626 (-908 (-576))) |has| |#1| (-626 (-908 (-576)))) ((-248) . T) ((-300) . T) ((-317) . T) ((-319 $) . T) ((-312) . T) ((-374) . T) ((-388 |#1|) |has| |#1| (-1071)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-442 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 |#1|) -2748 (|has| |#1| (-1071)) (|has| |#1| (-174))) ((-659 $) . T) ((-661 #0#) . T) ((-661 #5=(-576)) -12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))) ((-661 |#1|) -2748 (|has| |#1| (-1071)) (|has| |#1| (-174))) ((-661 $) . T) ((-653 #0#) . T) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) . T) ((-652 #5#) -12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))) ((-652 |#1|) |has| |#1| (-1071)) ((-730 #0#) . T) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) . T) ((-739) . T) ((-912 $ #6=(-1198)) |has| |#1| (-1071)) ((-918 #6#) |has| |#1| (-1071)) ((-920 #6#) |has| |#1| (-1071)) ((-902 (-390)) |has| |#1| (-902 (-390))) ((-902 (-576)) |has| |#1| (-902 (-576))) ((-900 |#1|) . T) ((-940) . T) ((-1024) . T) ((-1060 (-419 (-576))) -2748 (|has| |#1| (-1060 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576))))) ((-1060 #1#) |has| |#1| (-568)) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 #2#) . T) ((-1060 #3#) |has| |#1| (-1071)) ((-1060 #4#) . T) ((-1060 |#1|) . T) ((-1073 #0#) . T) ((-1073 |#1|) |has| |#1| (-174)) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 |#1|) |has| |#1| (-174)) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) +((-1777 (((-1116 (-227)) $) NIL)) (-1763 (((-1116 (-227)) $) NIL)) (-3397 (($ $ (-227)) 164)) (-3599 (($ (-972 (-576)) (-1198) (-1198) (-1116 (-419 (-576))) (-1116 (-419 (-576)))) 104)) (-1592 (((-657 (-657 (-963 (-227)))) $) 180)) (-3515 (((-877) $) 194))) +(((-30) (-13 (-975) (-10 -8 (-15 -3599 ($ (-972 (-576)) (-1198) (-1198) (-1116 (-419 (-576))) (-1116 (-419 (-576))))) (-15 -3397 ($ $ (-227)))))) (T -30)) +((-3599 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-972 (-576))) (-5 *3 (-1198)) (-5 *4 (-1116 (-419 (-576)))) (-5 *1 (-30)))) (-3397 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) +(-13 (-975) (-10 -8 (-15 -3599 ($ (-972 (-576)) (-1198) (-1198) (-1116 (-419 (-576))) (-1116 (-419 (-576))))) (-15 -3397 ($ $ (-227))))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 17) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2645 (((-1157) $) 11)) (-4166 (((-112) $ $) NIL)) (-4129 (((-1157) $) 9)) (-2881 (((-112) $ $) NIL))) +(((-31) (-13 (-1105) (-10 -8 (-15 -4129 ((-1157) $)) (-15 -2645 ((-1157) $))))) (T -31)) +((-4129 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-31)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-31))))) +(-13 (-1105) (-10 -8 (-15 -4129 ((-1157) $)) (-15 -2645 ((-1157) $)))) +((-1913 ((|#2| (-1194 |#2|) (-1198)) 41)) (-1803 (((-115) (-115)) 55)) (-3695 (((-1194 |#2|) (-624 |#2|)) 149 (|has| |#1| (-1060 (-576))))) (-2835 ((|#2| |#1| (-576)) 137 (|has| |#1| (-1060 (-576))))) (-3215 ((|#2| (-1194 |#2|) |#2|) 29)) (-1906 (((-877) (-657 |#2|)) 86)) (-2005 ((|#2| |#2|) 144 (|has| |#1| (-1060 (-576))))) (-2946 (((-112) (-115)) 17)) (** ((|#2| |#2| (-419 (-576))) 103 (|has| |#1| (-1060 (-576)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -1913 (|#2| (-1194 |#2|) (-1198))) (-15 -1803 ((-115) (-115))) (-15 -2946 ((-112) (-115))) (-15 -3215 (|#2| (-1194 |#2|) |#2|)) (-15 -1906 ((-877) (-657 |#2|))) (IF (|has| |#1| (-1060 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -3695 ((-1194 |#2|) (-624 |#2|))) (-15 -2005 (|#2| |#2|)) (-15 -2835 (|#2| |#1| (-576)))) |%noBranch|)) (-568) (-442 |#1|)) (T -32)) +((-2835 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1060 *4)) (-4 *3 (-568)))) (-2005 (*1 *2 *2) (-12 (-4 *3 (-1060 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-442 *3)))) (-3695 (*1 *2 *3) (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1060 (-576))) (-4 *4 (-568)) (-5 *2 (-1194 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1060 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-657 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) (-5 *2 (-877)) (-5 *1 (-32 *4 *5)))) (-3215 (*1 *2 *3 *2) (-12 (-5 *3 (-1194 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-442 *4)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) (-1913 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *2)) (-5 *4 (-1198)) (-4 *2 (-442 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))) +(-10 -7 (-15 -1913 (|#2| (-1194 |#2|) (-1198))) (-15 -1803 ((-115) (-115))) (-15 -2946 ((-112) (-115))) (-15 -3215 (|#2| (-1194 |#2|) |#2|)) (-15 -1906 ((-877) (-657 |#2|))) (IF (|has| |#1| (-1060 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -3695 ((-1194 |#2|) (-624 |#2|))) (-15 -2005 (|#2| |#2|)) (-15 -2835 (|#2| |#1| (-576)))) |%noBranch|)) +((-4284 (((-112) $ (-784)) 20)) (-2515 (($) 10)) (-1786 (((-112) $ (-784)) 19)) (-4326 (((-112) $ (-784)) 17)) (-3807 (((-112) $ $) 8)) (-1368 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -2515 (|#1|)) (-15 -4284 ((-112) |#1| (-784))) (-15 -1786 ((-112) |#1| (-784))) (-15 -4326 ((-112) |#1| (-784))) (-15 -1368 ((-112) |#1|)) (-15 -3807 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -2515 (|#1|)) (-15 -4284 ((-112) |#1| (-784))) (-15 -1786 ((-112) |#1| (-784))) (-15 -4326 ((-112) |#1| (-784))) (-15 -1368 ((-112) |#1|)) (-15 -3807 ((-112) |#1| |#1|))) +((-4284 (((-112) $ (-784)) 8)) (-2515 (($) 7 T CONST)) (-1786 (((-112) $ (-784)) 9)) (-4326 (((-112) $ (-784)) 10)) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-1899 (($ $) 13)) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) (((-34) (-141)) (T -34)) -((-1645 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4287 (*1 *1 *1) (-4 *1 (-34))) (-3307 (*1 *1) (-4 *1 (-34))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1884 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-3215 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-4234 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-3170 (*1 *1) (-4 *1 (-34))) (-1970 (*1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-34)) (-5 *2 (-783))))) -(-13 (-1238) (-10 -8 (-15 -1645 ((-112) $ $)) (-15 -4287 ($ $)) (-15 -3307 ($)) (-15 -3617 ((-112) $)) (-15 -1884 ((-112) $ (-783))) (-15 -3215 ((-112) $ (-783))) (-15 -4234 ((-112) $ (-783))) (-15 -3170 ($) -2666) (IF (|has| $ (-6 -4464)) (-15 -1970 ((-783) $)) |%noBranch|))) -(((-1238) . T)) -((-3653 (($ $) 11)) (-3632 (($ $) 10)) (-3673 (($ $) 9)) (-1972 (($ $) 8)) (-3664 (($ $) 7)) (-3642 (($ $) 6))) +((-3807 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1899 (*1 *1 *1) (-4 *1 (-34))) (-3340 (*1 *1) (-4 *1 (-34))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4326 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-784)) (-5 *2 (-112)))) (-1786 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-784)) (-5 *2 (-112)))) (-4284 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-784)) (-5 *2 (-112)))) (-2515 (*1 *1) (-4 *1 (-34))) (-3437 (*1 *2 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-34)) (-5 *2 (-784))))) +(-13 (-1239) (-10 -8 (-15 -3807 ((-112) $ $)) (-15 -1899 ($ $)) (-15 -3340 ($)) (-15 -1368 ((-112) $)) (-15 -4326 ((-112) $ (-784))) (-15 -1786 ((-112) $ (-784))) (-15 -4284 ((-112) $ (-784))) (-15 -2515 ($) -1491) (IF (|has| $ (-6 -4466)) (-15 -3437 ((-784) $)) |%noBranch|))) +(((-1239) . T)) +((-4110 (($ $) 11)) (-2188 (($ $) 10)) (-4137 (($ $) 9)) (-1864 (($ $) 8)) (-4123 (($ $) 7)) (-4097 (($ $) 6))) (((-35) (-141)) (T -35)) -((-3653 (*1 *1 *1) (-4 *1 (-35))) (-3632 (*1 *1 *1) (-4 *1 (-35))) (-3673 (*1 *1 *1) (-4 *1 (-35))) (-1972 (*1 *1 *1) (-4 *1 (-35))) (-3664 (*1 *1 *1) (-4 *1 (-35))) (-3642 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3642 ($ $)) (-15 -3664 ($ $)) (-15 -1972 ($ $)) (-15 -3673 ($ $)) (-15 -3632 ($ $)) (-15 -3653 ($ $)))) -((-1957 (((-112) $ $) 20 (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102))))) (-1690 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 127)) (-3457 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 150)) (-3095 (($ $) 148)) (-1978 (($) 73) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 72)) (-3657 (((-1293) $ |#1| |#1|) 100 (|has| $ (-6 -4465))) (((-1293) $ (-576) (-576)) 180 (|has| $ (-6 -4465)))) (-2867 (($ $ (-576)) 161 (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-3519 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 202 (|has| $ (-6 -4465))) (($ $) 201 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)) (|has| $ (-6 -4465))))) (-2380 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-4234 (((-112) $ (-783)) 8)) (-4261 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 136 (|has| $ (-6 -4465)))) (-1331 (($ $ $) 157 (|has| $ (-6 -4465)))) (-3652 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 159 (|has| $ (-6 -4465)))) (-2122 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 155 (|has| $ (-6 -4465)))) (-4268 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 191 (|has| $ (-6 -4465))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-1255 (-576)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 162 (|has| $ (-6 -4465))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ "last" (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 160 (|has| $ (-6 -4465))) (($ $ "rest" $) 158 (|has| $ (-6 -4465))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ "first" (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 156 (|has| $ (-6 -4465))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ "value" (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 135 (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) 134 (|has| $ (-6 -4465)))) (-1954 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 46 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 218)) (-3603 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 56 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 177 (|has| $ (-6 -4464)))) (-3443 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 149)) (-2051 (((-3 |#2| "failed") |#1| $) 62)) (-3170 (($) 7 T CONST)) (-1542 (($ $) 203 (|has| $ (-6 -4465)))) (-4204 (($ $) 213)) (-1764 (($ $ (-783)) 144) (($ $) 142)) (-1942 (($ $) 216 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (-3841 (($ $) 59 (-3795 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464))) (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))))) (-3872 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 47 (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 222) (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 217 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (-2825 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 55 (|has| $ (-6 -4464))) (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 179 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 176 (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 57 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 54 (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 53 (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 178 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 175 (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 174 (|has| $ (-6 -4464)))) (-1910 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4465))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 192 (|has| $ (-6 -4465)))) (-3721 ((|#2| $ |#1|) 89) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576)) 190)) (-2319 (((-112) $) 194)) (-3539 (((-576) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 210) (((-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 209 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))) (((-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576)) 208 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (-3722 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 31 (|has| $ (-6 -4464))) (((-656 |#2|) $) 80 (|has| $ (-6 -4464))) (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 116 (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) 125)) (-1878 (((-112) $ $) 133 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (-1991 (($ (-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 170)) (-3215 (((-112) $ (-783)) 9)) (-1605 ((|#1| $) 97 (|has| |#1| (-861))) (((-576) $) 182 (|has| (-576) (-861)))) (-2907 (($ $ $) 195 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-2745 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-2748 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-2911 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 30 (|has| $ (-6 -4464))) (((-656 |#2|) $) 81 (|has| $ (-6 -4464))) (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 117 (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464)))) (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 119 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-1829 ((|#1| $) 96 (|has| |#1| (-861))) (((-576) $) 183 (|has| (-576) (-861)))) (-3777 (($ $ $) 196 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 35 (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4465))) (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 112 (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 111)) (-2786 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 227)) (-1884 (((-112) $ (-783)) 10)) (-4186 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 130)) (-3211 (((-112) $) 126)) (-2447 (((-1179) $) 23 (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-2850 (($ $ (-783)) 147) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 145)) (-2353 (((-656 |#1|) $) 64)) (-4128 (((-112) |#1| $) 65)) (-3743 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 40)) (-3695 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 41) (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576)) 221) (($ $ $ (-576)) 220)) (-3386 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576)) 164) (($ $ $ (-576)) 163)) (-2863 (((-656 |#1|) $) 94) (((-656 (-576)) $) 185)) (-1389 (((-112) |#1| $) 93) (((-112) (-576) $) 186)) (-3116 (((-1141) $) 22 (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-1755 ((|#2| $) 98 (|has| |#1| (-861))) (($ $ (-783)) 141) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 139)) (-4220 (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 52) (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 173)) (-4267 (($ $ |#2|) 99 (|has| $ (-6 -4465))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 181 (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 42)) (-3501 (((-112) $) 193)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 33 (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 114 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) 27 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 26 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 25 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 24 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 123 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 122 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 121 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) 120 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 184 (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-2885 (((-656 |#2|) $) 92) (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 187)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 189) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576)) 188) (($ $ (-1255 (-576))) 171) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ "first") 140) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ "value") 128)) (-2027 (((-576) $ $) 131)) (-3091 (($) 50) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 49)) (-2603 (($ $ (-576)) 224) (($ $ (-1255 (-576))) 223)) (-2335 (($ $ (-576)) 166) (($ $ (-1255 (-576))) 165)) (-2974 (((-112) $) 129)) (-4297 (($ $) 153)) (-1769 (($ $) 154 (|has| $ (-6 -4465)))) (-3083 (((-783) $) 152)) (-2783 (($ $) 151)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 32 (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 118 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 115 (|has| $ (-6 -4464)))) (-3218 (($ $ $ (-576)) 204 (|has| $ (-6 -4465)))) (-4287 (($ $) 13)) (-1556 (((-548) $) 60 (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548)))))) (-4125 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 51) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 172)) (-4022 (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 226) (($ $ $) 225)) (-2767 (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 169) (($ (-656 $)) 168) (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 138) (($ $ $) 137)) (-4113 (((-876) $) 18 (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876)))))) (-1549 (((-656 $) $) 124)) (-4295 (((-112) $ $) 132 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (-2950 (((-112) $ $) 21 (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 43)) (-2865 (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") |#1| $) 110)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 34 (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 113 (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) 197 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-3975 (((-112) $ $) 199 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-3939 (((-112) $ $) 19 (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102))))) (-3984 (((-112) $ $) 198 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-3963 (((-112) $ $) 200 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-36 |#1| |#2|) (-141) (-1121) (-1121)) (T -36)) -((-2865 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| -2240 *3) (|:| -2905 *4)))))) -(-13 (-1214 |t#1| |t#2|) (-678 (-2 (|:| -2240 |t#1|) (|:| -2905 |t#2|))) (-10 -8 (-15 -2865 ((-3 (-2 (|:| -2240 |t#1|) (|:| -2905 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T) ((-102) -3795 (|has| |#2| (-1121)) (|has| |#2| (-102)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102))) ((-625 (-876)) -3795 (|has| |#2| (-1121)) (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876)))) ((-152 #1=(-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T) ((-626 (-548)) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 #2=(-576) #1#) . T) ((-296 (-1255 (-576)) $) . T) ((-296 |#1| |#2|) . T) ((-298 #2# #1#) . T) ((-298 |#1| |#2|) . T) ((-319 #1#) -12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-292 #1#) . T) ((-384 #1#) . T) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 #2# #1#) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-622 |#1| |#2|) . T) ((-663 #1#) . T) ((-678 #1#) . T) ((-861) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)) ((-864) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)) ((-1031 #1#) . T) ((-1121) -3795 (|has| |#2| (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861))) ((-1170 #1#) . T) ((-1214 |#1| |#2|) . T) ((-1238) . T) ((-1276 #1#) . T)) -((-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -4113 (|#1| |#2|)) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) (-38 |#2|) (-174)) (T -37)) -NIL -(-10 -8 (-15 -4113 (|#1| |#2|)) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-4110 (*1 *1 *1) (-4 *1 (-35))) (-2188 (*1 *1 *1) (-4 *1 (-35))) (-4137 (*1 *1 *1) (-4 *1 (-35))) (-1864 (*1 *1 *1) (-4 *1 (-35))) (-4123 (*1 *1 *1) (-4 *1 (-35))) (-4097 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -4097 ($ $)) (-15 -4123 ($ $)) (-15 -1864 ($ $)) (-15 -4137 ($ $)) (-15 -2188 ($ $)) (-15 -4110 ($ $)))) +((-3423 (((-112) $ $) 20 (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102))))) (-3037 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 127)) (-2860 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 150)) (-4425 (($ $) 148)) (-4082 (($) 73) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 72)) (-3590 (((-1294) $ |#1| |#1|) 100 (|has| $ (-6 -4467))) (((-1294) $ (-576) (-576)) 180 (|has| $ (-6 -4467)))) (-3342 (($ $ (-576)) 161 (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-1698 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 202 (|has| $ (-6 -4467))) (($ $) 201 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)) (|has| $ (-6 -4467))))) (-1832 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-4284 (((-112) $ (-784)) 8)) (-1439 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 136 (|has| $ (-6 -4467)))) (-3509 (($ $ $) 157 (|has| $ (-6 -4467)))) (-3554 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 159 (|has| $ (-6 -4467)))) (-1629 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 155 (|has| $ (-6 -4467)))) (-3719 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 191 (|has| $ (-6 -4467))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-1256 (-576)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 162 (|has| $ (-6 -4467))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ "last" (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 160 (|has| $ (-6 -4467))) (($ $ "rest" $) 158 (|has| $ (-6 -4467))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ "first" (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 156 (|has| $ (-6 -4467))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ "value" (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 135 (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) 134 (|has| $ (-6 -4467)))) (-3726 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 46 (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 218)) (-2007 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 56 (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 177 (|has| $ (-6 -4466)))) (-2849 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 149)) (-2244 (((-3 |#2| "failed") |#1| $) 62)) (-2515 (($) 7 T CONST)) (-4072 (($ $) 203 (|has| $ (-6 -4467)))) (-3796 (($ $) 213)) (-3542 (($ $ (-784)) 144) (($ $) 142)) (-3588 (($ $) 216 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (-1620 (($ $) 59 (-2748 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466))) (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))))) (-1920 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 47 (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 222) (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 217 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (-3901 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 55 (|has| $ (-6 -4466))) (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 176 (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 57 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 54 (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 53 (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 178 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 175 (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 174 (|has| $ (-6 -4466)))) (-1810 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4467))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 192 (|has| $ (-6 -4467)))) (-1741 ((|#2| $ |#1|) 89) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576)) 190)) (-2872 (((-112) $) 194)) (-3619 (((-576) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 210) (((-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 209 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))) (((-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576)) 208 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (-1448 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 31 (|has| $ (-6 -4466))) (((-657 |#2|) $) 80 (|has| $ (-6 -4466))) (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 116 (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) 125)) (-4257 (((-112) $ $) 133 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (-4096 (($ (-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 170)) (-1786 (((-112) $ (-784)) 9)) (-3363 ((|#1| $) 97 (|has| |#1| (-862))) (((-576) $) 182 (|has| (-576) (-862)))) (-3740 (($ $ $) 195 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-1631 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-1661 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-3855 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 30 (|has| $ (-6 -4466))) (((-657 |#2|) $) 81 (|has| $ (-6 -4466))) (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 117 (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466)))) (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466))))) (-1833 ((|#1| $) 96 (|has| |#1| (-862))) (((-576) $) 183 (|has| (-576) (-862)))) (-2249 (($ $ $) 196 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 35 (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4467))) (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 112 (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 111)) (-1672 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 227)) (-4326 (((-112) $ (-784)) 10)) (-2397 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 130)) (-1743 (((-112) $) 126)) (-1708 (((-1180) $) 23 (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3921 (($ $ (-784)) 147) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 145)) (-3135 (((-657 |#1|) $) 64)) (-2559 (((-112) |#1| $) 65)) (-3107 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 40)) (-2701 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 41) (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576)) 221) (($ $ $ (-576)) 220)) (-2225 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576)) 164) (($ $ $ (-576)) 163)) (-3309 (((-657 |#1|) $) 94) (((-657 (-576)) $) 185)) (-4324 (((-112) |#1| $) 93) (((-112) (-576) $) 186)) (-1460 (((-1142) $) 22 (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3528 ((|#2| $) 98 (|has| |#1| (-862))) (($ $ (-784)) 141) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 139)) (-4135 (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 52) (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 173)) (-1495 (($ $ |#2|) 99 (|has| $ (-6 -4467))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 181 (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 42)) (-1533 (((-112) $) 193)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 33 (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 114 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) 27 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 26 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 25 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 24 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 123 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 122 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 121 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) 120 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 184 (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3585 (((-657 |#2|) $) 92) (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 187)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 189) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576)) 188) (($ $ (-1256 (-576))) 171) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ "first") 140) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ "value") 128)) (-3064 (((-576) $ $) 131)) (-3009 (($) 50) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 49)) (-2683 (($ $ (-576)) 224) (($ $ (-1256 (-576))) 223)) (-3395 (($ $ (-576)) 166) (($ $ (-1256 (-576))) 165)) (-4392 (((-112) $) 129)) (-3645 (($ $) 153)) (-2463 (($ $) 154 (|has| $ (-6 -4467)))) (-2933 (((-784) $) 152)) (-1961 (($ $) 151)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 32 (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-784) |#2| $) 82 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 115 (|has| $ (-6 -4466)))) (-1818 (($ $ $ (-576)) 204 (|has| $ (-6 -4467)))) (-1899 (($ $) 13)) (-4136 (((-548) $) 60 (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548)))))) (-3529 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 51) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 172)) (-2752 (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 226) (($ $ $) 225)) (-1637 (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 169) (($ (-657 $)) 168) (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 138) (($ $ $) 137)) (-3515 (((-877) $) 18 (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877)))))) (-4160 (((-657 $) $) 124)) (-3631 (((-112) $ $) 132 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (-4166 (((-112) $ $) 21 (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 43)) (-3930 (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") |#1| $) 110)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 34 (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 113 (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) 197 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-2913 (((-112) $ $) 199 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-2881 (((-112) $ $) 19 (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102))))) (-2925 (((-112) $ $) 198 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-2901 (((-112) $ $) 200 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-36 |#1| |#2|) (-141) (-1122) (-1122)) (T -36)) +((-3930 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-2 (|:| -4286 *3) (|:| -4440 *4)))))) +(-13 (-1215 |t#1| |t#2|) (-679 (-2 (|:| -4286 |t#1|) (|:| -4440 |t#2|))) (-10 -8 (-15 -3930 ((-3 (-2 (|:| -4286 |t#1|) (|:| -4440 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T) ((-102) -2748 (|has| |#2| (-1122)) (|has| |#2| (-102)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102))) ((-625 (-877)) -2748 (|has| |#2| (-1122)) (|has| |#2| (-625 (-877))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877)))) ((-152 #1=(-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T) ((-626 (-548)) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 #2=(-576) #1#) . T) ((-296 (-1256 (-576)) $) . T) ((-296 |#1| |#2|) . T) ((-298 #2# #1#) . T) ((-298 |#1| |#2|) . T) ((-319 #1#) -12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-292 #1#) . T) ((-384 #1#) . T) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 #2# #1#) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-622 |#1| |#2|) . T) ((-664 #1#) . T) ((-679 #1#) . T) ((-862) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)) ((-865) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)) ((-1032 #1#) . T) ((-1122) -2748 (|has| |#2| (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862))) ((-1171 #1#) . T) ((-1215 |#1| |#2|) . T) ((-1239) . T) ((-1277 #1#) . T)) +((-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3515 (|#1| |#2|)) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) (-38 |#2|) (-174)) (T -37)) +NIL +(-10 -8 (-15 -3515 (|#1| |#2|)) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-141) (-174)) (T -38)) NIL -(-13 (-1070) (-729 |t#1|) (-628 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2887 (((-430 |#1|) |#1|) 41)) (-1452 (((-430 |#1|) |#1|) 30) (((-430 |#1|) |#1| (-656 (-48))) 33)) (-3624 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -1452 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1452 ((-430 |#1|) |#1|)) (-15 -2887 ((-430 |#1|) |#1|)) (-15 -3624 ((-112) |#1|))) (-1264 (-48))) (T -39)) -((-3624 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-2887 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-1452 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-1452 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48)))))) -(-10 -7 (-15 -1452 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1452 ((-430 |#1|) |#1|)) (-15 -2887 ((-430 |#1|) |#1|)) (-15 -3624 ((-112) |#1|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-4407 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-2390 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3302 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-2637 (((-701 (-419 |#2|)) (-1288 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-3832 (((-419 |#2|) $) NIL)) (-2063 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3589 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4386 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2201 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-3974 (((-112)) NIL)) (-1374 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-2496 (($ (-1288 (-419 |#2|)) (-1288 $)) NIL) (($ (-1288 (-419 |#2|))) 61) (($ (-1288 |#2|) |#2|) 131)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-1895 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1481 (((-701 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-701 $) (-1288 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL)) (-2938 (((-1288 $) (-1288 $)) NIL)) (-2721 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-1851 (((-3 $ "failed") $) NIL)) (-2695 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-2473 (((-112) |#1| |#1|) NIL)) (-4135 (((-940)) NIL)) (-4370 (($) NIL (|has| (-419 |#2|) (-379)))) (-4198 (((-112)) NIL)) (-1656 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1908 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-1788 (($ $) NIL)) (-3712 (($) NIL (|has| (-419 |#2|) (-360)))) (-2616 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-2824 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-2171 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3359 (((-940) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-940)) $) NIL (|has| (-419 |#2|) (-360)))) (-2486 (((-112) $) NIL)) (-2582 (((-783)) NIL)) (-4141 (((-1288 $) (-1288 $)) 106)) (-2595 (((-419 |#2|) $) NIL)) (-2596 (((-656 (-971 |#1|)) (-1197)) NIL (|has| |#1| (-374)))) (-3552 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4293 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-3787 (((-940) $) NIL (|has| (-419 |#2|) (-379)))) (-2709 ((|#3| $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) NIL) (((-701 (-419 |#2|)) (-1288 $)) NIL)) (-3076 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2447 (((-1179) $) NIL)) (-2308 (((-1293) (-783)) 84)) (-2204 (((-701 (-419 |#2|))) 56)) (-1498 (((-701 (-419 |#2|))) 49)) (-1669 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2680 (($ (-1288 |#2|) |#2|) 132)) (-4011 (((-701 (-419 |#2|))) 50)) (-2205 (((-701 (-419 |#2|))) 48)) (-1417 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-2525 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 68)) (-3305 (((-1288 $)) 47)) (-4329 (((-1288 $)) 46)) (-2847 (((-112) $) NIL)) (-3126 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3650 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-2411 (($ (-940)) NIL (|has| (-419 |#2|) (-379)))) (-2330 (((-3 |#2| "failed")) NIL)) (-3116 (((-1141) $) NIL)) (-3213 (((-783)) NIL)) (-2549 (($) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| (-419 |#2|) (-374)))) (-3115 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1452 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1946 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2812 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-4369 ((|#1| $ |#1| |#1|) NIL)) (-1544 (((-3 |#2| "failed")) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1790 (((-419 |#2|) (-1288 $)) NIL) (((-419 |#2|)) 44)) (-3168 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-4107 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-3795 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3795 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2828 (((-701 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-3881 ((|#3|) 55)) (-4223 (($) NIL (|has| (-419 |#2|) (-360)))) (-4314 (((-1288 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) (-1288 $) (-1288 $)) NIL) (((-1288 (-419 |#2|)) $) 62) (((-701 (-419 |#2|)) (-1288 $)) 107)) (-1556 (((-1288 (-419 |#2|)) $) NIL) (($ (-1288 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2430 (((-1288 $) (-1288 $)) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-3795 (|has| (-419 |#2|) (-1059 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4276 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-4358 ((|#3| $) NIL)) (-2910 (((-783)) NIL T CONST)) (-4265 (((-112)) 42)) (-1964 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL)) (-4134 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2495 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4013 (((-112)) NIL)) (-4313 (($) 17 T CONST)) (-4322 (($) 27 T CONST)) (-3157 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-3795 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3795 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -2308 ((-1293) (-783))))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) |#3|) (T -40)) -((-2308 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *2 (-1293)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1264 (-419 *5))) (-14 *7 *6)))) -(-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -2308 ((-1293) (-783))))) -((-2151 ((|#2| |#2|) 47)) (-3388 ((|#2| |#2|) 139 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-4264 ((|#2| |#2|) 100 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-1398 ((|#2| |#2|) 101 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-4413 ((|#2| (-115) |#2| (-783)) 135 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-576))))))) (-1726 (((-1193 |#2|) |#2|) 44)) (-3039 ((|#2| |#2| (-656 (-624 |#2|))) 18) ((|#2| |#2| (-656 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -2151 (|#2| |#2|)) (-15 -3039 (|#2| |#2|)) (-15 -3039 (|#2| |#2| |#2|)) (-15 -3039 (|#2| |#2| (-656 |#2|))) (-15 -3039 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -1726 ((-1193 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1059 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -1398 (|#2| |#2|)) (-15 -4264 (|#2| |#2|)) (-15 -3388 (|#2| |#2|)) (-15 -4413 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-374) (-312) (-10 -8 (-15 -2687 ((-1146 |#1| (-624 $)) $)) (-15 -2697 ((-1146 |#1| (-624 $)) $)) (-15 -4113 ($ (-1146 |#1| (-624 $))))))) (T -41)) -((-4413 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1059 (-576)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2687 ((-1146 *5 (-624 $)) $)) (-15 -2697 ((-1146 *5 (-624 $)) $)) (-15 -4113 ($ (-1146 *5 (-624 $))))))))) (-3388 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2687 ((-1146 *3 (-624 $)) $)) (-15 -2697 ((-1146 *3 (-624 $)) $)) (-15 -4113 ($ (-1146 *3 (-624 $))))))))) (-4264 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2687 ((-1146 *3 (-624 $)) $)) (-15 -2697 ((-1146 *3 (-624 $)) $)) (-15 -4113 ($ (-1146 *3 (-624 $))))))))) (-1398 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2687 ((-1146 *3 (-624 $)) $)) (-15 -2697 ((-1146 *3 (-624 $)) $)) (-15 -4113 ($ (-1146 *3 (-624 $))))))))) (-1726 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1193 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-374) (-312) (-10 -8 (-15 -2687 ((-1146 *4 (-624 $)) $)) (-15 -2697 ((-1146 *4 (-624 $)) $)) (-15 -4113 ($ (-1146 *4 (-624 $))))))))) (-3039 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-624 *2))) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2687 ((-1146 *4 (-624 $)) $)) (-15 -2697 ((-1146 *4 (-624 $)) $)) (-15 -4113 ($ (-1146 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-3039 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2687 ((-1146 *4 (-624 $)) $)) (-15 -2697 ((-1146 *4 (-624 $)) $)) (-15 -4113 ($ (-1146 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-3039 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2687 ((-1146 *3 (-624 $)) $)) (-15 -2697 ((-1146 *3 (-624 $)) $)) (-15 -4113 ($ (-1146 *3 (-624 $))))))))) (-3039 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2687 ((-1146 *3 (-624 $)) $)) (-15 -2697 ((-1146 *3 (-624 $)) $)) (-15 -4113 ($ (-1146 *3 (-624 $))))))))) (-2151 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2687 ((-1146 *3 (-624 $)) $)) (-15 -2697 ((-1146 *3 (-624 $)) $)) (-15 -4113 ($ (-1146 *3 (-624 $)))))))))) -(-10 -7 (-15 -2151 (|#2| |#2|)) (-15 -3039 (|#2| |#2|)) (-15 -3039 (|#2| |#2| |#2|)) (-15 -3039 (|#2| |#2| (-656 |#2|))) (-15 -3039 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -1726 ((-1193 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1059 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -1398 (|#2| |#2|)) (-15 -4264 (|#2| |#2|)) (-15 -3388 (|#2| |#2|)) (-15 -4413 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) -((-1452 (((-430 (-1193 |#3|)) (-1193 |#3|) (-656 (-48))) 23) (((-430 |#3|) |#3| (-656 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1452 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -1452 ((-430 (-1193 |#3|)) (-1193 |#3|) (-656 (-48))))) (-861) (-805) (-968 (-48) |#2| |#1|)) (T -42)) -((-1452 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *7 (-968 (-48) *6 *5)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-1452 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-968 (-48) *6 *5))))) -(-10 -7 (-15 -1452 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -1452 ((-430 (-1193 |#3|)) (-1193 |#3|) (-656 (-48))))) -((-4163 (((-783) |#2|) 70)) (-3879 (((-783) |#2|) 74)) (-3276 (((-656 |#2|)) 37)) (-1403 (((-783) |#2|) 73)) (-2928 (((-783) |#2|) 69)) (-4137 (((-783) |#2|) 72)) (-4001 (((-656 (-701 |#1|))) 65)) (-2808 (((-656 |#2|)) 60)) (-1973 (((-656 |#2|) |#2|) 48)) (-3978 (((-656 |#2|)) 62)) (-2526 (((-656 |#2|)) 61)) (-2449 (((-656 (-701 |#1|))) 53)) (-2643 (((-656 |#2|)) 59)) (-3511 (((-656 |#2|) |#2|) 47)) (-1704 (((-656 |#2|)) 55)) (-2998 (((-656 (-701 |#1|))) 66)) (-2645 (((-656 |#2|)) 64)) (-2704 (((-1288 |#2|) (-1288 |#2|)) 99 (|has| |#1| (-317))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1403 ((-783) |#2|)) (-15 -3879 ((-783) |#2|)) (-15 -2928 ((-783) |#2|)) (-15 -4163 ((-783) |#2|)) (-15 -4137 ((-783) |#2|)) (-15 -1704 ((-656 |#2|))) (-15 -3511 ((-656 |#2|) |#2|)) (-15 -1973 ((-656 |#2|) |#2|)) (-15 -2643 ((-656 |#2|))) (-15 -2808 ((-656 |#2|))) (-15 -2526 ((-656 |#2|))) (-15 -3978 ((-656 |#2|))) (-15 -2645 ((-656 |#2|))) (-15 -2449 ((-656 (-701 |#1|)))) (-15 -4001 ((-656 (-701 |#1|)))) (-15 -2998 ((-656 (-701 |#1|)))) (-15 -3276 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -2704 ((-1288 |#2|) (-1288 |#2|))) |%noBranch|)) (-568) (-429 |#1|)) (T -43)) -((-2704 (*1 *2 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-3276 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2998 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4001 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2449 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2645 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3978 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2526 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2808 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2643 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1973 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3511 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1704 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4137 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-4163 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3879 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1403 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4))))) -(-10 -7 (-15 -1403 ((-783) |#2|)) (-15 -3879 ((-783) |#2|)) (-15 -2928 ((-783) |#2|)) (-15 -4163 ((-783) |#2|)) (-15 -4137 ((-783) |#2|)) (-15 -1704 ((-656 |#2|))) (-15 -3511 ((-656 |#2|) |#2|)) (-15 -1973 ((-656 |#2|) |#2|)) (-15 -2643 ((-656 |#2|))) (-15 -2808 ((-656 |#2|))) (-15 -2526 ((-656 |#2|))) (-15 -3978 ((-656 |#2|))) (-15 -2645 ((-656 |#2|))) (-15 -2449 ((-656 (-701 |#1|)))) (-15 -4001 ((-656 (-701 |#1|)))) (-15 -2998 ((-656 (-701 |#1|)))) (-15 -3276 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -2704 ((-1288 |#2|) (-1288 |#2|))) |%noBranch|)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2946 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2272 (((-1288 (-701 |#1|)) (-1288 $)) NIL) (((-1288 (-701 |#1|))) 24)) (-3057 (((-1288 $)) 52)) (-3170 (($) NIL T CONST)) (-3235 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-2991 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-3778 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) NIL)) (-4038 ((|#1| $) NIL)) (-3140 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-3592 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-2078 (((-1193 (-971 |#1|))) NIL (|has| |#1| (-374)))) (-1578 (($ $ (-940)) NIL)) (-3789 ((|#1| $) NIL)) (-2962 (((-1193 |#1|) $) NIL (|has| |#1| (-568)))) (-1339 ((|#1| (-1288 $)) NIL) ((|#1|) NIL)) (-1581 (((-1193 |#1|) $) NIL)) (-4393 (((-112)) 99)) (-2496 (($ (-1288 |#1|) (-1288 $)) NIL) (($ (-1288 |#1|)) NIL)) (-1851 (((-3 $ "failed") $) 14 (|has| |#1| (-568)))) (-4135 (((-940)) 53)) (-3163 (((-112)) NIL)) (-3107 (($ $ (-940)) NIL)) (-3524 (((-112)) NIL)) (-2344 (((-112)) NIL)) (-1824 (((-112)) 101)) (-1386 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-2338 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-2112 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) NIL)) (-2636 ((|#1| $) NIL)) (-3417 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-1584 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-1827 (((-1193 (-971 |#1|))) NIL (|has| |#1| (-374)))) (-3303 (($ $ (-940)) NIL)) (-1734 ((|#1| $) NIL)) (-2631 (((-1193 |#1|) $) NIL (|has| |#1| (-568)))) (-3223 ((|#1| (-1288 $)) NIL) ((|#1|) NIL)) (-1496 (((-1193 |#1|) $) NIL)) (-2110 (((-112)) 98)) (-2447 (((-1179) $) NIL)) (-2598 (((-112)) 106)) (-1717 (((-112)) 105)) (-2826 (((-112)) 107)) (-3116 (((-1141) $) NIL)) (-2013 (((-112)) 100)) (-4369 ((|#1| $ (-576)) 55)) (-4314 (((-1288 |#1|) $ (-1288 $)) 48) (((-701 |#1|) (-1288 $) (-1288 $)) NIL) (((-1288 |#1|) $) 28) (((-701 |#1|) (-1288 $)) NIL)) (-1556 (((-1288 |#1|) $) NIL) (($ (-1288 |#1|)) NIL)) (-1937 (((-656 (-971 |#1|)) (-1288 $)) NIL) (((-656 (-971 |#1|))) NIL)) (-3871 (($ $ $) NIL)) (-3472 (((-112)) 95)) (-4113 (((-876) $) 71) (($ (-1288 |#1|)) 22)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) 51)) (-2638 (((-656 (-1288 |#1|))) NIL (|has| |#1| (-568)))) (-3628 (($ $ $ $) NIL)) (-3944 (((-112)) 91)) (-2653 (($ (-701 |#1|) $) 18)) (-3485 (($ $ $) NIL)) (-3666 (((-112)) 97)) (-2883 (((-112)) 92)) (-2283 (((-112)) 90)) (-4313 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1163 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-429 |#1|) (-660 (-1163 |#2| |#1|)) (-10 -8 (-15 -4113 ($ (-1288 |#1|))))) (-374) (-940) (-656 (-1197)) (-1288 (-701 |#1|))) (T -44)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-14 *6 (-1288 (-701 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-940)) (-14 *5 (-656 (-1197)))))) -(-13 (-429 |#1|) (-660 (-1163 |#2| |#1|)) (-10 -8 (-15 -4113 ($ (-1288 |#1|))))) -((-1957 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1690 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-3457 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-3095 (($ $) NIL)) (-1978 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3657 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465))) (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2867 (($ $ (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-3519 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861))))) (-2380 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-4234 (((-112) $ (-783)) NIL)) (-4261 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4465)))) (-1331 (($ $ $) 33 (|has| $ (-6 -4465)))) (-3652 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4465)))) (-2122 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 35 (|has| $ (-6 -4465)))) (-4268 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-1255 (-576)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ "last" (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4465))) (($ $ "rest" $) NIL (|has| $ (-6 -4465))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ "first" (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4465))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ "value" (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-1954 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL)) (-3603 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3443 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-2051 (((-3 |#2| "failed") |#1| $) 43)) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-1764 (($ $ (-783)) NIL) (($ $) 29)) (-1942 (($ $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-3872 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL) (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (-2825 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4465)))) (-3721 ((|#2| $ |#1|) NIL) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576)) NIL)) (-2319 (((-112) $) NIL)) (-3539 (((-576) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL) (((-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))) (((-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576)) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (-3722 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 20 (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464))) (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 20 (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) NIL)) (-1878 (((-112) $ $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (-1991 (($ (-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 ((|#1| $) NIL (|has| |#1| (-861))) (((-576) $) 38 (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-2745 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-2748 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-2911 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464))) (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-1829 ((|#1| $) NIL (|has| |#1| (-861))) (((-576) $) 40 (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL)) (-2786 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-4186 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL)) (-3211 (((-112) $) NIL)) (-2447 (((-1179) $) 49 (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-2850 (($ $ (-783)) NIL) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-2353 (((-656 |#1|) $) 22)) (-4128 (((-112) |#1| $) NIL)) (-3743 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-3695 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL) (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3386 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2863 (((-656 |#1|) $) NIL) (((-656 (-576)) $) NIL)) (-1389 (((-112) |#1| $) NIL) (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-1755 ((|#2| $) NIL (|has| |#1| (-861))) (($ $ (-783)) NIL) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 27)) (-4220 (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL) (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL)) (-4267 (($ $ |#2|) NIL (|has| $ (-6 -4465))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-3501 (((-112) $) NIL)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-2885 (((-656 |#2|) $) NIL) (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 19)) (-3617 (((-112) $) 18)) (-3307 (($) 14)) (-4369 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ (-576)) NIL) (($ $ (-1255 (-576))) NIL) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ "first") NIL) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $ "value") NIL)) (-2027 (((-576) $ $) NIL)) (-3091 (($) 13) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-2603 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2335 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2974 (((-112) $) NIL)) (-4297 (($ $) NIL)) (-1769 (($ $) NIL (|has| $ (-6 -4465)))) (-3083 (((-783) $) NIL)) (-2783 (($ $) NIL)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-783) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-4022 (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL) (($ $ $) NIL)) (-2767 (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL) (($ (-656 $)) NIL) (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 31) (($ $ $) NIL)) (-4113 (((-876) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-1549 (((-656 $) $) NIL)) (-4295 (((-112) $ $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (-2950 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-2865 (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") |#1| $) 51)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-3975 (((-112) $ $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-3939 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-3984 (((-112) $ $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-3963 (((-112) $ $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-861)))) (-1970 (((-783) $) 25 (|has| $ (-6 -4464))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1121) (-1121)) (T -45)) +(-13 (-1071) (-730 |t#1|) (-628 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-739) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3610 (((-430 |#1|) |#1|) 41)) (-1856 (((-430 |#1|) |#1|) 30) (((-430 |#1|) |#1| (-657 (-48))) 33)) (-1426 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -1856 ((-430 |#1|) |#1| (-657 (-48)))) (-15 -1856 ((-430 |#1|) |#1|)) (-15 -3610 ((-430 |#1|) |#1|)) (-15 -1426 ((-112) |#1|))) (-1265 (-48))) (T -39)) +((-1426 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48))))) (-3610 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48))))) (-1856 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48))))) (-1856 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48)))))) +(-10 -7 (-15 -1856 ((-430 |#1|) |#1| (-657 (-48)))) (-15 -1856 ((-430 |#1|) |#1|)) (-15 -3610 ((-430 |#1|) |#1|)) (-15 -1426 ((-112) |#1|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2270 (((-2 (|:| |num| (-1289 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-2361 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3286 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3011 (((-702 (-419 |#2|)) (-1289 $)) NIL) (((-702 (-419 |#2|))) NIL)) (-2256 (((-419 |#2|) $) NIL)) (-2266 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4215 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3210 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2148 (((-784)) NIL (|has| (-419 |#2|) (-379)))) (-3534 (((-112)) NIL)) (-1603 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1060 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| (-419 |#2|) (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1060 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-4093 (($ (-1289 (-419 |#2|)) (-1289 $)) NIL) (($ (-1289 (-419 |#2|))) 61) (($ (-1289 |#2|) |#2|) 131)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-3355 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1584 (((-702 (-419 |#2|)) $ (-1289 $)) NIL) (((-702 (-419 |#2|)) $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-419 |#2|))) (|:| |vec| (-1289 (-419 |#2|)))) (-702 $) (-1289 $)) NIL) (((-702 (-419 |#2|)) (-702 $)) NIL)) (-4022 (((-1289 $) (-1289 $)) NIL)) (-3662 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-3969 (((-3 $ "failed") $) NIL)) (-2390 (((-657 (-657 |#1|))) NIL (|has| |#1| (-379)))) (-1972 (((-112) |#1| |#1|) NIL)) (-4343 (((-941)) NIL)) (-1876 (($) NIL (|has| (-419 |#2|) (-379)))) (-2022 (((-112)) NIL)) (-2629 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3369 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| (-419 |#2|) (-374)))) (-1445 (($ $) NIL)) (-2846 (($) NIL (|has| (-419 |#2|) (-360)))) (-2798 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-4266 (($ $ (-784)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-4009 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-2650 (((-941) $) NIL (|has| (-419 |#2|) (-360))) (((-846 (-941)) $) NIL (|has| (-419 |#2|) (-360)))) (-3994 (((-112) $) NIL)) (-3728 (((-784)) NIL)) (-2659 (((-1289 $) (-1289 $)) 106)) (-3869 (((-419 |#2|) $) NIL)) (-3878 (((-657 (-972 |#1|)) (-1198)) NIL (|has| |#1| (-374)))) (-1955 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3604 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-2327 (((-941) $) NIL (|has| (-419 |#2|) (-379)))) (-3647 ((|#3| $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-419 |#2|))) (|:| |vec| (-1289 (-419 |#2|)))) (-1289 $) $) NIL) (((-702 (-419 |#2|)) (-1289 $)) NIL)) (-3388 (($ (-657 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1708 (((-1180) $) NIL)) (-2782 (((-1294) (-784)) 84)) (-4332 (((-702 (-419 |#2|))) 56)) (-1740 (((-702 (-419 |#2|))) 49)) (-2098 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2248 (($ (-1289 |#2|) |#2|) 132)) (-3914 (((-702 (-419 |#2|))) 50)) (-4346 (((-702 (-419 |#2|))) 48)) (-3281 (((-2 (|:| |num| (-702 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-4393 (((-2 (|:| |num| (-1289 |#2|)) (|:| |den| |#2|)) $) 68)) (-3317 (((-1289 $)) 47)) (-3929 (((-1289 $)) 46)) (-1384 (((-112) $) NIL)) (-2122 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1679 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-3146 (($ (-941)) NIL (|has| (-419 |#2|) (-379)))) (-2972 (((-3 |#2| "failed")) NIL)) (-1460 (((-1142) $) NIL)) (-1762 (((-784)) NIL)) (-4083 (($) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| (-419 |#2|) (-374)))) (-3431 (($ (-657 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1856 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3409 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4164 (((-784) $) NIL (|has| (-419 |#2|) (-374)))) (-2780 ((|#1| $ |#1| |#1|) NIL)) (-4099 (((-3 |#2| "failed")) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1465 (((-419 |#2|) (-1289 $)) NIL) (((-419 |#2|)) 44)) (-2495 (((-784) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-784) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2209 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-784)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-784)) NIL (-2748 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2748 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4301 (((-702 (-419 |#2|)) (-1289 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-2005 ((|#3|) 55)) (-4170 (($) NIL (|has| (-419 |#2|) (-360)))) (-3806 (((-1289 (-419 |#2|)) $ (-1289 $)) NIL) (((-702 (-419 |#2|)) (-1289 $) (-1289 $)) NIL) (((-1289 (-419 |#2|)) $) 62) (((-702 (-419 |#2|)) (-1289 $)) 107)) (-4136 (((-1289 (-419 |#2|)) $) NIL) (($ (-1289 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| (-419 |#2|) (-360)))) (-1551 (((-1289 $) (-1289 $)) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2748 (|has| (-419 |#2|) (-1060 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3414 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-2948 ((|#3| $) NIL)) (-3845 (((-784)) NIL T CONST)) (-1478 (((-112)) 42)) (-3814 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL)) (-2607 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-4079 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3934 (((-112)) NIL)) (-2716 (($) 17 T CONST)) (-2725 (($) 27 T CONST)) (-2066 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-784)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-784)) NIL (-2748 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2748 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -2782 ((-1294) (-784))))) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) |#3|) (T -40)) +((-2782 (*1 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-374)) (-4 *5 (-1265 *4)) (-5 *2 (-1294)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1265 (-419 *5))) (-14 *7 *6)))) +(-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -2782 ((-1294) (-784))))) +((-1917 ((|#2| |#2|) 47)) (-2902 ((|#2| |#2|) 139 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1060 (-576))))))) (-1468 ((|#2| |#2|) 100 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1060 (-576))))))) (-3459 ((|#2| |#2|) 101 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1060 (-576))))))) (-2329 ((|#2| (-115) |#2| (-784)) 135 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1060 (-576))))))) (-2029 (((-1194 |#2|) |#2|) 44)) (-3778 ((|#2| |#2| (-657 (-624 |#2|))) 18) ((|#2| |#2| (-657 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1917 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3778 (|#2| |#2| |#2|)) (-15 -3778 (|#2| |#2| (-657 |#2|))) (-15 -3778 (|#2| |#2| (-657 (-624 |#2|)))) (-15 -2029 ((-1194 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1060 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -3459 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -2902 (|#2| |#2|)) (-15 -2329 (|#2| (-115) |#2| (-784)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-374) (-312) (-10 -8 (-15 -1590 ((-1147 |#1| (-624 $)) $)) (-15 -1602 ((-1147 |#1| (-624 $)) $)) (-15 -3515 ($ (-1147 |#1| (-624 $))))))) (T -41)) +((-2329 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-784)) (-4 *5 (-13 (-464) (-1060 (-576)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1590 ((-1147 *5 (-624 $)) $)) (-15 -1602 ((-1147 *5 (-624 $)) $)) (-15 -3515 ($ (-1147 *5 (-624 $))))))))) (-2902 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1590 ((-1147 *3 (-624 $)) $)) (-15 -1602 ((-1147 *3 (-624 $)) $)) (-15 -3515 ($ (-1147 *3 (-624 $))))))))) (-1468 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1590 ((-1147 *3 (-624 $)) $)) (-15 -1602 ((-1147 *3 (-624 $)) $)) (-15 -3515 ($ (-1147 *3 (-624 $))))))))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1590 ((-1147 *3 (-624 $)) $)) (-15 -1602 ((-1147 *3 (-624 $)) $)) (-15 -3515 ($ (-1147 *3 (-624 $))))))))) (-2029 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1194 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-374) (-312) (-10 -8 (-15 -1590 ((-1147 *4 (-624 $)) $)) (-15 -1602 ((-1147 *4 (-624 $)) $)) (-15 -3515 ($ (-1147 *4 (-624 $))))))))) (-3778 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-624 *2))) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1590 ((-1147 *4 (-624 $)) $)) (-15 -1602 ((-1147 *4 (-624 $)) $)) (-15 -3515 ($ (-1147 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-3778 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1590 ((-1147 *4 (-624 $)) $)) (-15 -1602 ((-1147 *4 (-624 $)) $)) (-15 -3515 ($ (-1147 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-3778 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1590 ((-1147 *3 (-624 $)) $)) (-15 -1602 ((-1147 *3 (-624 $)) $)) (-15 -3515 ($ (-1147 *3 (-624 $))))))))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1590 ((-1147 *3 (-624 $)) $)) (-15 -1602 ((-1147 *3 (-624 $)) $)) (-15 -3515 ($ (-1147 *3 (-624 $))))))))) (-1917 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1590 ((-1147 *3 (-624 $)) $)) (-15 -1602 ((-1147 *3 (-624 $)) $)) (-15 -3515 ($ (-1147 *3 (-624 $)))))))))) +(-10 -7 (-15 -1917 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3778 (|#2| |#2| |#2|)) (-15 -3778 (|#2| |#2| (-657 |#2|))) (-15 -3778 (|#2| |#2| (-657 (-624 |#2|)))) (-15 -2029 ((-1194 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1060 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -3459 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -2902 (|#2| |#2|)) (-15 -2329 (|#2| (-115) |#2| (-784)))) |%noBranch|) |%noBranch|)) +((-1856 (((-430 (-1194 |#3|)) (-1194 |#3|) (-657 (-48))) 23) (((-430 |#3|) |#3| (-657 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1856 ((-430 |#3|) |#3| (-657 (-48)))) (-15 -1856 ((-430 (-1194 |#3|)) (-1194 |#3|) (-657 (-48))))) (-862) (-806) (-969 (-48) |#2| |#1|)) (T -42)) +((-1856 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-48))) (-4 *5 (-862)) (-4 *6 (-806)) (-4 *7 (-969 (-48) *6 *5)) (-5 *2 (-430 (-1194 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1194 *7)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-48))) (-4 *5 (-862)) (-4 *6 (-806)) (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-969 (-48) *6 *5))))) +(-10 -7 (-15 -1856 ((-430 |#3|) |#3| (-657 (-48)))) (-15 -1856 ((-430 (-1194 |#3|)) (-1194 |#3|) (-657 (-48))))) +((-1700 (((-784) |#2|) 70)) (-1977 (((-784) |#2|) 74)) (-4320 (((-657 |#2|)) 37)) (-3648 (((-784) |#2|) 73)) (-3916 (((-784) |#2|) 69)) (-2624 (((-784) |#2|) 72)) (-3820 (((-657 (-702 |#1|))) 65)) (-4115 (((-657 |#2|)) 60)) (-2625 (((-657 |#2|) |#2|) 48)) (-3572 (((-657 |#2|)) 62)) (-4404 (((-657 |#2|)) 61)) (-1717 (((-657 (-702 |#1|))) 53)) (-3062 (((-657 |#2|)) 59)) (-1624 (((-657 |#2|) |#2|) 47)) (-2994 (((-657 |#2|)) 55)) (-3321 (((-657 (-702 |#1|))) 66)) (-3086 (((-657 |#2|)) 64)) (-2469 (((-1289 |#2|) (-1289 |#2|)) 99 (|has| |#1| (-317))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -3648 ((-784) |#2|)) (-15 -1977 ((-784) |#2|)) (-15 -3916 ((-784) |#2|)) (-15 -1700 ((-784) |#2|)) (-15 -2624 ((-784) |#2|)) (-15 -2994 ((-657 |#2|))) (-15 -1624 ((-657 |#2|) |#2|)) (-15 -2625 ((-657 |#2|) |#2|)) (-15 -3062 ((-657 |#2|))) (-15 -4115 ((-657 |#2|))) (-15 -4404 ((-657 |#2|))) (-15 -3572 ((-657 |#2|))) (-15 -3086 ((-657 |#2|))) (-15 -1717 ((-657 (-702 |#1|)))) (-15 -3820 ((-657 (-702 |#1|)))) (-15 -3321 ((-657 (-702 |#1|)))) (-15 -4320 ((-657 |#2|))) (IF (|has| |#1| (-317)) (-15 -2469 ((-1289 |#2|) (-1289 |#2|))) |%noBranch|)) (-568) (-429 |#1|)) (T -43)) +((-2469 (*1 *2 *2) (-12 (-5 *2 (-1289 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-4320 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3321 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 (-702 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3820 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 (-702 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1717 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 (-702 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3086 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3572 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4404 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4115 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3062 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2625 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1624 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2994 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2624 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1700 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3916 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1977 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3648 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4))))) +(-10 -7 (-15 -3648 ((-784) |#2|)) (-15 -1977 ((-784) |#2|)) (-15 -3916 ((-784) |#2|)) (-15 -1700 ((-784) |#2|)) (-15 -2624 ((-784) |#2|)) (-15 -2994 ((-657 |#2|))) (-15 -1624 ((-657 |#2|) |#2|)) (-15 -2625 ((-657 |#2|) |#2|)) (-15 -3062 ((-657 |#2|))) (-15 -4115 ((-657 |#2|))) (-15 -4404 ((-657 |#2|))) (-15 -3572 ((-657 |#2|))) (-15 -3086 ((-657 |#2|))) (-15 -1717 ((-657 (-702 |#1|)))) (-15 -3820 ((-657 (-702 |#1|)))) (-15 -3321 ((-657 (-702 |#1|)))) (-15 -4320 ((-657 |#2|))) (IF (|has| |#1| (-317)) (-15 -2469 ((-1289 |#2|) (-1289 |#2|))) |%noBranch|)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-4119 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3731 (((-1289 (-702 |#1|)) (-1289 $)) NIL) (((-1289 (-702 |#1|))) 24)) (-2672 (((-1289 $)) 52)) (-2515 (($) NIL T CONST)) (-1992 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) NIL (|has| |#1| (-568)))) (-3247 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-2259 (((-702 |#1|) (-1289 $)) NIL) (((-702 |#1|)) NIL)) (-2873 ((|#1| $) NIL)) (-2246 (((-702 |#1|) $ (-1289 $)) NIL) (((-702 |#1|) $) NIL)) (-4236 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-2408 (((-1194 (-972 |#1|))) NIL (|has| |#1| (-374)))) (-4408 (($ $ (-941)) NIL)) (-2348 ((|#1| $) NIL)) (-4270 (((-1194 |#1|) $) NIL (|has| |#1| (-568)))) (-3612 ((|#1| (-1289 $)) NIL) ((|#1|) NIL)) (-4446 (((-1194 |#1|) $) NIL)) (-3282 (((-112)) 99)) (-4093 (($ (-1289 |#1|) (-1289 $)) NIL) (($ (-1289 |#1|)) NIL)) (-3969 (((-3 $ "failed") $) 14 (|has| |#1| (-568)))) (-4343 (((-941)) 53)) (-2449 (((-112)) NIL)) (-3152 (($ $ (-941)) NIL)) (-1738 (((-112)) NIL)) (-3111 (((-112)) NIL)) (-1790 (((-112)) 101)) (-2427 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) NIL (|has| |#1| (-568)))) (-3047 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-1546 (((-702 |#1|) (-1289 $)) NIL) (((-702 |#1|)) NIL)) (-3001 ((|#1| $) NIL)) (-3138 (((-702 |#1|) $ (-1289 $)) NIL) (((-702 |#1|) $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-1822 (((-1194 (-972 |#1|))) NIL (|has| |#1| (-374)))) (-3296 (($ $ (-941)) NIL)) (-2115 ((|#1| $) NIL)) (-2954 (((-1194 |#1|) $) NIL (|has| |#1| (-568)))) (-1861 ((|#1| (-1289 $)) NIL) ((|#1|) NIL)) (-1720 (((-1194 |#1|) $) NIL)) (-1525 (((-112)) 98)) (-1708 (((-1180) $) NIL)) (-3897 (((-112)) 106)) (-3110 (((-112)) 105)) (-4278 (((-112)) 107)) (-1460 (((-1142) $) NIL)) (-2931 (((-112)) 100)) (-2780 ((|#1| $ (-576)) 55)) (-3806 (((-1289 |#1|) $ (-1289 $)) 48) (((-702 |#1|) (-1289 $) (-1289 $)) NIL) (((-1289 |#1|) $) 28) (((-702 |#1|) (-1289 $)) NIL)) (-4136 (((-1289 |#1|) $) NIL) (($ (-1289 |#1|)) NIL)) (-3522 (((-657 (-972 |#1|)) (-1289 $)) NIL) (((-657 (-972 |#1|))) NIL)) (-1911 (($ $ $) NIL)) (-2473 (((-112)) 95)) (-3515 (((-877) $) 71) (($ (-1289 |#1|)) 22)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) 51)) (-3020 (((-657 (-1289 |#1|))) NIL (|has| |#1| (-568)))) (-3280 (($ $ $ $) NIL)) (-1433 (((-112)) 91)) (-3514 (($ (-702 |#1|) $) 18)) (-2566 (($ $ $) NIL)) (-3692 (((-112)) 97)) (-3560 (((-112)) 92)) (-3844 (((-112)) 90)) (-2716 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1164 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-429 |#1|) (-661 (-1164 |#2| |#1|)) (-10 -8 (-15 -3515 ($ (-1289 |#1|))))) (-374) (-941) (-657 (-1198)) (-1289 (-702 |#1|))) (T -44)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-374)) (-14 *6 (-1289 (-702 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-941)) (-14 *5 (-657 (-1198)))))) +(-13 (-429 |#1|) (-661 (-1164 |#2| |#1|)) (-10 -8 (-15 -3515 ($ (-1289 |#1|))))) +((-3423 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3037 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2860 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4425 (($ $) NIL)) (-4082 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3590 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467))) (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3342 (($ $ (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-1698 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862))))) (-1832 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-4284 (((-112) $ (-784)) NIL)) (-1439 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467)))) (-3509 (($ $ $) 33 (|has| $ (-6 -4467)))) (-3554 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467)))) (-1629 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 35 (|has| $ (-6 -4467)))) (-3719 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-1256 (-576)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ "last" (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467))) (($ $ "rest" $) NIL (|has| $ (-6 -4467))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ "first" (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ "value" (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-3726 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL)) (-2007 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2849 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2244 (((-3 |#2| "failed") |#1| $) 43)) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-3542 (($ $ (-784)) NIL) (($ $) 29)) (-3588 (($ $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-1920 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (-3901 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467)))) (-1741 ((|#2| $ |#1|) NIL) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL)) (-2872 (((-112) $) NIL)) (-3619 (((-576) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL) (((-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))) (((-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (-1448 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 20 (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466))) (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 20 (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) NIL)) (-4257 (((-112) $ $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (-4096 (($ (-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 38 (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-1631 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-1661 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-3855 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466))) (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-1833 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 40 (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467))) (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1672 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-2397 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1743 (((-112) $) NIL)) (-1708 (((-1180) $) 49 (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3921 (($ $ (-784)) NIL) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3135 (((-657 |#1|) $) 22)) (-2559 (((-112) |#1| $) NIL)) (-3107 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2701 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL) (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2225 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3309 (((-657 |#1|) $) NIL) (((-657 (-576)) $) NIL)) (-4324 (((-112) |#1| $) NIL) (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3528 ((|#2| $) NIL (|has| |#1| (-862))) (($ $ (-784)) NIL) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 27)) (-4135 (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL) (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1495 (($ $ |#2|) NIL (|has| $ (-6 -4467))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1533 (((-112) $) NIL)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3585 (((-657 |#2|) $) NIL) (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 19)) (-1368 (((-112) $) 18)) (-3340 (($) 14)) (-2780 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL) (($ $ (-1256 (-576))) NIL) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ "first") NIL) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $ "value") NIL)) (-3064 (((-576) $ $) NIL)) (-3009 (($) 13) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-2683 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-3395 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-4392 (((-112) $) NIL)) (-3645 (($ $) NIL)) (-2463 (($ $) NIL (|has| $ (-6 -4467)))) (-2933 (((-784) $) NIL)) (-1961 (($ $) NIL)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-2752 (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL) (($ $ $) NIL)) (-1637 (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL) (($ (-657 $)) NIL) (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 31) (($ $ $) NIL)) (-3515 (((-877) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-4160 (((-657 $) $) NIL)) (-3631 (((-112) $ $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (-4166 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3930 (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") |#1| $) 51)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-2913 (((-112) $ $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-2881 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-2925 (((-112) $ $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-2901 (((-112) $ $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-862)))) (-3437 (((-784) $) 25 (|has| $ (-6 -4466))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1122) (-1122)) (T -45)) NIL (-36 |#1| |#2|) -((-4101 (((-112) $) 12)) (-2423 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-419 (-576)) $) 25) (($ $ (-419 (-576))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4101 ((-112) |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-47 |#2| |#3|) (-1070) (-804)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4101 ((-112) |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2390 (($ $) 64 (|has| |#1| (-568)))) (-3302 (((-112) $) 66 (|has| |#1| (-568)))) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-3310 (($ $) 72)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-4101 (((-112) $) 74)) (-1564 (($ |#1| |#2|) 73)) (-2423 (($ (-1 |#1| |#1|) $) 75)) (-1700 (($ $) 77)) (-1711 ((|#1| $) 78)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1946 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2196 ((|#2| $) 76)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2707 ((|#1| $ |#2|) 71)) (-4276 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-47 |#1| |#2|) (-141) (-1070) (-804)) (T -47)) -((-1711 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-112)))) (-1564 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-3310 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-374))))) -(-13 (-1070) (-111 |t#1| |t#1|) (-10 -8 (-15 -1711 (|t#1| $)) (-15 -1700 ($ $)) (-15 -2196 (|t#2| $)) (-15 -2423 ($ (-1 |t#1| |t#1|) $)) (-15 -4101 ((-112) $)) (-15 -1564 ($ |t#1| |t#2|)) (-15 -3310 ($ $)) (-15 -2707 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-374)) (-15 -4047 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-6 (-38 (-419 (-576)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-2246 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-2811 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-3114 (((-112) $) 9)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-4442 (((-656 (-624 $)) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-1791 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1462 (($ $) NIL)) (-4386 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-1499 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-2467 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-2982 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2317 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-1895 (($ $ $) NIL)) (-1930 (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3563 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-701 $) (-1288 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL)) (-2721 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-3043 (($ $) NIL) (($ (-656 $)) NIL)) (-1849 (((-656 (-115)) $) NIL)) (-1401 (((-115) (-115)) NIL)) (-2486 (((-112) $) 11)) (-3616 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-2687 (((-1146 (-576) (-624 $)) $) NIL)) (-4005 (($ $ (-576)) NIL)) (-2595 (((-1193 $) (-1193 $) (-624 $)) NIL) (((-1193 $) (-1193 $) (-656 (-624 $))) NIL) (($ $ (-624 $)) NIL) (($ $ (-656 (-624 $))) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1634 (((-1193 $) (-624 $)) NIL (|has| $ (-1070)))) (-2423 (($ (-1 $ $) (-624 $)) NIL)) (-2875 (((-3 (-624 $) "failed") $) NIL)) (-2160 (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL) (((-2 (|:| -3563 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-1288 $) $) NIL) (((-701 (-419 (-576))) (-1288 $)) NIL)) (-3076 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-1388 (((-656 (-624 $)) $) NIL)) (-2772 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-4227 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) NIL)) (-1669 (($ $) NIL)) (-2955 (((-783) $) NIL)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2197 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-1452 (((-430 $) $) NIL)) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3955 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-2145 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2812 (((-783) $) NIL)) (-4369 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-1328 (($ $) NIL) (($ $ $) NIL)) (-4107 (($ $) NIL) (($ $ (-783)) NIL)) (-2697 (((-1146 (-576) (-624 $)) $) NIL)) (-3881 (($ $) NIL (|has| $ (-1070)))) (-1556 (((-390) $) NIL) (((-227) $) NIL) (((-171 (-390)) $) NIL)) (-4113 (((-876) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1146 (-576) (-624 $))) NIL)) (-2910 (((-783)) NIL T CONST)) (-2345 (($ $) NIL) (($ (-656 $)) NIL)) (-1380 (((-112) (-115)) NIL)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-4313 (($) 6 T CONST)) (-4322 (($) 10 T CONST)) (-3157 (($ $) NIL) (($ $ (-783)) NIL)) (-3939 (((-112) $ $) 13)) (-4047 (($ $ $) NIL)) (-4037 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) NIL) (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) -(((-48) (-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -4113 ($ (-1146 (-576) (-624 $)))) (-15 -2687 ((-1146 (-576) (-624 $)) $)) (-15 -2697 ((-1146 (-576) (-624 $)) $)) (-15 -2721 ($ $)) (-15 -2595 ((-1193 $) (-1193 $) (-624 $))) (-15 -2595 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -2595 ($ $ (-624 $))) (-15 -2595 ($ $ (-656 (-624 $))))))) (T -48)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2721 (*1 *1 *1) (-5 *1 (-48))) (-2595 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) (-2595 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48))))) -(-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -4113 ($ (-1146 (-576) (-624 $)))) (-15 -2687 ((-1146 (-576) (-624 $)) $)) (-15 -2697 ((-1146 (-576) (-624 $)) $)) (-15 -2721 ($ $)) (-15 -2595 ((-1193 $) (-1193 $) (-624 $))) (-15 -2595 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -2595 ($ $ (-624 $))) (-15 -2595 ($ $ (-656 (-624 $)))))) -((-1957 (((-112) $ $) NIL)) (-2474 (((-656 (-518)) $) 17)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 7)) (-4159 (((-1202) $) 18)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-49) (-13 (-1121) (-10 -8 (-15 -2474 ((-656 (-518)) $)) (-15 -4159 ((-1202) $))))) (T -49)) -((-2474 (*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-49))))) -(-13 (-1121) (-10 -8 (-15 -2474 ((-656 (-518)) $)) (-15 -4159 ((-1202) $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 85)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-4275 (((-112) $) 30)) (-2982 (((-3 |#1| "failed") $) 33)) (-2317 ((|#1| $) 34)) (-3310 (($ $) 40)) (-1851 (((-3 $ "failed") $) NIL)) (-2486 (((-112) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1711 ((|#1| $) 31)) (-1425 (($ $) 74)) (-2447 (((-1179) $) NIL)) (-2212 (((-112) $) 43)) (-3116 (((-1141) $) NIL)) (-2549 (($ (-783)) 72)) (-2156 (($ (-656 (-576))) 73)) (-2196 (((-783) $) 44)) (-4113 (((-876) $) 91) (($ (-576)) 69) (($ |#1|) 67)) (-2707 ((|#1| $ $) 28)) (-2910 (((-783)) 71 T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 45 T CONST)) (-4322 (($) 17 T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 64)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) -(((-50 |#1| |#2|) (-13 (-632 |#1|) (-1059 |#1|) (-10 -8 (-15 -1711 (|#1| $)) (-15 -1425 ($ $)) (-15 -3310 ($ $)) (-15 -2707 (|#1| $ $)) (-15 -2549 ($ (-783))) (-15 -2156 ($ (-656 (-576)))) (-15 -2212 ((-112) $)) (-15 -4275 ((-112) $)) (-15 -2196 ((-783) $)) (-15 -2423 ($ (-1 |#1| |#1|) $)))) (-1070) (-656 (-1197))) (T -50)) -((-1711 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) (-1425 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) (-3310 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) (-2707 (*1 *2 *1 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) (-2549 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-2156 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-2212 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-656 (-1197))))) (-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-50 *3 *4)) (-14 *4 (-656 (-1197)))))) -(-13 (-632 |#1|) (-1059 |#1|) (-10 -8 (-15 -1711 (|#1| $)) (-15 -1425 ($ $)) (-15 -3310 ($ $)) (-15 -2707 (|#1| $ $)) (-15 -2549 ($ (-783))) (-15 -2156 ($ (-656 (-576)))) (-15 -2212 ((-112) $)) (-15 -4275 ((-112) $)) (-15 -2196 ((-783) $)) (-15 -2423 ($ (-1 |#1| |#1|) $)))) -((-4275 (((-112) (-52)) 18)) (-2982 (((-3 |#1| "failed") (-52)) 20)) (-2317 ((|#1| (-52)) 21)) (-4113 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -4113 ((-52) |#1|)) (-15 -2982 ((-3 |#1| "failed") (-52))) (-15 -4275 ((-112) (-52))) (-15 -2317 (|#1| (-52)))) (-1238)) (T -51)) -((-2317 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) (-4275 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1238)))) (-2982 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) (-4113 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1238))))) -(-10 -7 (-15 -4113 ((-52) |#1|)) (-15 -2982 ((-3 |#1| "failed") (-52))) (-15 -4275 ((-112) (-52))) (-15 -2317 (|#1| (-52)))) -((-1957 (((-112) $ $) NIL)) (-1998 (((-786) $) 8)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3698 (((-1125) $) 10)) (-4113 (((-876) $) 15)) (-2950 (((-112) $ $) NIL)) (-2916 (($ (-1125) (-786)) 16)) (-3939 (((-112) $ $) 12))) -(((-52) (-13 (-1121) (-10 -8 (-15 -2916 ($ (-1125) (-786))) (-15 -3698 ((-1125) $)) (-15 -1998 ((-786) $))))) (T -52)) -((-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-786)) (-5 *1 (-52)))) (-3698 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-52)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) -(-13 (-1121) (-10 -8 (-15 -2916 ($ (-1125) (-786))) (-15 -3698 ((-1125) $)) (-15 -1998 ((-786) $)))) -((-2653 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2653 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1070) (-660 |#1|) (-866 |#1|)) (T -53)) -((-2653 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1070)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-866 *5))))) -(-10 -7 (-15 -2653 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-3585 ((|#3| |#3| (-656 (-1197))) 44)) (-1698 ((|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3| (-940)) 32) ((|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1698 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3|)) (-15 -1698 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3| (-940))) (-15 -3585 (|#3| |#3| (-656 (-1197))))) (-1121) (-13 (-1070) (-901 |#1|) (-626 (-907 |#1|))) (-13 (-442 |#2|) (-901 |#1|) (-626 (-907 |#1|)))) (T -54)) -((-3585 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) (-1698 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 (-1097 *5 *6 *2))) (-5 *4 (-940)) (-4 *5 (-1121)) (-4 *6 (-13 (-1070) (-901 *5) (-626 (-907 *5)))) (-4 *2 (-13 (-442 *6) (-901 *5) (-626 (-907 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1698 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-1097 *4 *5 *2))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -1698 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3|)) (-15 -1698 (|#3| (-656 (-1097 |#1| |#2| |#3|)) |#3| (-940))) (-15 -3585 (|#3| |#3| (-656 (-1197))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 14)) (-2982 (((-3 (-783) "failed") $) 34)) (-2317 (((-783) $) NIL)) (-2486 (((-112) $) 16)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) 18)) (-4113 (((-876) $) 23) (($ (-783)) 29)) (-2950 (((-112) $ $) NIL)) (-4043 (($) 11 T CONST)) (-3939 (((-112) $ $) 20))) -(((-55) (-13 (-1121) (-1059 (-783)) (-10 -8 (-15 -4043 ($) -2666) (-15 -3114 ((-112) $)) (-15 -2486 ((-112) $))))) (T -55)) -((-4043 (*1 *1) (-5 *1 (-55))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1121) (-1059 (-783)) (-10 -8 (-15 -4043 ($) -2666) (-15 -3114 ((-112) $)) (-15 -2486 ((-112) $)))) -((-4234 (((-112) $ (-783)) 27)) (-2979 (($ $ (-576) |#3|) 66)) (-2932 (($ $ (-576) |#4|) 70)) (-2880 ((|#3| $ (-576)) 79)) (-3722 (((-656 |#2|) $) 47)) (-3215 (((-112) $ (-783)) 31)) (-1602 (((-112) |#2| $) 74)) (-1898 (($ (-1 |#2| |#2|) $) 55)) (-2423 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-1884 (((-112) $ (-783)) 29)) (-4267 (($ $ |#2|) 52)) (-1759 (((-112) (-1 (-112) |#2|) $) 21)) (-4369 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) 35)) (-3127 (((-783) (-1 (-112) |#2|) $) 41) (((-783) |#2| $) 76)) (-4287 (($ $) 51)) (-3840 ((|#4| $ (-576)) 82)) (-4113 (((-876) $) 88)) (-2543 (((-112) (-1 (-112) |#2|) $) 20)) (-3939 (((-112) $ $) 73)) (-1970 (((-783) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2423 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1898 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2932 (|#1| |#1| (-576) |#4|)) (-15 -2979 (|#1| |#1| (-576) |#3|)) (-15 -3722 ((-656 |#2|) |#1|)) (-15 -3840 (|#4| |#1| (-576))) (-15 -2880 (|#3| |#1| (-576))) (-15 -4369 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4369 (|#2| |#1| (-576) (-576))) (-15 -4267 (|#1| |#1| |#2|)) (-15 -1602 ((-112) |#2| |#1|)) (-15 -3127 ((-783) |#2| |#1|)) (-15 -3127 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1759 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1970 ((-783) |#1|)) (-15 -4234 ((-112) |#1| (-783))) (-15 -3215 ((-112) |#1| (-783))) (-15 -1884 ((-112) |#1| (-783))) (-15 -4287 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1238) (-384 |#2|) (-384 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2423 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1898 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2932 (|#1| |#1| (-576) |#4|)) (-15 -2979 (|#1| |#1| (-576) |#3|)) (-15 -3722 ((-656 |#2|) |#1|)) (-15 -3840 (|#4| |#1| (-576))) (-15 -2880 (|#3| |#1| (-576))) (-15 -4369 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4369 (|#2| |#1| (-576) (-576))) (-15 -4267 (|#1| |#1| |#2|)) (-15 -1602 ((-112) |#2| |#1|)) (-15 -3127 ((-783) |#2| |#1|)) (-15 -3127 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1759 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1970 ((-783) |#1|)) (-15 -4234 ((-112) |#1| (-783))) (-15 -3215 ((-112) |#1| (-783))) (-15 -1884 ((-112) |#1| (-783))) (-15 -4287 (|#1| |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) 8)) (-4268 ((|#1| $ (-576) (-576) |#1|) 45)) (-2979 (($ $ (-576) |#2|) 43)) (-2932 (($ $ (-576) |#3|) 42)) (-3170 (($) 7 T CONST)) (-2880 ((|#2| $ (-576)) 47)) (-1910 ((|#1| $ (-576) (-576) |#1|) 44)) (-3721 ((|#1| $ (-576) (-576)) 49)) (-3722 (((-656 |#1|) $) 31)) (-2759 (((-783) $) 52)) (-1991 (($ (-783) (-783) |#1|) 58)) (-2773 (((-783) $) 51)) (-3215 (((-112) $ (-783)) 9)) (-2805 (((-576) $) 56)) (-2718 (((-576) $) 54)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2626 (((-576) $) 55)) (-3267 (((-576) $) 53)) (-1898 (($ (-1 |#1| |#1|) $) 35)) (-2423 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4267 (($ $ |#1|) 57)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-3840 ((|#3| $ (-576)) 46)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-57 |#1| |#2| |#3|) (-141) (-1238) (-384 |t#1|) (-384 |t#1|)) (T -57)) -((-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1991 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1238)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4267 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2759 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-2773 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-4369 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1238)))) (-3721 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1238)))) (-4369 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-2880 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1238)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-3840 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1238)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) (-4268 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-1910 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-2979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))) (-2932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1238)) (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))) (-1898 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2423 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2423 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -1991 ($ (-783) (-783) |t#1|)) (-15 -4267 ($ $ |t#1|)) (-15 -2805 ((-576) $)) (-15 -2626 ((-576) $)) (-15 -2718 ((-576) $)) (-15 -3267 ((-576) $)) (-15 -2759 ((-783) $)) (-15 -2773 ((-783) $)) (-15 -4369 (|t#1| $ (-576) (-576))) (-15 -3721 (|t#1| $ (-576) (-576))) (-15 -4369 (|t#1| $ (-576) (-576) |t#1|)) (-15 -2880 (|t#2| $ (-576))) (-15 -3840 (|t#3| $ (-576))) (-15 -3722 ((-656 |t#1|) $)) (-15 -4268 (|t#1| $ (-576) (-576) |t#1|)) (-15 -1910 (|t#1| $ (-576) (-576) |t#1|)) (-15 -2979 ($ $ (-576) |t#2|)) (-15 -2932 ($ $ (-576) |t#3|)) (-15 -2423 ($ (-1 |t#1| |t#1|) $)) (-15 -1898 ($ (-1 |t#1| |t#1|) $)) (-15 -2423 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2423 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-4324 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2721 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2423 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -4324 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2423 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1238) (-1238)) (T -58)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-58 *5 *2)))) (-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -4324 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2423 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-2380 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) NIL)) (-3539 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2971 (($ (-656 |#1|)) 11) (($ (-783) |#1|) 14)) (-1991 (($ (-783) |#1|) 13)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-2748 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1755 ((|#1| $) NIL (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4267 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2335 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 10)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2971 ($ (-656 |#1|))) (-15 -2971 ($ (-783) |#1|)))) (-1238)) (T -59)) -((-2971 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-59 *3)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1238))))) -(-13 (-19 |#1|) (-10 -8 (-15 -2971 ($ (-656 |#1|))) (-15 -2971 ($ (-783) |#1|)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2979 (($ $ (-576) (-59 |#1|)) NIL)) (-2932 (($ $ (-576) (-59 |#1|)) NIL)) (-3170 (($) NIL T CONST)) (-2880 (((-59 |#1|) $ (-576)) NIL)) (-1910 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3721 ((|#1| $ (-576) (-576)) NIL)) (-3722 (((-656 |#1|) $) NIL)) (-2759 (((-783) $) NIL)) (-1991 (($ (-783) (-783) |#1|) NIL)) (-2773 (((-783) $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-2805 (((-576) $) NIL)) (-2718 (((-576) $) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2626 (((-576) $) NIL)) (-3267 (((-576) $) NIL)) (-1898 (($ (-1 |#1| |#1|) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4267 (($ $ |#1|) NIL)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-3840 (((-59 |#1|) $ (-576)) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4465))) (-1238)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4465))) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 74) (((-3 $ "failed") (-1288 (-326 (-576)))) 63) (((-3 $ "failed") (-1288 (-971 (-390)))) 94) (((-3 $ "failed") (-1288 (-971 (-576)))) 84) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 52) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 39)) (-2317 (($ (-1288 (-326 (-390)))) 70) (($ (-1288 (-326 (-576)))) 59) (($ (-1288 (-971 (-390)))) 90) (($ (-1288 (-971 (-576)))) 80) (($ (-1288 (-419 (-971 (-390))))) 48) (($ (-1288 (-419 (-971 (-576))))) 32)) (-3973 (((-1293) $) 124)) (-4113 (((-876) $) 118) (($ (-656 (-340))) 103) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 101) (($ (-1288 (-350 (-4125 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4125) (-711)))) 31))) -(((-61 |#1|) (-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4125) (-711))))))) (-1197)) (T -61)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-4125 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4125) (-711)))) (-5 *1 (-61 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4125) (-711))))))) -((-3973 (((-1293) $) 54) (((-1293)) 55)) (-4113 (((-876) $) 51))) -(((-62 |#1|) (-13 (-407) (-10 -7 (-15 -3973 ((-1293))))) (-1197)) (T -62)) -((-3973 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-62 *3)) (-14 *3 (-1197))))) -(-13 (-407) (-10 -7 (-15 -3973 ((-1293))))) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 150) (((-3 $ "failed") (-1288 (-326 (-576)))) 140) (((-3 $ "failed") (-1288 (-971 (-390)))) 170) (((-3 $ "failed") (-1288 (-971 (-576)))) 160) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 129) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 117)) (-2317 (($ (-1288 (-326 (-390)))) 146) (($ (-1288 (-326 (-576)))) 136) (($ (-1288 (-971 (-390)))) 166) (($ (-1288 (-971 (-576)))) 156) (($ (-1288 (-419 (-971 (-390))))) 125) (($ (-1288 (-419 (-971 (-576))))) 110)) (-3973 (((-1293) $) 103)) (-4113 (((-876) $) 97) (($ (-656 (-340))) 30) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 33) (($ (-1288 (-350 (-4125) (-4125 (QUOTE XC)) (-711)))) 95))) -(((-63 |#1|) (-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125) (-4125 (QUOTE XC)) (-711))))))) (-1197)) (T -63)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-4125) (-4125 (QUOTE XC)) (-711)))) (-5 *1 (-63 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125) (-4125 (QUOTE XC)) (-711))))))) -((-2982 (((-3 $ "failed") (-326 (-390))) 41) (((-3 $ "failed") (-326 (-576))) 46) (((-3 $ "failed") (-971 (-390))) 50) (((-3 $ "failed") (-971 (-576))) 54) (((-3 $ "failed") (-419 (-971 (-390)))) 36) (((-3 $ "failed") (-419 (-971 (-576)))) 29)) (-2317 (($ (-326 (-390))) 39) (($ (-326 (-576))) 44) (($ (-971 (-390))) 48) (($ (-971 (-576))) 52) (($ (-419 (-971 (-390)))) 34) (($ (-419 (-971 (-576)))) 26)) (-3973 (((-1293) $) 76)) (-4113 (((-876) $) 69) (($ (-656 (-340))) 61) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 64) (($ (-350 (-4125 (QUOTE X)) (-4125) (-711))) 25))) -(((-64 |#1|) (-13 (-408) (-10 -8 (-15 -4113 ($ (-350 (-4125 (QUOTE X)) (-4125) (-711)))))) (-1197)) (T -64)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-350 (-4125 (QUOTE X)) (-4125) (-711))) (-5 *1 (-64 *3)) (-14 *3 (-1197))))) -(-13 (-408) (-10 -8 (-15 -4113 ($ (-350 (-4125 (QUOTE X)) (-4125) (-711)))))) -((-2982 (((-3 $ "failed") (-701 (-326 (-390)))) 111) (((-3 $ "failed") (-701 (-326 (-576)))) 99) (((-3 $ "failed") (-701 (-971 (-390)))) 133) (((-3 $ "failed") (-701 (-971 (-576)))) 122) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 87) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 73)) (-2317 (($ (-701 (-326 (-390)))) 107) (($ (-701 (-326 (-576)))) 95) (($ (-701 (-971 (-390)))) 129) (($ (-701 (-971 (-576)))) 118) (($ (-701 (-419 (-971 (-390))))) 83) (($ (-701 (-419 (-971 (-576))))) 66)) (-3973 (((-1293) $) 141)) (-4113 (((-876) $) 135) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 32) (($ (-701 (-350 (-4125) (-4125 (QUOTE X) (QUOTE HESS)) (-711)))) 56))) -(((-65 |#1|) (-13 (-395) (-628 (-701 (-350 (-4125) (-4125 (QUOTE X) (QUOTE HESS)) (-711))))) (-1197)) (T -65)) -NIL -(-13 (-395) (-628 (-701 (-350 (-4125) (-4125 (QUOTE X) (QUOTE HESS)) (-711))))) -((-2982 (((-3 $ "failed") (-326 (-390))) 60) (((-3 $ "failed") (-326 (-576))) 65) (((-3 $ "failed") (-971 (-390))) 69) (((-3 $ "failed") (-971 (-576))) 73) (((-3 $ "failed") (-419 (-971 (-390)))) 55) (((-3 $ "failed") (-419 (-971 (-576)))) 48)) (-2317 (($ (-326 (-390))) 58) (($ (-326 (-576))) 63) (($ (-971 (-390))) 67) (($ (-971 (-576))) 71) (($ (-419 (-971 (-390)))) 53) (($ (-419 (-971 (-576)))) 45)) (-3973 (((-1293) $) 82)) (-4113 (((-876) $) 76) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 32) (($ (-350 (-4125) (-4125 (QUOTE XC)) (-711))) 40))) -(((-66 |#1|) (-13 (-408) (-10 -8 (-15 -4113 ($ (-350 (-4125) (-4125 (QUOTE XC)) (-711)))))) (-1197)) (T -66)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-350 (-4125) (-4125 (QUOTE XC)) (-711))) (-5 *1 (-66 *3)) (-14 *3 (-1197))))) -(-13 (-408) (-10 -8 (-15 -4113 ($ (-350 (-4125) (-4125 (QUOTE XC)) (-711)))))) -((-3973 (((-1293) $) 65)) (-4113 (((-876) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 50) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 55))) -(((-67 |#1|) (-394) (-1197)) (T -67)) +((-2343 (((-112) $) 12)) (-4071 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-419 (-576)) $) 25) (($ $ (-419 (-576))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2343 ((-112) |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) (-47 |#2| |#3|) (-1071) (-805)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2343 ((-112) |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2361 (($ $) 64 (|has| |#1| (-568)))) (-3286 (((-112) $) 66 (|has| |#1| (-568)))) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-2165 (($ $) 72)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-2343 (((-112) $) 74)) (-1974 (($ |#1| |#2|) 73)) (-4071 (($ (-1 |#1| |#1|) $) 75)) (-2129 (($ $) 77)) (-2141 ((|#1| $) 78)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3409 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4265 ((|#2| $) 76)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2498 ((|#1| $ |#2|) 71)) (-3414 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-47 |#1| |#2|) (-141) (-1071) (-805)) (T -47)) +((-2141 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) (-2129 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-112)))) (-1974 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) (-2165 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) (-2498 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) (-2995 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)) (-4 *2 (-374))))) +(-13 (-1071) (-111 |t#1| |t#1|) (-10 -8 (-15 -2141 (|t#1| $)) (-15 -2129 ($ $)) (-15 -4265 (|t#2| $)) (-15 -4071 ($ (-1 |t#1| |t#1|) $)) (-15 -2343 ((-112) $)) (-15 -1974 ($ |t#1| |t#2|)) (-15 -2165 ($ $)) (-15 -2498 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-374)) (-15 -2995 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-6 (-38 (-419 (-576)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-3417 (((-657 $) (-1194 $) (-1198)) NIL) (((-657 $) (-1194 $)) NIL) (((-657 $) (-972 $)) NIL)) (-4152 (($ (-1194 $) (-1198)) NIL) (($ (-1194 $)) NIL) (($ (-972 $)) NIL)) (-2044 (((-112) $) 9)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3941 (((-657 (-624 $)) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $ (-304 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-1866 (($ $) NIL)) (-3210 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-1751 (((-657 $) (-1194 $) (-1198)) NIL) (((-657 $) (-1194 $)) NIL) (((-657 $) (-972 $)) NIL)) (-1913 (($ (-1194 $) (-1198)) NIL) (($ (-1194 $)) NIL) (($ (-972 $)) NIL)) (-1593 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2830 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-3355 (($ $ $) NIL)) (-3439 (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3962 (-702 (-419 (-576)))) (|:| |vec| (-1289 (-419 (-576))))) (-702 $) (-1289 $)) NIL) (((-702 (-419 (-576))) (-702 $)) NIL)) (-3662 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3816 (($ $) NIL) (($ (-657 $)) NIL)) (-3948 (((-657 (-115)) $) NIL)) (-1803 (((-115) (-115)) NIL)) (-3994 (((-112) $) 11)) (-1354 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-1590 (((-1147 (-576) (-624 $)) $) NIL)) (-3856 (($ $ (-576)) NIL)) (-3869 (((-1194 $) (-1194 $) (-624 $)) NIL) (((-1194 $) (-1194 $) (-657 (-624 $))) NIL) (($ $ (-624 $)) NIL) (($ $ (-657 (-624 $))) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3695 (((-1194 $) (-624 $)) NIL (|has| $ (-1071)))) (-4071 (($ (-1 $ $) (-624 $)) NIL)) (-3449 (((-3 (-624 $) "failed") $) NIL)) (-1993 (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL) (((-2 (|:| -3962 (-702 (-419 (-576)))) (|:| |vec| (-1289 (-419 (-576))))) (-1289 $) $) NIL) (((-702 (-419 (-576))) (-1289 $)) NIL)) (-3388 (($ (-657 $)) NIL) (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1789 (((-657 (-624 $)) $) NIL)) (-1662 (($ (-115) $) NIL) (($ (-115) (-657 $)) NIL)) (-4216 (((-112) $ (-115)) NIL) (((-112) $ (-1198)) NIL)) (-2098 (($ $) NIL)) (-2363 (((-784) $) NIL)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ (-657 $)) NIL) (($ $ $) NIL)) (-4275 (((-112) $ $) NIL) (((-112) $ (-1198)) NIL)) (-1856 (((-430 $) $) NIL)) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3341 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-3205 (($ $ (-624 $) $) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-1198) (-1 $ (-657 $))) NIL) (($ $ (-1198) (-1 $ $)) NIL) (($ $ (-657 (-115)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-115) (-1 $ (-657 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-4164 (((-784) $) NIL)) (-2780 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-657 $)) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-3469 (($ $) NIL) (($ $ $) NIL)) (-2209 (($ $) NIL) (($ $ (-784)) NIL)) (-1602 (((-1147 (-576) (-624 $)) $) NIL)) (-2005 (($ $) NIL (|has| $ (-1071)))) (-4136 (((-390) $) NIL) (((-227) $) NIL) (((-171 (-390)) $) NIL)) (-3515 (((-877) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1147 (-576) (-624 $))) NIL)) (-3845 (((-784)) NIL T CONST)) (-1791 (($ $) NIL) (($ (-657 $)) NIL)) (-2946 (((-112) (-115)) NIL)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2716 (($) 6 T CONST)) (-2725 (($) 10 T CONST)) (-2066 (($ $) NIL) (($ $ (-784)) NIL)) (-2881 (((-112) $ $) 13)) (-2995 (($ $ $) NIL)) (-2982 (($ $ $) NIL) (($ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) NIL) (($ $ (-784)) NIL) (($ $ (-941)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-784) $) NIL) (($ (-941) $) NIL))) +(((-48) (-13 (-312) (-27) (-1060 (-576)) (-1060 (-419 (-576))) (-652 (-576)) (-1044) (-652 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3515 ($ (-1147 (-576) (-624 $)))) (-15 -1590 ((-1147 (-576) (-624 $)) $)) (-15 -1602 ((-1147 (-576) (-624 $)) $)) (-15 -3662 ($ $)) (-15 -3869 ((-1194 $) (-1194 $) (-624 $))) (-15 -3869 ((-1194 $) (-1194 $) (-657 (-624 $)))) (-15 -3869 ($ $ (-624 $))) (-15 -3869 ($ $ (-657 (-624 $))))))) (T -48)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1147 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-3662 (*1 *1 *1) (-5 *1 (-48))) (-3869 (*1 *2 *2 *3) (-12 (-5 *2 (-1194 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) (-3869 (*1 *2 *2 *3) (-12 (-5 *2 (-1194 (-48))) (-5 *3 (-657 (-624 (-48)))) (-5 *1 (-48)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-624 (-48)))) (-5 *1 (-48))))) +(-13 (-312) (-27) (-1060 (-576)) (-1060 (-419 (-576))) (-652 (-576)) (-1044) (-652 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3515 ($ (-1147 (-576) (-624 $)))) (-15 -1590 ((-1147 (-576) (-624 $)) $)) (-15 -1602 ((-1147 (-576) (-624 $)) $)) (-15 -3662 ($ $)) (-15 -3869 ((-1194 $) (-1194 $) (-624 $))) (-15 -3869 ((-1194 $) (-1194 $) (-657 (-624 $)))) (-15 -3869 ($ $ (-624 $))) (-15 -3869 ($ $ (-657 (-624 $)))))) +((-3423 (((-112) $ $) NIL)) (-2154 (((-657 (-518)) $) 17)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 7)) (-2645 (((-1203) $) 18)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-49) (-13 (-1122) (-10 -8 (-15 -2154 ((-657 (-518)) $)) (-15 -2645 ((-1203) $))))) (T -49)) +((-2154 (*1 *2 *1) (-12 (-5 *2 (-657 (-518))) (-5 *1 (-49)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-49))))) +(-13 (-1122) (-10 -8 (-15 -2154 ((-657 (-518)) $)) (-15 -2645 ((-1203) $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 85)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3402 (((-112) $) 30)) (-1593 (((-3 |#1| "failed") $) 33)) (-2830 ((|#1| $) 34)) (-2165 (($ $) 40)) (-3969 (((-3 $ "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-2141 ((|#1| $) 31)) (-3336 (($ $) 74)) (-1708 (((-1180) $) NIL)) (-4419 (((-112) $) 43)) (-1460 (((-1142) $) NIL)) (-4083 (($ (-784)) 72)) (-4056 (($ (-657 (-576))) 73)) (-4265 (((-784) $) 44)) (-3515 (((-877) $) 91) (($ (-576)) 69) (($ |#1|) 67)) (-2498 ((|#1| $ $) 28)) (-3845 (((-784)) 71 T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 45 T CONST)) (-2725 (($) 17 T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 64)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) +(((-50 |#1| |#2|) (-13 (-632 |#1|) (-1060 |#1|) (-10 -8 (-15 -2141 (|#1| $)) (-15 -3336 ($ $)) (-15 -2165 ($ $)) (-15 -2498 (|#1| $ $)) (-15 -4083 ($ (-784))) (-15 -4056 ($ (-657 (-576)))) (-15 -4419 ((-112) $)) (-15 -3402 ((-112) $)) (-15 -4265 ((-784) $)) (-15 -4071 ($ (-1 |#1| |#1|) $)))) (-1071) (-657 (-1198))) (T -50)) +((-2141 (*1 *2 *1) (-12 (-4 *2 (-1071)) (-5 *1 (-50 *2 *3)) (-14 *3 (-657 (-1198))))) (-3336 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1071)) (-14 *3 (-657 (-1198))))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1071)) (-14 *3 (-657 (-1198))))) (-2498 (*1 *2 *1 *1) (-12 (-4 *2 (-1071)) (-5 *1 (-50 *2 *3)) (-14 *3 (-657 (-1198))))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) (-14 *4 (-657 (-1198))))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) (-14 *4 (-657 (-1198))))) (-4419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) (-14 *4 (-657 (-1198))))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) (-14 *4 (-657 (-1198))))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) (-14 *4 (-657 (-1198))))) (-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-50 *3 *4)) (-14 *4 (-657 (-1198)))))) +(-13 (-632 |#1|) (-1060 |#1|) (-10 -8 (-15 -2141 (|#1| $)) (-15 -3336 ($ $)) (-15 -2165 ($ $)) (-15 -2498 (|#1| $ $)) (-15 -4083 ($ (-784))) (-15 -4056 ($ (-657 (-576)))) (-15 -4419 ((-112) $)) (-15 -3402 ((-112) $)) (-15 -4265 ((-784) $)) (-15 -4071 ($ (-1 |#1| |#1|) $)))) +((-3402 (((-112) (-52)) 18)) (-1593 (((-3 |#1| "failed") (-52)) 20)) (-2830 ((|#1| (-52)) 21)) (-3515 (((-52) |#1|) 14))) +(((-51 |#1|) (-10 -7 (-15 -3515 ((-52) |#1|)) (-15 -1593 ((-3 |#1| "failed") (-52))) (-15 -3402 ((-112) (-52))) (-15 -2830 (|#1| (-52)))) (-1239)) (T -51)) +((-2830 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1239)))) (-3402 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1239)))) (-1593 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1239)))) (-3515 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1239))))) +(-10 -7 (-15 -3515 ((-52) |#1|)) (-15 -1593 ((-3 |#1| "failed") (-52))) (-15 -3402 ((-112) (-52))) (-15 -2830 (|#1| (-52)))) +((-3423 (((-112) $ $) NIL)) (-3978 (((-787) $) 8)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-4427 (((-1126) $) 10)) (-3515 (((-877) $) 15)) (-4166 (((-112) $ $) NIL)) (-4098 (($ (-1126) (-787)) 16)) (-2881 (((-112) $ $) 12))) +(((-52) (-13 (-1122) (-10 -8 (-15 -4098 ($ (-1126) (-787))) (-15 -4427 ((-1126) $)) (-15 -3978 ((-787) $))))) (T -52)) +((-4098 (*1 *1 *2 *3) (-12 (-5 *2 (-1126)) (-5 *3 (-787)) (-5 *1 (-52)))) (-4427 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-52)))) (-3978 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-52))))) +(-13 (-1122) (-10 -8 (-15 -4098 ($ (-1126) (-787))) (-15 -4427 ((-1126) $)) (-15 -3978 ((-787) $)))) +((-3514 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3514 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1071) (-661 |#1|) (-867 |#1|)) (T -53)) +((-3514 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-661 *5)) (-4 *5 (-1071)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-867 *5))))) +(-10 -7 (-15 -3514 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-4179 ((|#3| |#3| (-657 (-1198))) 44)) (-2937 ((|#3| (-657 (-1098 |#1| |#2| |#3|)) |#3| (-941)) 32) ((|#3| (-657 (-1098 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2937 (|#3| (-657 (-1098 |#1| |#2| |#3|)) |#3|)) (-15 -2937 (|#3| (-657 (-1098 |#1| |#2| |#3|)) |#3| (-941))) (-15 -4179 (|#3| |#3| (-657 (-1198))))) (-1122) (-13 (-1071) (-902 |#1|) (-626 (-908 |#1|))) (-13 (-442 |#2|) (-902 |#1|) (-626 (-908 |#1|)))) (T -54)) +((-4179 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-1198))) (-4 *4 (-1122)) (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))))) (-2937 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-657 (-1098 *5 *6 *2))) (-5 *4 (-941)) (-4 *5 (-1122)) (-4 *6 (-13 (-1071) (-902 *5) (-626 (-908 *5)))) (-4 *2 (-13 (-442 *6) (-902 *5) (-626 (-908 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2937 (*1 *2 *3 *2) (-12 (-5 *3 (-657 (-1098 *4 *5 *2))) (-4 *4 (-1122)) (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -2937 (|#3| (-657 (-1098 |#1| |#2| |#3|)) |#3|)) (-15 -2937 (|#3| (-657 (-1098 |#1| |#2| |#3|)) |#3| (-941))) (-15 -4179 (|#3| |#3| (-657 (-1198))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 14)) (-1593 (((-3 (-784) "failed") $) 34)) (-2830 (((-784) $) NIL)) (-3994 (((-112) $) 16)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) 18)) (-3515 (((-877) $) 23) (($ (-784)) 29)) (-4166 (((-112) $ $) NIL)) (-2929 (($) 11 T CONST)) (-2881 (((-112) $ $) 20))) +(((-55) (-13 (-1122) (-1060 (-784)) (-10 -8 (-15 -2929 ($) -1491) (-15 -2044 ((-112) $)) (-15 -3994 ((-112) $))))) (T -55)) +((-2929 (*1 *1) (-5 *1 (-55))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1122) (-1060 (-784)) (-10 -8 (-15 -2929 ($) -1491) (-15 -2044 ((-112) $)) (-15 -3994 ((-112) $)))) +((-4284 (((-112) $ (-784)) 27)) (-1327 (($ $ (-576) |#3|) 66)) (-3960 (($ $ (-576) |#4|) 70)) (-3520 ((|#3| $ (-576)) 79)) (-1448 (((-657 |#2|) $) 47)) (-1786 (((-112) $ (-784)) 31)) (-3326 (((-112) |#2| $) 74)) (-1799 (($ (-1 |#2| |#2|) $) 55)) (-4071 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-4326 (((-112) $ (-784)) 29)) (-1495 (($ $ |#2|) 52)) (-2372 (((-112) (-1 (-112) |#2|) $) 21)) (-2780 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) 35)) (-1469 (((-784) (-1 (-112) |#2|) $) 41) (((-784) |#2| $) 76)) (-1899 (($ $) 51)) (-1612 ((|#4| $ (-576)) 82)) (-3515 (((-877) $) 88)) (-3258 (((-112) (-1 (-112) |#2|) $) 20)) (-2881 (((-112) $ $) 73)) (-3437 (((-784) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4071 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1799 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3960 (|#1| |#1| (-576) |#4|)) (-15 -1327 (|#1| |#1| (-576) |#3|)) (-15 -1448 ((-657 |#2|) |#1|)) (-15 -1612 (|#4| |#1| (-576))) (-15 -3520 (|#3| |#1| (-576))) (-15 -2780 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2780 (|#2| |#1| (-576) (-576))) (-15 -1495 (|#1| |#1| |#2|)) (-15 -3326 ((-112) |#2| |#1|)) (-15 -1469 ((-784) |#2| |#1|)) (-15 -1469 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -2372 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3258 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3437 ((-784) |#1|)) (-15 -4284 ((-112) |#1| (-784))) (-15 -1786 ((-112) |#1| (-784))) (-15 -4326 ((-112) |#1| (-784))) (-15 -1899 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1239) (-384 |#2|) (-384 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4071 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1799 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3960 (|#1| |#1| (-576) |#4|)) (-15 -1327 (|#1| |#1| (-576) |#3|)) (-15 -1448 ((-657 |#2|) |#1|)) (-15 -1612 (|#4| |#1| (-576))) (-15 -3520 (|#3| |#1| (-576))) (-15 -2780 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2780 (|#2| |#1| (-576) (-576))) (-15 -1495 (|#1| |#1| |#2|)) (-15 -3326 ((-112) |#2| |#1|)) (-15 -1469 ((-784) |#2| |#1|)) (-15 -1469 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -2372 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3258 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3437 ((-784) |#1|)) (-15 -4284 ((-112) |#1| (-784))) (-15 -1786 ((-112) |#1| (-784))) (-15 -4326 ((-112) |#1| (-784))) (-15 -1899 (|#1| |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) 8)) (-3719 ((|#1| $ (-576) (-576) |#1|) 45)) (-1327 (($ $ (-576) |#2|) 43)) (-3960 (($ $ (-576) |#3|) 42)) (-2515 (($) 7 T CONST)) (-3520 ((|#2| $ (-576)) 47)) (-1810 ((|#1| $ (-576) (-576) |#1|) 44)) (-1741 ((|#1| $ (-576) (-576)) 49)) (-1448 (((-657 |#1|) $) 31)) (-2334 (((-784) $) 52)) (-4096 (($ (-784) (-784) |#1|) 58)) (-2344 (((-784) $) 51)) (-1786 (((-112) $ (-784)) 9)) (-4076 (((-576) $) 56)) (-2581 (((-576) $) 54)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2898 (((-576) $) 55)) (-4230 (((-576) $) 53)) (-1799 (($ (-1 |#1| |#1|) $) 35)) (-4071 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-1495 (($ $ |#1|) 57)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-1612 ((|#3| $ (-576)) 46)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-57 |#1| |#2| |#3|) (-141) (-1239) (-384 |t#1|) (-384 |t#1|)) (T -57)) +((-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4096 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-784)) (-4 *3 (-1239)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1495 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1239)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-784)))) (-2344 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-784)))) (-2780 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1239)))) (-1741 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1239)))) (-2780 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1239)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1239)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-1612 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1239)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-657 *3)))) (-3719 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1239)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-1810 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1239)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-1327 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))) (-3960 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1239)) (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))) (-1799 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4071 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4071 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(-13 (-501 |t#1|) (-10 -8 (-6 -4467) (-6 -4466) (-15 -4096 ($ (-784) (-784) |t#1|)) (-15 -1495 ($ $ |t#1|)) (-15 -4076 ((-576) $)) (-15 -2898 ((-576) $)) (-15 -2581 ((-576) $)) (-15 -4230 ((-576) $)) (-15 -2334 ((-784) $)) (-15 -2344 ((-784) $)) (-15 -2780 (|t#1| $ (-576) (-576))) (-15 -1741 (|t#1| $ (-576) (-576))) (-15 -2780 (|t#1| $ (-576) (-576) |t#1|)) (-15 -3520 (|t#2| $ (-576))) (-15 -1612 (|t#3| $ (-576))) (-15 -1448 ((-657 |t#1|) $)) (-15 -3719 (|t#1| $ (-576) (-576) |t#1|)) (-15 -1810 (|t#1| $ (-576) (-576) |t#1|)) (-15 -1327 ($ $ (-576) |t#2|)) (-15 -3960 ($ $ (-576) |t#3|)) (-15 -4071 ($ (-1 |t#1| |t#1|) $)) (-15 -1799 ($ (-1 |t#1| |t#1|) $)) (-15 -4071 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4071 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-3899 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3662 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4071 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -3899 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3662 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4071 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1239) (-1239)) (T -58)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3662 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1239)) (-4 *2 (-1239)) (-5 *1 (-58 *5 *2)))) (-3899 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1239)) (-4 *5 (-1239)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -3899 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3662 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4071 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1698 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1832 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3901 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) NIL)) (-3619 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-4360 (($ (-657 |#1|)) 11) (($ (-784) |#1|) 14)) (-4096 (($ (-784) |#1|) 13)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2225 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3528 ((|#1| $) NIL (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1495 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-3395 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 10)) (-1637 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4360 ($ (-657 |#1|))) (-15 -4360 ($ (-784) |#1|)))) (-1239)) (T -59)) +((-4360 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-59 *3)))) (-4360 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-59 *3)) (-4 *3 (-1239))))) +(-13 (-19 |#1|) (-10 -8 (-15 -4360 ($ (-657 |#1|))) (-15 -4360 ($ (-784) |#1|)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1327 (($ $ (-576) (-59 |#1|)) NIL)) (-3960 (($ $ (-576) (-59 |#1|)) NIL)) (-2515 (($) NIL T CONST)) (-3520 (((-59 |#1|) $ (-576)) NIL)) (-1810 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1741 ((|#1| $ (-576) (-576)) NIL)) (-1448 (((-657 |#1|) $) NIL)) (-2334 (((-784) $) NIL)) (-4096 (($ (-784) (-784) |#1|) NIL)) (-2344 (((-784) $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-4076 (((-576) $) NIL)) (-2581 (((-576) $) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2898 (((-576) $) NIL)) (-4230 (((-576) $) NIL)) (-1799 (($ (-1 |#1| |#1|) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1495 (($ $ |#1|) NIL)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-1612 (((-59 |#1|) $ (-576)) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4467))) (-1239)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4467))) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 74) (((-3 $ "failed") (-1289 (-326 (-576)))) 63) (((-3 $ "failed") (-1289 (-972 (-390)))) 94) (((-3 $ "failed") (-1289 (-972 (-576)))) 84) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 52) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 39)) (-2830 (($ (-1289 (-326 (-390)))) 70) (($ (-1289 (-326 (-576)))) 59) (($ (-1289 (-972 (-390)))) 90) (($ (-1289 (-972 (-576)))) 80) (($ (-1289 (-419 (-972 (-390))))) 48) (($ (-1289 (-419 (-972 (-576))))) 32)) (-2063 (((-1294) $) 124)) (-3515 (((-877) $) 118) (($ (-657 (-340))) 103) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 101) (($ (-1289 (-350 (-3529 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3529) (-712)))) 31))) +(((-61 |#1|) (-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3529) (-712))))))) (-1198)) (T -61)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3529 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3529) (-712)))) (-5 *1 (-61 *3)) (-14 *3 (-1198))))) +(-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3529) (-712))))))) +((-2063 (((-1294) $) 54) (((-1294)) 55)) (-3515 (((-877) $) 51))) +(((-62 |#1|) (-13 (-407) (-10 -7 (-15 -2063 ((-1294))))) (-1198)) (T -62)) +((-2063 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-62 *3)) (-14 *3 (-1198))))) +(-13 (-407) (-10 -7 (-15 -2063 ((-1294))))) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 150) (((-3 $ "failed") (-1289 (-326 (-576)))) 140) (((-3 $ "failed") (-1289 (-972 (-390)))) 170) (((-3 $ "failed") (-1289 (-972 (-576)))) 160) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 129) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 117)) (-2830 (($ (-1289 (-326 (-390)))) 146) (($ (-1289 (-326 (-576)))) 136) (($ (-1289 (-972 (-390)))) 166) (($ (-1289 (-972 (-576)))) 156) (($ (-1289 (-419 (-972 (-390))))) 125) (($ (-1289 (-419 (-972 (-576))))) 110)) (-2063 (((-1294) $) 103)) (-3515 (((-877) $) 97) (($ (-657 (-340))) 30) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 33) (($ (-1289 (-350 (-3529) (-3529 (QUOTE XC)) (-712)))) 95))) +(((-63 |#1|) (-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529) (-3529 (QUOTE XC)) (-712))))))) (-1198)) (T -63)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3529) (-3529 (QUOTE XC)) (-712)))) (-5 *1 (-63 *3)) (-14 *3 (-1198))))) +(-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529) (-3529 (QUOTE XC)) (-712))))))) +((-1593 (((-3 $ "failed") (-326 (-390))) 41) (((-3 $ "failed") (-326 (-576))) 46) (((-3 $ "failed") (-972 (-390))) 50) (((-3 $ "failed") (-972 (-576))) 54) (((-3 $ "failed") (-419 (-972 (-390)))) 36) (((-3 $ "failed") (-419 (-972 (-576)))) 29)) (-2830 (($ (-326 (-390))) 39) (($ (-326 (-576))) 44) (($ (-972 (-390))) 48) (($ (-972 (-576))) 52) (($ (-419 (-972 (-390)))) 34) (($ (-419 (-972 (-576)))) 26)) (-2063 (((-1294) $) 76)) (-3515 (((-877) $) 69) (($ (-657 (-340))) 61) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 64) (($ (-350 (-3529 (QUOTE X)) (-3529) (-712))) 25))) +(((-64 |#1|) (-13 (-408) (-10 -8 (-15 -3515 ($ (-350 (-3529 (QUOTE X)) (-3529) (-712)))))) (-1198)) (T -64)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-350 (-3529 (QUOTE X)) (-3529) (-712))) (-5 *1 (-64 *3)) (-14 *3 (-1198))))) +(-13 (-408) (-10 -8 (-15 -3515 ($ (-350 (-3529 (QUOTE X)) (-3529) (-712)))))) +((-1593 (((-3 $ "failed") (-702 (-326 (-390)))) 111) (((-3 $ "failed") (-702 (-326 (-576)))) 99) (((-3 $ "failed") (-702 (-972 (-390)))) 133) (((-3 $ "failed") (-702 (-972 (-576)))) 122) (((-3 $ "failed") (-702 (-419 (-972 (-390))))) 87) (((-3 $ "failed") (-702 (-419 (-972 (-576))))) 73)) (-2830 (($ (-702 (-326 (-390)))) 107) (($ (-702 (-326 (-576)))) 95) (($ (-702 (-972 (-390)))) 129) (($ (-702 (-972 (-576)))) 118) (($ (-702 (-419 (-972 (-390))))) 83) (($ (-702 (-419 (-972 (-576))))) 66)) (-2063 (((-1294) $) 141)) (-3515 (((-877) $) 135) (($ (-657 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 32) (($ (-702 (-350 (-3529) (-3529 (QUOTE X) (QUOTE HESS)) (-712)))) 56))) +(((-65 |#1|) (-13 (-395) (-628 (-702 (-350 (-3529) (-3529 (QUOTE X) (QUOTE HESS)) (-712))))) (-1198)) (T -65)) +NIL +(-13 (-395) (-628 (-702 (-350 (-3529) (-3529 (QUOTE X) (QUOTE HESS)) (-712))))) +((-1593 (((-3 $ "failed") (-326 (-390))) 60) (((-3 $ "failed") (-326 (-576))) 65) (((-3 $ "failed") (-972 (-390))) 69) (((-3 $ "failed") (-972 (-576))) 73) (((-3 $ "failed") (-419 (-972 (-390)))) 55) (((-3 $ "failed") (-419 (-972 (-576)))) 48)) (-2830 (($ (-326 (-390))) 58) (($ (-326 (-576))) 63) (($ (-972 (-390))) 67) (($ (-972 (-576))) 71) (($ (-419 (-972 (-390)))) 53) (($ (-419 (-972 (-576)))) 45)) (-2063 (((-1294) $) 82)) (-3515 (((-877) $) 76) (($ (-657 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 32) (($ (-350 (-3529) (-3529 (QUOTE XC)) (-712))) 40))) +(((-66 |#1|) (-13 (-408) (-10 -8 (-15 -3515 ($ (-350 (-3529) (-3529 (QUOTE XC)) (-712)))))) (-1198)) (T -66)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-350 (-3529) (-3529 (QUOTE XC)) (-712))) (-5 *1 (-66 *3)) (-14 *3 (-1198))))) +(-13 (-408) (-10 -8 (-15 -3515 ($ (-350 (-3529) (-3529 (QUOTE XC)) (-712)))))) +((-2063 (((-1294) $) 65)) (-3515 (((-877) $) 59) (($ (-702 (-712))) 51) (($ (-657 (-340))) 50) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 55))) +(((-67 |#1|) (-394) (-1198)) (T -67)) NIL (-394) -((-3973 (((-1293) $) 66)) (-4113 (((-876) $) 60) (($ (-701 (-711))) 52) (($ (-656 (-340))) 51) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 57))) -(((-68 |#1|) (-394) (-1197)) (T -68)) +((-2063 (((-1294) $) 66)) (-3515 (((-877) $) 60) (($ (-702 (-712))) 52) (($ (-657 (-340))) 51) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 57))) +(((-68 |#1|) (-394) (-1198)) (T -68)) NIL (-394) -((-3973 (((-1293) $) NIL) (((-1293)) 33)) (-4113 (((-876) $) NIL))) -(((-69 |#1|) (-13 (-407) (-10 -7 (-15 -3973 ((-1293))))) (-1197)) (T -69)) -((-3973 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-69 *3)) (-14 *3 (-1197))))) -(-13 (-407) (-10 -7 (-15 -3973 ((-1293))))) -((-3973 (((-1293) $) 75)) (-4113 (((-876) $) 69) (($ (-701 (-711))) 61) (($ (-656 (-340))) 63) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 60))) -(((-70 |#1|) (-394) (-1197)) (T -70)) +((-2063 (((-1294) $) NIL) (((-1294)) 33)) (-3515 (((-877) $) NIL))) +(((-69 |#1|) (-13 (-407) (-10 -7 (-15 -2063 ((-1294))))) (-1198)) (T -69)) +((-2063 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-69 *3)) (-14 *3 (-1198))))) +(-13 (-407) (-10 -7 (-15 -2063 ((-1294))))) +((-2063 (((-1294) $) 75)) (-3515 (((-877) $) 69) (($ (-702 (-712))) 61) (($ (-657 (-340))) 63) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 60))) +(((-70 |#1|) (-394) (-1198)) (T -70)) NIL (-394) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 109) (((-3 $ "failed") (-1288 (-326 (-576)))) 98) (((-3 $ "failed") (-1288 (-971 (-390)))) 129) (((-3 $ "failed") (-1288 (-971 (-576)))) 119) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 87) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 74)) (-2317 (($ (-1288 (-326 (-390)))) 105) (($ (-1288 (-326 (-576)))) 94) (($ (-1288 (-971 (-390)))) 125) (($ (-1288 (-971 (-576)))) 115) (($ (-1288 (-419 (-971 (-390))))) 83) (($ (-1288 (-419 (-971 (-576))))) 67)) (-3973 (((-1293) $) 142)) (-4113 (((-876) $) 136) (($ (-656 (-340))) 131) (($ (-340)) 134) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 59) (($ (-1288 (-350 (-4125 (QUOTE X)) (-4125 (QUOTE -1439)) (-711)))) 60))) -(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE X)) (-4125 (QUOTE -1439)) (-711))))))) (-1197)) (T -71)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-4125 (QUOTE X)) (-4125 (QUOTE -1439)) (-711)))) (-5 *1 (-71 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE X)) (-4125 (QUOTE -1439)) (-711))))))) -((-3973 (((-1293) $) 33) (((-1293)) 32)) (-4113 (((-876) $) 36))) -(((-72 |#1|) (-13 (-407) (-10 -7 (-15 -3973 ((-1293))))) (-1197)) (T -72)) -((-3973 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-72 *3)) (-14 *3 (-1197))))) -(-13 (-407) (-10 -7 (-15 -3973 ((-1293))))) -((-3973 (((-1293) $) 65)) (-4113 (((-876) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 53) (($ (-340)) 56) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 50))) -(((-73 |#1|) (-394) (-1197)) (T -73)) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 109) (((-3 $ "failed") (-1289 (-326 (-576)))) 98) (((-3 $ "failed") (-1289 (-972 (-390)))) 129) (((-3 $ "failed") (-1289 (-972 (-576)))) 119) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 87) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 74)) (-2830 (($ (-1289 (-326 (-390)))) 105) (($ (-1289 (-326 (-576)))) 94) (($ (-1289 (-972 (-390)))) 125) (($ (-1289 (-972 (-576)))) 115) (($ (-1289 (-419 (-972 (-390))))) 83) (($ (-1289 (-419 (-972 (-576))))) 67)) (-2063 (((-1294) $) 142)) (-3515 (((-877) $) 136) (($ (-657 (-340))) 131) (($ (-340)) 134) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 59) (($ (-1289 (-350 (-3529 (QUOTE X)) (-3529 (QUOTE -2509)) (-712)))) 60))) +(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE X)) (-3529 (QUOTE -2509)) (-712))))))) (-1198)) (T -71)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3529 (QUOTE X)) (-3529 (QUOTE -2509)) (-712)))) (-5 *1 (-71 *3)) (-14 *3 (-1198))))) +(-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE X)) (-3529 (QUOTE -2509)) (-712))))))) +((-2063 (((-1294) $) 33) (((-1294)) 32)) (-3515 (((-877) $) 36))) +(((-72 |#1|) (-13 (-407) (-10 -7 (-15 -2063 ((-1294))))) (-1198)) (T -72)) +((-2063 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-72 *3)) (-14 *3 (-1198))))) +(-13 (-407) (-10 -7 (-15 -2063 ((-1294))))) +((-2063 (((-1294) $) 65)) (-3515 (((-877) $) 59) (($ (-702 (-712))) 51) (($ (-657 (-340))) 53) (($ (-340)) 56) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 50))) +(((-73 |#1|) (-394) (-1198)) (T -73)) NIL (-394) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 127) (((-3 $ "failed") (-1288 (-326 (-576)))) 117) (((-3 $ "failed") (-1288 (-971 (-390)))) 147) (((-3 $ "failed") (-1288 (-971 (-576)))) 137) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 107) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 95)) (-2317 (($ (-1288 (-326 (-390)))) 123) (($ (-1288 (-326 (-576)))) 113) (($ (-1288 (-971 (-390)))) 143) (($ (-1288 (-971 (-576)))) 133) (($ (-1288 (-419 (-971 (-390))))) 103) (($ (-1288 (-419 (-971 (-576))))) 88)) (-3973 (((-1293) $) 80)) (-4113 (((-876) $) 28) (($ (-656 (-340))) 70) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 73) (($ (-1288 (-350 (-4125) (-4125 (QUOTE X)) (-711)))) 67))) -(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125) (-4125 (QUOTE X)) (-711))))))) (-1197)) (T -74)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-4125) (-4125 (QUOTE X)) (-711)))) (-5 *1 (-74 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125) (-4125 (QUOTE X)) (-711))))))) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 132) (((-3 $ "failed") (-1288 (-326 (-576)))) 121) (((-3 $ "failed") (-1288 (-971 (-390)))) 152) (((-3 $ "failed") (-1288 (-971 (-576)))) 142) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 110) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 97)) (-2317 (($ (-1288 (-326 (-390)))) 128) (($ (-1288 (-326 (-576)))) 117) (($ (-1288 (-971 (-390)))) 148) (($ (-1288 (-971 (-576)))) 138) (($ (-1288 (-419 (-971 (-390))))) 106) (($ (-1288 (-419 (-971 (-576))))) 90)) (-3973 (((-1293) $) 82)) (-4113 (((-876) $) 74) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) NIL) (($ (-1288 (-350 (-4125 (QUOTE X) (QUOTE EPS)) (-4125 (QUOTE -1439)) (-711)))) 69))) -(((-75 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE X) (QUOTE EPS)) (-4125 (QUOTE -1439)) (-711))))))) (-1197) (-1197) (-1197)) (T -75)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-4125 (QUOTE X) (QUOTE EPS)) (-4125 (QUOTE -1439)) (-711)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197))))) -(-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE X) (QUOTE EPS)) (-4125 (QUOTE -1439)) (-711))))))) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 138) (((-3 $ "failed") (-1288 (-326 (-576)))) 127) (((-3 $ "failed") (-1288 (-971 (-390)))) 158) (((-3 $ "failed") (-1288 (-971 (-576)))) 148) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 116) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 103)) (-2317 (($ (-1288 (-326 (-390)))) 134) (($ (-1288 (-326 (-576)))) 123) (($ (-1288 (-971 (-390)))) 154) (($ (-1288 (-971 (-576)))) 144) (($ (-1288 (-419 (-971 (-390))))) 112) (($ (-1288 (-419 (-971 (-576))))) 96)) (-3973 (((-1293) $) 88)) (-4113 (((-876) $) 80) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) NIL) (($ (-1288 (-350 (-4125 (QUOTE EPS)) (-4125 (QUOTE YA) (QUOTE YB)) (-711)))) 75))) -(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE EPS)) (-4125 (QUOTE YA) (QUOTE YB)) (-711))))))) (-1197) (-1197) (-1197)) (T -76)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-4125 (QUOTE EPS)) (-4125 (QUOTE YA) (QUOTE YB)) (-711)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197))))) -(-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE EPS)) (-4125 (QUOTE YA) (QUOTE YB)) (-711))))))) -((-2982 (((-3 $ "failed") (-326 (-390))) 83) (((-3 $ "failed") (-326 (-576))) 88) (((-3 $ "failed") (-971 (-390))) 92) (((-3 $ "failed") (-971 (-576))) 96) (((-3 $ "failed") (-419 (-971 (-390)))) 78) (((-3 $ "failed") (-419 (-971 (-576)))) 71)) (-2317 (($ (-326 (-390))) 81) (($ (-326 (-576))) 86) (($ (-971 (-390))) 90) (($ (-971 (-576))) 94) (($ (-419 (-971 (-390)))) 76) (($ (-419 (-971 (-576)))) 68)) (-3973 (((-1293) $) 63)) (-4113 (((-876) $) 51) (($ (-656 (-340))) 47) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 55) (($ (-350 (-4125) (-4125 (QUOTE X)) (-711))) 48))) -(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -4113 ($ (-350 (-4125) (-4125 (QUOTE X)) (-711)))))) (-1197)) (T -77)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-350 (-4125) (-4125 (QUOTE X)) (-711))) (-5 *1 (-77 *3)) (-14 *3 (-1197))))) -(-13 (-408) (-10 -8 (-15 -4113 ($ (-350 (-4125) (-4125 (QUOTE X)) (-711)))))) -((-2982 (((-3 $ "failed") (-326 (-390))) 47) (((-3 $ "failed") (-326 (-576))) 52) (((-3 $ "failed") (-971 (-390))) 56) (((-3 $ "failed") (-971 (-576))) 60) (((-3 $ "failed") (-419 (-971 (-390)))) 42) (((-3 $ "failed") (-419 (-971 (-576)))) 35)) (-2317 (($ (-326 (-390))) 45) (($ (-326 (-576))) 50) (($ (-971 (-390))) 54) (($ (-971 (-576))) 58) (($ (-419 (-971 (-390)))) 40) (($ (-419 (-971 (-576)))) 32)) (-3973 (((-1293) $) 81)) (-4113 (((-876) $) 75) (($ (-656 (-340))) 67) (($ (-340)) 72) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 70) (($ (-350 (-4125) (-4125 (QUOTE X)) (-711))) 31))) -(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -4113 ($ (-350 (-4125) (-4125 (QUOTE X)) (-711)))))) (-1197)) (T -78)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-350 (-4125) (-4125 (QUOTE X)) (-711))) (-5 *1 (-78 *3)) (-14 *3 (-1197))))) -(-13 (-408) (-10 -8 (-15 -4113 ($ (-350 (-4125) (-4125 (QUOTE X)) (-711)))))) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 90) (((-3 $ "failed") (-1288 (-326 (-576)))) 79) (((-3 $ "failed") (-1288 (-971 (-390)))) 110) (((-3 $ "failed") (-1288 (-971 (-576)))) 100) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 68) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 55)) (-2317 (($ (-1288 (-326 (-390)))) 86) (($ (-1288 (-326 (-576)))) 75) (($ (-1288 (-971 (-390)))) 106) (($ (-1288 (-971 (-576)))) 96) (($ (-1288 (-419 (-971 (-390))))) 64) (($ (-1288 (-419 (-971 (-576))))) 48)) (-3973 (((-1293) $) 126)) (-4113 (((-876) $) 120) (($ (-656 (-340))) 113) (($ (-340)) 38) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 116) (($ (-1288 (-350 (-4125) (-4125 (QUOTE XC)) (-711)))) 39))) -(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125) (-4125 (QUOTE XC)) (-711))))))) (-1197)) (T -79)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-4125) (-4125 (QUOTE XC)) (-711)))) (-5 *1 (-79 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125) (-4125 (QUOTE XC)) (-711))))))) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 151) (((-3 $ "failed") (-1288 (-326 (-576)))) 141) (((-3 $ "failed") (-1288 (-971 (-390)))) 171) (((-3 $ "failed") (-1288 (-971 (-576)))) 161) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 131) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 119)) (-2317 (($ (-1288 (-326 (-390)))) 147) (($ (-1288 (-326 (-576)))) 137) (($ (-1288 (-971 (-390)))) 167) (($ (-1288 (-971 (-576)))) 157) (($ (-1288 (-419 (-971 (-390))))) 127) (($ (-1288 (-419 (-971 (-576))))) 112)) (-3973 (((-1293) $) 105)) (-4113 (((-876) $) 99) (($ (-656 (-340))) 90) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 95) (($ (-1288 (-350 (-4125) (-4125 (QUOTE X)) (-711)))) 91))) -(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125) (-4125 (QUOTE X)) (-711))))))) (-1197)) (T -80)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-4125) (-4125 (QUOTE X)) (-711)))) (-5 *1 (-80 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125) (-4125 (QUOTE X)) (-711))))))) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 79) (((-3 $ "failed") (-1288 (-326 (-576)))) 68) (((-3 $ "failed") (-1288 (-971 (-390)))) 99) (((-3 $ "failed") (-1288 (-971 (-576)))) 89) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 57) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 44)) (-2317 (($ (-1288 (-326 (-390)))) 75) (($ (-1288 (-326 (-576)))) 64) (($ (-1288 (-971 (-390)))) 95) (($ (-1288 (-971 (-576)))) 85) (($ (-1288 (-419 (-971 (-390))))) 53) (($ (-1288 (-419 (-971 (-576))))) 37)) (-3973 (((-1293) $) 125)) (-4113 (((-876) $) 119) (($ (-656 (-340))) 110) (($ (-340)) 116) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 114) (($ (-1288 (-350 (-4125) (-4125 (QUOTE X)) (-711)))) 36))) -(((-81 |#1|) (-13 (-453) (-628 (-1288 (-350 (-4125) (-4125 (QUOTE X)) (-711))))) (-1197)) (T -81)) -NIL -(-13 (-453) (-628 (-1288 (-350 (-4125) (-4125 (QUOTE X)) (-711))))) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 98) (((-3 $ "failed") (-1288 (-326 (-576)))) 87) (((-3 $ "failed") (-1288 (-971 (-390)))) 118) (((-3 $ "failed") (-1288 (-971 (-576)))) 108) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 76) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 63)) (-2317 (($ (-1288 (-326 (-390)))) 94) (($ (-1288 (-326 (-576)))) 83) (($ (-1288 (-971 (-390)))) 114) (($ (-1288 (-971 (-576)))) 104) (($ (-1288 (-419 (-971 (-390))))) 72) (($ (-1288 (-419 (-971 (-576))))) 56)) (-3973 (((-1293) $) 48)) (-4113 (((-876) $) 42) (($ (-656 (-340))) 32) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 38) (($ (-1288 (-350 (-4125 (QUOTE X) (QUOTE -1439)) (-4125) (-711)))) 33))) -(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE X) (QUOTE -1439)) (-4125) (-711))))))) (-1197)) (T -82)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-4125 (QUOTE X) (QUOTE -1439)) (-4125) (-711)))) (-5 *1 (-82 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE X) (QUOTE -1439)) (-4125) (-711))))))) -((-2982 (((-3 $ "failed") (-701 (-326 (-390)))) 118) (((-3 $ "failed") (-701 (-326 (-576)))) 107) (((-3 $ "failed") (-701 (-971 (-390)))) 140) (((-3 $ "failed") (-701 (-971 (-576)))) 129) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 96) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 83)) (-2317 (($ (-701 (-326 (-390)))) 114) (($ (-701 (-326 (-576)))) 103) (($ (-701 (-971 (-390)))) 136) (($ (-701 (-971 (-576)))) 125) (($ (-701 (-419 (-971 (-390))))) 92) (($ (-701 (-419 (-971 (-576))))) 76)) (-3973 (((-1293) $) 66)) (-4113 (((-876) $) 53) (($ (-656 (-340))) 60) (($ (-340)) 49) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 58) (($ (-701 (-350 (-4125 (QUOTE X) (QUOTE -1439)) (-4125) (-711)))) 50))) -(((-83 |#1|) (-13 (-395) (-10 -8 (-15 -4113 ($ (-701 (-350 (-4125 (QUOTE X) (QUOTE -1439)) (-4125) (-711))))))) (-1197)) (T -83)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-4125 (QUOTE X) (QUOTE -1439)) (-4125) (-711)))) (-5 *1 (-83 *3)) (-14 *3 (-1197))))) -(-13 (-395) (-10 -8 (-15 -4113 ($ (-701 (-350 (-4125 (QUOTE X) (QUOTE -1439)) (-4125) (-711))))))) -((-2982 (((-3 $ "failed") (-701 (-326 (-390)))) 113) (((-3 $ "failed") (-701 (-326 (-576)))) 101) (((-3 $ "failed") (-701 (-971 (-390)))) 135) (((-3 $ "failed") (-701 (-971 (-576)))) 124) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 89) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 75)) (-2317 (($ (-701 (-326 (-390)))) 109) (($ (-701 (-326 (-576)))) 97) (($ (-701 (-971 (-390)))) 131) (($ (-701 (-971 (-576)))) 120) (($ (-701 (-419 (-971 (-390))))) 85) (($ (-701 (-419 (-971 (-576))))) 68)) (-3973 (((-1293) $) 60)) (-4113 (((-876) $) 54) (($ (-656 (-340))) 48) (($ (-340)) 51) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 45) (($ (-701 (-350 (-4125 (QUOTE X)) (-4125) (-711)))) 46))) -(((-84 |#1|) (-13 (-395) (-10 -8 (-15 -4113 ($ (-701 (-350 (-4125 (QUOTE X)) (-4125) (-711))))))) (-1197)) (T -84)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-4125 (QUOTE X)) (-4125) (-711)))) (-5 *1 (-84 *3)) (-14 *3 (-1197))))) -(-13 (-395) (-10 -8 (-15 -4113 ($ (-701 (-350 (-4125 (QUOTE X)) (-4125) (-711))))))) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 105) (((-3 $ "failed") (-1288 (-326 (-576)))) 94) (((-3 $ "failed") (-1288 (-971 (-390)))) 125) (((-3 $ "failed") (-1288 (-971 (-576)))) 115) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 83) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 70)) (-2317 (($ (-1288 (-326 (-390)))) 101) (($ (-1288 (-326 (-576)))) 90) (($ (-1288 (-971 (-390)))) 121) (($ (-1288 (-971 (-576)))) 111) (($ (-1288 (-419 (-971 (-390))))) 79) (($ (-1288 (-419 (-971 (-576))))) 63)) (-3973 (((-1293) $) 47)) (-4113 (((-876) $) 41) (($ (-656 (-340))) 50) (($ (-340)) 37) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 53) (($ (-1288 (-350 (-4125 (QUOTE X)) (-4125) (-711)))) 38))) -(((-85 |#1|) (-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE X)) (-4125) (-711))))))) (-1197)) (T -85)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-4125 (QUOTE X)) (-4125) (-711)))) (-5 *1 (-85 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE X)) (-4125) (-711))))))) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 80) (((-3 $ "failed") (-1288 (-326 (-576)))) 69) (((-3 $ "failed") (-1288 (-971 (-390)))) 100) (((-3 $ "failed") (-1288 (-971 (-576)))) 90) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 58) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 45)) (-2317 (($ (-1288 (-326 (-390)))) 76) (($ (-1288 (-326 (-576)))) 65) (($ (-1288 (-971 (-390)))) 96) (($ (-1288 (-971 (-576)))) 86) (($ (-1288 (-419 (-971 (-390))))) 54) (($ (-1288 (-419 (-971 (-576))))) 38)) (-3973 (((-1293) $) 126)) (-4113 (((-876) $) 120) (($ (-656 (-340))) 111) (($ (-340)) 117) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 115) (($ (-1288 (-350 (-4125 (QUOTE X)) (-4125 (QUOTE -1439)) (-711)))) 37))) -(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE X)) (-4125 (QUOTE -1439)) (-711))))))) (-1197)) (T -86)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-350 (-4125 (QUOTE X)) (-4125 (QUOTE -1439)) (-711)))) (-5 *1 (-86 *3)) (-14 *3 (-1197))))) -(-13 (-453) (-10 -8 (-15 -4113 ($ (-1288 (-350 (-4125 (QUOTE X)) (-4125 (QUOTE -1439)) (-711))))))) -((-2982 (((-3 $ "failed") (-701 (-326 (-390)))) 117) (((-3 $ "failed") (-701 (-326 (-576)))) 105) (((-3 $ "failed") (-701 (-971 (-390)))) 139) (((-3 $ "failed") (-701 (-971 (-576)))) 128) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 93) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 79)) (-2317 (($ (-701 (-326 (-390)))) 113) (($ (-701 (-326 (-576)))) 101) (($ (-701 (-971 (-390)))) 135) (($ (-701 (-971 (-576)))) 124) (($ (-701 (-419 (-971 (-390))))) 89) (($ (-701 (-419 (-971 (-576))))) 72)) (-3973 (((-1293) $) 63)) (-4113 (((-876) $) 57) (($ (-656 (-340))) 47) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 52) (($ (-701 (-350 (-4125 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4125) (-711)))) 48))) -(((-87 |#1|) (-13 (-395) (-10 -8 (-15 -4113 ($ (-701 (-350 (-4125 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4125) (-711))))))) (-1197)) (T -87)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-4125 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4125) (-711)))) (-5 *1 (-87 *3)) (-14 *3 (-1197))))) -(-13 (-395) (-10 -8 (-15 -4113 ($ (-701 (-350 (-4125 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4125) (-711))))))) -((-3973 (((-1293) $) 45)) (-4113 (((-876) $) 39) (($ (-1288 (-711))) 100) (($ (-656 (-340))) 31) (($ (-340)) 36) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 34))) -(((-88 |#1|) (-452) (-1197)) (T -88)) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 127) (((-3 $ "failed") (-1289 (-326 (-576)))) 117) (((-3 $ "failed") (-1289 (-972 (-390)))) 147) (((-3 $ "failed") (-1289 (-972 (-576)))) 137) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 107) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 95)) (-2830 (($ (-1289 (-326 (-390)))) 123) (($ (-1289 (-326 (-576)))) 113) (($ (-1289 (-972 (-390)))) 143) (($ (-1289 (-972 (-576)))) 133) (($ (-1289 (-419 (-972 (-390))))) 103) (($ (-1289 (-419 (-972 (-576))))) 88)) (-2063 (((-1294) $) 80)) (-3515 (((-877) $) 28) (($ (-657 (-340))) 70) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 73) (($ (-1289 (-350 (-3529) (-3529 (QUOTE X)) (-712)))) 67))) +(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529) (-3529 (QUOTE X)) (-712))))))) (-1198)) (T -74)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3529) (-3529 (QUOTE X)) (-712)))) (-5 *1 (-74 *3)) (-14 *3 (-1198))))) +(-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529) (-3529 (QUOTE X)) (-712))))))) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 132) (((-3 $ "failed") (-1289 (-326 (-576)))) 121) (((-3 $ "failed") (-1289 (-972 (-390)))) 152) (((-3 $ "failed") (-1289 (-972 (-576)))) 142) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 110) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 97)) (-2830 (($ (-1289 (-326 (-390)))) 128) (($ (-1289 (-326 (-576)))) 117) (($ (-1289 (-972 (-390)))) 148) (($ (-1289 (-972 (-576)))) 138) (($ (-1289 (-419 (-972 (-390))))) 106) (($ (-1289 (-419 (-972 (-576))))) 90)) (-2063 (((-1294) $) 82)) (-3515 (((-877) $) 74) (($ (-657 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) NIL) (($ (-1289 (-350 (-3529 (QUOTE X) (QUOTE EPS)) (-3529 (QUOTE -2509)) (-712)))) 69))) +(((-75 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE X) (QUOTE EPS)) (-3529 (QUOTE -2509)) (-712))))))) (-1198) (-1198) (-1198)) (T -75)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3529 (QUOTE X) (QUOTE EPS)) (-3529 (QUOTE -2509)) (-712)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1198)) (-14 *4 (-1198)) (-14 *5 (-1198))))) +(-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE X) (QUOTE EPS)) (-3529 (QUOTE -2509)) (-712))))))) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 138) (((-3 $ "failed") (-1289 (-326 (-576)))) 127) (((-3 $ "failed") (-1289 (-972 (-390)))) 158) (((-3 $ "failed") (-1289 (-972 (-576)))) 148) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 116) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 103)) (-2830 (($ (-1289 (-326 (-390)))) 134) (($ (-1289 (-326 (-576)))) 123) (($ (-1289 (-972 (-390)))) 154) (($ (-1289 (-972 (-576)))) 144) (($ (-1289 (-419 (-972 (-390))))) 112) (($ (-1289 (-419 (-972 (-576))))) 96)) (-2063 (((-1294) $) 88)) (-3515 (((-877) $) 80) (($ (-657 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) NIL) (($ (-1289 (-350 (-3529 (QUOTE EPS)) (-3529 (QUOTE YA) (QUOTE YB)) (-712)))) 75))) +(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE EPS)) (-3529 (QUOTE YA) (QUOTE YB)) (-712))))))) (-1198) (-1198) (-1198)) (T -76)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3529 (QUOTE EPS)) (-3529 (QUOTE YA) (QUOTE YB)) (-712)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1198)) (-14 *4 (-1198)) (-14 *5 (-1198))))) +(-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE EPS)) (-3529 (QUOTE YA) (QUOTE YB)) (-712))))))) +((-1593 (((-3 $ "failed") (-326 (-390))) 83) (((-3 $ "failed") (-326 (-576))) 88) (((-3 $ "failed") (-972 (-390))) 92) (((-3 $ "failed") (-972 (-576))) 96) (((-3 $ "failed") (-419 (-972 (-390)))) 78) (((-3 $ "failed") (-419 (-972 (-576)))) 71)) (-2830 (($ (-326 (-390))) 81) (($ (-326 (-576))) 86) (($ (-972 (-390))) 90) (($ (-972 (-576))) 94) (($ (-419 (-972 (-390)))) 76) (($ (-419 (-972 (-576)))) 68)) (-2063 (((-1294) $) 63)) (-3515 (((-877) $) 51) (($ (-657 (-340))) 47) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 55) (($ (-350 (-3529) (-3529 (QUOTE X)) (-712))) 48))) +(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -3515 ($ (-350 (-3529) (-3529 (QUOTE X)) (-712)))))) (-1198)) (T -77)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-350 (-3529) (-3529 (QUOTE X)) (-712))) (-5 *1 (-77 *3)) (-14 *3 (-1198))))) +(-13 (-408) (-10 -8 (-15 -3515 ($ (-350 (-3529) (-3529 (QUOTE X)) (-712)))))) +((-1593 (((-3 $ "failed") (-326 (-390))) 47) (((-3 $ "failed") (-326 (-576))) 52) (((-3 $ "failed") (-972 (-390))) 56) (((-3 $ "failed") (-972 (-576))) 60) (((-3 $ "failed") (-419 (-972 (-390)))) 42) (((-3 $ "failed") (-419 (-972 (-576)))) 35)) (-2830 (($ (-326 (-390))) 45) (($ (-326 (-576))) 50) (($ (-972 (-390))) 54) (($ (-972 (-576))) 58) (($ (-419 (-972 (-390)))) 40) (($ (-419 (-972 (-576)))) 32)) (-2063 (((-1294) $) 81)) (-3515 (((-877) $) 75) (($ (-657 (-340))) 67) (($ (-340)) 72) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 70) (($ (-350 (-3529) (-3529 (QUOTE X)) (-712))) 31))) +(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -3515 ($ (-350 (-3529) (-3529 (QUOTE X)) (-712)))))) (-1198)) (T -78)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-350 (-3529) (-3529 (QUOTE X)) (-712))) (-5 *1 (-78 *3)) (-14 *3 (-1198))))) +(-13 (-408) (-10 -8 (-15 -3515 ($ (-350 (-3529) (-3529 (QUOTE X)) (-712)))))) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 90) (((-3 $ "failed") (-1289 (-326 (-576)))) 79) (((-3 $ "failed") (-1289 (-972 (-390)))) 110) (((-3 $ "failed") (-1289 (-972 (-576)))) 100) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 68) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 55)) (-2830 (($ (-1289 (-326 (-390)))) 86) (($ (-1289 (-326 (-576)))) 75) (($ (-1289 (-972 (-390)))) 106) (($ (-1289 (-972 (-576)))) 96) (($ (-1289 (-419 (-972 (-390))))) 64) (($ (-1289 (-419 (-972 (-576))))) 48)) (-2063 (((-1294) $) 126)) (-3515 (((-877) $) 120) (($ (-657 (-340))) 113) (($ (-340)) 38) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 116) (($ (-1289 (-350 (-3529) (-3529 (QUOTE XC)) (-712)))) 39))) +(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529) (-3529 (QUOTE XC)) (-712))))))) (-1198)) (T -79)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3529) (-3529 (QUOTE XC)) (-712)))) (-5 *1 (-79 *3)) (-14 *3 (-1198))))) +(-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529) (-3529 (QUOTE XC)) (-712))))))) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 151) (((-3 $ "failed") (-1289 (-326 (-576)))) 141) (((-3 $ "failed") (-1289 (-972 (-390)))) 171) (((-3 $ "failed") (-1289 (-972 (-576)))) 161) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 131) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 119)) (-2830 (($ (-1289 (-326 (-390)))) 147) (($ (-1289 (-326 (-576)))) 137) (($ (-1289 (-972 (-390)))) 167) (($ (-1289 (-972 (-576)))) 157) (($ (-1289 (-419 (-972 (-390))))) 127) (($ (-1289 (-419 (-972 (-576))))) 112)) (-2063 (((-1294) $) 105)) (-3515 (((-877) $) 99) (($ (-657 (-340))) 90) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 95) (($ (-1289 (-350 (-3529) (-3529 (QUOTE X)) (-712)))) 91))) +(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529) (-3529 (QUOTE X)) (-712))))))) (-1198)) (T -80)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3529) (-3529 (QUOTE X)) (-712)))) (-5 *1 (-80 *3)) (-14 *3 (-1198))))) +(-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529) (-3529 (QUOTE X)) (-712))))))) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 79) (((-3 $ "failed") (-1289 (-326 (-576)))) 68) (((-3 $ "failed") (-1289 (-972 (-390)))) 99) (((-3 $ "failed") (-1289 (-972 (-576)))) 89) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 57) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 44)) (-2830 (($ (-1289 (-326 (-390)))) 75) (($ (-1289 (-326 (-576)))) 64) (($ (-1289 (-972 (-390)))) 95) (($ (-1289 (-972 (-576)))) 85) (($ (-1289 (-419 (-972 (-390))))) 53) (($ (-1289 (-419 (-972 (-576))))) 37)) (-2063 (((-1294) $) 125)) (-3515 (((-877) $) 119) (($ (-657 (-340))) 110) (($ (-340)) 116) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 114) (($ (-1289 (-350 (-3529) (-3529 (QUOTE X)) (-712)))) 36))) +(((-81 |#1|) (-13 (-453) (-628 (-1289 (-350 (-3529) (-3529 (QUOTE X)) (-712))))) (-1198)) (T -81)) +NIL +(-13 (-453) (-628 (-1289 (-350 (-3529) (-3529 (QUOTE X)) (-712))))) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 98) (((-3 $ "failed") (-1289 (-326 (-576)))) 87) (((-3 $ "failed") (-1289 (-972 (-390)))) 118) (((-3 $ "failed") (-1289 (-972 (-576)))) 108) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 76) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 63)) (-2830 (($ (-1289 (-326 (-390)))) 94) (($ (-1289 (-326 (-576)))) 83) (($ (-1289 (-972 (-390)))) 114) (($ (-1289 (-972 (-576)))) 104) (($ (-1289 (-419 (-972 (-390))))) 72) (($ (-1289 (-419 (-972 (-576))))) 56)) (-2063 (((-1294) $) 48)) (-3515 (((-877) $) 42) (($ (-657 (-340))) 32) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 38) (($ (-1289 (-350 (-3529 (QUOTE X) (QUOTE -2509)) (-3529) (-712)))) 33))) +(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE X) (QUOTE -2509)) (-3529) (-712))))))) (-1198)) (T -82)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3529 (QUOTE X) (QUOTE -2509)) (-3529) (-712)))) (-5 *1 (-82 *3)) (-14 *3 (-1198))))) +(-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE X) (QUOTE -2509)) (-3529) (-712))))))) +((-1593 (((-3 $ "failed") (-702 (-326 (-390)))) 118) (((-3 $ "failed") (-702 (-326 (-576)))) 107) (((-3 $ "failed") (-702 (-972 (-390)))) 140) (((-3 $ "failed") (-702 (-972 (-576)))) 129) (((-3 $ "failed") (-702 (-419 (-972 (-390))))) 96) (((-3 $ "failed") (-702 (-419 (-972 (-576))))) 83)) (-2830 (($ (-702 (-326 (-390)))) 114) (($ (-702 (-326 (-576)))) 103) (($ (-702 (-972 (-390)))) 136) (($ (-702 (-972 (-576)))) 125) (($ (-702 (-419 (-972 (-390))))) 92) (($ (-702 (-419 (-972 (-576))))) 76)) (-2063 (((-1294) $) 66)) (-3515 (((-877) $) 53) (($ (-657 (-340))) 60) (($ (-340)) 49) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 58) (($ (-702 (-350 (-3529 (QUOTE X) (QUOTE -2509)) (-3529) (-712)))) 50))) +(((-83 |#1|) (-13 (-395) (-10 -8 (-15 -3515 ($ (-702 (-350 (-3529 (QUOTE X) (QUOTE -2509)) (-3529) (-712))))))) (-1198)) (T -83)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-702 (-350 (-3529 (QUOTE X) (QUOTE -2509)) (-3529) (-712)))) (-5 *1 (-83 *3)) (-14 *3 (-1198))))) +(-13 (-395) (-10 -8 (-15 -3515 ($ (-702 (-350 (-3529 (QUOTE X) (QUOTE -2509)) (-3529) (-712))))))) +((-1593 (((-3 $ "failed") (-702 (-326 (-390)))) 113) (((-3 $ "failed") (-702 (-326 (-576)))) 101) (((-3 $ "failed") (-702 (-972 (-390)))) 135) (((-3 $ "failed") (-702 (-972 (-576)))) 124) (((-3 $ "failed") (-702 (-419 (-972 (-390))))) 89) (((-3 $ "failed") (-702 (-419 (-972 (-576))))) 75)) (-2830 (($ (-702 (-326 (-390)))) 109) (($ (-702 (-326 (-576)))) 97) (($ (-702 (-972 (-390)))) 131) (($ (-702 (-972 (-576)))) 120) (($ (-702 (-419 (-972 (-390))))) 85) (($ (-702 (-419 (-972 (-576))))) 68)) (-2063 (((-1294) $) 60)) (-3515 (((-877) $) 54) (($ (-657 (-340))) 48) (($ (-340)) 51) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 45) (($ (-702 (-350 (-3529 (QUOTE X)) (-3529) (-712)))) 46))) +(((-84 |#1|) (-13 (-395) (-10 -8 (-15 -3515 ($ (-702 (-350 (-3529 (QUOTE X)) (-3529) (-712))))))) (-1198)) (T -84)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-702 (-350 (-3529 (QUOTE X)) (-3529) (-712)))) (-5 *1 (-84 *3)) (-14 *3 (-1198))))) +(-13 (-395) (-10 -8 (-15 -3515 ($ (-702 (-350 (-3529 (QUOTE X)) (-3529) (-712))))))) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 105) (((-3 $ "failed") (-1289 (-326 (-576)))) 94) (((-3 $ "failed") (-1289 (-972 (-390)))) 125) (((-3 $ "failed") (-1289 (-972 (-576)))) 115) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 83) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 70)) (-2830 (($ (-1289 (-326 (-390)))) 101) (($ (-1289 (-326 (-576)))) 90) (($ (-1289 (-972 (-390)))) 121) (($ (-1289 (-972 (-576)))) 111) (($ (-1289 (-419 (-972 (-390))))) 79) (($ (-1289 (-419 (-972 (-576))))) 63)) (-2063 (((-1294) $) 47)) (-3515 (((-877) $) 41) (($ (-657 (-340))) 50) (($ (-340)) 37) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 53) (($ (-1289 (-350 (-3529 (QUOTE X)) (-3529) (-712)))) 38))) +(((-85 |#1|) (-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE X)) (-3529) (-712))))))) (-1198)) (T -85)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3529 (QUOTE X)) (-3529) (-712)))) (-5 *1 (-85 *3)) (-14 *3 (-1198))))) +(-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE X)) (-3529) (-712))))))) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 80) (((-3 $ "failed") (-1289 (-326 (-576)))) 69) (((-3 $ "failed") (-1289 (-972 (-390)))) 100) (((-3 $ "failed") (-1289 (-972 (-576)))) 90) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 58) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 45)) (-2830 (($ (-1289 (-326 (-390)))) 76) (($ (-1289 (-326 (-576)))) 65) (($ (-1289 (-972 (-390)))) 96) (($ (-1289 (-972 (-576)))) 86) (($ (-1289 (-419 (-972 (-390))))) 54) (($ (-1289 (-419 (-972 (-576))))) 38)) (-2063 (((-1294) $) 126)) (-3515 (((-877) $) 120) (($ (-657 (-340))) 111) (($ (-340)) 117) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 115) (($ (-1289 (-350 (-3529 (QUOTE X)) (-3529 (QUOTE -2509)) (-712)))) 37))) +(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE X)) (-3529 (QUOTE -2509)) (-712))))))) (-1198)) (T -86)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3529 (QUOTE X)) (-3529 (QUOTE -2509)) (-712)))) (-5 *1 (-86 *3)) (-14 *3 (-1198))))) +(-13 (-453) (-10 -8 (-15 -3515 ($ (-1289 (-350 (-3529 (QUOTE X)) (-3529 (QUOTE -2509)) (-712))))))) +((-1593 (((-3 $ "failed") (-702 (-326 (-390)))) 117) (((-3 $ "failed") (-702 (-326 (-576)))) 105) (((-3 $ "failed") (-702 (-972 (-390)))) 139) (((-3 $ "failed") (-702 (-972 (-576)))) 128) (((-3 $ "failed") (-702 (-419 (-972 (-390))))) 93) (((-3 $ "failed") (-702 (-419 (-972 (-576))))) 79)) (-2830 (($ (-702 (-326 (-390)))) 113) (($ (-702 (-326 (-576)))) 101) (($ (-702 (-972 (-390)))) 135) (($ (-702 (-972 (-576)))) 124) (($ (-702 (-419 (-972 (-390))))) 89) (($ (-702 (-419 (-972 (-576))))) 72)) (-2063 (((-1294) $) 63)) (-3515 (((-877) $) 57) (($ (-657 (-340))) 47) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 52) (($ (-702 (-350 (-3529 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3529) (-712)))) 48))) +(((-87 |#1|) (-13 (-395) (-10 -8 (-15 -3515 ($ (-702 (-350 (-3529 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3529) (-712))))))) (-1198)) (T -87)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-702 (-350 (-3529 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3529) (-712)))) (-5 *1 (-87 *3)) (-14 *3 (-1198))))) +(-13 (-395) (-10 -8 (-15 -3515 ($ (-702 (-350 (-3529 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3529) (-712))))))) +((-2063 (((-1294) $) 45)) (-3515 (((-877) $) 39) (($ (-1289 (-712))) 100) (($ (-657 (-340))) 31) (($ (-340)) 36) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 34))) +(((-88 |#1|) (-452) (-1198)) (T -88)) NIL (-452) -((-2982 (((-3 $ "failed") (-326 (-390))) 48) (((-3 $ "failed") (-326 (-576))) 53) (((-3 $ "failed") (-971 (-390))) 57) (((-3 $ "failed") (-971 (-576))) 61) (((-3 $ "failed") (-419 (-971 (-390)))) 43) (((-3 $ "failed") (-419 (-971 (-576)))) 36)) (-2317 (($ (-326 (-390))) 46) (($ (-326 (-576))) 51) (($ (-971 (-390))) 55) (($ (-971 (-576))) 59) (($ (-419 (-971 (-390)))) 41) (($ (-419 (-971 (-576)))) 33)) (-3973 (((-1293) $) 91)) (-4113 (((-876) $) 85) (($ (-656 (-340))) 79) (($ (-340)) 82) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 77) (($ (-350 (-4125 (QUOTE X)) (-4125 (QUOTE -1439)) (-711))) 32))) -(((-89 |#1|) (-13 (-408) (-10 -8 (-15 -4113 ($ (-350 (-4125 (QUOTE X)) (-4125 (QUOTE -1439)) (-711)))))) (-1197)) (T -89)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-350 (-4125 (QUOTE X)) (-4125 (QUOTE -1439)) (-711))) (-5 *1 (-89 *3)) (-14 *3 (-1197))))) -(-13 (-408) (-10 -8 (-15 -4113 ($ (-350 (-4125 (QUOTE X)) (-4125 (QUOTE -1439)) (-711)))))) -((-1566 (((-1288 (-701 |#1|)) (-701 |#1|)) 61)) (-1985 (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 (-656 (-940))))) |#2| (-940)) 49)) (-1892 (((-2 (|:| |minor| (-656 (-940))) (|:| -3379 |#2|) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 |#2|))) |#2| (-940)) 72 (|has| |#1| (-374))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -1985 ((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 (-656 (-940))))) |#2| (-940))) (-15 -1566 ((-1288 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -1892 ((-2 (|:| |minor| (-656 (-940))) (|:| -3379 |#2|) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 |#2|))) |#2| (-940))) |%noBranch|)) (-568) (-668 |#1|)) (T -90)) -((-1892 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-656 (-940))) (|:| -3379 *3) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5)))) (-1566 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-701 *4)) (-4 *5 (-668 *4)))) (-1985 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -3563 (-701 *5)) (|:| |vec| (-1288 (-656 (-940)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5))))) -(-10 -7 (-15 -1985 ((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 (-656 (-940))))) |#2| (-940))) (-15 -1566 ((-1288 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -1892 ((-2 (|:| |minor| (-656 (-940))) (|:| -3379 |#2|) (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 |#2|))) |#2| (-940))) |%noBranch|)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3015 ((|#1| $) 40)) (-4234 (((-112) $ (-783)) NIL)) (-3170 (($) NIL T CONST)) (-2663 ((|#1| |#1| $) 35)) (-3166 ((|#1| $) 33)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3743 ((|#1| $) NIL)) (-3695 (($ |#1| $) 36)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2372 ((|#1| $) 34)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 18)) (-3307 (($) 45)) (-4307 (((-783) $) 31)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) 17)) (-4113 (((-876) $) 30 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) NIL)) (-4052 (($ (-656 |#1|)) 42)) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 15 (|has| |#1| (-102)))) (-1970 (((-783) $) 12 (|has| $ (-6 -4464))))) -(((-91 |#1|) (-13 (-1142 |#1|) (-10 -8 (-15 -4052 ($ (-656 |#1|))))) (-1121)) (T -91)) -((-4052 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-91 *3))))) -(-13 (-1142 |#1|) (-10 -8 (-15 -4052 ($ (-656 |#1|))))) -((-4113 (((-876) $) 13) (($ (-1202)) 9) (((-1202) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -4113 ((-1202) |#1|)) (-15 -4113 (|#1| (-1202))) (-15 -4113 ((-876) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -4113 ((-1202) |#1|)) (-15 -4113 (|#1| (-1202))) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-1202)) 17) (((-1202) $) 16)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) +((-1593 (((-3 $ "failed") (-326 (-390))) 48) (((-3 $ "failed") (-326 (-576))) 53) (((-3 $ "failed") (-972 (-390))) 57) (((-3 $ "failed") (-972 (-576))) 61) (((-3 $ "failed") (-419 (-972 (-390)))) 43) (((-3 $ "failed") (-419 (-972 (-576)))) 36)) (-2830 (($ (-326 (-390))) 46) (($ (-326 (-576))) 51) (($ (-972 (-390))) 55) (($ (-972 (-576))) 59) (($ (-419 (-972 (-390)))) 41) (($ (-419 (-972 (-576)))) 33)) (-2063 (((-1294) $) 91)) (-3515 (((-877) $) 85) (($ (-657 (-340))) 79) (($ (-340)) 82) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 77) (($ (-350 (-3529 (QUOTE X)) (-3529 (QUOTE -2509)) (-712))) 32))) +(((-89 |#1|) (-13 (-408) (-10 -8 (-15 -3515 ($ (-350 (-3529 (QUOTE X)) (-3529 (QUOTE -2509)) (-712)))))) (-1198)) (T -89)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-350 (-3529 (QUOTE X)) (-3529 (QUOTE -2509)) (-712))) (-5 *1 (-89 *3)) (-14 *3 (-1198))))) +(-13 (-408) (-10 -8 (-15 -3515 ($ (-350 (-3529 (QUOTE X)) (-3529 (QUOTE -2509)) (-712)))))) +((-4308 (((-1289 (-702 |#1|)) (-702 |#1|)) 61)) (-2721 (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 (-657 (-941))))) |#2| (-941)) 49)) (-4402 (((-2 (|:| |minor| (-657 (-941))) (|:| -3981 |#2|) (|:| |minors| (-657 (-657 (-941)))) (|:| |ops| (-657 |#2|))) |#2| (-941)) 72 (|has| |#1| (-374))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -2721 ((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 (-657 (-941))))) |#2| (-941))) (-15 -4308 ((-1289 (-702 |#1|)) (-702 |#1|))) (IF (|has| |#1| (-374)) (-15 -4402 ((-2 (|:| |minor| (-657 (-941))) (|:| -3981 |#2|) (|:| |minors| (-657 (-657 (-941)))) (|:| |ops| (-657 |#2|))) |#2| (-941))) |%noBranch|)) (-568) (-669 |#1|)) (T -90)) +((-4402 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-657 (-941))) (|:| -3981 *3) (|:| |minors| (-657 (-657 (-941)))) (|:| |ops| (-657 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-941)) (-4 *3 (-669 *5)))) (-4308 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1289 (-702 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-702 *4)) (-4 *5 (-669 *4)))) (-2721 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -3962 (-702 *5)) (|:| |vec| (-1289 (-657 (-941)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-941)) (-4 *3 (-669 *5))))) +(-10 -7 (-15 -2721 ((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 (-657 (-941))))) |#2| (-941))) (-15 -4308 ((-1289 (-702 |#1|)) (-702 |#1|))) (IF (|has| |#1| (-374)) (-15 -4402 ((-2 (|:| |minor| (-657 (-941))) (|:| -3981 |#2|) (|:| |minors| (-657 (-657 (-941)))) (|:| |ops| (-657 |#2|))) |#2| (-941))) |%noBranch|)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1425 ((|#1| $) 40)) (-4284 (((-112) $ (-784)) NIL)) (-2515 (($) NIL T CONST)) (-3240 ((|#1| |#1| $) 35)) (-2477 ((|#1| $) 33)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3107 ((|#1| $) NIL)) (-2701 (($ |#1| $) 36)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2184 ((|#1| $) 34)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 18)) (-3340 (($) 45)) (-3106 (((-784) $) 31)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) 17)) (-3515 (((-877) $) 30 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) NIL)) (-3017 (($ (-657 |#1|)) 42)) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 15 (|has| |#1| (-102)))) (-3437 (((-784) $) 12 (|has| $ (-6 -4466))))) +(((-91 |#1|) (-13 (-1143 |#1|) (-10 -8 (-15 -3017 ($ (-657 |#1|))))) (-1122)) (T -91)) +((-3017 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-91 *3))))) +(-13 (-1143 |#1|) (-10 -8 (-15 -3017 ($ (-657 |#1|))))) +((-3515 (((-877) $) 13) (($ (-1203)) 9) (((-1203) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -3515 ((-1203) |#1|)) (-15 -3515 (|#1| (-1203))) (-15 -3515 ((-877) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -3515 ((-1203) |#1|)) (-15 -3515 (|#1| (-1203))) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-1203)) 17) (((-1203) $) 16)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) (((-93) (-141)) (T -93)) NIL -(-13 (-1121) (-502 (-1202))) -(((-102) . T) ((-628 #0=(-1202)) . T) ((-625 (-876)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1121) . T) ((-1238) . T)) -((-3537 (($ $) 10)) (-3550 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -3550 (|#1| |#1|)) (-15 -3537 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1122) (-502 (-1203))) +(((-102) . T) ((-628 #0=(-1203)) . T) ((-625 (-877)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1122) . T) ((-1239) . T)) +((-2100 (($ $) 10)) (-2110 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -2110 (|#1| |#1|)) (-15 -2100 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -3550 (|#1| |#1|)) (-15 -3537 (|#1| |#1|))) -((-3510 (($ $) 11)) (-3487 (($ $) 10)) (-3537 (($ $) 9)) (-3550 (($ $) 8)) (-3523 (($ $) 7)) (-3498 (($ $) 6))) +(-10 -8 (-15 -2110 (|#1| |#1|)) (-15 -2100 (|#1| |#1|))) +((-2082 (($ $) 11)) (-2055 (($ $) 10)) (-2100 (($ $) 9)) (-2110 (($ $) 8)) (-2090 (($ $) 7)) (-2070 (($ $) 6))) (((-95) (-141)) (T -95)) -((-3510 (*1 *1 *1) (-4 *1 (-95))) (-3487 (*1 *1 *1) (-4 *1 (-95))) (-3537 (*1 *1 *1) (-4 *1 (-95))) (-3550 (*1 *1 *1) (-4 *1 (-95))) (-3523 (*1 *1 *1) (-4 *1 (-95))) (-3498 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3498 ($ $)) (-15 -3523 ($ $)) (-15 -3550 ($ $)) (-15 -3537 ($ $)) (-15 -3487 ($ $)) (-15 -3510 ($ $)))) -((-1957 (((-112) $ $) NIL)) (-4149 (((-1156) $) 9)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-96) (-13 (-1104) (-10 -8 (-15 -4149 ((-1156) $))))) (T -96)) -((-4149 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-96))))) -(-13 (-1104) (-10 -8 (-15 -4149 ((-1156) $)))) -((-1957 (((-112) $ $) NIL)) (-3321 (((-390) (-1179) (-390)) 46) (((-390) (-1179) (-1179) (-390)) 44)) (-2226 (((-390) (-390)) 35)) (-2146 (((-1293)) 37)) (-2447 (((-1179) $) NIL)) (-2019 (((-390) (-1179) (-1179)) 50) (((-390) (-1179)) 52)) (-3116 (((-1141) $) NIL)) (-2267 (((-390) (-1179) (-1179)) 51)) (-3349 (((-390) (-1179) (-1179)) 53) (((-390) (-1179)) 54)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-97) (-13 (-1121) (-10 -7 (-15 -2019 ((-390) (-1179) (-1179))) (-15 -2019 ((-390) (-1179))) (-15 -3349 ((-390) (-1179) (-1179))) (-15 -3349 ((-390) (-1179))) (-15 -2267 ((-390) (-1179) (-1179))) (-15 -2146 ((-1293))) (-15 -2226 ((-390) (-390))) (-15 -3321 ((-390) (-1179) (-390))) (-15 -3321 ((-390) (-1179) (-1179) (-390))) (-6 -4464)))) (T -97)) -((-2019 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3349 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2267 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2146 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-97)))) (-2226 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))) (-3321 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97)))) (-3321 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97))))) -(-13 (-1121) (-10 -7 (-15 -2019 ((-390) (-1179) (-1179))) (-15 -2019 ((-390) (-1179))) (-15 -3349 ((-390) (-1179) (-1179))) (-15 -3349 ((-390) (-1179))) (-15 -2267 ((-390) (-1179) (-1179))) (-15 -2146 ((-1293))) (-15 -2226 ((-390) (-390))) (-15 -3321 ((-390) (-1179) (-390))) (-15 -3321 ((-390) (-1179) (-1179) (-390))) (-6 -4464))) +((-2082 (*1 *1 *1) (-4 *1 (-95))) (-2055 (*1 *1 *1) (-4 *1 (-95))) (-2100 (*1 *1 *1) (-4 *1 (-95))) (-2110 (*1 *1 *1) (-4 *1 (-95))) (-2090 (*1 *1 *1) (-4 *1 (-95))) (-2070 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -2070 ($ $)) (-15 -2090 ($ $)) (-15 -2110 ($ $)) (-15 -2100 ($ $)) (-15 -2055 ($ $)) (-15 -2082 ($ $)))) +((-3423 (((-112) $ $) NIL)) (-2634 (((-1157) $) 9)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 15) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-96) (-13 (-1105) (-10 -8 (-15 -2634 ((-1157) $))))) (T -96)) +((-2634 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-96))))) +(-13 (-1105) (-10 -8 (-15 -2634 ((-1157) $)))) +((-3423 (((-112) $ $) NIL)) (-3487 (((-390) (-1180) (-390)) 46) (((-390) (-1180) (-1180) (-390)) 44)) (-3252 (((-390) (-390)) 35)) (-1859 (((-1294)) 37)) (-1708 (((-1180) $) NIL)) (-2987 (((-390) (-1180) (-1180)) 50) (((-390) (-1180)) 52)) (-1460 (((-1142) $) NIL)) (-3676 (((-390) (-1180) (-1180)) 51)) (-3821 (((-390) (-1180) (-1180)) 53) (((-390) (-1180)) 54)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-97) (-13 (-1122) (-10 -7 (-15 -2987 ((-390) (-1180) (-1180))) (-15 -2987 ((-390) (-1180))) (-15 -3821 ((-390) (-1180) (-1180))) (-15 -3821 ((-390) (-1180))) (-15 -3676 ((-390) (-1180) (-1180))) (-15 -1859 ((-1294))) (-15 -3252 ((-390) (-390))) (-15 -3487 ((-390) (-1180) (-390))) (-15 -3487 ((-390) (-1180) (-1180) (-390))) (-6 -4466)))) (T -97)) +((-2987 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3821 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3676 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) (-1859 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-97)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))) (-3487 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1180)) (-5 *1 (-97)))) (-3487 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1180)) (-5 *1 (-97))))) +(-13 (-1122) (-10 -7 (-15 -2987 ((-390) (-1180) (-1180))) (-15 -2987 ((-390) (-1180))) (-15 -3821 ((-390) (-1180) (-1180))) (-15 -3821 ((-390) (-1180))) (-15 -3676 ((-390) (-1180) (-1180))) (-15 -1859 ((-1294))) (-15 -3252 ((-390) (-390))) (-15 -3487 ((-390) (-1180) (-390))) (-15 -3487 ((-390) (-1180) (-1180) (-390))) (-6 -4466))) NIL (((-98) (-141)) (T -98)) NIL -(-13 (-10 -7 (-6 -4464) (-6 (-4466 "*")) (-6 -4465) (-6 -4461) (-6 -4459) (-6 -4458) (-6 -4457) (-6 -4462) (-6 -4456) (-6 -4455) (-6 -4454) (-6 -4453) (-6 -4452) (-6 -4460) (-6 -4463) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4451))) -((-1957 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) NIL)) (-2486 (((-112) $) NIL)) (-2822 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-576))) 24)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 16)) (-3116 (((-1141) $) NIL)) (-4369 ((|#1| $ |#1|) 13)) (-2117 (($ $ $) NIL)) (-3871 (($ $ $) NIL)) (-4113 (((-876) $) 22)) (-2950 (((-112) $ $) NIL)) (-4322 (($) 8 T CONST)) (-3939 (((-112) $ $) 10)) (-4047 (($ $ $) NIL)) (** (($ $ (-940)) 32) (($ $ (-783)) NIL) (($ $ (-576)) 18)) (* (($ $ $) 33))) -(((-99 |#1|) (-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -2822 ($ (-1 |#1| |#1|))) (-15 -2822 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2822 ($ (-1 |#1| |#1| (-576)))))) (-1070)) (T -99)) -((-2822 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) (-2822 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) (-2822 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-99 *3))))) -(-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -2822 ($ (-1 |#1| |#1|))) (-15 -2822 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2822 ($ (-1 |#1| |#1| (-576)))))) -((-2329 (((-430 |#2|) |#2| (-656 |#2|)) 10) (((-430 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -2329 ((-430 |#2|) |#2| |#2|)) (-15 -2329 ((-430 |#2|) |#2| (-656 |#2|)))) (-13 (-464) (-148)) (-1264 |#1|)) (T -100)) -((-2329 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))) (-2329 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -2329 ((-430 |#2|) |#2| |#2|)) (-15 -2329 ((-430 |#2|) |#2| (-656 |#2|)))) -((-1957 (((-112) $ $) 13)) (-2950 (((-112) $ $) 14)) (-3939 (((-112) $ $) 11))) -(((-101 |#1|) (-10 -8 (-15 -2950 ((-112) |#1| |#1|)) (-15 -1957 ((-112) |#1| |#1|)) (-15 -3939 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2950 ((-112) |#1| |#1|)) (-15 -1957 ((-112) |#1| |#1|)) (-15 -3939 ((-112) |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) +(-13 (-10 -7 (-6 -4466) (-6 (-4468 "*")) (-6 -4467) (-6 -4463) (-6 -4461) (-6 -4460) (-6 -4459) (-6 -4464) (-6 -4458) (-6 -4457) (-6 -4456) (-6 -4455) (-6 -4454) (-6 -4462) (-6 -4465) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4453))) +((-3423 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-4243 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-576))) 24)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 16)) (-1460 (((-1142) $) NIL)) (-2780 ((|#1| $ |#1|) 13)) (-1587 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-3515 (((-877) $) 22)) (-4166 (((-112) $ $) NIL)) (-2725 (($) 8 T CONST)) (-2881 (((-112) $ $) 10)) (-2995 (($ $ $) NIL)) (** (($ $ (-941)) 32) (($ $ (-784)) NIL) (($ $ (-576)) 18)) (* (($ $ $) 33))) +(((-99 |#1|) (-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -4243 ($ (-1 |#1| |#1|))) (-15 -4243 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4243 ($ (-1 |#1| |#1| (-576)))))) (-1071)) (T -99)) +((-4243 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-99 *3)))) (-4243 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-99 *3)))) (-4243 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1071)) (-5 *1 (-99 *3))))) +(-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -4243 ($ (-1 |#1| |#1|))) (-15 -4243 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4243 ($ (-1 |#1| |#1| (-576)))))) +((-2961 (((-430 |#2|) |#2| (-657 |#2|)) 10) (((-430 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -2961 ((-430 |#2|) |#2| |#2|)) (-15 -2961 ((-430 |#2|) |#2| (-657 |#2|)))) (-13 (-464) (-148)) (-1265 |#1|)) (T -100)) +((-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))) (-2961 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1265 *4))))) +(-10 -7 (-15 -2961 ((-430 |#2|) |#2| |#2|)) (-15 -2961 ((-430 |#2|) |#2| (-657 |#2|)))) +((-3423 (((-112) $ $) 13)) (-4166 (((-112) $ $) 14)) (-2881 (((-112) $ $) 11))) +(((-101 |#1|) (-10 -8 (-15 -4166 ((-112) |#1| |#1|)) (-15 -3423 ((-112) |#1| |#1|)) (-15 -2881 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -4166 ((-112) |#1| |#1|)) (-15 -3423 ((-112) |#1| |#1|)) (-15 -2881 ((-112) |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) (((-102) (-141)) (T -102)) -((-3939 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1957 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2950 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-1238) (-10 -8 (-15 -3939 ((-112) $ $)) (-15 -1957 ((-112) $ $)) (-15 -2950 ((-112) $ $)))) -(((-1238) . T)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1690 ((|#1| $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-4261 ((|#1| $ |#1|) 24 (|has| $ (-6 -4465)))) (-3804 (($ $ $) NIL (|has| $ (-6 -4465)))) (-4286 (($ $ $) NIL (|has| $ (-6 -4465)))) (-2309 (($ $ (-656 |#1|)) 30)) (-4268 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-2113 (($ $) 12)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) NIL)) (-1878 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2304 (($ $ |#1| $) 32)) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1818 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-3437 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|)) 49)) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2102 (($ $) 11)) (-4186 (((-656 |#1|) $) NIL)) (-3211 (((-112) $) 13)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 9)) (-3307 (($) 31)) (-4369 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2027 (((-576) $ $) NIL)) (-2974 (((-112) $) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) NIL)) (-4295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2762 (($ (-783) |#1|) 33)) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -2762 ($ (-783) |#1|)) (-15 -2309 ($ $ (-656 |#1|))) (-15 -1818 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1818 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3437 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3437 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) (-1121)) (T -103)) -((-2762 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1121)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) (-1818 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1121)))) (-1818 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) (-3437 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2)))) (-3437 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -2762 ($ (-783) |#1|)) (-15 -2309 ($ $ (-656 |#1|))) (-15 -1818 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1818 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3437 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3437 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) -((-3772 ((|#3| |#2| |#2|) 34)) (-1356 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4466 "*"))))) (-3406 ((|#3| |#2| |#2|) 36)) (-2498 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4466 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 (|#3| |#2| |#2|)) (-15 -3406 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4466 "*"))) (PROGN (-15 -1356 (|#1| |#2| |#2|)) (-15 -2498 (|#1| |#2|))) |%noBranch|)) (-1070) (-1264 |#1|) (-699 |#1| |#4| |#5|) (-384 |#1|) (-384 |#1|)) (T -104)) -((-2498 (*1 *2 *3) (-12 (|has| *2 (-6 (-4466 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) (-4 *4 (-699 *2 *5 *6)))) (-1356 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4466 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) (-4 *4 (-699 *2 *5 *6)))) (-3406 (*1 *2 *3 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-3772 (*1 *2 *3 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))))) -(-10 -7 (-15 -3772 (|#3| |#2| |#2|)) (-15 -3406 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4466 "*"))) (PROGN (-15 -1356 (|#1| |#2| |#2|)) (-15 -2498 (|#1| |#2|))) |%noBranch|)) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2209 (((-656 (-1197))) 37)) (-2049 (((-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227)))) (-1197)) 39)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-105) (-13 (-1121) (-10 -7 (-15 -2209 ((-656 (-1197)))) (-15 -2049 ((-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227)))) (-1197))) (-6 -4464)))) (T -105)) -((-2209 (*1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-105)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227))))) (-5 *1 (-105))))) -(-13 (-1121) (-10 -7 (-15 -2209 ((-656 (-1197)))) (-15 -2049 ((-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) (|:| |singularities| (-1178 (-227)))) (-1197))) (-6 -4464))) -((-4156 (($ (-656 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -4156 (|#1| (-656 |#2|)))) (-107 |#2|) (-1238)) (T -106)) -NIL -(-10 -8 (-15 -4156 (|#1| (-656 |#2|)))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) 8)) (-3170 (($) 7 T CONST)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3743 ((|#1| $) 40)) (-3695 (($ |#1| $) 41)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-2372 ((|#1| $) 42)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) 43)) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-107 |#1|) (-141) (-1238)) (T -107)) -((-4156 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-107 *3)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) (-3695 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4465) (-15 -4156 ($ (-656 |t#1|))) (-15 -2372 (|t#1| $)) (-15 -3695 ($ |t#1| $)) (-15 -3743 (|t#1| $)))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2628 (((-576) $) NIL (|has| (-576) (-317)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL (|has| (-576) (-832)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1059 (-576))))) (-2317 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-1895 (($ $ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| (-576) (-557)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2279 (((-112) $) NIL (|has| (-576) (-832)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-2486 (((-112) $) NIL)) (-2252 (($ $) NIL)) (-2687 (((-576) $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-3323 (((-112) $) NIL (|has| (-576) (-832)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2907 (($ $ $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| (-576) (-861)))) (-2423 (($ (-1 (-576) (-576)) $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| (-576) (-1173)) CONST)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2701 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3058 (((-576) $) NIL (|has| (-576) (-557)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2145 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-2812 (((-783) $) NIL)) (-4369 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4107 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3591 (($ $) NIL)) (-2697 (((-576) $) NIL)) (-1556 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL) (((-1025 2) $) 10)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-2910 (((-783)) NIL T CONST)) (-4081 (((-576) $) NIL (|has| (-576) (-557)))) (-2401 (($ (-419 (-576))) 9)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| (-576) (-832)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3995 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3975 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3963 (((-112) $ $) NIL (|has| (-576) (-861)))) (-4047 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-108) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 2)) (-10 -8 (-15 -2701 ((-419 (-576)) $)) (-15 -2401 ($ (-419 (-576))))))) (T -108)) -((-2701 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))) -(-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 2)) (-10 -8 (-15 -2701 ((-419 (-576)) $)) (-15 -2401 ($ (-419 (-576)))))) -((-3805 (((-656 (-984)) $) 13)) (-4149 (((-518) $) 9)) (-4113 (((-876) $) 20)) (-3952 (($ (-518) (-656 (-984))) 15))) -(((-109) (-13 (-625 (-876)) (-10 -8 (-15 -4149 ((-518) $)) (-15 -3805 ((-656 (-984)) $)) (-15 -3952 ($ (-518) (-656 (-984))))))) (T -109)) -((-4149 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-656 (-984))) (-5 *1 (-109)))) (-3952 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-109))))) -(-13 (-625 (-876)) (-10 -8 (-15 -4149 ((-518) $)) (-15 -3805 ((-656 (-984)) $)) (-15 -3952 ($ (-518) (-656 (-984)))))) -((-1957 (((-112) $ $) NIL)) (-1980 (($ $) NIL)) (-4296 (($ $ $) NIL)) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3519 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-2380 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-4268 (((-112) $ (-1255 (-576)) (-112)) NIL (|has| $ (-6 -4465))) (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-2825 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-2721 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-1910 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4465)))) (-3721 (((-112) $ (-576)) NIL)) (-3539 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1121))) (((-576) (-112) $) NIL (|has| (-112) (-1121))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3722 (((-656 (-112)) $) NIL (|has| $ (-6 -4464)))) (-2324 (($ $ $) NIL)) (-2299 (($ $) NIL)) (-3964 (($ $ $) NIL)) (-1991 (($ (-783) (-112)) 10)) (-2375 (($ $ $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL)) (-2748 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2911 (((-656 (-112)) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL)) (-1898 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-3386 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL)) (-1755 (((-112) $) NIL (|has| (-576) (-861)))) (-4220 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4267 (($ $ (-112)) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-2885 (((-656 (-112)) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 (($ $ (-1255 (-576))) NIL) (((-112) $ (-576)) NIL) (((-112) $ (-576) (-112)) NIL)) (-2335 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3127 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-4125 (($ (-656 (-112))) NIL)) (-2767 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4113 (((-876) $) NIL)) (-4252 (($ (-783) (-112)) 11)) (-2950 (((-112) $ $) NIL)) (-2543 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2311 (($ $ $) NIL)) (-2033 (($ $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL)) (-2022 (($ $ $) NIL)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-110) (-13 (-124) (-10 -8 (-15 -4252 ($ (-783) (-112)))))) (T -110)) -((-4252 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-124) (-10 -8 (-15 -4252 ($ (-783) (-112))))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) -(((-111 |#1| |#2|) (-141) (-1070) (-1070)) (T -111)) -NIL -(-13 (-660 |t#1|) (-1077 |t#2|) (-10 -7 (-6 -4459) (-6 -4458))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-1980 (($ $) 10)) (-4296 (($ $ $) 15)) (-4326 (($) 7 T CONST)) (-1923 (($ $) 6)) (-2201 (((-783)) 24)) (-4370 (($) 32)) (-2324 (($ $ $) 13)) (-2299 (($ $) 9)) (-3964 (($ $ $) 16)) (-2375 (($ $ $) 17)) (-2907 (($ $ $) NIL) (($) NIL T CONST)) (-3777 (($ $ $) NIL) (($) NIL T CONST)) (-3787 (((-940) $) 30)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) 28)) (-3982 (($ $ $) 20)) (-3116 (((-1141) $) NIL)) (-3130 (($) 8 T CONST)) (-3866 (($ $ $) 21)) (-1556 (((-548) $) 34)) (-4113 (((-876) $) 36)) (-2950 (((-112) $ $) NIL)) (-2311 (($ $ $) 11)) (-2033 (($ $ $) 14)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 19)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 22)) (-2022 (($ $ $) 12))) -(((-112) (-13 (-856) (-673) (-988) (-626 (-548)) (-10 -8 (-15 -4296 ($ $ $)) (-15 -2375 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -1923 ($ $))))) (T -112)) -((-4296 (*1 *1 *1 *1) (-5 *1 (-112))) (-2375 (*1 *1 *1 *1) (-5 *1 (-112))) (-3964 (*1 *1 *1 *1) (-5 *1 (-112))) (-1923 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-856) (-673) (-988) (-626 (-548)) (-10 -8 (-15 -4296 ($ $ $)) (-15 -2375 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -1923 ($ $)))) -((-2324 (($ $ $) 6)) (-2299 (($ $) 8)) (-2311 (($ $ $) 7))) +((-2881 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3423 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-4166 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-1239) (-10 -8 (-15 -2881 ((-112) $ $)) (-15 -3423 ((-112) $ $)) (-15 -4166 ((-112) $ $)))) +(((-1239) . T)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3037 ((|#1| $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-1439 ((|#1| $ |#1|) 24 (|has| $ (-6 -4467)))) (-2488 (($ $ $) NIL (|has| $ (-6 -4467)))) (-3521 (($ $ $) NIL (|has| $ (-6 -4467)))) (-2792 (($ $ (-657 |#1|)) 30)) (-3719 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "left" $) NIL (|has| $ (-6 -4467))) (($ $ "right" $) NIL (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-4228 (($ $) 12)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) NIL)) (-4257 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2251 (($ $ |#1| $) 32)) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1726 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-2173 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-657 |#1|) |#1| |#1| |#1|)) 49)) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-4217 (($ $) 11)) (-2397 (((-657 |#1|) $) NIL)) (-1743 (((-112) $) 13)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 9)) (-3340 (($) 31)) (-2780 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3064 (((-576) $ $) NIL)) (-4392 (((-112) $) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) NIL)) (-3631 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1771 (($ (-784) |#1|) 33)) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -1771 ($ (-784) |#1|)) (-15 -2792 ($ $ (-657 |#1|))) (-15 -1726 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1726 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2173 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2173 ($ $ |#1| (-1 (-657 |#1|) |#1| |#1| |#1|))))) (-1122)) (T -103)) +((-1771 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-103 *3)) (-4 *3 (-1122)))) (-2792 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-103 *3)))) (-1726 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1122)))) (-1726 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-103 *3)))) (-2173 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1122)) (-5 *1 (-103 *2)))) (-2173 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-657 *2) *2 *2 *2)) (-4 *2 (-1122)) (-5 *1 (-103 *2))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -1771 ($ (-784) |#1|)) (-15 -2792 ($ $ (-657 |#1|))) (-15 -1726 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1726 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2173 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2173 ($ $ |#1| (-1 (-657 |#1|) |#1| |#1| |#1|))))) +((-2191 ((|#3| |#2| |#2|) 34)) (-2026 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4468 "*"))))) (-3059 ((|#3| |#2| |#2|) 36)) (-4104 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4468 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2191 (|#3| |#2| |#2|)) (-15 -3059 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4468 "*"))) (PROGN (-15 -2026 (|#1| |#2| |#2|)) (-15 -4104 (|#1| |#2|))) |%noBranch|)) (-1071) (-1265 |#1|) (-700 |#1| |#4| |#5|) (-384 |#1|) (-384 |#1|)) (T -104)) +((-4104 (*1 *2 *3) (-12 (|has| *2 (-6 (-4468 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1071)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1265 *2)) (-4 *4 (-700 *2 *5 *6)))) (-2026 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4468 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1071)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1265 *2)) (-4 *4 (-700 *2 *5 *6)))) (-3059 (*1 *2 *3 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-700 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1265 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-2191 (*1 *2 *3 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-700 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1265 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))))) +(-10 -7 (-15 -2191 (|#3| |#2| |#2|)) (-15 -3059 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4468 "*"))) (PROGN (-15 -2026 (|#1| |#2| |#2|)) (-15 -4104 (|#1| |#2|))) |%noBranch|)) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4387 (((-657 (-1198))) 37)) (-2121 (((-2 (|:| |zeros| (-1179 (-227))) (|:| |ones| (-1179 (-227))) (|:| |singularities| (-1179 (-227)))) (-1198)) 39)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-105) (-13 (-1122) (-10 -7 (-15 -4387 ((-657 (-1198)))) (-15 -2121 ((-2 (|:| |zeros| (-1179 (-227))) (|:| |ones| (-1179 (-227))) (|:| |singularities| (-1179 (-227)))) (-1198))) (-6 -4466)))) (T -105)) +((-4387 (*1 *2) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-105)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-2 (|:| |zeros| (-1179 (-227))) (|:| |ones| (-1179 (-227))) (|:| |singularities| (-1179 (-227))))) (-5 *1 (-105))))) +(-13 (-1122) (-10 -7 (-15 -4387 ((-657 (-1198)))) (-15 -2121 ((-2 (|:| |zeros| (-1179 (-227))) (|:| |ones| (-1179 (-227))) (|:| |singularities| (-1179 (-227)))) (-1198))) (-6 -4466))) +((-1636 (($ (-657 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -1636 (|#1| (-657 |#2|)))) (-107 |#2|) (-1239)) (T -106)) +NIL +(-10 -8 (-15 -1636 (|#1| (-657 |#2|)))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) 8)) (-2515 (($) 7 T CONST)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3107 ((|#1| $) 40)) (-2701 (($ |#1| $) 41)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2184 ((|#1| $) 42)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) 43)) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-107 |#1|) (-141) (-1239)) (T -107)) +((-1636 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-4 *1 (-107 *3)))) (-2184 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1239)))) (-2701 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1239)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1239))))) +(-13 (-501 |t#1|) (-10 -8 (-6 -4467) (-15 -1636 ($ (-657 |t#1|))) (-15 -2184 (|t#1| $)) (-15 -2701 ($ |t#1| $)) (-15 -3107 (|t#1| $)))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2923 (((-576) $) NIL (|has| (-576) (-317)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL (|has| (-576) (-833)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| (-576) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1060 (-576))))) (-2830 (((-576) $) NIL) (((-1198) $) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-576) (-1060 (-576)))) (((-576) $) NIL (|has| (-576) (-1060 (-576))))) (-3355 (($ $ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| (-576) (-557)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3810 (((-112) $) NIL (|has| (-576) (-833)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-576) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-576) (-902 (-390))))) (-3994 (((-112) $) NIL)) (-3502 (($ $) NIL)) (-1590 (((-576) $) NIL)) (-1955 (((-3 $ "failed") $) NIL (|has| (-576) (-1174)))) (-3517 (((-112) $) NIL (|has| (-576) (-833)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3740 (($ $ $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| (-576) (-862)))) (-4071 (($ (-1 (-576) (-576)) $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| (-576) (-1174)) CONST)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2440 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-2681 (((-576) $) NIL (|has| (-576) (-557)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3205 (($ $ (-657 (-576)) (-657 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-1198)) (-657 (-576))) NIL (|has| (-576) (-526 (-1198) (-576)))) (($ $ (-1198) (-576)) NIL (|has| (-576) (-526 (-1198) (-576))))) (-4164 (((-784) $) NIL)) (-2780 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2209 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-4226 (($ $) NIL)) (-1602 (((-576) $) NIL)) (-4136 (((-908 (-576)) $) NIL (|has| (-576) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-576) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1044))) (((-227) $) NIL (|has| (-576) (-1044)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1198)) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL) (((-1026 2) $) 10)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| (-576) (-929))) (|has| (-576) (-146))))) (-3845 (((-784)) NIL T CONST)) (-2140 (((-576) $) NIL (|has| (-576) (-557)))) (-2474 (($ (-419 (-576))) 9)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2127 (($ $) NIL (|has| (-576) (-833)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-2938 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2913 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2901 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2995 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) +(((-108) (-13 (-1014 (-576)) (-625 (-419 (-576))) (-625 (-1026 2)) (-10 -8 (-15 -2440 ((-419 (-576)) $)) (-15 -2474 ($ (-419 (-576))))))) (T -108)) +((-2440 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) (-2474 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))) +(-13 (-1014 (-576)) (-625 (-419 (-576))) (-625 (-1026 2)) (-10 -8 (-15 -2440 ((-419 (-576)) $)) (-15 -2474 ($ (-419 (-576)))))) +((-1893 (((-657 (-985)) $) 13)) (-2634 (((-518) $) 9)) (-3515 (((-877) $) 20)) (-3308 (($ (-518) (-657 (-985))) 15))) +(((-109) (-13 (-625 (-877)) (-10 -8 (-15 -2634 ((-518) $)) (-15 -1893 ((-657 (-985)) $)) (-15 -3308 ($ (-518) (-657 (-985))))))) (T -109)) +((-2634 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-657 (-985))) (-5 *1 (-109)))) (-3308 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-657 (-985))) (-5 *1 (-109))))) +(-13 (-625 (-877)) (-10 -8 (-15 -2634 ((-518) $)) (-15 -1893 ((-657 (-985)) $)) (-15 -3308 ($ (-518) (-657 (-985)))))) +((-3423 (((-112) $ $) NIL)) (-3452 (($ $) NIL)) (-2693 (($ $ $) NIL)) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1698 (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4467)))) (-1832 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-3719 (((-112) $ (-1256 (-576)) (-112)) NIL (|has| $ (-6 -4467))) (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-3901 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-3662 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-1810 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4467)))) (-1741 (((-112) $ (-576)) NIL)) (-3619 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1122))) (((-576) (-112) $) NIL (|has| (-112) (-1122))) (((-576) (-1 (-112) (-112)) $) NIL)) (-1448 (((-657 (-112)) $) NIL (|has| $ (-6 -4466)))) (-2685 (($ $ $) NIL)) (-2665 (($ $) NIL)) (-3420 (($ $ $) NIL)) (-4096 (($ (-784) (-112)) 10)) (-2222 (($ $ $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL)) (-1661 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3855 (((-657 (-112)) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL)) (-1799 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-2225 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL)) (-3528 (((-112) $) NIL (|has| (-576) (-862)))) (-4135 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1495 (($ $ (-112)) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-112)) (-657 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-657 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-3585 (((-657 (-112)) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 (($ $ (-1256 (-576))) NIL) (((-112) $ (-576)) NIL) (((-112) $ (-576) (-112)) NIL)) (-3395 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-1469 (((-784) (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122)))) (((-784) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-3529 (($ (-657 (-112))) NIL)) (-1637 (($ (-657 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3515 (((-877) $) NIL)) (-1344 (($ (-784) (-112)) 11)) (-4166 (((-112) $ $) NIL)) (-3258 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-2675 (($ $ $) NIL)) (-3505 (($ $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL)) (-3493 (($ $ $) NIL)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-110) (-13 (-124) (-10 -8 (-15 -1344 ($ (-784) (-112)))))) (T -110)) +((-1344 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-124) (-10 -8 (-15 -1344 ($ (-784) (-112))))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +(((-111 |#1| |#2|) (-141) (-1071) (-1071)) (T -111)) +NIL +(-13 (-661 |t#1|) (-1078 |t#2|) (-10 -7 (-6 -4461) (-6 -4460))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-1073 |#2|) . T) ((-1078 |#2|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-3452 (($ $) 10)) (-2693 (($ $ $) 15)) (-2190 (($) 7 T CONST)) (-3896 (($ $) 6)) (-2148 (((-784)) 24)) (-1876 (($) 32)) (-2685 (($ $ $) 13)) (-2665 (($ $) 9)) (-3420 (($ $ $) 16)) (-2222 (($ $ $) 17)) (-3740 (($ $ $) NIL) (($) NIL T CONST)) (-2249 (($ $ $) NIL) (($) NIL T CONST)) (-2327 (((-941) $) 30)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) 28)) (-3624 (($ $ $) 20)) (-1460 (((-1142) $) NIL)) (-3447 (($) 8 T CONST)) (-1862 (($ $ $) 21)) (-4136 (((-548) $) 34)) (-3515 (((-877) $) 36)) (-4166 (((-112) $ $) NIL)) (-2675 (($ $ $) 11)) (-3505 (($ $ $) 14)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 19)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 22)) (-3493 (($ $ $) 12))) +(((-112) (-13 (-857) (-674) (-989) (-626 (-548)) (-10 -8 (-15 -2693 ($ $ $)) (-15 -2222 ($ $ $)) (-15 -3420 ($ $ $)) (-15 -3896 ($ $))))) (T -112)) +((-2693 (*1 *1 *1 *1) (-5 *1 (-112))) (-2222 (*1 *1 *1 *1) (-5 *1 (-112))) (-3420 (*1 *1 *1 *1) (-5 *1 (-112))) (-3896 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-857) (-674) (-989) (-626 (-548)) (-10 -8 (-15 -2693 ($ $ $)) (-15 -2222 ($ $ $)) (-15 -3420 ($ $ $)) (-15 -3896 ($ $)))) +((-2685 (($ $ $) 6)) (-2665 (($ $) 8)) (-2675 (($ $ $) 7))) (((-113) (-141)) (T -113)) -((-2299 (*1 *1 *1) (-4 *1 (-113))) (-2311 (*1 *1 *1 *1) (-4 *1 (-113))) (-2324 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-1238) (-10 -8 (-15 -2299 ($ $)) (-15 -2311 ($ $ $)) (-15 -2324 ($ $ $)))) -(((-1238) . T)) -((-3857 (((-3 (-1 |#1| (-656 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-656 |#1|))) 11) (((-3 |#1| "failed") (-115) (-656 |#1|)) 25)) (-2137 (((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-656 (-1 |#1| (-656 |#1|)))) 30)) (-2045 (((-115) |#1|) 63)) (-2881 (((-3 |#1| "failed") (-115)) 58))) -(((-114 |#1|) (-10 -7 (-15 -3857 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -3857 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -3857 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3857 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -2137 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2137 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2137 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -2045 ((-115) |#1|)) (-15 -2881 ((-3 |#1| "failed") (-115)))) (-1121)) (T -114)) -((-2881 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1121)))) (-2045 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1121)))) (-2137 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1121)))) (-2137 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-2137 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-3857 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1121)))) (-3857 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-3857 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1121)) (-5 *1 (-114 *4)))) (-3857 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1121))))) -(-10 -7 (-15 -3857 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -3857 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -3857 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3857 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -2137 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2137 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2137 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -2045 ((-115) |#1|)) (-15 -2881 ((-3 |#1| "failed") (-115)))) -((-1957 (((-112) $ $) NIL)) (-2028 (((-783) $) 91) (($ $ (-783)) 37)) (-2764 (((-112) $) 41)) (-3861 (($ $ (-1179) (-786)) 58) (($ $ (-518) (-786)) 33)) (-1672 (($ $ (-45 (-1179) (-786))) 16)) (-4298 (((-3 (-786) "failed") $ (-1179)) 27) (((-703 (-786)) $ (-518)) 32)) (-3805 (((-45 (-1179) (-786)) $) 15)) (-1401 (($ (-1197)) 20) (($ (-1197) (-783)) 23) (($ (-1197) (-55)) 24)) (-3419 (((-112) $) 39)) (-1675 (((-112) $) 43)) (-4149 (((-1197) $) 8)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-4227 (((-112) $ (-1197)) 11)) (-1661 (($ $ (-1 (-548) (-656 (-548)))) 64) (((-3 (-1 (-548) (-656 (-548))) "failed") $) 71)) (-3116 (((-1141) $) NIL)) (-2056 (((-112) $ (-518)) 36)) (-2973 (($ $ (-1 (-112) $ $)) 45)) (-1614 (((-3 (-1 (-876) (-656 (-876))) "failed") $) 69) (($ $ (-1 (-876) (-656 (-876)))) 51) (($ $ (-1 (-876) (-876))) 53)) (-4017 (($ $ (-1179)) 55) (($ $ (-518)) 56)) (-4287 (($ $) 77)) (-3151 (($ $ (-1 (-112) $ $)) 46)) (-4113 (((-876) $) 60)) (-2950 (((-112) $ $) NIL)) (-1718 (($ $ (-518)) 34)) (-2771 (((-55) $) 72)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 89)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 103))) -(((-115) (-13 (-861) (-847 (-1197)) (-10 -8 (-15 -3805 ((-45 (-1179) (-786)) $)) (-15 -4287 ($ $)) (-15 -1401 ($ (-1197))) (-15 -1401 ($ (-1197) (-783))) (-15 -1401 ($ (-1197) (-55))) (-15 -3419 ((-112) $)) (-15 -2764 ((-112) $)) (-15 -1675 ((-112) $)) (-15 -2028 ((-783) $)) (-15 -2028 ($ $ (-783))) (-15 -2973 ($ $ (-1 (-112) $ $))) (-15 -3151 ($ $ (-1 (-112) $ $))) (-15 -1614 ((-3 (-1 (-876) (-656 (-876))) "failed") $)) (-15 -1614 ($ $ (-1 (-876) (-656 (-876))))) (-15 -1614 ($ $ (-1 (-876) (-876)))) (-15 -1661 ($ $ (-1 (-548) (-656 (-548))))) (-15 -1661 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -2056 ((-112) $ (-518))) (-15 -1718 ($ $ (-518))) (-15 -4017 ($ $ (-1179))) (-15 -4017 ($ $ (-518))) (-15 -4298 ((-3 (-786) "failed") $ (-1179))) (-15 -4298 ((-703 (-786)) $ (-518))) (-15 -3861 ($ $ (-1179) (-786))) (-15 -3861 ($ $ (-518) (-786))) (-15 -1672 ($ $ (-45 (-1179) (-786))))))) (T -115)) -((-3805 (*1 *2 *1) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115)))) (-4287 (*1 *1 *1) (-5 *1 (-115))) (-1401 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-115)))) (-1401 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *1 (-115)))) (-1401 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-55)) (-5 *1 (-115)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-2973 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3151 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1614 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-876))) (-5 *1 (-115)))) (-1661 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-1661 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-2056 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))) (-1718 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-4017 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-115)))) (-4017 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-4298 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-786)) (-5 *1 (-115)))) (-4298 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) (-3861 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-786)) (-5 *1 (-115)))) (-3861 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115))))) -(-13 (-861) (-847 (-1197)) (-10 -8 (-15 -3805 ((-45 (-1179) (-786)) $)) (-15 -4287 ($ $)) (-15 -1401 ($ (-1197))) (-15 -1401 ($ (-1197) (-783))) (-15 -1401 ($ (-1197) (-55))) (-15 -3419 ((-112) $)) (-15 -2764 ((-112) $)) (-15 -1675 ((-112) $)) (-15 -2028 ((-783) $)) (-15 -2028 ($ $ (-783))) (-15 -2973 ($ $ (-1 (-112) $ $))) (-15 -3151 ($ $ (-1 (-112) $ $))) (-15 -1614 ((-3 (-1 (-876) (-656 (-876))) "failed") $)) (-15 -1614 ($ $ (-1 (-876) (-656 (-876))))) (-15 -1614 ($ $ (-1 (-876) (-876)))) (-15 -1661 ($ $ (-1 (-548) (-656 (-548))))) (-15 -1661 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -2056 ((-112) $ (-518))) (-15 -1718 ($ $ (-518))) (-15 -4017 ($ $ (-1179))) (-15 -4017 ($ $ (-518))) (-15 -4298 ((-3 (-786) "failed") $ (-1179))) (-15 -4298 ((-703 (-786)) $ (-518))) (-15 -3861 ($ $ (-1179) (-786))) (-15 -3861 ($ $ (-518) (-786))) (-15 -1672 ($ $ (-45 (-1179) (-786)))))) -((-3080 (((-576) |#2|) 41))) -(((-116 |#1| |#2|) (-10 -7 (-15 -3080 ((-576) |#2|))) (-13 (-374) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -116)) -((-3080 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-1059 (-419 *2)))) (-5 *2 (-576)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -3080 ((-576) |#2|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $ (-576)) NIL)) (-4386 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-4076 (($ (-1193 (-576)) (-576)) NIL)) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1407 (($ $) NIL)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3359 (((-783) $) NIL)) (-2486 (((-112) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1488 (((-576)) NIL)) (-4130 (((-576) $) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2419 (($ $ (-576)) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-2539 (((-1178 (-576)) $) NIL)) (-3193 (($ $) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2642 (((-576) $ (-576)) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-117 |#1|) (-883 |#1|) (-576)) (T -117)) -NIL -(-883 |#1|) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2628 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-317)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL (|has| (-117 |#1|) (-832)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-117 |#1|) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-117 |#1|) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-117 |#1|) (-1059 (-576))))) (-2317 (((-117 |#1|) $) NIL) (((-1197) $) NIL (|has| (-117 |#1|) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-117 |#1|) (-1059 (-576)))) (((-576) $) NIL (|has| (-117 |#1|) (-1059 (-576))))) (-3516 (($ $) NIL) (($ (-576) $) NIL)) (-1895 (($ $ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-117 |#1|))) (|:| |vec| (-1288 (-117 |#1|)))) (-701 $) (-1288 $)) NIL) (((-701 (-117 |#1|)) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| (-117 |#1|) (-557)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2279 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-117 |#1|) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-117 |#1|) (-901 (-390))))) (-2486 (((-112) $) NIL)) (-2252 (($ $) NIL)) (-2687 (((-117 |#1|) $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1173)))) (-3323 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2907 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-3777 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-2423 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-117 |#1|))) (|:| |vec| (-1288 (-117 |#1|)))) (-1288 $) $) NIL) (((-701 (-117 |#1|)) (-1288 $)) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| (-117 |#1|) (-1173)) CONST)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2701 (($ $) NIL (|has| (-117 |#1|) (-317)))) (-3058 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-117 |#1|) (-928)))) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2145 (($ $ (-656 (-117 |#1|)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-304 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-304 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-1197)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-526 (-1197) (-117 |#1|)))) (($ $ (-1197) (-117 |#1|)) NIL (|has| (-117 |#1|) (-526 (-1197) (-117 |#1|))))) (-2812 (((-783) $) NIL)) (-4369 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-296 (-117 |#1|) (-117 |#1|))))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4107 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-3591 (($ $) NIL)) (-2697 (((-117 |#1|) $) NIL)) (-1556 (((-907 (-576)) $) NIL (|has| (-117 |#1|) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-117 |#1|) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-117 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-117 |#1|) (-1043))) (((-227) $) NIL (|has| (-117 |#1|) (-1043)))) (-2264 (((-176 (-419 (-576))) $) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-117 |#1|)) NIL) (($ (-1197)) NIL (|has| (-117 |#1|) (-1059 (-1197))))) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-928))) (|has| (-117 |#1|) (-146))))) (-2910 (((-783)) NIL T CONST)) (-4081 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2642 (((-419 (-576)) $ (-576)) NIL)) (-2366 (($ $) NIL (|has| (-117 |#1|) (-832)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-117 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-3995 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3975 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3963 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-4047 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) -(((-118 |#1|) (-13 (-1013 (-117 |#1|)) (-10 -8 (-15 -2642 ((-419 (-576)) $ (-576))) (-15 -2264 ((-176 (-419 (-576))) $)) (-15 -3516 ($ $)) (-15 -3516 ($ (-576) $)))) (-576)) (T -118)) -((-2642 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) (-3516 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2)))) -(-13 (-1013 (-117 |#1|)) (-10 -8 (-15 -2642 ((-419 (-576)) $ (-576))) (-15 -2264 ((-176 (-419 (-576))) $)) (-15 -3516 ($ $)) (-15 -3516 ($ (-576) $)))) -((-4268 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3065 (((-656 $) $) 31)) (-1878 (((-112) $ $) 36)) (-1602 (((-112) |#2| $) 40)) (-4186 (((-656 |#2|) $) 25)) (-3211 (((-112) $) 18)) (-4369 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2974 (((-112) $) 57)) (-4113 (((-876) $) 47)) (-1549 (((-656 $) $) 32)) (-3939 (((-112) $ $) 38)) (-1970 (((-783) $) 50))) -(((-119 |#1| |#2|) (-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -4268 (|#1| |#1| "right" |#1|)) (-15 -4268 (|#1| |#1| "left" |#1|)) (-15 -4369 (|#1| |#1| "right")) (-15 -4369 (|#1| |#1| "left")) (-15 -4268 (|#2| |#1| "value" |#2|)) (-15 -1878 ((-112) |#1| |#1|)) (-15 -4186 ((-656 |#2|) |#1|)) (-15 -2974 ((-112) |#1|)) (-15 -4369 (|#2| |#1| "value")) (-15 -3211 ((-112) |#1|)) (-15 -3065 ((-656 |#1|) |#1|)) (-15 -1549 ((-656 |#1|) |#1|)) (-15 -1602 ((-112) |#2| |#1|)) (-15 -1970 ((-783) |#1|))) (-120 |#2|) (-1238)) (T -119)) -NIL -(-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -4268 (|#1| |#1| "right" |#1|)) (-15 -4268 (|#1| |#1| "left" |#1|)) (-15 -4369 (|#1| |#1| "right")) (-15 -4369 (|#1| |#1| "left")) (-15 -4268 (|#2| |#1| "value" |#2|)) (-15 -1878 ((-112) |#1| |#1|)) (-15 -4186 ((-656 |#2|) |#1|)) (-15 -2974 ((-112) |#1|)) (-15 -4369 (|#2| |#1| "value")) (-15 -3211 ((-112) |#1|)) (-15 -3065 ((-656 |#1|) |#1|)) (-15 -1549 ((-656 |#1|) |#1|)) (-15 -1602 ((-112) |#2| |#1|)) (-15 -1970 ((-783) |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1690 ((|#1| $) 49)) (-4234 (((-112) $ (-783)) 8)) (-4261 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-3804 (($ $ $) 53 (|has| $ (-6 -4465)))) (-4286 (($ $ $) 55 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) (($ $ "left" $) 56 (|has| $ (-6 -4465))) (($ $ "right" $) 54 (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3170 (($) 7 T CONST)) (-2113 (($ $) 58)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) 51)) (-1878 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2102 (($ $) 60)) (-4186 (((-656 |#1|) $) 46)) (-3211 (((-112) $) 50)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2027 (((-576) $ $) 45)) (-2974 (((-112) $) 47)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) 52)) (-4295 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-120 |#1|) (-141) (-1238)) (T -120)) -((-2102 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-2113 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-4268 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4465)) (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-4286 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-120 *2)) (-4 *2 (-1238)))) (-4268 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4465)) (-4 *1 (-120 *3)) (-4 *3 (-1238)))) (-3804 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-120 *2)) (-4 *2 (-1238))))) -(-13 (-1031 |t#1|) (-10 -8 (-15 -2102 ($ $)) (-15 -4369 ($ $ "left")) (-15 -2113 ($ $)) (-15 -4369 ($ $ "right")) (IF (|has| $ (-6 -4465)) (PROGN (-15 -4268 ($ $ "left" $)) (-15 -4286 ($ $ $)) (-15 -4268 ($ $ "right" $)) (-15 -3804 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-1737 (((-112) |#1|) 29)) (-3233 (((-783) (-783)) 28) (((-783)) 27)) (-3813 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-121 |#1|) (-10 -7 (-15 -3813 ((-112) |#1|)) (-15 -3813 ((-112) |#1| (-112))) (-15 -3233 ((-783))) (-15 -3233 ((-783) (-783))) (-15 -1737 ((-112) |#1|))) (-1264 (-576))) (T -121)) -((-1737 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-3233 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-3233 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-3813 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) (-3813 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) -(-10 -7 (-15 -3813 ((-112) |#1|)) (-15 -3813 ((-112) |#1| (-112))) (-15 -3233 ((-783))) (-15 -3233 ((-783) (-783))) (-15 -1737 ((-112) |#1|))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1690 ((|#1| $) 18)) (-2887 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-4234 (((-112) $ (-783)) NIL)) (-4261 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-3804 (($ $ $) 21 (|has| $ (-6 -4465)))) (-4286 (($ $ $) 23 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-2113 (($ $) 20)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) NIL)) (-1878 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2304 (($ $ |#1| $) 27)) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2102 (($ $) 22)) (-4186 (((-656 |#1|) $) NIL)) (-3211 (((-112) $) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2046 (($ |#1| $) 28)) (-3695 (($ |#1| $) 15)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 17)) (-3307 (($) 11)) (-4369 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2027 (((-576) $ $) NIL)) (-2974 (((-112) $) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) NIL)) (-4295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4255 (($ (-656 |#1|)) 16)) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -4255 ($ (-656 |#1|))) (-15 -3695 ($ |#1| $)) (-15 -2046 ($ |#1| $)) (-15 -2887 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-861)) (T -122)) -((-4255 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3)))) (-3695 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-2046 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-2887 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-861))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -4255 ($ (-656 |#1|))) (-15 -3695 ($ |#1| $)) (-15 -2046 ($ |#1| $)) (-15 -2887 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-1980 (($ $) 13)) (-2299 (($ $) 11)) (-3964 (($ $ $) 23)) (-2375 (($ $ $) 21)) (-2033 (($ $ $) 19)) (-2022 (($ $ $) 17))) -(((-123 |#1|) (-10 -8 (-15 -3964 (|#1| |#1| |#1|)) (-15 -2375 (|#1| |#1| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -2022 (|#1| |#1| |#1|)) (-15 -2033 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|))) (-124)) (T -123)) -NIL -(-10 -8 (-15 -3964 (|#1| |#1| |#1|)) (-15 -2375 (|#1| |#1| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -2022 (|#1| |#1| |#1|)) (-15 -2033 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-1980 (($ $) 104)) (-4296 (($ $ $) 29)) (-3657 (((-1293) $ (-576) (-576)) 67 (|has| $ (-6 -4465)))) (-2919 (((-112) $) 99 (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-3519 (($ $) 103 (-12 (|has| (-112) (-861)) (|has| $ (-6 -4465)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4465)))) (-2380 (($ $) 98 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-4234 (((-112) $ (-783)) 38)) (-4268 (((-112) $ (-1255 (-576)) (-112)) 89 (|has| $ (-6 -4465))) (((-112) $ (-576) (-112)) 55 (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4464)))) (-3170 (($) 39 T CONST)) (-1542 (($ $) 101 (|has| $ (-6 -4465)))) (-4204 (($ $) 91)) (-3841 (($ $) 69 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4464))) (($ (-112) $) 70 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464))))) (-2721 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464))))) (-1910 (((-112) $ (-576) (-112)) 54 (|has| $ (-6 -4465)))) (-3721 (((-112) $ (-576)) 56)) (-3539 (((-576) (-112) $ (-576)) 96 (|has| (-112) (-1121))) (((-576) (-112) $) 95 (|has| (-112) (-1121))) (((-576) (-1 (-112) (-112)) $) 94)) (-3722 (((-656 (-112)) $) 46 (|has| $ (-6 -4464)))) (-2324 (($ $ $) 109)) (-2299 (($ $) 107)) (-3964 (($ $ $) 30)) (-1991 (($ (-783) (-112)) 79)) (-2375 (($ $ $) 31)) (-3215 (((-112) $ (-783)) 37)) (-1605 (((-576) $) 64 (|has| (-576) (-861)))) (-2907 (($ $ $) 20)) (-2748 (($ $ $) 97 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2911 (((-656 (-112)) $) 47 (|has| $ (-6 -4464)))) (-1602 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464))))) (-1829 (((-576) $) 63 (|has| (-576) (-861)))) (-3777 (($ $ $) 19)) (-1898 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-112) (-112) (-112)) $ $) 84) (($ (-1 (-112) (-112)) $) 41)) (-1884 (((-112) $ (-783)) 36)) (-2447 (((-1179) $) 10)) (-3386 (($ $ $ (-576)) 88) (($ (-112) $ (-576)) 87)) (-2863 (((-656 (-576)) $) 61)) (-1389 (((-112) (-576) $) 60)) (-3116 (((-1141) $) 11)) (-1755 (((-112) $) 65 (|has| (-576) (-861)))) (-4220 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-4267 (($ $ (-112)) 66 (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-112)) (-656 (-112))) 53 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-304 (-112))) 51 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-656 (-304 (-112)))) 50 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))))) (-1645 (((-112) $ $) 32)) (-2021 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-2885 (((-656 (-112)) $) 59)) (-3617 (((-112) $) 35)) (-3307 (($) 34)) (-4369 (($ $ (-1255 (-576))) 78) (((-112) $ (-576)) 58) (((-112) $ (-576) (-112)) 57)) (-2335 (($ $ (-1255 (-576))) 86) (($ $ (-576)) 85)) (-3127 (((-783) (-112) $) 48 (-12 (|has| (-112) (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4464)))) (-3218 (($ $ $ (-576)) 100 (|has| $ (-6 -4465)))) (-4287 (($ $) 33)) (-1556 (((-548) $) 68 (|has| (-112) (-626 (-548))))) (-4125 (($ (-656 (-112))) 77)) (-2767 (($ (-656 $)) 83) (($ $ $) 82) (($ (-112) $) 81) (($ $ (-112)) 80)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-2543 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4464)))) (-2311 (($ $ $) 108)) (-2033 (($ $ $) 106)) (-3995 (((-112) $ $) 18)) (-3975 (((-112) $ $) 16)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 17)) (-3963 (((-112) $ $) 15)) (-2022 (($ $ $) 105)) (-1970 (((-783) $) 40 (|has| $ (-6 -4464))))) +((-2665 (*1 *1 *1) (-4 *1 (-113))) (-2675 (*1 *1 *1 *1) (-4 *1 (-113))) (-2685 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-1239) (-10 -8 (-15 -2665 ($ $)) (-15 -2675 ($ $ $)) (-15 -2685 ($ $ $)))) +(((-1239) . T)) +((-1783 (((-3 (-1 |#1| (-657 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-657 |#1|))) 11) (((-3 |#1| "failed") (-115) (-657 |#1|)) 25)) (-1774 (((-3 (-657 (-1 |#1| (-657 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-657 (-1 |#1| (-657 |#1|)))) 30)) (-2083 (((-115) |#1|) 63)) (-3533 (((-3 |#1| "failed") (-115)) 58))) +(((-114 |#1|) (-10 -7 (-15 -1783 ((-3 |#1| "failed") (-115) (-657 |#1|))) (-15 -1783 ((-115) (-115) (-1 |#1| (-657 |#1|)))) (-15 -1783 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1783 ((-3 (-1 |#1| (-657 |#1|)) "failed") (-115))) (-15 -1774 ((-115) (-115) (-657 (-1 |#1| (-657 |#1|))))) (-15 -1774 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1774 ((-3 (-657 (-1 |#1| (-657 |#1|))) "failed") (-115))) (-15 -2083 ((-115) |#1|)) (-15 -3533 ((-3 |#1| "failed") (-115)))) (-1122)) (T -114)) +((-3533 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1122)))) (-2083 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1122)))) (-1774 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-657 (-1 *4 (-657 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1122)))) (-1774 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1122)) (-5 *1 (-114 *4)))) (-1774 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-657 (-1 *4 (-657 *4)))) (-4 *4 (-1122)) (-5 *1 (-114 *4)))) (-1783 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-657 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1122)))) (-1783 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1122)) (-5 *1 (-114 *4)))) (-1783 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-657 *4))) (-4 *4 (-1122)) (-5 *1 (-114 *4)))) (-1783 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-657 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1122))))) +(-10 -7 (-15 -1783 ((-3 |#1| "failed") (-115) (-657 |#1|))) (-15 -1783 ((-115) (-115) (-1 |#1| (-657 |#1|)))) (-15 -1783 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1783 ((-3 (-1 |#1| (-657 |#1|)) "failed") (-115))) (-15 -1774 ((-115) (-115) (-657 (-1 |#1| (-657 |#1|))))) (-15 -1774 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1774 ((-3 (-657 (-1 |#1| (-657 |#1|))) "failed") (-115))) (-15 -2083 ((-115) |#1|)) (-15 -3533 ((-3 |#1| "failed") (-115)))) +((-3423 (((-112) $ $) NIL)) (-3074 (((-784) $) 91) (($ $ (-784)) 37)) (-1795 (((-112) $) 41)) (-1820 (($ $ (-1180) (-787)) 58) (($ $ (-518) (-787)) 33)) (-2738 (($ $ (-45 (-1180) (-787))) 16)) (-3659 (((-3 (-787) "failed") $ (-1180)) 27) (((-704 (-787)) $ (-518)) 32)) (-1893 (((-45 (-1180) (-787)) $) 15)) (-1803 (($ (-1198)) 20) (($ (-1198) (-784)) 23) (($ (-1198) (-55)) 24)) (-3158 (((-112) $) 39)) (-2760 (((-112) $) 43)) (-2634 (((-1198) $) 8)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-4216 (((-112) $ (-1198)) 11)) (-2069 (($ $ (-1 (-548) (-657 (-548)))) 64) (((-3 (-1 (-548) (-657 (-548))) "failed") $) 71)) (-1460 (((-1142) $) NIL)) (-2187 (((-112) $ (-518)) 36)) (-4381 (($ $ (-1 (-112) $ $)) 45)) (-2011 (((-3 (-1 (-877) (-657 (-877))) "failed") $) 69) (($ $ (-1 (-877) (-657 (-877)))) 51) (($ $ (-1 (-877) (-877))) 53)) (-2709 (($ $ (-1180)) 55) (($ $ (-518)) 56)) (-1899 (($ $) 77)) (-2335 (($ $ (-1 (-112) $ $)) 46)) (-3515 (((-877) $) 60)) (-4166 (((-112) $ $) NIL)) (-2708 (($ $ (-518)) 34)) (-1853 (((-55) $) 72)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 89)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 103))) +(((-115) (-13 (-862) (-848 (-1198)) (-10 -8 (-15 -1893 ((-45 (-1180) (-787)) $)) (-15 -1899 ($ $)) (-15 -1803 ($ (-1198))) (-15 -1803 ($ (-1198) (-784))) (-15 -1803 ($ (-1198) (-55))) (-15 -3158 ((-112) $)) (-15 -1795 ((-112) $)) (-15 -2760 ((-112) $)) (-15 -3074 ((-784) $)) (-15 -3074 ($ $ (-784))) (-15 -4381 ($ $ (-1 (-112) $ $))) (-15 -2335 ($ $ (-1 (-112) $ $))) (-15 -2011 ((-3 (-1 (-877) (-657 (-877))) "failed") $)) (-15 -2011 ($ $ (-1 (-877) (-657 (-877))))) (-15 -2011 ($ $ (-1 (-877) (-877)))) (-15 -2069 ($ $ (-1 (-548) (-657 (-548))))) (-15 -2069 ((-3 (-1 (-548) (-657 (-548))) "failed") $)) (-15 -2187 ((-112) $ (-518))) (-15 -2708 ($ $ (-518))) (-15 -2709 ($ $ (-1180))) (-15 -2709 ($ $ (-518))) (-15 -3659 ((-3 (-787) "failed") $ (-1180))) (-15 -3659 ((-704 (-787)) $ (-518))) (-15 -1820 ($ $ (-1180) (-787))) (-15 -1820 ($ $ (-518) (-787))) (-15 -2738 ($ $ (-45 (-1180) (-787))))))) (T -115)) +((-1893 (*1 *2 *1) (-12 (-5 *2 (-45 (-1180) (-787))) (-5 *1 (-115)))) (-1899 (*1 *1 *1) (-5 *1 (-115))) (-1803 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-115)))) (-1803 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-784)) (-5 *1 (-115)))) (-1803 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-55)) (-5 *1 (-115)))) (-3158 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-115)))) (-3074 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-115)))) (-4381 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2335 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2011 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-877) (-657 (-877)))) (-5 *1 (-115)))) (-2011 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-877) (-657 (-877)))) (-5 *1 (-115)))) (-2011 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-877) (-877))) (-5 *1 (-115)))) (-2069 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-657 (-548)))) (-5 *1 (-115)))) (-2069 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-657 (-548)))) (-5 *1 (-115)))) (-2187 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2708 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-2709 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-115)))) (-2709 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-3659 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1180)) (-5 *2 (-787)) (-5 *1 (-115)))) (-3659 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-704 (-787))) (-5 *1 (-115)))) (-1820 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-787)) (-5 *1 (-115)))) (-1820 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-787)) (-5 *1 (-115)))) (-2738 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1180) (-787))) (-5 *1 (-115))))) +(-13 (-862) (-848 (-1198)) (-10 -8 (-15 -1893 ((-45 (-1180) (-787)) $)) (-15 -1899 ($ $)) (-15 -1803 ($ (-1198))) (-15 -1803 ($ (-1198) (-784))) (-15 -1803 ($ (-1198) (-55))) (-15 -3158 ((-112) $)) (-15 -1795 ((-112) $)) (-15 -2760 ((-112) $)) (-15 -3074 ((-784) $)) (-15 -3074 ($ $ (-784))) (-15 -4381 ($ $ (-1 (-112) $ $))) (-15 -2335 ($ $ (-1 (-112) $ $))) (-15 -2011 ((-3 (-1 (-877) (-657 (-877))) "failed") $)) (-15 -2011 ($ $ (-1 (-877) (-657 (-877))))) (-15 -2011 ($ $ (-1 (-877) (-877)))) (-15 -2069 ($ $ (-1 (-548) (-657 (-548))))) (-15 -2069 ((-3 (-1 (-548) (-657 (-548))) "failed") $)) (-15 -2187 ((-112) $ (-518))) (-15 -2708 ($ $ (-518))) (-15 -2709 ($ $ (-1180))) (-15 -2709 ($ $ (-518))) (-15 -3659 ((-3 (-787) "failed") $ (-1180))) (-15 -3659 ((-704 (-787)) $ (-518))) (-15 -1820 ($ $ (-1180) (-787))) (-15 -1820 ($ $ (-518) (-787))) (-15 -2738 ($ $ (-45 (-1180) (-787)))))) +((-2895 (((-576) |#2|) 41))) +(((-116 |#1| |#2|) (-10 -7 (-15 -2895 ((-576) |#2|))) (-13 (-374) (-1060 (-419 (-576)))) (-1265 |#1|)) (T -116)) +((-2895 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-1060 (-419 *2)))) (-5 *2 (-576)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1265 *4))))) +(-10 -7 (-15 -2895 ((-576) |#2|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-1866 (($ $ (-576)) NIL)) (-3210 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-3246 (($ (-1194 (-576)) (-576)) NIL)) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3173 (($ $) NIL)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2650 (((-784) $) NIL)) (-3994 (((-112) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1648 (((-576)) NIL)) (-2578 (((-576) $) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1456 (($ $ (-576)) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-1409 (((-1179 (-576)) $) NIL)) (-1557 (($ $) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-4130 (((-576) $ (-576)) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) +(((-117 |#1|) (-884 |#1|) (-576)) (T -117)) +NIL +(-884 |#1|) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2923 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-317)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-117 |#1|) (-929)))) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-117 |#1|) (-929)))) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL (|has| (-117 |#1|) (-833)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| (-117 |#1|) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-117 |#1|) (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-117 |#1|) (-1060 (-576))))) (-2830 (((-117 |#1|) $) NIL) (((-1198) $) NIL (|has| (-117 |#1|) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-117 |#1|) (-1060 (-576)))) (((-576) $) NIL (|has| (-117 |#1|) (-1060 (-576))))) (-1665 (($ $) NIL) (($ (-576) $) NIL)) (-3355 (($ $ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| (-117 |#1|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-117 |#1|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-117 |#1|))) (|:| |vec| (-1289 (-117 |#1|)))) (-702 $) (-1289 $)) NIL) (((-702 (-117 |#1|)) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| (-117 |#1|) (-557)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3810 (((-112) $) NIL (|has| (-117 |#1|) (-833)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-117 |#1|) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-117 |#1|) (-902 (-390))))) (-3994 (((-112) $) NIL)) (-3502 (($ $) NIL)) (-1590 (((-117 |#1|) $) NIL)) (-1955 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1174)))) (-3517 (((-112) $) NIL (|has| (-117 |#1|) (-833)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3740 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-2249 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-4071 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| (-117 |#1|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-117 |#1|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-117 |#1|))) (|:| |vec| (-1289 (-117 |#1|)))) (-1289 $) $) NIL) (((-702 (-117 |#1|)) (-1289 $)) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| (-117 |#1|) (-1174)) CONST)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2440 (($ $) NIL (|has| (-117 |#1|) (-317)))) (-2681 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-117 |#1|) (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-117 |#1|) (-929)))) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3205 (($ $ (-657 (-117 |#1|)) (-657 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-304 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-657 (-304 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-657 (-1198)) (-657 (-117 |#1|))) NIL (|has| (-117 |#1|) (-526 (-1198) (-117 |#1|)))) (($ $ (-1198) (-117 |#1|)) NIL (|has| (-117 |#1|) (-526 (-1198) (-117 |#1|))))) (-4164 (((-784) $) NIL)) (-2780 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-296 (-117 |#1|) (-117 |#1|))))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2209 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-784)) NIL (|has| (-117 |#1|) (-237)))) (-4226 (($ $) NIL)) (-1602 (((-117 |#1|) $) NIL)) (-4136 (((-908 (-576)) $) NIL (|has| (-117 |#1|) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-117 |#1|) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-117 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-117 |#1|) (-1044))) (((-227) $) NIL (|has| (-117 |#1|) (-1044)))) (-3636 (((-176 (-419 (-576))) $) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-117 |#1|)) NIL) (($ (-1198)) NIL (|has| (-117 |#1|) (-1060 (-1198))))) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-929))) (|has| (-117 |#1|) (-146))))) (-3845 (((-784)) NIL T CONST)) (-2140 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-4130 (((-419 (-576)) $ (-576)) NIL)) (-2127 (($ $) NIL (|has| (-117 |#1|) (-833)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-784)) NIL (|has| (-117 |#1|) (-237)))) (-2938 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-2913 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-2901 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-2995 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) +(((-118 |#1|) (-13 (-1014 (-117 |#1|)) (-10 -8 (-15 -4130 ((-419 (-576)) $ (-576))) (-15 -3636 ((-176 (-419 (-576))) $)) (-15 -1665 ($ $)) (-15 -1665 ($ (-576) $)))) (-576)) (T -118)) +((-4130 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) (-1665 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) (-1665 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2)))) +(-13 (-1014 (-117 |#1|)) (-10 -8 (-15 -4130 ((-419 (-576)) $ (-576))) (-15 -3636 ((-176 (-419 (-576))) $)) (-15 -1665 ($ $)) (-15 -1665 ($ (-576) $)))) +((-3719 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2754 (((-657 $) $) 31)) (-4257 (((-112) $ $) 36)) (-3326 (((-112) |#2| $) 40)) (-2397 (((-657 |#2|) $) 25)) (-1743 (((-112) $) 18)) (-2780 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4392 (((-112) $) 57)) (-3515 (((-877) $) 47)) (-4160 (((-657 $) $) 32)) (-2881 (((-112) $ $) 38)) (-3437 (((-784) $) 50))) +(((-119 |#1| |#2|) (-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -3719 (|#1| |#1| "right" |#1|)) (-15 -3719 (|#1| |#1| "left" |#1|)) (-15 -2780 (|#1| |#1| "right")) (-15 -2780 (|#1| |#1| "left")) (-15 -3719 (|#2| |#1| "value" |#2|)) (-15 -4257 ((-112) |#1| |#1|)) (-15 -2397 ((-657 |#2|) |#1|)) (-15 -4392 ((-112) |#1|)) (-15 -2780 (|#2| |#1| "value")) (-15 -1743 ((-112) |#1|)) (-15 -2754 ((-657 |#1|) |#1|)) (-15 -4160 ((-657 |#1|) |#1|)) (-15 -3326 ((-112) |#2| |#1|)) (-15 -3437 ((-784) |#1|))) (-120 |#2|) (-1239)) (T -119)) +NIL +(-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -3719 (|#1| |#1| "right" |#1|)) (-15 -3719 (|#1| |#1| "left" |#1|)) (-15 -2780 (|#1| |#1| "right")) (-15 -2780 (|#1| |#1| "left")) (-15 -3719 (|#2| |#1| "value" |#2|)) (-15 -4257 ((-112) |#1| |#1|)) (-15 -2397 ((-657 |#2|) |#1|)) (-15 -4392 ((-112) |#1|)) (-15 -2780 (|#2| |#1| "value")) (-15 -1743 ((-112) |#1|)) (-15 -2754 ((-657 |#1|) |#1|)) (-15 -4160 ((-657 |#1|) |#1|)) (-15 -3326 ((-112) |#2| |#1|)) (-15 -3437 ((-784) |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3037 ((|#1| $) 49)) (-4284 (((-112) $ (-784)) 8)) (-1439 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-2488 (($ $ $) 53 (|has| $ (-6 -4467)))) (-3521 (($ $ $) 55 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467))) (($ $ "left" $) 56 (|has| $ (-6 -4467))) (($ $ "right" $) 54 (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-2515 (($) 7 T CONST)) (-4228 (($ $) 58)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) 51)) (-4257 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-4217 (($ $) 60)) (-2397 (((-657 |#1|) $) 46)) (-1743 (((-112) $) 50)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3064 (((-576) $ $) 45)) (-4392 (((-112) $) 47)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) 52)) (-3631 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-120 |#1|) (-141) (-1239)) (T -120)) +((-4217 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1239)))) (-2780 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1239)))) (-4228 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1239)))) (-2780 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1239)))) (-3719 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4467)) (-4 *1 (-120 *3)) (-4 *3 (-1239)))) (-3521 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-120 *2)) (-4 *2 (-1239)))) (-3719 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4467)) (-4 *1 (-120 *3)) (-4 *3 (-1239)))) (-2488 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-120 *2)) (-4 *2 (-1239))))) +(-13 (-1032 |t#1|) (-10 -8 (-15 -4217 ($ $)) (-15 -2780 ($ $ "left")) (-15 -4228 ($ $)) (-15 -2780 ($ $ "right")) (IF (|has| $ (-6 -4467)) (PROGN (-15 -3719 ($ $ "left" $)) (-15 -3521 ($ $ $)) (-15 -3719 ($ $ "right" $)) (-15 -2488 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1032 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-2149 (((-112) |#1|) 29)) (-1965 (((-784) (-784)) 28) (((-784)) 27)) (-2545 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-121 |#1|) (-10 -7 (-15 -2545 ((-112) |#1|)) (-15 -2545 ((-112) |#1| (-112))) (-15 -1965 ((-784))) (-15 -1965 ((-784) (-784))) (-15 -2149 ((-112) |#1|))) (-1265 (-576))) (T -121)) +((-2149 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576))))) (-1965 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576))))) (-1965 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576))))) (-2545 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576))))) (-2545 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576)))))) +(-10 -7 (-15 -2545 ((-112) |#1|)) (-15 -2545 ((-112) |#1| (-112))) (-15 -1965 ((-784))) (-15 -1965 ((-784) (-784))) (-15 -2149 ((-112) |#1|))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3037 ((|#1| $) 18)) (-3610 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-4284 (((-112) $ (-784)) NIL)) (-1439 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-2488 (($ $ $) 21 (|has| $ (-6 -4467)))) (-3521 (($ $ $) 23 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "left" $) NIL (|has| $ (-6 -4467))) (($ $ "right" $) NIL (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-4228 (($ $) 20)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) NIL)) (-4257 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2251 (($ $ |#1| $) 27)) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-4217 (($ $) 22)) (-2397 (((-657 |#1|) $) NIL)) (-1743 (((-112) $) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2091 (($ |#1| $) 28)) (-2701 (($ |#1| $) 15)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 17)) (-3340 (($) 11)) (-2780 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3064 (((-576) $ $) NIL)) (-4392 (((-112) $) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) NIL)) (-3631 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-1378 (($ (-657 |#1|)) 16)) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4467) (-6 -4466) (-15 -1378 ($ (-657 |#1|))) (-15 -2701 ($ |#1| $)) (-15 -2091 ($ |#1| $)) (-15 -3610 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-862)) (T -122)) +((-1378 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3)))) (-2701 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-2091 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-3610 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-862))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4467) (-6 -4466) (-15 -1378 ($ (-657 |#1|))) (-15 -2701 ($ |#1| $)) (-15 -2091 ($ |#1| $)) (-15 -3610 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3452 (($ $) 13)) (-2665 (($ $) 11)) (-3420 (($ $ $) 23)) (-2222 (($ $ $) 21)) (-3505 (($ $ $) 19)) (-3493 (($ $ $) 17))) +(((-123 |#1|) (-10 -8 (-15 -3420 (|#1| |#1| |#1|)) (-15 -2222 (|#1| |#1| |#1|)) (-15 -3452 (|#1| |#1|)) (-15 -3493 (|#1| |#1| |#1|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -2665 (|#1| |#1|))) (-124)) (T -123)) +NIL +(-10 -8 (-15 -3420 (|#1| |#1| |#1|)) (-15 -2222 (|#1| |#1| |#1|)) (-15 -3452 (|#1| |#1|)) (-15 -3493 (|#1| |#1| |#1|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -2665 (|#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-3452 (($ $) 104)) (-2693 (($ $ $) 29)) (-3590 (((-1294) $ (-576) (-576)) 67 (|has| $ (-6 -4467)))) (-3925 (((-112) $) 99 (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-1698 (($ $) 103 (-12 (|has| (-112) (-862)) (|has| $ (-6 -4467)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4467)))) (-1832 (($ $) 98 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-4284 (((-112) $ (-784)) 38)) (-3719 (((-112) $ (-1256 (-576)) (-112)) 89 (|has| $ (-6 -4467))) (((-112) $ (-576) (-112)) 55 (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4466)))) (-2515 (($) 39 T CONST)) (-4072 (($ $) 101 (|has| $ (-6 -4467)))) (-3796 (($ $) 91)) (-1620 (($ $) 69 (-12 (|has| (-112) (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4466))) (($ (-112) $) 70 (-12 (|has| (-112) (-1122)) (|has| $ (-6 -4466))))) (-3662 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1122)) (|has| $ (-6 -4466))))) (-1810 (((-112) $ (-576) (-112)) 54 (|has| $ (-6 -4467)))) (-1741 (((-112) $ (-576)) 56)) (-3619 (((-576) (-112) $ (-576)) 96 (|has| (-112) (-1122))) (((-576) (-112) $) 95 (|has| (-112) (-1122))) (((-576) (-1 (-112) (-112)) $) 94)) (-1448 (((-657 (-112)) $) 46 (|has| $ (-6 -4466)))) (-2685 (($ $ $) 109)) (-2665 (($ $) 107)) (-3420 (($ $ $) 30)) (-4096 (($ (-784) (-112)) 79)) (-2222 (($ $ $) 31)) (-1786 (((-112) $ (-784)) 37)) (-3363 (((-576) $) 64 (|has| (-576) (-862)))) (-3740 (($ $ $) 20)) (-1661 (($ $ $) 97 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-3855 (((-657 (-112)) $) 47 (|has| $ (-6 -4466)))) (-3326 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1122)) (|has| $ (-6 -4466))))) (-1833 (((-576) $) 63 (|has| (-576) (-862)))) (-2249 (($ $ $) 19)) (-1799 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-112) (-112) (-112)) $ $) 84) (($ (-1 (-112) (-112)) $) 41)) (-4326 (((-112) $ (-784)) 36)) (-1708 (((-1180) $) 10)) (-2225 (($ $ $ (-576)) 88) (($ (-112) $ (-576)) 87)) (-3309 (((-657 (-576)) $) 61)) (-4324 (((-112) (-576) $) 60)) (-1460 (((-1142) $) 11)) (-3528 (((-112) $) 65 (|has| (-576) (-862)))) (-4135 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-1495 (($ $ (-112)) 66 (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-112)) (-657 (-112))) 53 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-304 (-112))) 51 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-657 (-304 (-112)))) 50 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122))))) (-3807 (((-112) $ $) 32)) (-3010 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-3585 (((-657 (-112)) $) 59)) (-1368 (((-112) $) 35)) (-3340 (($) 34)) (-2780 (($ $ (-1256 (-576))) 78) (((-112) $ (-576)) 58) (((-112) $ (-576) (-112)) 57)) (-3395 (($ $ (-1256 (-576))) 86) (($ $ (-576)) 85)) (-1469 (((-784) (-112) $) 48 (-12 (|has| (-112) (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4466)))) (-1818 (($ $ $ (-576)) 100 (|has| $ (-6 -4467)))) (-1899 (($ $) 33)) (-4136 (((-548) $) 68 (|has| (-112) (-626 (-548))))) (-3529 (($ (-657 (-112))) 77)) (-1637 (($ (-657 $)) 83) (($ $ $) 82) (($ (-112) $) 81) (($ $ (-112)) 80)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-3258 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4466)))) (-2675 (($ $ $) 108)) (-3505 (($ $ $) 106)) (-2938 (((-112) $ $) 18)) (-2913 (((-112) $ $) 16)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 17)) (-2901 (((-112) $ $) 15)) (-3493 (($ $ $) 105)) (-3437 (((-784) $) 40 (|has| $ (-6 -4466))))) (((-124) (-141)) (T -124)) -((-2375 (*1 *1 *1 *1) (-4 *1 (-124))) (-3964 (*1 *1 *1 *1) (-4 *1 (-124))) (-4296 (*1 *1 *1 *1) (-4 *1 (-124)))) -(-13 (-861) (-113) (-673) (-19 (-112)) (-10 -8 (-15 -2375 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -4296 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-625 (-876)) . T) ((-152 #0=(-112)) . T) ((-626 (-548)) |has| (-112) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))) ((-663 #0#) . T) ((-673) . T) ((-19 #0#) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-1898 (($ (-1 |#2| |#2|) $) 22)) (-4287 (($ $) 16)) (-1970 (((-783) $) 25))) -(((-125 |#1| |#2|) (-10 -8 (-15 -1898 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1970 ((-783) |#1|)) (-15 -4287 (|#1| |#1|))) (-126 |#2|) (-1121)) (T -125)) -NIL -(-10 -8 (-15 -1898 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1970 ((-783) |#1|)) (-15 -4287 (|#1| |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1690 ((|#1| $) 49)) (-4234 (((-112) $ (-783)) 8)) (-4261 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-3804 (($ $ $) 53 (|has| $ (-6 -4465)))) (-4286 (($ $ $) 55 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) (($ $ "left" $) 56 (|has| $ (-6 -4465))) (($ $ "right" $) 54 (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3170 (($) 7 T CONST)) (-2113 (($ $) 58)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) 51)) (-1878 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-2304 (($ $ |#1| $) 61)) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2102 (($ $) 60)) (-4186 (((-656 |#1|) $) 46)) (-3211 (((-112) $) 50)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2027 (((-576) $ $) 45)) (-2974 (((-112) $) 47)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) 52)) (-4295 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-126 |#1|) (-141) (-1121)) (T -126)) -((-2304 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1121))))) -(-13 (-120 |t#1|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -2304 ($ $ |t#1| $)))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-120 |#1|) . T) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1690 ((|#1| $) 18)) (-4234 (((-112) $ (-783)) NIL)) (-4261 ((|#1| $ |#1|) 22 (|has| $ (-6 -4465)))) (-3804 (($ $ $) 23 (|has| $ (-6 -4465)))) (-4286 (($ $ $) 21 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-2113 (($ $) 24)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) NIL)) (-1878 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2304 (($ $ |#1| $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2102 (($ $) NIL)) (-4186 (((-656 |#1|) $) NIL)) (-3211 (((-112) $) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3695 (($ |#1| $) 15)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 17)) (-3307 (($) 11)) (-4369 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2027 (((-576) $ $) NIL)) (-2974 (((-112) $) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) 20)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) NIL)) (-4295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4269 (($ (-656 |#1|)) 16)) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4465) (-15 -4269 ($ (-656 |#1|))) (-15 -3695 ($ |#1| $)))) (-861)) (T -127)) -((-4269 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3)))) (-3695 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4465) (-15 -4269 ($ (-656 |#1|))) (-15 -3695 ($ |#1| $)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1690 ((|#1| $) 30)) (-4234 (((-112) $ (-783)) NIL)) (-4261 ((|#1| $ |#1|) 32 (|has| $ (-6 -4465)))) (-3804 (($ $ $) 36 (|has| $ (-6 -4465)))) (-4286 (($ $ $) 34 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-2113 (($ $) 23)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) NIL)) (-1878 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2304 (($ $ |#1| $) 16)) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2102 (($ $) 22)) (-4186 (((-656 |#1|) $) NIL)) (-3211 (((-112) $) 25)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 20)) (-3307 (($) 11)) (-4369 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2027 (((-576) $ $) NIL)) (-2974 (((-112) $) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) NIL)) (-4295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3766 (($ |#1|) 18) (($ $ |#1| $) 17)) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 10 (|has| |#1| (-102)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -3766 ($ |#1|)) (-15 -3766 ($ $ |#1| $)))) (-1121)) (T -128)) -((-3766 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121)))) (-3766 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121))))) -(-13 (-126 |#1|) (-10 -8 (-15 -3766 ($ |#1|)) (-15 -3766 ($ $ |#1| $)))) -((-1957 (((-112) $ $) NIL (|has| (-130) (-102)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-861)))) (-3519 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-130) (-861))))) (-2380 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-861)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 (((-130) $ (-576) (-130)) 26 (|has| $ (-6 -4465))) (((-130) $ (-1255 (-576)) (-130)) NIL (|has| $ (-6 -4465)))) (-3998 (((-783) $ (-783)) 34)) (-3603 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121))))) (-2825 (($ (-130) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4464))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4464)))) (-1910 (((-130) $ (-576) (-130)) 25 (|has| $ (-6 -4465)))) (-3721 (((-130) $ (-576)) 20)) (-3539 (((-576) (-1 (-112) (-130)) $) NIL) (((-576) (-130) $) NIL (|has| (-130) (-1121))) (((-576) (-130) $ (-576)) NIL (|has| (-130) (-1121)))) (-3722 (((-656 (-130)) $) NIL (|has| $ (-6 -4464)))) (-1991 (($ (-783) (-130)) 14)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) 27 (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| (-130) (-861)))) (-2748 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-861)))) (-2911 (((-656 (-130)) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121))))) (-1829 (((-576) $) 30 (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| (-130) (-861)))) (-1898 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| (-130) (-1121)))) (-3386 (($ (-130) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| (-130) (-1121)))) (-1755 (((-130) $) NIL (|has| (-576) (-861)))) (-4220 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-4267 (($ $ (-130)) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-130)))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121)))) (($ $ (-304 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121)))) (($ $ (-656 (-130)) (-656 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121))))) (-2885 (((-656 (-130)) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) 12)) (-4369 (((-130) $ (-576) (-130)) NIL) (((-130) $ (-576)) 23) (($ $ (-1255 (-576))) NIL)) (-2335 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3127 (((-783) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464))) (((-783) (-130) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-130) (-1121))))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-130) (-626 (-548))))) (-4125 (($ (-656 (-130))) 46)) (-2767 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-656 $)) NIL)) (-4113 (((-977 (-130)) $) 35) (((-1179) $) 43) (((-876) $) NIL (|has| (-130) (-625 (-876))))) (-2770 (((-783) $) 18)) (-1625 (($ (-783)) 8)) (-2950 (((-112) $ $) NIL (|has| (-130) (-102)))) (-2543 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3975 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3939 (((-112) $ $) 32 (|has| (-130) (-102)))) (-3984 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3963 (((-112) $ $) NIL (|has| (-130) (-861)))) (-1970 (((-783) $) 15 (|has| $ (-6 -4464))))) -(((-129) (-13 (-19 (-130)) (-625 (-977 (-130))) (-625 (-1179)) (-10 -8 (-15 -1625 ($ (-783))) (-15 -2770 ((-783) $)) (-15 -3998 ((-783) $ (-783))) (-6 -4464)))) (T -129)) -((-1625 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-3998 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(-13 (-19 (-130)) (-625 (-977 (-130))) (-625 (-1179)) (-10 -8 (-15 -1625 ($ (-783))) (-15 -2770 ((-783) $)) (-15 -3998 ((-783) $ (-783))) (-6 -4464))) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783)) 26)) (-3170 (($) NIL T CONST)) (-4370 (($) 35)) (-2907 (($ $ $) NIL) (($) 24 T CONST)) (-3777 (($ $ $) NIL) (($) 25 T CONST)) (-3787 (((-940) $) 33)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) 31)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-2857 (($ (-783)) 8)) (-3873 (($ $ $) 37)) (-3860 (($ $ $) 36)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) 22)) (-3975 (((-112) $ $) 20)) (-3939 (((-112) $ $) 18)) (-3984 (((-112) $ $) 21)) (-3963 (((-112) $ $) 19))) -(((-130) (-13 (-856) (-502 (-145)) (-10 -8 (-15 -2857 ($ (-783))) (-15 -3860 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3170 ($) -2666)))) (T -130)) -((-2857 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130)))) (-3860 (*1 *1 *1 *1) (-5 *1 (-130))) (-3873 (*1 *1 *1 *1) (-5 *1 (-130))) (-3170 (*1 *1) (-5 *1 (-130)))) -(-13 (-856) (-502 (-145)) (-10 -8 (-15 -2857 ($ (-783))) (-15 -3860 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3170 ($) -2666))) +((-2222 (*1 *1 *1 *1) (-4 *1 (-124))) (-3420 (*1 *1 *1 *1) (-4 *1 (-124))) (-2693 (*1 *1 *1 *1) (-4 *1 (-124)))) +(-13 (-862) (-113) (-674) (-19 (-112)) (-10 -8 (-15 -2222 ($ $ $)) (-15 -3420 ($ $ $)) (-15 -2693 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-113) . T) ((-625 (-877)) . T) ((-152 #0=(-112)) . T) ((-626 (-548)) |has| (-112) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122))) ((-664 #0#) . T) ((-674) . T) ((-19 #0#) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) +((-1799 (($ (-1 |#2| |#2|) $) 22)) (-1899 (($ $) 16)) (-3437 (((-784) $) 25))) +(((-125 |#1| |#2|) (-10 -8 (-15 -1799 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3437 ((-784) |#1|)) (-15 -1899 (|#1| |#1|))) (-126 |#2|) (-1122)) (T -125)) +NIL +(-10 -8 (-15 -1799 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3437 ((-784) |#1|)) (-15 -1899 (|#1| |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3037 ((|#1| $) 49)) (-4284 (((-112) $ (-784)) 8)) (-1439 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-2488 (($ $ $) 53 (|has| $ (-6 -4467)))) (-3521 (($ $ $) 55 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467))) (($ $ "left" $) 56 (|has| $ (-6 -4467))) (($ $ "right" $) 54 (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-2515 (($) 7 T CONST)) (-4228 (($ $) 58)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) 51)) (-4257 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-2251 (($ $ |#1| $) 61)) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-4217 (($ $) 60)) (-2397 (((-657 |#1|) $) 46)) (-1743 (((-112) $) 50)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3064 (((-576) $ $) 45)) (-4392 (((-112) $) 47)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) 52)) (-3631 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-126 |#1|) (-141) (-1122)) (T -126)) +((-2251 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1122))))) +(-13 (-120 |t#1|) (-10 -8 (-6 -4467) (-6 -4466) (-15 -2251 ($ $ |t#1| $)))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-120 |#1|) . T) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1032 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3037 ((|#1| $) 18)) (-4284 (((-112) $ (-784)) NIL)) (-1439 ((|#1| $ |#1|) 22 (|has| $ (-6 -4467)))) (-2488 (($ $ $) 23 (|has| $ (-6 -4467)))) (-3521 (($ $ $) 21 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "left" $) NIL (|has| $ (-6 -4467))) (($ $ "right" $) NIL (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-4228 (($ $) 24)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) NIL)) (-4257 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2251 (($ $ |#1| $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-4217 (($ $) NIL)) (-2397 (((-657 |#1|) $) NIL)) (-1743 (((-112) $) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2701 (($ |#1| $) 15)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 17)) (-3340 (($) 11)) (-2780 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3064 (((-576) $ $) NIL)) (-4392 (((-112) $) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) 20)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) NIL)) (-3631 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-1505 (($ (-657 |#1|)) 16)) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4467) (-15 -1505 ($ (-657 |#1|))) (-15 -2701 ($ |#1| $)))) (-862)) (T -127)) +((-1505 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3)))) (-2701 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4467) (-15 -1505 ($ (-657 |#1|))) (-15 -2701 ($ |#1| $)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3037 ((|#1| $) 30)) (-4284 (((-112) $ (-784)) NIL)) (-1439 ((|#1| $ |#1|) 32 (|has| $ (-6 -4467)))) (-2488 (($ $ $) 36 (|has| $ (-6 -4467)))) (-3521 (($ $ $) 34 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "left" $) NIL (|has| $ (-6 -4467))) (($ $ "right" $) NIL (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-4228 (($ $) 23)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) NIL)) (-4257 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2251 (($ $ |#1| $) 16)) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-4217 (($ $) 22)) (-2397 (((-657 |#1|) $) NIL)) (-1743 (((-112) $) 25)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 20)) (-3340 (($) 11)) (-2780 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3064 (((-576) $ $) NIL)) (-4392 (((-112) $) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) NIL)) (-3631 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2134 (($ |#1|) 18) (($ $ |#1| $) 17)) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 10 (|has| |#1| (-102)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -2134 ($ |#1|)) (-15 -2134 ($ $ |#1| $)))) (-1122)) (T -128)) +((-2134 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1122)))) (-2134 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1122))))) +(-13 (-126 |#1|) (-10 -8 (-15 -2134 ($ |#1|)) (-15 -2134 ($ $ |#1| $)))) +((-3423 (((-112) $ $) NIL (|has| (-130) (-102)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-862)))) (-1698 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| (-130) (-862))))) (-1832 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-862)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 (((-130) $ (-576) (-130)) 26 (|has| $ (-6 -4467))) (((-130) $ (-1256 (-576)) (-130)) NIL (|has| $ (-6 -4467)))) (-3787 (((-784) $ (-784)) 34)) (-2007 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-1122))))) (-3901 (($ (-130) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-1122)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-1122)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4466))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4466)))) (-1810 (((-130) $ (-576) (-130)) 25 (|has| $ (-6 -4467)))) (-1741 (((-130) $ (-576)) 20)) (-3619 (((-576) (-1 (-112) (-130)) $) NIL) (((-576) (-130) $) NIL (|has| (-130) (-1122))) (((-576) (-130) $ (-576)) NIL (|has| (-130) (-1122)))) (-1448 (((-657 (-130)) $) NIL (|has| $ (-6 -4466)))) (-4096 (($ (-784) (-130)) 14)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) 27 (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| (-130) (-862)))) (-1661 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-862)))) (-3855 (((-657 (-130)) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-1122))))) (-1833 (((-576) $) 30 (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| (-130) (-862)))) (-1799 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| (-130) (-1122)))) (-2225 (($ (-130) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| (-130) (-1122)))) (-3528 (((-130) $) NIL (|has| (-576) (-862)))) (-4135 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-1495 (($ $ (-130)) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-130)))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1122)))) (($ $ (-304 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1122)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1122)))) (($ $ (-657 (-130)) (-657 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-1122))))) (-3585 (((-657 (-130)) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) 12)) (-2780 (((-130) $ (-576) (-130)) NIL) (((-130) $ (-576)) 23) (($ $ (-1256 (-576))) NIL)) (-3395 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1469 (((-784) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4466))) (((-784) (-130) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-1122))))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-130) (-626 (-548))))) (-3529 (($ (-657 (-130))) 46)) (-1637 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-657 $)) NIL)) (-3515 (((-978 (-130)) $) 35) (((-1180) $) 43) (((-877) $) NIL (|has| (-130) (-625 (-877))))) (-1837 (((-784) $) 18)) (-3594 (($ (-784)) 8)) (-4166 (((-112) $ $) NIL (|has| (-130) (-102)))) (-3258 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| (-130) (-862)))) (-2913 (((-112) $ $) NIL (|has| (-130) (-862)))) (-2881 (((-112) $ $) 32 (|has| (-130) (-102)))) (-2925 (((-112) $ $) NIL (|has| (-130) (-862)))) (-2901 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3437 (((-784) $) 15 (|has| $ (-6 -4466))))) +(((-129) (-13 (-19 (-130)) (-625 (-978 (-130))) (-625 (-1180)) (-10 -8 (-15 -3594 ($ (-784))) (-15 -1837 ((-784) $)) (-15 -3787 ((-784) $ (-784))) (-6 -4466)))) (T -129)) +((-3594 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-129)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-129)))) (-3787 (*1 *2 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-129))))) +(-13 (-19 (-130)) (-625 (-978 (-130))) (-625 (-1180)) (-10 -8 (-15 -3594 ($ (-784))) (-15 -1837 ((-784) $)) (-15 -3787 ((-784) $ (-784))) (-6 -4466))) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784)) 26)) (-2515 (($) NIL T CONST)) (-1876 (($) 35)) (-3740 (($ $ $) NIL) (($) 24 T CONST)) (-2249 (($ $ $) NIL) (($) 25 T CONST)) (-2327 (((-941) $) 33)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) 31)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3783 (($ (-784)) 8)) (-2387 (($ $ $) 37)) (-2376 (($ $ $) 36)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) 22)) (-2913 (((-112) $ $) 20)) (-2881 (((-112) $ $) 18)) (-2925 (((-112) $ $) 21)) (-2901 (((-112) $ $) 19))) +(((-130) (-13 (-857) (-502 (-145)) (-10 -8 (-15 -3783 ($ (-784))) (-15 -2376 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -2515 ($) -1491)))) (T -130)) +((-3783 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-130)))) (-2376 (*1 *1 *1 *1) (-5 *1 (-130))) (-2387 (*1 *1 *1 *1) (-5 *1 (-130))) (-2515 (*1 *1) (-5 *1 (-130)))) +(-13 (-857) (-502 (-145)) (-10 -8 (-15 -3783 ($ (-784))) (-15 -2376 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -2515 ($) -1491))) ((|NonNegativeInteger|) (|%ilt| |#1| 256)) -((-1957 (((-112) $ $) NIL)) (-3152 (($) 6 T CONST)) (-4122 (($) 7 T CONST)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 14)) (-4380 (($) 8 T CONST)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 10))) -(((-131) (-13 (-1121) (-10 -8 (-15 -4122 ($) -2666) (-15 -4380 ($) -2666) (-15 -3152 ($) -2666)))) (T -131)) -((-4122 (*1 *1) (-5 *1 (-131))) (-4380 (*1 *1) (-5 *1 (-131))) (-3152 (*1 *1) (-5 *1 (-131)))) -(-13 (-1121) (-10 -8 (-15 -4122 ($) -2666) (-15 -4380 ($) -2666) (-15 -3152 ($) -2666))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) +((-3423 (((-112) $ $) NIL)) (-2345 (($) 6 T CONST)) (-2513 (($) 7 T CONST)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 14)) (-3145 (($) 8 T CONST)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 10))) +(((-131) (-13 (-1122) (-10 -8 (-15 -2513 ($) -1491) (-15 -3145 ($) -1491) (-15 -2345 ($) -1491)))) (T -131)) +((-2513 (*1 *1) (-5 *1 (-131))) (-3145 (*1 *1) (-5 *1 (-131))) (-2345 (*1 *1) (-5 *1 (-131)))) +(-13 (-1122) (-10 -8 (-15 -2513 ($) -1491) (-15 -3145 ($) -1491) (-15 -2345 ($) -1491))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16))) (((-132) (-141)) (T -132)) -((-1765 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-23) (-10 -8 (-15 -1765 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-3220 (((-1293) $ (-783)) 14)) (-3539 (((-783) $) 15)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) +((-2423 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(-13 (-23) (-10 -8 (-15 -2423 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-1839 (((-1294) $ (-784)) 14)) (-3619 (((-784) $) 15)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) (((-133) (-141)) (T -133)) -((-3539 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) (-3220 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1293))))) -(-13 (-1121) (-10 -8 (-15 -3539 ((-783) $)) (-15 -3220 ((-1293) $ (-783))))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4159 (((-656 (-1156)) $) 10)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-134) (-13 (-1104) (-10 -8 (-15 -4159 ((-656 (-1156)) $))))) (T -134)) -((-4159 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-134))))) -(-13 (-1104) (-10 -8 (-15 -4159 ((-656 (-1156)) $)))) -((-1957 (((-112) $ $) 49)) (-3114 (((-112) $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-783) "failed") $) 58)) (-2317 (((-783) $) 56)) (-1851 (((-3 $ "failed") $) NIL)) (-2486 (((-112) $) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) 37)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2793 (((-112)) 59)) (-2340 (((-112) (-112)) 61)) (-3614 (((-112) $) 30)) (-1971 (((-112) $) 55)) (-4113 (((-876) $) 28) (($ (-783)) 20)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 18 T CONST)) (-4322 (($) 19 T CONST)) (-3351 (($ (-783)) 21)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) 40)) (-3939 (((-112) $ $) 32)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 35)) (-4037 (((-3 $ "failed") $ $) 42)) (-4026 (($ $ $) 38)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL) (($ $ $) 54)) (* (($ (-783) $) 48) (($ (-940) $) NIL) (($ $ $) 45))) -(((-135) (-13 (-861) (-23) (-738) (-1059 (-783)) (-10 -8 (-6 (-4466 "*")) (-15 -4037 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3351 ($ (-783))) (-15 -3614 ((-112) $)) (-15 -1971 ((-112) $)) (-15 -2793 ((-112))) (-15 -2340 ((-112) (-112)))))) (T -135)) -((-4037 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-3351 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-1971 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2793 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2340 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(-13 (-861) (-23) (-738) (-1059 (-783)) (-10 -8 (-6 (-4466 "*")) (-15 -4037 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3351 ($ (-783))) (-15 -3614 ((-112) $)) (-15 -1971 ((-112) $)) (-15 -2793 ((-112))) (-15 -2340 ((-112) (-112))))) -((-3414 (((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-2423 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) -(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3414 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2423 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-576) (-783) (-174) (-174)) (T -136)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) -(-10 -7 (-15 -3414 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2423 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) -((-1957 (((-112) $ $) NIL)) (-3167 (($ (-656 |#3|)) 61)) (-3019 (($ $) 123) (($ $ (-576) (-576)) 122)) (-3170 (($) 20)) (-2982 (((-3 |#3| "failed") $) 83)) (-2317 ((|#3| $) NIL)) (-1336 (($ $ (-656 (-576))) 124)) (-3398 (((-656 |#3|) $) 56)) (-4135 (((-783) $) 66)) (-4332 (($ $ $) 117)) (-2071 (($) 65)) (-2447 (((-1179) $) NIL)) (-2610 (($) 19)) (-3116 (((-1141) $) NIL)) (-4369 ((|#3| $ (-576)) 69) ((|#3| $) 68) ((|#3| $ (-576) (-576)) 70) ((|#3| $ (-576) (-576) (-576)) 71) ((|#3| $ (-576) (-576) (-576) (-576)) 72) ((|#3| $ (-656 (-576))) 73)) (-2196 (((-783) $) 67)) (-2064 (($ $ (-576) $ (-576)) 118) (($ $ (-576) (-576)) 120)) (-4113 (((-876) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1163 |#2| |#3|)) 102) (($ (-656 |#3|)) 74) (($ (-656 $)) 80)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 93 T CONST)) (-4322 (($) 94 T CONST)) (-3939 (((-112) $ $) 104)) (-4037 (($ $) 110) (($ $ $) 108)) (-4026 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-576)) 113) (($ (-576) $) 112) (($ $ $) 119))) -(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -4113 ($ (-245 |#2| |#3|))) (-15 -4113 ($ (-1163 |#2| |#3|))) (-15 -4113 ($ (-656 |#3|))) (-15 -4113 ($ (-656 $))) (-15 -4135 ((-783) $)) (-15 -4369 (|#3| $)) (-15 -4369 (|#3| $ (-576) (-576))) (-15 -4369 (|#3| $ (-576) (-576) (-576))) (-15 -4369 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -4369 (|#3| $ (-656 (-576)))) (-15 -4332 ($ $ $)) (-15 * ($ $ $)) (-15 -2064 ($ $ (-576) $ (-576))) (-15 -2064 ($ $ (-576) (-576))) (-15 -3019 ($ $)) (-15 -3019 ($ $ (-576) (-576))) (-15 -1336 ($ $ (-656 (-576)))) (-15 -2610 ($)) (-15 -2071 ($)) (-15 -3398 ((-656 |#3|) $)) (-15 -3167 ($ (-656 |#3|))) (-15 -3170 ($)))) (-576) (-783) (-174)) (T -137)) -((-4332 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-1163 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) (-4369 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) (-14 *4 (-783)))) (-4369 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-4369 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-4369 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-576)) (-14 *5 (-783)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2064 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2064 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-3019 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3019 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-1336 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2610 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2071 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-3167 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-3170 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174))))) -(-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -4113 ($ (-245 |#2| |#3|))) (-15 -4113 ($ (-1163 |#2| |#3|))) (-15 -4113 ($ (-656 |#3|))) (-15 -4113 ($ (-656 $))) (-15 -4135 ((-783) $)) (-15 -4369 (|#3| $)) (-15 -4369 (|#3| $ (-576) (-576))) (-15 -4369 (|#3| $ (-576) (-576) (-576))) (-15 -4369 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -4369 (|#3| $ (-656 (-576)))) (-15 -4332 ($ $ $)) (-15 * ($ $ $)) (-15 -2064 ($ $ (-576) $ (-576))) (-15 -2064 ($ $ (-576) (-576))) (-15 -3019 ($ $)) (-15 -3019 ($ $ (-576) (-576))) (-15 -1336 ($ $ (-656 (-576)))) (-15 -2610 ($)) (-15 -2071 ($)) (-15 -3398 ((-656 |#3|) $)) (-15 -3167 ($ (-656 |#3|))) (-15 -3170 ($)))) -((-1957 (((-112) $ $) NIL)) (-1784 (((-1156) $) 11)) (-1776 (((-1156) $) 9)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-138) (-13 (-1104) (-10 -8 (-15 -1776 ((-1156) $)) (-15 -1784 ((-1156) $))))) (T -138)) -((-1776 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-138)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-138))))) -(-13 (-1104) (-10 -8 (-15 -1776 ((-1156) $)) (-15 -1784 ((-1156) $)))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3950 (((-188) $) 10)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4159 (((-656 (-1156)) $) 13)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-139) (-13 (-1104) (-10 -8 (-15 -3950 ((-188) $)) (-15 -4159 ((-656 (-1156)) $))))) (T -139)) -((-3950 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-139))))) -(-13 (-1104) (-10 -8 (-15 -3950 ((-188) $)) (-15 -4159 ((-656 (-1156)) $)))) -((-1957 (((-112) $ $) NIL)) (-3867 (((-656 (-879)) $) NIL)) (-4149 (((-518) $) NIL)) (-2447 (((-1179) $) NIL)) (-3950 (((-188) $) NIL)) (-4227 (((-112) $ (-518)) NIL)) (-3116 (((-1141) $) NIL)) (-1739 (((-656 (-112)) $) NIL)) (-4113 (((-876) $) NIL) (((-189) $) 6)) (-2950 (((-112) $ $) NIL)) (-2771 (((-55) $) NIL)) (-3939 (((-112) $ $) NIL))) +((-3619 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-784)))) (-1839 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-784)) (-5 *2 (-1294))))) +(-13 (-1122) (-10 -8 (-15 -3619 ((-784) $)) (-15 -1839 ((-1294) $ (-784))))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 16) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2645 (((-657 (-1157)) $) 10)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-134) (-13 (-1105) (-10 -8 (-15 -2645 ((-657 (-1157)) $))))) (T -134)) +((-2645 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-134))))) +(-13 (-1105) (-10 -8 (-15 -2645 ((-657 (-1157)) $)))) +((-3423 (((-112) $ $) 49)) (-2044 (((-112) $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-784) "failed") $) 58)) (-2830 (((-784) $) 56)) (-3969 (((-3 $ "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) 37)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2059 (((-112)) 59)) (-3071 (((-112) (-112)) 61)) (-1332 (((-112) $) 30)) (-2617 (((-112) $) 55)) (-3515 (((-877) $) 28) (($ (-784)) 20)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 18 T CONST)) (-2725 (($) 19 T CONST)) (-3843 (($ (-784)) 21)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) 40)) (-2881 (((-112) $ $) 32)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 35)) (-2982 (((-3 $ "failed") $ $) 42)) (-2971 (($ $ $) 38)) (** (($ $ (-784)) NIL) (($ $ (-941)) NIL) (($ $ $) 54)) (* (($ (-784) $) 48) (($ (-941) $) NIL) (($ $ $) 45))) +(((-135) (-13 (-862) (-23) (-739) (-1060 (-784)) (-10 -8 (-6 (-4468 "*")) (-15 -2982 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3843 ($ (-784))) (-15 -1332 ((-112) $)) (-15 -2617 ((-112) $)) (-15 -2059 ((-112))) (-15 -3071 ((-112) (-112)))))) (T -135)) +((-2982 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-3843 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-135)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2059 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3071 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(-13 (-862) (-23) (-739) (-1060 (-784)) (-10 -8 (-6 (-4468 "*")) (-15 -2982 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3843 ($ (-784))) (-15 -1332 ((-112) $)) (-15 -2617 ((-112) $)) (-15 -2059 ((-112))) (-15 -3071 ((-112) (-112))))) +((-3478 (((-137 |#1| |#2| |#4|) (-657 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-4071 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3478 ((-137 |#1| |#2| |#4|) (-657 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4071 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-576) (-784) (-174) (-174)) (T -136)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-784)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3478 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-784)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -3478 ((-137 |#1| |#2| |#4|) (-657 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4071 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) +((-3423 (((-112) $ $) NIL)) (-2486 (($ (-657 |#3|)) 61)) (-3564 (($ $) 123) (($ $ (-576) (-576)) 122)) (-2515 (($) 20)) (-1593 (((-3 |#3| "failed") $) 83)) (-2830 ((|#3| $) NIL)) (-3574 (($ $ (-657 (-576))) 124)) (-3465 (((-657 |#3|) $) 56)) (-4343 (((-784) $) 66)) (-3964 (($ $ $) 117)) (-2346 (($) 65)) (-1708 (((-1180) $) NIL)) (-2733 (($) 19)) (-1460 (((-1142) $) NIL)) (-2780 ((|#3| $ (-576)) 69) ((|#3| $) 68) ((|#3| $ (-576) (-576)) 70) ((|#3| $ (-576) (-576) (-576)) 71) ((|#3| $ (-576) (-576) (-576) (-576)) 72) ((|#3| $ (-657 (-576))) 73)) (-4265 (((-784) $) 67)) (-2276 (($ $ (-576) $ (-576)) 118) (($ $ (-576) (-576)) 120)) (-3515 (((-877) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1164 |#2| |#3|)) 102) (($ (-657 |#3|)) 74) (($ (-657 $)) 80)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 93 T CONST)) (-2725 (($) 94 T CONST)) (-2881 (((-112) $ $) 104)) (-2982 (($ $) 110) (($ $ $) 108)) (-2971 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-576)) 113) (($ (-576) $) 112) (($ $ $) 119))) +(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-784)) (-482 (-576) (-784)) (-296 (-576) |#3|) (-10 -8 (-15 -3515 ($ (-245 |#2| |#3|))) (-15 -3515 ($ (-1164 |#2| |#3|))) (-15 -3515 ($ (-657 |#3|))) (-15 -3515 ($ (-657 $))) (-15 -4343 ((-784) $)) (-15 -2780 (|#3| $)) (-15 -2780 (|#3| $ (-576) (-576))) (-15 -2780 (|#3| $ (-576) (-576) (-576))) (-15 -2780 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2780 (|#3| $ (-657 (-576)))) (-15 -3964 ($ $ $)) (-15 * ($ $ $)) (-15 -2276 ($ $ (-576) $ (-576))) (-15 -2276 ($ $ (-576) (-576))) (-15 -3564 ($ $)) (-15 -3564 ($ $ (-576) (-576))) (-15 -3574 ($ $ (-657 (-576)))) (-15 -2733 ($)) (-15 -2346 ($)) (-15 -3465 ((-657 |#3|) $)) (-15 -2486 ($ (-657 |#3|))) (-15 -2515 ($)))) (-576) (-784) (-174)) (T -137)) +((-3964 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-784)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-1164 *4 *5)) (-14 *4 (-784)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-657 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-784)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-784)) (-4 *5 (-174)))) (-4343 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) (-2780 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) (-14 *4 (-784)))) (-2780 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-784)))) (-2780 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-784)))) (-2780 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-784)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-657 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-576)) (-14 *5 (-784)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174)))) (-2276 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-784)) (-4 *5 (-174)))) (-2276 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-784)) (-4 *5 (-174)))) (-3564 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174)))) (-3564 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-784)) (-4 *5 (-174)))) (-3574 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-784)) (-4 *5 (-174)))) (-2733 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174)))) (-2346 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-657 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-784)) (-4 *5 (-174)))) (-2486 (*1 *1 *2) (-12 (-5 *2 (-657 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-784)))) (-2515 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174))))) +(-13 (-477 |#3| (-784)) (-482 (-576) (-784)) (-296 (-576) |#3|) (-10 -8 (-15 -3515 ($ (-245 |#2| |#3|))) (-15 -3515 ($ (-1164 |#2| |#3|))) (-15 -3515 ($ (-657 |#3|))) (-15 -3515 ($ (-657 $))) (-15 -4343 ((-784) $)) (-15 -2780 (|#3| $)) (-15 -2780 (|#3| $ (-576) (-576))) (-15 -2780 (|#3| $ (-576) (-576) (-576))) (-15 -2780 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2780 (|#3| $ (-657 (-576)))) (-15 -3964 ($ $ $)) (-15 * ($ $ $)) (-15 -2276 ($ $ (-576) $ (-576))) (-15 -2276 ($ $ (-576) (-576))) (-15 -3564 ($ $)) (-15 -3564 ($ $ (-576) (-576))) (-15 -3574 ($ $ (-657 (-576)))) (-15 -2733 ($)) (-15 -2346 ($)) (-15 -3465 ((-657 |#3|) $)) (-15 -2486 ($ (-657 |#3|))) (-15 -2515 ($)))) +((-3423 (((-112) $ $) NIL)) (-1691 (((-1157) $) 11)) (-1678 (((-1157) $) 9)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 17) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-138) (-13 (-1105) (-10 -8 (-15 -1678 ((-1157) $)) (-15 -1691 ((-1157) $))))) (T -138)) +((-1678 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-138)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-138))))) +(-13 (-1105) (-10 -8 (-15 -1678 ((-1157) $)) (-15 -1691 ((-1157) $)))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1772 (((-188) $) 10)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 20) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2645 (((-657 (-1157)) $) 13)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-139) (-13 (-1105) (-10 -8 (-15 -1772 ((-188) $)) (-15 -2645 ((-657 (-1157)) $))))) (T -139)) +((-1772 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-139))))) +(-13 (-1105) (-10 -8 (-15 -1772 ((-188) $)) (-15 -2645 ((-657 (-1157)) $)))) +((-3423 (((-112) $ $) NIL)) (-3219 (((-657 (-880)) $) NIL)) (-2634 (((-518) $) NIL)) (-1708 (((-1180) $) NIL)) (-1772 (((-188) $) NIL)) (-4216 (((-112) $ (-518)) NIL)) (-1460 (((-1142) $) NIL)) (-2172 (((-657 (-112)) $) NIL)) (-3515 (((-877) $) NIL) (((-189) $) 6)) (-4166 (((-112) $ $) NIL)) (-1853 (((-55) $) NIL)) (-2881 (((-112) $ $) NIL))) (((-140) (-13 (-187) (-625 (-189)))) (T -140)) NIL (-13 (-187) (-625 (-189))) -((-1609 (((-656 (-185 (-140))) $) 13)) (-4053 (((-656 (-185 (-140))) $) 14)) (-2917 (((-656 (-850)) $) 10)) (-1786 (((-140) $) 7)) (-4113 (((-876) $) 16))) -(((-141) (-13 (-625 (-876)) (-10 -8 (-15 -1786 ((-140) $)) (-15 -2917 ((-656 (-850)) $)) (-15 -1609 ((-656 (-185 (-140))) $)) (-15 -4053 ((-656 (-185 (-140))) $))))) (T -141)) -((-1786 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141)))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(-13 (-625 (-876)) (-10 -8 (-15 -1786 ((-140) $)) (-15 -2917 ((-656 (-850)) $)) (-15 -1609 ((-656 (-185 (-140))) $)) (-15 -4053 ((-656 (-185 (-140))) $)))) -((-1957 (((-112) $ $) NIL)) (-3532 (($) 17 T CONST)) (-3504 (($) NIL (|has| (-145) (-379)))) (-4025 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-1831 (($ $ $) NIL)) (-4084 (((-112) $ $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-2201 (((-783)) NIL (|has| (-145) (-379)))) (-3704 (($) NIL) (($ (-656 (-145))) NIL)) (-1954 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3872 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464))) (($ (-145) $) 60 (|has| $ (-6 -4464)))) (-2825 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-2721 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-4370 (($) NIL (|has| (-145) (-379)))) (-3722 (((-656 (-145)) $) 69 (|has| $ (-6 -4464)))) (-2779 (((-112) $ $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-2907 (((-145) $) NIL (|has| (-145) (-861)))) (-2911 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3777 (((-145) $) NIL (|has| (-145) (-861)))) (-1898 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-145) (-145)) $) 64)) (-4181 (($) 18 T CONST)) (-3787 (((-940) $) NIL (|has| (-145) (-379)))) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-1431 (($ $ $) 30)) (-3743 (((-145) $) 61)) (-3695 (($ (-145) $) 59)) (-2411 (($ (-940)) NIL (|has| (-145) (-379)))) (-4244 (($) 16 T CONST)) (-3116 (((-1141) $) NIL)) (-4220 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2372 (((-145) $) 62)) (-1759 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) 57)) (-2593 (($) 15 T CONST)) (-3198 (($ $ $) 32) (($ $ (-145)) NIL)) (-3091 (($ (-656 (-145))) NIL) (($) NIL)) (-3127 (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-1179) $) 37) (((-548) $) NIL (|has| (-145) (-626 (-548)))) (((-656 (-145)) $) 35)) (-4125 (($ (-656 (-145))) NIL)) (-2741 (($ $) 33 (|has| (-145) (-379)))) (-4113 (((-876) $) 53)) (-4438 (($ (-1179)) 14) (($ (-656 (-145))) 50)) (-3540 (((-783) $) NIL)) (-1515 (($) 58) (($ (-656 (-145))) NIL)) (-2950 (((-112) $ $) NIL)) (-4156 (($ (-656 (-145))) NIL)) (-2543 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-4312 (($) 21 T CONST)) (-3069 (($) 20 T CONST)) (-3939 (((-112) $ $) 24)) (-1970 (((-783) $) 56 (|has| $ (-6 -4464))))) -(((-142) (-13 (-1121) (-626 (-1179)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -4438 ($ (-1179))) (-15 -4438 ($ (-656 (-145)))) (-15 -2593 ($) -2666) (-15 -4244 ($) -2666) (-15 -3532 ($) -2666) (-15 -4181 ($) -2666) (-15 -3069 ($) -2666) (-15 -4312 ($) -2666)))) (T -142)) -((-4438 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-142)))) (-4438 (*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) (-2593 (*1 *1) (-5 *1 (-142))) (-4244 (*1 *1) (-5 *1 (-142))) (-3532 (*1 *1) (-5 *1 (-142))) (-4181 (*1 *1) (-5 *1 (-142))) (-3069 (*1 *1) (-5 *1 (-142))) (-4312 (*1 *1) (-5 *1 (-142)))) -(-13 (-1121) (-626 (-1179)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -4438 ($ (-1179))) (-15 -4438 ($ (-656 (-145)))) (-15 -2593 ($) -2666) (-15 -4244 ($) -2666) (-15 -3532 ($) -2666) (-15 -4181 ($) -2666) (-15 -3069 ($) -2666) (-15 -4312 ($) -2666))) -((-1706 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2929 ((|#1| |#3|) 9)) (-4091 ((|#3| |#3|) 15))) -(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -2929 (|#1| |#3|)) (-15 -4091 (|#3| |#3|)) (-15 -1706 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1013 |#1|) (-384 |#2|)) (T -143)) -((-1706 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-384 *5)))) (-4091 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-384 *4))))) -(-10 -7 (-15 -2929 (|#1| |#3|)) (-15 -4091 (|#3| |#3|)) (-15 -1706 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1595 (($ $ $) 8)) (-4372 (($ $) 7)) (-1348 (($ $ $) 6))) +((-3416 (((-657 (-185 (-140))) $) 13)) (-3238 (((-657 (-185 (-140))) $) 14)) (-3904 (((-657 (-851)) $) 10)) (-2577 (((-140) $) 7)) (-3515 (((-877) $) 16))) +(((-141) (-13 (-625 (-877)) (-10 -8 (-15 -2577 ((-140) $)) (-15 -3904 ((-657 (-851)) $)) (-15 -3416 ((-657 (-185 (-140))) $)) (-15 -3238 ((-657 (-185 (-140))) $))))) (T -141)) +((-2577 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-657 (-851))) (-5 *1 (-141)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-657 (-185 (-140)))) (-5 *1 (-141)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-657 (-185 (-140)))) (-5 *1 (-141))))) +(-13 (-625 (-877)) (-10 -8 (-15 -2577 ((-140) $)) (-15 -3904 ((-657 (-851)) $)) (-15 -3416 ((-657 (-185 (-140))) $)) (-15 -3238 ((-657 (-185 (-140))) $)))) +((-3423 (((-112) $ $) NIL)) (-1804 (($) 17 T CONST)) (-1561 (($) NIL (|has| (-145) (-379)))) (-1849 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-1855 (($ $ $) NIL)) (-2176 (((-112) $ $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-2148 (((-784)) NIL (|has| (-145) (-379)))) (-2119 (($) NIL) (($ (-657 (-145))) NIL)) (-3726 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-1920 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466))) (($ (-145) $) 60 (|has| $ (-6 -4466)))) (-3901 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-3662 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4466))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4466))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-1876 (($) NIL (|has| (-145) (-379)))) (-1448 (((-657 (-145)) $) 69 (|has| $ (-6 -4466)))) (-1919 (((-112) $ $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3740 (((-145) $) NIL (|has| (-145) (-862)))) (-3855 (((-657 (-145)) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-2249 (((-145) $) NIL (|has| (-145) (-862)))) (-1799 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-145) (-145)) $) 64)) (-1858 (($) 18 T CONST)) (-2327 (((-941) $) NIL (|has| (-145) (-379)))) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-3415 (($ $ $) 30)) (-3107 (((-145) $) 61)) (-2701 (($ (-145) $) 59)) (-3146 (($ (-941)) NIL (|has| (-145) (-379)))) (-4395 (($) 16 T CONST)) (-1460 (((-1142) $) NIL)) (-4135 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2184 (((-145) $) 62)) (-2372 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-145)) (-657 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-657 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) 57)) (-3849 (($) 15 T CONST)) (-1610 (($ $ $) 32) (($ $ (-145)) NIL)) (-3009 (($ (-657 (-145))) NIL) (($) NIL)) (-1469 (((-784) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122)))) (((-784) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-1180) $) 37) (((-548) $) NIL (|has| (-145) (-626 (-548)))) (((-657 (-145)) $) 35)) (-3529 (($ (-657 (-145))) NIL)) (-1600 (($ $) 33 (|has| (-145) (-379)))) (-3515 (((-877) $) 53)) (-2564 (($ (-1180)) 14) (($ (-657 (-145))) 50)) (-1854 (((-784) $) NIL)) (-1923 (($) 58) (($ (-657 (-145))) NIL)) (-4166 (((-112) $ $) NIL)) (-1636 (($ (-657 (-145))) NIL)) (-3258 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-3794 (($) 21 T CONST)) (-2796 (($) 20 T CONST)) (-2881 (((-112) $ $) 24)) (-3437 (((-784) $) 56 (|has| $ (-6 -4466))))) +(((-142) (-13 (-1122) (-626 (-1180)) (-437 (-145)) (-626 (-657 (-145))) (-10 -8 (-15 -2564 ($ (-1180))) (-15 -2564 ($ (-657 (-145)))) (-15 -3849 ($) -1491) (-15 -4395 ($) -1491) (-15 -1804 ($) -1491) (-15 -1858 ($) -1491) (-15 -2796 ($) -1491) (-15 -3794 ($) -1491)))) (T -142)) +((-2564 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-142)))) (-2564 (*1 *1 *2) (-12 (-5 *2 (-657 (-145))) (-5 *1 (-142)))) (-3849 (*1 *1) (-5 *1 (-142))) (-4395 (*1 *1) (-5 *1 (-142))) (-1804 (*1 *1) (-5 *1 (-142))) (-1858 (*1 *1) (-5 *1 (-142))) (-2796 (*1 *1) (-5 *1 (-142))) (-3794 (*1 *1) (-5 *1 (-142)))) +(-13 (-1122) (-626 (-1180)) (-437 (-145)) (-626 (-657 (-145))) (-10 -8 (-15 -2564 ($ (-1180))) (-15 -2564 ($ (-657 (-145)))) (-15 -3849 ($) -1491) (-15 -4395 ($) -1491) (-15 -1804 ($) -1491) (-15 -1858 ($) -1491) (-15 -2796 ($) -1491) (-15 -3794 ($) -1491))) +((-3005 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3927 ((|#1| |#3|) 9)) (-2255 ((|#3| |#3|) 15))) +(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3927 (|#1| |#3|)) (-15 -2255 (|#3| |#3|)) (-15 -3005 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1014 |#1|) (-384 |#2|)) (T -143)) +((-3005 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-384 *5)))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1014 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) (-3927 (*1 *2 *3) (-12 (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-384 *4))))) +(-10 -7 (-15 -3927 (|#1| |#3|)) (-15 -2255 (|#3| |#3|)) (-15 -3005 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3262 (($ $ $) 8)) (-3067 (($ $) 7)) (-1940 (($ $ $) 6))) (((-144) (-141)) (T -144)) -((-1595 (*1 *1 *1 *1) (-4 *1 (-144))) (-4372 (*1 *1 *1) (-4 *1 (-144))) (-1348 (*1 *1 *1 *1) (-4 *1 (-144)))) -(-13 (-10 -8 (-15 -1348 ($ $ $)) (-15 -4372 ($ $)) (-15 -1595 ($ $ $)))) -((-1957 (((-112) $ $) NIL)) (-3937 (((-112) $) 39)) (-3532 (($ $) 55)) (-2068 (($) 26 T CONST)) (-2201 (((-783)) 13)) (-4370 (($) 25)) (-1603 (($) 27 T CONST)) (-1497 (((-783) $) 21)) (-2907 (($ $ $) NIL) (($) NIL T CONST)) (-3777 (($ $ $) NIL) (($) NIL T CONST)) (-2504 (((-112) $) 41)) (-4181 (($ $) 56)) (-3787 (((-940) $) 23)) (-2447 (((-1179) $) 49)) (-2411 (($ (-940)) 20)) (-2211 (((-112) $) 37)) (-3116 (((-1141) $) NIL)) (-1587 (($) 28 T CONST)) (-2561 (((-112) $) 35)) (-4113 (((-876) $) 30)) (-3863 (($ (-783)) 19) (($ (-1179)) 54)) (-2950 (((-112) $ $) NIL)) (-1871 (((-112) $) 45)) (-2530 (((-112) $) 43)) (-3995 (((-112) $ $) 11)) (-3975 (((-112) $ $) 9)) (-3939 (((-112) $ $) 7)) (-3984 (((-112) $ $) 10)) (-3963 (((-112) $ $) 8))) -(((-145) (-13 (-856) (-10 -8 (-15 -1497 ((-783) $)) (-15 -3863 ($ (-783))) (-15 -3863 ($ (-1179))) (-15 -2068 ($) -2666) (-15 -1603 ($) -2666) (-15 -1587 ($) -2666) (-15 -3532 ($ $)) (-15 -4181 ($ $)) (-15 -2561 ((-112) $)) (-15 -2211 ((-112) $)) (-15 -2530 ((-112) $)) (-15 -3937 ((-112) $)) (-15 -2504 ((-112) $)) (-15 -1871 ((-112) $))))) (T -145)) -((-1497 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-3863 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-3863 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-145)))) (-2068 (*1 *1) (-5 *1 (-145))) (-1603 (*1 *1) (-5 *1 (-145))) (-1587 (*1 *1) (-5 *1 (-145))) (-3532 (*1 *1 *1) (-5 *1 (-145))) (-4181 (*1 *1 *1) (-5 *1 (-145))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(-13 (-856) (-10 -8 (-15 -1497 ((-783) $)) (-15 -3863 ($ (-783))) (-15 -3863 ($ (-1179))) (-15 -2068 ($) -2666) (-15 -1603 ($) -2666) (-15 -1587 ($) -2666) (-15 -3532 ($ $)) (-15 -4181 ($ $)) (-15 -2561 ((-112) $)) (-15 -2211 ((-112) $)) (-15 -2530 ((-112) $)) (-15 -3937 ((-112) $)) (-15 -2504 ((-112) $)) (-15 -1871 ((-112) $)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-576)) 33)) (-4276 (((-3 $ "failed") $) 39)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3262 (*1 *1 *1 *1) (-4 *1 (-144))) (-3067 (*1 *1 *1) (-4 *1 (-144))) (-1940 (*1 *1 *1 *1) (-4 *1 (-144)))) +(-13 (-10 -8 (-15 -1940 ($ $ $)) (-15 -3067 ($ $)) (-15 -3262 ($ $ $)))) +((-3423 (((-112) $ $) NIL)) (-1380 (((-112) $) 39)) (-1804 (($ $) 55)) (-2316 (($) 26 T CONST)) (-2148 (((-784)) 13)) (-1876 (($) 25)) (-3338 (($) 27 T CONST)) (-1730 (((-784) $) 21)) (-3740 (($ $ $) NIL) (($) NIL T CONST)) (-2249 (($ $ $) NIL) (($) NIL T CONST)) (-4180 (((-112) $) 41)) (-1858 (($ $) 56)) (-2327 (((-941) $) 23)) (-1708 (((-1180) $) 49)) (-3146 (($ (-941)) 20)) (-4409 (((-112) $) 37)) (-1460 (((-1142) $) NIL)) (-3177 (($) 28 T CONST)) (-3451 (((-112) $) 35)) (-3515 (((-877) $) 30)) (-2912 (($ (-784)) 19) (($ (-1180)) 54)) (-4166 (((-112) $ $) NIL)) (-4177 (((-112) $) 45)) (-1329 (((-112) $) 43)) (-2938 (((-112) $ $) 11)) (-2913 (((-112) $ $) 9)) (-2881 (((-112) $ $) 7)) (-2925 (((-112) $ $) 10)) (-2901 (((-112) $ $) 8))) +(((-145) (-13 (-857) (-10 -8 (-15 -1730 ((-784) $)) (-15 -2912 ($ (-784))) (-15 -2912 ($ (-1180))) (-15 -2316 ($) -1491) (-15 -3338 ($) -1491) (-15 -3177 ($) -1491) (-15 -1804 ($ $)) (-15 -1858 ($ $)) (-15 -3451 ((-112) $)) (-15 -4409 ((-112) $)) (-15 -1329 ((-112) $)) (-15 -1380 ((-112) $)) (-15 -4180 ((-112) $)) (-15 -4177 ((-112) $))))) (T -145)) +((-1730 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-145)))) (-2912 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-145)))) (-2912 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-145)))) (-2316 (*1 *1) (-5 *1 (-145))) (-3338 (*1 *1) (-5 *1 (-145))) (-3177 (*1 *1) (-5 *1 (-145))) (-1804 (*1 *1 *1) (-5 *1 (-145))) (-1858 (*1 *1 *1) (-5 *1 (-145))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4409 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(-13 (-857) (-10 -8 (-15 -1730 ((-784) $)) (-15 -2912 ($ (-784))) (-15 -2912 ($ (-1180))) (-15 -2316 ($) -1491) (-15 -3338 ($) -1491) (-15 -3177 ($) -1491) (-15 -1804 ($ $)) (-15 -1858 ($ $)) (-15 -3451 ((-112) $)) (-15 -4409 ((-112) $)) (-15 -1329 ((-112) $)) (-15 -1380 ((-112) $)) (-15 -4180 ((-112) $)) (-15 -4177 ((-112) $)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-576)) 33)) (-3414 (((-3 $ "failed") $) 39)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-146) (-141)) (T -146)) -((-4276 (*1 *1 *1) (|partial| -4 *1 (-146)))) -(-13 (-1070) (-10 -8 (-15 -4276 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-4358 ((|#1| (-701 |#1|) |#1|) 19))) -(((-147 |#1|) (-10 -7 (-15 -4358 (|#1| (-701 |#1|) |#1|))) (-174)) (T -147)) -((-4358 (*1 *2 *3 *2) (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) -(-10 -7 (-15 -4358 (|#1| (-701 |#1|) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-576)) 33)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3414 (*1 *1 *1) (|partial| -4 *1 (-146)))) +(-13 (-1071) (-10 -8 (-15 -3414 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-2948 ((|#1| (-702 |#1|) |#1|) 19))) +(((-147 |#1|) (-10 -7 (-15 -2948 (|#1| (-702 |#1|) |#1|))) (-174)) (T -147)) +((-2948 (*1 *2 *3 *2) (-12 (-5 *3 (-702 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) +(-10 -7 (-15 -2948 (|#1| (-702 |#1|) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-576)) 33)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-148) (-141)) (T -148)) NIL -(-13 (-1070)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3791 (((-2 (|:| -4080 (-783)) (|:| -2862 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783)) 76)) (-2600 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|) 56)) (-2451 (((-2 (|:| -2862 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-2099 ((|#1| |#3| |#3|) 44)) (-2145 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20)) (-2908 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|) 53))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2451 ((-2 (|:| -2862 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2600 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -3791 ((-2 (|:| -4080 (-783)) (|:| -2862 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -2099 (|#1| |#3| |#3|)) (-15 -2145 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -2908 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) (-1242) (-1264 |#1|) (-1264 (-419 |#2|))) (T -149)) -((-2908 (*1 *2 *3 *3) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5))))) (-2145 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1264 *3)))) (-2099 (*1 *2 *3 *3) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1242)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) (-5 *2 (-2 (|:| -4080 (-783)) (|:| -2862 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1264 *3)))) (-2600 (*1 *2 *3) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5))))) (-2451 (*1 *2 *3) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -2862 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) -(-10 -7 (-15 -2451 ((-2 (|:| -2862 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2600 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -3791 ((-2 (|:| -4080 (-783)) (|:| -2862 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -2099 (|#1| |#3| |#3|)) (-15 -2145 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -2908 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) -((-1626 (((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)) 35))) -(((-150 |#1| |#2|) (-10 -7 (-15 -1626 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)))) (-557) (-167 |#1|)) (T -150)) -((-1626 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5))))) -(-10 -7 (-15 -1626 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)))) -((-3603 (($ (-1 (-112) |#2|) $) 37)) (-3841 (($ $) 44)) (-2825 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2721 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-4220 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-1759 (((-112) (-1 (-112) |#2|) $) 24)) (-3127 (((-783) (-1 (-112) |#2|) $) 18) (((-783) |#2| $) NIL)) (-2543 (((-112) (-1 (-112) |#2|) $) 21)) (-1970 (((-783) $) 12))) -(((-151 |#1| |#2|) (-10 -8 (-15 -3841 (|#1| |#1|)) (-15 -2825 (|#1| |#2| |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3603 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2825 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4220 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3127 ((-783) |#2| |#1|)) (-15 -3127 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1759 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1970 ((-783) |#1|))) (-152 |#2|) (-1238)) (T -151)) -NIL -(-10 -8 (-15 -3841 (|#1| |#1|)) (-15 -2825 (|#1| |#2| |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3603 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2825 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4220 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3127 ((-783) |#2| |#1|)) (-15 -3127 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1759 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1970 ((-783) |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) 8)) (-3603 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-3841 (($ $) 42 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464))) (($ |#1| $) 43 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-1556 (((-548) $) 41 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 50)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-152 |#1|) (-141) (-1238)) (T -152)) -((-4125 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-152 *3)))) (-4220 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-2721 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-2721 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-2825 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *3)) (-4 *3 (-1238)))) (-3603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *3)) (-4 *3 (-1238)))) (-2721 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)))) (-2825 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) (-3841 (*1 *1 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) (-4 *2 (-1121))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -4125 ($ (-656 |t#1|))) (-15 -4220 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4464)) (PROGN (-15 -2721 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2721 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2825 ($ (-1 (-112) |t#1|) $)) (-15 -3603 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -2721 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2825 ($ |t#1| $)) (-15 -3841 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) 111)) (-2486 (((-112) $) NIL)) (-1564 (($ |#2| (-656 (-940))) 71)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3780 (($ (-940)) 57)) (-3181 (((-135)) 23)) (-4113 (((-876) $) 86) (($ (-576)) 53) (($ |#2|) 54)) (-2707 ((|#2| $ (-656 (-940))) 74)) (-2910 (((-783)) 20 T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 47 T CONST)) (-4322 (($) 51 T CONST)) (-3939 (((-112) $ $) 33)) (-4047 (($ $ |#2|) NIL)) (-4037 (($ $) 42) (($ $ $) 40)) (-4026 (($ $ $) 38)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) -(((-153 |#1| |#2| |#3|) (-13 (-1070) (-38 |#2|) (-1295 |#2|) (-10 -8 (-15 -3780 ($ (-940))) (-15 -1564 ($ |#2| (-656 (-940)))) (-15 -2707 (|#2| $ (-656 (-940)))) (-15 -1851 ((-3 $ "failed") $)))) (-940) (-374) (-1014 |#1| |#2|)) (T -153)) -((-1851 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-940)) (-4 *3 (-374)) (-14 *4 (-1014 *2 *3)))) (-3780 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1014 *3 *4)))) (-1564 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-940)) (-4 *2 (-374)) (-14 *5 (-1014 *4 *2)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-940))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-940)) (-14 *5 (-1014 *4 *2))))) -(-13 (-1070) (-38 |#2|) (-1295 |#2|) (-10 -8 (-15 -3780 ($ (-940))) (-15 -1564 ($ |#2| (-656 (-940)))) (-15 -2707 (|#2| $ (-656 (-940)))) (-15 -1851 ((-3 $ "failed") $)))) -((-2216 (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-2858 (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576))) 95) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946)) 96)) (-2511 (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227))))) 99) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-962 (-227)))) 98) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576))) 90) (((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946)) 91))) -(((-154) (-10 -7 (-15 -2511 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -2511 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -2858 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -2858 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -2216 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2511 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-962 (-227))))) (-15 -2511 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))))))) (T -154)) -((-2511 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 (-227))))))) (-2511 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-962 (-227)))))) (-2216 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 *4)))) (|:| |xValues| (-1115 *4)) (|:| |yValues| (-1115 *4)))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 *4)))))) (-2858 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-946)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)))) (-2511 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-946)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) (-5 *1 (-154))))) -(-10 -7 (-15 -2511 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -2511 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -2858 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946))) (-15 -2858 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-946) (-419 (-576)) (-419 (-576)))) (-15 -2216 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2511 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-962 (-227))))) (-15 -2511 ((-2 (|:| |brans| (-656 (-656 (-962 (-227))))) (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227)))) (-656 (-656 (-962 (-227))))))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-1666 (((-656 (-1156)) $) 20)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 27) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4159 (((-1156) $) 9)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-155) (-13 (-1104) (-10 -8 (-15 -1666 ((-656 (-1156)) $)) (-15 -4159 ((-1156) $))))) (T -155)) -((-1666 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-155)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-155))))) -(-13 (-1104) (-10 -8 (-15 -1666 ((-656 (-1156)) $)) (-15 -4159 ((-1156) $)))) -((-4006 (((-656 (-171 |#2|)) |#1| |#2|) 50))) -(((-156 |#1| |#2|) (-10 -7 (-15 -4006 ((-656 (-171 |#2|)) |#1| |#2|))) (-1264 (-171 (-576))) (-13 (-374) (-860))) (T -156)) -((-4006 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1264 (-171 (-576)))) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -4006 ((-656 (-171 |#2|)) |#1| |#2|))) -((-1957 (((-112) $ $) NIL)) (-1784 (((-1237) $) 12)) (-1776 (((-1156) $) 9)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-157) (-13 (-1104) (-10 -8 (-15 -1776 ((-1156) $)) (-15 -1784 ((-1237) $))))) (T -157)) -((-1776 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-157)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-157))))) -(-13 (-1104) (-10 -8 (-15 -1776 ((-1156) $)) (-15 -1784 ((-1237) $)))) -((-1957 (((-112) $ $) NIL)) (-3499 (($) 41)) (-1918 (($) 40)) (-4222 (((-940)) 46)) (-2447 (((-1179) $) NIL)) (-4411 (((-576) $) 44)) (-3116 (((-1141) $) NIL)) (-1601 (($) 42)) (-4131 (($ (-576)) 47)) (-4113 (((-876) $) 53)) (-1560 (($) 43)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 38)) (-4026 (($ $ $) 35)) (* (($ (-940) $) 45) (($ (-227) $) 11))) -(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-940) $)) (-15 * ($ (-227) $)) (-15 -4026 ($ $ $)) (-15 -1918 ($)) (-15 -3499 ($)) (-15 -1601 ($)) (-15 -1560 ($)) (-15 -4411 ((-576) $)) (-15 -4222 ((-940))) (-15 -4131 ($ (-576)))))) (T -158)) -((-4026 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-1918 (*1 *1) (-5 *1 (-158))) (-3499 (*1 *1) (-5 *1 (-158))) (-1601 (*1 *1) (-5 *1 (-158))) (-1560 (*1 *1) (-5 *1 (-158))) (-4411 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) (-4222 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-158)))) (-4131 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158))))) -(-13 (-25) (-10 -8 (-15 * ($ (-940) $)) (-15 * ($ (-227) $)) (-15 -4026 ($ $ $)) (-15 -1918 ($)) (-15 -3499 ($)) (-15 -1601 ($)) (-15 -1560 ($)) (-15 -4411 ((-576) $)) (-15 -4222 ((-940))) (-15 -4131 ($ (-576))))) -((-1557 ((|#2| |#2| (-1113 |#2|)) 98) ((|#2| |#2| (-1197)) 75)) (-4332 ((|#2| |#2| (-1113 |#2|)) 97) ((|#2| |#2| (-1197)) 74)) (-1595 ((|#2| |#2| |#2|) 25)) (-1401 (((-115) (-115)) 111)) (-2237 ((|#2| (-656 |#2|)) 130)) (-3638 ((|#2| (-656 |#2|)) 151)) (-3407 ((|#2| (-656 |#2|)) 138)) (-3332 ((|#2| |#2|) 136)) (-2360 ((|#2| (-656 |#2|)) 124)) (-4431 ((|#2| (-656 |#2|)) 125)) (-2395 ((|#2| (-656 |#2|)) 149)) (-3426 ((|#2| |#2| (-1197)) 63) ((|#2| |#2|) 62)) (-4372 ((|#2| |#2|) 21)) (-1348 ((|#2| |#2| |#2|) 24)) (-1380 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-159 |#1| |#2|) (-10 -7 (-15 -1380 ((-112) (-115))) (-15 -1401 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1348 (|#2| |#2| |#2|)) (-15 -1595 (|#2| |#2| |#2|)) (-15 -4372 (|#2| |#2|)) (-15 -3426 (|#2| |#2|)) (-15 -3426 (|#2| |#2| (-1197))) (-15 -1557 (|#2| |#2| (-1197))) (-15 -1557 (|#2| |#2| (-1113 |#2|))) (-15 -4332 (|#2| |#2| (-1197))) (-15 -4332 (|#2| |#2| (-1113 |#2|))) (-15 -3332 (|#2| |#2|)) (-15 -2395 (|#2| (-656 |#2|))) (-15 -3407 (|#2| (-656 |#2|))) (-15 -3638 (|#2| (-656 |#2|))) (-15 -2360 (|#2| (-656 |#2|))) (-15 -4431 (|#2| (-656 |#2|))) (-15 -2237 (|#2| (-656 |#2|)))) (-568) (-442 |#1|)) (T -159)) -((-2237 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-4431 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3638 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3407 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3332 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-4332 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-4332 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-1557 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-1557 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-3426 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-3426 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1595 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1348 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4))))) -(-10 -7 (-15 -1380 ((-112) (-115))) (-15 -1401 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1348 (|#2| |#2| |#2|)) (-15 -1595 (|#2| |#2| |#2|)) (-15 -4372 (|#2| |#2|)) (-15 -3426 (|#2| |#2|)) (-15 -3426 (|#2| |#2| (-1197))) (-15 -1557 (|#2| |#2| (-1197))) (-15 -1557 (|#2| |#2| (-1113 |#2|))) (-15 -4332 (|#2| |#2| (-1197))) (-15 -4332 (|#2| |#2| (-1113 |#2|))) (-15 -3332 (|#2| |#2|)) (-15 -2395 (|#2| (-656 |#2|))) (-15 -3407 (|#2| (-656 |#2|))) (-15 -3638 (|#2| (-656 |#2|))) (-15 -2360 (|#2| (-656 |#2|))) (-15 -4431 (|#2| (-656 |#2|))) (-15 -2237 (|#2| (-656 |#2|)))) -((-2835 ((|#1| |#1| |#1|) 64)) (-1561 ((|#1| |#1| |#1|) 61)) (-1595 ((|#1| |#1| |#1|) 55)) (-3655 ((|#1| |#1|) 42)) (-1885 ((|#1| |#1| (-656 |#1|)) 53)) (-4372 ((|#1| |#1|) 46)) (-1348 ((|#1| |#1| |#1|) 49))) -(((-160 |#1|) (-10 -7 (-15 -1348 (|#1| |#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -1885 (|#1| |#1| (-656 |#1|))) (-15 -3655 (|#1| |#1|)) (-15 -1595 (|#1| |#1| |#1|)) (-15 -1561 (|#1| |#1| |#1|)) (-15 -2835 (|#1| |#1| |#1|))) (-557)) (T -160)) -((-2835 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1561 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1595 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3655 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1885 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))) (-4372 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1348 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(-10 -7 (-15 -1348 (|#1| |#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -1885 (|#1| |#1| (-656 |#1|))) (-15 -3655 (|#1| |#1|)) (-15 -1595 (|#1| |#1| |#1|)) (-15 -1561 (|#1| |#1| |#1|)) (-15 -2835 (|#1| |#1| |#1|))) -((-1557 (($ $ (-1197)) 12) (($ $ (-1113 $)) 11)) (-4332 (($ $ (-1197)) 10) (($ $ (-1113 $)) 9)) (-1595 (($ $ $) 8)) (-3426 (($ $) 14) (($ $ (-1197)) 13)) (-4372 (($ $) 7)) (-1348 (($ $ $) 6))) +(-13 (-1071)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-2368 (((-2 (|:| -2128 (-784)) (|:| -1735 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-784)) 76)) (-3918 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-784))) "failed") |#3|) 56)) (-1737 (((-2 (|:| -1735 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1441 ((|#1| |#3| |#3|) 44)) (-3205 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20)) (-3823 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-784))) |#3| |#3|) 53))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -1737 ((-2 (|:| -1735 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3918 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-784))) "failed") |#3|)) (-15 -2368 ((-2 (|:| -2128 (-784)) (|:| -1735 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-784))) (-15 -1441 (|#1| |#3| |#3|)) (-15 -3205 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -3823 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-784))) |#3| |#3|))) (-1243) (-1265 |#1|) (-1265 (-419 |#2|))) (T -149)) +((-3823 (*1 *2 *3 *3) (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-784)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1265 (-419 *5))))) (-3205 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1265 *3)))) (-1441 (*1 *2 *3 *3) (-12 (-4 *4 (-1265 *2)) (-4 *2 (-1243)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1265 (-419 *4))))) (-2368 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1243)) (-4 *6 (-1265 *5)) (-5 *2 (-2 (|:| -2128 (-784)) (|:| -1735 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-784)) (-4 *7 (-1265 *3)))) (-3918 (*1 *2 *3) (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-784)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1265 (-419 *5))))) (-1737 (*1 *2 *3) (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| -1735 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1265 (-419 *5)))))) +(-10 -7 (-15 -1737 ((-2 (|:| -1735 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3918 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-784))) "failed") |#3|)) (-15 -2368 ((-2 (|:| -2128 (-784)) (|:| -1735 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-784))) (-15 -1441 (|#1| |#3| |#3|)) (-15 -3205 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -3823 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-784))) |#3| |#3|))) +((-3606 (((-3 (-657 (-1194 |#2|)) "failed") (-657 (-1194 |#2|)) (-1194 |#2|)) 35))) +(((-150 |#1| |#2|) (-10 -7 (-15 -3606 ((-3 (-657 (-1194 |#2|)) "failed") (-657 (-1194 |#2|)) (-1194 |#2|)))) (-557) (-167 |#1|)) (T -150)) +((-3606 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-1194 *5))) (-5 *3 (-1194 *5)) (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5))))) +(-10 -7 (-15 -3606 ((-3 (-657 (-1194 |#2|)) "failed") (-657 (-1194 |#2|)) (-1194 |#2|)))) +((-2007 (($ (-1 (-112) |#2|) $) 37)) (-1620 (($ $) 44)) (-3901 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-3662 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-4135 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-2372 (((-112) (-1 (-112) |#2|) $) 24)) (-1469 (((-784) (-1 (-112) |#2|) $) 18) (((-784) |#2| $) NIL)) (-3258 (((-112) (-1 (-112) |#2|) $) 21)) (-3437 (((-784) $) 12))) +(((-151 |#1| |#2|) (-10 -8 (-15 -1620 (|#1| |#1|)) (-15 -3901 (|#1| |#2| |#1|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2007 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3901 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4135 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1469 ((-784) |#2| |#1|)) (-15 -1469 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -2372 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3258 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3437 ((-784) |#1|))) (-152 |#2|) (-1239)) (T -151)) +NIL +(-10 -8 (-15 -1620 (|#1| |#1|)) (-15 -3901 (|#1| |#2| |#1|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2007 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3901 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4135 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1469 ((-784) |#2| |#1|)) (-15 -1469 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -2372 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3258 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3437 ((-784) |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) 8)) (-2007 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-1620 (($ $) 42 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466))) (($ |#1| $) 43 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-4136 (((-548) $) 41 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 50)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-152 |#1|) (-141) (-1239)) (T -152)) +((-3529 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-4 *1 (-152 *3)))) (-4135 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1239)))) (-3662 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)))) (-3662 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)))) (-3901 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *3)) (-4 *3 (-1239)))) (-2007 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *3)) (-4 *3 (-1239)))) (-3662 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1122)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)))) (-3901 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)) (-4 *2 (-1122)))) (-1620 (*1 *1 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)) (-4 *2 (-1122))))) +(-13 (-501 |t#1|) (-10 -8 (-15 -3529 ($ (-657 |t#1|))) (-15 -4135 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4466)) (PROGN (-15 -3662 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3662 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3901 ($ (-1 (-112) |t#1|) $)) (-15 -2007 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -3662 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3901 ($ |t#1| $)) (-15 -1620 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) 111)) (-3994 (((-112) $) NIL)) (-1974 (($ |#2| (-657 (-941))) 71)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1396 (($ (-941)) 57)) (-1451 (((-135)) 23)) (-3515 (((-877) $) 86) (($ (-576)) 53) (($ |#2|) 54)) (-2498 ((|#2| $ (-657 (-941))) 74)) (-3845 (((-784)) 20 T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 47 T CONST)) (-2725 (($) 51 T CONST)) (-2881 (((-112) $ $) 33)) (-2995 (($ $ |#2|) NIL)) (-2982 (($ $) 42) (($ $ $) 40)) (-2971 (($ $ $) 38)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) +(((-153 |#1| |#2| |#3|) (-13 (-1071) (-38 |#2|) (-1296 |#2|) (-10 -8 (-15 -1396 ($ (-941))) (-15 -1974 ($ |#2| (-657 (-941)))) (-15 -2498 (|#2| $ (-657 (-941)))) (-15 -3969 ((-3 $ "failed") $)))) (-941) (-374) (-1015 |#1| |#2|)) (T -153)) +((-3969 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-941)) (-4 *3 (-374)) (-14 *4 (-1015 *2 *3)))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1015 *3 *4)))) (-1974 (*1 *1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-941)) (-4 *2 (-374)) (-14 *5 (-1015 *4 *2)))) (-2498 (*1 *2 *1 *3) (-12 (-5 *3 (-657 (-941))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-941)) (-14 *5 (-1015 *4 *2))))) +(-13 (-1071) (-38 |#2|) (-1296 |#2|) (-10 -8 (-15 -1396 ($ (-941))) (-15 -1974 ($ |#2| (-657 (-941)))) (-15 -2498 (|#2| $ (-657 (-941)))) (-15 -3969 ((-3 $ "failed") $)))) +((-1347 (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-657 (-963 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-1463 (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947) (-419 (-576)) (-419 (-576))) 95) (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947)) 96)) (-4247 (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-657 (-963 (-227))))) 99) (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-963 (-227)))) 98) (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947) (-419 (-576)) (-419 (-576))) 90) (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947)) 91))) +(((-154) (-10 -7 (-15 -4247 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947))) (-15 -4247 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947) (-419 (-576)) (-419 (-576)))) (-15 -1463 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947))) (-15 -1463 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947) (-419 (-576)) (-419 (-576)))) (-15 -1347 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-657 (-963 (-227)))) (-227) (-227) (-227) (-227))) (-15 -4247 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-963 (-227))))) (-15 -4247 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-657 (-963 (-227)))))))) (T -154)) +((-4247 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) (-5 *1 (-154)) (-5 *3 (-657 (-657 (-963 (-227))))))) (-4247 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) (-5 *1 (-154)) (-5 *3 (-657 (-963 (-227)))))) (-1347 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 *4)))) (|:| |xValues| (-1116 *4)) (|:| |yValues| (-1116 *4)))) (-5 *1 (-154)) (-5 *3 (-657 (-657 (-963 *4)))))) (-1463 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-947)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) (-5 *1 (-154)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) (-5 *1 (-154)))) (-4247 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-947)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) (-5 *1 (-154)))) (-4247 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) (-5 *1 (-154))))) +(-10 -7 (-15 -4247 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947))) (-15 -4247 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947) (-419 (-576)) (-419 (-576)))) (-15 -1463 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947))) (-15 -1463 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947) (-419 (-576)) (-419 (-576)))) (-15 -1347 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-657 (-963 (-227)))) (-227) (-227) (-227) (-227))) (-15 -4247 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-963 (-227))))) (-15 -4247 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-657 (-963 (-227))))))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-3004 (((-657 (-1157)) $) 20)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 27) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2645 (((-1157) $) 9)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-155) (-13 (-1105) (-10 -8 (-15 -3004 ((-657 (-1157)) $)) (-15 -2645 ((-1157) $))))) (T -155)) +((-3004 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-155)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-155))))) +(-13 (-1105) (-10 -8 (-15 -3004 ((-657 (-1157)) $)) (-15 -2645 ((-1157) $)))) +((-3864 (((-657 (-171 |#2|)) |#1| |#2|) 50))) +(((-156 |#1| |#2|) (-10 -7 (-15 -3864 ((-657 (-171 |#2|)) |#1| |#2|))) (-1265 (-171 (-576))) (-13 (-374) (-861))) (T -156)) +((-3864 (*1 *2 *3 *4) (-12 (-5 *2 (-657 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1265 (-171 (-576)))) (-4 *4 (-13 (-374) (-861)))))) +(-10 -7 (-15 -3864 ((-657 (-171 |#2|)) |#1| |#2|))) +((-3423 (((-112) $ $) NIL)) (-1691 (((-1238) $) 12)) (-1678 (((-1157) $) 9)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 19) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-157) (-13 (-1105) (-10 -8 (-15 -1678 ((-1157) $)) (-15 -1691 ((-1238) $))))) (T -157)) +((-1678 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-157)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-157))))) +(-13 (-1105) (-10 -8 (-15 -1678 ((-1157) $)) (-15 -1691 ((-1238) $)))) +((-3423 (((-112) $ $) NIL)) (-1512 (($) 41)) (-3322 (($) 40)) (-4158 (((-941)) 46)) (-1708 (((-1180) $) NIL)) (-2310 (((-576) $) 44)) (-1460 (((-1142) $) NIL)) (-3316 (($) 42)) (-2587 (($ (-576)) 47)) (-3515 (((-877) $) 53)) (-4250 (($) 43)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 38)) (-2971 (($ $ $) 35)) (* (($ (-941) $) 45) (($ (-227) $) 11))) +(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-941) $)) (-15 * ($ (-227) $)) (-15 -2971 ($ $ $)) (-15 -3322 ($)) (-15 -1512 ($)) (-15 -3316 ($)) (-15 -4250 ($)) (-15 -2310 ((-576) $)) (-15 -4158 ((-941))) (-15 -2587 ($ (-576)))))) (T -158)) +((-2971 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-3322 (*1 *1) (-5 *1 (-158))) (-1512 (*1 *1) (-5 *1 (-158))) (-3316 (*1 *1) (-5 *1 (-158))) (-4250 (*1 *1) (-5 *1 (-158))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) (-4158 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-158)))) (-2587 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158))))) +(-13 (-25) (-10 -8 (-15 * ($ (-941) $)) (-15 * ($ (-227) $)) (-15 -2971 ($ $ $)) (-15 -3322 ($)) (-15 -1512 ($)) (-15 -3316 ($)) (-15 -4250 ($)) (-15 -2310 ((-576) $)) (-15 -4158 ((-941))) (-15 -2587 ($ (-576))))) +((-4218 ((|#2| |#2| (-1114 |#2|)) 98) ((|#2| |#2| (-1198)) 75)) (-3964 ((|#2| |#2| (-1114 |#2|)) 97) ((|#2| |#2| (-1198)) 74)) (-3262 ((|#2| |#2| |#2|) 25)) (-1803 (((-115) (-115)) 111)) (-3351 ((|#2| (-657 |#2|)) 130)) (-3384 ((|#2| (-657 |#2|)) 151)) (-3072 ((|#2| (-657 |#2|)) 138)) (-3621 ((|#2| |#2|) 136)) (-2077 ((|#2| (-657 |#2|)) 124)) (-2508 ((|#2| (-657 |#2|)) 125)) (-2413 ((|#2| (-657 |#2|)) 149)) (-2064 ((|#2| |#2| (-1198)) 63) ((|#2| |#2|) 62)) (-3067 ((|#2| |#2|) 21)) (-1940 ((|#2| |#2| |#2|) 24)) (-2946 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-159 |#1| |#2|) (-10 -7 (-15 -2946 ((-112) (-115))) (-15 -1803 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1940 (|#2| |#2| |#2|)) (-15 -3262 (|#2| |#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -2064 (|#2| |#2|)) (-15 -2064 (|#2| |#2| (-1198))) (-15 -4218 (|#2| |#2| (-1198))) (-15 -4218 (|#2| |#2| (-1114 |#2|))) (-15 -3964 (|#2| |#2| (-1198))) (-15 -3964 (|#2| |#2| (-1114 |#2|))) (-15 -3621 (|#2| |#2|)) (-15 -2413 (|#2| (-657 |#2|))) (-15 -3072 (|#2| (-657 |#2|))) (-15 -3384 (|#2| (-657 |#2|))) (-15 -2077 (|#2| (-657 |#2|))) (-15 -2508 (|#2| (-657 |#2|))) (-15 -3351 (|#2| (-657 |#2|)))) (-568) (-442 |#1|)) (T -159)) +((-3351 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2413 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3964 (*1 *2 *2 *3) (-12 (-5 *3 (-1114 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-3964 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-4218 (*1 *2 *2 *3) (-12 (-5 *3 (-1114 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-4218 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-2064 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-2064 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3262 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1940 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4))))) +(-10 -7 (-15 -2946 ((-112) (-115))) (-15 -1803 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1940 (|#2| |#2| |#2|)) (-15 -3262 (|#2| |#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -2064 (|#2| |#2|)) (-15 -2064 (|#2| |#2| (-1198))) (-15 -4218 (|#2| |#2| (-1198))) (-15 -4218 (|#2| |#2| (-1114 |#2|))) (-15 -3964 (|#2| |#2| (-1198))) (-15 -3964 (|#2| |#2| (-1114 |#2|))) (-15 -3621 (|#2| |#2|)) (-15 -2413 (|#2| (-657 |#2|))) (-15 -3072 (|#2| (-657 |#2|))) (-15 -3384 (|#2| (-657 |#2|))) (-15 -2077 (|#2| (-657 |#2|))) (-15 -2508 (|#2| (-657 |#2|))) (-15 -3351 (|#2| (-657 |#2|)))) +((-4379 ((|#1| |#1| |#1|) 64)) (-4262 ((|#1| |#1| |#1|) 61)) (-3262 ((|#1| |#1| |#1|) 55)) (-3566 ((|#1| |#1|) 42)) (-4336 ((|#1| |#1| (-657 |#1|)) 53)) (-3067 ((|#1| |#1|) 46)) (-1940 ((|#1| |#1| |#1|) 49))) +(((-160 |#1|) (-10 -7 (-15 -1940 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -4336 (|#1| |#1| (-657 |#1|))) (-15 -3566 (|#1| |#1|)) (-15 -3262 (|#1| |#1| |#1|)) (-15 -4262 (|#1| |#1| |#1|)) (-15 -4379 (|#1| |#1| |#1|))) (-557)) (T -160)) +((-4379 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-4262 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3262 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3566 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-4336 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))) (-3067 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1940 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(-10 -7 (-15 -1940 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -4336 (|#1| |#1| (-657 |#1|))) (-15 -3566 (|#1| |#1|)) (-15 -3262 (|#1| |#1| |#1|)) (-15 -4262 (|#1| |#1| |#1|)) (-15 -4379 (|#1| |#1| |#1|))) +((-4218 (($ $ (-1198)) 12) (($ $ (-1114 $)) 11)) (-3964 (($ $ (-1198)) 10) (($ $ (-1114 $)) 9)) (-3262 (($ $ $) 8)) (-2064 (($ $) 14) (($ $ (-1198)) 13)) (-3067 (($ $) 7)) (-1940 (($ $ $) 6))) (((-161) (-141)) (T -161)) -((-3426 (*1 *1 *1) (-4 *1 (-161))) (-3426 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) (-1557 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) (-1557 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161)))) (-4332 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) (-4332 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161))))) -(-13 (-144) (-10 -8 (-15 -3426 ($ $)) (-15 -3426 ($ $ (-1197))) (-15 -1557 ($ $ (-1197))) (-15 -1557 ($ $ (-1113 $))) (-15 -4332 ($ $ (-1197))) (-15 -4332 ($ $ (-1113 $))))) +((-2064 (*1 *1 *1) (-4 *1 (-161))) (-2064 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1198)))) (-4218 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1198)))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-1114 *1)) (-4 *1 (-161)))) (-3964 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1198)))) (-3964 (*1 *1 *1 *2) (-12 (-5 *2 (-1114 *1)) (-4 *1 (-161))))) +(-13 (-144) (-10 -8 (-15 -2064 ($ $)) (-15 -2064 ($ $ (-1198))) (-15 -4218 ($ $ (-1198))) (-15 -4218 ($ $ (-1114 $))) (-15 -3964 ($ $ (-1198))) (-15 -3964 ($ $ (-1114 $))))) (((-144) . T)) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4159 (((-656 (-1156)) $) 10)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-162) (-13 (-1104) (-10 -8 (-15 -4159 ((-656 (-1156)) $))))) (T -162)) -((-4159 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-162))))) -(-13 (-1104) (-10 -8 (-15 -4159 ((-656 (-1156)) $)))) -((-1957 (((-112) $ $) NIL)) (-3189 (($ (-576)) 14) (($ $ $) 15)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 18)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 9))) -(((-163) (-13 (-1121) (-10 -8 (-15 -3189 ($ (-576))) (-15 -3189 ($ $ $))))) (T -163)) -((-3189 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))) (-3189 (*1 *1 *1 *1) (-5 *1 (-163)))) -(-13 (-1121) (-10 -8 (-15 -3189 ($ (-576))) (-15 -3189 ($ $ $)))) -((-1401 (((-115) (-1197)) 102))) -(((-164) (-10 -7 (-15 -1401 ((-115) (-1197))))) (T -164)) -((-1401 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-115)) (-5 *1 (-164))))) -(-10 -7 (-15 -1401 ((-115) (-1197)))) -((-3027 ((|#3| |#3|) 19))) -(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -3027 (|#3| |#3|))) (-1070) (-1264 |#1|) (-1264 |#2|)) (T -165)) -((-3027 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-4 *4 (-1264 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1264 *4))))) -(-10 -7 (-15 -3027 (|#3| |#3|))) -((-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 223)) (-3832 ((|#2| $) 102)) (-3586 (($ $) 256)) (-3435 (($ $) 250)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 47)) (-3562 (($ $) 254)) (-3412 (($ $) 248)) (-2982 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2317 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 144)) (-1895 (($ $ $) 229)) (-1930 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 160) (((-701 |#2|) (-701 $)) 154)) (-2721 (($ (-1193 |#2|)) 125) (((-3 $ "failed") (-419 (-1193 |#2|))) NIL)) (-1851 (((-3 $ "failed") $) 214)) (-3526 (((-3 (-419 (-576)) "failed") $) 204)) (-4063 (((-112) $) 199)) (-1400 (((-419 (-576)) $) 202)) (-4135 (((-940)) 96)) (-1908 (($ $ $) 231)) (-4209 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-2722 (($) 245)) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 193) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 198)) (-2595 ((|#2| $) 100)) (-4293 (((-1193 |#2|) $) 127)) (-2423 (($ (-1 |#2| |#2|) $) 108)) (-2608 (($ $) 247)) (-2709 (((-1193 |#2|) $) 126)) (-1669 (($ $) 207)) (-2250 (($) 103)) (-4112 (((-430 (-1193 $)) (-1193 $)) 95)) (-3680 (((-430 (-1193 $)) (-1193 $)) 64)) (-1946 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-2156 (($ $) 246)) (-2812 (((-783) $) 226)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 236)) (-1790 ((|#2| (-1288 $)) NIL) ((|#2|) 98)) (-4107 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-3881 (((-1193 |#2|)) 120)) (-3574 (($ $) 255)) (-3424 (($ $) 249)) (-4314 (((-1288 |#2|) $ (-1288 $)) 136) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $) 116) (((-701 |#2|) (-1288 $)) NIL)) (-1556 (((-1288 |#2|) $) NIL) (($ (-1288 |#2|)) NIL) (((-1193 |#2|) $) NIL) (($ (-1193 |#2|)) NIL) (((-907 (-576)) $) 184) (((-907 (-390)) $) 188) (((-171 (-390)) $) 172) (((-171 (-227)) $) 167) (((-548) $) 180)) (-2117 (($ $) 104)) (-4113 (((-876) $) 143) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-419 (-576))) NIL) (($ $) NIL)) (-4358 (((-1193 |#2|) $) 32)) (-2910 (((-783)) 106)) (-2950 (((-112) $ $) 13)) (-3653 (($ $) 259)) (-3510 (($ $) 253)) (-3632 (($ $) 257)) (-3487 (($ $) 251)) (-1997 ((|#2| $) 242)) (-3642 (($ $) 258)) (-3498 (($ $) 252)) (-2366 (($ $) 162)) (-3939 (((-112) $ $) 110)) (-4037 (($ $) 112) (($ $ $) NIL)) (-4026 (($ $ $) 111)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) 276) (($ $ $) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) -(((-166 |#1| |#2|) (-10 -8 (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4113 (|#1| |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1432 ((-2 (|:| -2946 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2812 ((-783) |#1|)) (-15 -3889 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -1908 (|#1| |#1| |#1|)) (-15 -1895 (|#1| |#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -1556 ((-548) |#1|)) (-15 -1556 ((-171 (-227)) |#1|)) (-15 -1556 ((-171 (-390)) |#1|)) (-15 -3435 (|#1| |#1|)) (-15 -3412 (|#1| |#1|)) (-15 -3424 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3510 (|#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3653 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -2156 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2722 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3680 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4112 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1626 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -3526 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1400 ((-419 (-576)) |#1|)) (-15 -4063 ((-112) |#1|)) (-15 -4209 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1997 (|#2| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2117 (|#1| |#1|)) (-15 -2250 (|#1|)) (-15 -1556 ((-907 (-390)) |#1|)) (-15 -1556 ((-907 (-576)) |#1|)) (-15 -2477 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -2477 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2721 ((-3 |#1| "failed") (-419 (-1193 |#2|)))) (-15 -2709 ((-1193 |#2|) |#1|)) (-15 -1556 (|#1| (-1193 |#2|))) (-15 -2721 (|#1| (-1193 |#2|))) (-15 -3881 ((-1193 |#2|))) (-15 -1930 ((-701 |#2|) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-701 (-576)) (-701 |#1|))) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -1556 ((-1193 |#2|) |#1|)) (-15 -1790 (|#2|)) (-15 -1556 (|#1| (-1288 |#2|))) (-15 -1556 ((-1288 |#2|) |#1|)) (-15 -4314 ((-701 |#2|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1|)) (-15 -4293 ((-1193 |#2|) |#1|)) (-15 -4358 ((-1193 |#2|) |#1|)) (-15 -1790 (|#2| (-1288 |#1|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -2595 (|#2| |#1|)) (-15 -3832 (|#2| |#1|)) (-15 -4135 ((-940))) (-15 -4113 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2910 ((-783))) (-15 -4113 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -1851 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -2950 ((-112) |#1| |#1|)) (-15 -3939 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) -((-2910 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-4135 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-940)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1790 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-3881 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1193 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) -(-10 -8 (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4113 (|#1| |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1432 ((-2 (|:| -2946 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2812 ((-783) |#1|)) (-15 -3889 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -1908 (|#1| |#1| |#1|)) (-15 -1895 (|#1| |#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -1556 ((-548) |#1|)) (-15 -1556 ((-171 (-227)) |#1|)) (-15 -1556 ((-171 (-390)) |#1|)) (-15 -3435 (|#1| |#1|)) (-15 -3412 (|#1| |#1|)) (-15 -3424 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3510 (|#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3653 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -2156 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2722 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3680 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4112 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1626 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -3526 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1400 ((-419 (-576)) |#1|)) (-15 -4063 ((-112) |#1|)) (-15 -4209 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1997 (|#2| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2117 (|#1| |#1|)) (-15 -2250 (|#1|)) (-15 -1556 ((-907 (-390)) |#1|)) (-15 -1556 ((-907 (-576)) |#1|)) (-15 -2477 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -2477 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2721 ((-3 |#1| "failed") (-419 (-1193 |#2|)))) (-15 -2709 ((-1193 |#2|) |#1|)) (-15 -1556 (|#1| (-1193 |#2|))) (-15 -2721 (|#1| (-1193 |#2|))) (-15 -3881 ((-1193 |#2|))) (-15 -1930 ((-701 |#2|) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-701 (-576)) (-701 |#1|))) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -1556 ((-1193 |#2|) |#1|)) (-15 -1790 (|#2|)) (-15 -1556 (|#1| (-1288 |#2|))) (-15 -1556 ((-1288 |#2|) |#1|)) (-15 -4314 ((-701 |#2|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1|)) (-15 -4293 ((-1193 |#2|) |#1|)) (-15 -4358 ((-1193 |#2|) |#1|)) (-15 -1790 (|#2| (-1288 |#1|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -2595 (|#2| |#1|)) (-15 -3832 (|#2| |#1|)) (-15 -4135 ((-940))) (-15 -4113 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2910 ((-783))) (-15 -4113 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -1851 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -2950 ((-112) |#1| |#1|)) (-15 -3939 ((-112) |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 105 (-3795 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-2390 (($ $) 106 (-3795 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-3302 (((-112) $) 108 (-3795 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-2637 (((-701 |#1|) (-1288 $)) 53) (((-701 |#1|)) 68)) (-3832 ((|#1| $) 59)) (-3586 (($ $) 236 (|has| |#1| (-1223)))) (-3435 (($ $) 219 (|has| |#1| (-1223)))) (-2063 (((-1210 (-940) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-1765 (((-3 $ "failed") $ $) 20)) (-2725 (((-430 (-1193 $)) (-1193 $)) 250 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-2658 (($ $) 125 (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-3589 (((-430 $) $) 126 (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-1462 (($ $) 249 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 253 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-4386 (((-112) $ $) 116 (|has| |#1| (-317)))) (-2201 (((-783)) 99 (|has| |#1| (-379)))) (-3562 (($ $) 235 (|has| |#1| (-1223)))) (-3412 (($ $) 220 (|has| |#1| (-1223)))) (-3612 (($ $) 234 (|has| |#1| (-1223)))) (-3461 (($ $) 221 (|has| |#1| (-1223)))) (-3170 (($) 18 T CONST)) (-2982 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2317 (((-576) $) 184 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 181)) (-2496 (($ (-1288 |#1|) (-1288 $)) 55) (($ (-1288 |#1|)) 71)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-1895 (($ $ $) 120 (|has| |#1| (-317)))) (-1481 (((-701 |#1|) $ (-1288 $)) 60) (((-701 |#1|) $) 66)) (-1930 (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 175) (((-701 |#1|) (-701 $)) 174)) (-2721 (($ (-1193 |#1|)) 169) (((-3 $ "failed") (-419 (-1193 |#1|))) 166 (|has| |#1| (-374)))) (-1851 (((-3 $ "failed") $) 37)) (-1474 ((|#1| $) 261)) (-3526 (((-3 (-419 (-576)) "failed") $) 254 (|has| |#1| (-557)))) (-4063 (((-112) $) 256 (|has| |#1| (-557)))) (-1400 (((-419 (-576)) $) 255 (|has| |#1| (-557)))) (-4135 (((-940)) 61)) (-4370 (($) 102 (|has| |#1| (-379)))) (-1908 (($ $ $) 119 (|has| |#1| (-317)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 114 (|has| |#1| (-317)))) (-3712 (($) 160 (|has| |#1| (-360)))) (-2616 (((-112) $) 161 (|has| |#1| (-360)))) (-2824 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-2171 (((-112) $) 127 (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-4209 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1081)) (|has| |#1| (-1223))))) (-2722 (($) 246 (|has| |#1| (-1223)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 269 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 268 (|has| |#1| (-901 (-390))))) (-3359 (((-940) $) 163 (|has| |#1| (-360))) (((-845 (-940)) $) 149 (|has| |#1| (-360)))) (-2486 (((-112) $) 35)) (-4005 (($ $ (-576)) 248 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-2595 ((|#1| $) 58)) (-3552 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-317)))) (-4293 (((-1193 |#1|) $) 51 (|has| |#1| (-374)))) (-2423 (($ (-1 |#1| |#1|) $) 270)) (-3787 (((-940) $) 101 (|has| |#1| (-379)))) (-2608 (($ $) 243 (|has| |#1| (-1223)))) (-2709 (((-1193 |#1|) $) 167)) (-2160 (((-701 (-576)) (-1288 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 173) (((-701 |#1|) (-1288 $)) 172)) (-3076 (($ (-656 $)) 112 (-3795 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (($ $ $) 111 (-3795 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-2447 (((-1179) $) 10)) (-1669 (($ $) 128 (|has| |#1| (-374)))) (-3650 (($) 154 (|has| |#1| (-360)) CONST)) (-2411 (($ (-940)) 100 (|has| |#1| (-379)))) (-2250 (($) 265)) (-1485 ((|#1| $) 262)) (-3116 (((-1141) $) 11)) (-2549 (($) 171)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 113 (-3795 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-3115 (($ (-656 $)) 110 (-3795 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (($ $ $) 109 (-3795 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) 157 (|has| |#1| (-360)))) (-4112 (((-430 (-1193 $)) (-1193 $)) 252 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-3680 (((-430 (-1193 $)) (-1193 $)) 251 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-1452 (((-430 $) $) 124 (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 121 (|has| |#1| (-317)))) (-1946 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 104 (-3795 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-317)))) (-2156 (($ $) 244 (|has| |#1| (-1223)))) (-2145 (($ $ (-656 |#1|) (-656 |#1|)) 276 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 275 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 274 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 273 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 272 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 271 (|has| |#1| (-526 (-1197) |#1|)))) (-2812 (((-783) $) 117 (|has| |#1| (-317)))) (-4369 (($ $ |#1|) 277 (|has| |#1| (-296 |#1| |#1|)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 118 (|has| |#1| (-317)))) (-1790 ((|#1| (-1288 $)) 54) ((|#1|) 67)) (-3168 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-4107 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-783)) 135) (($ $ (-656 (-1197)) (-656 (-783))) 141 (-3795 (-2311 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2311 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) 140 (-3795 (-2311 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2311 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) 139 (-3795 (-2311 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2311 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) 137 (-3795 (-2311 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2311 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) 147 (-3795 (-2311 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2311 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2311 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 145 (-3795 (-2311 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2311 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2311 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-2828 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-3881 (((-1193 |#1|)) 170)) (-3623 (($ $) 233 (|has| |#1| (-1223)))) (-3474 (($ $) 222 (|has| |#1| (-1223)))) (-4223 (($) 159 (|has| |#1| (-360)))) (-3599 (($ $) 232 (|has| |#1| (-1223)))) (-3448 (($ $) 223 (|has| |#1| (-1223)))) (-3574 (($ $) 231 (|has| |#1| (-1223)))) (-3424 (($ $) 224 (|has| |#1| (-1223)))) (-4314 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56) (((-1288 |#1|) $) 73) (((-701 |#1|) (-1288 $)) 72)) (-1556 (((-1288 |#1|) $) 70) (($ (-1288 |#1|)) 69) (((-1193 |#1|) $) 186) (($ (-1193 |#1|)) 168) (((-907 (-576)) $) 267 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 266 (|has| |#1| (-626 (-907 (-390))))) (((-171 (-390)) $) 218 (|has| |#1| (-1043))) (((-171 (-227)) $) 217 (|has| |#1| (-1043))) (((-548) $) 216 (|has| |#1| (-626 (-548))))) (-2117 (($ $) 264)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 156 (-3795 (-2311 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (|has| |#1| (-360))))) (-2649 (($ |#1| |#1|) 263)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (-3795 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) 103 (-3795 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-4276 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (-3795 (-2311 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (|has| |#1| (-146))))) (-4358 (((-1193 |#1|) $) 52)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-2704 (((-1288 $)) 74)) (-3653 (($ $) 242 (|has| |#1| (-1223)))) (-3510 (($ $) 230 (|has| |#1| (-1223)))) (-4134 (((-112) $ $) 107 (-3795 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))))) (-3632 (($ $) 241 (|has| |#1| (-1223)))) (-3487 (($ $) 229 (|has| |#1| (-1223)))) (-3673 (($ $) 240 (|has| |#1| (-1223)))) (-3537 (($ $) 228 (|has| |#1| (-1223)))) (-1997 ((|#1| $) 258 (|has| |#1| (-1223)))) (-1972 (($ $) 239 (|has| |#1| (-1223)))) (-3550 (($ $) 227 (|has| |#1| (-1223)))) (-3664 (($ $) 238 (|has| |#1| (-1223)))) (-3523 (($ $) 226 (|has| |#1| (-1223)))) (-3642 (($ $) 237 (|has| |#1| (-1223)))) (-3498 (($ $) 225 (|has| |#1| (-1223)))) (-2366 (($ $) 259 (|has| |#1| (-1081)))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-783)) 133) (($ $ (-656 (-1197)) (-656 (-783))) 144 (-3795 (-2311 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2311 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) 143 (-3795 (-2311 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2311 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) 142 (-3795 (-2311 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2311 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) 138 (-3795 (-2311 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-2311 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) 148 (-3795 (-2311 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2311 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2311 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 146 (-3795 (-2311 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2311 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2311 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ $) 132 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-419 (-576))) 247 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223)))) (($ $ $) 245 (|has| |#1| (-1223))) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 16) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2645 (((-657 (-1157)) $) 10)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-162) (-13 (-1105) (-10 -8 (-15 -2645 ((-657 (-1157)) $))))) (T -162)) +((-2645 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-162))))) +(-13 (-1105) (-10 -8 (-15 -2645 ((-657 (-1157)) $)))) +((-3423 (((-112) $ $) NIL)) (-1514 (($ (-576)) 14) (($ $ $) 15)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 18)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 9))) +(((-163) (-13 (-1122) (-10 -8 (-15 -1514 ($ (-576))) (-15 -1514 ($ $ $))))) (T -163)) +((-1514 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))) (-1514 (*1 *1 *1 *1) (-5 *1 (-163)))) +(-13 (-1122) (-10 -8 (-15 -1514 ($ (-576))) (-15 -1514 ($ $ $)))) +((-1803 (((-115) (-1198)) 102))) +(((-164) (-10 -7 (-15 -1803 ((-115) (-1198))))) (T -164)) +((-1803 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-115)) (-5 *1 (-164))))) +(-10 -7 (-15 -1803 ((-115) (-1198)))) +((-3655 ((|#3| |#3|) 19))) +(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -3655 (|#3| |#3|))) (-1071) (-1265 |#1|) (-1265 |#2|)) (T -165)) +((-3655 (*1 *2 *2) (-12 (-4 *3 (-1071)) (-4 *4 (-1265 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1265 *4))))) +(-10 -7 (-15 -3655 (|#3| |#3|))) +((-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 223)) (-2256 ((|#2| $) 102)) (-2143 (($ $) 256)) (-2012 (($ $) 250)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 47)) (-2120 (($ $) 254)) (-1989 (($ $) 248)) (-1593 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2830 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 144)) (-3355 (($ $ $) 229)) (-3439 (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) 160) (((-702 |#2|) (-702 $)) 154)) (-3662 (($ (-1194 |#2|)) 125) (((-3 $ "failed") (-419 (-1194 |#2|))) NIL)) (-3969 (((-3 $ "failed") $) 214)) (-1758 (((-3 (-419 (-576)) "failed") $) 204)) (-3113 (((-112) $) 199)) (-1842 (((-419 (-576)) $) 202)) (-4343 (((-941)) 96)) (-3369 (($ $ $) 231)) (-4016 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1622 (($) 245)) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 193) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 198)) (-3869 ((|#2| $) 100)) (-3604 (((-1194 |#2|) $) 127)) (-4071 (($ (-1 |#2| |#2|) $) 108)) (-3707 (($ $) 247)) (-3647 (((-1194 |#2|) $) 126)) (-2098 (($ $) 207)) (-3474 (($) 103)) (-2436 (((-430 (-1194 $)) (-1194 $)) 95)) (-3828 (((-430 (-1194 $)) (-1194 $)) 64)) (-3409 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4056 (($ $) 246)) (-4164 (((-784) $) 226)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 236)) (-1465 ((|#2| (-1289 $)) NIL) ((|#2|) 98)) (-2209 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL) (($ $ (-784)) NIL) (($ $) NIL)) (-2005 (((-1194 |#2|)) 120)) (-2131 (($ $) 255)) (-2002 (($ $) 249)) (-3806 (((-1289 |#2|) $ (-1289 $)) 136) (((-702 |#2|) (-1289 $) (-1289 $)) NIL) (((-1289 |#2|) $) 116) (((-702 |#2|) (-1289 $)) NIL)) (-4136 (((-1289 |#2|) $) NIL) (($ (-1289 |#2|)) NIL) (((-1194 |#2|) $) NIL) (($ (-1194 |#2|)) NIL) (((-908 (-576)) $) 184) (((-908 (-390)) $) 188) (((-171 (-390)) $) 172) (((-171 (-227)) $) 167) (((-548) $) 180)) (-1587 (($ $) 104)) (-3515 (((-877) $) 143) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-419 (-576))) NIL) (($ $) NIL)) (-2948 (((-1194 |#2|) $) 32)) (-3845 (((-784)) 106)) (-4166 (((-112) $ $) 13)) (-4110 (($ $) 259)) (-2082 (($ $) 253)) (-2188 (($ $) 257)) (-2055 (($ $) 251)) (-2805 ((|#2| $) 242)) (-4097 (($ $) 258)) (-2070 (($ $) 252)) (-2127 (($ $) 162)) (-2881 (((-112) $ $) 110)) (-2982 (($ $) 112) (($ $ $) NIL)) (-2971 (($ $ $) 111)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-419 (-576))) 276) (($ $ $) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) +(((-166 |#1| |#2|) (-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -3515 (|#1| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3422 ((-2 (|:| -4119 |#1|) (|:| -4453 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4164 ((-784) |#1|)) (-15 -3977 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -3369 (|#1| |#1| |#1|)) (-15 -3355 (|#1| |#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -4136 ((-548) |#1|)) (-15 -4136 ((-171 (-227)) |#1|)) (-15 -4136 ((-171 (-390)) |#1|)) (-15 -2012 (|#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -2055 (|#1| |#1|)) (-15 -2082 (|#1| |#1|)) (-15 -2131 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2143 (|#1| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -4056 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1622 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3828 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2436 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -3606 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -1758 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1842 ((-419 (-576)) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -4016 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2805 (|#2| |#1|)) (-15 -2127 (|#1| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1587 (|#1| |#1|)) (-15 -3474 (|#1|)) (-15 -4136 ((-908 (-390)) |#1|)) (-15 -4136 ((-908 (-576)) |#1|)) (-15 -2008 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -2008 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3662 ((-3 |#1| "failed") (-419 (-1194 |#2|)))) (-15 -3647 ((-1194 |#2|) |#1|)) (-15 -4136 (|#1| (-1194 |#2|))) (-15 -3662 (|#1| (-1194 |#2|))) (-15 -2005 ((-1194 |#2|))) (-15 -3439 ((-702 |#2|) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-702 (-576)) (-702 |#1|))) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -4136 ((-1194 |#2|) |#1|)) (-15 -1465 (|#2|)) (-15 -4136 (|#1| (-1289 |#2|))) (-15 -4136 ((-1289 |#2|) |#1|)) (-15 -3806 ((-702 |#2|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1|)) (-15 -3604 ((-1194 |#2|) |#1|)) (-15 -2948 ((-1194 |#2|) |#1|)) (-15 -1465 (|#2| (-1289 |#1|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -3869 (|#2| |#1|)) (-15 -2256 (|#2| |#1|)) (-15 -4343 ((-941))) (-15 -3515 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 ((-784))) (-15 -3515 (|#1| (-576))) (-15 ** (|#1| |#1| (-784))) (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-941))) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -4166 ((-112) |#1| |#1|)) (-15 -2881 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) +((-3845 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-784)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-4343 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-941)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1465 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-2005 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1194 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) +(-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -3515 (|#1| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3422 ((-2 (|:| -4119 |#1|) (|:| -4453 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4164 ((-784) |#1|)) (-15 -3977 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -3369 (|#1| |#1| |#1|)) (-15 -3355 (|#1| |#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -4136 ((-548) |#1|)) (-15 -4136 ((-171 (-227)) |#1|)) (-15 -4136 ((-171 (-390)) |#1|)) (-15 -2012 (|#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -2055 (|#1| |#1|)) (-15 -2082 (|#1| |#1|)) (-15 -2131 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2143 (|#1| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -4056 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1622 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3828 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2436 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -3606 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -1758 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1842 ((-419 (-576)) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -4016 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2805 (|#2| |#1|)) (-15 -2127 (|#1| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1587 (|#1| |#1|)) (-15 -3474 (|#1|)) (-15 -4136 ((-908 (-390)) |#1|)) (-15 -4136 ((-908 (-576)) |#1|)) (-15 -2008 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -2008 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3662 ((-3 |#1| "failed") (-419 (-1194 |#2|)))) (-15 -3647 ((-1194 |#2|) |#1|)) (-15 -4136 (|#1| (-1194 |#2|))) (-15 -3662 (|#1| (-1194 |#2|))) (-15 -2005 ((-1194 |#2|))) (-15 -3439 ((-702 |#2|) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-702 (-576)) (-702 |#1|))) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -4136 ((-1194 |#2|) |#1|)) (-15 -1465 (|#2|)) (-15 -4136 (|#1| (-1289 |#2|))) (-15 -4136 ((-1289 |#2|) |#1|)) (-15 -3806 ((-702 |#2|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1|)) (-15 -3604 ((-1194 |#2|) |#1|)) (-15 -2948 ((-1194 |#2|) |#1|)) (-15 -1465 (|#2| (-1289 |#1|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -3869 (|#2| |#1|)) (-15 -2256 (|#2| |#1|)) (-15 -4343 ((-941))) (-15 -3515 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 ((-784))) (-15 -3515 (|#1| (-576))) (-15 ** (|#1| |#1| (-784))) (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-941))) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -4166 ((-112) |#1| |#1|)) (-15 -2881 ((-112) |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 105 (-2748 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-2361 (($ $) 106 (-2748 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-3286 (((-112) $) 108 (-2748 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-3011 (((-702 |#1|) (-1289 $)) 53) (((-702 |#1|)) 68)) (-2256 ((|#1| $) 59)) (-2143 (($ $) 236 (|has| |#1| (-1224)))) (-2012 (($ $) 219 (|has| |#1| (-1224)))) (-2266 (((-1211 (-941) (-784)) (-576)) 158 (|has| |#1| (-360)))) (-2423 (((-3 $ "failed") $ $) 20)) (-2628 (((-430 (-1194 $)) (-1194 $)) 250 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-3188 (($ $) 125 (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-4215 (((-430 $) $) 126 (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-1866 (($ $) 249 (-12 (|has| |#1| (-1024)) (|has| |#1| (-1224))))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 253 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-3210 (((-112) $ $) 116 (|has| |#1| (-317)))) (-2148 (((-784)) 99 (|has| |#1| (-379)))) (-2120 (($ $) 235 (|has| |#1| (-1224)))) (-1989 (($ $) 220 (|has| |#1| (-1224)))) (-2166 (($ $) 234 (|has| |#1| (-1224)))) (-2033 (($ $) 221 (|has| |#1| (-1224)))) (-2515 (($) 18 T CONST)) (-1593 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2830 (((-576) $) 184 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 181)) (-4093 (($ (-1289 |#1|) (-1289 $)) 55) (($ (-1289 |#1|)) 71)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-3355 (($ $ $) 120 (|has| |#1| (-317)))) (-1584 (((-702 |#1|) $ (-1289 $)) 60) (((-702 |#1|) $) 66)) (-3439 (((-702 (-576)) (-702 $)) 177 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 176 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 175) (((-702 |#1|) (-702 $)) 174)) (-3662 (($ (-1194 |#1|)) 169) (((-3 $ "failed") (-419 (-1194 |#1|))) 166 (|has| |#1| (-374)))) (-3969 (((-3 $ "failed") $) 37)) (-1880 ((|#1| $) 261)) (-1758 (((-3 (-419 (-576)) "failed") $) 254 (|has| |#1| (-557)))) (-3113 (((-112) $) 256 (|has| |#1| (-557)))) (-1842 (((-419 (-576)) $) 255 (|has| |#1| (-557)))) (-4343 (((-941)) 61)) (-1876 (($) 102 (|has| |#1| (-379)))) (-3369 (($ $ $) 119 (|has| |#1| (-317)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 114 (|has| |#1| (-317)))) (-2846 (($) 160 (|has| |#1| (-360)))) (-2798 (((-112) $) 161 (|has| |#1| (-360)))) (-4266 (($ $ (-784)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-4009 (((-112) $) 127 (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-4016 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1082)) (|has| |#1| (-1224))))) (-1622 (($) 246 (|has| |#1| (-1224)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 269 (|has| |#1| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 268 (|has| |#1| (-902 (-390))))) (-2650 (((-941) $) 163 (|has| |#1| (-360))) (((-846 (-941)) $) 149 (|has| |#1| (-360)))) (-3994 (((-112) $) 35)) (-3856 (($ $ (-576)) 248 (-12 (|has| |#1| (-1024)) (|has| |#1| (-1224))))) (-3869 ((|#1| $) 58)) (-1955 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 123 (|has| |#1| (-317)))) (-3604 (((-1194 |#1|) $) 51 (|has| |#1| (-374)))) (-4071 (($ (-1 |#1| |#1|) $) 270)) (-2327 (((-941) $) 101 (|has| |#1| (-379)))) (-3707 (($ $) 243 (|has| |#1| (-1224)))) (-3647 (((-1194 |#1|) $) 167)) (-1993 (((-702 (-576)) (-1289 $)) 179 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 178 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 173) (((-702 |#1|) (-1289 $)) 172)) (-3388 (($ (-657 $)) 112 (-2748 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (($ $ $) 111 (-2748 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-1708 (((-1180) $) 10)) (-2098 (($ $) 128 (|has| |#1| (-374)))) (-1679 (($) 154 (|has| |#1| (-360)) CONST)) (-3146 (($ (-941)) 100 (|has| |#1| (-379)))) (-3474 (($) 265)) (-1889 ((|#1| $) 262)) (-1460 (((-1142) $) 11)) (-4083 (($) 171)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 113 (-2748 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-3431 (($ (-657 $)) 110 (-2748 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (($ $ $) 109 (-2748 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) 157 (|has| |#1| (-360)))) (-2436 (((-430 (-1194 $)) (-1194 $)) 252 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-3828 (((-430 (-1194 $)) (-1194 $)) 251 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-1856 (((-430 $) $) 124 (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 121 (|has| |#1| (-317)))) (-3409 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 104 (-2748 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 115 (|has| |#1| (-317)))) (-4056 (($ $) 244 (|has| |#1| (-1224)))) (-3205 (($ $ (-657 |#1|) (-657 |#1|)) 276 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 275 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 274 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) 273 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 272 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) 271 (|has| |#1| (-526 (-1198) |#1|)))) (-4164 (((-784) $) 117 (|has| |#1| (-317)))) (-2780 (($ $ |#1|) 277 (|has| |#1| (-296 |#1| |#1|)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 118 (|has| |#1| (-317)))) (-1465 ((|#1| (-1289 $)) 54) ((|#1|) 67)) (-2495 (((-784) $) 162 (|has| |#1| (-360))) (((-3 (-784) "failed") $ $) 150 (|has| |#1| (-360)))) (-2209 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-784)) 135) (($ $ (-657 (-1198)) (-657 (-784))) 141 (-2748 (-2675 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198) (-784)) 140 (-2748 (-2675 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-657 (-1198))) 139 (-2748 (-2675 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198)) 137 (-2748 (-2675 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-784)) 147 (-2748 (-2675 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2675 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 145 (-2748 (-2675 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2675 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-4301 (((-702 |#1|) (-1289 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-2005 (((-1194 |#1|)) 170)) (-2177 (($ $) 233 (|has| |#1| (-1224)))) (-2042 (($ $) 222 (|has| |#1| (-1224)))) (-4170 (($) 159 (|has| |#1| (-360)))) (-2155 (($ $) 232 (|has| |#1| (-1224)))) (-2023 (($ $) 223 (|has| |#1| (-1224)))) (-2131 (($ $) 231 (|has| |#1| (-1224)))) (-2002 (($ $) 224 (|has| |#1| (-1224)))) (-3806 (((-1289 |#1|) $ (-1289 $)) 57) (((-702 |#1|) (-1289 $) (-1289 $)) 56) (((-1289 |#1|) $) 73) (((-702 |#1|) (-1289 $)) 72)) (-4136 (((-1289 |#1|) $) 70) (($ (-1289 |#1|)) 69) (((-1194 |#1|) $) 186) (($ (-1194 |#1|)) 168) (((-908 (-576)) $) 267 (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) 266 (|has| |#1| (-626 (-908 (-390))))) (((-171 (-390)) $) 218 (|has| |#1| (-1044))) (((-171 (-227)) $) 217 (|has| |#1| (-1044))) (((-548) $) 216 (|has| |#1| (-626 (-548))))) (-1587 (($ $) 264)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 156 (-2748 (-2675 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))) (|has| |#1| (-360))))) (-4143 (($ |#1| |#1|) 263)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (-2748 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) 103 (-2748 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-3414 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (-2748 (-2675 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))) (|has| |#1| (-146))))) (-2948 (((-1194 |#1|) $) 52)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2469 (((-1289 $)) 74)) (-4110 (($ $) 242 (|has| |#1| (-1224)))) (-2082 (($ $) 230 (|has| |#1| (-1224)))) (-2607 (((-112) $ $) 107 (-2748 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-2188 (($ $) 241 (|has| |#1| (-1224)))) (-2055 (($ $) 229 (|has| |#1| (-1224)))) (-4137 (($ $) 240 (|has| |#1| (-1224)))) (-2100 (($ $) 228 (|has| |#1| (-1224)))) (-2805 ((|#1| $) 258 (|has| |#1| (-1224)))) (-1864 (($ $) 239 (|has| |#1| (-1224)))) (-2110 (($ $) 227 (|has| |#1| (-1224)))) (-4123 (($ $) 238 (|has| |#1| (-1224)))) (-2090 (($ $) 226 (|has| |#1| (-1224)))) (-4097 (($ $) 237 (|has| |#1| (-1224)))) (-2070 (($ $) 225 (|has| |#1| (-1224)))) (-2127 (($ $) 259 (|has| |#1| (-1082)))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-784)) 133) (($ $ (-657 (-1198)) (-657 (-784))) 144 (-2748 (-2675 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198) (-784)) 143 (-2748 (-2675 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-657 (-1198))) 142 (-2748 (-2675 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198)) 138 (-2748 (-2675 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-784)) 148 (-2748 (-2675 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2675 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 146 (-2748 (-2675 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2675 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2675 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ $) 132 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-419 (-576))) 247 (-12 (|has| |#1| (-1024)) (|has| |#1| (-1224)))) (($ $ $) 245 (|has| |#1| (-1224))) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) (((-167 |#1|) (-141) (-174)) (T -167)) -((-2595 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2250 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2117 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2649 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1946 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2366 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1223)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1081)) (-4 *3 (-1223)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3526 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) -(-13 (-736 |t#1| (-1193 |t#1|)) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-412 |t#1|) (-899 |t#1|) (-388 |t#1|) (-174) (-10 -8 (-6 -2649) (-15 -2250 ($)) (-15 -2117 ($ $)) (-15 -2649 ($ |t#1| |t#1|)) (-15 -1485 (|t#1| $)) (-15 -1474 (|t#1| $)) (-15 -2595 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -1946 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |t#1| (-6 -4460)) (-6 -4460) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1043)) (PROGN (-6 (-626 (-171 (-227)))) (-6 (-626 (-171 (-390))))) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -2366 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1223)) (PROGN (-6 (-1223)) (-15 -1997 (|t#1| $)) (IF (|has| |t#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -4209 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -4063 ((-112) $)) (-15 -1400 ((-419 (-576)) $)) (-15 -3526 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-317)) (-6 (-928)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-35) |has| |#1| (-1223)) ((-95) |has| |#1| (-1223)) ((-102) . T) ((-111 #0# #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3795 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-625 (-876)) . T) ((-174) . T) ((-626 (-171 (-227))) |has| |#1| (-1043)) ((-626 (-171 (-390))) |has| |#1| (-1043)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-626 #1=(-1193 |#1|)) . T) ((-234 $) -3795 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) -3795 (|has| |#1| (-360)) (|has| |#1| (-238))) ((-237) -3795 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-294) |has| |#1| (-1223)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -3795 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-317) -3795 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -3795 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| #1#) . T) ((-421 |#1| #1#) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) -3795 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-505) |has| |#1| (-1223)) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) -3795 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-658 #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-736 |#1| #1#) . T) ((-738) . T) ((-911 $ #3=(-1197)) -3795 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #3#) -3795 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-928) -12 (|has| |#1| (-317)) (|has| |#1| (-928))) ((-939) -3795 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-1023) -12 (|has| |#1| (-1023)) (|has| |#1| (-1223))) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-360)) ((-1223) |has| |#1| (-1223)) ((-1226) |has| |#1| (-1223)) ((-1238) . T) ((-1242) -3795 (|has| |#1| (-360)) (|has| |#1| (-374)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) -((-1452 (((-430 |#2|) |#2|) 67))) -(((-168 |#1| |#2|) (-10 -7 (-15 -1452 ((-430 |#2|) |#2|))) (-317) (-1264 (-171 |#1|))) (T -168)) -((-1452 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -(-10 -7 (-15 -1452 ((-430 |#2|) |#2|))) -((-1550 (((-1156) (-1156) (-301)) 8)) (-1385 (((-656 (-703 (-290))) (-1179)) 81)) (-3145 (((-703 (-290)) (-1156)) 76))) -(((-169) (-13 (-1238) (-10 -7 (-15 -1550 ((-1156) (-1156) (-301))) (-15 -3145 ((-703 (-290)) (-1156))) (-15 -1385 ((-656 (-703 (-290))) (-1179)))))) (T -169)) -((-1550 (*1 *2 *2 *3) (-12 (-5 *2 (-1156)) (-5 *3 (-301)) (-5 *1 (-169)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-1156)) (-5 *2 (-703 (-290))) (-5 *1 (-169)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) -(-13 (-1238) (-10 -7 (-15 -1550 ((-1156) (-1156) (-301))) (-15 -3145 ((-703 (-290)) (-1156))) (-15 -1385 ((-656 (-703 (-290))) (-1179))))) -((-2423 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) -(((-170 |#1| |#2|) (-10 -7 (-15 -2423 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) -(-10 -7 (-15 -2423 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 34)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-2390 (($ $) NIL (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-3302 (((-112) $) NIL (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-2637 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) NIL)) (-3832 ((|#1| $) NIL)) (-3586 (($ $) NIL (|has| |#1| (-1223)))) (-3435 (($ $) NIL (|has| |#1| (-1223)))) (-2063 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-2658 (($ $) NIL (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-3589 (((-430 $) $) NIL (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-1462 (($ $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-4386 (((-112) $ $) NIL (|has| |#1| (-317)))) (-2201 (((-783)) NIL (|has| |#1| (-379)))) (-3562 (($ $) NIL (|has| |#1| (-1223)))) (-3412 (($ $) NIL (|has| |#1| (-1223)))) (-3612 (($ $) NIL (|has| |#1| (-1223)))) (-3461 (($ $) NIL (|has| |#1| (-1223)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2496 (($ (-1288 |#1|) (-1288 $)) NIL) (($ (-1288 |#1|)) NIL)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-1895 (($ $ $) NIL (|has| |#1| (-317)))) (-1481 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-2721 (($ (-1193 |#1|)) NIL) (((-3 $ "failed") (-419 (-1193 |#1|))) NIL (|has| |#1| (-374)))) (-1851 (((-3 $ "failed") $) NIL)) (-1474 ((|#1| $) 13)) (-3526 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-4063 (((-112) $) NIL (|has| |#1| (-557)))) (-1400 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-4135 (((-940)) NIL)) (-4370 (($) NIL (|has| |#1| (-379)))) (-1908 (($ $ $) NIL (|has| |#1| (-317)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-317)))) (-3712 (($) NIL (|has| |#1| (-360)))) (-2616 (((-112) $) NIL (|has| |#1| (-360)))) (-2824 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-2171 (((-112) $) NIL (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-4209 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1081)) (|has| |#1| (-1223))))) (-2722 (($) NIL (|has| |#1| (-1223)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| |#1| (-901 (-390))))) (-3359 (((-940) $) NIL (|has| |#1| (-360))) (((-845 (-940)) $) NIL (|has| |#1| (-360)))) (-2486 (((-112) $) 36)) (-4005 (($ $ (-576)) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223))))) (-2595 ((|#1| $) 47)) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-4293 (((-1193 |#1|) $) NIL (|has| |#1| (-374)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-3787 (((-940) $) NIL (|has| |#1| (-379)))) (-2608 (($ $) NIL (|has| |#1| (-1223)))) (-2709 (((-1193 |#1|) $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL (|has| |#1| (-374)))) (-3650 (($) NIL (|has| |#1| (-360)) CONST)) (-2411 (($ (-940)) NIL (|has| |#1| (-379)))) (-2250 (($) NIL)) (-1485 ((|#1| $) 15)) (-3116 (((-1141) $) NIL)) (-2549 (($) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-317)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL (|has| |#1| (-360)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-928))))) (-1452 (((-430 $) $) NIL (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-374))))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-317)))) (-1946 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 48 (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-2156 (($ $) NIL (|has| |#1| (-1223)))) (-2145 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-2812 (((-783) $) NIL (|has| |#1| (-317)))) (-4369 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-317)))) (-1790 ((|#1| (-1288 $)) NIL) ((|#1|) NIL)) (-3168 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-4107 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) NIL (-3795 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-3795 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-2828 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-3881 (((-1193 |#1|)) NIL)) (-3623 (($ $) NIL (|has| |#1| (-1223)))) (-3474 (($ $) NIL (|has| |#1| (-1223)))) (-4223 (($) NIL (|has| |#1| (-360)))) (-3599 (($ $) NIL (|has| |#1| (-1223)))) (-3448 (($ $) NIL (|has| |#1| (-1223)))) (-3574 (($ $) NIL (|has| |#1| (-1223)))) (-3424 (($ $) NIL (|has| |#1| (-1223)))) (-4314 (((-1288 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) (-1288 $) (-1288 $)) NIL) (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-1556 (((-1288 |#1|) $) NIL) (($ (-1288 |#1|)) NIL) (((-1193 |#1|) $) NIL) (($ (-1193 |#1|)) NIL) (((-907 (-576)) $) NIL (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#1| (-626 (-907 (-390))))) (((-171 (-390)) $) NIL (|has| |#1| (-1043))) (((-171 (-227)) $) NIL (|has| |#1| (-1043))) (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2117 (($ $) 46)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-360))))) (-2649 (($ |#1| |#1|) 38)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) 37) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-4276 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-4358 (((-1193 |#1|) $) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL)) (-3653 (($ $) NIL (|has| |#1| (-1223)))) (-3510 (($ $) NIL (|has| |#1| (-1223)))) (-4134 (((-112) $ $) NIL (-3795 (-12 (|has| |#1| (-317)) (|has| |#1| (-928))) (|has| |#1| (-568))))) (-3632 (($ $) NIL (|has| |#1| (-1223)))) (-3487 (($ $) NIL (|has| |#1| (-1223)))) (-3673 (($ $) NIL (|has| |#1| (-1223)))) (-3537 (($ $) NIL (|has| |#1| (-1223)))) (-1997 ((|#1| $) NIL (|has| |#1| (-1223)))) (-1972 (($ $) NIL (|has| |#1| (-1223)))) (-3550 (($ $) NIL (|has| |#1| (-1223)))) (-3664 (($ $) NIL (|has| |#1| (-1223)))) (-3523 (($ $) NIL (|has| |#1| (-1223)))) (-3642 (($ $) NIL (|has| |#1| (-1223)))) (-3498 (($ $) NIL (|has| |#1| (-1223)))) (-2366 (($ $) NIL (|has| |#1| (-1081)))) (-4313 (($) 28 T CONST)) (-4322 (($) 30 T CONST)) (-2172 (((-1179) $) 23 (|has| |#1| (-840))) (((-1179) $ (-112)) 25 (|has| |#1| (-840))) (((-1293) (-834) $) 26 (|has| |#1| (-840))) (((-1293) (-834) $ (-112)) 27 (|has| |#1| (-840)))) (-3157 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) (|has| |#1| (-919 (-1197))))) (($ $ (-783)) NIL (-3795 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-3795 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 40)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1223)))) (($ $ $) NIL (|has| |#1| (-1223))) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) -(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-174)) (T -171)) -NIL -(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) -((-1556 (((-907 |#1|) |#3|) 22))) -(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1556 ((-907 |#1|) |#3|))) (-1121) (-13 (-626 (-907 |#1|)) (-174)) (-167 |#2|)) (T -172)) -((-1556 (*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-907 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1121)) (-4 *3 (-167 *5))))) -(-10 -7 (-15 -1556 ((-907 |#1|) |#3|))) -((-1957 (((-112) $ $) NIL)) (-2981 (((-112) $) 9)) (-1424 (((-112) $ (-112)) 11)) (-1991 (($) 13)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4287 (($ $) 14)) (-4113 (((-876) $) 18)) (-3468 (((-112) $) 8)) (-1597 (((-112) $ (-112)) 10)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-173) (-13 (-1121) (-10 -8 (-15 -1991 ($)) (-15 -3468 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -1597 ((-112) $ (-112))) (-15 -1424 ((-112) $ (-112))) (-15 -4287 ($ $))))) (T -173)) -((-1991 (*1 *1) (-5 *1 (-173))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1597 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1424 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-4287 (*1 *1 *1) (-5 *1 (-173)))) -(-13 (-1121) (-10 -8 (-15 -1991 ($)) (-15 -3468 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -1597 ((-112) $ (-112))) (-15 -1424 ((-112) $ (-112))) (-15 -4287 ($ $)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-576)) 33)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3869 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3474 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1587 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4143 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1889 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3409 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2127 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1082)))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1224)))) (-4016 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1082)) (-4 *3 (-1224)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-1758 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) +(-13 (-737 |t#1| (-1194 |t#1|)) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-412 |t#1|) (-900 |t#1|) (-388 |t#1|) (-174) (-10 -8 (-6 -4143) (-15 -3474 ($)) (-15 -1587 ($ $)) (-15 -4143 ($ |t#1| |t#1|)) (-15 -1889 (|t#1| $)) (-15 -1880 (|t#1| $)) (-15 -3869 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -3409 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-6 -4465)) (-6 -4465) |%noBranch|) (IF (|has| |t#1| (-6 -4462)) (-6 -4462) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1044)) (PROGN (-6 (-626 (-171 (-227)))) (-6 (-626 (-171 (-390))))) |%noBranch|) (IF (|has| |t#1| (-1082)) (-15 -2127 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1224)) (PROGN (-6 (-1224)) (-15 -2805 (|t#1| $)) (IF (|has| |t#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |t#1| (-1082)) (-15 -4016 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3113 ((-112) $)) (-15 -1842 ((-419 (-576)) $)) (-15 -1758 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-929)) (IF (|has| |t#1| (-317)) (-6 (-929)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-35) |has| |#1| (-1224)) ((-95) |has| |#1| (-1224)) ((-102) . T) ((-111 #0# #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2748 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-625 (-877)) . T) ((-174) . T) ((-626 (-171 (-227))) |has| |#1| (-1044)) ((-626 (-171 (-390))) |has| |#1| (-1044)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-908 (-390))) |has| |#1| (-626 (-908 (-390)))) ((-626 (-908 (-576))) |has| |#1| (-626 (-908 (-576)))) ((-626 #1=(-1194 |#1|)) . T) ((-234 $) -2748 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) -2748 (|has| |#1| (-360)) (|has| |#1| (-238))) ((-237) -2748 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-294) |has| |#1| (-1224)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2748 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-317) -2748 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2748 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| #1#) . T) ((-421 |#1| #1#) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) -2748 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-505) |has| |#1| (-1224)) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) -2748 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-659 #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-661 #2=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-653 |#1|) . T) ((-653 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-652 #2#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-730 |#1|) . T) ((-730 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-737 |#1| #1#) . T) ((-739) . T) ((-912 $ #3=(-1198)) -2748 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-918 (-1198)) |has| |#1| (-918 (-1198))) ((-920 #3#) -2748 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-902 (-390)) |has| |#1| (-902 (-390))) ((-902 (-576)) |has| |#1| (-902 (-576))) ((-900 |#1|) . T) ((-929) -12 (|has| |#1| (-317)) (|has| |#1| (-929))) ((-940) -2748 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-1024) -12 (|has| |#1| (-1024)) (|has| |#1| (-1224))) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1078 #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1078 |#1|) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) |has| |#1| (-360)) ((-1224) |has| |#1| (-1224)) ((-1227) |has| |#1| (-1224)) ((-1239) . T) ((-1243) -2748 (|has| |#1| (-360)) (|has| |#1| (-374)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) +((-1856 (((-430 |#2|) |#2|) 67))) +(((-168 |#1| |#2|) (-10 -7 (-15 -1856 ((-430 |#2|) |#2|))) (-317) (-1265 (-171 |#1|))) (T -168)) +((-1856 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1265 (-171 *4)))))) +(-10 -7 (-15 -1856 ((-430 |#2|) |#2|))) +((-2415 (((-1157) (-1157) (-301)) 8)) (-2417 (((-657 (-704 (-290))) (-1180)) 81)) (-2285 (((-704 (-290)) (-1157)) 76))) +(((-169) (-13 (-1239) (-10 -7 (-15 -2415 ((-1157) (-1157) (-301))) (-15 -2285 ((-704 (-290)) (-1157))) (-15 -2417 ((-657 (-704 (-290))) (-1180)))))) (T -169)) +((-2415 (*1 *2 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-301)) (-5 *1 (-169)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-704 (-290))) (-5 *1 (-169)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-657 (-704 (-290)))) (-5 *1 (-169))))) +(-13 (-1239) (-10 -7 (-15 -2415 ((-1157) (-1157) (-301))) (-15 -2285 ((-704 (-290)) (-1157))) (-15 -2417 ((-657 (-704 (-290))) (-1180))))) +((-4071 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) +(((-170 |#1| |#2|) (-10 -7 (-15 -4071 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) +(-10 -7 (-15 -4071 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 34)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-568))))) (-2361 (($ $) NIL (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-568))))) (-3286 (((-112) $) NIL (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-568))))) (-3011 (((-702 |#1|) (-1289 $)) NIL) (((-702 |#1|)) NIL)) (-2256 ((|#1| $) NIL)) (-2143 (($ $) NIL (|has| |#1| (-1224)))) (-2012 (($ $) NIL (|has| |#1| (-1224)))) (-2266 (((-1211 (-941) (-784)) (-576)) NIL (|has| |#1| (-360)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-3188 (($ $) NIL (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-4215 (((-430 $) $) NIL (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-1866 (($ $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1224))))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-3210 (((-112) $ $) NIL (|has| |#1| (-317)))) (-2148 (((-784)) NIL (|has| |#1| (-379)))) (-2120 (($ $) NIL (|has| |#1| (-1224)))) (-1989 (($ $) NIL (|has| |#1| (-1224)))) (-2166 (($ $) NIL (|has| |#1| (-1224)))) (-2033 (($ $) NIL (|has| |#1| (-1224)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-4093 (($ (-1289 |#1|) (-1289 $)) NIL) (($ (-1289 |#1|)) NIL)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-3355 (($ $ $) NIL (|has| |#1| (-317)))) (-1584 (((-702 |#1|) $ (-1289 $)) NIL) (((-702 |#1|) $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3662 (($ (-1194 |#1|)) NIL) (((-3 $ "failed") (-419 (-1194 |#1|))) NIL (|has| |#1| (-374)))) (-3969 (((-3 $ "failed") $) NIL)) (-1880 ((|#1| $) 13)) (-1758 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3113 (((-112) $) NIL (|has| |#1| (-557)))) (-1842 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-4343 (((-941)) NIL)) (-1876 (($) NIL (|has| |#1| (-379)))) (-3369 (($ $ $) NIL (|has| |#1| (-317)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-317)))) (-2846 (($) NIL (|has| |#1| (-360)))) (-2798 (((-112) $) NIL (|has| |#1| (-360)))) (-4266 (($ $ (-784)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-4009 (((-112) $) NIL (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-4016 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1082)) (|has| |#1| (-1224))))) (-1622 (($) NIL (|has| |#1| (-1224)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| |#1| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| |#1| (-902 (-390))))) (-2650 (((-941) $) NIL (|has| |#1| (-360))) (((-846 (-941)) $) NIL (|has| |#1| (-360)))) (-3994 (((-112) $) 36)) (-3856 (($ $ (-576)) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1224))))) (-3869 ((|#1| $) 47)) (-1955 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-317)))) (-3604 (((-1194 |#1|) $) NIL (|has| |#1| (-374)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-2327 (((-941) $) NIL (|has| |#1| (-379)))) (-3707 (($ $) NIL (|has| |#1| (-1224)))) (-3647 (((-1194 |#1|) $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL (|has| |#1| (-374)))) (-1679 (($) NIL (|has| |#1| (-360)) CONST)) (-3146 (($ (-941)) NIL (|has| |#1| (-379)))) (-3474 (($) NIL)) (-1889 ((|#1| $) 15)) (-1460 (((-1142) $) NIL)) (-4083 (($) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-317)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL (|has| |#1| (-360)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-1856 (((-430 $) $) NIL (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-317)))) (-3409 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 48 (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-568))))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-317)))) (-4056 (($ $) NIL (|has| |#1| (-1224)))) (-3205 (($ $ (-657 |#1|) (-657 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) NIL (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)))) (-4164 (((-784) $) NIL (|has| |#1| (-317)))) (-2780 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-317)))) (-1465 ((|#1| (-1289 $)) NIL) ((|#1|) NIL)) (-2495 (((-784) $) NIL (|has| |#1| (-360))) (((-3 (-784) "failed") $ $) NIL (|has| |#1| (-360)))) (-2209 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-784)) NIL (-2748 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-2748 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-4301 (((-702 |#1|) (-1289 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-2005 (((-1194 |#1|)) NIL)) (-2177 (($ $) NIL (|has| |#1| (-1224)))) (-2042 (($ $) NIL (|has| |#1| (-1224)))) (-4170 (($) NIL (|has| |#1| (-360)))) (-2155 (($ $) NIL (|has| |#1| (-1224)))) (-2023 (($ $) NIL (|has| |#1| (-1224)))) (-2131 (($ $) NIL (|has| |#1| (-1224)))) (-2002 (($ $) NIL (|has| |#1| (-1224)))) (-3806 (((-1289 |#1|) $ (-1289 $)) NIL) (((-702 |#1|) (-1289 $) (-1289 $)) NIL) (((-1289 |#1|) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-4136 (((-1289 |#1|) $) NIL) (($ (-1289 |#1|)) NIL) (((-1194 |#1|) $) NIL) (($ (-1194 |#1|)) NIL) (((-908 (-576)) $) NIL (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| |#1| (-626 (-908 (-390))))) (((-171 (-390)) $) NIL (|has| |#1| (-1044))) (((-171 (-227)) $) NIL (|has| |#1| (-1044))) (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-1587 (($ $) 46)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-360))))) (-4143 (($ |#1| |#1|) 38)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) 37) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-568))))) (-3414 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-2948 (((-1194 |#1|) $) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL)) (-4110 (($ $) NIL (|has| |#1| (-1224)))) (-2082 (($ $) NIL (|has| |#1| (-1224)))) (-2607 (((-112) $ $) NIL (-2748 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-568))))) (-2188 (($ $) NIL (|has| |#1| (-1224)))) (-2055 (($ $) NIL (|has| |#1| (-1224)))) (-4137 (($ $) NIL (|has| |#1| (-1224)))) (-2100 (($ $) NIL (|has| |#1| (-1224)))) (-2805 ((|#1| $) NIL (|has| |#1| (-1224)))) (-1864 (($ $) NIL (|has| |#1| (-1224)))) (-2110 (($ $) NIL (|has| |#1| (-1224)))) (-4123 (($ $) NIL (|has| |#1| (-1224)))) (-2090 (($ $) NIL (|has| |#1| (-1224)))) (-4097 (($ $) NIL (|has| |#1| (-1224)))) (-2070 (($ $) NIL (|has| |#1| (-1224)))) (-2127 (($ $) NIL (|has| |#1| (-1082)))) (-2716 (($) 28 T CONST)) (-2725 (($) 30 T CONST)) (-4019 (((-1180) $) 23 (|has| |#1| (-841))) (((-1180) $ (-112)) 25 (|has| |#1| (-841))) (((-1294) (-835) $) 26 (|has| |#1| (-841))) (((-1294) (-835) $ (-112)) 27 (|has| |#1| (-841)))) (-2066 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-784)) NIL (-2748 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-2748 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 40)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-419 (-576))) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1224)))) (($ $ $) NIL (|has| |#1| (-1224))) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) +(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|))) (-174)) (T -171)) +NIL +(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|))) +((-4136 (((-908 |#1|) |#3|) 22))) +(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -4136 ((-908 |#1|) |#3|))) (-1122) (-13 (-626 (-908 |#1|)) (-174)) (-167 |#2|)) (T -172)) +((-4136 (*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-908 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1122)) (-4 *3 (-167 *5))))) +(-10 -7 (-15 -4136 ((-908 |#1|) |#3|))) +((-3423 (((-112) $ $) NIL)) (-1352 (((-112) $) 9)) (-3325 (((-112) $ (-112)) 11)) (-4096 (($) 13)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1899 (($ $) 14)) (-3515 (((-877) $) 18)) (-2435 (((-112) $) 8)) (-1988 (((-112) $ (-112)) 10)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-173) (-13 (-1122) (-10 -8 (-15 -4096 ($)) (-15 -2435 ((-112) $)) (-15 -1352 ((-112) $)) (-15 -1988 ((-112) $ (-112))) (-15 -3325 ((-112) $ (-112))) (-15 -1899 ($ $))))) (T -173)) +((-4096 (*1 *1) (-5 *1 (-173))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1988 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3325 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1899 (*1 *1 *1) (-5 *1 (-173)))) +(-13 (-1122) (-10 -8 (-15 -4096 ($)) (-15 -2435 ((-112) $)) (-15 -1352 ((-112) $)) (-15 -1988 ((-112) $ (-112))) (-15 -3325 ((-112) $ (-112))) (-15 -1899 ($ $)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-576)) 33)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-174) (-141)) (T -174)) NIL -(-13 (-1070) (-111 $ $) (-10 -7 (-6 (-4466 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2481 (($ $) 6))) +(-13 (-1071) (-111 $ $) (-10 -7 (-6 (-4468 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3950 (($ $) 6))) (((-175) (-141)) (T -175)) -((-2481 (*1 *1 *1) (-4 *1 (-175)))) -(-13 (-10 -8 (-15 -2481 ($ $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2628 ((|#1| $) 81)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-1895 (($ $ $) NIL)) (-2313 (($ $) 21)) (-1650 (($ |#1| (-1178 |#1|)) 50)) (-1851 (((-3 $ "failed") $) 123)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2924 (((-1178 |#1|) $) 88)) (-2290 (((-1178 |#1|) $) 85)) (-1984 (((-1178 |#1|) $) 86)) (-2486 (((-112) $) NIL)) (-3502 (((-1178 |#1|) $) 94)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1452 (((-430 $) $) NIL)) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL)) (-2419 (($ $ (-576)) 97)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-2873 (((-1178 |#1|) $) 95)) (-2632 (((-1178 (-419 |#1|)) $) 14)) (-2264 (($ (-419 |#1|)) 17) (($ |#1| (-1178 |#1|) (-1178 |#1|)) 40)) (-3193 (($ $) 99)) (-4113 (((-876) $) 139) (($ (-576)) 53) (($ |#1|) 54) (($ (-419 |#1|)) 38) (($ (-419 (-576))) NIL) (($ $) NIL)) (-2910 (((-783)) 69 T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-3752 (((-1178 (-419 |#1|)) $) 20)) (-4313 (($) 27 T CONST)) (-4322 (($) 30 T CONST)) (-3939 (((-112) $ $) 37)) (-4047 (($ $ $) 121)) (-4037 (($ $) 112) (($ $ $) 109)) (-4026 (($ $ $) 107)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-419 |#1|) $) 117) (($ $ (-419 |#1|)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) -(((-176 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -2264 ($ (-419 |#1|))) (-15 -2264 ($ |#1| (-1178 |#1|) (-1178 |#1|))) (-15 -1650 ($ |#1| (-1178 |#1|))) (-15 -2290 ((-1178 |#1|) $)) (-15 -1984 ((-1178 |#1|) $)) (-15 -2924 ((-1178 |#1|) $)) (-15 -2628 (|#1| $)) (-15 -2313 ($ $)) (-15 -3752 ((-1178 (-419 |#1|)) $)) (-15 -2632 ((-1178 (-419 |#1|)) $)) (-15 -3502 ((-1178 |#1|) $)) (-15 -2873 ((-1178 |#1|) $)) (-15 -2419 ($ $ (-576))) (-15 -3193 ($ $)))) (-317)) (T -176)) -((-2264 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) (-2264 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-1650 (*1 *1 *2 *3) (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2628 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-2313 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2632 (*1 *2 *1) (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2419 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3193 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) -(-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -2264 ($ (-419 |#1|))) (-15 -2264 ($ |#1| (-1178 |#1|) (-1178 |#1|))) (-15 -1650 ($ |#1| (-1178 |#1|))) (-15 -2290 ((-1178 |#1|) $)) (-15 -1984 ((-1178 |#1|) $)) (-15 -2924 ((-1178 |#1|) $)) (-15 -2628 (|#1| $)) (-15 -2313 ($ $)) (-15 -3752 ((-1178 (-419 |#1|)) $)) (-15 -2632 ((-1178 (-419 |#1|)) $)) (-15 -3502 ((-1178 |#1|) $)) (-15 -2873 ((-1178 |#1|) $)) (-15 -2419 ($ $ (-576))) (-15 -3193 ($ $)))) -((-1953 (($ (-109) $) 15)) (-2886 (((-703 (-109)) (-518) $) 14)) (-4113 (((-876) $) 18)) (-3222 (((-656 (-109)) $) 8))) -(((-177) (-13 (-625 (-876)) (-10 -8 (-15 -3222 ((-656 (-109)) $)) (-15 -1953 ($ (-109) $)) (-15 -2886 ((-703 (-109)) (-518) $))))) (T -177)) -((-3222 (*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177)))) (-1953 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2886 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177))))) -(-13 (-625 (-876)) (-10 -8 (-15 -3222 ((-656 (-109)) $)) (-15 -1953 ($ (-109) $)) (-15 -2886 ((-703 (-109)) (-518) $)))) -((-2085 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 38)) (-4385 (((-962 |#1|) (-962 |#1|)) 22)) (-2784 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 34)) (-3544 (((-962 |#1|) (-962 |#1|)) 20)) (-2994 (((-962 |#1|) (-962 |#1|)) 28)) (-3999 (((-962 |#1|) (-962 |#1|)) 27)) (-2934 (((-962 |#1|) (-962 |#1|)) 26)) (-1504 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 35)) (-3158 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 33)) (-1544 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 32)) (-2483 (((-962 |#1|) (-962 |#1|)) 21)) (-3587 (((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|) 41)) (-1428 (((-962 |#1|) (-962 |#1|)) 8)) (-3907 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 37)) (-4396 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 36))) -(((-178 |#1|) (-10 -7 (-15 -1428 ((-962 |#1|) (-962 |#1|))) (-15 -3544 ((-962 |#1|) (-962 |#1|))) (-15 -2483 ((-962 |#1|) (-962 |#1|))) (-15 -4385 ((-962 |#1|) (-962 |#1|))) (-15 -2934 ((-962 |#1|) (-962 |#1|))) (-15 -3999 ((-962 |#1|) (-962 |#1|))) (-15 -2994 ((-962 |#1|) (-962 |#1|))) (-15 -1544 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3158 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2784 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1504 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -4396 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3907 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2085 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3587 ((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|))) (-13 (-374) (-1223) (-1023))) (T -178)) -((-3587 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-2085 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-3907 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-4396 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-1504 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-2784 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-3158 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-1544 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))))) (-2994 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-4385 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-3544 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3)))) (-1428 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -1428 ((-962 |#1|) (-962 |#1|))) (-15 -3544 ((-962 |#1|) (-962 |#1|))) (-15 -2483 ((-962 |#1|) (-962 |#1|))) (-15 -4385 ((-962 |#1|) (-962 |#1|))) (-15 -2934 ((-962 |#1|) (-962 |#1|))) (-15 -3999 ((-962 |#1|) (-962 |#1|))) (-15 -2994 ((-962 |#1|) (-962 |#1|))) (-15 -1544 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3158 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2784 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1504 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -4396 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3907 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -2085 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -3587 ((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|))) -((-4358 ((|#2| |#3|) 28))) -(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -4358 (|#2| |#3|))) (-174) (-1264 |#1|) (-736 |#1| |#2|)) (T -179)) -((-4358 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1264 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-736 *4 *2))))) -(-10 -7 (-15 -4358 (|#2| |#3|))) -((-2477 (((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)) 44 (|has| (-971 |#2|) (-901 |#1|))))) -(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-971 |#2|) (-901 |#1|)) (-15 -2477 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) |%noBranch|)) (-1121) (-13 (-901 |#1|) (-174)) (-167 |#2|)) (T -180)) -((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *3 (-167 *6)) (-4 (-971 *6) (-901 *5)) (-4 *6 (-13 (-901 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) -(-10 -7 (IF (|has| (-971 |#2|) (-901 |#1|)) (-15 -2477 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) |%noBranch|)) -((-1330 (((-656 |#1|) (-656 |#1|) |#1|) 41)) (-1911 (((-656 |#1|) |#1| (-656 |#1|)) 20)) (-4045 (((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|)) 36) ((|#1| (-656 |#1|) (-656 |#1|)) 32))) -(((-181 |#1|) (-10 -7 (-15 -1911 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -4045 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -4045 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -1330 ((-656 |#1|) (-656 |#1|) |#1|))) (-317)) (T -181)) -((-1330 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))) (-4045 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) (-5 *1 (-181 *4)))) (-4045 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) (-1911 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(-10 -7 (-15 -1911 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -4045 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -4045 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -1330 ((-656 |#1|) (-656 |#1|) |#1|))) -((-1957 (((-112) $ $) NIL)) (-4171 (((-1237) $) 13)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2230 (((-1156) $) 10)) (-4113 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-182) (-13 (-1104) (-10 -8 (-15 -2230 ((-1156) $)) (-15 -4171 ((-1237) $))))) (T -182)) -((-2230 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-182)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-182))))) -(-13 (-1104) (-10 -8 (-15 -2230 ((-1156) $)) (-15 -4171 ((-1237) $)))) -((-2054 (((-2 (|:| |start| |#2|) (|:| -3497 (-430 |#2|))) |#2|) 66)) (-1620 ((|#1| |#1|) 58)) (-1441 (((-171 |#1|) |#2|) 93)) (-4083 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-4074 ((|#2| |#2|) 91)) (-4388 (((-430 |#2|) |#2| |#1|) 118) (((-430 |#2|) |#2| |#1| (-112)) 88)) (-2595 ((|#1| |#2|) 117)) (-1522 ((|#2| |#2|) 130)) (-1452 (((-430 |#2|) |#2|) 153) (((-430 |#2|) |#2| |#1|) 33) (((-430 |#2|) |#2| |#1| (-112)) 152)) (-3067 (((-656 (-2 (|:| -3497 (-656 |#2|)) (|:| -2178 |#1|))) |#2| |#2|) 151) (((-656 (-2 (|:| -3497 (-656 |#2|)) (|:| -2178 |#1|))) |#2| |#2| (-112)) 81)) (-4006 (((-656 (-171 |#1|)) |#2| |#1|) 42) (((-656 (-171 |#1|)) |#2|) 43))) -(((-183 |#1| |#2|) (-10 -7 (-15 -4006 ((-656 (-171 |#1|)) |#2|)) (-15 -4006 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -3067 ((-656 (-2 (|:| -3497 (-656 |#2|)) (|:| -2178 |#1|))) |#2| |#2| (-112))) (-15 -3067 ((-656 (-2 (|:| -3497 (-656 |#2|)) (|:| -2178 |#1|))) |#2| |#2|)) (-15 -1452 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1452 ((-430 |#2|) |#2| |#1|)) (-15 -1452 ((-430 |#2|) |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -2595 (|#1| |#2|)) (-15 -4388 ((-430 |#2|) |#2| |#1| (-112))) (-15 -4388 ((-430 |#2|) |#2| |#1|)) (-15 -4074 (|#2| |#2|)) (-15 -4083 (|#1| |#2| |#1|)) (-15 -4083 (|#1| |#2|)) (-15 -1441 ((-171 |#1|) |#2|)) (-15 -1620 (|#1| |#1|)) (-15 -2054 ((-2 (|:| |start| |#2|) (|:| -3497 (-430 |#2|))) |#2|))) (-13 (-374) (-860)) (-1264 (-171 |#1|))) (T -183)) -((-2054 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-2 (|:| |start| *3) (|:| -3497 (-430 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1620 (*1 *2 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-1441 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1264 *2)))) (-4083 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-4083 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1264 (-171 *3))))) (-4388 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-4388 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-2595 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1264 (-171 *3))))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1452 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1452 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-3067 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -3497 (-656 *3)) (|:| -2178 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-3067 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -3497 (-656 *3)) (|:| -2178 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1264 (-171 *5))))) (-4006 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -(-10 -7 (-15 -4006 ((-656 (-171 |#1|)) |#2|)) (-15 -4006 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -3067 ((-656 (-2 (|:| -3497 (-656 |#2|)) (|:| -2178 |#1|))) |#2| |#2| (-112))) (-15 -3067 ((-656 (-2 (|:| -3497 (-656 |#2|)) (|:| -2178 |#1|))) |#2| |#2|)) (-15 -1452 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1452 ((-430 |#2|) |#2| |#1|)) (-15 -1452 ((-430 |#2|) |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -2595 (|#1| |#2|)) (-15 -4388 ((-430 |#2|) |#2| |#1| (-112))) (-15 -4388 ((-430 |#2|) |#2| |#1|)) (-15 -4074 (|#2| |#2|)) (-15 -4083 (|#1| |#2| |#1|)) (-15 -4083 (|#1| |#2|)) (-15 -1441 ((-171 |#1|) |#2|)) (-15 -1620 (|#1| |#1|)) (-15 -2054 ((-2 (|:| |start| |#2|) (|:| -3497 (-430 |#2|))) |#2|))) -((-2065 (((-3 |#2| "failed") |#2|) 16)) (-3034 (((-783) |#2|) 18)) (-3171 ((|#2| |#2| |#2|) 20))) -(((-184 |#1| |#2|) (-10 -7 (-15 -2065 ((-3 |#2| "failed") |#2|)) (-15 -3034 ((-783) |#2|)) (-15 -3171 (|#2| |#2| |#2|))) (-1238) (-686 |#1|)) (T -184)) -((-3171 (*1 *2 *2 *2) (-12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-1238)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) (-4 *3 (-686 *4)))) (-2065 (*1 *2 *2) (|partial| -12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) -(-10 -7 (-15 -2065 ((-3 |#2| "failed") |#2|)) (-15 -3034 ((-783) |#2|)) (-15 -3171 (|#2| |#2| |#2|))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1786 ((|#1| $) 7)) (-4113 (((-876) $) 14)) (-2950 (((-112) $ $) NIL)) (-4285 (((-656 (-1202)) $) 10)) (-3939 (((-112) $ $) 12))) -(((-185 |#1|) (-13 (-1121) (-10 -8 (-15 -1786 (|#1| $)) (-15 -4285 ((-656 (-1202)) $)))) (-187)) (T -185)) -((-1786 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(-13 (-1121) (-10 -8 (-15 -1786 (|#1| $)) (-15 -4285 ((-656 (-1202)) $)))) -((-3867 (((-656 (-879)) $) 16)) (-3950 (((-188) $) 8)) (-1739 (((-656 (-112)) $) 13)) (-2771 (((-55) $) 10))) -(((-186 |#1|) (-10 -8 (-15 -3867 ((-656 (-879)) |#1|)) (-15 -1739 ((-656 (-112)) |#1|)) (-15 -3950 ((-188) |#1|)) (-15 -2771 ((-55) |#1|))) (-187)) (T -186)) -NIL -(-10 -8 (-15 -3867 ((-656 (-879)) |#1|)) (-15 -1739 ((-656 (-112)) |#1|)) (-15 -3950 ((-188) |#1|)) (-15 -2771 ((-55) |#1|))) -((-1957 (((-112) $ $) 7)) (-3867 (((-656 (-879)) $) 19)) (-4149 (((-518) $) 16)) (-2447 (((-1179) $) 10)) (-3950 (((-188) $) 21)) (-4227 (((-112) $ (-518)) 14)) (-3116 (((-1141) $) 11)) (-1739 (((-656 (-112)) $) 20)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-2771 (((-55) $) 15)) (-3939 (((-112) $ $) 8))) +((-3950 (*1 *1 *1) (-4 *1 (-175)))) +(-13 (-10 -8 (-15 -3950 ($ $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2923 ((|#1| $) 81)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-3355 (($ $ $) NIL)) (-2821 (($ $) 21)) (-2584 (($ |#1| (-1179 |#1|)) 50)) (-3969 (((-3 $ "failed") $) 123)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3876 (((-1179 |#1|) $) 88)) (-2630 (((-1179 |#1|) $) 85)) (-2710 (((-1179 |#1|) $) 86)) (-3994 (((-112) $) NIL)) (-1541 (((-1179 |#1|) $) 94)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3388 (($ (-657 $)) NIL) (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ (-657 $)) NIL) (($ $ $) NIL)) (-1856 (((-430 $) $) NIL)) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL)) (-1456 (($ $ (-576)) 97)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-3421 (((-1179 |#1|) $) 95)) (-2964 (((-1179 (-419 |#1|)) $) 14)) (-3636 (($ (-419 |#1|)) 17) (($ |#1| (-1179 |#1|) (-1179 |#1|)) 40)) (-1557 (($ $) 99)) (-3515 (((-877) $) 139) (($ (-576)) 53) (($ |#1|) 54) (($ (-419 |#1|)) 38) (($ (-419 (-576))) NIL) (($ $) NIL)) (-3845 (((-784)) 69 T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-3186 (((-1179 (-419 |#1|)) $) 20)) (-2716 (($) 27 T CONST)) (-2725 (($) 30 T CONST)) (-2881 (((-112) $ $) 37)) (-2995 (($ $ $) 121)) (-2982 (($ $) 112) (($ $ $) 109)) (-2971 (($ $ $) 107)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-419 |#1|) $) 117) (($ $ (-419 |#1|)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) +(((-176 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -3636 ($ (-419 |#1|))) (-15 -3636 ($ |#1| (-1179 |#1|) (-1179 |#1|))) (-15 -2584 ($ |#1| (-1179 |#1|))) (-15 -2630 ((-1179 |#1|) $)) (-15 -2710 ((-1179 |#1|) $)) (-15 -3876 ((-1179 |#1|) $)) (-15 -2923 (|#1| $)) (-15 -2821 ($ $)) (-15 -3186 ((-1179 (-419 |#1|)) $)) (-15 -2964 ((-1179 (-419 |#1|)) $)) (-15 -1541 ((-1179 |#1|) $)) (-15 -3421 ((-1179 |#1|) $)) (-15 -1456 ($ $ (-576))) (-15 -1557 ($ $)))) (-317)) (T -176)) +((-3636 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) (-3636 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1179 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-2584 (*1 *1 *2 *3) (-12 (-5 *3 (-1179 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2923 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-2821 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-1179 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-1179 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1456 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1557 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) +(-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -3636 ($ (-419 |#1|))) (-15 -3636 ($ |#1| (-1179 |#1|) (-1179 |#1|))) (-15 -2584 ($ |#1| (-1179 |#1|))) (-15 -2630 ((-1179 |#1|) $)) (-15 -2710 ((-1179 |#1|) $)) (-15 -3876 ((-1179 |#1|) $)) (-15 -2923 (|#1| $)) (-15 -2821 ($ $)) (-15 -3186 ((-1179 (-419 |#1|)) $)) (-15 -2964 ((-1179 (-419 |#1|)) $)) (-15 -1541 ((-1179 |#1|) $)) (-15 -3421 ((-1179 |#1|) $)) (-15 -1456 ($ $ (-576))) (-15 -1557 ($ $)))) +((-3714 (($ (-109) $) 15)) (-3598 (((-704 (-109)) (-518) $) 14)) (-3515 (((-877) $) 18)) (-2588 (((-657 (-109)) $) 8))) +(((-177) (-13 (-625 (-877)) (-10 -8 (-15 -2588 ((-657 (-109)) $)) (-15 -3714 ($ (-109) $)) (-15 -3598 ((-704 (-109)) (-518) $))))) (T -177)) +((-2588 (*1 *2 *1) (-12 (-5 *2 (-657 (-109))) (-5 *1 (-177)))) (-3714 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-3598 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-704 (-109))) (-5 *1 (-177))))) +(-13 (-625 (-877)) (-10 -8 (-15 -2588 ((-657 (-109)) $)) (-15 -3714 ($ (-109) $)) (-15 -3598 ((-704 (-109)) (-518) $)))) +((-2476 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 38)) (-3199 (((-963 |#1|) (-963 |#1|)) 22)) (-1966 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 34)) (-1900 (((-963 |#1|) (-963 |#1|)) 20)) (-3277 (((-963 |#1|) (-963 |#1|)) 28)) (-3795 (((-963 |#1|) (-963 |#1|)) 27)) (-3979 (((-963 |#1|) (-963 |#1|)) 26)) (-1796 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 35)) (-2398 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 33)) (-4099 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 32)) (-3970 (((-963 |#1|) (-963 |#1|)) 21)) (-4190 (((-1 (-963 |#1|) (-963 |#1|)) |#1| |#1|) 41)) (-3368 (((-963 |#1|) (-963 |#1|)) 8)) (-4175 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 37)) (-3315 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 36))) +(((-178 |#1|) (-10 -7 (-15 -3368 ((-963 |#1|) (-963 |#1|))) (-15 -1900 ((-963 |#1|) (-963 |#1|))) (-15 -3970 ((-963 |#1|) (-963 |#1|))) (-15 -3199 ((-963 |#1|) (-963 |#1|))) (-15 -3979 ((-963 |#1|) (-963 |#1|))) (-15 -3795 ((-963 |#1|) (-963 |#1|))) (-15 -3277 ((-963 |#1|) (-963 |#1|))) (-15 -4099 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -2398 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -1966 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -1796 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -3315 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -4175 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -2476 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -4190 ((-1 (-963 |#1|) (-963 |#1|)) |#1| |#1|))) (-13 (-374) (-1224) (-1024))) (T -178)) +((-4190 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-2476 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-4175 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-3315 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-1796 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-1966 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-2398 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-4099 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-3277 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3)))) (-3795 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3)))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3)))) (-3199 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3)))) (-1900 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3))))) +(-10 -7 (-15 -3368 ((-963 |#1|) (-963 |#1|))) (-15 -1900 ((-963 |#1|) (-963 |#1|))) (-15 -3970 ((-963 |#1|) (-963 |#1|))) (-15 -3199 ((-963 |#1|) (-963 |#1|))) (-15 -3979 ((-963 |#1|) (-963 |#1|))) (-15 -3795 ((-963 |#1|) (-963 |#1|))) (-15 -3277 ((-963 |#1|) (-963 |#1|))) (-15 -4099 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -2398 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -1966 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -1796 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -3315 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -4175 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -2476 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -4190 ((-1 (-963 |#1|) (-963 |#1|)) |#1| |#1|))) +((-2948 ((|#2| |#3|) 28))) +(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -2948 (|#2| |#3|))) (-174) (-1265 |#1|) (-737 |#1| |#2|)) (T -179)) +((-2948 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1265 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-737 *4 *2))))) +(-10 -7 (-15 -2948 (|#2| |#3|))) +((-2008 (((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)) 44 (|has| (-972 |#2|) (-902 |#1|))))) +(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-972 |#2|) (-902 |#1|)) (-15 -2008 ((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|))) |%noBranch|)) (-1122) (-13 (-902 |#1|) (-174)) (-167 |#2|)) (T -180)) +((-2008 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 *3)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-4 *3 (-167 *6)) (-4 (-972 *6) (-902 *5)) (-4 *6 (-13 (-902 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) +(-10 -7 (IF (|has| (-972 |#2|) (-902 |#1|)) (-15 -2008 ((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|))) |%noBranch|)) +((-3491 (((-657 |#1|) (-657 |#1|) |#1|) 41)) (-3256 (((-657 |#1|) |#1| (-657 |#1|)) 20)) (-2953 (((-657 |#1|) (-657 (-657 |#1|)) (-657 |#1|)) 36) ((|#1| (-657 |#1|) (-657 |#1|)) 32))) +(((-181 |#1|) (-10 -7 (-15 -3256 ((-657 |#1|) |#1| (-657 |#1|))) (-15 -2953 (|#1| (-657 |#1|) (-657 |#1|))) (-15 -2953 ((-657 |#1|) (-657 (-657 |#1|)) (-657 |#1|))) (-15 -3491 ((-657 |#1|) (-657 |#1|) |#1|))) (-317)) (T -181)) +((-3491 (*1 *2 *2 *3) (-12 (-5 *2 (-657 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))) (-2953 (*1 *2 *3 *2) (-12 (-5 *3 (-657 (-657 *4))) (-5 *2 (-657 *4)) (-4 *4 (-317)) (-5 *1 (-181 *4)))) (-2953 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) (-3256 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) +(-10 -7 (-15 -3256 ((-657 |#1|) |#1| (-657 |#1|))) (-15 -2953 (|#1| (-657 |#1|) (-657 |#1|))) (-15 -2953 ((-657 |#1|) (-657 (-657 |#1|)) (-657 |#1|))) (-15 -3491 ((-657 |#1|) (-657 |#1|) |#1|))) +((-3423 (((-112) $ $) NIL)) (-2930 (((-1238) $) 13)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3054 (((-1157) $) 10)) (-3515 (((-877) $) 20) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-182) (-13 (-1105) (-10 -8 (-15 -3054 ((-1157) $)) (-15 -2930 ((-1238) $))))) (T -182)) +((-3054 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-182)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-182))))) +(-13 (-1105) (-10 -8 (-15 -3054 ((-1157) $)) (-15 -2930 ((-1238) $)))) +((-2167 (((-2 (|:| |start| |#2|) (|:| -1502 (-430 |#2|))) |#2|) 66)) (-3530 ((|#1| |#1|) 58)) (-3526 (((-171 |#1|) |#2|) 93)) (-2160 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-3223 ((|#2| |#2|) 91)) (-3229 (((-430 |#2|) |#2| |#1|) 118) (((-430 |#2|) |#2| |#1| (-112)) 88)) (-3869 ((|#1| |#2|) 117)) (-3881 ((|#2| |#2|) 130)) (-1856 (((-430 |#2|) |#2|) 153) (((-430 |#2|) |#2| |#1|) 33) (((-430 |#2|) |#2| |#1| (-112)) 152)) (-2775 (((-657 (-2 (|:| -1502 (-657 |#2|)) (|:| -3235 |#1|))) |#2| |#2|) 151) (((-657 (-2 (|:| -1502 (-657 |#2|)) (|:| -3235 |#1|))) |#2| |#2| (-112)) 81)) (-3864 (((-657 (-171 |#1|)) |#2| |#1|) 42) (((-657 (-171 |#1|)) |#2|) 43))) +(((-183 |#1| |#2|) (-10 -7 (-15 -3864 ((-657 (-171 |#1|)) |#2|)) (-15 -3864 ((-657 (-171 |#1|)) |#2| |#1|)) (-15 -2775 ((-657 (-2 (|:| -1502 (-657 |#2|)) (|:| -3235 |#1|))) |#2| |#2| (-112))) (-15 -2775 ((-657 (-2 (|:| -1502 (-657 |#2|)) (|:| -3235 |#1|))) |#2| |#2|)) (-15 -1856 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1856 ((-430 |#2|) |#2| |#1|)) (-15 -1856 ((-430 |#2|) |#2|)) (-15 -3881 (|#2| |#2|)) (-15 -3869 (|#1| |#2|)) (-15 -3229 ((-430 |#2|) |#2| |#1| (-112))) (-15 -3229 ((-430 |#2|) |#2| |#1|)) (-15 -3223 (|#2| |#2|)) (-15 -2160 (|#1| |#2| |#1|)) (-15 -2160 (|#1| |#2|)) (-15 -3526 ((-171 |#1|) |#2|)) (-15 -3530 (|#1| |#1|)) (-15 -2167 ((-2 (|:| |start| |#2|) (|:| -1502 (-430 |#2|))) |#2|))) (-13 (-374) (-861)) (-1265 (-171 |#1|))) (T -183)) +((-2167 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-2 (|:| |start| *3) (|:| -1502 (-430 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-3530 (*1 *2 *2) (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1265 (-171 *2))))) (-3526 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-374) (-861))) (-4 *3 (-1265 *2)))) (-2160 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1265 (-171 *2))))) (-2160 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1265 (-171 *2))))) (-3223 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-861))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1265 (-171 *3))))) (-3229 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-3229 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-3869 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1265 (-171 *2))))) (-3881 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-861))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1265 (-171 *3))))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-1856 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-1856 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-2775 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-657 (-2 (|:| -1502 (-657 *3)) (|:| -3235 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-2775 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-861))) (-5 *2 (-657 (-2 (|:| -1502 (-657 *3)) (|:| -3235 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1265 (-171 *5))))) (-3864 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-657 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-3864 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-657 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4)))))) +(-10 -7 (-15 -3864 ((-657 (-171 |#1|)) |#2|)) (-15 -3864 ((-657 (-171 |#1|)) |#2| |#1|)) (-15 -2775 ((-657 (-2 (|:| -1502 (-657 |#2|)) (|:| -3235 |#1|))) |#2| |#2| (-112))) (-15 -2775 ((-657 (-2 (|:| -1502 (-657 |#2|)) (|:| -3235 |#1|))) |#2| |#2|)) (-15 -1856 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1856 ((-430 |#2|) |#2| |#1|)) (-15 -1856 ((-430 |#2|) |#2|)) (-15 -3881 (|#2| |#2|)) (-15 -3869 (|#1| |#2|)) (-15 -3229 ((-430 |#2|) |#2| |#1| (-112))) (-15 -3229 ((-430 |#2|) |#2| |#1|)) (-15 -3223 (|#2| |#2|)) (-15 -2160 (|#1| |#2| |#1|)) (-15 -2160 (|#1| |#2|)) (-15 -3526 ((-171 |#1|) |#2|)) (-15 -3530 (|#1| |#1|)) (-15 -2167 ((-2 (|:| |start| |#2|) (|:| -1502 (-430 |#2|))) |#2|))) +((-2286 (((-3 |#2| "failed") |#2|) 16)) (-3725 (((-784) |#2|) 18)) (-2524 ((|#2| |#2| |#2|) 20))) +(((-184 |#1| |#2|) (-10 -7 (-15 -2286 ((-3 |#2| "failed") |#2|)) (-15 -3725 ((-784) |#2|)) (-15 -2524 (|#2| |#2| |#2|))) (-1239) (-687 |#1|)) (T -184)) +((-2524 (*1 *2 *2 *2) (-12 (-4 *3 (-1239)) (-5 *1 (-184 *3 *2)) (-4 *2 (-687 *3)))) (-3725 (*1 *2 *3) (-12 (-4 *4 (-1239)) (-5 *2 (-784)) (-5 *1 (-184 *4 *3)) (-4 *3 (-687 *4)))) (-2286 (*1 *2 *2) (|partial| -12 (-4 *3 (-1239)) (-5 *1 (-184 *3 *2)) (-4 *2 (-687 *3))))) +(-10 -7 (-15 -2286 ((-3 |#2| "failed") |#2|)) (-15 -3725 ((-784) |#2|)) (-15 -2524 (|#2| |#2| |#2|))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2577 ((|#1| $) 7)) (-3515 (((-877) $) 14)) (-4166 (((-112) $ $) NIL)) (-1383 (((-657 (-1203)) $) 10)) (-2881 (((-112) $ $) 12))) +(((-185 |#1|) (-13 (-1122) (-10 -8 (-15 -2577 (|#1| $)) (-15 -1383 ((-657 (-1203)) $)))) (-187)) (T -185)) +((-2577 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(-13 (-1122) (-10 -8 (-15 -2577 (|#1| $)) (-15 -1383 ((-657 (-1203)) $)))) +((-3219 (((-657 (-880)) $) 16)) (-1772 (((-188) $) 8)) (-2172 (((-657 (-112)) $) 13)) (-1853 (((-55) $) 10))) +(((-186 |#1|) (-10 -8 (-15 -3219 ((-657 (-880)) |#1|)) (-15 -2172 ((-657 (-112)) |#1|)) (-15 -1772 ((-188) |#1|)) (-15 -1853 ((-55) |#1|))) (-187)) (T -186)) +NIL +(-10 -8 (-15 -3219 ((-657 (-880)) |#1|)) (-15 -2172 ((-657 (-112)) |#1|)) (-15 -1772 ((-188) |#1|)) (-15 -1853 ((-55) |#1|))) +((-3423 (((-112) $ $) 7)) (-3219 (((-657 (-880)) $) 19)) (-2634 (((-518) $) 16)) (-1708 (((-1180) $) 10)) (-1772 (((-188) $) 21)) (-4216 (((-112) $ (-518)) 14)) (-1460 (((-1142) $) 11)) (-2172 (((-657 (-112)) $) 20)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-1853 (((-55) $) 15)) (-2881 (((-112) $ $) 8))) (((-187) (-141)) (T -187)) -((-3950 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112))))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-879)))))) -(-13 (-847 (-518)) (-10 -8 (-15 -3950 ((-188) $)) (-15 -1739 ((-656 (-112)) $)) (-15 -3867 ((-656 (-879)) $)))) -(((-102) . T) ((-625 (-876)) . T) ((-847 (-518)) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-8 (($) 7 T CONST)) (-4113 (((-876) $) 12)) (-9 (($) 6 T CONST)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 10))) -(((-188) (-13 (-1121) (-10 -8 (-15 -9 ($) -2666) (-15 -8 ($) -2666) (-15 -7 ($) -2666)))) (T -188)) +((-1772 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-657 (-112))))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-657 (-880)))))) +(-13 (-848 (-518)) (-10 -8 (-15 -1772 ((-188) $)) (-15 -2172 ((-657 (-112)) $)) (-15 -3219 ((-657 (-880)) $)))) +(((-102) . T) ((-625 (-877)) . T) ((-848 (-518)) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-8 (($) 7 T CONST)) (-3515 (((-877) $) 12)) (-9 (($) 6 T CONST)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 10))) +(((-188) (-13 (-1122) (-10 -8 (-15 -9 ($) -1491) (-15 -8 ($) -1491) (-15 -7 ($) -1491)))) (T -188)) ((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) -(-13 (-1121) (-10 -8 (-15 -9 ($) -2666) (-15 -8 ($) -2666) (-15 -7 ($) -2666))) -((-1957 (((-112) $ $) NIL)) (-3867 (((-656 (-879)) $) NIL)) (-4149 (((-518) $) 8)) (-2447 (((-1179) $) NIL)) (-3950 (((-188) $) 10)) (-4227 (((-112) $ (-518)) NIL)) (-3116 (((-1141) $) NIL)) (-2125 (((-703 $) (-518)) 17)) (-1739 (((-656 (-112)) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-2771 (((-55) $) 12)) (-3939 (((-112) $ $) NIL))) -(((-189) (-13 (-187) (-10 -8 (-15 -2125 ((-703 $) (-518)))))) (T -189)) -((-2125 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) -(-13 (-187) (-10 -8 (-15 -2125 ((-703 $) (-518))))) -((-4009 ((|#2| |#2|) 28)) (-2790 (((-112) |#2|) 19)) (-1474 (((-326 |#1|) |#2|) 12)) (-1485 (((-326 |#1|) |#2|) 14)) (-3760 ((|#2| |#2| (-1197)) 69) ((|#2| |#2|) 70)) (-3132 (((-171 (-326 |#1|)) |#2|) 10)) (-3137 ((|#2| |#2| (-1197)) 66) ((|#2| |#2|) 60))) -(((-190 |#1| |#2|) (-10 -7 (-15 -3760 (|#2| |#2|)) (-15 -3760 (|#2| |#2| (-1197))) (-15 -3137 (|#2| |#2|)) (-15 -3137 (|#2| |#2| (-1197))) (-15 -1474 ((-326 |#1|) |#2|)) (-15 -1485 ((-326 |#1|) |#2|)) (-15 -2790 ((-112) |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -3132 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1059 (-576))) (-13 (-27) (-1223) (-442 (-171 |#1|)))) (T -190)) -((-3132 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-4009 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) (-2790 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1485 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-1474 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-3137 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) (-3760 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3))))))) -(-10 -7 (-15 -3760 (|#2| |#2|)) (-15 -3760 (|#2| |#2| (-1197))) (-15 -3137 (|#2| |#2|)) (-15 -3137 (|#2| |#2| (-1197))) (-15 -1474 ((-326 |#1|) |#2|)) (-15 -1485 ((-326 |#1|) |#2|)) (-15 -2790 ((-112) |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -3132 ((-171 (-326 |#1|)) |#2|))) -((-3159 (((-1288 (-701 (-971 |#1|))) (-1288 (-701 |#1|))) 26)) (-4113 (((-1288 (-701 (-419 (-971 |#1|)))) (-1288 (-701 |#1|))) 37))) -(((-191 |#1|) (-10 -7 (-15 -3159 ((-1288 (-701 (-971 |#1|))) (-1288 (-701 |#1|)))) (-15 -4113 ((-1288 (-701 (-419 (-971 |#1|)))) (-1288 (-701 |#1|))))) (-174)) (T -191)) -((-4113 (*1 *2 *3) (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1288 (-701 (-419 (-971 *4))))) (-5 *1 (-191 *4)))) (-3159 (*1 *2 *3) (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1288 (-701 (-971 *4)))) (-5 *1 (-191 *4))))) -(-10 -7 (-15 -3159 ((-1288 (-701 (-971 |#1|))) (-1288 (-701 |#1|)))) (-15 -4113 ((-1288 (-701 (-419 (-971 |#1|)))) (-1288 (-701 |#1|))))) -((-4199 (((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576)))) 93)) (-1345 (((-1199 (-419 (-576))) (-656 (-576)) (-656 (-576))) 107)) (-2576 (((-1199 (-419 (-576))) (-940)) 54)) (-2652 (((-1199 (-419 (-576))) (-940)) 79)) (-2145 (((-419 (-576)) (-1199 (-419 (-576)))) 89)) (-3239 (((-1199 (-419 (-576))) (-940)) 37)) (-2310 (((-1199 (-419 (-576))) (-940)) 66)) (-4421 (((-1199 (-419 (-576))) (-940)) 61)) (-3645 (((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576)))) 87)) (-3193 (((-1199 (-419 (-576))) (-940)) 29)) (-3093 (((-419 (-576)) (-1199 (-419 (-576))) (-1199 (-419 (-576)))) 91)) (-1773 (((-1199 (-419 (-576))) (-940)) 35)) (-2080 (((-1199 (-419 (-576))) (-656 (-940))) 100))) -(((-192) (-10 -7 (-15 -3193 ((-1199 (-419 (-576))) (-940))) (-15 -2576 ((-1199 (-419 (-576))) (-940))) (-15 -3239 ((-1199 (-419 (-576))) (-940))) (-15 -1773 ((-1199 (-419 (-576))) (-940))) (-15 -4421 ((-1199 (-419 (-576))) (-940))) (-15 -2310 ((-1199 (-419 (-576))) (-940))) (-15 -2652 ((-1199 (-419 (-576))) (-940))) (-15 -3093 ((-419 (-576)) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -3645 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -2145 ((-419 (-576)) (-1199 (-419 (-576))))) (-15 -4199 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -2080 ((-1199 (-419 (-576))) (-656 (-940)))) (-15 -1345 ((-1199 (-419 (-576))) (-656 (-576)) (-656 (-576)))))) (T -192)) -((-1345 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-4199 (*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-3645 (*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3093 (*1 *2 *3 *3) (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-2310 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-4421 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) (-3193 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(-10 -7 (-15 -3193 ((-1199 (-419 (-576))) (-940))) (-15 -2576 ((-1199 (-419 (-576))) (-940))) (-15 -3239 ((-1199 (-419 (-576))) (-940))) (-15 -1773 ((-1199 (-419 (-576))) (-940))) (-15 -4421 ((-1199 (-419 (-576))) (-940))) (-15 -2310 ((-1199 (-419 (-576))) (-940))) (-15 -2652 ((-1199 (-419 (-576))) (-940))) (-15 -3093 ((-419 (-576)) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -3645 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -2145 ((-419 (-576)) (-1199 (-419 (-576))))) (-15 -4199 ((-1199 (-419 (-576))) (-1199 (-419 (-576))) (-1199 (-419 (-576))))) (-15 -2080 ((-1199 (-419 (-576))) (-656 (-940)))) (-15 -1345 ((-1199 (-419 (-576))) (-656 (-576)) (-656 (-576))))) -((-2336 (((-430 (-1193 (-576))) (-576)) 38)) (-2516 (((-656 (-1193 (-576))) (-576)) 33)) (-3394 (((-1193 (-576)) (-576)) 28))) -(((-193) (-10 -7 (-15 -2516 ((-656 (-1193 (-576))) (-576))) (-15 -3394 ((-1193 (-576)) (-576))) (-15 -2336 ((-430 (-1193 (-576))) (-576))))) (T -193)) -((-2336 (*1 *2 *3) (-12 (-5 *2 (-430 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))) (-3394 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) (-2516 (*1 *2 *3) (-12 (-5 *2 (-656 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(-10 -7 (-15 -2516 ((-656 (-1193 (-576))) (-576))) (-15 -3394 ((-1193 (-576)) (-576))) (-15 -2336 ((-430 (-1193 (-576))) (-576)))) -((-4007 (((-1178 (-227)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-3228 (((-656 (-1179)) (-1178 (-227))) NIL)) (-3859 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1865 (((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227)))) NIL)) (-4146 (((-656 (-1179)) (-656 (-227))) NIL)) (-2258 (((-227) (-1115 (-855 (-227)))) 31)) (-3546 (((-227) (-1115 (-855 (-227)))) 32)) (-2416 (((-390) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-2097 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-1879 (((-1179) (-227)) NIL)) (-3919 (((-1179) (-656 (-1179))) 27)) (-1604 (((-1056) (-1197) (-1197) (-1056)) 13))) -(((-194) (-10 -7 (-15 -3859 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2097 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2258 ((-227) (-1115 (-855 (-227))))) (-15 -3546 ((-227) (-1115 (-855 (-227))))) (-15 -2416 ((-390) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1865 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -4007 ((-1178 (-227)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1879 ((-1179) (-227))) (-15 -4146 ((-656 (-1179)) (-656 (-227)))) (-15 -3228 ((-656 (-1179)) (-1178 (-227)))) (-15 -3919 ((-1179) (-656 (-1179)))) (-15 -1604 ((-1056) (-1197) (-1197) (-1056))))) (T -194)) -((-1604 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-194)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-194)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-194)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-194)))) (-1865 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-194)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-3859 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) -(-10 -7 (-15 -3859 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2097 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2258 ((-227) (-1115 (-855 (-227))))) (-15 -3546 ((-227) (-1115 (-855 (-227))))) (-15 -2416 ((-390) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1865 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -4007 ((-1178 (-227)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1879 ((-1179) (-227))) (-15 -4146 ((-656 (-1179)) (-656 (-227)))) (-15 -3228 ((-656 (-1179)) (-1178 (-227)))) (-15 -3919 ((-1179) (-656 (-1179)))) (-15 -1604 ((-1056) (-1197) (-1197) (-1056)))) -((-1957 (((-112) $ $) NIL)) (-4185 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 61) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-195) (-799)) (T -195)) -NIL -(-799) -((-1957 (((-112) $ $) NIL)) (-4185 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 66) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-196) (-799)) (T -196)) -NIL -(-799) -((-1957 (((-112) $ $) NIL)) (-4185 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 81) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-197) (-799)) (T -197)) -NIL -(-799) -((-1957 (((-112) $ $) NIL)) (-4185 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 63) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-198) (-799)) (T -198)) -NIL -(-799) -((-1957 (((-112) $ $) NIL)) (-4185 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 76) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-199) (-799)) (T -199)) -NIL -(-799) -((-1957 (((-112) $ $) NIL)) (-4185 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 93) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-200) (-799)) (T -200)) -NIL -(-799) -((-1957 (((-112) $ $) NIL)) (-4185 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 90) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-201) (-799)) (T -201)) -NIL -(-799) -((-1957 (((-112) $ $) NIL)) (-4185 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 78) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-202) (-799)) (T -202)) -NIL -(-799) -((-1957 (((-112) $ $) NIL)) (-4185 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 76)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-203) (-799)) (T -203)) -NIL -(-799) -((-1957 (((-112) $ $) NIL)) (-4185 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 77)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-204) (-799)) (T -204)) -NIL -(-799) -((-1957 (((-112) $ $) NIL)) (-4185 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 105) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-205) (-799)) (T -205)) -NIL -(-799) -((-2988 (((-3 (-2 (|:| -3961 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3935 (((-576) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-1941 (((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) -(((-206) (-10 -7 (-15 -2988 ((-3 (-2 (|:| -3961 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1941 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3935 ((-576) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) -((-3935 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206)))) (-1941 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-206)))) (-2988 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3961 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(-10 -7 (-15 -2988 ((-3 (-2 (|:| -3961 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1941 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3935 ((-576) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3214 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-3023 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-2301 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227)))) 112)) (-1805 (((-390) (-701 (-326 (-227)))) 140)) (-3038 (((-701 (-326 (-227))) (-1288 (-326 (-227))) (-656 (-1197))) 136)) (-3375 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-3533 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2145 (((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1197)) (-1288 (-326 (-227)))) 125)) (-2314 (((-390) (-390) (-656 (-390))) 133) (((-390) (-390) (-390)) 128)) (-3905 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) -(((-207) (-10 -7 (-15 -2314 ((-390) (-390) (-390))) (-15 -2314 ((-390) (-390) (-656 (-390)))) (-15 -1805 ((-390) (-701 (-326 (-227))))) (-15 -3038 ((-701 (-326 (-227))) (-1288 (-326 (-227))) (-656 (-1197)))) (-15 -2145 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1197)) (-1288 (-326 (-227))))) (-15 -2301 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -3023 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3214 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3533 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3905 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3375 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) -((-3375 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-2145 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1197))) (-5 *4 (-1288 (-326 (-227)))) (-5 *1 (-207)))) (-3038 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2314 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2314 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207))))) -(-10 -7 (-15 -2314 ((-390) (-390) (-390))) (-15 -2314 ((-390) (-390) (-656 (-390)))) (-15 -1805 ((-390) (-701 (-326 (-227))))) (-15 -3038 ((-701 (-326 (-227))) (-1288 (-326 (-227))) (-656 (-1197)))) (-15 -2145 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1197)) (-1288 (-326 (-227))))) (-15 -2301 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -3023 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3214 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3533 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3905 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3375 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-1957 (((-112) $ $) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-1390 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-3939 (((-112) $ $) NIL))) -(((-208) (-812)) (T -208)) -NIL -(-812) -((-1957 (((-112) $ $) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-1390 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-3939 (((-112) $ $) NIL))) -(((-209) (-812)) (T -209)) -NIL -(-812) -((-1957 (((-112) $ $) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-1390 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-3939 (((-112) $ $) NIL))) -(((-210) (-812)) (T -210)) -NIL -(-812) -((-1957 (((-112) $ $) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-1390 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-3939 (((-112) $ $) NIL))) -(((-211) (-812)) (T -211)) -NIL -(-812) -((-1418 (((-656 (-1197)) (-1197) (-783)) 26)) (-2977 (((-326 (-227)) (-326 (-227))) 35)) (-4032 (((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 87)) (-1701 (((-112) (-227) (-227) (-656 (-326 (-227)))) 47))) -(((-212) (-10 -7 (-15 -1418 ((-656 (-1197)) (-1197) (-783))) (-15 -2977 ((-326 (-227)) (-326 (-227)))) (-15 -1701 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -4032 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))))) (T -212)) -((-4032 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-1701 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-2977 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))) (-1418 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1197))) (-5 *1 (-212)) (-5 *3 (-1197))))) -(-10 -7 (-15 -1418 ((-656 (-1197)) (-1197) (-783))) (-15 -2977 ((-326 (-227)) (-326 (-227)))) (-15 -1701 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -4032 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))))) -((-1957 (((-112) $ $) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 28)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3828 (((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 70)) (-3939 (((-112) $ $) NIL))) -(((-213) (-912)) (T -213)) -NIL -(-912) -((-1957 (((-112) $ $) NIL)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 24)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3828 (((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) NIL)) (-3939 (((-112) $ $) NIL))) -(((-214) (-912)) (T -214)) -NIL -(-912) -((-1957 (((-112) $ $) NIL)) (-3732 ((|#2| $ (-783) |#2|) 11)) (-3721 ((|#2| $ (-783)) 10)) (-1991 (($) 8)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 23)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 13))) -(((-215 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -1991 ($)) (-15 -3721 (|#2| $ (-783))) (-15 -3732 (|#2| $ (-783) |#2|)))) (-940) (-1121)) (T -215)) -((-1991 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1121)))) (-3721 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-1121)) (-5 *1 (-215 *4 *2)) (-14 *4 (-940)))) (-3732 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-940)) (-4 *2 (-1121))))) -(-13 (-1121) (-10 -8 (-15 -1991 ($)) (-15 -3721 (|#2| $ (-783))) (-15 -3732 (|#2| $ (-783) |#2|)))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3384 (((-1293) $) 37) (((-1293) $ (-940) (-940)) 41)) (-4369 (($ $ (-1010)) 19) (((-250 (-1179)) $ (-1197)) 15)) (-1614 (((-1293) $) 35)) (-4113 (((-876) $) 32) (($ (-656 |#1|)) 8)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $ $) 27)) (-4026 (($ $ $) 22))) -(((-216 |#1|) (-13 (-1121) (-628 (-656 |#1|)) (-10 -8 (-15 -4369 ($ $ (-1010))) (-15 -4369 ((-250 (-1179)) $ (-1197))) (-15 -4026 ($ $ $)) (-15 -4037 ($ $ $)) (-15 -1614 ((-1293) $)) (-15 -3384 ((-1293) $)) (-15 -3384 ((-1293) $ (-940) (-940))))) (-13 (-861) (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 ((-1293) $)) (-15 -3384 ((-1293) $))))) (T -216)) -((-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 ((-1293) $)) (-15 -3384 ((-1293) $))))))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-250 (-1179))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4369 ((-1179) $ *3)) (-15 -1614 ((-1293) $)) (-15 -3384 ((-1293) $))))))) (-4026 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 ((-1293) $)) (-15 -3384 ((-1293) $))))))) (-4037 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 ((-1293) $)) (-15 -3384 ((-1293) $))))))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 (*2 $)) (-15 -3384 (*2 $))))))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 (*2 $)) (-15 -3384 (*2 $))))))) (-3384 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 (*2 $)) (-15 -3384 (*2 $)))))))) -(-13 (-1121) (-628 (-656 |#1|)) (-10 -8 (-15 -4369 ($ $ (-1010))) (-15 -4369 ((-250 (-1179)) $ (-1197))) (-15 -4026 ($ $ $)) (-15 -4037 ($ $ $)) (-15 -1614 ((-1293) $)) (-15 -3384 ((-1293) $)) (-15 -3384 ((-1293) $ (-940) (-940))))) -((-2231 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2231 (|#2| |#4| (-1 |#2| |#2|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -217)) -((-2231 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1264 (-419 *2))) (-4 *2 (-1264 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-353 *5 *2 *6))))) -(-10 -7 (-15 -2231 (|#2| |#4| (-1 |#2| |#2|)))) -((-1979 ((|#2| |#2| (-783) |#2|) 55)) (-3377 ((|#2| |#2| (-783) |#2|) 51)) (-1392 (((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -1546 |#2|)))) 79)) (-4210 (((-656 (-2 (|:| |deg| (-783)) (|:| -1546 |#2|))) |#2|) 73)) (-2615 (((-112) |#2|) 71)) (-4437 (((-430 |#2|) |#2|) 91)) (-1452 (((-430 |#2|) |#2|) 90)) (-2352 ((|#2| |#2| (-783) |#2|) 49)) (-2506 (((-2 (|:| |cont| |#1|) (|:| -3497 (-656 (-2 (|:| |irr| |#2|) (|:| -3172 (-576)))))) |#2| (-112)) 85))) -(((-218 |#1| |#2|) (-10 -7 (-15 -1452 ((-430 |#2|) |#2|)) (-15 -4437 ((-430 |#2|) |#2|)) (-15 -2506 ((-2 (|:| |cont| |#1|) (|:| -3497 (-656 (-2 (|:| |irr| |#2|) (|:| -3172 (-576)))))) |#2| (-112))) (-15 -4210 ((-656 (-2 (|:| |deg| (-783)) (|:| -1546 |#2|))) |#2|)) (-15 -1392 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -1546 |#2|))))) (-15 -2352 (|#2| |#2| (-783) |#2|)) (-15 -3377 (|#2| |#2| (-783) |#2|)) (-15 -1979 (|#2| |#2| (-783) |#2|)) (-15 -2615 ((-112) |#2|))) (-360) (-1264 |#1|)) (T -218)) -((-2615 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4)))) (-1979 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1264 *4)))) (-3377 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1264 *4)))) (-2352 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1264 *4)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -1546 *5)))) (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) (-5 *1 (-218 *4 *5)))) (-4210 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -1546 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3497 (-656 (-2 (|:| |irr| *3) (|:| -3172 (-576))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1264 *5)))) (-4437 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4)))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -1452 ((-430 |#2|) |#2|)) (-15 -4437 ((-430 |#2|) |#2|)) (-15 -2506 ((-2 (|:| |cont| |#1|) (|:| -3497 (-656 (-2 (|:| |irr| |#2|) (|:| -3172 (-576)))))) |#2| (-112))) (-15 -4210 ((-656 (-2 (|:| |deg| (-783)) (|:| -1546 |#2|))) |#2|)) (-15 -1392 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -1546 |#2|))))) (-15 -2352 (|#2| |#2| (-783) |#2|)) (-15 -3377 (|#2| |#2| (-783) |#2|)) (-15 -1979 (|#2| |#2| (-783) |#2|)) (-15 -2615 ((-112) |#2|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2628 (((-576) $) NIL (|has| (-576) (-317)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL (|has| (-576) (-832)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1059 (-576))))) (-2317 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-1895 (($ $ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| (-576) (-557)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2279 (((-112) $) NIL (|has| (-576) (-832)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-2486 (((-112) $) NIL)) (-2252 (($ $) NIL)) (-2687 (((-576) $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-3323 (((-112) $) NIL (|has| (-576) (-832)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2907 (($ $ $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| (-576) (-861)))) (-2423 (($ (-1 (-576) (-576)) $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| (-576) (-1173)) CONST)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2701 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3058 (((-576) $) NIL (|has| (-576) (-557)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2145 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-2812 (((-783) $) NIL)) (-4369 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4107 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3591 (($ $) NIL)) (-2697 (((-576) $) NIL)) (-4409 (($ (-419 (-576))) 9)) (-1556 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL) (((-1025 10) $) 10)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-2910 (((-783)) NIL T CONST)) (-4081 (((-576) $) NIL (|has| (-576) (-557)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| (-576) (-832)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3995 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3975 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3963 (((-112) $ $) NIL (|has| (-576) (-861)))) (-4047 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-219) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 10)) (-10 -8 (-15 -2701 ((-419 (-576)) $)) (-15 -4409 ($ (-419 (-576))))))) (T -219)) -((-2701 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) (-4409 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) -(-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 10)) (-10 -8 (-15 -2701 ((-419 (-576)) $)) (-15 -4409 ($ (-419 (-576)))))) -((-1957 (((-112) $ $) NIL)) (-3514 (((-1139) $) 13)) (-2447 (((-1179) $) NIL)) (-3050 (((-495) $) 10)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 23) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4159 (((-1156) $) 15)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-220) (-13 (-1104) (-10 -8 (-15 -3050 ((-495) $)) (-15 -3514 ((-1139) $)) (-15 -4159 ((-1156) $))))) (T -220)) -((-3050 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-220)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-220))))) -(-13 (-1104) (-10 -8 (-15 -3050 ((-495) $)) (-15 -3514 ((-1139) $)) (-15 -4159 ((-1156) $)))) -((-4412 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)) (-1179)) 29) (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|))) 25)) (-3353 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1197) (-855 |#2|) (-855 |#2|) (-112)) 17))) -(((-221 |#1| |#2|) (-10 -7 (-15 -4412 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)))) (-15 -4412 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)) (-1179))) (-15 -3353 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1197) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-29 |#1|))) (T -221)) -((-3353 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1197)) (-5 *6 (-112)) (-4 *7 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-4 *3 (-13 (-1223) (-978) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3)))) (-4412 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-855 *3))) (-5 *5 (-1179)) (-4 *3 (-13 (-1223) (-978) (-29 *6))) (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 *3))) (-4 *3 (-13 (-1223) (-978) (-29 *5))) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) -(-10 -7 (-15 -4412 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)))) (-15 -4412 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1113 (-855 |#2|)) (-1179))) (-15 -3353 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1197) (-855 |#2|) (-855 |#2|) (-112)))) -((-4412 (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))) (-1179)) 49) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|))))) 46) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))) (-1179)) 50) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|)))) 22))) -(((-222 |#1|) (-10 -7 (-15 -4412 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))))) (-15 -4412 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))) (-1179))) (-15 -4412 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))))) (-15 -4412 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))) (-1179)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (T -222)) -((-4412 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-855 (-419 (-971 *6))))) (-5 *5 (-1179)) (-5 *3 (-419 (-971 *6))) (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 (-419 (-971 *5))))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-4412 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1113 (-855 (-326 *6)))) (-5 *5 (-1179)) (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1113 (-855 (-326 *5)))) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) -(-10 -7 (-15 -4412 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))))) (-15 -4412 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-326 |#1|))) (-1179))) (-15 -4412 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))))) (-15 -4412 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-971 |#1|)) (-1113 (-855 (-419 (-971 |#1|)))) (-1179)))) -((-2721 (((-2 (|:| -2571 (-1193 |#1|)) (|:| |deg| (-940))) (-1193 |#1|)) 26)) (-3568 (((-656 (-326 |#2|)) (-326 |#2|) (-940)) 51))) -(((-223 |#1| |#2|) (-10 -7 (-15 -2721 ((-2 (|:| -2571 (-1193 |#1|)) (|:| |deg| (-940))) (-1193 |#1|))) (-15 -3568 ((-656 (-326 |#2|)) (-326 |#2|) (-940)))) (-1070) (-568)) (T -223)) -((-3568 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1070)))) (-2721 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-2 (|:| -2571 (-1193 *4)) (|:| |deg| (-940)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1193 *4)) (-4 *5 (-568))))) -(-10 -7 (-15 -2721 ((-2 (|:| -2571 (-1193 |#1|)) (|:| |deg| (-940))) (-1193 |#1|))) (-15 -3568 ((-656 (-326 |#2|)) (-326 |#2|) (-940)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2135 ((|#1| $) NIL)) (-3015 ((|#1| $) 30)) (-4234 (((-112) $ (-783)) NIL)) (-3170 (($) NIL T CONST)) (-3190 (($ $) NIL)) (-1542 (($ $) 39)) (-2663 ((|#1| |#1| $) NIL)) (-3166 ((|#1| $) NIL)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-3108 (((-783) $) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3743 ((|#1| $) NIL)) (-2735 ((|#1| |#1| $) 35)) (-3008 ((|#1| |#1| $) 37)) (-3695 (($ |#1| $) NIL)) (-2955 (((-783) $) 33)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3368 ((|#1| $) NIL)) (-3458 ((|#1| $) 31)) (-3329 ((|#1| $) 29)) (-2372 ((|#1| $) NIL)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-1391 ((|#1| |#1| $) NIL)) (-3617 (((-112) $) 9)) (-3307 (($) NIL)) (-3331 ((|#1| $) NIL)) (-3465 (($) NIL) (($ (-656 |#1|)) 16)) (-4307 (((-783) $) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2780 ((|#1| $) 13)) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) NIL)) (-1419 ((|#1| $) NIL)) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -3465 ($ (-656 |#1|))))) (-1121)) (T -224)) -((-3465 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-224 *3))))) -(-13 (-261 |#1|) (-10 -8 (-15 -3465 ($ (-656 |#1|))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2093 (($ (-326 |#1|)) 24)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-4275 (((-112) $) NIL)) (-2982 (((-3 (-326 |#1|) "failed") $) NIL)) (-2317 (((-326 |#1|) $) NIL)) (-3310 (($ $) 32)) (-1851 (((-3 $ "failed") $) NIL)) (-2486 (((-112) $) NIL)) (-2423 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL)) (-1711 (((-326 |#1|) $) NIL)) (-1425 (($ $) 31)) (-2447 (((-1179) $) NIL)) (-2212 (((-112) $) NIL)) (-3116 (((-1141) $) NIL)) (-2549 (($ (-783)) NIL)) (-4129 (($ $) 33)) (-2196 (((-576) $) NIL)) (-4113 (((-876) $) 65) (($ (-576)) NIL) (($ (-326 |#1|)) NIL)) (-2707 (((-326 |#1|) $ $) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 26 T CONST)) (-4322 (($) NIL T CONST)) (-3939 (((-112) $ $) 29)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 20)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 25) (($ (-326 |#1|) $) 19))) -(((-225 |#1| |#2|) (-13 (-632 (-326 |#1|)) (-1059 (-326 |#1|)) (-10 -8 (-15 -1711 ((-326 |#1|) $)) (-15 -1425 ($ $)) (-15 -3310 ($ $)) (-15 -2707 ((-326 |#1|) $ $)) (-15 -2549 ($ (-783))) (-15 -2212 ((-112) $)) (-15 -4275 ((-112) $)) (-15 -2196 ((-576) $)) (-15 -2423 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2093 ($ (-326 |#1|))) (-15 -4129 ($ $)))) (-13 (-1070) (-861)) (-656 (-1197))) (T -225)) -((-1711 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-1425 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-656 (-1197))))) (-3310 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-656 (-1197))))) (-2707 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-2549 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-2212 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) (-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1070) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197))))) (-2093 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1070) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197))))) (-4129 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-656 (-1197)))))) -(-13 (-632 (-326 |#1|)) (-1059 (-326 |#1|)) (-10 -8 (-15 -1711 ((-326 |#1|) $)) (-15 -1425 ($ $)) (-15 -3310 ($ $)) (-15 -2707 ((-326 |#1|) $ $)) (-15 -2549 ($ (-783))) (-15 -2212 ((-112) $)) (-15 -4275 ((-112) $)) (-15 -2196 ((-576) $)) (-15 -2423 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2093 ($ (-326 |#1|))) (-15 -4129 ($ $)))) -((-2983 (((-112) (-1179)) 26)) (-3959 (((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112)) 35)) (-3035 (((-3 (-112) "failed") (-1193 |#2|) (-855 |#2|) (-855 |#2|) (-112)) 84) (((-3 (-112) "failed") (-971 |#1|) (-1197) (-855 |#2|) (-855 |#2|) (-112)) 85))) -(((-226 |#1| |#2|) (-10 -7 (-15 -2983 ((-112) (-1179))) (-15 -3959 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -3035 ((-3 (-112) "failed") (-971 |#1|) (-1197) (-855 |#2|) (-855 |#2|) (-112))) (-15 -3035 ((-3 (-112) "failed") (-1193 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-29 |#1|))) (T -226)) -((-3035 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1193 *6)) (-5 *4 (-855 *6)) (-4 *6 (-13 (-1223) (-29 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-226 *5 *6)))) (-3035 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-971 *6)) (-5 *4 (-1197)) (-5 *5 (-855 *7)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *7 (-13 (-1223) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-3959 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1223) (-29 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-226 *6 *4)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1223) (-29 *4)))))) -(-10 -7 (-15 -2983 ((-112) (-1179))) (-15 -3959 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -3035 ((-3 (-112) "failed") (-971 |#1|) (-1197) (-855 |#2|) (-855 |#2|) (-112))) (-15 -3035 ((-3 (-112) "failed") (-1193 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 98)) (-2628 (((-576) $) 33)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-4087 (($ $) NIL)) (-3586 (($ $) 87)) (-3435 (($ $) 75)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1462 (($ $) 66)) (-4386 (((-112) $ $) NIL)) (-3562 (($ $) 85)) (-3412 (($ $) 73)) (-1527 (((-576) $) 127)) (-3612 (($ $) 90)) (-3461 (($ $) 77)) (-3170 (($) NIL T CONST)) (-4174 (($ $) NIL)) (-2982 (((-3 (-576) "failed") $) 126) (((-3 (-419 (-576)) "failed") $) 123)) (-2317 (((-576) $) 124) (((-419 (-576)) $) 121)) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) 103)) (-2356 (((-419 (-576)) $ (-783)) 117) (((-419 (-576)) $ (-783) (-783)) 116)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2758 (((-940)) 28) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-2279 (((-112) $) NIL)) (-2722 (($) 46)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL)) (-3359 (((-576) $) 40)) (-2486 (((-112) $) 99)) (-4005 (($ $ (-576)) NIL)) (-2595 (($ $) NIL)) (-3323 (((-112) $) 97)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2907 (($ $ $) 63) (($) 36 (-12 (-2299 (|has| $ (-6 -4447))) (-2299 (|has| $ (-6 -4455)))))) (-3777 (($ $ $) 62) (($) 35 (-12 (-2299 (|has| $ (-6 -4447))) (-2299 (|has| $ (-6 -4455)))))) (-1361 (((-576) $) 26)) (-3330 (($ $) 31)) (-2485 (($ $) 67)) (-2608 (($ $) 72)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-2627 (((-940) (-576)) NIL (|has| $ (-6 -4455)))) (-3116 (((-1141) $) 101)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2701 (($ $) NIL)) (-3058 (($ $) NIL)) (-2633 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-940)) 110)) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4080 (((-576) $) 27)) (-1897 (($) 45)) (-2156 (($ $) 71)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-2539 (((-940)) NIL) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-4107 (($ $) 104) (($ $ (-783)) NIL)) (-1449 (((-940) (-576)) NIL (|has| $ (-6 -4455)))) (-3623 (($ $) 88)) (-3474 (($ $) 78)) (-3599 (($ $) 89)) (-3448 (($ $) 76)) (-3574 (($ $) 86)) (-3424 (($ $) 74)) (-1556 (((-390) $) 113) (((-227) $) 14) (((-907 (-390)) $) NIL) (((-548) $) 52)) (-4113 (((-876) $) 49) (($ (-576)) 152) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 152) (($ (-419 (-576))) NIL)) (-2910 (((-783)) NIL T CONST)) (-4081 (($ $) NIL)) (-4252 (((-940)) 34) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-2950 (((-112) $ $) NIL)) (-1869 (((-940)) 24)) (-3653 (($ $) 93)) (-3510 (($ $) 81) (($ $ $) 119)) (-4134 (((-112) $ $) NIL)) (-3632 (($ $) 91)) (-3487 (($ $) 79)) (-3673 (($ $) 96)) (-3537 (($ $) 84)) (-1972 (($ $) 94)) (-3550 (($ $) 82)) (-3664 (($ $) 95)) (-3523 (($ $) 83)) (-3642 (($ $) 92)) (-3498 (($ $) 80)) (-2366 (($ $) 118)) (-4313 (($) 42 T CONST)) (-4322 (($) 43 T CONST)) (-2172 (((-1179) $) 18) (((-1179) $ (-112)) 20) (((-1293) (-834) $) 21) (((-1293) (-834) $ (-112)) 22)) (-2257 (($ $) 107)) (-3157 (($ $) NIL) (($ $ (-783)) NIL)) (-2480 (($ $ $) 109)) (-3995 (((-112) $ $) 56)) (-3975 (((-112) $ $) 54)) (-3939 (((-112) $ $) 64)) (-3984 (((-112) $ $) 55)) (-3963 (((-112) $ $) 53)) (-4047 (($ $ $) 44) (($ $ (-576)) 65)) (-4037 (($ $) 57) (($ $ $) 59)) (-4026 (($ $ $) 58)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 68) (($ $ (-419 (-576))) 151) (($ $ $) 69)) (* (($ (-940) $) 32) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 60) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-227) (-13 (-416) (-238) (-840) (-1223) (-626 (-548)) (-10 -8 (-15 -4047 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1897 ($)) (-15 -3330 ($ $)) (-15 -2485 ($ $)) (-15 -3510 ($ $ $)) (-15 -2257 ($ $)) (-15 -2480 ($ $ $)) (-15 -2356 ((-419 (-576)) $ (-783))) (-15 -2356 ((-419 (-576)) $ (-783) (-783)))))) (T -227)) -((** (*1 *1 *1 *1) (-5 *1 (-227))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) (-1897 (*1 *1) (-5 *1 (-227))) (-3330 (*1 *1 *1) (-5 *1 (-227))) (-2485 (*1 *1 *1) (-5 *1 (-227))) (-3510 (*1 *1 *1 *1) (-5 *1 (-227))) (-2257 (*1 *1 *1) (-5 *1 (-227))) (-2480 (*1 *1 *1 *1) (-5 *1 (-227))) (-2356 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) (-2356 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))) -(-13 (-416) (-238) (-840) (-1223) (-626 (-548)) (-10 -8 (-15 -4047 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1897 ($)) (-15 -3330 ($ $)) (-15 -2485 ($ $)) (-15 -3510 ($ $ $)) (-15 -2257 ($ $)) (-15 -2480 ($ $ $)) (-15 -2356 ((-419 (-576)) $ (-783))) (-15 -2356 ((-419 (-576)) $ (-783) (-783))))) -((-3396 (((-171 (-227)) (-783) (-171 (-227))) 11) (((-227) (-783) (-227)) 12)) (-4065 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-3697 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-2621 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-3242 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-3854 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-1772 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2586 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-2347 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-1958 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-2257 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-2480 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) -(((-228) (-10 -7 (-15 -2257 ((-227) (-227))) (-15 -2257 ((-171 (-227)) (-171 (-227)))) (-15 -2480 ((-227) (-227) (-227))) (-15 -2480 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4065 ((-227) (-227))) (-15 -4065 ((-171 (-227)) (-171 (-227)))) (-15 -2621 ((-227) (-227))) (-15 -2621 ((-171 (-227)) (-171 (-227)))) (-15 -3396 ((-227) (-783) (-227))) (-15 -3396 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -1772 ((-227) (-227) (-227))) (-15 -1772 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3242 ((-227) (-227) (-227))) (-15 -3242 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2586 ((-227) (-227) (-227))) (-15 -2586 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3854 ((-227) (-227) (-227))) (-15 -3854 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1958 ((-171 (-227)) (-171 (-227)))) (-15 -1958 ((-227) (-227))) (-15 -2347 ((-227) (-227))) (-15 -2347 ((-171 (-227)) (-171 (-227)))) (-15 -3697 ((-227) (-227) (-227))) (-15 -3697 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) -((-3697 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3697 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1958 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1958 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3854 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3854 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2586 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2586 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3242 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3242 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1772 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1772 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3396 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) (-3396 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2480 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2480 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2257 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2257 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) -(-10 -7 (-15 -2257 ((-227) (-227))) (-15 -2257 ((-171 (-227)) (-171 (-227)))) (-15 -2480 ((-227) (-227) (-227))) (-15 -2480 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4065 ((-227) (-227))) (-15 -4065 ((-171 (-227)) (-171 (-227)))) (-15 -2621 ((-227) (-227))) (-15 -2621 ((-171 (-227)) (-171 (-227)))) (-15 -3396 ((-227) (-783) (-227))) (-15 -3396 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -1772 ((-227) (-227) (-227))) (-15 -1772 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3242 ((-227) (-227) (-227))) (-15 -3242 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2586 ((-227) (-227) (-227))) (-15 -2586 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3854 ((-227) (-227) (-227))) (-15 -3854 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1958 ((-171 (-227)) (-171 (-227)))) (-15 -1958 ((-227) (-227))) (-15 -2347 ((-227) (-227))) (-15 -2347 ((-171 (-227)) (-171 (-227)))) (-15 -3697 ((-227) (-227) (-227))) (-15 -3697 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2155 (($ (-783) (-783)) NIL)) (-3422 (($ $ $) NIL)) (-3019 (($ (-1288 |#1|)) NIL) (($ $) NIL)) (-3818 (($ |#1| |#1| |#1|) 33)) (-4154 (((-112) $) NIL)) (-2410 (($ $ (-576) (-576)) NIL)) (-4433 (($ $ (-576) (-576)) NIL)) (-4164 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-1627 (($ $) NIL)) (-1929 (((-112) $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-4079 (($ $ (-576) (-576) $) NIL)) (-4268 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-2979 (($ $ (-576) (-1288 |#1|)) NIL)) (-2932 (($ $ (-576) (-1288 |#1|)) NIL)) (-2897 (($ |#1| |#1| |#1|) 32)) (-3541 (($ (-783) |#1|) NIL)) (-3170 (($) NIL T CONST)) (-2836 (($ $) NIL (|has| |#1| (-317)))) (-2880 (((-1288 |#1|) $ (-576)) NIL)) (-3991 (($ |#1|) 31)) (-2728 (($ |#1|) 30)) (-2052 (($ |#1|) 29)) (-4135 (((-783) $) NIL (|has| |#1| (-568)))) (-1910 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3721 ((|#1| $ (-576) (-576)) NIL)) (-3722 (((-656 |#1|) $) NIL)) (-3985 (((-783) $) NIL (|has| |#1| (-568)))) (-4362 (((-656 (-1288 |#1|)) $) NIL (|has| |#1| (-568)))) (-2759 (((-783) $) NIL)) (-1991 (($ (-783) (-783) |#1|) NIL)) (-2773 (((-783) $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-4389 ((|#1| $) NIL (|has| |#1| (-6 (-4466 "*"))))) (-2805 (((-576) $) NIL)) (-2718 (((-576) $) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2626 (((-576) $) NIL)) (-3267 (((-576) $) NIL)) (-3410 (($ (-656 (-656 |#1|))) 11) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-1898 (($ (-1 |#1| |#1|) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4345 (((-656 (-656 |#1|)) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3492 (((-3 $ "failed") $) NIL (|has| |#1| (-374)))) (-1807 (($) 12)) (-3659 (($ $ $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4267 (($ $ |#1|) NIL)) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-4359 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-1414 (((-112) $) NIL)) (-1846 ((|#1| $) NIL (|has| |#1| (-6 (-4466 "*"))))) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-3840 (((-1288 |#1|) $ (-576)) NIL)) (-4113 (($ (-1288 |#1|)) NIL) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2057 (((-112) $) NIL)) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1288 |#1|) $ (-1288 |#1|)) 15) (((-1288 |#1|) (-1288 |#1|) $) NIL) (((-962 |#1|) $ (-962 |#1|)) 21)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-229 |#1|) (-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 * ((-962 |#1|) $ (-962 |#1|))) (-15 -1807 ($)) (-15 -2052 ($ |#1|)) (-15 -2728 ($ |#1|)) (-15 -3991 ($ |#1|)) (-15 -2897 ($ |#1| |#1| |#1|)) (-15 -3818 ($ |#1| |#1| |#1|)))) (-13 (-374) (-1223))) (T -229)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223))) (-5 *1 (-229 *3)))) (-1807 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-2052 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-2728 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-3991 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-2897 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) (-3818 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) -(-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 * ((-962 |#1|) $ (-962 |#1|))) (-15 -1807 ($)) (-15 -2052 ($ |#1|)) (-15 -2728 ($ |#1|)) (-15 -3991 ($ |#1|)) (-15 -2897 ($ |#1| |#1| |#1|)) (-15 -3818 ($ |#1| |#1| |#1|)))) -((-1954 (($ (-1 (-112) |#2|) $) 16)) (-3872 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-3091 (($) NIL) (($ (-656 |#2|)) 11)) (-3939 (((-112) $ $) 26))) -(((-230 |#1| |#2|) (-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -1954 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3872 (|#1| |#2| |#1|)) (-15 -3091 (|#1| (-656 |#2|))) (-15 -3091 (|#1|))) (-231 |#2|) (-1121)) (T -230)) -NIL -(-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -1954 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3872 (|#1| |#2| |#1|)) (-15 -3091 (|#1| (-656 |#2|))) (-15 -3091 (|#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) 8)) (-1954 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-3841 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3872 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-2825 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3743 ((|#1| $) 40)) (-3695 (($ |#1| $) 41)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2372 ((|#1| $) 42)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-3091 (($) 50) (($ (-656 |#1|)) 49)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-1556 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 51)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) 43)) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-231 |#1|) (-141) (-1121)) (T -231)) +(-13 (-1122) (-10 -8 (-15 -9 ($) -1491) (-15 -8 ($) -1491) (-15 -7 ($) -1491))) +((-3423 (((-112) $ $) NIL)) (-3219 (((-657 (-880)) $) NIL)) (-2634 (((-518) $) 8)) (-1708 (((-1180) $) NIL)) (-1772 (((-188) $) 10)) (-4216 (((-112) $ (-518)) NIL)) (-1460 (((-1142) $) NIL)) (-1649 (((-704 $) (-518)) 17)) (-2172 (((-657 (-112)) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-1853 (((-55) $) 12)) (-2881 (((-112) $ $) NIL))) +(((-189) (-13 (-187) (-10 -8 (-15 -1649 ((-704 $) (-518)))))) (T -189)) +((-1649 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-704 (-189))) (-5 *1 (-189))))) +(-13 (-187) (-10 -8 (-15 -1649 ((-704 $) (-518))))) +((-3892 ((|#2| |#2|) 28)) (-2028 (((-112) |#2|) 19)) (-1880 (((-326 |#1|) |#2|) 12)) (-1889 (((-326 |#1|) |#2|) 14)) (-3241 ((|#2| |#2| (-1198)) 69) ((|#2| |#2|) 70)) (-2168 (((-171 (-326 |#1|)) |#2|) 10)) (-2216 ((|#2| |#2| (-1198)) 66) ((|#2| |#2|) 60))) +(((-190 |#1| |#2|) (-10 -7 (-15 -3241 (|#2| |#2|)) (-15 -3241 (|#2| |#2| (-1198))) (-15 -2216 (|#2| |#2|)) (-15 -2216 (|#2| |#2| (-1198))) (-15 -1880 ((-326 |#1|) |#2|)) (-15 -1889 ((-326 |#1|) |#2|)) (-15 -2028 ((-112) |#2|)) (-15 -3892 (|#2| |#2|)) (-15 -2168 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1060 (-576))) (-13 (-27) (-1224) (-442 (-171 |#1|)))) (T -190)) +((-2168 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *3)))))) (-2028 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) (-1889 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) (-1880 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) (-2216 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *4)))))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *3)))))) (-3241 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *4)))))) (-3241 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *3))))))) +(-10 -7 (-15 -3241 (|#2| |#2|)) (-15 -3241 (|#2| |#2| (-1198))) (-15 -2216 (|#2| |#2|)) (-15 -2216 (|#2| |#2| (-1198))) (-15 -1880 ((-326 |#1|) |#2|)) (-15 -1889 ((-326 |#1|) |#2|)) (-15 -2028 ((-112) |#2|)) (-15 -3892 (|#2| |#2|)) (-15 -2168 ((-171 (-326 |#1|)) |#2|))) +((-2407 (((-1289 (-702 (-972 |#1|))) (-1289 (-702 |#1|))) 26)) (-3515 (((-1289 (-702 (-419 (-972 |#1|)))) (-1289 (-702 |#1|))) 37))) +(((-191 |#1|) (-10 -7 (-15 -2407 ((-1289 (-702 (-972 |#1|))) (-1289 (-702 |#1|)))) (-15 -3515 ((-1289 (-702 (-419 (-972 |#1|)))) (-1289 (-702 |#1|))))) (-174)) (T -191)) +((-3515 (*1 *2 *3) (-12 (-5 *3 (-1289 (-702 *4))) (-4 *4 (-174)) (-5 *2 (-1289 (-702 (-419 (-972 *4))))) (-5 *1 (-191 *4)))) (-2407 (*1 *2 *3) (-12 (-5 *3 (-1289 (-702 *4))) (-4 *4 (-174)) (-5 *2 (-1289 (-702 (-972 *4)))) (-5 *1 (-191 *4))))) +(-10 -7 (-15 -2407 ((-1289 (-702 (-972 |#1|))) (-1289 (-702 |#1|)))) (-15 -3515 ((-1289 (-702 (-419 (-972 |#1|)))) (-1289 (-702 |#1|))))) +((-2032 (((-1200 (-419 (-576))) (-1200 (-419 (-576))) (-1200 (-419 (-576)))) 93)) (-1516 (((-1200 (-419 (-576))) (-657 (-576)) (-657 (-576))) 107)) (-3654 (((-1200 (-419 (-576))) (-941)) 54)) (-3144 (((-1200 (-419 (-576))) (-941)) 79)) (-3205 (((-419 (-576)) (-1200 (-419 (-576)))) 89)) (-3932 (((-1200 (-419 (-576))) (-941)) 37)) (-2802 (((-1200 (-419 (-576))) (-941)) 66)) (-2411 (((-1200 (-419 (-576))) (-941)) 61)) (-3466 (((-1200 (-419 (-576))) (-1200 (-419 (-576))) (-1200 (-419 (-576)))) 87)) (-1557 (((-1200 (-419 (-576))) (-941)) 29)) (-3027 (((-419 (-576)) (-1200 (-419 (-576))) (-1200 (-419 (-576)))) 91)) (-2500 (((-1200 (-419 (-576))) (-941)) 35)) (-2428 (((-1200 (-419 (-576))) (-657 (-941))) 100))) +(((-192) (-10 -7 (-15 -1557 ((-1200 (-419 (-576))) (-941))) (-15 -3654 ((-1200 (-419 (-576))) (-941))) (-15 -3932 ((-1200 (-419 (-576))) (-941))) (-15 -2500 ((-1200 (-419 (-576))) (-941))) (-15 -2411 ((-1200 (-419 (-576))) (-941))) (-15 -2802 ((-1200 (-419 (-576))) (-941))) (-15 -3144 ((-1200 (-419 (-576))) (-941))) (-15 -3027 ((-419 (-576)) (-1200 (-419 (-576))) (-1200 (-419 (-576))))) (-15 -3466 ((-1200 (-419 (-576))) (-1200 (-419 (-576))) (-1200 (-419 (-576))))) (-15 -3205 ((-419 (-576)) (-1200 (-419 (-576))))) (-15 -2032 ((-1200 (-419 (-576))) (-1200 (-419 (-576))) (-1200 (-419 (-576))))) (-15 -2428 ((-1200 (-419 (-576))) (-657 (-941)))) (-15 -1516 ((-1200 (-419 (-576))) (-657 (-576)) (-657 (-576)))))) (T -192)) +((-1516 (*1 *2 *3 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-2032 (*1 *2 *2 *2) (-12 (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-1200 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-3466 (*1 *2 *2 *2) (-12 (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-3027 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) +(-10 -7 (-15 -1557 ((-1200 (-419 (-576))) (-941))) (-15 -3654 ((-1200 (-419 (-576))) (-941))) (-15 -3932 ((-1200 (-419 (-576))) (-941))) (-15 -2500 ((-1200 (-419 (-576))) (-941))) (-15 -2411 ((-1200 (-419 (-576))) (-941))) (-15 -2802 ((-1200 (-419 (-576))) (-941))) (-15 -3144 ((-1200 (-419 (-576))) (-941))) (-15 -3027 ((-419 (-576)) (-1200 (-419 (-576))) (-1200 (-419 (-576))))) (-15 -3466 ((-1200 (-419 (-576))) (-1200 (-419 (-576))) (-1200 (-419 (-576))))) (-15 -3205 ((-419 (-576)) (-1200 (-419 (-576))))) (-15 -2032 ((-1200 (-419 (-576))) (-1200 (-419 (-576))) (-1200 (-419 (-576))))) (-15 -2428 ((-1200 (-419 (-576))) (-657 (-941)))) (-15 -1516 ((-1200 (-419 (-576))) (-657 (-576)) (-657 (-576))))) +((-3024 (((-430 (-1194 (-576))) (-576)) 38)) (-4294 (((-657 (-1194 (-576))) (-576)) 33)) (-2962 (((-1194 (-576)) (-576)) 28))) +(((-193) (-10 -7 (-15 -4294 ((-657 (-1194 (-576))) (-576))) (-15 -2962 ((-1194 (-576)) (-576))) (-15 -3024 ((-430 (-1194 (-576))) (-576))))) (T -193)) +((-3024 (*1 *2 *3) (-12 (-5 *2 (-430 (-1194 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))) (-2962 (*1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) (-4294 (*1 *2 *3) (-12 (-5 *2 (-657 (-1194 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) +(-10 -7 (-15 -4294 ((-657 (-1194 (-576))) (-576))) (-15 -2962 ((-1194 (-576)) (-576))) (-15 -3024 ((-430 (-1194 (-576))) (-576)))) +((-3874 (((-1179 (-227)) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-1918 (((-657 (-1180)) (-1179 (-227))) NIL)) (-1806 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-4118 (((-657 (-227)) (-326 (-227)) (-1198) (-1116 (-856 (-227)))) NIL)) (-1543 (((-657 (-1180)) (-657 (-227))) NIL)) (-3583 (((-227) (-1116 (-856 (-227)))) 31)) (-1921 (((-227) (-1116 (-856 (-227)))) 32)) (-2594 (((-390) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-1420 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-4269 (((-1180) (-227)) NIL)) (-4312 (((-1180) (-657 (-1180))) 27)) (-3350 (((-1057) (-1198) (-1198) (-1057)) 13))) +(((-194) (-10 -7 (-15 -1806 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1420 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3583 ((-227) (-1116 (-856 (-227))))) (-15 -1921 ((-227) (-1116 (-856 (-227))))) (-15 -2594 ((-390) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4118 ((-657 (-227)) (-326 (-227)) (-1198) (-1116 (-856 (-227))))) (-15 -3874 ((-1179 (-227)) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4269 ((-1180) (-227))) (-15 -1543 ((-657 (-1180)) (-657 (-227)))) (-15 -1918 ((-657 (-1180)) (-1179 (-227)))) (-15 -4312 ((-1180) (-657 (-1180)))) (-15 -3350 ((-1057) (-1198) (-1198) (-1057))))) (T -194)) +((-3350 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-1198)) (-5 *1 (-194)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1180)) (-5 *1 (-194)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-1179 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-194)))) (-1543 (*1 *2 *3) (-12 (-5 *3 (-657 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-194)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1180)) (-5 *1 (-194)))) (-3874 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-194)))) (-4118 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1198)) (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-194)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-194)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) +(-10 -7 (-15 -1806 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1420 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3583 ((-227) (-1116 (-856 (-227))))) (-15 -1921 ((-227) (-1116 (-856 (-227))))) (-15 -2594 ((-390) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4118 ((-657 (-227)) (-326 (-227)) (-1198) (-1116 (-856 (-227))))) (-15 -3874 ((-1179 (-227)) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4269 ((-1180) (-227))) (-15 -1543 ((-657 (-1180)) (-657 (-227)))) (-15 -1918 ((-657 (-1180)) (-1179 (-227)))) (-15 -4312 ((-1180) (-657 (-1180)))) (-15 -3350 ((-1057) (-1198) (-1198) (-1057)))) +((-3423 (((-112) $ $) NIL)) (-1904 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 61) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-195) (-800)) (T -195)) +NIL +(-800) +((-3423 (((-112) $ $) NIL)) (-1904 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 66) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-196) (-800)) (T -196)) +NIL +(-800) +((-3423 (((-112) $ $) NIL)) (-1904 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 81) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-197) (-800)) (T -197)) +NIL +(-800) +((-3423 (((-112) $ $) NIL)) (-1904 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 63) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-198) (-800)) (T -198)) +NIL +(-800) +((-3423 (((-112) $ $) NIL)) (-1904 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 76) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-199) (-800)) (T -199)) +NIL +(-800) +((-3423 (((-112) $ $) NIL)) (-1904 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 93) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-200) (-800)) (T -200)) +NIL +(-800) +((-3423 (((-112) $ $) NIL)) (-1904 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 90) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-201) (-800)) (T -201)) +NIL +(-800) +((-3423 (((-112) $ $) NIL)) (-1904 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 78) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-202) (-800)) (T -202)) +NIL +(-800) +((-3423 (((-112) $ $) NIL)) (-1904 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 76)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-203) (-800)) (T -203)) +NIL +(-800) +((-3423 (((-112) $ $) NIL)) (-1904 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 77)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-204) (-800)) (T -204)) +NIL +(-800) +((-3423 (((-112) $ $) NIL)) (-1904 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 105) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-205) (-800)) (T -205)) +NIL +(-800) +((-3224 (((-3 (-2 (|:| -1782 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1361 (((-576) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-3575 (((-3 (-657 (-227)) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) +(((-206) (-10 -7 (-15 -3224 ((-3 (-2 (|:| -1782 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3575 ((-3 (-657 (-227)) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1361 ((-576) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) +((-1361 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206)))) (-3575 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-206)))) (-3224 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1782 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(-10 -7 (-15 -3224 ((-3 (-2 (|:| -1782 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3575 ((-3 (-657 (-227)) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1361 ((-576) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-1775 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-3600 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-2718 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-702 (-326 (-227)))) 112)) (-1591 (((-390) (-702 (-326 (-227)))) 140)) (-3768 (((-702 (-326 (-227))) (-1289 (-326 (-227))) (-657 (-1198))) 136)) (-2803 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-1814 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-3205 (((-702 (-326 (-227))) (-702 (-326 (-227))) (-657 (-1198)) (-1289 (-326 (-227)))) 125)) (-2832 (((-390) (-390) (-657 (-390))) 133) (((-390) (-390) (-390)) 128)) (-4163 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) +(((-207) (-10 -7 (-15 -2832 ((-390) (-390) (-390))) (-15 -2832 ((-390) (-390) (-657 (-390)))) (-15 -1591 ((-390) (-702 (-326 (-227))))) (-15 -3768 ((-702 (-326 (-227))) (-1289 (-326 (-227))) (-657 (-1198)))) (-15 -3205 ((-702 (-326 (-227))) (-702 (-326 (-227))) (-657 (-1198)) (-1289 (-326 (-227))))) (-15 -2718 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-702 (-326 (-227))))) (-15 -3600 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1775 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1814 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4163 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2803 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) +((-2803 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-702 (-326 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-3205 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-702 (-326 (-227)))) (-5 *3 (-657 (-1198))) (-5 *4 (-1289 (-326 (-227)))) (-5 *1 (-207)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *4 (-657 (-1198))) (-5 *2 (-702 (-326 (-227)))) (-5 *1 (-207)))) (-1591 (*1 *2 *3) (-12 (-5 *3 (-702 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2832 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2832 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207))))) +(-10 -7 (-15 -2832 ((-390) (-390) (-390))) (-15 -2832 ((-390) (-390) (-657 (-390)))) (-15 -1591 ((-390) (-702 (-326 (-227))))) (-15 -3768 ((-702 (-326 (-227))) (-1289 (-326 (-227))) (-657 (-1198)))) (-15 -3205 ((-702 (-326 (-227))) (-702 (-326 (-227))) (-657 (-1198)) (-1289 (-326 (-227))))) (-15 -2718 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-702 (-326 (-227))))) (-15 -3600 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1775 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1814 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4163 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2803 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3423 (((-112) $ $) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-3499 (((-1057) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2881 (((-112) $ $) NIL))) +(((-208) (-813)) (T -208)) +NIL +(-813) +((-3423 (((-112) $ $) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-3499 (((-1057) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2881 (((-112) $ $) NIL))) +(((-209) (-813)) (T -209)) +NIL +(-813) +((-3423 (((-112) $ $) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-3499 (((-1057) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2881 (((-112) $ $) NIL))) +(((-210) (-813)) (T -210)) +NIL +(-813) +((-3423 (((-112) $ $) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-3499 (((-1057) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2881 (((-112) $ $) NIL))) +(((-211) (-813)) (T -211)) +NIL +(-813) +((-3375 (((-657 (-1198)) (-1198) (-784)) 26)) (-4428 (((-326 (-227)) (-326 (-227))) 35)) (-2823 (((-112) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 87)) (-2960 (((-112) (-227) (-227) (-657 (-326 (-227)))) 47))) +(((-212) (-10 -7 (-15 -3375 ((-657 (-1198)) (-1198) (-784))) (-15 -4428 ((-326 (-227)) (-326 (-227)))) (-15 -2960 ((-112) (-227) (-227) (-657 (-326 (-227))))) (-15 -2823 ((-112) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))))))) (T -212)) +((-2823 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2960 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-657 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-4428 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-5 *2 (-657 (-1198))) (-5 *1 (-212)) (-5 *3 (-1198))))) +(-10 -7 (-15 -3375 ((-657 (-1198)) (-1198) (-784))) (-15 -4428 ((-326 (-227)) (-326 (-227)))) (-15 -2960 ((-112) (-227) (-227) (-657 (-326 (-227))))) (-15 -2823 ((-112) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))))) +((-3423 (((-112) $ $) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 28)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-1499 (((-1057) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 70)) (-2881 (((-112) $ $) NIL))) +(((-213) (-913)) (T -213)) +NIL +(-913) +((-3423 (((-112) $ $) NIL)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 24)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-1499 (((-1057) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) NIL)) (-2881 (((-112) $ $) NIL))) +(((-214) (-913)) (T -214)) +NIL +(-913) +((-3423 (((-112) $ $) NIL)) (-1752 ((|#2| $ (-784) |#2|) 11)) (-1741 ((|#2| $ (-784)) 10)) (-4096 (($) 8)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 23)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 13))) +(((-215 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -4096 ($)) (-15 -1741 (|#2| $ (-784))) (-15 -1752 (|#2| $ (-784) |#2|)))) (-941) (-1122)) (T -215)) +((-4096 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1122)))) (-1741 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *2 (-1122)) (-5 *1 (-215 *4 *2)) (-14 *4 (-941)))) (-1752 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-215 *4 *2)) (-14 *4 (-941)) (-4 *2 (-1122))))) +(-13 (-1122) (-10 -8 (-15 -4096 ($)) (-15 -1741 (|#2| $ (-784))) (-15 -1752 (|#2| $ (-784) |#2|)))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2884 (((-1294) $) 37) (((-1294) $ (-941) (-941)) 41)) (-2780 (($ $ (-1011)) 19) (((-250 (-1180)) $ (-1198)) 15)) (-2011 (((-1294) $) 35)) (-3515 (((-877) $) 32) (($ (-657 |#1|)) 8)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $ $) 27)) (-2971 (($ $ $) 22))) +(((-216 |#1|) (-13 (-1122) (-628 (-657 |#1|)) (-10 -8 (-15 -2780 ($ $ (-1011))) (-15 -2780 ((-250 (-1180)) $ (-1198))) (-15 -2971 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2011 ((-1294) $)) (-15 -2884 ((-1294) $)) (-15 -2884 ((-1294) $ (-941) (-941))))) (-13 (-862) (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 ((-1294) $)) (-15 -2884 ((-1294) $))))) (T -216)) +((-2780 (*1 *1 *1 *2) (-12 (-5 *2 (-1011)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 ((-1294) $)) (-15 -2884 ((-1294) $))))))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-250 (-1180))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2780 ((-1180) $ *3)) (-15 -2011 ((-1294) $)) (-15 -2884 ((-1294) $))))))) (-2971 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 ((-1294) $)) (-15 -2884 ((-1294) $))))))) (-2982 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 ((-1294) $)) (-15 -2884 ((-1294) $))))))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 (*2 $)) (-15 -2884 (*2 $))))))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 (*2 $)) (-15 -2884 (*2 $))))))) (-2884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1294)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 (*2 $)) (-15 -2884 (*2 $)))))))) +(-13 (-1122) (-628 (-657 |#1|)) (-10 -8 (-15 -2780 ($ $ (-1011))) (-15 -2780 ((-250 (-1180)) $ (-1198))) (-15 -2971 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2011 ((-1294) $)) (-15 -2884 ((-1294) $)) (-15 -2884 ((-1294) $ (-941) (-941))))) +((-3295 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3295 (|#2| |#4| (-1 |#2| |#2|)))) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -217)) +((-3295 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1265 (-419 *2))) (-4 *2 (-1265 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-353 *5 *2 *6))))) +(-10 -7 (-15 -3295 (|#2| |#4| (-1 |#2| |#2|)))) +((-2671 ((|#2| |#2| (-784) |#2|) 55)) (-2822 ((|#2| |#2| (-784) |#2|) 51)) (-3617 (((-657 |#2|) (-657 (-2 (|:| |deg| (-784)) (|:| -4124 |#2|)))) 79)) (-4026 (((-657 (-2 (|:| |deg| (-784)) (|:| -4124 |#2|))) |#2|) 73)) (-2788 (((-112) |#2|) 71)) (-2556 (((-430 |#2|) |#2|) 91)) (-1856 (((-430 |#2|) |#2|) 90)) (-3169 ((|#2| |#2| (-784) |#2|) 49)) (-4202 (((-2 (|:| |cont| |#1|) (|:| -1502 (-657 (-2 (|:| |irr| |#2|) (|:| -2534 (-576)))))) |#2| (-112)) 85))) +(((-218 |#1| |#2|) (-10 -7 (-15 -1856 ((-430 |#2|) |#2|)) (-15 -2556 ((-430 |#2|) |#2|)) (-15 -4202 ((-2 (|:| |cont| |#1|) (|:| -1502 (-657 (-2 (|:| |irr| |#2|) (|:| -2534 (-576)))))) |#2| (-112))) (-15 -4026 ((-657 (-2 (|:| |deg| (-784)) (|:| -4124 |#2|))) |#2|)) (-15 -3617 ((-657 |#2|) (-657 (-2 (|:| |deg| (-784)) (|:| -4124 |#2|))))) (-15 -3169 (|#2| |#2| (-784) |#2|)) (-15 -2822 (|#2| |#2| (-784) |#2|)) (-15 -2671 (|#2| |#2| (-784) |#2|)) (-15 -2788 ((-112) |#2|))) (-360) (-1265 |#1|)) (T -218)) +((-2788 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1265 *4)))) (-2671 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1265 *4)))) (-2822 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1265 *4)))) (-3169 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1265 *4)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| |deg| (-784)) (|:| -4124 *5)))) (-4 *5 (-1265 *4)) (-4 *4 (-360)) (-5 *2 (-657 *5)) (-5 *1 (-218 *4 *5)))) (-4026 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-657 (-2 (|:| |deg| (-784)) (|:| -4124 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1265 *4)))) (-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1502 (-657 (-2 (|:| |irr| *3) (|:| -2534 (-576))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1265 *5)))) (-2556 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1265 *4)))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1265 *4))))) +(-10 -7 (-15 -1856 ((-430 |#2|) |#2|)) (-15 -2556 ((-430 |#2|) |#2|)) (-15 -4202 ((-2 (|:| |cont| |#1|) (|:| -1502 (-657 (-2 (|:| |irr| |#2|) (|:| -2534 (-576)))))) |#2| (-112))) (-15 -4026 ((-657 (-2 (|:| |deg| (-784)) (|:| -4124 |#2|))) |#2|)) (-15 -3617 ((-657 |#2|) (-657 (-2 (|:| |deg| (-784)) (|:| -4124 |#2|))))) (-15 -3169 (|#2| |#2| (-784) |#2|)) (-15 -2822 (|#2| |#2| (-784) |#2|)) (-15 -2671 (|#2| |#2| (-784) |#2|)) (-15 -2788 ((-112) |#2|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2923 (((-576) $) NIL (|has| (-576) (-317)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL (|has| (-576) (-833)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| (-576) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1060 (-576))))) (-2830 (((-576) $) NIL) (((-1198) $) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-576) (-1060 (-576)))) (((-576) $) NIL (|has| (-576) (-1060 (-576))))) (-3355 (($ $ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| (-576) (-557)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3810 (((-112) $) NIL (|has| (-576) (-833)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-576) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-576) (-902 (-390))))) (-3994 (((-112) $) NIL)) (-3502 (($ $) NIL)) (-1590 (((-576) $) NIL)) (-1955 (((-3 $ "failed") $) NIL (|has| (-576) (-1174)))) (-3517 (((-112) $) NIL (|has| (-576) (-833)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3740 (($ $ $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| (-576) (-862)))) (-4071 (($ (-1 (-576) (-576)) $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| (-576) (-1174)) CONST)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2440 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-2681 (((-576) $) NIL (|has| (-576) (-557)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3205 (($ $ (-657 (-576)) (-657 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-1198)) (-657 (-576))) NIL (|has| (-576) (-526 (-1198) (-576)))) (($ $ (-1198) (-576)) NIL (|has| (-576) (-526 (-1198) (-576))))) (-4164 (((-784) $) NIL)) (-2780 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2209 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-4226 (($ $) NIL)) (-1602 (((-576) $) NIL)) (-2289 (($ (-419 (-576))) 9)) (-4136 (((-908 (-576)) $) NIL (|has| (-576) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-576) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1044))) (((-227) $) NIL (|has| (-576) (-1044)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1198)) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL) (((-1026 10) $) 10)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| (-576) (-929))) (|has| (-576) (-146))))) (-3845 (((-784)) NIL T CONST)) (-2140 (((-576) $) NIL (|has| (-576) (-557)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2127 (($ $) NIL (|has| (-576) (-833)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-2938 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2913 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2901 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2995 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) +(((-219) (-13 (-1014 (-576)) (-625 (-419 (-576))) (-625 (-1026 10)) (-10 -8 (-15 -2440 ((-419 (-576)) $)) (-15 -2289 ($ (-419 (-576))))))) (T -219)) +((-2440 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) (-2289 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) +(-13 (-1014 (-576)) (-625 (-419 (-576))) (-625 (-1026 10)) (-10 -8 (-15 -2440 ((-419 (-576)) $)) (-15 -2289 ($ (-419 (-576)))))) +((-3423 (((-112) $ $) NIL)) (-2702 (((-1140) $) 13)) (-1708 (((-1180) $) NIL)) (-2626 (((-495) $) 10)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 23) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2645 (((-1157) $) 15)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-220) (-13 (-1105) (-10 -8 (-15 -2626 ((-495) $)) (-15 -2702 ((-1140) $)) (-15 -2645 ((-1157) $))))) (T -220)) +((-2626 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-220)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-220))))) +(-13 (-1105) (-10 -8 (-15 -2626 ((-495) $)) (-15 -2702 ((-1140) $)) (-15 -2645 ((-1157) $)))) +((-2320 (((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1114 (-856 |#2|)) (-1180)) 29) (((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1114 (-856 |#2|))) 25)) (-3853 (((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1198) (-856 |#2|) (-856 |#2|) (-112)) 17))) +(((-221 |#1| |#2|) (-10 -7 (-15 -2320 ((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1114 (-856 |#2|)))) (-15 -2320 ((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1114 (-856 |#2|)) (-1180))) (-15 -3853 ((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1198) (-856 |#2|) (-856 |#2|) (-112)))) (-13 (-317) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-979) (-29 |#1|))) (T -221)) +((-3853 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1198)) (-5 *6 (-112)) (-4 *7 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-4 *3 (-13 (-1224) (-979) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-856 *3)) (|:| |f2| (-657 (-856 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-856 *3)))) (-2320 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1114 (-856 *3))) (-5 *5 (-1180)) (-4 *3 (-13 (-1224) (-979) (-29 *6))) (-4 *6 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |f1| (-856 *3)) (|:| |f2| (-657 (-856 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *4 (-1114 (-856 *3))) (-4 *3 (-13 (-1224) (-979) (-29 *5))) (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |f1| (-856 *3)) (|:| |f2| (-657 (-856 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) +(-10 -7 (-15 -2320 ((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1114 (-856 |#2|)))) (-15 -2320 ((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1114 (-856 |#2|)) (-1180))) (-15 -3853 ((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1198) (-856 |#2|) (-856 |#2|) (-112)))) +((-2320 (((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-419 (-972 |#1|)))) (-1180)) 49) (((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-419 (-972 |#1|))))) 46) (((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-326 |#1|))) (-1180)) 50) (((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-326 |#1|)))) 22))) +(((-222 |#1|) (-10 -7 (-15 -2320 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-326 |#1|))))) (-15 -2320 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-326 |#1|))) (-1180))) (-15 -2320 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-419 (-972 |#1|)))))) (-15 -2320 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-419 (-972 |#1|)))) (-1180)))) (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (T -222)) +((-2320 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1114 (-856 (-419 (-972 *6))))) (-5 *5 (-1180)) (-5 *3 (-419 (-972 *6))) (-4 *6 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |f1| (-856 (-326 *6))) (|:| |f2| (-657 (-856 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *4 (-1114 (-856 (-419 (-972 *5))))) (-5 *3 (-419 (-972 *5))) (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |f1| (-856 (-326 *5))) (|:| |f2| (-657 (-856 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-2320 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-972 *6))) (-5 *4 (-1114 (-856 (-326 *6)))) (-5 *5 (-1180)) (-4 *6 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |f1| (-856 (-326 *6))) (|:| |f2| (-657 (-856 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1114 (-856 (-326 *5)))) (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |f1| (-856 (-326 *5))) (|:| |f2| (-657 (-856 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) +(-10 -7 (-15 -2320 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-326 |#1|))))) (-15 -2320 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-326 |#1|))) (-1180))) (-15 -2320 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-419 (-972 |#1|)))))) (-15 -2320 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-419 (-972 |#1|)))) (-1180)))) +((-3662 (((-2 (|:| -3587 (-1194 |#1|)) (|:| |deg| (-941))) (-1194 |#1|)) 26)) (-1971 (((-657 (-326 |#2|)) (-326 |#2|) (-941)) 51))) +(((-223 |#1| |#2|) (-10 -7 (-15 -3662 ((-2 (|:| -3587 (-1194 |#1|)) (|:| |deg| (-941))) (-1194 |#1|))) (-15 -1971 ((-657 (-326 |#2|)) (-326 |#2|) (-941)))) (-1071) (-568)) (T -223)) +((-1971 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-4 *6 (-568)) (-5 *2 (-657 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1071)))) (-3662 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-5 *2 (-2 (|:| -3587 (-1194 *4)) (|:| |deg| (-941)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1194 *4)) (-4 *5 (-568))))) +(-10 -7 (-15 -3662 ((-2 (|:| -3587 (-1194 |#1|)) (|:| |deg| (-941))) (-1194 |#1|))) (-15 -1971 ((-657 (-326 |#2|)) (-326 |#2|) (-941)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1753 ((|#1| $) NIL)) (-1425 ((|#1| $) 30)) (-4284 (((-112) $ (-784)) NIL)) (-2515 (($) NIL T CONST)) (-1528 (($ $) NIL)) (-4072 (($ $) 39)) (-3240 ((|#1| |#1| $) NIL)) (-2477 ((|#1| $) NIL)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-3041 (((-784) $) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3107 ((|#1| $) NIL)) (-1548 ((|#1| |#1| $) 35)) (-3436 ((|#1| |#1| $) 37)) (-2701 (($ |#1| $) NIL)) (-2363 (((-784) $) 33)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2727 ((|#1| $) NIL)) (-2341 ((|#1| $) 31)) (-3582 ((|#1| $) 29)) (-2184 ((|#1| $) NIL)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3513 ((|#1| |#1| $) NIL)) (-1368 (((-112) $) 9)) (-3340 (($) NIL)) (-3608 ((|#1| $) NIL)) (-2404 (($) NIL) (($ (-657 |#1|)) 16)) (-3106 (((-784) $) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-1926 ((|#1| $) 13)) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) NIL)) (-3292 ((|#1| $) NIL)) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -2404 ($ (-657 |#1|))))) (-1122)) (T -224)) +((-2404 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-224 *3))))) +(-13 (-261 |#1|) (-10 -8 (-15 -2404 ($ (-657 |#1|))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2552 (($ (-326 |#1|)) 24)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3402 (((-112) $) NIL)) (-1593 (((-3 (-326 |#1|) "failed") $) NIL)) (-2830 (((-326 |#1|) $) NIL)) (-2165 (($ $) 32)) (-3969 (((-3 $ "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-4071 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL)) (-2141 (((-326 |#1|) $) NIL)) (-3336 (($ $) 31)) (-1708 (((-1180) $) NIL)) (-4419 (((-112) $) NIL)) (-1460 (((-1142) $) NIL)) (-4083 (($ (-784)) NIL)) (-2568 (($ $) 33)) (-4265 (((-576) $) NIL)) (-3515 (((-877) $) 65) (($ (-576)) NIL) (($ (-326 |#1|)) NIL)) (-2498 (((-326 |#1|) $ $) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 26 T CONST)) (-2725 (($) NIL T CONST)) (-2881 (((-112) $ $) 29)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 20)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 25) (($ (-326 |#1|) $) 19))) +(((-225 |#1| |#2|) (-13 (-632 (-326 |#1|)) (-1060 (-326 |#1|)) (-10 -8 (-15 -2141 ((-326 |#1|) $)) (-15 -3336 ($ $)) (-15 -2165 ($ $)) (-15 -2498 ((-326 |#1|) $ $)) (-15 -4083 ($ (-784))) (-15 -4419 ((-112) $)) (-15 -3402 ((-112) $)) (-15 -4265 ((-576) $)) (-15 -4071 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2552 ($ (-326 |#1|))) (-15 -2568 ($ $)))) (-13 (-1071) (-862)) (-657 (-1198))) (T -225)) +((-2141 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) (-3336 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1071) (-862))) (-14 *3 (-657 (-1198))))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1071) (-862))) (-14 *3 (-657 (-1198))))) (-2498 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) (-4419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) (-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1071) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-657 (-1198))))) (-2552 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1071) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-657 (-1198))))) (-2568 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1071) (-862))) (-14 *3 (-657 (-1198)))))) +(-13 (-632 (-326 |#1|)) (-1060 (-326 |#1|)) (-10 -8 (-15 -2141 ((-326 |#1|) $)) (-15 -3336 ($ $)) (-15 -2165 ($ $)) (-15 -2498 ((-326 |#1|) $ $)) (-15 -4083 ($ (-784))) (-15 -4419 ((-112) $)) (-15 -3402 ((-112) $)) (-15 -4265 ((-576) $)) (-15 -4071 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2552 ($ (-326 |#1|))) (-15 -2568 ($ $)))) +((-1364 (((-112) (-1180)) 26)) (-3392 (((-3 (-856 |#2|) "failed") (-624 |#2|) |#2| (-856 |#2|) (-856 |#2|) (-112)) 35)) (-3735 (((-3 (-112) "failed") (-1194 |#2|) (-856 |#2|) (-856 |#2|) (-112)) 84) (((-3 (-112) "failed") (-972 |#1|) (-1198) (-856 |#2|) (-856 |#2|) (-112)) 85))) +(((-226 |#1| |#2|) (-10 -7 (-15 -1364 ((-112) (-1180))) (-15 -3392 ((-3 (-856 |#2|) "failed") (-624 |#2|) |#2| (-856 |#2|) (-856 |#2|) (-112))) (-15 -3735 ((-3 (-112) "failed") (-972 |#1|) (-1198) (-856 |#2|) (-856 |#2|) (-112))) (-15 -3735 ((-3 (-112) "failed") (-1194 |#2|) (-856 |#2|) (-856 |#2|) (-112)))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-29 |#1|))) (T -226)) +((-3735 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1194 *6)) (-5 *4 (-856 *6)) (-4 *6 (-13 (-1224) (-29 *5))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-226 *5 *6)))) (-3735 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-972 *6)) (-5 *4 (-1198)) (-5 *5 (-856 *7)) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-4 *7 (-13 (-1224) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-3392 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-856 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1224) (-29 *6))) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-226 *6 *4)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1224) (-29 *4)))))) +(-10 -7 (-15 -1364 ((-112) (-1180))) (-15 -3392 ((-3 (-856 |#2|) "failed") (-624 |#2|) |#2| (-856 |#2|) (-856 |#2|) (-112))) (-15 -3735 ((-3 (-112) "failed") (-972 |#1|) (-1198) (-856 |#2|) (-856 |#2|) (-112))) (-15 -3735 ((-3 (-112) "failed") (-1194 |#2|) (-856 |#2|) (-856 |#2|) (-112)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 98)) (-2923 (((-576) $) 33)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2212 (($ $) NIL)) (-2143 (($ $) 87)) (-2012 (($ $) 75)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-1866 (($ $) 66)) (-3210 (((-112) $ $) NIL)) (-2120 (($ $) 85)) (-1989 (($ $) 73)) (-3922 (((-576) $) 127)) (-2166 (($ $) 90)) (-2033 (($ $) 77)) (-2515 (($) NIL T CONST)) (-1794 (($ $) NIL)) (-1593 (((-3 (-576) "failed") $) 126) (((-3 (-419 (-576)) "failed") $) 123)) (-2830 (((-576) $) 124) (((-419 (-576)) $) 121)) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) 103)) (-3201 (((-419 (-576)) $ (-784)) 117) (((-419 (-576)) $ (-784) (-784)) 116)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3955 (((-941)) 28) (((-941) (-941)) NIL (|has| $ (-6 -4457)))) (-3810 (((-112) $) NIL)) (-1622 (($) 46)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL)) (-2650 (((-576) $) 40)) (-3994 (((-112) $) 99)) (-3856 (($ $ (-576)) NIL)) (-3869 (($ $) NIL)) (-3517 (((-112) $) 97)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3740 (($ $ $) 63) (($) 36 (-12 (-2665 (|has| $ (-6 -4449))) (-2665 (|has| $ (-6 -4457)))))) (-2249 (($ $ $) 62) (($) 35 (-12 (-2665 (|has| $ (-6 -4449))) (-2665 (|has| $ (-6 -4457)))))) (-1504 (((-576) $) 26)) (-3595 (($ $) 31)) (-2365 (($ $) 67)) (-3707 (($ $) 72)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-2909 (((-941) (-576)) NIL (|has| $ (-6 -4457)))) (-1460 (((-1142) $) 101)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2440 (($ $) NIL)) (-2681 (($ $) NIL)) (-2983 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-941)) 110)) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2128 (((-576) $) 27)) (-1330 (($) 45)) (-4056 (($ $) 71)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-1409 (((-941)) NIL) (((-941) (-941)) NIL (|has| $ (-6 -4457)))) (-2209 (($ $) 104) (($ $ (-784)) NIL)) (-3626 (((-941) (-576)) NIL (|has| $ (-6 -4457)))) (-2177 (($ $) 88)) (-2042 (($ $) 78)) (-2155 (($ $) 89)) (-2023 (($ $) 76)) (-2131 (($ $) 86)) (-2002 (($ $) 74)) (-4136 (((-390) $) 113) (((-227) $) 14) (((-908 (-390)) $) NIL) (((-548) $) 52)) (-3515 (((-877) $) 49) (($ (-576)) 152) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 152) (($ (-419 (-576))) NIL)) (-3845 (((-784)) NIL T CONST)) (-2140 (($ $) NIL)) (-1344 (((-941)) 34) (((-941) (-941)) NIL (|has| $ (-6 -4457)))) (-4166 (((-112) $ $) NIL)) (-4129 (((-941)) 24)) (-4110 (($ $) 93)) (-2082 (($ $) 81) (($ $ $) 119)) (-2607 (((-112) $ $) NIL)) (-2188 (($ $) 91)) (-2055 (($ $) 79)) (-4137 (($ $) 96)) (-2100 (($ $) 84)) (-1864 (($ $) 94)) (-2110 (($ $) 82)) (-4123 (($ $) 95)) (-2090 (($ $) 83)) (-4097 (($ $) 92)) (-2070 (($ $) 80)) (-2127 (($ $) 118)) (-2716 (($) 42 T CONST)) (-2725 (($) 43 T CONST)) (-4019 (((-1180) $) 18) (((-1180) $ (-112)) 20) (((-1294) (-835) $) 21) (((-1294) (-835) $ (-112)) 22)) (-3571 (($ $) 107)) (-2066 (($ $) NIL) (($ $ (-784)) NIL)) (-3939 (($ $ $) 109)) (-2938 (((-112) $ $) 56)) (-2913 (((-112) $ $) 54)) (-2881 (((-112) $ $) 64)) (-2925 (((-112) $ $) 55)) (-2901 (((-112) $ $) 53)) (-2995 (($ $ $) 44) (($ $ (-576)) 65)) (-2982 (($ $) 57) (($ $ $) 59)) (-2971 (($ $ $) 58)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 68) (($ $ (-419 (-576))) 151) (($ $ $) 69)) (* (($ (-941) $) 32) (($ (-784) $) NIL) (($ (-576) $) 61) (($ $ $) 60) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-227) (-13 (-416) (-238) (-841) (-1224) (-626 (-548)) (-10 -8 (-15 -2995 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1330 ($)) (-15 -3595 ($ $)) (-15 -2365 ($ $)) (-15 -2082 ($ $ $)) (-15 -3571 ($ $)) (-15 -3939 ($ $ $)) (-15 -3201 ((-419 (-576)) $ (-784))) (-15 -3201 ((-419 (-576)) $ (-784) (-784)))))) (T -227)) +((** (*1 *1 *1 *1) (-5 *1 (-227))) (-2995 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) (-1330 (*1 *1) (-5 *1 (-227))) (-3595 (*1 *1 *1) (-5 *1 (-227))) (-2365 (*1 *1 *1) (-5 *1 (-227))) (-2082 (*1 *1 *1 *1) (-5 *1 (-227))) (-3571 (*1 *1 *1) (-5 *1 (-227))) (-3939 (*1 *1 *1 *1) (-5 *1 (-227))) (-3201 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) (-3201 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))) +(-13 (-416) (-238) (-841) (-1224) (-626 (-548)) (-10 -8 (-15 -2995 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1330 ($)) (-15 -3595 ($ $)) (-15 -2365 ($ $)) (-15 -2082 ($ $ $)) (-15 -3571 ($ $)) (-15 -3939 ($ $ $)) (-15 -3201 ((-419 (-576)) $ (-784))) (-15 -3201 ((-419 (-576)) $ (-784) (-784))))) +((-2985 (((-171 (-227)) (-784) (-171 (-227))) 11) (((-227) (-784) (-227)) 12)) (-3131 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-2723 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-2847 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-3966 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-1756 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-2491 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-3771 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-3129 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-3758 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-3571 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-3939 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) +(((-228) (-10 -7 (-15 -3571 ((-227) (-227))) (-15 -3571 ((-171 (-227)) (-171 (-227)))) (-15 -3939 ((-227) (-227) (-227))) (-15 -3939 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3131 ((-227) (-227))) (-15 -3131 ((-171 (-227)) (-171 (-227)))) (-15 -2847 ((-227) (-227))) (-15 -2847 ((-171 (-227)) (-171 (-227)))) (-15 -2985 ((-227) (-784) (-227))) (-15 -2985 ((-171 (-227)) (-784) (-171 (-227)))) (-15 -2491 ((-227) (-227) (-227))) (-15 -2491 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3966 ((-227) (-227) (-227))) (-15 -3966 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3771 ((-227) (-227) (-227))) (-15 -3771 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1756 ((-227) (-227) (-227))) (-15 -1756 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3758 ((-171 (-227)) (-171 (-227)))) (-15 -3758 ((-227) (-227))) (-15 -3129 ((-227) (-227))) (-15 -3129 ((-171 (-227)) (-171 (-227)))) (-15 -2723 ((-227) (-227) (-227))) (-15 -2723 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) +((-2723 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2723 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3129 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3129 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1756 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1756 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3771 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3771 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3966 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3966 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2491 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2491 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2985 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-784)) (-5 *1 (-228)))) (-2985 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-784)) (-5 *1 (-228)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3131 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3131 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3939 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3939 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) +(-10 -7 (-15 -3571 ((-227) (-227))) (-15 -3571 ((-171 (-227)) (-171 (-227)))) (-15 -3939 ((-227) (-227) (-227))) (-15 -3939 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3131 ((-227) (-227))) (-15 -3131 ((-171 (-227)) (-171 (-227)))) (-15 -2847 ((-227) (-227))) (-15 -2847 ((-171 (-227)) (-171 (-227)))) (-15 -2985 ((-227) (-784) (-227))) (-15 -2985 ((-171 (-227)) (-784) (-171 (-227)))) (-15 -2491 ((-227) (-227) (-227))) (-15 -2491 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3966 ((-227) (-227) (-227))) (-15 -3966 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3771 ((-227) (-227) (-227))) (-15 -3771 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1756 ((-227) (-227) (-227))) (-15 -1756 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3758 ((-171 (-227)) (-171 (-227)))) (-15 -3758 ((-227) (-227))) (-15 -3129 ((-227) (-227))) (-15 -3129 ((-171 (-227)) (-171 (-227)))) (-15 -2723 ((-227) (-227) (-227))) (-15 -2723 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3793 (($ (-784) (-784)) NIL)) (-3191 (($ $ $) NIL)) (-3564 (($ (-1289 |#1|)) NIL) (($ $) NIL)) (-1909 (($ |#1| |#1| |#1|) 33)) (-1616 (((-112) $) NIL)) (-2550 (($ $ (-576) (-576)) NIL)) (-2528 (($ $ (-576) (-576)) NIL)) (-1709 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-3620 (($ $) NIL)) (-3425 (((-112) $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-3276 (($ $ (-576) (-576) $) NIL)) (-3719 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-657 (-576)) (-657 (-576)) $) NIL)) (-1327 (($ $ (-576) (-1289 |#1|)) NIL)) (-3960 (($ $ (-576) (-1289 |#1|)) NIL)) (-3734 (($ |#1| |#1| |#1|) 32)) (-1868 (($ (-784) |#1|) NIL)) (-2515 (($) NIL T CONST)) (-4389 (($ $) NIL (|has| |#1| (-317)))) (-3520 (((-1289 |#1|) $ (-576)) NIL)) (-3723 (($ |#1|) 31)) (-1489 (($ |#1|) 30)) (-2144 (($ |#1|) 29)) (-4343 (((-784) $) NIL (|has| |#1| (-568)))) (-1810 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1741 ((|#1| $ (-576) (-576)) NIL)) (-1448 (((-657 |#1|) $) NIL)) (-3652 (((-784) $) NIL (|has| |#1| (-568)))) (-2992 (((-657 (-1289 |#1|)) $) NIL (|has| |#1| (-568)))) (-2334 (((-784) $) NIL)) (-4096 (($ (-784) (-784) |#1|) NIL)) (-2344 (((-784) $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3242 ((|#1| $) NIL (|has| |#1| (-6 (-4468 "*"))))) (-4076 (((-576) $) NIL)) (-2581 (((-576) $) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2898 (((-576) $) NIL)) (-4230 (((-576) $) NIL)) (-2484 (($ (-657 (-657 |#1|))) 11) (($ (-784) (-784) (-1 |#1| (-576) (-576))) NIL)) (-1799 (($ (-1 |#1| |#1|) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2819 (((-657 (-657 |#1|)) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1455 (((-3 $ "failed") $) NIL (|has| |#1| (-374)))) (-1613 (($) 12)) (-3616 (($ $ $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1495 (($ $ |#1|) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-657 (-576)) (-657 (-576))) NIL)) (-2959 (($ (-657 |#1|)) NIL) (($ (-657 $)) NIL)) (-3249 (((-112) $) NIL)) (-3917 ((|#1| $) NIL (|has| |#1| (-6 (-4468 "*"))))) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-1612 (((-1289 |#1|) $ (-576)) NIL)) (-3515 (($ (-1289 |#1|)) NIL) (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2203 (((-112) $) NIL)) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $ $) NIL) (($ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1289 |#1|) $ (-1289 |#1|)) 15) (((-1289 |#1|) (-1289 |#1|) $) NIL) (((-963 |#1|) $ (-963 |#1|)) 21)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-229 |#1|) (-13 (-700 |#1| (-1289 |#1|) (-1289 |#1|)) (-10 -8 (-15 * ((-963 |#1|) $ (-963 |#1|))) (-15 -1613 ($)) (-15 -2144 ($ |#1|)) (-15 -1489 ($ |#1|)) (-15 -3723 ($ |#1|)) (-15 -3734 ($ |#1| |#1| |#1|)) (-15 -1909 ($ |#1| |#1| |#1|)))) (-13 (-374) (-1224))) (T -229)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224))) (-5 *1 (-229 *3)))) (-1613 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) (-2144 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) (-1489 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) (-3723 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) (-3734 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) (-1909 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224)))))) +(-13 (-700 |#1| (-1289 |#1|) (-1289 |#1|)) (-10 -8 (-15 * ((-963 |#1|) $ (-963 |#1|))) (-15 -1613 ($)) (-15 -2144 ($ |#1|)) (-15 -1489 ($ |#1|)) (-15 -3723 ($ |#1|)) (-15 -3734 ($ |#1| |#1| |#1|)) (-15 -1909 ($ |#1| |#1| |#1|)))) +((-3726 (($ (-1 (-112) |#2|) $) 16)) (-1920 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-3009 (($) NIL) (($ (-657 |#2|)) 11)) (-2881 (((-112) $ $) 26))) +(((-230 |#1| |#2|) (-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3726 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1920 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1920 (|#1| |#2| |#1|)) (-15 -3009 (|#1| (-657 |#2|))) (-15 -3009 (|#1|))) (-231 |#2|) (-1122)) (T -230)) +NIL +(-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3726 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1920 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1920 (|#1| |#2| |#1|)) (-15 -3009 (|#1| (-657 |#2|))) (-15 -3009 (|#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) 8)) (-3726 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-1620 (($ $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1920 (($ |#1| $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4466)))) (-3901 (($ |#1| $) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4466)))) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3107 ((|#1| $) 40)) (-2701 (($ |#1| $) 41)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2184 ((|#1| $) 42)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-3009 (($) 50) (($ (-657 |#1|)) 49)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-4136 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 51)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) 43)) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-231 |#1|) (-141) (-1122)) (T -231)) NIL (-13 (-240 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4107 (($ $ (-1 |#1| |#1|) (-783)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1197)) 55 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 53 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 52 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 51 (|has| |#1| (-919 (-1197)))) (($ $) 47 (|has| |#1| (-237))) (($ $ (-783)) 45 (|has| |#1| (-237)))) (-4113 (((-876) $) 12) (($ (-576)) 33)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-1 |#1| |#1|) (-783)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1197)) 54 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 50 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 49 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 48 (|has| |#1| (-919 (-1197)))) (($ $) 46 (|has| |#1| (-237))) (($ $ (-783)) 44 (|has| |#1| (-237)))) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-232 |#1|) (-141) (-1070)) (T -232)) -NIL -(-13 (-1070) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-234 $) -3795 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-238) |has| |#1| (-238)) ((-237) -3795 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-911 $ #0=(-1197)) -3795 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #0#) -3795 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3157 ((|#2| $) 9))) -(((-233 |#1| |#2|) (-10 -8 (-15 -3157 (|#2| |#1|))) (-234 |#2|) (-1238)) (T -233)) -NIL -(-10 -8 (-15 -3157 (|#2| |#1|))) -((-4107 ((|#1| $) 7)) (-3157 ((|#1| $) 6))) -(((-234 |#1|) (-141) (-1238)) (T -234)) -((-4107 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -4107 (|t#1| $)) (-15 -3157 (|t#1| $)))) -(((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4107 (($ $ (-783)) 37) (($ $) 35)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3157 (($ $ (-783)) 38) (($ $) 36)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-235 |#1|) (-141) (-1070)) (T -235)) -NIL -(-13 (-111 |t#1| |t#1|) (-237) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-4107 (($ $) NIL) (($ $ (-783)) 9)) (-3157 (($ $) NIL) (($ $ (-783)) 11))) -(((-236 |#1|) (-10 -8 (-15 -3157 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1| (-783))) (-15 -3157 (|#1| |#1|)) (-15 -4107 (|#1| |#1|))) (-237)) (T -236)) -NIL -(-10 -8 (-15 -3157 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1| (-783))) (-15 -3157 (|#1| |#1|)) (-15 -4107 (|#1| |#1|))) -((-4107 (($ $) 7) (($ $ (-783)) 10)) (-3157 (($ $) 6) (($ $ (-783)) 9))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-2209 (($ $ (-1 |#1| |#1|) (-784)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1198)) 55 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 53 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 52 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 51 (|has| |#1| (-920 (-1198)))) (($ $) 47 (|has| |#1| (-237))) (($ $ (-784)) 45 (|has| |#1| (-237)))) (-3515 (((-877) $) 12) (($ (-576)) 33)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-1 |#1| |#1|) (-784)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1198)) 54 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 50 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 49 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 48 (|has| |#1| (-920 (-1198)))) (($ $) 46 (|has| |#1| (-237))) (($ $ (-784)) 44 (|has| |#1| (-237)))) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-232 |#1|) (-141) (-1071)) (T -232)) +NIL +(-13 (-1071) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-918 (-1198))) (-6 (-918 (-1198))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-234 $) -2748 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-238) |has| |#1| (-238)) ((-237) -2748 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-912 $ #0=(-1198)) -2748 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-918 (-1198)) |has| |#1| (-918 (-1198))) ((-920 #0#) -2748 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-2066 ((|#2| $) 9))) +(((-233 |#1| |#2|) (-10 -8 (-15 -2066 (|#2| |#1|))) (-234 |#2|) (-1239)) (T -233)) +NIL +(-10 -8 (-15 -2066 (|#2| |#1|))) +((-2209 ((|#1| $) 7)) (-2066 ((|#1| $) 6))) +(((-234 |#1|) (-141) (-1239)) (T -234)) +((-2209 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1239)))) (-2066 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1239))))) +(-13 (-1239) (-10 -8 (-15 -2209 (|t#1| $)) (-15 -2066 (|t#1| $)))) +(((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-2209 (($ $ (-784)) 37) (($ $) 35)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2066 (($ $ (-784)) 38) (($ $) 36)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-235 |#1|) (-141) (-1071)) (T -235)) +NIL +(-13 (-111 |t#1| |t#1|) (-237) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-730 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-234 $) . T) ((-237) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-2209 (($ $) NIL) (($ $ (-784)) 9)) (-2066 (($ $) NIL) (($ $ (-784)) 11))) +(((-236 |#1|) (-10 -8 (-15 -2066 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1| (-784))) (-15 -2066 (|#1| |#1|)) (-15 -2209 (|#1| |#1|))) (-237)) (T -236)) +NIL +(-10 -8 (-15 -2066 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1| (-784))) (-15 -2066 (|#1| |#1|)) (-15 -2209 (|#1| |#1|))) +((-2209 (($ $) 7) (($ $ (-784)) 10)) (-2066 (($ $) 6) (($ $ (-784)) 9))) (((-237) (-141)) (T -237)) -((-4107 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) (-3157 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783))))) -(-13 (-234 $) (-10 -8 (-15 -4107 ($ $ (-783))) (-15 -3157 ($ $ (-783))))) -(((-234 $) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4107 (($ $ (-783)) 42) (($ $) 40)) (-4113 (((-876) $) 12) (($ (-576)) 33)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-783)) 43) (($ $) 41)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2209 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-784)))) (-2066 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-784))))) +(-13 (-234 $) (-10 -8 (-15 -2209 ($ $ (-784))) (-15 -2066 ($ $ (-784))))) +(((-234 $) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-2209 (($ $ (-784)) 42) (($ $) 40)) (-3515 (((-877) $) 12) (($ (-576)) 33)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-784)) 43) (($ $) 41)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-238) (-141)) (T -238)) NIL -(-13 (-1070) (-237)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3091 (($) 12) (($ (-656 |#2|)) NIL)) (-4287 (($ $) 14)) (-4125 (($ (-656 |#2|)) 10)) (-4113 (((-876) $) 21))) -(((-239 |#1| |#2|) (-10 -8 (-15 -4113 ((-876) |#1|)) (-15 -3091 (|#1| (-656 |#2|))) (-15 -3091 (|#1|)) (-15 -4125 (|#1| (-656 |#2|))) (-15 -4287 (|#1| |#1|))) (-240 |#2|) (-1121)) (T -239)) -NIL -(-10 -8 (-15 -4113 ((-876) |#1|)) (-15 -3091 (|#1| (-656 |#2|))) (-15 -3091 (|#1|)) (-15 -4125 (|#1| (-656 |#2|))) (-15 -4287 (|#1| |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) 8)) (-1954 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-3841 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3872 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-2825 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3743 ((|#1| $) 40)) (-3695 (($ |#1| $) 41)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2372 ((|#1| $) 42)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-3091 (($) 50) (($ (-656 |#1|)) 49)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-1556 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 51)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) 43)) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-240 |#1|) (-141) (-1121)) (T -240)) -((-3091 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1121)))) (-3091 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-240 *3)))) (-3872 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-240 *2)) (-4 *2 (-1121)))) (-3872 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-240 *3)) (-4 *3 (-1121)))) (-1954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-240 *3)) (-4 *3 (-1121))))) -(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -3091 ($)) (-15 -3091 ($ (-656 |t#1|))) (IF (|has| $ (-6 -4464)) (PROGN (-15 -3872 ($ |t#1| $)) (-15 -3872 ($ (-1 (-112) |t#1|) $)) (-15 -1954 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-3169 (((-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783))))) (-304 (-971 (-576)))) 42))) -(((-241) (-10 -7 (-15 -3169 ((-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783))))) (-304 (-971 (-576))))))) (T -241)) -((-3169 (*1 *2 *3) (-12 (-5 *3 (-304 (-971 (-576)))) (-5 *2 (-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783)))))) (-5 *1 (-241))))) -(-10 -7 (-15 -3169 ((-2 (|:| |varOrder| (-656 (-1197))) (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) (|:| |hom| (-656 (-1288 (-783))))) (-304 (-971 (-576)))))) -((-2201 (((-783)) 56)) (-1930 (((-2 (|:| -3563 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) 53) (((-701 |#3|) (-701 $)) 44) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-3181 (((-135)) 62)) (-4107 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-4113 (((-1288 |#3|) $) NIL) (($ |#3|) NIL) (((-876) $) NIL) (($ (-576)) 12) (($ (-419 (-576))) NIL)) (-2910 (((-783)) 15)) (-4047 (($ $ |#3|) 59))) -(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -4113 (|#1| (-419 (-576)))) (-15 -4113 (|#1| (-576))) (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4113 ((-876) |#1|)) (-15 -2910 ((-783))) (-15 -1930 ((-701 (-576)) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -4113 (|#1| |#3|)) (-15 -4107 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1930 ((-701 |#3|) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -2201 ((-783))) (-15 -4047 (|#1| |#1| |#3|)) (-15 -3181 ((-135))) (-15 -4113 ((-1288 |#3|) |#1|))) (-243 |#2| |#3|) (-783) (-1238)) (T -242)) -((-3181 (*1 *2) (-12 (-14 *4 (-783)) (-4 *5 (-1238)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2201 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2910 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))) -(-10 -8 (-15 -4113 (|#1| (-419 (-576)))) (-15 -4113 (|#1| (-576))) (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4113 ((-876) |#1|)) (-15 -2910 ((-783))) (-15 -1930 ((-701 (-576)) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -4113 (|#1| |#3|)) (-15 -4107 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1930 ((-701 |#3|) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -2201 ((-783))) (-15 -4047 (|#1| |#1| |#3|)) (-15 -3181 ((-135))) (-15 -4113 ((-1288 |#3|) |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#2| (-102)))) (-3114 (((-112) $) 76 (|has| |#2| (-23)))) (-2846 (($ (-940)) 129 (|has| |#2| (-1070)))) (-3657 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2214 (($ $ $) 125 (|has| |#2| (-805)))) (-1765 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-4234 (((-112) $ (-783)) 8)) (-2201 (((-783)) 115 (|has| |#2| (-379)))) (-4268 ((|#2| $ (-576) |#2|) 53 (|has| $ (-6 -4465)))) (-3170 (($) 7 T CONST)) (-2982 (((-3 (-576) "failed") $) 71 (-2311 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) 68 (-2311 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1121)))) (-2317 (((-576) $) 70 (-2311 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) 67 (-2311 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) 66 (|has| |#2| (-1121)))) (-1930 (((-701 (-576)) (-701 $)) 112 (-2311 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 111 (-2311 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 110 (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) 109 (|has| |#2| (-1070)))) (-1851 (((-3 $ "failed") $) 86 (|has| |#2| (-1070)))) (-4370 (($) 118 (|has| |#2| (-379)))) (-1910 ((|#2| $ (-576) |#2|) 54 (|has| $ (-6 -4465)))) (-3721 ((|#2| $ (-576)) 52)) (-3722 (((-656 |#2|) $) 31 (|has| $ (-6 -4464)))) (-2486 (((-112) $) 88 (|has| |#2| (-1070)))) (-3215 (((-112) $ (-783)) 9)) (-1605 (((-576) $) 44 (|has| (-576) (-861)))) (-2907 (($ $ $) 119 (|has| |#2| (-861)))) (-2911 (((-656 |#2|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-1829 (((-576) $) 45 (|has| (-576) (-861)))) (-3777 (($ $ $) 120 (|has| |#2| (-861)))) (-1898 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#2| |#2|) $) 36)) (-3787 (((-940) $) 117 (|has| |#2| (-379)))) (-1884 (((-112) $ (-783)) 10)) (-2160 (((-701 (-576)) (-1288 $)) 114 (-2311 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 113 (-2311 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 108 (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) 107 (|has| |#2| (-1070)))) (-2447 (((-1179) $) 23 (|has| |#2| (-1121)))) (-2863 (((-656 (-576)) $) 47)) (-1389 (((-112) (-576) $) 48)) (-2411 (($ (-940)) 116 (|has| |#2| (-379)))) (-3116 (((-1141) $) 22 (|has| |#2| (-1121)))) (-1755 ((|#2| $) 43 (|has| (-576) (-861)))) (-4267 (($ $ |#2|) 42 (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2885 (((-656 |#2|) $) 49)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#2| $ (-576) |#2|) 51) ((|#2| $ (-576)) 50)) (-1875 ((|#2| $ $) 128 (|has| |#2| (-1070)))) (-1492 (($ (-1288 |#2|)) 130)) (-3181 (((-135)) 127 (|has| |#2| (-374)))) (-4107 (($ $ (-783)) 105 (-2311 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) 103 (-2311 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) 99 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) 98 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) 97 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) 95 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) 93 (|has| |#2| (-1070)))) (-3127 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4464))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4113 (((-1288 |#2|) $) 131) (($ (-576)) 72 (-3795 (-2311 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) 69 (-2311 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) 64 (|has| |#2| (-1121))) (((-876) $) 18 (|has| |#2| (-625 (-876))))) (-2910 (((-783)) 90 (|has| |#2| (-1070)) CONST)) (-2950 (((-112) $ $) 21 (|has| |#2| (-102)))) (-2543 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4464)))) (-4313 (($) 75 (|has| |#2| (-23)) CONST)) (-4322 (($) 89 (|has| |#2| (-1070)) CONST)) (-3157 (($ $ (-783)) 106 (-2311 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) 104 (-2311 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) 102 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) 101 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) 100 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) 96 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) 91 (|has| |#2| (-1070)))) (-3995 (((-112) $ $) 121 (|has| |#2| (-861)))) (-3975 (((-112) $ $) 123 (|has| |#2| (-861)))) (-3939 (((-112) $ $) 19 (|has| |#2| (-102)))) (-3984 (((-112) $ $) 122 (|has| |#2| (-861)))) (-3963 (((-112) $ $) 124 (|has| |#2| (-861)))) (-4047 (($ $ |#2|) 126 (|has| |#2| (-374)))) (-4037 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-4026 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-783)) 87 (|has| |#2| (-1070))) (($ $ (-940)) 84 (|has| |#2| (-1070)))) (* (($ $ $) 85 (|has| |#2| (-1070))) (($ $ |#2|) 83 (|has| |#2| (-738))) (($ |#2| $) 82 (|has| |#2| (-738))) (($ (-576) $) 79 (|has| |#2| (-21))) (($ (-783) $) 77 (|has| |#2| (-23))) (($ (-940) $) 74 (|has| |#2| (-25)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-243 |#1| |#2|) (-141) (-783) (-1238)) (T -243)) -((-1492 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1238)) (-4 *1 (-243 *3 *4)))) (-2846 (*1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1070)) (-4 *4 (-1238)))) (-1875 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) -(-13 (-616 (-576) |t#2|) (-625 (-1288 |t#2|)) (-10 -8 (-6 -4464) (-15 -1492 ($ (-1288 |t#2|))) (IF (|has| |t#2| (-1121)) (-6 (-423 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1070)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-388 |t#2|)) (-15 -2846 ($ (-940))) (-15 -1875 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-738)) (-6 (-652 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |t#2| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#2| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#2| (-374)) (-6 (-1295 |t#2|)) |%noBranch|))) -(((-21) -3795 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -3795 (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -3795 (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -3795 (|has| |#2| (-1121)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -3795 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-132) -3795 (|has| |#2| (-1070)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-628 #0=(-419 (-576))) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121))) ((-628 (-576)) -3795 (|has| |#2| (-1070)) (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) ((-628 |#2|) |has| |#2| (-1121)) ((-625 (-876)) -3795 (|has| |#2| (-1121)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-625 (-876))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-625 (-1288 |#2|)) . T) ((-234 $) -3795 (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1070)))) ((-232 |#2|) |has| |#2| (-1070)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1070))) ((-237) -3795 (-12 (|has| |#2| (-237)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1070)))) ((-272 |#2|) |has| |#2| (-1070)) ((-296 #1=(-576) |#2|) . T) ((-298 #1# |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-379) |has| |#2| (-379)) ((-388 |#2|) |has| |#2| (-1070)) ((-423 |#2|) |has| |#2| (-1121)) ((-501 |#2|) . T) ((-616 #1# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-658 (-576)) -3795 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-658 |#2|) -3795 (|has| |#2| (-1070)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-658 $) |has| |#2| (-1070)) ((-660 #2=(-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070))) ((-660 |#2|) -3795 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-660 $) |has| |#2| (-1070)) ((-652 |#2|) -3795 (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-651 #2#) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070))) ((-651 |#2|) |has| |#2| (-1070)) ((-729 |#2|) -3795 (|has| |#2| (-374)) (|has| |#2| (-174))) ((-738) |has| |#2| (-1070)) ((-804) |has| |#2| (-805)) ((-805) |has| |#2| (-805)) ((-806) |has| |#2| (-805)) ((-807) |has| |#2| (-805)) ((-861) -3795 (|has| |#2| (-861)) (|has| |#2| (-805))) ((-864) -3795 (|has| |#2| (-861)) (|has| |#2| (-805))) ((-911 $ #3=(-1197)) -3795 (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) ((-917 (-1197)) -12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070))) ((-919 #3#) -3795 (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-917 (-1197))) (|has| |#2| (-1070)))) ((-1059 #0#) -12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121))) ((-1059 (-576)) -12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) ((-1059 |#2|) |has| |#2| (-1121)) ((-1072 |#2|) -3795 (|has| |#2| (-1070)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1077 |#2|) -3795 (|has| |#2| (-1070)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1070) |has| |#2| (-1070)) ((-1079) |has| |#2| (-1070)) ((-1133) |has| |#2| (-1070)) ((-1121) -3795 (|has| |#2| (-1121)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1238) . T) ((-1295 |#2|) |has| |#2| (-374))) -((-4324 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-2721 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-2423 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18))) -(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -4324 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2721 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2423 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-783) (-1238) (-1238)) (T -244)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1238)) (-4 *2 (-1238)) (-5 *1 (-244 *5 *6 *2)))) (-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) (-4 *7 (-1238)) (-4 *5 (-1238)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5))))) -(-10 -7 (-15 -4324 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2721 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2423 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) -((-1957 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3114 (((-112) $) NIL (|has| |#2| (-23)))) (-2846 (($ (-940)) 62 (|has| |#2| (-1070)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2214 (($ $ $) 68 (|has| |#2| (-805)))) (-1765 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-4234 (((-112) $ (-783)) NIL)) (-2201 (((-783)) NIL (|has| |#2| (-379)))) (-4268 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1121)))) (-2317 (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) 28 (|has| |#2| (-1121)))) (-1930 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1070)))) (-1851 (((-3 $ "failed") $) 58 (|has| |#2| (-1070)))) (-4370 (($) NIL (|has| |#2| (-379)))) (-1910 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#2| $ (-576)) 56)) (-3722 (((-656 |#2|) $) 14 (|has| $ (-6 -4464)))) (-2486 (((-112) $) NIL (|has| |#2| (-1070)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) 19 (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#2| (-861)))) (-2911 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#2| (-861)))) (-1898 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#2| |#2|) $) NIL)) (-3787 (((-940) $) NIL (|has| |#2| (-379)))) (-1884 (((-112) $ (-783)) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)))) (-2447 (((-1179) $) NIL (|has| |#2| (-1121)))) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-2411 (($ (-940)) NIL (|has| |#2| (-379)))) (-3116 (((-1141) $) NIL (|has| |#2| (-1121)))) (-1755 ((|#2| $) NIL (|has| (-576) (-861)))) (-4267 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2885 (((-656 |#2|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) 20)) (-1875 ((|#2| $ $) NIL (|has| |#2| (-1070)))) (-1492 (($ (-1288 |#2|)) 17)) (-3181 (((-135)) NIL (|has| |#2| (-374)))) (-4107 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-3127 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-1288 |#2|) $) 9) (($ (-576)) NIL (-3795 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) 12 (|has| |#2| (-1121))) (((-876) $) NIL (|has| |#2| (-625 (-876))))) (-2910 (((-783)) NIL (|has| |#2| (-1070)) CONST)) (-2950 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2543 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-4313 (($) 36 (|has| |#2| (-23)) CONST)) (-4322 (($) 40 (|has| |#2| (-1070)) CONST)) (-3157 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-3995 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3939 (((-112) $ $) 27 (|has| |#2| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3963 (((-112) $ $) 66 (|has| |#2| (-861)))) (-4047 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4037 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4026 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1070))) (($ $ (-940)) NIL (|has| |#2| (-1070)))) (* (($ $ $) 46 (|has| |#2| (-1070))) (($ $ |#2|) 44 (|has| |#2| (-738))) (($ |#2| $) 45 (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-940) $) NIL (|has| |#2| (-25)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-245 |#1| |#2|) (-243 |#1| |#2|) (-783) (-1238)) (T -245)) +(-13 (-1071) (-237)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-234 $) . T) ((-237) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3009 (($) 12) (($ (-657 |#2|)) NIL)) (-1899 (($ $) 14)) (-3529 (($ (-657 |#2|)) 10)) (-3515 (((-877) $) 21))) +(((-239 |#1| |#2|) (-10 -8 (-15 -3515 ((-877) |#1|)) (-15 -3009 (|#1| (-657 |#2|))) (-15 -3009 (|#1|)) (-15 -3529 (|#1| (-657 |#2|))) (-15 -1899 (|#1| |#1|))) (-240 |#2|) (-1122)) (T -239)) +NIL +(-10 -8 (-15 -3515 ((-877) |#1|)) (-15 -3009 (|#1| (-657 |#2|))) (-15 -3009 (|#1|)) (-15 -3529 (|#1| (-657 |#2|))) (-15 -1899 (|#1| |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) 8)) (-3726 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-1620 (($ $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1920 (($ |#1| $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4466)))) (-3901 (($ |#1| $) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4466)))) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3107 ((|#1| $) 40)) (-2701 (($ |#1| $) 41)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2184 ((|#1| $) 42)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-3009 (($) 50) (($ (-657 |#1|)) 49)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-4136 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 51)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) 43)) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-240 |#1|) (-141) (-1122)) (T -240)) +((-3009 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1122)))) (-3009 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-240 *3)))) (-1920 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-240 *2)) (-4 *2 (-1122)))) (-1920 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-240 *3)) (-4 *3 (-1122)))) (-3726 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-240 *3)) (-4 *3 (-1122))))) +(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -3009 ($)) (-15 -3009 ($ (-657 |t#1|))) (IF (|has| $ (-6 -4466)) (PROGN (-15 -1920 ($ |t#1| $)) (-15 -1920 ($ (-1 (-112) |t#1|) $)) (-15 -3726 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-2504 (((-2 (|:| |varOrder| (-657 (-1198))) (|:| |inhom| (-3 (-657 (-1289 (-784))) "failed")) (|:| |hom| (-657 (-1289 (-784))))) (-304 (-972 (-576)))) 42))) +(((-241) (-10 -7 (-15 -2504 ((-2 (|:| |varOrder| (-657 (-1198))) (|:| |inhom| (-3 (-657 (-1289 (-784))) "failed")) (|:| |hom| (-657 (-1289 (-784))))) (-304 (-972 (-576))))))) (T -241)) +((-2504 (*1 *2 *3) (-12 (-5 *3 (-304 (-972 (-576)))) (-5 *2 (-2 (|:| |varOrder| (-657 (-1198))) (|:| |inhom| (-3 (-657 (-1289 (-784))) "failed")) (|:| |hom| (-657 (-1289 (-784)))))) (-5 *1 (-241))))) +(-10 -7 (-15 -2504 ((-2 (|:| |varOrder| (-657 (-1198))) (|:| |inhom| (-3 (-657 (-1289 (-784))) "failed")) (|:| |hom| (-657 (-1289 (-784))))) (-304 (-972 (-576)))))) +((-2148 (((-784)) 56)) (-3439 (((-2 (|:| -3962 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 $) (-1289 $)) 53) (((-702 |#3|) (-702 $)) 44) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL)) (-1451 (((-135)) 62)) (-2209 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL) (($ $ (-784)) NIL) (($ $) NIL)) (-3515 (((-1289 |#3|) $) NIL) (($ |#3|) NIL) (((-877) $) NIL) (($ (-576)) 12) (($ (-419 (-576))) NIL)) (-3845 (((-784)) 15)) (-2995 (($ $ |#3|) 59))) +(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -3515 (|#1| (-419 (-576)))) (-15 -3515 (|#1| (-576))) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -3515 ((-877) |#1|)) (-15 -3845 ((-784))) (-15 -3439 ((-702 (-576)) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3515 (|#1| |#3|)) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3439 ((-702 |#3|) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 |#1|) (-1289 |#1|))) (-15 -2148 ((-784))) (-15 -2995 (|#1| |#1| |#3|)) (-15 -1451 ((-135))) (-15 -3515 ((-1289 |#3|) |#1|))) (-243 |#2| |#3|) (-784) (-1239)) (T -242)) +((-1451 (*1 *2) (-12 (-14 *4 (-784)) (-4 *5 (-1239)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2148 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1239)) (-5 *2 (-784)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-3845 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1239)) (-5 *2 (-784)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))) +(-10 -8 (-15 -3515 (|#1| (-419 (-576)))) (-15 -3515 (|#1| (-576))) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -3515 ((-877) |#1|)) (-15 -3845 ((-784))) (-15 -3439 ((-702 (-576)) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3515 (|#1| |#3|)) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3439 ((-702 |#3|) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 |#1|) (-1289 |#1|))) (-15 -2148 ((-784))) (-15 -2995 (|#1| |#1| |#3|)) (-15 -1451 ((-135))) (-15 -3515 ((-1289 |#3|) |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#2| (-102)))) (-2044 (((-112) $) 76 (|has| |#2| (-23)))) (-1375 (($ (-941)) 129 (|has| |#2| (-1071)))) (-3590 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-1323 (($ $ $) 125 (|has| |#2| (-806)))) (-2423 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-4284 (((-112) $ (-784)) 8)) (-2148 (((-784)) 115 (|has| |#2| (-379)))) (-3719 ((|#2| $ (-576) |#2|) 53 (|has| $ (-6 -4467)))) (-2515 (($) 7 T CONST)) (-1593 (((-3 (-576) "failed") $) 71 (-2675 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-3 (-419 (-576)) "failed") $) 68 (-2675 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1122)))) (-2830 (((-576) $) 70 (-2675 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-419 (-576)) $) 67 (-2675 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) ((|#2| $) 66 (|has| |#2| (-1122)))) (-3439 (((-702 (-576)) (-702 $)) 112 (-2675 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 111 (-2675 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) 110 (|has| |#2| (-1071))) (((-702 |#2|) (-702 $)) 109 (|has| |#2| (-1071)))) (-3969 (((-3 $ "failed") $) 86 (|has| |#2| (-1071)))) (-1876 (($) 118 (|has| |#2| (-379)))) (-1810 ((|#2| $ (-576) |#2|) 54 (|has| $ (-6 -4467)))) (-1741 ((|#2| $ (-576)) 52)) (-1448 (((-657 |#2|) $) 31 (|has| $ (-6 -4466)))) (-3994 (((-112) $) 88 (|has| |#2| (-1071)))) (-1786 (((-112) $ (-784)) 9)) (-3363 (((-576) $) 44 (|has| (-576) (-862)))) (-3740 (($ $ $) 119 (|has| |#2| (-862)))) (-3855 (((-657 |#2|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-1833 (((-576) $) 45 (|has| (-576) (-862)))) (-2249 (($ $ $) 120 (|has| |#2| (-862)))) (-1799 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#2| |#2|) $) 36)) (-2327 (((-941) $) 117 (|has| |#2| (-379)))) (-4326 (((-112) $ (-784)) 10)) (-1993 (((-702 (-576)) (-1289 $)) 114 (-2675 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 113 (-2675 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) 108 (|has| |#2| (-1071))) (((-702 |#2|) (-1289 $)) 107 (|has| |#2| (-1071)))) (-1708 (((-1180) $) 23 (|has| |#2| (-1122)))) (-3309 (((-657 (-576)) $) 47)) (-4324 (((-112) (-576) $) 48)) (-3146 (($ (-941)) 116 (|has| |#2| (-379)))) (-1460 (((-1142) $) 22 (|has| |#2| (-1122)))) (-3528 ((|#2| $) 43 (|has| (-576) (-862)))) (-1495 (($ $ |#2|) 42 (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3585 (((-657 |#2|) $) 49)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#2| $ (-576) |#2|) 51) ((|#2| $ (-576)) 50)) (-4224 ((|#2| $ $) 128 (|has| |#2| (-1071)))) (-1902 (($ (-1289 |#2|)) 130)) (-1451 (((-135)) 127 (|has| |#2| (-374)))) (-2209 (($ $ (-784)) 105 (-2675 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) 103 (-2675 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) 99 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) 98 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) 97 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) 95 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) 93 (|has| |#2| (-1071)))) (-1469 (((-784) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4466))) (((-784) |#2| $) 29 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-3515 (((-1289 |#2|) $) 131) (($ (-576)) 72 (-2748 (-2675 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071)))) (($ (-419 (-576))) 69 (-2675 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (($ |#2|) 64 (|has| |#2| (-1122))) (((-877) $) 18 (|has| |#2| (-625 (-877))))) (-3845 (((-784)) 90 (|has| |#2| (-1071)) CONST)) (-4166 (((-112) $ $) 21 (|has| |#2| (-102)))) (-3258 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4466)))) (-2716 (($) 75 (|has| |#2| (-23)) CONST)) (-2725 (($) 89 (|has| |#2| (-1071)) CONST)) (-2066 (($ $ (-784)) 106 (-2675 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) 104 (-2675 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) 102 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) 101 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) 100 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) 96 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) 91 (|has| |#2| (-1071)))) (-2938 (((-112) $ $) 121 (|has| |#2| (-862)))) (-2913 (((-112) $ $) 123 (|has| |#2| (-862)))) (-2881 (((-112) $ $) 19 (|has| |#2| (-102)))) (-2925 (((-112) $ $) 122 (|has| |#2| (-862)))) (-2901 (((-112) $ $) 124 (|has| |#2| (-862)))) (-2995 (($ $ |#2|) 126 (|has| |#2| (-374)))) (-2982 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-2971 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-784)) 87 (|has| |#2| (-1071))) (($ $ (-941)) 84 (|has| |#2| (-1071)))) (* (($ $ $) 85 (|has| |#2| (-1071))) (($ $ |#2|) 83 (|has| |#2| (-739))) (($ |#2| $) 82 (|has| |#2| (-739))) (($ (-576) $) 79 (|has| |#2| (-21))) (($ (-784) $) 77 (|has| |#2| (-23))) (($ (-941) $) 74 (|has| |#2| (-25)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-243 |#1| |#2|) (-141) (-784) (-1239)) (T -243)) +((-1902 (*1 *1 *2) (-12 (-5 *2 (-1289 *4)) (-4 *4 (-1239)) (-4 *1 (-243 *3 *4)))) (-1375 (*1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1071)) (-4 *4 (-1239)))) (-4224 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1239)) (-4 *2 (-1071))))) +(-13 (-616 (-576) |t#2|) (-625 (-1289 |t#2|)) (-10 -8 (-6 -4466) (-15 -1902 ($ (-1289 |t#2|))) (IF (|has| |t#2| (-1122)) (-6 (-423 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1071)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-388 |t#2|)) (-15 -1375 ($ (-941))) (-15 -4224 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-739)) (-6 (-653 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-730 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |t#2| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#2| (-806)) (-6 (-806)) |%noBranch|) (IF (|has| |t#2| (-374)) (-6 (-1296 |t#2|)) |%noBranch|))) +(((-21) -2748 (|has| |#2| (-1071)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -2748 (|has| |#2| (-1071)) (|has| |#2| (-806)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2748 (|has| |#2| (-1071)) (|has| |#2| (-806)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2748 (|has| |#2| (-1122)) (|has| |#2| (-1071)) (|has| |#2| (-862)) (|has| |#2| (-806)) (|has| |#2| (-739)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2748 (|has| |#2| (-1071)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-132) -2748 (|has| |#2| (-1071)) (|has| |#2| (-806)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-628 #0=(-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122))) ((-628 (-576)) -2748 (|has| |#2| (-1071)) (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) ((-628 |#2|) |has| |#2| (-1122)) ((-625 (-877)) -2748 (|has| |#2| (-1122)) (|has| |#2| (-1071)) (|has| |#2| (-862)) (|has| |#2| (-806)) (|has| |#2| (-739)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-625 (-877))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-625 (-1289 |#2|)) . T) ((-234 $) -2748 (-12 (|has| |#2| (-237)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1071)))) ((-232 |#2|) |has| |#2| (-1071)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1071))) ((-237) -2748 (-12 (|has| |#2| (-237)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1071)))) ((-272 |#2|) |has| |#2| (-1071)) ((-296 #1=(-576) |#2|) . T) ((-298 #1# |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-379) |has| |#2| (-379)) ((-388 |#2|) |has| |#2| (-1071)) ((-423 |#2|) |has| |#2| (-1122)) ((-501 |#2|) . T) ((-616 #1# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-659 (-576)) -2748 (|has| |#2| (-1071)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-659 |#2|) -2748 (|has| |#2| (-1071)) (|has| |#2| (-739)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-659 $) |has| |#2| (-1071)) ((-661 #2=(-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071))) ((-661 |#2|) -2748 (|has| |#2| (-1071)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-661 $) |has| |#2| (-1071)) ((-653 |#2|) -2748 (|has| |#2| (-739)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-652 #2#) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071))) ((-652 |#2|) |has| |#2| (-1071)) ((-730 |#2|) -2748 (|has| |#2| (-374)) (|has| |#2| (-174))) ((-739) |has| |#2| (-1071)) ((-805) |has| |#2| (-806)) ((-806) |has| |#2| (-806)) ((-807) |has| |#2| (-806)) ((-808) |has| |#2| (-806)) ((-862) -2748 (|has| |#2| (-862)) (|has| |#2| (-806))) ((-865) -2748 (|has| |#2| (-862)) (|has| |#2| (-806))) ((-912 $ #3=(-1198)) -2748 (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071)))) ((-918 (-1198)) -12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) ((-920 #3#) -2748 (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071)))) ((-1060 #0#) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122))) ((-1060 (-576)) -12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) ((-1060 |#2|) |has| |#2| (-1122)) ((-1073 |#2|) -2748 (|has| |#2| (-1071)) (|has| |#2| (-739)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1078 |#2|) -2748 (|has| |#2| (-1071)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1071) |has| |#2| (-1071)) ((-1080) |has| |#2| (-1071)) ((-1134) |has| |#2| (-1071)) ((-1122) -2748 (|has| |#2| (-1122)) (|has| |#2| (-1071)) (|has| |#2| (-862)) (|has| |#2| (-806)) (|has| |#2| (-739)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1239) . T) ((-1296 |#2|) |has| |#2| (-374))) +((-3899 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-3662 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-4071 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18))) +(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -3899 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -3662 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -4071 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-784) (-1239) (-1239)) (T -244)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-784)) (-4 *6 (-1239)) (-4 *7 (-1239)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-3662 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-784)) (-4 *6 (-1239)) (-4 *2 (-1239)) (-5 *1 (-244 *5 *6 *2)))) (-3899 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-784)) (-4 *7 (-1239)) (-4 *5 (-1239)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5))))) +(-10 -7 (-15 -3899 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -3662 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -4071 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) +((-3423 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2044 (((-112) $) NIL (|has| |#2| (-23)))) (-1375 (($ (-941)) 62 (|has| |#2| (-1071)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1323 (($ $ $) 68 (|has| |#2| (-806)))) (-2423 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-4284 (((-112) $ (-784)) NIL)) (-2148 (((-784)) NIL (|has| |#2| (-379)))) (-3719 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1122)))) (-2830 (((-576) $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) ((|#2| $) 28 (|has| |#2| (-1122)))) (-3439 (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL (|has| |#2| (-1071))) (((-702 |#2|) (-702 $)) NIL (|has| |#2| (-1071)))) (-3969 (((-3 $ "failed") $) 58 (|has| |#2| (-1071)))) (-1876 (($) NIL (|has| |#2| (-379)))) (-1810 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#2| $ (-576)) 56)) (-1448 (((-657 |#2|) $) 14 (|has| $ (-6 -4466)))) (-3994 (((-112) $) NIL (|has| |#2| (-1071)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) 19 (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#2| (-862)))) (-3855 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#2| (-862)))) (-1799 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#2| |#2|) $) NIL)) (-2327 (((-941) $) NIL (|has| |#2| (-379)))) (-4326 (((-112) $ (-784)) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL (|has| |#2| (-1071))) (((-702 |#2|) (-1289 $)) NIL (|has| |#2| (-1071)))) (-1708 (((-1180) $) NIL (|has| |#2| (-1122)))) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-3146 (($ (-941)) NIL (|has| |#2| (-379)))) (-1460 (((-1142) $) NIL (|has| |#2| (-1122)))) (-3528 ((|#2| $) NIL (|has| (-576) (-862)))) (-1495 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3585 (((-657 |#2|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) 20)) (-4224 ((|#2| $ $) NIL (|has| |#2| (-1071)))) (-1902 (($ (-1289 |#2|)) 17)) (-1451 (((-135)) NIL (|has| |#2| (-374)))) (-2209 (($ $ (-784)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#2| (-1071)))) (-1469 (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-1289 |#2|) $) 9) (($ (-576)) NIL (-2748 (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (($ |#2|) 12 (|has| |#2| (-1122))) (((-877) $) NIL (|has| |#2| (-625 (-877))))) (-3845 (((-784)) NIL (|has| |#2| (-1071)) CONST)) (-4166 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3258 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2716 (($) 36 (|has| |#2| (-23)) CONST)) (-2725 (($) 40 (|has| |#2| (-1071)) CONST)) (-2066 (($ $ (-784)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#2| (-1071)))) (-2938 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2881 (((-112) $ $) 27 (|has| |#2| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2901 (((-112) $ $) 66 (|has| |#2| (-862)))) (-2995 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-2982 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-2971 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-784)) NIL (|has| |#2| (-1071))) (($ $ (-941)) NIL (|has| |#2| (-1071)))) (* (($ $ $) 46 (|has| |#2| (-1071))) (($ $ |#2|) 44 (|has| |#2| (-739))) (($ |#2| $) 45 (|has| |#2| (-739))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-784) $) NIL (|has| |#2| (-23))) (($ (-941) $) NIL (|has| |#2| (-25)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-245 |#1| |#2|) (-243 |#1| |#2|) (-784) (-1239)) (T -245)) NIL (-243 |#1| |#2|) -((-2601 (((-576) (-656 (-1179))) 36) (((-576) (-1179)) 29)) (-2491 (((-1293) (-656 (-1179))) 40) (((-1293) (-1179)) 39)) (-1876 (((-1179)) 16)) (-2787 (((-1179) (-576) (-1179)) 23)) (-3188 (((-656 (-1179)) (-656 (-1179)) (-576) (-1179)) 37) (((-1179) (-1179) (-576) (-1179)) 35)) (-2124 (((-656 (-1179)) (-656 (-1179))) 15) (((-656 (-1179)) (-1179)) 11))) -(((-246) (-10 -7 (-15 -2124 ((-656 (-1179)) (-1179))) (-15 -2124 ((-656 (-1179)) (-656 (-1179)))) (-15 -1876 ((-1179))) (-15 -2787 ((-1179) (-576) (-1179))) (-15 -3188 ((-1179) (-1179) (-576) (-1179))) (-15 -3188 ((-656 (-1179)) (-656 (-1179)) (-576) (-1179))) (-15 -2491 ((-1293) (-1179))) (-15 -2491 ((-1293) (-656 (-1179)))) (-15 -2601 ((-576) (-1179))) (-15 -2601 ((-576) (-656 (-1179)))))) (T -246)) -((-2601 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-576)) (-5 *1 (-246)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-246)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1293)) (-5 *1 (-246)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-246)))) (-3188 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 (-1179))) (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *1 (-246)))) (-3188 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246)))) (-2787 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246)))) (-1876 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-246)))) (-2124 (*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)))) (-2124 (*1 *2 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)) (-5 *3 (-1179))))) -(-10 -7 (-15 -2124 ((-656 (-1179)) (-1179))) (-15 -2124 ((-656 (-1179)) (-656 (-1179)))) (-15 -1876 ((-1179))) (-15 -2787 ((-1179) (-576) (-1179))) (-15 -3188 ((-1179) (-1179) (-576) (-1179))) (-15 -3188 ((-656 (-1179)) (-656 (-1179)) (-576) (-1179))) (-15 -2491 ((-1293) (-1179))) (-15 -2491 ((-1293) (-656 (-1179)))) (-15 -2601 ((-576) (-1179))) (-15 -2601 ((-576) (-656 (-1179))))) -((** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 20)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) NIL))) -(((-247 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-248)) (T -247)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 47)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 51)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 48)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 50) (($ $ (-419 (-576))) 49))) +((-2663 (((-576) (-657 (-1180))) 36) (((-576) (-1180)) 29)) (-1343 (((-1294) (-657 (-1180))) 40) (((-1294) (-1180)) 39)) (-4234 (((-1180)) 16)) (-1990 (((-1180) (-576) (-1180)) 23)) (-3713 (((-657 (-1180)) (-657 (-1180)) (-576) (-1180)) 37) (((-1180) (-1180) (-576) (-1180)) 35)) (-3185 (((-657 (-1180)) (-657 (-1180))) 15) (((-657 (-1180)) (-1180)) 11))) +(((-246) (-10 -7 (-15 -3185 ((-657 (-1180)) (-1180))) (-15 -3185 ((-657 (-1180)) (-657 (-1180)))) (-15 -4234 ((-1180))) (-15 -1990 ((-1180) (-576) (-1180))) (-15 -3713 ((-1180) (-1180) (-576) (-1180))) (-15 -3713 ((-657 (-1180)) (-657 (-1180)) (-576) (-1180))) (-15 -1343 ((-1294) (-1180))) (-15 -1343 ((-1294) (-657 (-1180)))) (-15 -2663 ((-576) (-1180))) (-15 -2663 ((-576) (-657 (-1180)))))) (T -246)) +((-2663 (*1 *2 *3) (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-576)) (-5 *1 (-246)))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-576)) (-5 *1 (-246)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1294)) (-5 *1 (-246)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-246)))) (-3713 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-657 (-1180))) (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *1 (-246)))) (-3713 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-576)) (-5 *1 (-246)))) (-1990 (*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-576)) (-5 *1 (-246)))) (-4234 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-246)))) (-3185 (*1 *2 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-246)))) (-3185 (*1 *2 *3) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-246)) (-5 *3 (-1180))))) +(-10 -7 (-15 -3185 ((-657 (-1180)) (-1180))) (-15 -3185 ((-657 (-1180)) (-657 (-1180)))) (-15 -4234 ((-1180))) (-15 -1990 ((-1180) (-576) (-1180))) (-15 -3713 ((-1180) (-1180) (-576) (-1180))) (-15 -3713 ((-657 (-1180)) (-657 (-1180)) (-576) (-1180))) (-15 -1343 ((-1294) (-1180))) (-15 -1343 ((-1294) (-657 (-1180)))) (-15 -2663 ((-576) (-1180))) (-15 -2663 ((-576) (-657 (-1180))))) +((** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 20)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) NIL))) +(((-247 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-784))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-941))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) (-248)) (T -247)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-784))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-941))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 47)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 51)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 48)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 50) (($ $ (-419 (-576))) 49))) (((-248) (-141)) (T -248)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) (-1669 (*1 *1 *1) (-4 *1 (-248)))) -(-13 (-300) (-38 (-419 (-576))) (-10 -8 (-15 ** ($ $ (-576))) (-15 -1669 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-300) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-729 #0#) . T) ((-738) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1690 ((|#1| $) 49)) (-3095 (($ $) 58)) (-4234 (((-112) $ (-783)) 8)) (-4261 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-3364 (($ $ $) 54 (|has| $ (-6 -4465)))) (-4033 (($ $ $) 53 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3170 (($) 7 T CONST)) (-2000 (($ $) 57)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) 51)) (-1878 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-4176 (($ $) 56)) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-4186 (((-656 |#1|) $) 46)) (-3211 (((-112) $) 50)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2850 ((|#1| $) 60)) (-3050 (($ $) 59)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ "value") 48)) (-2027 (((-576) $ $) 45)) (-2974 (((-112) $) 47)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4022 (($ $ $) 55 (|has| $ (-6 -4465)))) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) 52)) (-4295 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-249 |#1|) (-141) (-1238)) (T -249)) -((-2850 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-3050 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-3095 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-2000 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-4176 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-4022 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-3364 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238)))) (-4033 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238))))) -(-13 (-1031 |t#1|) (-10 -8 (-15 -2850 (|t#1| $)) (-15 -3050 ($ $)) (-15 -3095 ($ $)) (-15 -2000 ($ $)) (-15 -4176 ($ $)) (IF (|has| $ (-6 -4465)) (PROGN (-15 -4022 ($ $ $)) (-15 -3364 ($ $ $)) (-15 -4033 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1690 ((|#1| $) NIL)) (-3457 ((|#1| $) NIL)) (-3095 (($ $) NIL)) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2867 (($ $ (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3519 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2380 (($ $) 10 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-4261 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1331 (($ $ $) NIL (|has| $ (-6 -4465)))) (-3652 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-2122 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "rest" $) NIL (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-1954 (($ (-1 (-112) |#1|) $) NIL)) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3443 ((|#1| $) NIL)) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-1764 (($ $) NIL) (($ $ (-783)) NIL)) (-1942 (($ $) NIL (|has| |#1| (-1121)))) (-3841 (($ $) 7 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3872 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-2825 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1910 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) NIL)) (-2319 (((-112) $) NIL)) (-3539 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121))) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) NIL)) (-1878 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1991 (($ (-783) |#1|) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-2745 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2748 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2786 (($ |#1|) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-4186 (((-656 |#1|) $) NIL)) (-3211 (((-112) $) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2850 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-3695 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3386 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1755 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4267 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3501 (((-112) $) NIL)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-783) $ "count") 16)) (-2027 (((-576) $ $) NIL)) (-2603 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-2335 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-2508 (($ (-656 |#1|)) 22)) (-2974 (((-112) $) NIL)) (-4297 (($ $) NIL)) (-1769 (($ $) NIL (|has| $ (-6 -4465)))) (-3083 (((-783) $) NIL)) (-2783 (($ $) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) NIL)) (-4022 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2767 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-4113 (($ (-656 |#1|)) 17) (((-656 |#1|) $) 18) (((-876) $) 21 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) NIL)) (-4295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1970 (((-783) $) 14 (|has| $ (-6 -4464))))) -(((-250 |#1|) (-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -2508 ($ (-656 |#1|))) (-15 -4369 ($ $ "unique")) (-15 -4369 ($ $ "sort")) (-15 -4369 ((-783) $ "count")))) (-861)) (T -250)) -((-2508 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-861))))) -(-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -2508 ($ (-656 |#1|))) (-15 -4369 ($ $ "unique")) (-15 -4369 ($ $ "sort")) (-15 -4369 ((-783) $ "count")))) -((-3933 (((-3 (-783) "failed") |#1| |#1| (-783)) 40))) -(((-251 |#1|) (-10 -7 (-15 -3933 ((-3 (-783) "failed") |#1| |#1| (-783)))) (-13 (-738) (-379) (-10 -7 (-15 ** (|#1| |#1| (-576)))))) (T -251)) -((-3933 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-783)) (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) (-5 *1 (-251 *3))))) -(-10 -7 (-15 -3933 ((-3 (-783) "failed") |#1| |#1| (-783)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4107 (($ $) 54 (|has| |#1| (-237))) (($ $ (-783)) 52 (|has| |#1| (-237))) (($ $ (-1197)) 50 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 48 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 47 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 46 (|has| |#1| (-919 (-1197)))) (($ $ (-1 |#1| |#1|) (-783)) 40) (($ $ (-1 |#1| |#1|)) 39)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3157 (($ $) 53 (|has| |#1| (-237))) (($ $ (-783)) 51 (|has| |#1| (-237))) (($ $ (-1197)) 49 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 45 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 44 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 43 (|has| |#1| (-919 (-1197)))) (($ $ (-1 |#1| |#1|) (-783)) 42) (($ $ (-1 |#1| |#1|)) 41)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-252 |#1|) (-141) (-1070)) (T -252)) -NIL -(-13 (-111 |t#1| |t#1|) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-237)) (-6 (-235 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-919 (-1197))) (-6 (-916 |t#1| (-1197))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-234 $) |has| |#1| (-237)) ((-235 |#1|) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) -3795 (-12 (|has| |#1| (-174)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-729 |#1|) -3795 (-12 (|has| |#1| (-174)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-911 $ #0=(-1197)) |has| |#1| (-919 (-1197))) ((-916 |#1| (-1197)) |has| |#1| (-919 (-1197))) ((-919 #0#) |has| |#1| (-919 (-1197))) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1585 (((-656 (-878 |#1|)) $) NIL)) (-1421 (((-1193 $) $ (-878 |#1|)) NIL) (((-1193 |#2|) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2390 (($ $) NIL (|has| |#2| (-568)))) (-3302 (((-112) $) NIL (|has| |#2| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 (-878 |#1|))) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2658 (($ $) NIL (|has| |#2| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-2970 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2208 (($ $ (-656 (-576))) NIL)) (-3310 (($ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#2| (-928)))) (-1975 (($ $ |#2| (-245 (-1970 |#1|) (-783)) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-1574 (($ (-1193 |#2|) (-878 |#1|)) NIL) (($ (-1193 $) (-878 |#1|)) NIL)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#2| (-245 (-1970 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ (-878 |#1|)) NIL)) (-2192 (((-245 (-1970 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-3784 (($ (-1 (-245 (-1970 |#1|) (-783)) (-245 (-1970 |#1|) (-783))) $) NIL)) (-2423 (($ (-1 |#2| |#2|) $) NIL)) (-3477 (((-3 (-878 |#1|) "failed") $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#2| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2447 (((-1179) $) NIL)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -4080 (-783))) "failed") $) NIL)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) NIL)) (-1686 ((|#2| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#2| (-928)))) (-1946 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) NIL) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) NIL) (($ $ (-878 |#1|) $) NIL) (($ $ (-656 (-878 |#1|)) (-656 $)) NIL)) (-1790 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-4107 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2196 (((-245 (-1970 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1944 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-878 |#1|)) NIL) (($ (-419 (-576))) NIL (-3795 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3244 (((-656 |#2|) $) NIL)) (-2707 ((|#2| $ (-245 (-1970 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-253 |#1| |#2|) (-13 (-968 |#2| (-245 (-1970 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -2208 ($ $ (-656 (-576)))))) (-656 (-1197)) (-1070)) (T -253)) -((-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) (-14 *3 (-656 (-1197))) (-4 *4 (-1070))))) -(-13 (-968 |#2| (-245 (-1970 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -2208 ($ $ (-656 (-576)))))) -((-1957 (((-112) $ $) NIL)) (-1659 (((-1293) $) 17)) (-3979 (((-185 (-255)) $) 11)) (-3714 (($ (-185 (-255))) 12)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1786 (((-255) $) 7)) (-4113 (((-876) $) 9)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 15))) -(((-254) (-13 (-1121) (-10 -8 (-15 -1786 ((-255) $)) (-15 -3979 ((-185 (-255)) $)) (-15 -3714 ($ (-185 (-255)))) (-15 -1659 ((-1293) $))))) (T -254)) -((-1786 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-254))))) -(-13 (-1121) (-10 -8 (-15 -1786 ((-255) $)) (-15 -3979 ((-185 (-255)) $)) (-15 -3714 ($ (-185 (-255)))) (-15 -1659 ((-1293) $)))) -((-1957 (((-112) $ $) NIL)) (-3867 (((-656 (-879)) $) NIL)) (-4149 (((-518) $) NIL)) (-2447 (((-1179) $) NIL)) (-3950 (((-188) $) NIL)) (-4227 (((-112) $ (-518)) NIL)) (-3116 (((-1141) $) NIL)) (-2585 (((-343) $) 7)) (-1739 (((-656 (-112)) $) NIL)) (-4113 (((-876) $) NIL) (((-189) $) 8)) (-2950 (((-112) $ $) NIL)) (-2771 (((-55) $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-255) (-13 (-187) (-625 (-189)) (-10 -8 (-15 -2585 ((-343) $))))) (T -255)) -((-2585 (*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) -(-13 (-187) (-625 (-189)) (-10 -8 (-15 -2585 ((-343) $)))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4369 (((-1202) $ (-783)) 13)) (-4113 (((-876) $) 20)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 16)) (-1970 (((-783) $) 9))) -(((-256) (-13 (-1121) (-296 (-783) (-1202)) (-10 -8 (-15 -1970 ((-783) $))))) (T -256)) -((-1970 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256))))) -(-13 (-1121) (-296 (-783) (-1202)) (-10 -8 (-15 -1970 ((-783) $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2846 (($ (-940)) NIL (|has| |#4| (-1070)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2214 (($ $ $) NIL (|has| |#4| (-805)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-2201 (((-783)) NIL (|has| |#4| (-379)))) (-4268 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1121))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121))))) (-2317 ((|#4| $) NIL (|has| |#4| (-1121))) (((-576) $) NIL (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121))))) (-1930 (((-2 (|:| -3563 (-701 |#4|)) (|:| |vec| (-1288 |#4|))) (-701 $) (-1288 $)) NIL (|has| |#4| (-1070))) (((-701 |#4|) (-701 $)) NIL (|has| |#4| (-1070))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070))))) (-1851 (((-3 $ "failed") $) NIL (|has| |#4| (-1070)))) (-4370 (($) NIL (|has| |#4| (-379)))) (-1910 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#4| $ (-576)) NIL)) (-3722 (((-656 |#4|) $) NIL (|has| $ (-6 -4464)))) (-2486 (((-112) $) NIL (|has| |#4| (-1070)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#4| (-861)))) (-2911 (((-656 |#4|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#4| (-861)))) (-1898 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#4| |#4|) $) NIL)) (-3787 (((-940) $) NIL (|has| |#4| (-379)))) (-1884 (((-112) $ (-783)) NIL)) (-2160 (((-2 (|:| -3563 (-701 |#4|)) (|:| |vec| (-1288 |#4|))) (-1288 $) $) NIL (|has| |#4| (-1070))) (((-701 |#4|) (-1288 $)) NIL (|has| |#4| (-1070))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1070))))) (-2447 (((-1179) $) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-2411 (($ (-940)) NIL (|has| |#4| (-379)))) (-3116 (((-1141) $) NIL)) (-1755 ((|#4| $) NIL (|has| (-576) (-861)))) (-4267 (($ $ |#4|) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-2885 (((-656 |#4|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#4| $ (-576) |#4|) NIL) ((|#4| $ (-576)) 12)) (-1875 ((|#4| $ $) NIL (|has| |#4| (-1070)))) (-1492 (($ (-1288 |#4|)) NIL)) (-3181 (((-135)) NIL (|has| |#4| (-374)))) (-4107 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1070))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-783)) NIL (-3795 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070))))) (($ $) NIL (-3795 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070)))))) (-3127 (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-1288 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1121))) (((-876) $) NIL) (($ (-576)) NIL (-3795 (-12 (|has| |#4| (-1059 (-576))) (|has| |#4| (-1121))) (|has| |#4| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#4| (-1059 (-419 (-576)))) (|has| |#4| (-1121))))) (-2910 (((-783)) NIL (|has| |#4| (-1070)) CONST)) (-2950 (((-112) $ $) NIL)) (-2543 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL (|has| |#4| (-1070)) CONST)) (-3157 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1070))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#4| (-917 (-1197))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1197))) (|has| |#4| (-1070))))) (($ $ (-783)) NIL (-3795 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070))))) (($ $) NIL (-3795 (-12 (|has| |#4| (-238)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1070)))))) (-3995 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#4| (-861)))) (-4047 (($ $ |#4|) NIL (|has| |#4| (-374)))) (-4037 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#4| (-1070))) (($ $ (-940)) NIL (|has| |#4| (-1070)))) (* (($ |#2| $) 14) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-738))) (($ |#4| $) NIL (|has| |#4| (-738))) (($ $ $) NIL (|has| |#4| (-1070)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-257 |#1| |#2| |#3| |#4|) (-13 (-243 |#1| |#4|) (-660 |#2|) (-660 |#3|)) (-940) (-1070) (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-660 |#2|)) (T -257)) -NIL -(-13 (-243 |#1| |#4|) (-660 |#2|) (-660 |#3|)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2846 (($ (-940)) NIL (|has| |#3| (-1070)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2214 (($ $ $) NIL (|has| |#3| (-805)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-2201 (((-783)) NIL (|has| |#3| (-379)))) (-4268 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1121))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121))))) (-2317 ((|#3| $) NIL (|has| |#3| (-1121))) (((-576) $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121))))) (-1930 (((-2 (|:| -3563 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1070))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070))))) (-1851 (((-3 $ "failed") $) NIL (|has| |#3| (-1070)))) (-4370 (($) NIL (|has| |#3| (-379)))) (-1910 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#3| $ (-576)) NIL)) (-3722 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-2486 (((-112) $) NIL (|has| |#3| (-1070)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#3| (-861)))) (-2911 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#3| (-861)))) (-1898 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#3| |#3|) $) NIL)) (-3787 (((-940) $) NIL (|has| |#3| (-379)))) (-1884 (((-112) $ (-783)) NIL)) (-2160 (((-2 (|:| -3563 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-1288 $) $) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-1288 $)) NIL (|has| |#3| (-1070))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070))))) (-2447 (((-1179) $) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-2411 (($ (-940)) NIL (|has| |#3| (-379)))) (-3116 (((-1141) $) NIL)) (-1755 ((|#3| $) NIL (|has| (-576) (-861)))) (-4267 (($ $ |#3|) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-2885 (((-656 |#3|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) 11)) (-1875 ((|#3| $ $) NIL (|has| |#3| (-1070)))) (-1492 (($ (-1288 |#3|)) NIL)) (-3181 (((-135)) NIL (|has| |#3| (-374)))) (-4107 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-783)) NIL (-3795 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) (($ $) NIL (-3795 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))))) (-3127 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-1288 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1121))) (((-876) $) NIL) (($ (-576)) NIL (-3795 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121))))) (-2910 (((-783)) NIL (|has| |#3| (-1070)) CONST)) (-2950 (((-112) $ $) NIL)) (-2543 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL (|has| |#3| (-1070)) CONST)) (-3157 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#3| (-917 (-1197))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070))))) (($ $ (-783)) NIL (-3795 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070))))) (($ $) NIL (-3795 (-12 (|has| |#3| (-238)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))))) (-3995 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#3| (-861)))) (-4047 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4037 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#3| (-1070))) (($ $ (-940)) NIL (|has| |#3| (-1070)))) (* (($ |#2| $) 13) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ $ $) NIL (|has| |#3| (-1070)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-258 |#1| |#2| |#3|) (-13 (-243 |#1| |#3|) (-660 |#2|)) (-783) (-1070) (-660 |#2|)) (T -258)) -NIL -(-13 (-243 |#1| |#3|) (-660 |#2|)) -((-2904 (((-656 (-783)) $) 56) (((-656 (-783)) $ |#3|) 59)) (-2028 (((-783) $) 58) (((-783) $ |#3|) 61)) (-3483 (($ $) 76)) (-2982 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3359 (((-783) $ |#3|) 43) (((-783) $) 38)) (-2554 (((-1 $ (-783)) |#3|) 15) (((-1 $ (-783)) $) 88)) (-4195 ((|#4| $) 69)) (-3274 (((-112) $) 67)) (-2294 (($ $) 75)) (-2145 (($ $ (-656 (-304 $))) 111) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-656 |#3|) (-656 |#2|)) 97)) (-4107 (($ $ (-656 |#4|) (-656 (-783))) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-2066 (((-656 |#3|) $) 86)) (-2196 ((|#5| $) NIL) (((-783) $ |#4|) NIL) (((-656 (-783)) $ (-656 |#4|)) NIL) (((-783) $ |#3|) 49)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-419 (-576))) NIL) (($ $) NIL))) -(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -4113 (|#1| |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -2145 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -2145 (|#1| |#1| |#3| |#2|)) (-15 -2145 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#3| |#1|)) (-15 -2554 ((-1 |#1| (-783)) |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -2294 (|#1| |#1|)) (-15 -4195 (|#4| |#1|)) (-15 -3274 ((-112) |#1|)) (-15 -2028 ((-783) |#1| |#3|)) (-15 -2904 ((-656 (-783)) |#1| |#3|)) (-15 -2028 ((-783) |#1|)) (-15 -2904 ((-656 (-783)) |#1|)) (-15 -2196 ((-783) |#1| |#3|)) (-15 -3359 ((-783) |#1|)) (-15 -3359 ((-783) |#1| |#3|)) (-15 -2066 ((-656 |#3|) |#1|)) (-15 -2554 ((-1 |#1| (-783)) |#3|)) (-15 -4113 (|#1| |#3|)) (-15 -2982 ((-3 |#3| "failed") |#1|)) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2196 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -2196 ((-783) |#1| |#4|)) (-15 -4113 (|#1| |#4|)) (-15 -2982 ((-3 |#4| "failed") |#1|)) (-15 -2145 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#4| |#1|)) (-15 -2145 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2145 (|#1| |#1| |#4| |#2|)) (-15 -2145 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#1| |#1|)) (-15 -2145 (|#1| |#1| (-304 |#1|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2196 (|#5| |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -4107 (|#1| |#1| |#4|)) (-15 -4107 (|#1| |#1| (-656 |#4|))) (-15 -4107 (|#1| |#1| |#4| (-783))) (-15 -4107 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1070) (-861) (-275 |#3|) (-805)) (T -259)) -NIL -(-10 -8 (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -4113 (|#1| |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -2145 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -2145 (|#1| |#1| |#3| |#2|)) (-15 -2145 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#3| |#1|)) (-15 -2554 ((-1 |#1| (-783)) |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -2294 (|#1| |#1|)) (-15 -4195 (|#4| |#1|)) (-15 -3274 ((-112) |#1|)) (-15 -2028 ((-783) |#1| |#3|)) (-15 -2904 ((-656 (-783)) |#1| |#3|)) (-15 -2028 ((-783) |#1|)) (-15 -2904 ((-656 (-783)) |#1|)) (-15 -2196 ((-783) |#1| |#3|)) (-15 -3359 ((-783) |#1|)) (-15 -3359 ((-783) |#1| |#3|)) (-15 -2066 ((-656 |#3|) |#1|)) (-15 -2554 ((-1 |#1| (-783)) |#3|)) (-15 -4113 (|#1| |#3|)) (-15 -2982 ((-3 |#3| "failed") |#1|)) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2196 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -2196 ((-783) |#1| |#4|)) (-15 -4113 (|#1| |#4|)) (-15 -2982 ((-3 |#4| "failed") |#1|)) (-15 -2145 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#4| |#1|)) (-15 -2145 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2145 (|#1| |#1| |#4| |#2|)) (-15 -2145 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#1| |#1|)) (-15 -2145 (|#1| |#1| (-304 |#1|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2196 (|#5| |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -4107 (|#1| |#1| |#4|)) (-15 -4107 (|#1| |#1| (-656 |#4|))) (-15 -4107 (|#1| |#1| |#4| (-783))) (-15 -4107 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-2904 (((-656 (-783)) $) 236) (((-656 (-783)) $ |#2|) 234)) (-2028 (((-783) $) 235) (((-783) $ |#2|) 233)) (-1585 (((-656 |#3|) $) 113)) (-1421 (((-1193 $) $ |#3|) 128) (((-1193 |#1|) $) 127)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2390 (($ $) 91 (|has| |#1| (-568)))) (-3302 (((-112) $) 93 (|has| |#1| (-568)))) (-2625 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-1765 (((-3 $ "failed") $ $) 20)) (-2725 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-2658 (($ $) 101 (|has| |#1| (-464)))) (-3589 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-3483 (($ $) 229)) (-3170 (($) 18 T CONST)) (-2982 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 |#2| "failed") $) 243)) (-2317 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) ((|#3| $) 144) ((|#2| $) 244)) (-2970 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-3310 (($ $) 161)) (-1930 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-1851 (((-3 $ "failed") $) 37)) (-1788 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-3297 (((-656 $) $) 112)) (-2171 (((-112) $) 99 (|has| |#1| (-928)))) (-1975 (($ $ |#1| |#4| $) 179)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| |#3| (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| |#3| (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3359 (((-783) $ |#2|) 239) (((-783) $) 238)) (-2486 (((-112) $) 35)) (-2018 (((-783) $) 176)) (-1574 (($ (-1193 |#1|) |#3|) 120) (($ (-1193 $) |#3|) 119)) (-2683 (((-656 $) $) 129)) (-4101 (((-112) $) 159)) (-1564 (($ |#1| |#4|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ |#3|) 123)) (-2192 ((|#4| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-3784 (($ (-1 |#4| |#4|) $) 178)) (-2423 (($ (-1 |#1| |#1|) $) 158)) (-2554 (((-1 $ (-783)) |#2|) 241) (((-1 $ (-783)) $) 228 (|has| |#1| (-238)))) (-3477 (((-3 |#3| "failed") $) 126)) (-2160 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-1700 (($ $) 156)) (-1711 ((|#1| $) 155)) (-4195 ((|#3| $) 231)) (-3076 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2447 (((-1179) $) 10)) (-3274 (((-112) $) 232)) (-4050 (((-3 (-656 $) "failed") $) 117)) (-2646 (((-3 (-656 $) "failed") $) 118)) (-1608 (((-3 (-2 (|:| |var| |#3|) (|:| -4080 (-783))) "failed") $) 116)) (-2294 (($ $) 230)) (-3116 (((-1141) $) 11)) (-1678 (((-112) $) 173)) (-1686 ((|#1| $) 174)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3115 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1452 (((-430 $) $) 102 (|has| |#1| (-928)))) (-1946 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2145 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145) (($ $ |#2| $) 227 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) 226 (|has| |#1| (-238))) (($ $ |#2| |#1|) 225 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) 224 (|has| |#1| (-238)))) (-1790 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-4107 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 248) (($ $ (-1 |#1| |#1|) (-783)) 247) (($ $) 223 (|has| |#1| (-237))) (($ $ (-783)) 221 (|has| |#1| (-237))) (($ $ (-1197)) 219 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 217 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 216 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 215 (|has| |#1| (-919 (-1197))))) (-2066 (((-656 |#2|) $) 240)) (-2196 ((|#4| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132) (((-783) $ |#2|) 237)) (-1556 (((-907 (-390)) $) 85 (-12 (|has| |#3| (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| |#3| (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1944 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2311 (|has| $ (-146)) (|has| |#1| (-928))))) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ |#2|) 242) (($ (-419 (-576))) 81 (-3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-3244 (((-656 |#1|) $) 175)) (-2707 ((|#1| $ |#4|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-4276 (((-3 $ "failed") $) 82 (-3795 (-2311 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) 32 T CONST)) (-1903 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 92 (|has| |#1| (-568)))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-783)) 245) (($ $) 222 (|has| |#1| (-237))) (($ $ (-783)) 220 (|has| |#1| (-237))) (($ $ (-1197)) 218 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 214 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 213 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 212 (|has| |#1| (-919 (-1197))))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-260 |#1| |#2| |#3| |#4|) (-141) (-1070) (-861) (-275 |t#2|) (-805)) (T -260)) -((-2554 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) (-2066 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4)))) (-3359 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-2196 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-2904 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2028 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3274 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112)))) (-4195 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-805)) (-4 *2 (-275 *4)))) (-2294 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-2554 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6))))) -(-13 (-968 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1059 |t#2|) (-10 -8 (-15 -2554 ((-1 $ (-783)) |t#2|)) (-15 -2066 ((-656 |t#2|) $)) (-15 -3359 ((-783) $ |t#2|)) (-15 -3359 ((-783) $)) (-15 -2196 ((-783) $ |t#2|)) (-15 -2904 ((-656 (-783)) $)) (-15 -2028 ((-783) $)) (-15 -2904 ((-656 (-783)) $ |t#2|)) (-15 -2028 ((-783) $ |t#2|)) (-15 -3274 ((-112) $)) (-15 -4195 (|t#3| $)) (-15 -2294 ($ $)) (-15 -3483 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-319 $)) (-15 -2554 ((-1 $ (-783)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) ((-234 $) -3795 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3795 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-300) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#4|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3795 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-238)) ((-526 |#2| $) |has| |#1| (-238)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-911 $ #2=(-1197)) -3795 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-911 $ |#3|) . T) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-917 |#3|) . T) ((-919 #2#) -3795 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-919 |#3|) . T) ((-901 (-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) ((-968 |#1| |#4| |#3|) . T) ((-928) |has| |#1| (-928)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1059 |#2|) . T) ((-1059 |#3|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-928))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2135 ((|#1| $) 55)) (-3015 ((|#1| $) 45)) (-4234 (((-112) $ (-783)) 8)) (-3170 (($) 7 T CONST)) (-3190 (($ $) 61)) (-1542 (($ $) 49)) (-2663 ((|#1| |#1| $) 47)) (-3166 ((|#1| $) 46)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-3108 (((-783) $) 62)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3743 ((|#1| $) 40)) (-2735 ((|#1| |#1| $) 53)) (-3008 ((|#1| |#1| $) 52)) (-3695 (($ |#1| $) 41)) (-2955 (((-783) $) 56)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3368 ((|#1| $) 63)) (-3458 ((|#1| $) 51)) (-3329 ((|#1| $) 50)) (-2372 ((|#1| $) 42)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-1391 ((|#1| |#1| $) 59)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-3331 ((|#1| $) 60)) (-3465 (($) 58) (($ (-656 |#1|)) 57)) (-4307 (((-783) $) 44)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2780 ((|#1| $) 54)) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) 43)) (-1419 ((|#1| $) 64)) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-261 |#1|) (-141) (-1238)) (T -261)) -((-3465 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3465 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-261 *3)))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-2135 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-2735 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3008 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) (-1542 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(-13 (-1142 |t#1|) (-1016 |t#1|) (-10 -8 (-15 -3465 ($)) (-15 -3465 ($ (-656 |t#1|))) (-15 -2955 ((-783) $)) (-15 -2135 (|t#1| $)) (-15 -2780 (|t#1| $)) (-15 -2735 (|t#1| |t#1| $)) (-15 -3008 (|t#1| |t#1| $)) (-15 -3458 (|t#1| $)) (-15 -3329 (|t#1| $)) (-15 -1542 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1016 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1142 |#1|) . T) ((-1238) . T)) -((-1742 (((-1 (-962 (-227)) (-227) (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-2844 (((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390))) 173) (((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 171) (((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 176) (((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 172) (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 164) (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 163) (((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390))) 145) (((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270))) 143) (((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390))) 144) (((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270))) 141)) (-2795 (((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390))) 175) (((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 174) (((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 178) (((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 177) (((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390))) 166) (((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270))) 165) (((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390))) 151) (((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270))) 150) (((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390))) 149) (((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270))) 148) (((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390))) 113) (((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270))) 112) (((-1289) (-1 (-227) (-227)) (-1115 (-390))) 107) (((-1289) (-1 (-227) (-227)) (-1115 (-390)) (-656 (-270))) 105))) -(((-262) (-10 -7 (-15 -2795 ((-1289) (-1 (-227) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1289) (-1 (-227) (-227)) (-1115 (-390)))) (-15 -2795 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -2795 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -2795 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -2844 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -2844 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -2795 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -2844 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -2795 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -2844 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -2795 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -2844 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -1742 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) -((-1742 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-2844 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-2844 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-2844 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-2844 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-2844 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-2844 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-2844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-2844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262))))) -(-10 -7 (-15 -2795 ((-1289) (-1 (-227) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1289) (-1 (-227) (-227)) (-1115 (-390)))) (-15 -2795 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1289) (-892 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -2795 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -2795 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -2844 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-894 (-1 (-227) (-227))) (-1115 (-390)))) (-15 -2844 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-1 (-962 (-227)) (-227)) (-1115 (-390)))) (-15 -2795 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -2844 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -2795 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -2844 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-390)) (-1115 (-390)))) (-15 -2795 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -2844 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-897 (-1 (-227) (-227) (-227))) (-1115 (-390)) (-1115 (-390)))) (-15 -1742 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-2795 (((-1289) (-304 |#2|) (-1197) (-1197) (-656 (-270))) 101))) -(((-263 |#1| |#2|) (-10 -7 (-15 -2795 ((-1289) (-304 |#2|) (-1197) (-1197) (-656 (-270))))) (-13 (-568) (-861) (-1059 (-576))) (-442 |#1|)) (T -263)) -((-2795 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-1197)) (-5 *5 (-656 (-270))) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-861) (-1059 (-576)))) (-5 *2 (-1289)) (-5 *1 (-263 *6 *7))))) -(-10 -7 (-15 -2795 ((-1289) (-304 |#2|) (-1197) (-1197) (-656 (-270))))) -((-3596 (((-576) (-576)) 71)) (-1757 (((-576) (-576)) 72)) (-4093 (((-227) (-227)) 73)) (-2342 (((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227))) 70)) (-3896 (((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)) (-112)) 68))) -(((-264) (-10 -7 (-15 -3896 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)) (-112))) (-15 -2342 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -3596 ((-576) (-576))) (-15 -1757 ((-576) (-576))) (-15 -4093 ((-227) (-227))))) (T -264)) -((-4093 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-2342 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) (-5 *2 (-1290)) (-5 *1 (-264)))) (-3896 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) (-5 *5 (-112)) (-5 *2 (-1290)) (-5 *1 (-264))))) -(-10 -7 (-15 -3896 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)) (-112))) (-15 -2342 ((-1290) (-1 (-171 (-227)) (-171 (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -3596 ((-576) (-576))) (-15 -1757 ((-576) (-576))) (-15 -4093 ((-227) (-227)))) -((-4113 (((-1113 (-390)) (-1113 (-326 |#1|))) 16))) -(((-265 |#1|) (-10 -7 (-15 -4113 ((-1113 (-390)) (-1113 (-326 |#1|))))) (-13 (-861) (-568) (-626 (-390)))) (T -265)) -((-4113 (*1 *2 *3) (-12 (-5 *3 (-1113 (-326 *4))) (-4 *4 (-13 (-861) (-568) (-626 (-390)))) (-5 *2 (-1113 (-390))) (-5 *1 (-265 *4))))) -(-10 -7 (-15 -4113 ((-1113 (-390)) (-1113 (-326 |#1|))))) -((-2844 (((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390))) 75) (((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 74) (((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390))) 65) (((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 64) (((-1154 (-227)) (-894 |#1|) (-1113 (-390))) 56) (((-1154 (-227)) (-894 |#1|) (-1113 (-390)) (-656 (-270))) 55)) (-2795 (((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390))) 78) (((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 77) (((-1290) |#1| (-1113 (-390)) (-1113 (-390))) 68) (((-1290) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 67) (((-1290) (-894 |#1|) (-1113 (-390))) 60) (((-1290) (-894 |#1|) (-1113 (-390)) (-656 (-270))) 59) (((-1289) (-892 |#1|) (-1113 (-390))) 47) (((-1289) (-892 |#1|) (-1113 (-390)) (-656 (-270))) 46) (((-1289) |#1| (-1113 (-390))) 38) (((-1289) |#1| (-1113 (-390)) (-656 (-270))) 36))) -(((-266 |#1|) (-10 -7 (-15 -2795 ((-1289) |#1| (-1113 (-390)) (-656 (-270)))) (-15 -2795 ((-1289) |#1| (-1113 (-390)))) (-15 -2795 ((-1289) (-892 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -2795 ((-1289) (-892 |#1|) (-1113 (-390)))) (-15 -2795 ((-1290) (-894 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-894 |#1|) (-1113 (-390)))) (-15 -2844 ((-1154 (-227)) (-894 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-894 |#1|) (-1113 (-390)))) (-15 -2795 ((-1290) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) |#1| (-1113 (-390)) (-1113 (-390)))) (-15 -2844 ((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)))) (-15 -2795 ((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)))) (-15 -2844 ((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390))))) (-13 (-626 (-548)) (-1121))) (T -266)) -((-2844 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *5)))) (-2844 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *6)))) (-2795 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-266 *5)))) (-2795 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-266 *6)))) (-2844 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-2844 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-2795 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-2795 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *5)))) (-2844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *6)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-266 *5)))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-266 *6)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1113 (-390))) (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1289)) (-5 *1 (-266 *5)))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1289)) (-5 *1 (-266 *6)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121)))))) -(-10 -7 (-15 -2795 ((-1289) |#1| (-1113 (-390)) (-656 (-270)))) (-15 -2795 ((-1289) |#1| (-1113 (-390)))) (-15 -2795 ((-1289) (-892 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -2795 ((-1289) (-892 |#1|) (-1113 (-390)))) (-15 -2795 ((-1290) (-894 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-894 |#1|) (-1113 (-390)))) (-15 -2844 ((-1154 (-227)) (-894 |#1|) (-1113 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-894 |#1|) (-1113 (-390)))) (-15 -2795 ((-1290) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) |#1| (-1113 (-390)) (-1113 (-390)))) (-15 -2844 ((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) |#1| (-1113 (-390)) (-1113 (-390)))) (-15 -2795 ((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -2795 ((-1290) (-897 |#1|) (-1113 (-390)) (-1113 (-390)))) (-15 -2844 ((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -2844 ((-1154 (-227)) (-897 |#1|) (-1113 (-390)) (-1113 (-390))))) -((-2795 (((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))) 23) (((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227))) 24) (((-1289) (-656 (-962 (-227))) (-656 (-270))) 16) (((-1289) (-656 (-962 (-227)))) 17) (((-1289) (-656 (-227)) (-656 (-227)) (-656 (-270))) 20) (((-1289) (-656 (-227)) (-656 (-227))) 21))) -(((-267) (-10 -7 (-15 -2795 ((-1289) (-656 (-227)) (-656 (-227)))) (-15 -2795 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -2795 ((-1289) (-656 (-962 (-227))))) (-15 -2795 ((-1289) (-656 (-962 (-227))) (-656 (-270)))) (-15 -2795 ((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -2795 ((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270)))))) (T -267)) -((-2795 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-2795 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-2795 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-2795 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1289)) (-5 *1 (-267))))) -(-10 -7 (-15 -2795 ((-1289) (-656 (-227)) (-656 (-227)))) (-15 -2795 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -2795 ((-1289) (-656 (-962 (-227))))) (-15 -2795 ((-1289) (-656 (-962 (-227))) (-656 (-270)))) (-15 -2795 ((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -2795 ((-1290) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))))) -((-2333 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-3613 (((-940) (-656 (-270)) (-940)) 52)) (-1526 (((-940) (-656 (-270)) (-940)) 51)) (-3479 (((-656 (-390)) (-656 (-270)) (-656 (-390))) 68)) (-1359 (((-390) (-656 (-270)) (-390)) 57)) (-3033 (((-940) (-656 (-270)) (-940)) 53)) (-3089 (((-112) (-656 (-270)) (-112)) 27)) (-3751 (((-1179) (-656 (-270)) (-1179)) 19)) (-1723 (((-1179) (-656 (-270)) (-1179)) 26)) (-2068 (((-1154 (-227)) (-656 (-270))) 46)) (-4427 (((-656 (-1115 (-390))) (-656 (-270)) (-656 (-1115 (-390)))) 40)) (-3619 (((-888) (-656 (-270)) (-888)) 32)) (-3428 (((-888) (-656 (-270)) (-888)) 33)) (-2840 (((-1 (-962 (-227)) (-962 (-227))) (-656 (-270)) (-1 (-962 (-227)) (-962 (-227)))) 63)) (-3953 (((-112) (-656 (-270)) (-112)) 14)) (-1687 (((-112) (-656 (-270)) (-112)) 13))) -(((-268) (-10 -7 (-15 -1687 ((-112) (-656 (-270)) (-112))) (-15 -3953 ((-112) (-656 (-270)) (-112))) (-15 -2333 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3751 ((-1179) (-656 (-270)) (-1179))) (-15 -1723 ((-1179) (-656 (-270)) (-1179))) (-15 -3089 ((-112) (-656 (-270)) (-112))) (-15 -3619 ((-888) (-656 (-270)) (-888))) (-15 -3428 ((-888) (-656 (-270)) (-888))) (-15 -4427 ((-656 (-1115 (-390))) (-656 (-270)) (-656 (-1115 (-390))))) (-15 -1526 ((-940) (-656 (-270)) (-940))) (-15 -3613 ((-940) (-656 (-270)) (-940))) (-15 -2068 ((-1154 (-227)) (-656 (-270)))) (-15 -3033 ((-940) (-656 (-270)) (-940))) (-15 -1359 ((-390) (-656 (-270)) (-390))) (-15 -2840 ((-1 (-962 (-227)) (-962 (-227))) (-656 (-270)) (-1 (-962 (-227)) (-962 (-227))))) (-15 -3479 ((-656 (-390)) (-656 (-270)) (-656 (-390)))))) (T -268)) -((-3479 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2840 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1359 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3033 (*1 *2 *3 *2) (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-268)))) (-3613 (*1 *2 *3 *2) (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1526 (*1 *2 *3 *2) (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4427 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3428 (*1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3619 (*1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3089 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1723 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3751 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2333 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3953 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1687 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(-10 -7 (-15 -1687 ((-112) (-656 (-270)) (-112))) (-15 -3953 ((-112) (-656 (-270)) (-112))) (-15 -2333 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3751 ((-1179) (-656 (-270)) (-1179))) (-15 -1723 ((-1179) (-656 (-270)) (-1179))) (-15 -3089 ((-112) (-656 (-270)) (-112))) (-15 -3619 ((-888) (-656 (-270)) (-888))) (-15 -3428 ((-888) (-656 (-270)) (-888))) (-15 -4427 ((-656 (-1115 (-390))) (-656 (-270)) (-656 (-1115 (-390))))) (-15 -1526 ((-940) (-656 (-270)) (-940))) (-15 -3613 ((-940) (-656 (-270)) (-940))) (-15 -2068 ((-1154 (-227)) (-656 (-270)))) (-15 -3033 ((-940) (-656 (-270)) (-940))) (-15 -1359 ((-390) (-656 (-270)) (-390))) (-15 -2840 ((-1 (-962 (-227)) (-962 (-227))) (-656 (-270)) (-1 (-962 (-227)) (-962 (-227))))) (-15 -3479 ((-656 (-390)) (-656 (-270)) (-656 (-390))))) -((-3109 (((-3 |#1| "failed") (-656 (-270)) (-1197)) 17))) -(((-269 |#1|) (-10 -7 (-15 -3109 ((-3 |#1| "failed") (-656 (-270)) (-1197)))) (-1238)) (T -269)) -((-3109 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *1 (-269 *2)) (-4 *2 (-1238))))) -(-10 -7 (-15 -3109 ((-3 |#1| "failed") (-656 (-270)) (-1197)))) -((-1957 (((-112) $ $) NIL)) (-2333 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-3613 (($ (-940)) 81)) (-1526 (($ (-940)) 80)) (-2946 (($ (-656 (-390))) 87)) (-1359 (($ (-390)) 66)) (-3033 (($ (-940)) 82)) (-3089 (($ (-112)) 33)) (-3751 (($ (-1179)) 28)) (-1723 (($ (-1179)) 29)) (-2068 (($ (-1154 (-227))) 76)) (-4427 (($ (-656 (-1115 (-390)))) 72)) (-1848 (($ (-656 (-1115 (-390)))) 68) (($ (-656 (-1115 (-419 (-576))))) 71)) (-1999 (($ (-390)) 38) (($ (-888)) 42)) (-2578 (((-112) (-656 $) (-1197)) 100)) (-3109 (((-3 (-52) "failed") (-656 $) (-1197)) 102)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4086 (($ (-390)) 43) (($ (-888)) 44)) (-4314 (($ (-1 (-962 (-227)) (-962 (-227)))) 65)) (-2840 (($ (-1 (-962 (-227)) (-962 (-227)))) 83)) (-4425 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-4113 (((-876) $) 93)) (-2511 (($ (-112)) 34) (($ (-656 (-1115 (-390)))) 60)) (-2950 (((-112) $ $) NIL)) (-1687 (($ (-112)) 35)) (-3939 (((-112) $ $) 97))) -(((-270) (-13 (-1121) (-10 -8 (-15 -1687 ($ (-112))) (-15 -2511 ($ (-112))) (-15 -2333 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3751 ($ (-1179))) (-15 -1723 ($ (-1179))) (-15 -3089 ($ (-112))) (-15 -2511 ($ (-656 (-1115 (-390))))) (-15 -4314 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -1999 ($ (-390))) (-15 -1999 ($ (-888))) (-15 -4086 ($ (-390))) (-15 -4086 ($ (-888))) (-15 -4425 ($ (-1 (-227) (-227)))) (-15 -4425 ($ (-1 (-227) (-227) (-227)))) (-15 -4425 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1359 ($ (-390))) (-15 -1848 ($ (-656 (-1115 (-390))))) (-15 -1848 ($ (-656 (-1115 (-419 (-576)))))) (-15 -4427 ($ (-656 (-1115 (-390))))) (-15 -2068 ($ (-1154 (-227)))) (-15 -1526 ($ (-940))) (-15 -3613 ($ (-940))) (-15 -3033 ($ (-940))) (-15 -2840 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -2946 ($ (-656 (-390)))) (-15 -3109 ((-3 (-52) "failed") (-656 $) (-1197))) (-15 -2578 ((-112) (-656 $) (-1197)))))) (T -270)) -((-1687 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2333 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) (-1723 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) (-4314 (*1 *1 *2) (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) (-1999 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-1999 (*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) (-4425 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-4425 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-4425 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-1359 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-1848 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) (-1848 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-419 (-576))))) (-5 *1 (-270)))) (-4427 (*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-270)))) (-1526 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270)))) (-3613 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270)))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270)))) (-2840 (*1 *1 *2) (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) (-2946 (*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) (-3109 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-52)) (-5 *1 (-270)))) (-2578 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-112)) (-5 *1 (-270))))) -(-13 (-1121) (-10 -8 (-15 -1687 ($ (-112))) (-15 -2511 ($ (-112))) (-15 -2333 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3751 ($ (-1179))) (-15 -1723 ($ (-1179))) (-15 -3089 ($ (-112))) (-15 -2511 ($ (-656 (-1115 (-390))))) (-15 -4314 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -1999 ($ (-390))) (-15 -1999 ($ (-888))) (-15 -4086 ($ (-390))) (-15 -4086 ($ (-888))) (-15 -4425 ($ (-1 (-227) (-227)))) (-15 -4425 ($ (-1 (-227) (-227) (-227)))) (-15 -4425 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1359 ($ (-390))) (-15 -1848 ($ (-656 (-1115 (-390))))) (-15 -1848 ($ (-656 (-1115 (-419 (-576)))))) (-15 -4427 ($ (-656 (-1115 (-390))))) (-15 -2068 ($ (-1154 (-227)))) (-15 -1526 ($ (-940))) (-15 -3613 ($ (-940))) (-15 -3033 ($ (-940))) (-15 -2840 ($ (-1 (-962 (-227)) (-962 (-227))))) (-15 -2946 ($ (-656 (-390)))) (-15 -3109 ((-3 (-52) "failed") (-656 $) (-1197))) (-15 -2578 ((-112) (-656 $) (-1197))))) -((-4107 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) 11) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) 19) (($ $ (-783)) NIL) (($ $) 16)) (-3157 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-783)) 14) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL))) -(((-271 |#1| |#2|) (-10 -8 (-15 -4107 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -3157 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -3157 (|#1| |#1| (-1197))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3157 (|#1| |#1| (-656 (-1197)))) (-15 -3157 (|#1| |#1| (-1197) (-783))) (-15 -3157 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3157 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|)))) (-272 |#2|) (-1238)) (T -271)) -NIL -(-10 -8 (-15 -4107 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -3157 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -3157 (|#1| |#1| (-1197))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3157 (|#1| |#1| (-656 (-1197)))) (-15 -3157 (|#1| |#1| (-1197) (-783))) (-15 -3157 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -3157 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|)))) -((-4107 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-783)) 22) (($ $ (-656 (-1197)) (-656 (-783))) 16 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 15 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 14 (|has| |#1| (-919 (-1197)))) (($ $ (-1197)) 12 (|has| |#1| (-919 (-1197)))) (($ $ (-783)) 10 (|has| |#1| (-237))) (($ $) 8 (|has| |#1| (-237)))) (-3157 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-783)) 20) (($ $ (-656 (-1197)) (-656 (-783))) 19 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 18 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 17 (|has| |#1| (-919 (-1197)))) (($ $ (-1197)) 13 (|has| |#1| (-919 (-1197)))) (($ $ (-783)) 11 (|has| |#1| (-237))) (($ $) 9 (|has| |#1| (-237))))) -(((-272 |#1|) (-141) (-1238)) (T -272)) -((-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1238)))) (-4107 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1238)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1238)))) (-3157 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -4107 ($ $ (-1 |t#1| |t#1|))) (-15 -4107 ($ $ (-1 |t#1| |t#1|) (-783))) (-15 -3157 ($ $ (-1 |t#1| |t#1|))) (-15 -3157 ($ $ (-1 |t#1| |t#1|) (-783))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-919 (-1197))) (-6 (-919 (-1197))) |%noBranch|))) -(((-234 $) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-911 $ #0=(-1197)) |has| |#1| (-919 (-1197))) ((-919 #0#) |has| |#1| (-919 (-1197))) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2904 (((-656 (-783)) $) NIL) (((-656 (-783)) $ |#2|) NIL)) (-2028 (((-783) $) NIL) (((-783) $ |#2|) NIL)) (-1585 (((-656 |#3|) $) NIL)) (-1421 (((-1193 $) $ |#3|) NIL) (((-1193 |#1|) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 |#3|)) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2658 (($ $) NIL (|has| |#1| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3483 (($ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1146 |#1| |#2|) "failed") $) 23)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1146 |#1| |#2|) $) NIL)) (-2970 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-3310 (($ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#1| (-928)))) (-1975 (($ $ |#1| (-543 |#3|) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))))) (-3359 (((-783) $ |#2|) NIL) (((-783) $) 10)) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-1574 (($ (-1193 |#1|) |#3|) NIL) (($ (-1193 $) |#3|) NIL)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ |#3|) NIL)) (-2192 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL)) (-3784 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2554 (((-1 $ (-783)) |#2|) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-3477 (((-3 |#3| "failed") $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-4195 ((|#3| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2447 (((-1179) $) NIL)) (-3274 (((-112) $) NIL)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| |#3|) (|:| -4080 (-783))) "failed") $) NIL)) (-2294 (($ $) NIL)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) NIL)) (-1686 ((|#1| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-928)))) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-656 |#3|) (-656 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-1790 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-4107 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2066 (((-656 |#2|) $) NIL)) (-2196 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL) (((-783) $ |#2|) NIL)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))) (-1944 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1146 |#1| |#2|)) 32) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-273 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1059 (-1146 |#1| |#2|))) (-1070) (-861) (-275 |#2|)) (T -273)) -NIL -(-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1059 (-1146 |#1| |#2|))) -((-2028 (((-783) $) 37)) (-2982 (((-3 |#2| "failed") $) 22)) (-2317 ((|#2| $) 33)) (-4107 (($ $ (-783)) 18) (($ $) 14)) (-4113 (((-876) $) 32) (($ |#2|) 11)) (-3939 (((-112) $ $) 26)) (-3963 (((-112) $ $) 36))) -(((-274 |#1| |#2|) (-10 -8 (-15 -2028 ((-783) |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -3963 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -3939 ((-112) |#1| |#1|))) (-275 |#2|) (-861)) (T -274)) -NIL -(-10 -8 (-15 -2028 ((-783) |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -3963 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -3939 ((-112) |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-2028 (((-783) $) 23)) (-1654 ((|#1| $) 24)) (-2982 (((-3 |#1| "failed") $) 28)) (-2317 ((|#1| $) 29)) (-3359 (((-783) $) 25)) (-2907 (($ $ $) 20)) (-3777 (($ $ $) 19)) (-2554 (($ |#1| (-783)) 26)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4107 (($ $ (-783)) 32) (($ $) 30)) (-4113 (((-876) $) 12) (($ |#1|) 27)) (-2950 (((-112) $ $) 6)) (-3157 (($ $ (-783)) 33) (($ $) 31)) (-3995 (((-112) $ $) 18)) (-3975 (((-112) $ $) 16)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 17)) (-3963 (((-112) $ $) 15))) -(((-275 |#1|) (-141) (-861)) (T -275)) -((-4113 (*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-2554 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783))))) -(-13 (-861) (-237) (-1059 |t#1|) (-10 -8 (-15 -2554 ($ |t#1| (-783))) (-15 -3359 ((-783) $)) (-15 -1654 (|t#1| $)) (-15 -2028 ((-783) $)) (-15 -4113 ($ |t#1|)))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-234 $) . T) ((-237) . T) ((-861) . T) ((-864) . T) ((-1059 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1585 (((-656 (-1197)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 53)) (-1418 (((-656 (-1197)) (-326 (-227)) (-783)) 94)) (-2898 (((-3 (-326 (-227)) "failed") (-326 (-227))) 63)) (-3865 (((-326 (-227)) (-326 (-227))) 79)) (-3581 (((-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 38)) (-2552 (((-112) (-656 (-326 (-227)))) 104)) (-1399 (((-112) (-326 (-227))) 36)) (-2798 (((-656 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))))) 132)) (-3139 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 108)) (-1543 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 106)) (-1476 (((-701 (-227)) (-656 (-326 (-227))) (-783)) 120)) (-4192 (((-112) (-326 (-227))) 31) (((-112) (-656 (-326 (-227)))) 105)) (-3708 (((-656 (-227)) (-656 (-855 (-227))) (-227)) 15)) (-3184 (((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 126)) (-2944 (((-1056) (-1197) (-1056)) 46))) -(((-276) (-10 -7 (-15 -3708 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -3581 ((-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2898 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3865 ((-326 (-227)) (-326 (-227)))) (-15 -2552 ((-112) (-656 (-326 (-227))))) (-15 -4192 ((-112) (-656 (-326 (-227))))) (-15 -4192 ((-112) (-326 (-227)))) (-15 -1476 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -1543 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -3139 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -1399 ((-112) (-326 (-227)))) (-15 -1585 ((-656 (-1197)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -1418 ((-656 (-1197)) (-326 (-227)) (-783))) (-15 -2944 ((-1056) (-1197) (-1056))) (-15 -3184 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -2798 ((-656 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))))))) (T -276)) -((-2798 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))))) (-5 *2 (-656 (-1179))) (-5 *1 (-276)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) (-5 *2 (-390)) (-5 *1 (-276)))) (-2944 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-276)))) (-1418 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1197))) (-5 *1 (-276)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) (-5 *2 (-656 (-1197))) (-5 *1 (-276)))) (-1399 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3139 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-1543 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-1476 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-276)))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3865 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-2898 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-3581 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-276)))) (-3708 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) (-5 *1 (-276))))) -(-10 -7 (-15 -3708 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -3581 ((-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2898 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3865 ((-326 (-227)) (-326 (-227)))) (-15 -2552 ((-112) (-656 (-326 (-227))))) (-15 -4192 ((-112) (-656 (-326 (-227))))) (-15 -4192 ((-112) (-326 (-227)))) (-15 -1476 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -1543 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -3139 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -1399 ((-112) (-326 (-227)))) (-15 -1585 ((-656 (-1197)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -1418 ((-656 (-1197)) (-326 (-227)) (-783))) (-15 -2944 ((-1056) (-1197) (-1056))) (-15 -3184 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -2798 ((-656 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))))))) -((-1957 (((-112) $ $) NIL)) (-1822 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 56)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-277) (-851)) (T -277)) -NIL -(-851) -((-1957 (((-112) $ $) NIL)) (-1822 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 72) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 63)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 41) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 43)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-278) (-851)) (T -278)) -NIL -(-851) -((-1957 (((-112) $ $) NIL)) (-1822 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 90) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 85)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 52) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 65)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-279) (-851)) (T -279)) -NIL -(-851) -((-1957 (((-112) $ $) NIL)) (-1822 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 73)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 45) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-280) (-851)) (T -280)) -NIL -(-851) -((-1957 (((-112) $ $) NIL)) (-1822 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 65)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 31) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-281) (-851)) (T -281)) -NIL -(-851) -((-1957 (((-112) $ $) NIL)) (-1822 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 90)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 33) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-282) (-851)) (T -282)) -NIL -(-851) -((-1957 (((-112) $ $) NIL)) (-1822 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 87)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-283) (-851)) (T -283)) -NIL -(-851) -((-1957 (((-112) $ $) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3199 (((-656 (-576)) $) 29)) (-2196 (((-783) $) 27)) (-4113 (((-876) $) 33) (($ (-656 (-576))) 23)) (-2950 (((-112) $ $) NIL)) (-2657 (($ (-783)) 30)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 9)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 17))) -(((-284) (-13 (-861) (-10 -8 (-15 -4113 ($ (-656 (-576)))) (-15 -2196 ((-783) $)) (-15 -3199 ((-656 (-576)) $)) (-15 -2657 ($ (-783)))))) (T -284)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) -(-13 (-861) (-10 -8 (-15 -4113 ($ (-656 (-576)))) (-15 -2196 ((-783) $)) (-15 -3199 ((-656 (-576)) $)) (-15 -2657 ($ (-783))))) -((-3586 ((|#2| |#2|) 77)) (-3435 ((|#2| |#2|) 65)) (-2008 (((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3562 ((|#2| |#2|) 75)) (-3412 ((|#2| |#2|) 63)) (-3612 ((|#2| |#2|) 79)) (-3461 ((|#2| |#2|) 67)) (-2722 ((|#2|) 46)) (-1401 (((-115) (-115)) 100)) (-2608 ((|#2| |#2|) 61)) (-2827 (((-112) |#2|) 147)) (-2179 ((|#2| |#2|) 195)) (-1990 ((|#2| |#2|) 171)) (-3333 ((|#2|) 59)) (-3311 ((|#2|) 58)) (-1699 ((|#2| |#2|) 191)) (-1531 ((|#2| |#2|) 167)) (-1900 ((|#2| |#2|) 199)) (-3908 ((|#2| |#2|) 175)) (-2232 ((|#2| |#2|) 163)) (-1766 ((|#2| |#2|) 165)) (-4401 ((|#2| |#2|) 201)) (-1850 ((|#2| |#2|) 177)) (-1523 ((|#2| |#2|) 197)) (-2083 ((|#2| |#2|) 173)) (-2945 ((|#2| |#2|) 193)) (-1826 ((|#2| |#2|) 169)) (-3000 ((|#2| |#2|) 207)) (-4092 ((|#2| |#2|) 183)) (-2254 ((|#2| |#2|) 203)) (-4069 ((|#2| |#2|) 179)) (-2255 ((|#2| |#2|) 211)) (-1589 ((|#2| |#2|) 187)) (-3535 ((|#2| |#2|) 213)) (-2114 ((|#2| |#2|) 189)) (-2129 ((|#2| |#2|) 209)) (-2407 ((|#2| |#2|) 185)) (-1702 ((|#2| |#2|) 205)) (-3843 ((|#2| |#2|) 181)) (-2156 ((|#2| |#2|) 62)) (-3623 ((|#2| |#2|) 80)) (-3474 ((|#2| |#2|) 68)) (-3599 ((|#2| |#2|) 78)) (-3448 ((|#2| |#2|) 66)) (-3574 ((|#2| |#2|) 76)) (-3424 ((|#2| |#2|) 64)) (-1380 (((-112) (-115)) 98)) (-3653 ((|#2| |#2|) 83)) (-3510 ((|#2| |#2|) 71)) (-3632 ((|#2| |#2|) 81)) (-3487 ((|#2| |#2|) 69)) (-3673 ((|#2| |#2|) 85)) (-3537 ((|#2| |#2|) 73)) (-1972 ((|#2| |#2|) 86)) (-3550 ((|#2| |#2|) 74)) (-3664 ((|#2| |#2|) 84)) (-3523 ((|#2| |#2|) 72)) (-3642 ((|#2| |#2|) 82)) (-3498 ((|#2| |#2|) 70))) -(((-285 |#1| |#2|) (-10 -7 (-15 -2156 (|#2| |#2|)) (-15 -2608 (|#2| |#2|)) (-15 -3412 (|#2| |#2|)) (-15 -3424 (|#2| |#2|)) (-15 -3435 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -3461 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3510 (|#2| |#2|)) (-15 -3523 (|#2| |#2|)) (-15 -3537 (|#2| |#2|)) (-15 -3550 (|#2| |#2|)) (-15 -3562 (|#2| |#2|)) (-15 -3574 (|#2| |#2|)) (-15 -3586 (|#2| |#2|)) (-15 -3599 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -3623 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -1972 (|#2| |#2|)) (-15 -2722 (|#2|)) (-15 -1380 ((-112) (-115))) (-15 -1401 ((-115) (-115))) (-15 -3311 (|#2|)) (-15 -3333 (|#2|)) (-15 -1766 (|#2| |#2|)) (-15 -2232 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1826 (|#2| |#2|)) (-15 -1990 (|#2| |#2|)) (-15 -2083 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -2114 (|#2| |#2|)) (-15 -1699 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -2179 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -1900 (|#2| |#2|)) (-15 -4401 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -3000 (|#2| |#2|)) (-15 -2129 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -3535 (|#2| |#2|)) (-15 -2008 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2827 ((-112) |#2|))) (-568) (-13 (-442 |#1|) (-1023))) (T -285)) -((-2827 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-442 *4) (-1023))))) (-2008 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-442 *4) (-1023))) (-4 *4 (-568)) (-5 *1 (-285 *4 *2)))) (-3535 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2129 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3000 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1702 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4401 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1900 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2179 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2945 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1699 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2114 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2407 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1850 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2083 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1990 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1826 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-1766 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3333 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-3311 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) (-4 *4 (-13 (-442 *3) (-1023))))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023))))) (-2722 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3623 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3586 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3574 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3562 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3537 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3523 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3424 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-3412 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2608 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023))))) (-2156 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023)))))) -(-10 -7 (-15 -2156 (|#2| |#2|)) (-15 -2608 (|#2| |#2|)) (-15 -3412 (|#2| |#2|)) (-15 -3424 (|#2| |#2|)) (-15 -3435 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -3461 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3510 (|#2| |#2|)) (-15 -3523 (|#2| |#2|)) (-15 -3537 (|#2| |#2|)) (-15 -3550 (|#2| |#2|)) (-15 -3562 (|#2| |#2|)) (-15 -3574 (|#2| |#2|)) (-15 -3586 (|#2| |#2|)) (-15 -3599 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -3623 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -1972 (|#2| |#2|)) (-15 -2722 (|#2|)) (-15 -1380 ((-112) (-115))) (-15 -1401 ((-115) (-115))) (-15 -3311 (|#2|)) (-15 -3333 (|#2|)) (-15 -1766 (|#2| |#2|)) (-15 -2232 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1826 (|#2| |#2|)) (-15 -1990 (|#2| |#2|)) (-15 -2083 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -2114 (|#2| |#2|)) (-15 -1699 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -2179 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -1900 (|#2| |#2|)) (-15 -4401 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -3000 (|#2| |#2|)) (-15 -2129 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -3535 (|#2| |#2|)) (-15 -2008 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2827 ((-112) |#2|))) -((-1902 (((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1197)) 151)) (-4197 ((|#2| (-419 (-576)) |#2|) 49)) (-1682 ((|#2| |#2| (-624 |#2|)) 144)) (-1337 (((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1197)) 143)) (-3037 ((|#2| |#2| (-1197)) 20) ((|#2| |#2|) 23)) (-2874 ((|#2| |#2| (-1197)) 157) ((|#2| |#2|) 155))) -(((-286 |#1| |#2|) (-10 -7 (-15 -2874 (|#2| |#2|)) (-15 -2874 (|#2| |#2| (-1197))) (-15 -1337 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1197))) (-15 -3037 (|#2| |#2|)) (-15 -3037 (|#2| |#2| (-1197))) (-15 -1902 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1197))) (-15 -1682 (|#2| |#2| (-624 |#2|))) (-15 -4197 (|#2| (-419 (-576)) |#2|))) (-13 (-568) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -286)) -((-4197 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-1682 (*1 *2 *2 *3) (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)))) (-1902 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1197)) (-4 *2 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *5 *2)))) (-3037 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-3037 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-1337 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) (|:| |vals| (-656 *3)))) (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2874 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-2874 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) -(-10 -7 (-15 -2874 (|#2| |#2|)) (-15 -2874 (|#2| |#2| (-1197))) (-15 -1337 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1197))) (-15 -3037 (|#2| |#2|)) (-15 -3037 (|#2| |#2| (-1197))) (-15 -1902 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1197))) (-15 -1682 (|#2| |#2| (-624 |#2|))) (-15 -4197 (|#2| (-419 (-576)) |#2|))) -((-3747 (((-3 |#3| "failed") |#3|) 120)) (-3586 ((|#3| |#3|) 142)) (-3203 (((-3 |#3| "failed") |#3|) 89)) (-3435 ((|#3| |#3|) 132)) (-2037 (((-3 |#3| "failed") |#3|) 65)) (-3562 ((|#3| |#3|) 140)) (-2953 (((-3 |#3| "failed") |#3|) 53)) (-3412 ((|#3| |#3|) 130)) (-3466 (((-3 |#3| "failed") |#3|) 122)) (-3612 ((|#3| |#3|) 144)) (-3078 (((-3 |#3| "failed") |#3|) 91)) (-3461 ((|#3| |#3|) 134)) (-3226 (((-3 |#3| "failed") |#3| (-783)) 41)) (-3925 (((-3 |#3| "failed") |#3|) 81)) (-2608 ((|#3| |#3|) 129)) (-2534 (((-3 |#3| "failed") |#3|) 51)) (-2156 ((|#3| |#3|) 128)) (-3875 (((-3 |#3| "failed") |#3|) 123)) (-3623 ((|#3| |#3|) 145)) (-3808 (((-3 |#3| "failed") |#3|) 92)) (-3474 ((|#3| |#3|) 135)) (-1596 (((-3 |#3| "failed") |#3|) 121)) (-3599 ((|#3| |#3|) 143)) (-2557 (((-3 |#3| "failed") |#3|) 90)) (-3448 ((|#3| |#3|) 133)) (-2647 (((-3 |#3| "failed") |#3|) 67)) (-3574 ((|#3| |#3|) 141)) (-1664 (((-3 |#3| "failed") |#3|) 55)) (-3424 ((|#3| |#3|) 131)) (-3640 (((-3 |#3| "failed") |#3|) 73)) (-3653 ((|#3| |#3|) 148)) (-1642 (((-3 |#3| "failed") |#3|) 114)) (-3510 ((|#3| |#3|) 152)) (-3366 (((-3 |#3| "failed") |#3|) 69)) (-3632 ((|#3| |#3|) 146)) (-2612 (((-3 |#3| "failed") |#3|) 57)) (-3487 ((|#3| |#3|) 136)) (-3064 (((-3 |#3| "failed") |#3|) 77)) (-3673 ((|#3| |#3|) 150)) (-4044 (((-3 |#3| "failed") |#3|) 61)) (-3537 ((|#3| |#3|) 138)) (-3180 (((-3 |#3| "failed") |#3|) 79)) (-1972 ((|#3| |#3|) 151)) (-2892 (((-3 |#3| "failed") |#3|) 63)) (-3550 ((|#3| |#3|) 139)) (-1483 (((-3 |#3| "failed") |#3|) 75)) (-3664 ((|#3| |#3|) 149)) (-1969 (((-3 |#3| "failed") |#3|) 117)) (-3523 ((|#3| |#3|) 153)) (-2893 (((-3 |#3| "failed") |#3|) 71)) (-3642 ((|#3| |#3|) 147)) (-2794 (((-3 |#3| "failed") |#3|) 59)) (-3498 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-419 (-576))) 47 (|has| |#1| (-374))))) -(((-287 |#1| |#2| |#3|) (-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2156 (|#3| |#3|)) (-15 -2608 (|#3| |#3|)) (-15 -3412 (|#3| |#3|)) (-15 -3424 (|#3| |#3|)) (-15 -3435 (|#3| |#3|)) (-15 -3448 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3510 (|#3| |#3|)) (-15 -3523 (|#3| |#3|)) (-15 -3537 (|#3| |#3|)) (-15 -3550 (|#3| |#3|)) (-15 -3562 (|#3| |#3|)) (-15 -3574 (|#3| |#3|)) (-15 -3586 (|#3| |#3|)) (-15 -3599 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3623 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3653 (|#3| |#3|)) (-15 -3664 (|#3| |#3|)) (-15 -3673 (|#3| |#3|)) (-15 -1972 (|#3| |#3|)))) (-38 (-419 (-576))) (-1279 |#1|) (-1250 |#1| |#2|)) (T -287)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1279 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1250 *4 *5)))) (-2156 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-2608 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3412 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3424 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3523 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3537 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3562 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3574 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3586 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3623 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4))))) -(-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2156 (|#3| |#3|)) (-15 -2608 (|#3| |#3|)) (-15 -3412 (|#3| |#3|)) (-15 -3424 (|#3| |#3|)) (-15 -3435 (|#3| |#3|)) (-15 -3448 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3510 (|#3| |#3|)) (-15 -3523 (|#3| |#3|)) (-15 -3537 (|#3| |#3|)) (-15 -3550 (|#3| |#3|)) (-15 -3562 (|#3| |#3|)) (-15 -3574 (|#3| |#3|)) (-15 -3586 (|#3| |#3|)) (-15 -3599 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3623 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3653 (|#3| |#3|)) (-15 -3664 (|#3| |#3|)) (-15 -3673 (|#3| |#3|)) (-15 -1972 (|#3| |#3|)))) -((-3747 (((-3 |#3| "failed") |#3|) 70)) (-3586 ((|#3| |#3|) 137)) (-3203 (((-3 |#3| "failed") |#3|) 54)) (-3435 ((|#3| |#3|) 125)) (-2037 (((-3 |#3| "failed") |#3|) 66)) (-3562 ((|#3| |#3|) 135)) (-2953 (((-3 |#3| "failed") |#3|) 50)) (-3412 ((|#3| |#3|) 123)) (-3466 (((-3 |#3| "failed") |#3|) 74)) (-3612 ((|#3| |#3|) 139)) (-3078 (((-3 |#3| "failed") |#3|) 58)) (-3461 ((|#3| |#3|) 127)) (-3226 (((-3 |#3| "failed") |#3| (-783)) 38)) (-3925 (((-3 |#3| "failed") |#3|) 48)) (-2608 ((|#3| |#3|) 111)) (-2534 (((-3 |#3| "failed") |#3|) 46)) (-2156 ((|#3| |#3|) 122)) (-3875 (((-3 |#3| "failed") |#3|) 76)) (-3623 ((|#3| |#3|) 140)) (-3808 (((-3 |#3| "failed") |#3|) 60)) (-3474 ((|#3| |#3|) 128)) (-1596 (((-3 |#3| "failed") |#3|) 72)) (-3599 ((|#3| |#3|) 138)) (-2557 (((-3 |#3| "failed") |#3|) 56)) (-3448 ((|#3| |#3|) 126)) (-2647 (((-3 |#3| "failed") |#3|) 68)) (-3574 ((|#3| |#3|) 136)) (-1664 (((-3 |#3| "failed") |#3|) 52)) (-3424 ((|#3| |#3|) 124)) (-3640 (((-3 |#3| "failed") |#3|) 78)) (-3653 ((|#3| |#3|) 143)) (-1642 (((-3 |#3| "failed") |#3|) 62)) (-3510 ((|#3| |#3|) 131)) (-3366 (((-3 |#3| "failed") |#3|) 112)) (-3632 ((|#3| |#3|) 141)) (-2612 (((-3 |#3| "failed") |#3|) 100)) (-3487 ((|#3| |#3|) 129)) (-3064 (((-3 |#3| "failed") |#3|) 116)) (-3673 ((|#3| |#3|) 145)) (-4044 (((-3 |#3| "failed") |#3|) 107)) (-3537 ((|#3| |#3|) 133)) (-3180 (((-3 |#3| "failed") |#3|) 117)) (-1972 ((|#3| |#3|) 146)) (-2892 (((-3 |#3| "failed") |#3|) 109)) (-3550 ((|#3| |#3|) 134)) (-1483 (((-3 |#3| "failed") |#3|) 80)) (-3664 ((|#3| |#3|) 144)) (-1969 (((-3 |#3| "failed") |#3|) 64)) (-3523 ((|#3| |#3|) 132)) (-2893 (((-3 |#3| "failed") |#3|) 113)) (-3642 ((|#3| |#3|) 142)) (-2794 (((-3 |#3| "failed") |#3|) 103)) (-3498 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-419 (-576))) 44 (|has| |#1| (-374))))) -(((-288 |#1| |#2| |#3| |#4|) (-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2156 (|#3| |#3|)) (-15 -2608 (|#3| |#3|)) (-15 -3412 (|#3| |#3|)) (-15 -3424 (|#3| |#3|)) (-15 -3435 (|#3| |#3|)) (-15 -3448 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3510 (|#3| |#3|)) (-15 -3523 (|#3| |#3|)) (-15 -3537 (|#3| |#3|)) (-15 -3550 (|#3| |#3|)) (-15 -3562 (|#3| |#3|)) (-15 -3574 (|#3| |#3|)) (-15 -3586 (|#3| |#3|)) (-15 -3599 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3623 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3653 (|#3| |#3|)) (-15 -3664 (|#3| |#3|)) (-15 -3673 (|#3| |#3|)) (-15 -1972 (|#3| |#3|)))) (-38 (-419 (-576))) (-1248 |#1|) (-1271 |#1| |#2|) (-1004 |#2|)) (T -288)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1248 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1271 *4 *5)) (-4 *6 (-1004 *5)))) (-2156 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-2608 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3412 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3424 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3523 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3537 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3562 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3574 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3586 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3623 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4))))) -(-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2156 (|#3| |#3|)) (-15 -2608 (|#3| |#3|)) (-15 -3412 (|#3| |#3|)) (-15 -3424 (|#3| |#3|)) (-15 -3435 (|#3| |#3|)) (-15 -3448 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3510 (|#3| |#3|)) (-15 -3523 (|#3| |#3|)) (-15 -3537 (|#3| |#3|)) (-15 -3550 (|#3| |#3|)) (-15 -3562 (|#3| |#3|)) (-15 -3574 (|#3| |#3|)) (-15 -3586 (|#3| |#3|)) (-15 -3599 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3623 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3642 (|#3| |#3|)) (-15 -3653 (|#3| |#3|)) (-15 -3664 (|#3| |#3|)) (-15 -3673 (|#3| |#3|)) (-15 -1972 (|#3| |#3|)))) -((-3665 (((-112) $) 20)) (-1891 (((-1202) $) 7)) (-2921 (((-3 (-518) "failed") $) 14)) (-3253 (((-3 (-656 $) "failed") $) NIL)) (-2958 (((-3 (-518) "failed") $) 21)) (-3334 (((-3 (-1125) "failed") $) 18)) (-1505 (((-112) $) 16)) (-4113 (((-876) $) NIL)) (-3594 (((-112) $) 9))) -(((-289) (-13 (-625 (-876)) (-10 -8 (-15 -1891 ((-1202) $)) (-15 -1505 ((-112) $)) (-15 -3334 ((-3 (-1125) "failed") $)) (-15 -3665 ((-112) $)) (-15 -2958 ((-3 (-518) "failed") $)) (-15 -3594 ((-112) $)) (-15 -2921 ((-3 (-518) "failed") $)) (-15 -3253 ((-3 (-656 $) "failed") $))))) (T -289)) -((-1891 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-289)))) (-1505 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-3334 (*1 *2 *1) (|partial| -12 (-5 *2 (-1125)) (-5 *1 (-289)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2958 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2921 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-3253 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289))))) -(-13 (-625 (-876)) (-10 -8 (-15 -1891 ((-1202) $)) (-15 -1505 ((-112) $)) (-15 -3334 ((-3 (-1125) "failed") $)) (-15 -3665 ((-112) $)) (-15 -2958 ((-3 (-518) "failed") $)) (-15 -3594 ((-112) $)) (-15 -2921 ((-3 (-518) "failed") $)) (-15 -3253 ((-3 (-656 $) "failed") $)))) -((-3755 (((-609) $) 10)) (-4097 (((-597) $) 8)) (-4274 (((-301) $) 12)) (-1532 (($ (-597) (-609) (-301)) NIL)) (-4113 (((-876) $) 19))) -(((-290) (-13 (-625 (-876)) (-10 -8 (-15 -1532 ($ (-597) (-609) (-301))) (-15 -4097 ((-597) $)) (-15 -3755 ((-609) $)) (-15 -4274 ((-301) $))))) (T -290)) -((-1532 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) -(-13 (-625 (-876)) (-10 -8 (-15 -1532 ($ (-597) (-609) (-301))) (-15 -4097 ((-597) $)) (-15 -3755 ((-609) $)) (-15 -4274 ((-301) $)))) -((-3603 (($ (-1 (-112) |#2|) $) 24)) (-3841 (($ $) 38)) (-3872 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2825 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2745 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-3386 (($ |#2| $ (-576)) 20) (($ $ $ (-576)) 22)) (-2335 (($ $ (-576)) 11) (($ $ (-1255 (-576))) 14)) (-4022 (($ $ |#2|) 32) (($ $ $) NIL)) (-2767 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-656 $)) NIL))) -(((-291 |#1| |#2|) (-10 -8 (-15 -2745 (|#1| |#1| |#1|)) (-15 -3872 (|#1| |#2| |#1|)) (-15 -2745 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4022 (|#1| |#1| |#1|)) (-15 -4022 (|#1| |#1| |#2|)) (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -2335 (|#1| |#1| (-1255 (-576)))) (-15 -2335 (|#1| |#1| (-576))) (-15 -2767 (|#1| (-656 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -2825 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3603 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2825 (|#1| |#2| |#1|)) (-15 -3841 (|#1| |#1|))) (-292 |#2|) (-1238)) (T -291)) -NIL -(-10 -8 (-15 -2745 (|#1| |#1| |#1|)) (-15 -3872 (|#1| |#2| |#1|)) (-15 -2745 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4022 (|#1| |#1| |#1|)) (-15 -4022 (|#1| |#1| |#2|)) (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -2335 (|#1| |#1| (-1255 (-576)))) (-15 -2335 (|#1| |#1| (-576))) (-15 -2767 (|#1| (-656 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -2825 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3603 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2825 (|#1| |#2| |#1|)) (-15 -3841 (|#1| |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3657 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) 8)) (-4268 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-1954 (($ (-1 (-112) |#1|) $) 88)) (-3603 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-1942 (($ $) 86 (|has| |#1| (-1121)))) (-3841 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3872 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1121)))) (-2825 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) 52)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1991 (($ (-783) |#1|) 70)) (-3215 (((-112) $ (-783)) 9)) (-1605 (((-576) $) 44 (|has| (-576) (-861)))) (-2745 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1829 (((-576) $) 45 (|has| (-576) (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3695 (($ |#1| $ (-576)) 91) (($ $ $ (-576)) 90)) (-3386 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2863 (((-656 (-576)) $) 47)) (-1389 (((-112) (-576) $) 48)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1755 ((|#1| $) 43 (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4267 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) 49)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-2603 (($ $ (-576)) 94) (($ $ (-1255 (-576))) 93)) (-2335 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-1556 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 72)) (-4022 (($ $ |#1|) 96) (($ $ $) 95)) (-2767 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-292 |#1|) (-141) (-1238)) (T -292)) -((-4022 (*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) (-4022 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) (-2603 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-2603 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-3872 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-3695 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1238)))) (-3695 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-2745 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-1954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) (-3872 (*1 *1 *2 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) (-1942 (*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) (-2745 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-861))))) -(-13 (-663 |t#1|) (-10 -8 (-6 -4465) (-15 -4022 ($ $ |t#1|)) (-15 -4022 ($ $ $)) (-15 -2603 ($ $ (-576))) (-15 -2603 ($ $ (-1255 (-576)))) (-15 -3872 ($ (-1 (-112) |t#1|) $)) (-15 -3695 ($ |t#1| $ (-576))) (-15 -3695 ($ $ $ (-576))) (-15 -2745 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1954 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -3872 ($ |t#1| $)) (-15 -1942 ($ $))) |%noBranch|) (IF (|has| |t#1| (-861)) (-15 -2745 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) (-2098 (*1 *1 *1) (-4 *1 (-248)))) +(-13 (-300) (-38 (-419 (-576))) (-10 -8 (-15 ** ($ $ (-576))) (-15 -2098 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-300) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-730 #0#) . T) ((-739) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3037 ((|#1| $) 49)) (-4425 (($ $) 58)) (-4284 (((-112) $ (-784)) 8)) (-1439 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-2687 (($ $ $) 54 (|has| $ (-6 -4467)))) (-2834 (($ $ $) 53 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-2515 (($) 7 T CONST)) (-4255 (($ $) 57)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) 51)) (-4257 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-4279 (($ $) 56)) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-2397 (((-657 |#1|) $) 46)) (-1743 (((-112) $) 50)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3921 ((|#1| $) 60)) (-2626 (($ $) 59)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ "value") 48)) (-3064 (((-576) $ $) 45)) (-4392 (((-112) $) 47)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-2752 (($ $ $) 55 (|has| $ (-6 -4467)))) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) 52)) (-3631 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-249 |#1|) (-141) (-1239)) (T -249)) +((-3921 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-2626 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-4425 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-4255 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-4279 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-2752 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-2687 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-2834 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-249 *2)) (-4 *2 (-1239))))) +(-13 (-1032 |t#1|) (-10 -8 (-15 -3921 (|t#1| $)) (-15 -2626 ($ $)) (-15 -4425 ($ $)) (-15 -4255 ($ $)) (-15 -4279 ($ $)) (IF (|has| $ (-6 -4467)) (PROGN (-15 -2752 ($ $ $)) (-15 -2687 ($ $ $)) (-15 -2834 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1032 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3037 ((|#1| $) NIL)) (-2860 ((|#1| $) NIL)) (-4425 (($ $) NIL)) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3342 (($ $ (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1698 (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-1832 (($ $) 10 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-1439 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-3509 (($ $ $) NIL (|has| $ (-6 -4467)))) (-3554 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-1629 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "rest" $) NIL (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-3726 (($ (-1 (-112) |#1|) $) NIL)) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2849 ((|#1| $) NIL)) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-3542 (($ $) NIL) (($ $ (-784)) NIL)) (-3588 (($ $) NIL (|has| |#1| (-1122)))) (-1620 (($ $) 7 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1920 (($ |#1| $) NIL (|has| |#1| (-1122))) (($ (-1 (-112) |#1|) $) NIL)) (-3901 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1810 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) NIL)) (-2872 (((-112) $) NIL)) (-3619 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122))) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) (-1 (-112) |#1|) $) NIL)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) NIL)) (-4257 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4096 (($ (-784) |#1|) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-1631 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1661 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1672 (($ |#1|) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-2397 (((-657 |#1|) $) NIL)) (-1743 (((-112) $) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3921 ((|#1| $) NIL) (($ $ (-784)) NIL)) (-2701 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2225 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3528 ((|#1| $) NIL) (($ $ (-784)) NIL)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1495 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-1533 (((-112) $) NIL)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1256 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-784) $ "count") 16)) (-3064 (((-576) $ $) NIL)) (-2683 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-3395 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-4285 (($ (-657 |#1|)) 22)) (-4392 (((-112) $) NIL)) (-3645 (($ $) NIL)) (-2463 (($ $) NIL (|has| $ (-6 -4467)))) (-2933 (((-784) $) NIL)) (-1961 (($ $) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) NIL)) (-2752 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1637 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-657 $)) NIL) (($ $ |#1|) NIL)) (-3515 (($ (-657 |#1|)) 17) (((-657 |#1|) $) 18) (((-877) $) 21 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) NIL)) (-3631 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3437 (((-784) $) 14 (|has| $ (-6 -4466))))) +(((-250 |#1|) (-13 (-679 |#1|) (-502 (-657 |#1|)) (-10 -8 (-15 -4285 ($ (-657 |#1|))) (-15 -2780 ($ $ "unique")) (-15 -2780 ($ $ "sort")) (-15 -2780 ((-784) $ "count")))) (-862)) (T -250)) +((-4285 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-250 *3)))) (-2780 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-862)))) (-2780 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-862)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-784)) (-5 *1 (-250 *4)) (-4 *4 (-862))))) +(-13 (-679 |#1|) (-502 (-657 |#1|)) (-10 -8 (-15 -4285 ($ (-657 |#1|))) (-15 -2780 ($ $ "unique")) (-15 -2780 ($ $ "sort")) (-15 -2780 ((-784) $ "count")))) +((-1337 (((-3 (-784) "failed") |#1| |#1| (-784)) 40))) +(((-251 |#1|) (-10 -7 (-15 -1337 ((-3 (-784) "failed") |#1| |#1| (-784)))) (-13 (-739) (-379) (-10 -7 (-15 ** (|#1| |#1| (-576)))))) (T -251)) +((-1337 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-784)) (-4 *3 (-13 (-739) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) (-5 *1 (-251 *3))))) +(-10 -7 (-15 -1337 ((-3 (-784) "failed") |#1| |#1| (-784)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-2209 (($ $) 54 (|has| |#1| (-237))) (($ $ (-784)) 52 (|has| |#1| (-237))) (($ $ (-1198)) 50 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 48 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 47 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 46 (|has| |#1| (-920 (-1198)))) (($ $ (-1 |#1| |#1|) (-784)) 40) (($ $ (-1 |#1| |#1|)) 39)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2066 (($ $) 53 (|has| |#1| (-237))) (($ $ (-784)) 51 (|has| |#1| (-237))) (($ $ (-1198)) 49 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 45 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 44 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 43 (|has| |#1| (-920 (-1198)))) (($ $ (-1 |#1| |#1|) (-784)) 42) (($ $ (-1 |#1| |#1|)) 41)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-252 |#1|) (-141) (-1071)) (T -252)) +NIL +(-13 (-111 |t#1| |t#1|) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-237)) (-6 (-235 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-920 (-1198))) (-6 (-917 |t#1| (-1198))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-234 $) |has| |#1| (-237)) ((-235 |#1|) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-272 |#1|) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) -2748 (-12 (|has| |#1| (-174)) (|has| |#1| (-920 (-1198)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-730 |#1|) -2748 (-12 (|has| |#1| (-174)) (|has| |#1| (-920 (-1198)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-912 $ #0=(-1198)) |has| |#1| (-920 (-1198))) ((-917 |#1| (-1198)) |has| |#1| (-920 (-1198))) ((-920 #0#) |has| |#1| (-920 (-1198))) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1998 (((-657 (-879 |#1|)) $) NIL)) (-1825 (((-1194 $) $ (-879 |#1|)) NIL) (((-1194 |#2|) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2361 (($ $) NIL (|has| |#2| (-568)))) (-3286 (((-112) $) NIL (|has| |#2| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 (-879 |#1|))) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3188 (($ $) NIL (|has| |#2| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-879 |#1|) "failed") $) NIL)) (-2830 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-879 |#1|) $) NIL)) (-4351 (($ $ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-4377 (($ $ (-657 (-576))) NIL)) (-2165 (($ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#2| (-929)))) (-2643 (($ $ |#2| (-245 (-3437 |#1|) (-784)) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-1986 (($ (-1194 |#2|) (-879 |#1|)) NIL) (($ (-1194 $) (-879 |#1|)) NIL)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#2| (-245 (-3437 |#1|) (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ (-879 |#1|)) NIL)) (-4219 (((-245 (-3437 |#1|) (-784)) $) NIL) (((-784) $ (-879 |#1|)) NIL) (((-657 (-784)) $ (-657 (-879 |#1|))) NIL)) (-2308 (($ (-1 (-245 (-3437 |#1|) (-784)) (-245 (-3437 |#1|) (-784))) $) NIL)) (-4071 (($ (-1 |#2| |#2|) $) NIL)) (-2502 (((-3 (-879 |#1|) "failed") $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#2| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1708 (((-1180) $) NIL)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| (-879 |#1|)) (|:| -2128 (-784))) "failed") $) NIL)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) NIL)) (-2118 ((|#2| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#2| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#2| (-929)))) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-879 |#1|) |#2|) NIL) (($ $ (-657 (-879 |#1|)) (-657 |#2|)) NIL) (($ $ (-879 |#1|) $) NIL) (($ $ (-657 (-879 |#1|)) (-657 $)) NIL)) (-1465 (($ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-2209 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-4265 (((-245 (-3437 |#1|) (-784)) $) NIL) (((-784) $ (-879 |#1|)) NIL) (((-657 (-784)) $ (-657 (-879 |#1|))) NIL)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-879 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3614 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-879 |#1|)) NIL) (($ (-419 (-576))) NIL (-2748 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3987 (((-657 |#2|) $) NIL)) (-2498 ((|#2| $ (-245 (-3437 |#1|) (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#2| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#2| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-253 |#1| |#2|) (-13 (-969 |#2| (-245 (-3437 |#1|) (-784)) (-879 |#1|)) (-10 -8 (-15 -4377 ($ $ (-657 (-576)))))) (-657 (-1198)) (-1071)) (T -253)) +((-4377 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-253 *3 *4)) (-14 *3 (-657 (-1198))) (-4 *4 (-1071))))) +(-13 (-969 |#2| (-245 (-3437 |#1|) (-784)) (-879 |#1|)) (-10 -8 (-15 -4377 ($ $ (-657 (-576)))))) +((-3423 (((-112) $ $) NIL)) (-2595 (((-1294) $) 17)) (-3584 (((-185 (-255)) $) 11)) (-2867 (($ (-185 (-255))) 12)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2577 (((-255) $) 7)) (-3515 (((-877) $) 9)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 15))) +(((-254) (-13 (-1122) (-10 -8 (-15 -2577 ((-255) $)) (-15 -3584 ((-185 (-255)) $)) (-15 -2867 ($ (-185 (-255)))) (-15 -2595 ((-1294) $))))) (T -254)) +((-2577 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2867 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-254))))) +(-13 (-1122) (-10 -8 (-15 -2577 ((-255) $)) (-15 -3584 ((-185 (-255)) $)) (-15 -2867 ($ (-185 (-255)))) (-15 -2595 ((-1294) $)))) +((-3423 (((-112) $ $) NIL)) (-3219 (((-657 (-880)) $) NIL)) (-2634 (((-518) $) NIL)) (-1708 (((-1180) $) NIL)) (-1772 (((-188) $) NIL)) (-4216 (((-112) $ (-518)) NIL)) (-1460 (((-1142) $) NIL)) (-3759 (((-343) $) 7)) (-2172 (((-657 (-112)) $) NIL)) (-3515 (((-877) $) NIL) (((-189) $) 8)) (-4166 (((-112) $ $) NIL)) (-1853 (((-55) $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-255) (-13 (-187) (-625 (-189)) (-10 -8 (-15 -3759 ((-343) $))))) (T -255)) +((-3759 (*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) +(-13 (-187) (-625 (-189)) (-10 -8 (-15 -3759 ((-343) $)))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2780 (((-1203) $ (-784)) 13)) (-3515 (((-877) $) 20)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 16)) (-3437 (((-784) $) 9))) +(((-256) (-13 (-1122) (-296 (-784) (-1203)) (-10 -8 (-15 -3437 ((-784) $))))) (T -256)) +((-3437 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-256))))) +(-13 (-1122) (-296 (-784) (-1203)) (-10 -8 (-15 -3437 ((-784) $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1375 (($ (-941)) NIL (|has| |#4| (-1071)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1323 (($ $ $) NIL (|has| |#4| (-806)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-2148 (((-784)) NIL (|has| |#4| (-379)))) (-3719 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1122))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#4| (-1060 (-576))) (|has| |#4| (-1122)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#4| (-1060 (-419 (-576)))) (|has| |#4| (-1122))))) (-2830 ((|#4| $) NIL (|has| |#4| (-1122))) (((-576) $) NIL (-12 (|has| |#4| (-1060 (-576))) (|has| |#4| (-1122)))) (((-419 (-576)) $) NIL (-12 (|has| |#4| (-1060 (-419 (-576)))) (|has| |#4| (-1122))))) (-3439 (((-2 (|:| -3962 (-702 |#4|)) (|:| |vec| (-1289 |#4|))) (-702 $) (-1289 $)) NIL (|has| |#4| (-1071))) (((-702 |#4|) (-702 $)) NIL (|has| |#4| (-1071))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#4| (-652 (-576))) (|has| |#4| (-1071)))) (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#4| (-652 (-576))) (|has| |#4| (-1071))))) (-3969 (((-3 $ "failed") $) NIL (|has| |#4| (-1071)))) (-1876 (($) NIL (|has| |#4| (-379)))) (-1810 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#4| $ (-576)) NIL)) (-1448 (((-657 |#4|) $) NIL (|has| $ (-6 -4466)))) (-3994 (((-112) $) NIL (|has| |#4| (-1071)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#4| (-862)))) (-3855 (((-657 |#4|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#4| (-862)))) (-1799 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#4| |#4|) $) NIL)) (-2327 (((-941) $) NIL (|has| |#4| (-379)))) (-4326 (((-112) $ (-784)) NIL)) (-1993 (((-2 (|:| -3962 (-702 |#4|)) (|:| |vec| (-1289 |#4|))) (-1289 $) $) NIL (|has| |#4| (-1071))) (((-702 |#4|) (-1289 $)) NIL (|has| |#4| (-1071))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#4| (-652 (-576))) (|has| |#4| (-1071)))) (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#4| (-652 (-576))) (|has| |#4| (-1071))))) (-1708 (((-1180) $) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-3146 (($ (-941)) NIL (|has| |#4| (-379)))) (-1460 (((-1142) $) NIL)) (-3528 ((|#4| $) NIL (|has| (-576) (-862)))) (-1495 (($ $ |#4|) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 |#4|) (-657 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-3585 (((-657 |#4|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#4| $ (-576) |#4|) NIL) ((|#4| $ (-576)) 12)) (-4224 ((|#4| $ $) NIL (|has| |#4| (-1071)))) (-1902 (($ (-1289 |#4|)) NIL)) (-1451 (((-135)) NIL (|has| |#4| (-374)))) (-2209 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1071))) (($ $ (-1 |#4| |#4|) (-784)) NIL (|has| |#4| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-784)) NIL (-2748 (-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1071))))) (($ $) NIL (-2748 (-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1071)))))) (-1469 (((-784) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466))) (((-784) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-1289 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1122))) (((-877) $) NIL) (($ (-576)) NIL (-2748 (-12 (|has| |#4| (-1060 (-576))) (|has| |#4| (-1122))) (|has| |#4| (-1071)))) (($ (-419 (-576))) NIL (-12 (|has| |#4| (-1060 (-419 (-576)))) (|has| |#4| (-1122))))) (-3845 (((-784)) NIL (|has| |#4| (-1071)) CONST)) (-4166 (((-112) $ $) NIL)) (-3258 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL (|has| |#4| (-1071)) CONST)) (-2066 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1071))) (($ $ (-1 |#4| |#4|) (-784)) NIL (|has| |#4| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-784)) NIL (-2748 (-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1071))))) (($ $) NIL (-2748 (-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1071)))))) (-2938 (((-112) $ $) NIL (|has| |#4| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#4| (-862)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| |#4| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#4| (-862)))) (-2995 (($ $ |#4|) NIL (|has| |#4| (-374)))) (-2982 (($ $ $) NIL) (($ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-784)) NIL (|has| |#4| (-1071))) (($ $ (-941)) NIL (|has| |#4| (-1071)))) (* (($ |#2| $) 14) (($ (-576) $) NIL) (($ (-784) $) NIL) (($ (-941) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-739))) (($ |#4| $) NIL (|has| |#4| (-739))) (($ $ $) NIL (|has| |#4| (-1071)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-257 |#1| |#2| |#3| |#4|) (-13 (-243 |#1| |#4|) (-661 |#2|) (-661 |#3|)) (-941) (-1071) (-1145 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-661 |#2|)) (T -257)) +NIL +(-13 (-243 |#1| |#4|) (-661 |#2|) (-661 |#3|)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1375 (($ (-941)) NIL (|has| |#3| (-1071)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1323 (($ $ $) NIL (|has| |#3| (-806)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-2148 (((-784)) NIL (|has| |#3| (-379)))) (-3719 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1122))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122))))) (-2830 ((|#3| $) NIL (|has| |#3| (-1122))) (((-576) $) NIL (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122))))) (-3439 (((-2 (|:| -3962 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 $) (-1289 $)) NIL (|has| |#3| (-1071))) (((-702 |#3|) (-702 $)) NIL (|has| |#3| (-1071))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071))))) (-3969 (((-3 $ "failed") $) NIL (|has| |#3| (-1071)))) (-1876 (($) NIL (|has| |#3| (-379)))) (-1810 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#3| $ (-576)) NIL)) (-1448 (((-657 |#3|) $) NIL (|has| $ (-6 -4466)))) (-3994 (((-112) $) NIL (|has| |#3| (-1071)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#3| (-862)))) (-3855 (((-657 |#3|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#3| (-862)))) (-1799 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#3| |#3|) $) NIL)) (-2327 (((-941) $) NIL (|has| |#3| (-379)))) (-4326 (((-112) $ (-784)) NIL)) (-1993 (((-2 (|:| -3962 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-1289 $) $) NIL (|has| |#3| (-1071))) (((-702 |#3|) (-1289 $)) NIL (|has| |#3| (-1071))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071))))) (-1708 (((-1180) $) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-3146 (($ (-941)) NIL (|has| |#3| (-379)))) (-1460 (((-1142) $) NIL)) (-3528 ((|#3| $) NIL (|has| (-576) (-862)))) (-1495 (($ $ |#3|) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-657 |#3|) (-657 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-3585 (((-657 |#3|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) 11)) (-4224 ((|#3| $ $) NIL (|has| |#3| (-1071)))) (-1902 (($ (-1289 |#3|)) NIL)) (-1451 (((-135)) NIL (|has| |#3| (-374)))) (-2209 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1071))) (($ $ (-1 |#3| |#3|) (-784)) NIL (|has| |#3| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-784)) NIL (-2748 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071))))) (($ $) NIL (-2748 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))))) (-1469 (((-784) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466))) (((-784) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-1289 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1122))) (((-877) $) NIL) (($ (-576)) NIL (-2748 (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122))) (|has| |#3| (-1071)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122))))) (-3845 (((-784)) NIL (|has| |#3| (-1071)) CONST)) (-4166 (((-112) $ $) NIL)) (-3258 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL (|has| |#3| (-1071)) CONST)) (-2066 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1071))) (($ $ (-1 |#3| |#3|) (-784)) NIL (|has| |#3| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-784)) NIL (-2748 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071))))) (($ $) NIL (-2748 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))))) (-2938 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2995 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-2982 (($ $ $) NIL) (($ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-784)) NIL (|has| |#3| (-1071))) (($ $ (-941)) NIL (|has| |#3| (-1071)))) (* (($ |#2| $) 13) (($ (-576) $) NIL) (($ (-784) $) NIL) (($ (-941) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-739))) (($ |#3| $) NIL (|has| |#3| (-739))) (($ $ $) NIL (|has| |#3| (-1071)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-258 |#1| |#2| |#3|) (-13 (-243 |#1| |#3|) (-661 |#2|)) (-784) (-1071) (-661 |#2|)) (T -258)) +NIL +(-13 (-243 |#1| |#3|) (-661 |#2|)) +((-3800 (((-657 (-784)) $) 56) (((-657 (-784)) $ |#3|) 59)) (-3074 (((-784) $) 58) (((-784) $ |#3|) 61)) (-2549 (($ $) 76)) (-1593 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2650 (((-784) $ |#3|) 43) (((-784) $) 38)) (-3359 (((-1 $ (-784)) |#3|) 15) (((-1 $ (-784)) $) 88)) (-1582 ((|#4| $) 69)) (-4298 (((-112) $) 67)) (-4268 (($ $) 75)) (-3205 (($ $ (-657 (-304 $))) 111) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-657 |#4|) (-657 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-657 |#4|) (-657 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-657 |#3|) (-657 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-657 |#3|) (-657 |#2|)) 97)) (-2209 (($ $ (-657 |#4|) (-657 (-784))) NIL) (($ $ |#4| (-784)) NIL) (($ $ (-657 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $) NIL) (($ $ (-784)) NIL)) (-2297 (((-657 |#3|) $) 86)) (-4265 ((|#5| $) NIL) (((-784) $ |#4|) NIL) (((-657 (-784)) $ (-657 |#4|)) NIL) (((-784) $ |#3|) 49)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-419 (-576))) NIL) (($ $) NIL))) +(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -3515 (|#1| |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -3205 (|#1| |#1| (-657 |#3|) (-657 |#2|))) (-15 -3205 (|#1| |#1| |#3| |#2|)) (-15 -3205 (|#1| |#1| (-657 |#3|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#3| |#1|)) (-15 -3359 ((-1 |#1| (-784)) |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -4268 (|#1| |#1|)) (-15 -1582 (|#4| |#1|)) (-15 -4298 ((-112) |#1|)) (-15 -3074 ((-784) |#1| |#3|)) (-15 -3800 ((-657 (-784)) |#1| |#3|)) (-15 -3074 ((-784) |#1|)) (-15 -3800 ((-657 (-784)) |#1|)) (-15 -4265 ((-784) |#1| |#3|)) (-15 -2650 ((-784) |#1|)) (-15 -2650 ((-784) |#1| |#3|)) (-15 -2297 ((-657 |#3|) |#1|)) (-15 -3359 ((-1 |#1| (-784)) |#3|)) (-15 -3515 (|#1| |#3|)) (-15 -1593 ((-3 |#3| "failed") |#1|)) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4265 ((-657 (-784)) |#1| (-657 |#4|))) (-15 -4265 ((-784) |#1| |#4|)) (-15 -3515 (|#1| |#4|)) (-15 -1593 ((-3 |#4| "failed") |#1|)) (-15 -3205 (|#1| |#1| (-657 |#4|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#4| |#1|)) (-15 -3205 (|#1| |#1| (-657 |#4|) (-657 |#2|))) (-15 -3205 (|#1| |#1| |#4| |#2|)) (-15 -3205 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#1| |#1|)) (-15 -3205 (|#1| |#1| (-304 |#1|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -4265 (|#5| |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -2209 (|#1| |#1| |#4|)) (-15 -2209 (|#1| |#1| (-657 |#4|))) (-15 -2209 (|#1| |#1| |#4| (-784))) (-15 -2209 (|#1| |#1| (-657 |#4|) (-657 (-784)))) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1071) (-862) (-275 |#3|) (-806)) (T -259)) +NIL +(-10 -8 (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -3515 (|#1| |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -3205 (|#1| |#1| (-657 |#3|) (-657 |#2|))) (-15 -3205 (|#1| |#1| |#3| |#2|)) (-15 -3205 (|#1| |#1| (-657 |#3|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#3| |#1|)) (-15 -3359 ((-1 |#1| (-784)) |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -4268 (|#1| |#1|)) (-15 -1582 (|#4| |#1|)) (-15 -4298 ((-112) |#1|)) (-15 -3074 ((-784) |#1| |#3|)) (-15 -3800 ((-657 (-784)) |#1| |#3|)) (-15 -3074 ((-784) |#1|)) (-15 -3800 ((-657 (-784)) |#1|)) (-15 -4265 ((-784) |#1| |#3|)) (-15 -2650 ((-784) |#1|)) (-15 -2650 ((-784) |#1| |#3|)) (-15 -2297 ((-657 |#3|) |#1|)) (-15 -3359 ((-1 |#1| (-784)) |#3|)) (-15 -3515 (|#1| |#3|)) (-15 -1593 ((-3 |#3| "failed") |#1|)) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4265 ((-657 (-784)) |#1| (-657 |#4|))) (-15 -4265 ((-784) |#1| |#4|)) (-15 -3515 (|#1| |#4|)) (-15 -1593 ((-3 |#4| "failed") |#1|)) (-15 -3205 (|#1| |#1| (-657 |#4|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#4| |#1|)) (-15 -3205 (|#1| |#1| (-657 |#4|) (-657 |#2|))) (-15 -3205 (|#1| |#1| |#4| |#2|)) (-15 -3205 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#1| |#1|)) (-15 -3205 (|#1| |#1| (-304 |#1|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -4265 (|#5| |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -2209 (|#1| |#1| |#4|)) (-15 -2209 (|#1| |#1| (-657 |#4|))) (-15 -2209 (|#1| |#1| |#4| (-784))) (-15 -2209 (|#1| |#1| (-657 |#4|) (-657 (-784)))) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3800 (((-657 (-784)) $) 236) (((-657 (-784)) $ |#2|) 234)) (-3074 (((-784) $) 235) (((-784) $ |#2|) 233)) (-1998 (((-657 |#3|) $) 113)) (-1825 (((-1194 $) $ |#3|) 128) (((-1194 |#1|) $) 127)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2361 (($ $) 91 (|has| |#1| (-568)))) (-3286 (((-112) $) 93 (|has| |#1| (-568)))) (-2889 (((-784) $) 115) (((-784) $ (-657 |#3|)) 114)) (-2423 (((-3 $ "failed") $ $) 20)) (-2628 (((-430 (-1194 $)) (-1194 $)) 103 (|has| |#1| (-929)))) (-3188 (($ $) 101 (|has| |#1| (-464)))) (-4215 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 106 (|has| |#1| (-929)))) (-2549 (($ $) 229)) (-2515 (($) 18 T CONST)) (-1593 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1060 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 |#2| "failed") $) 243)) (-2830 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1060 (-576)))) ((|#3| $) 144) ((|#2| $) 244)) (-4351 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2165 (($ $) 161)) (-3439 (((-702 (-576)) (-702 $)) 139 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 138 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 137) (((-702 |#1|) (-702 $)) 136)) (-3969 (((-3 $ "failed") $) 37)) (-1445 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2153 (((-657 $) $) 112)) (-4009 (((-112) $) 99 (|has| |#1| (-929)))) (-2643 (($ $ |#1| |#4| $) 179)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 87 (-12 (|has| |#3| (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 86 (-12 (|has| |#3| (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-2650 (((-784) $ |#2|) 239) (((-784) $) 238)) (-3994 (((-112) $) 35)) (-2977 (((-784) $) 176)) (-1986 (($ (-1194 |#1|) |#3|) 120) (($ (-1194 $) |#3|) 119)) (-2278 (((-657 $) $) 129)) (-2343 (((-112) $) 159)) (-1974 (($ |#1| |#4|) 160) (($ $ |#3| (-784)) 122) (($ $ (-657 |#3|) (-657 (-784))) 121)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ |#3|) 123)) (-4219 ((|#4| $) 177) (((-784) $ |#3|) 125) (((-657 (-784)) $ (-657 |#3|)) 124)) (-2308 (($ (-1 |#4| |#4|) $) 178)) (-4071 (($ (-1 |#1| |#1|) $) 158)) (-3359 (((-1 $ (-784)) |#2|) 241) (((-1 $ (-784)) $) 228 (|has| |#1| (-238)))) (-2502 (((-3 |#3| "failed") $) 126)) (-1993 (((-702 (-576)) (-1289 $)) 141 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 140 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 135) (((-702 |#1|) (-1289 $)) 134)) (-2129 (($ $) 156)) (-2141 ((|#1| $) 155)) (-1582 ((|#3| $) 231)) (-3388 (($ (-657 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-1708 (((-1180) $) 10)) (-4298 (((-112) $) 232)) (-2998 (((-3 (-657 $) "failed") $) 117)) (-3097 (((-3 (-657 $) "failed") $) 118)) (-3403 (((-3 (-2 (|:| |var| |#3|) (|:| -2128 (-784))) "failed") $) 116)) (-4268 (($ $) 230)) (-1460 (((-1142) $) 11)) (-2108 (((-112) $) 173)) (-2118 ((|#1| $) 174)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 98 (|has| |#1| (-464)))) (-3431 (($ (-657 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) 105 (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) 104 (|has| |#1| (-929)))) (-1856 (((-430 $) $) 102 (|has| |#1| (-929)))) (-3409 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3205 (($ $ (-657 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-657 $) (-657 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-657 |#3|) (-657 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-657 |#3|) (-657 $)) 145) (($ $ |#2| $) 227 (|has| |#1| (-238))) (($ $ (-657 |#2|) (-657 $)) 226 (|has| |#1| (-238))) (($ $ |#2| |#1|) 225 (|has| |#1| (-238))) (($ $ (-657 |#2|) (-657 |#1|)) 224 (|has| |#1| (-238)))) (-1465 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2209 (($ $ (-657 |#3|) (-657 (-784))) 44) (($ $ |#3| (-784)) 43) (($ $ (-657 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 248) (($ $ (-1 |#1| |#1|) (-784)) 247) (($ $) 223 (|has| |#1| (-237))) (($ $ (-784)) 221 (|has| |#1| (-237))) (($ $ (-1198)) 219 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 217 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 216 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 215 (|has| |#1| (-920 (-1198))))) (-2297 (((-657 |#2|) $) 240)) (-4265 ((|#4| $) 157) (((-784) $ |#3|) 133) (((-657 (-784)) $ (-657 |#3|)) 132) (((-784) $ |#2|) 237)) (-4136 (((-908 (-390)) $) 85 (-12 (|has| |#3| (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) 84 (-12 (|has| |#3| (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3614 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 107 (-2675 (|has| $ (-146)) (|has| |#1| (-929))))) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ |#2|) 242) (($ (-419 (-576))) 81 (-2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-3987 (((-657 |#1|) $) 175)) (-2498 ((|#1| $ |#4|) 162) (($ $ |#3| (-784)) 131) (($ $ (-657 |#3|) (-657 (-784))) 130)) (-3414 (((-3 $ "failed") $) 82 (-2748 (-2675 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) 32 T CONST)) (-3194 (($ $ $ (-784)) 180 (|has| |#1| (-174)))) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-657 |#3|) (-657 (-784))) 47) (($ $ |#3| (-784)) 46) (($ $ (-657 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-784)) 245) (($ $) 222 (|has| |#1| (-237))) (($ $ (-784)) 220 (|has| |#1| (-237))) (($ $ (-1198)) 218 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 214 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 213 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 212 (|has| |#1| (-920 (-1198))))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-260 |#1| |#2| |#3| |#4|) (-141) (-1071) (-862) (-275 |t#2|) (-806)) (T -260)) +((-3359 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-1 *1 (-784))) (-4 *1 (-260 *4 *3 *5 *6)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-657 *4)))) (-2650 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-784)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-784)))) (-4265 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-784)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-657 (-784))))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-784)))) (-3800 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-657 (-784))))) (-3074 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-784)))) (-4298 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-112)))) (-1582 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-806)) (-4 *2 (-275 *4)))) (-4268 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1071)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-806)))) (-2549 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1071)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-806)))) (-3359 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-1 *1 (-784))) (-4 *1 (-260 *3 *4 *5 *6))))) +(-13 (-969 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1060 |t#2|) (-10 -8 (-15 -3359 ((-1 $ (-784)) |t#2|)) (-15 -2297 ((-657 |t#2|) $)) (-15 -2650 ((-784) $ |t#2|)) (-15 -2650 ((-784) $)) (-15 -4265 ((-784) $ |t#2|)) (-15 -3800 ((-657 (-784)) $)) (-15 -3074 ((-784) $)) (-15 -3800 ((-657 (-784)) $ |t#2|)) (-15 -3074 ((-784) $ |t#2|)) (-15 -4298 ((-112) $)) (-15 -1582 (|t#3| $)) (-15 -4268 ($ $)) (-15 -2549 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-319 $)) (-15 -3359 ((-1 $ (-784)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-908 (-390))) -12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#3| (-626 (-908 (-390))))) ((-626 (-908 (-576))) -12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#3| (-626 (-908 (-576))))) ((-234 $) -2748 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2748 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-300) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#4|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2748 (|has| |#1| (-929)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-238)) ((-526 |#2| $) |has| |#1| (-238)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 #1=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-652 #1#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-739) . T) ((-912 $ #2=(-1198)) -2748 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-912 $ |#3|) . T) ((-918 (-1198)) |has| |#1| (-918 (-1198))) ((-918 |#3|) . T) ((-920 #2#) -2748 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-920 |#3|) . T) ((-902 (-390)) -12 (|has| |#1| (-902 (-390))) (|has| |#3| (-902 (-390)))) ((-902 (-576)) -12 (|has| |#1| (-902 (-576))) (|has| |#3| (-902 (-576)))) ((-969 |#1| |#4| |#3|) . T) ((-929) |has| |#1| (-929)) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1060 |#2|) . T) ((-1060 |#3|) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) |has| |#1| (-929))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1753 ((|#1| $) 55)) (-1425 ((|#1| $) 45)) (-4284 (((-112) $ (-784)) 8)) (-2515 (($) 7 T CONST)) (-1528 (($ $) 61)) (-4072 (($ $) 49)) (-3240 ((|#1| |#1| $) 47)) (-2477 ((|#1| $) 46)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-3041 (((-784) $) 62)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3107 ((|#1| $) 40)) (-1548 ((|#1| |#1| $) 53)) (-3436 ((|#1| |#1| $) 52)) (-2701 (($ |#1| $) 41)) (-2363 (((-784) $) 56)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2727 ((|#1| $) 63)) (-2341 ((|#1| $) 51)) (-3582 ((|#1| $) 50)) (-2184 ((|#1| $) 42)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-3513 ((|#1| |#1| $) 59)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-3608 ((|#1| $) 60)) (-2404 (($) 58) (($ (-657 |#1|)) 57)) (-3106 (((-784) $) 44)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-1926 ((|#1| $) 54)) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) 43)) (-3292 ((|#1| $) 64)) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-261 |#1|) (-141) (-1239)) (T -261)) +((-2404 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-2404 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-4 *1 (-261 *3)))) (-2363 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1239)) (-5 *2 (-784)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-1548 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-3436 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-4072 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) +(-13 (-1143 |t#1|) (-1017 |t#1|) (-10 -8 (-15 -2404 ($)) (-15 -2404 ($ (-657 |t#1|))) (-15 -2363 ((-784) $)) (-15 -1753 (|t#1| $)) (-15 -1926 (|t#1| $)) (-15 -1548 (|t#1| |t#1| $)) (-15 -3436 (|t#1| |t#1| $)) (-15 -2341 (|t#1| $)) (-15 -3582 (|t#1| $)) (-15 -4072 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1017 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1143 |#1|) . T) ((-1239) . T)) +((-2208 (((-1 (-963 (-227)) (-227) (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1725 (((-1155 (-227)) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390))) 173) (((-1155 (-227)) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)) (-657 (-270))) 171) (((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390))) 176) (((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270))) 172) (((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390))) 164) (((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270))) 163) (((-1155 (-227)) (-1 (-963 (-227)) (-227)) (-1116 (-390))) 145) (((-1155 (-227)) (-1 (-963 (-227)) (-227)) (-1116 (-390)) (-657 (-270))) 143) (((-1155 (-227)) (-895 (-1 (-227) (-227))) (-1116 (-390))) 144) (((-1155 (-227)) (-895 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270))) 141)) (-1685 (((-1291) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390))) 175) (((-1291) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)) (-657 (-270))) 174) (((-1291) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390))) 178) (((-1291) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270))) 177) (((-1291) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390))) 166) (((-1291) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270))) 165) (((-1291) (-1 (-963 (-227)) (-227)) (-1116 (-390))) 151) (((-1291) (-1 (-963 (-227)) (-227)) (-1116 (-390)) (-657 (-270))) 150) (((-1291) (-895 (-1 (-227) (-227))) (-1116 (-390))) 149) (((-1291) (-895 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270))) 148) (((-1290) (-893 (-1 (-227) (-227))) (-1116 (-390))) 113) (((-1290) (-893 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270))) 112) (((-1290) (-1 (-227) (-227)) (-1116 (-390))) 107) (((-1290) (-1 (-227) (-227)) (-1116 (-390)) (-657 (-270))) 105))) +(((-262) (-10 -7 (-15 -1685 ((-1290) (-1 (-227) (-227)) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1290) (-1 (-227) (-227)) (-1116 (-390)))) (-15 -1685 ((-1290) (-893 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1290) (-893 (-1 (-227) (-227))) (-1116 (-390)))) (-15 -1685 ((-1291) (-895 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-895 (-1 (-227) (-227))) (-1116 (-390)))) (-15 -1685 ((-1291) (-1 (-963 (-227)) (-227)) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-1 (-963 (-227)) (-227)) (-1116 (-390)))) (-15 -1725 ((-1155 (-227)) (-895 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-895 (-1 (-227) (-227))) (-1116 (-390)))) (-15 -1725 ((-1155 (-227)) (-1 (-963 (-227)) (-227)) (-1116 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-1 (-963 (-227)) (-227)) (-1116 (-390)))) (-15 -1685 ((-1291) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1725 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1685 ((-1291) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1725 ((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1685 ((-1291) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)))) (-15 -1725 ((-1155 (-227)) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)))) (-15 -2208 ((-1 (-963 (-227)) (-227) (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) +((-2208 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-963 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1725 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1725 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1725 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1725 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1725 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1725 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-262))))) +(-10 -7 (-15 -1685 ((-1290) (-1 (-227) (-227)) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1290) (-1 (-227) (-227)) (-1116 (-390)))) (-15 -1685 ((-1290) (-893 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1290) (-893 (-1 (-227) (-227))) (-1116 (-390)))) (-15 -1685 ((-1291) (-895 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-895 (-1 (-227) (-227))) (-1116 (-390)))) (-15 -1685 ((-1291) (-1 (-963 (-227)) (-227)) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-1 (-963 (-227)) (-227)) (-1116 (-390)))) (-15 -1725 ((-1155 (-227)) (-895 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-895 (-1 (-227) (-227))) (-1116 (-390)))) (-15 -1725 ((-1155 (-227)) (-1 (-963 (-227)) (-227)) (-1116 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-1 (-963 (-227)) (-227)) (-1116 (-390)))) (-15 -1685 ((-1291) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1725 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1685 ((-1291) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1725 ((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1685 ((-1291) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)))) (-15 -1725 ((-1155 (-227)) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)))) (-15 -2208 ((-1 (-963 (-227)) (-227) (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-1685 (((-1290) (-304 |#2|) (-1198) (-1198) (-657 (-270))) 101))) +(((-263 |#1| |#2|) (-10 -7 (-15 -1685 ((-1290) (-304 |#2|) (-1198) (-1198) (-657 (-270))))) (-13 (-568) (-862) (-1060 (-576))) (-442 |#1|)) (T -263)) +((-1685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-1198)) (-5 *5 (-657 (-270))) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1060 (-576)))) (-5 *2 (-1290)) (-5 *1 (-263 *6 *7))))) +(-10 -7 (-15 -1685 ((-1290) (-304 |#2|) (-1198) (-1198) (-657 (-270))))) +((-4282 (((-576) (-576)) 71)) (-2350 (((-576) (-576)) 72)) (-2274 (((-227) (-227)) 73)) (-3091 (((-1291) (-1 (-171 (-227)) (-171 (-227))) (-1116 (-227)) (-1116 (-227))) 70)) (-4052 (((-1291) (-1 (-171 (-227)) (-171 (-227))) (-1116 (-227)) (-1116 (-227)) (-112)) 68))) +(((-264) (-10 -7 (-15 -4052 ((-1291) (-1 (-171 (-227)) (-171 (-227))) (-1116 (-227)) (-1116 (-227)) (-112))) (-15 -3091 ((-1291) (-1 (-171 (-227)) (-171 (-227))) (-1116 (-227)) (-1116 (-227)))) (-15 -4282 ((-576) (-576))) (-15 -2350 ((-576) (-576))) (-15 -2274 ((-227) (-227))))) (T -264)) +((-2274 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-2350 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-4282 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-3091 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1116 (-227))) (-5 *2 (-1291)) (-5 *1 (-264)))) (-4052 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1116 (-227))) (-5 *5 (-112)) (-5 *2 (-1291)) (-5 *1 (-264))))) +(-10 -7 (-15 -4052 ((-1291) (-1 (-171 (-227)) (-171 (-227))) (-1116 (-227)) (-1116 (-227)) (-112))) (-15 -3091 ((-1291) (-1 (-171 (-227)) (-171 (-227))) (-1116 (-227)) (-1116 (-227)))) (-15 -4282 ((-576) (-576))) (-15 -2350 ((-576) (-576))) (-15 -2274 ((-227) (-227)))) +((-3515 (((-1114 (-390)) (-1114 (-326 |#1|))) 16))) +(((-265 |#1|) (-10 -7 (-15 -3515 ((-1114 (-390)) (-1114 (-326 |#1|))))) (-13 (-862) (-568) (-626 (-390)))) (T -265)) +((-3515 (*1 *2 *3) (-12 (-5 *3 (-1114 (-326 *4))) (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1114 (-390))) (-5 *1 (-265 *4))))) +(-10 -7 (-15 -3515 ((-1114 (-390)) (-1114 (-326 |#1|))))) +((-1725 (((-1155 (-227)) (-898 |#1|) (-1114 (-390)) (-1114 (-390))) 75) (((-1155 (-227)) (-898 |#1|) (-1114 (-390)) (-1114 (-390)) (-657 (-270))) 74) (((-1155 (-227)) |#1| (-1114 (-390)) (-1114 (-390))) 65) (((-1155 (-227)) |#1| (-1114 (-390)) (-1114 (-390)) (-657 (-270))) 64) (((-1155 (-227)) (-895 |#1|) (-1114 (-390))) 56) (((-1155 (-227)) (-895 |#1|) (-1114 (-390)) (-657 (-270))) 55)) (-1685 (((-1291) (-898 |#1|) (-1114 (-390)) (-1114 (-390))) 78) (((-1291) (-898 |#1|) (-1114 (-390)) (-1114 (-390)) (-657 (-270))) 77) (((-1291) |#1| (-1114 (-390)) (-1114 (-390))) 68) (((-1291) |#1| (-1114 (-390)) (-1114 (-390)) (-657 (-270))) 67) (((-1291) (-895 |#1|) (-1114 (-390))) 60) (((-1291) (-895 |#1|) (-1114 (-390)) (-657 (-270))) 59) (((-1290) (-893 |#1|) (-1114 (-390))) 47) (((-1290) (-893 |#1|) (-1114 (-390)) (-657 (-270))) 46) (((-1290) |#1| (-1114 (-390))) 38) (((-1290) |#1| (-1114 (-390)) (-657 (-270))) 36))) +(((-266 |#1|) (-10 -7 (-15 -1685 ((-1290) |#1| (-1114 (-390)) (-657 (-270)))) (-15 -1685 ((-1290) |#1| (-1114 (-390)))) (-15 -1685 ((-1290) (-893 |#1|) (-1114 (-390)) (-657 (-270)))) (-15 -1685 ((-1290) (-893 |#1|) (-1114 (-390)))) (-15 -1685 ((-1291) (-895 |#1|) (-1114 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-895 |#1|) (-1114 (-390)))) (-15 -1725 ((-1155 (-227)) (-895 |#1|) (-1114 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-895 |#1|) (-1114 (-390)))) (-15 -1685 ((-1291) |#1| (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) |#1| (-1114 (-390)) (-1114 (-390)))) (-15 -1725 ((-1155 (-227)) |#1| (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) |#1| (-1114 (-390)) (-1114 (-390)))) (-15 -1685 ((-1291) (-898 |#1|) (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-898 |#1|) (-1114 (-390)) (-1114 (-390)))) (-15 -1725 ((-1155 (-227)) (-898 |#1|) (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-898 |#1|) (-1114 (-390)) (-1114 (-390))))) (-13 (-626 (-548)) (-1122))) (T -266)) +((-1725 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-898 *5)) (-5 *4 (-1114 (-390))) (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *5)))) (-1725 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-898 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *6)))) (-1685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-898 *5)) (-5 *4 (-1114 (-390))) (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) (-5 *1 (-266 *5)))) (-1685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-898 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) (-5 *1 (-266 *6)))) (-1725 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1114 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) (-1725 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) (-1685 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1114 (-390))) (-5 *2 (-1291)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) (-1685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1114 (-390))) (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *5)))) (-1725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *6)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1114 (-390))) (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) (-5 *1 (-266 *5)))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) (-5 *1 (-266 *6)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1114 (-390))) (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1290)) (-5 *1 (-266 *5)))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1290)) (-5 *1 (-266 *6)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *4 (-1114 (-390))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122)))))) +(-10 -7 (-15 -1685 ((-1290) |#1| (-1114 (-390)) (-657 (-270)))) (-15 -1685 ((-1290) |#1| (-1114 (-390)))) (-15 -1685 ((-1290) (-893 |#1|) (-1114 (-390)) (-657 (-270)))) (-15 -1685 ((-1290) (-893 |#1|) (-1114 (-390)))) (-15 -1685 ((-1291) (-895 |#1|) (-1114 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-895 |#1|) (-1114 (-390)))) (-15 -1725 ((-1155 (-227)) (-895 |#1|) (-1114 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-895 |#1|) (-1114 (-390)))) (-15 -1685 ((-1291) |#1| (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) |#1| (-1114 (-390)) (-1114 (-390)))) (-15 -1725 ((-1155 (-227)) |#1| (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) |#1| (-1114 (-390)) (-1114 (-390)))) (-15 -1685 ((-1291) (-898 |#1|) (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1685 ((-1291) (-898 |#1|) (-1114 (-390)) (-1114 (-390)))) (-15 -1725 ((-1155 (-227)) (-898 |#1|) (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1725 ((-1155 (-227)) (-898 |#1|) (-1114 (-390)) (-1114 (-390))))) +((-1685 (((-1291) (-657 (-227)) (-657 (-227)) (-657 (-227)) (-657 (-270))) 23) (((-1291) (-657 (-227)) (-657 (-227)) (-657 (-227))) 24) (((-1290) (-657 (-963 (-227))) (-657 (-270))) 16) (((-1290) (-657 (-963 (-227)))) 17) (((-1290) (-657 (-227)) (-657 (-227)) (-657 (-270))) 20) (((-1290) (-657 (-227)) (-657 (-227))) 21))) +(((-267) (-10 -7 (-15 -1685 ((-1290) (-657 (-227)) (-657 (-227)))) (-15 -1685 ((-1290) (-657 (-227)) (-657 (-227)) (-657 (-270)))) (-15 -1685 ((-1290) (-657 (-963 (-227))))) (-15 -1685 ((-1290) (-657 (-963 (-227))) (-657 (-270)))) (-15 -1685 ((-1291) (-657 (-227)) (-657 (-227)) (-657 (-227)))) (-15 -1685 ((-1291) (-657 (-227)) (-657 (-227)) (-657 (-227)) (-657 (-270)))))) (T -267)) +((-1685 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-657 (-227))) (-5 *4 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-267)))) (-1685 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-657 (-227))) (-5 *2 (-1291)) (-5 *1 (-267)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-963 (-227)))) (-5 *4 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-657 (-963 (-227)))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-1685 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-657 (-227))) (-5 *4 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-1685 (*1 *2 *3 *3) (-12 (-5 *3 (-657 (-227))) (-5 *2 (-1290)) (-5 *1 (-267))))) +(-10 -7 (-15 -1685 ((-1290) (-657 (-227)) (-657 (-227)))) (-15 -1685 ((-1290) (-657 (-227)) (-657 (-227)) (-657 (-270)))) (-15 -1685 ((-1290) (-657 (-963 (-227))))) (-15 -1685 ((-1290) (-657 (-963 (-227))) (-657 (-270)))) (-15 -1685 ((-1291) (-657 (-227)) (-657 (-227)) (-657 (-227)))) (-15 -1685 ((-1291) (-657 (-227)) (-657 (-227)) (-657 (-227)) (-657 (-270))))) +((-3007 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-657 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-4442 (((-941) (-657 (-270)) (-941)) 52)) (-3911 (((-941) (-657 (-270)) (-941)) 51)) (-2364 (((-657 (-390)) (-657 (-270)) (-657 (-390))) 68)) (-2060 (((-390) (-657 (-270)) (-390)) 57)) (-3715 (((-941) (-657 (-270)) (-941)) 53)) (-2988 (((-112) (-657 (-270)) (-112)) 27)) (-1363 (((-1180) (-657 (-270)) (-1180)) 19)) (-1996 (((-1180) (-657 (-270)) (-1180)) 26)) (-2316 (((-1155 (-227)) (-657 (-270))) 46)) (-2471 (((-657 (-1116 (-390))) (-657 (-270)) (-657 (-1116 (-390)))) 40)) (-1386 (((-889) (-657 (-270)) (-889)) 32)) (-2087 (((-889) (-657 (-270)) (-889)) 33)) (-4436 (((-1 (-963 (-227)) (-963 (-227))) (-657 (-270)) (-1 (-963 (-227)) (-963 (-227)))) 63)) (-3319 (((-112) (-657 (-270)) (-112)) 14)) (-2851 (((-112) (-657 (-270)) (-112)) 13))) +(((-268) (-10 -7 (-15 -2851 ((-112) (-657 (-270)) (-112))) (-15 -3319 ((-112) (-657 (-270)) (-112))) (-15 -3007 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-657 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1363 ((-1180) (-657 (-270)) (-1180))) (-15 -1996 ((-1180) (-657 (-270)) (-1180))) (-15 -2988 ((-112) (-657 (-270)) (-112))) (-15 -1386 ((-889) (-657 (-270)) (-889))) (-15 -2087 ((-889) (-657 (-270)) (-889))) (-15 -2471 ((-657 (-1116 (-390))) (-657 (-270)) (-657 (-1116 (-390))))) (-15 -3911 ((-941) (-657 (-270)) (-941))) (-15 -4442 ((-941) (-657 (-270)) (-941))) (-15 -2316 ((-1155 (-227)) (-657 (-270)))) (-15 -3715 ((-941) (-657 (-270)) (-941))) (-15 -2060 ((-390) (-657 (-270)) (-390))) (-15 -4436 ((-1 (-963 (-227)) (-963 (-227))) (-657 (-270)) (-1 (-963 (-227)) (-963 (-227))))) (-15 -2364 ((-657 (-390)) (-657 (-270)) (-657 (-390)))))) (T -268)) +((-2364 (*1 *2 *3 *2) (-12 (-5 *2 (-657 (-390))) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-4436 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-963 (-227)) (-963 (-227)))) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-2060 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-3715 (*1 *2 *3 *2) (-12 (-5 *2 (-941)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-2316 (*1 *2 *3) (-12 (-5 *3 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-268)))) (-4442 (*1 *2 *3 *2) (-12 (-5 *2 (-941)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-3911 (*1 *2 *3 *2) (-12 (-5 *2 (-941)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-2471 (*1 *2 *3 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-2087 (*1 *2 *3 *2) (-12 (-5 *2 (-889)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-1386 (*1 *2 *3 *2) (-12 (-5 *2 (-889)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-2988 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-1996 (*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-1363 (*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-3007 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-3319 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-2851 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-657 (-270))) (-5 *1 (-268))))) +(-10 -7 (-15 -2851 ((-112) (-657 (-270)) (-112))) (-15 -3319 ((-112) (-657 (-270)) (-112))) (-15 -3007 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-657 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1363 ((-1180) (-657 (-270)) (-1180))) (-15 -1996 ((-1180) (-657 (-270)) (-1180))) (-15 -2988 ((-112) (-657 (-270)) (-112))) (-15 -1386 ((-889) (-657 (-270)) (-889))) (-15 -2087 ((-889) (-657 (-270)) (-889))) (-15 -2471 ((-657 (-1116 (-390))) (-657 (-270)) (-657 (-1116 (-390))))) (-15 -3911 ((-941) (-657 (-270)) (-941))) (-15 -4442 ((-941) (-657 (-270)) (-941))) (-15 -2316 ((-1155 (-227)) (-657 (-270)))) (-15 -3715 ((-941) (-657 (-270)) (-941))) (-15 -2060 ((-390) (-657 (-270)) (-390))) (-15 -4436 ((-1 (-963 (-227)) (-963 (-227))) (-657 (-270)) (-1 (-963 (-227)) (-963 (-227))))) (-15 -2364 ((-657 (-390)) (-657 (-270)) (-657 (-390))))) +((-2589 (((-3 |#1| "failed") (-657 (-270)) (-1198)) 17))) +(((-269 |#1|) (-10 -7 (-15 -2589 ((-3 |#1| "failed") (-657 (-270)) (-1198)))) (-1239)) (T -269)) +((-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-657 (-270))) (-5 *4 (-1198)) (-5 *1 (-269 *2)) (-4 *2 (-1239))))) +(-10 -7 (-15 -2589 ((-3 |#1| "failed") (-657 (-270)) (-1198)))) +((-3423 (((-112) $ $) NIL)) (-3007 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-4442 (($ (-941)) 81)) (-3911 (($ (-941)) 80)) (-4119 (($ (-657 (-390))) 87)) (-2060 (($ (-390)) 66)) (-3715 (($ (-941)) 82)) (-2988 (($ (-112)) 33)) (-1363 (($ (-1180)) 28)) (-1996 (($ (-1180)) 29)) (-2316 (($ (-1155 (-227))) 76)) (-2471 (($ (-657 (-1116 (-390)))) 72)) (-3936 (($ (-657 (-1116 (-390)))) 68) (($ (-657 (-1116 (-419 (-576))))) 71)) (-2815 (($ (-390)) 38) (($ (-889)) 42)) (-3682 (((-112) (-657 $) (-1198)) 100)) (-2589 (((-3 (-52) "failed") (-657 $) (-1198)) 102)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2199 (($ (-390)) 43) (($ (-889)) 44)) (-3806 (($ (-1 (-963 (-227)) (-963 (-227)))) 65)) (-4436 (($ (-1 (-963 (-227)) (-963 (-227)))) 83)) (-2453 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-3515 (((-877) $) 93)) (-4247 (($ (-112)) 34) (($ (-657 (-1116 (-390)))) 60)) (-4166 (((-112) $ $) NIL)) (-2851 (($ (-112)) 35)) (-2881 (((-112) $ $) 97))) +(((-270) (-13 (-1122) (-10 -8 (-15 -2851 ($ (-112))) (-15 -4247 ($ (-112))) (-15 -3007 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1363 ($ (-1180))) (-15 -1996 ($ (-1180))) (-15 -2988 ($ (-112))) (-15 -4247 ($ (-657 (-1116 (-390))))) (-15 -3806 ($ (-1 (-963 (-227)) (-963 (-227))))) (-15 -2815 ($ (-390))) (-15 -2815 ($ (-889))) (-15 -2199 ($ (-390))) (-15 -2199 ($ (-889))) (-15 -2453 ($ (-1 (-227) (-227)))) (-15 -2453 ($ (-1 (-227) (-227) (-227)))) (-15 -2453 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2060 ($ (-390))) (-15 -3936 ($ (-657 (-1116 (-390))))) (-15 -3936 ($ (-657 (-1116 (-419 (-576)))))) (-15 -2471 ($ (-657 (-1116 (-390))))) (-15 -2316 ($ (-1155 (-227)))) (-15 -3911 ($ (-941))) (-15 -4442 ($ (-941))) (-15 -3715 ($ (-941))) (-15 -4436 ($ (-1 (-963 (-227)) (-963 (-227))))) (-15 -4119 ($ (-657 (-390)))) (-15 -2589 ((-3 (-52) "failed") (-657 $) (-1198))) (-15 -3682 ((-112) (-657 $) (-1198)))))) (T -270)) +((-2851 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-4247 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-3007 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-1363 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-270)))) (-1996 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-270)))) (-2988 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-4247 (*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-270)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-1 (-963 (-227)) (-963 (-227)))) (-5 *1 (-270)))) (-2815 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-2815 (*1 *1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-270)))) (-2199 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-2199 (*1 *1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-270)))) (-2453 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-2453 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-2453 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-2060 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-3936 (*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-270)))) (-3936 (*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-419 (-576))))) (-5 *1 (-270)))) (-2471 (*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-270)))) (-2316 (*1 *1 *2) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-270)))) (-3911 (*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-270)))) (-4442 (*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-270)))) (-3715 (*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-270)))) (-4436 (*1 *1 *2) (-12 (-5 *2 (-1 (-963 (-227)) (-963 (-227)))) (-5 *1 (-270)))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-657 (-390))) (-5 *1 (-270)))) (-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-657 (-270))) (-5 *4 (-1198)) (-5 *2 (-52)) (-5 *1 (-270)))) (-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-270))) (-5 *4 (-1198)) (-5 *2 (-112)) (-5 *1 (-270))))) +(-13 (-1122) (-10 -8 (-15 -2851 ($ (-112))) (-15 -4247 ($ (-112))) (-15 -3007 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1363 ($ (-1180))) (-15 -1996 ($ (-1180))) (-15 -2988 ($ (-112))) (-15 -4247 ($ (-657 (-1116 (-390))))) (-15 -3806 ($ (-1 (-963 (-227)) (-963 (-227))))) (-15 -2815 ($ (-390))) (-15 -2815 ($ (-889))) (-15 -2199 ($ (-390))) (-15 -2199 ($ (-889))) (-15 -2453 ($ (-1 (-227) (-227)))) (-15 -2453 ($ (-1 (-227) (-227) (-227)))) (-15 -2453 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2060 ($ (-390))) (-15 -3936 ($ (-657 (-1116 (-390))))) (-15 -3936 ($ (-657 (-1116 (-419 (-576)))))) (-15 -2471 ($ (-657 (-1116 (-390))))) (-15 -2316 ($ (-1155 (-227)))) (-15 -3911 ($ (-941))) (-15 -4442 ($ (-941))) (-15 -3715 ($ (-941))) (-15 -4436 ($ (-1 (-963 (-227)) (-963 (-227))))) (-15 -4119 ($ (-657 (-390)))) (-15 -2589 ((-3 (-52) "failed") (-657 $) (-1198))) (-15 -3682 ((-112) (-657 $) (-1198))))) +((-2209 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-784)) 11) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) 19) (($ $ (-784)) NIL) (($ $) 16)) (-2066 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-784)) 14) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL) (($ $ (-784)) NIL) (($ $) NIL))) +(((-271 |#1| |#2|) (-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2066 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2066 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2066 (|#1| |#1| (-1198))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2066 (|#1| |#1| (-657 (-1198)))) (-15 -2066 (|#1| |#1| (-1198) (-784))) (-15 -2066 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2066 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2066 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|)))) (-272 |#2|) (-1239)) (T -271)) +NIL +(-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2066 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2066 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2066 (|#1| |#1| (-1198))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2066 (|#1| |#1| (-657 (-1198)))) (-15 -2066 (|#1| |#1| (-1198) (-784))) (-15 -2066 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2066 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2066 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|)))) +((-2209 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-784)) 22) (($ $ (-657 (-1198)) (-657 (-784))) 16 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 15 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 14 (|has| |#1| (-920 (-1198)))) (($ $ (-1198)) 12 (|has| |#1| (-920 (-1198)))) (($ $ (-784)) 10 (|has| |#1| (-237))) (($ $) 8 (|has| |#1| (-237)))) (-2066 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-784)) 20) (($ $ (-657 (-1198)) (-657 (-784))) 19 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 18 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 17 (|has| |#1| (-920 (-1198)))) (($ $ (-1198)) 13 (|has| |#1| (-920 (-1198)))) (($ $ (-784)) 11 (|has| |#1| (-237))) (($ $) 9 (|has| |#1| (-237))))) +(((-272 |#1|) (-141) (-1239)) (T -272)) +((-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1239)))) (-2209 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-784)) (-4 *1 (-272 *4)) (-4 *4 (-1239)))) (-2066 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1239)))) (-2066 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-784)) (-4 *1 (-272 *4)) (-4 *4 (-1239))))) +(-13 (-1239) (-10 -8 (-15 -2209 ($ $ (-1 |t#1| |t#1|))) (-15 -2209 ($ $ (-1 |t#1| |t#1|) (-784))) (-15 -2066 ($ $ (-1 |t#1| |t#1|))) (-15 -2066 ($ $ (-1 |t#1| |t#1|) (-784))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-920 (-1198))) (-6 (-920 (-1198))) |%noBranch|))) +(((-234 $) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-912 $ #0=(-1198)) |has| |#1| (-920 (-1198))) ((-920 #0#) |has| |#1| (-920 (-1198))) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3800 (((-657 (-784)) $) NIL) (((-657 (-784)) $ |#2|) NIL)) (-3074 (((-784) $) NIL) (((-784) $ |#2|) NIL)) (-1998 (((-657 |#3|) $) NIL)) (-1825 (((-1194 $) $ |#3|) NIL) (((-1194 |#1|) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 |#3|)) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3188 (($ $) NIL (|has| |#1| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2549 (($ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1147 |#1| |#2|) "failed") $) 23)) (-2830 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1147 |#1| |#2|) $) NIL)) (-4351 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-2165 (($ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#1| (-929)))) (-2643 (($ $ |#1| (-543 |#3|) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| |#1| (-902 (-390))) (|has| |#3| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| |#1| (-902 (-576))) (|has| |#3| (-902 (-576)))))) (-2650 (((-784) $ |#2|) NIL) (((-784) $) 10)) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-1986 (($ (-1194 |#1|) |#3|) NIL) (($ (-1194 $) |#3|) NIL)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-543 |#3|)) NIL) (($ $ |#3| (-784)) NIL) (($ $ (-657 |#3|) (-657 (-784))) NIL)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ |#3|) NIL)) (-4219 (((-543 |#3|) $) NIL) (((-784) $ |#3|) NIL) (((-657 (-784)) $ (-657 |#3|)) NIL)) (-2308 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3359 (((-1 $ (-784)) |#2|) NIL) (((-1 $ (-784)) $) NIL (|has| |#1| (-238)))) (-2502 (((-3 |#3| "failed") $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-1582 ((|#3| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1708 (((-1180) $) NIL)) (-4298 (((-112) $) NIL)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| |#3|) (|:| -2128 (-784))) "failed") $) NIL)) (-4268 (($ $) NIL)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) NIL)) (-2118 ((|#1| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-929)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-657 |#3|) (-657 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-657 |#3|) (-657 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-657 |#2|) (-657 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-657 |#2|) (-657 |#1|)) NIL (|has| |#1| (-238)))) (-1465 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-2209 (($ $ (-657 |#3|) (-657 (-784))) NIL) (($ $ |#3| (-784)) NIL) (($ $ (-657 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-2297 (((-657 |#2|) $) NIL)) (-4265 (((-543 |#3|) $) NIL) (((-784) $ |#3|) NIL) (((-657 (-784)) $ (-657 |#3|)) NIL) (((-784) $ |#2|) NIL)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#3| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#3| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))) (-3614 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1147 |#1| |#2|)) 32) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-543 |#3|)) NIL) (($ $ |#3| (-784)) NIL) (($ $ (-657 |#3|) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-657 |#3|) (-657 (-784))) NIL) (($ $ |#3| (-784)) NIL) (($ $ (-657 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-273 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1060 (-1147 |#1| |#2|))) (-1071) (-862) (-275 |#2|)) (T -273)) +NIL +(-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1060 (-1147 |#1| |#2|))) +((-3074 (((-784) $) 37)) (-1593 (((-3 |#2| "failed") $) 22)) (-2830 ((|#2| $) 33)) (-2209 (($ $ (-784)) 18) (($ $) 14)) (-3515 (((-877) $) 32) (($ |#2|) 11)) (-2881 (((-112) $ $) 26)) (-2901 (((-112) $ $) 36))) +(((-274 |#1| |#2|) (-10 -8 (-15 -3074 ((-784) |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2901 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -2881 ((-112) |#1| |#1|))) (-275 |#2|) (-862)) (T -274)) +NIL +(-10 -8 (-15 -3074 ((-784) |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2901 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -2881 ((-112) |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-3074 (((-784) $) 23)) (-2993 ((|#1| $) 24)) (-1593 (((-3 |#1| "failed") $) 28)) (-2830 ((|#1| $) 29)) (-2650 (((-784) $) 25)) (-3740 (($ $ $) 20)) (-2249 (($ $ $) 19)) (-3359 (($ |#1| (-784)) 26)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-2209 (($ $ (-784)) 32) (($ $) 30)) (-3515 (((-877) $) 12) (($ |#1|) 27)) (-4166 (((-112) $ $) 6)) (-2066 (($ $ (-784)) 33) (($ $) 31)) (-2938 (((-112) $ $) 18)) (-2913 (((-112) $ $) 16)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 17)) (-2901 (((-112) $ $) 15))) +(((-275 |#1|) (-141) (-862)) (T -275)) +((-3515 (*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-3359 (*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-784)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-784))))) +(-13 (-862) (-237) (-1060 |t#1|) (-10 -8 (-15 -3359 ($ |t#1| (-784))) (-15 -2650 ((-784) $)) (-15 -2993 (|t#1| $)) (-15 -3074 ((-784) $)) (-15 -3515 ($ |t#1|)))) +(((-102) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-234 $) . T) ((-237) . T) ((-862) . T) ((-865) . T) ((-1060 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-1998 (((-657 (-1198)) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) 53)) (-3375 (((-657 (-1198)) (-326 (-227)) (-784)) 94)) (-3744 (((-3 (-326 (-227)) "failed") (-326 (-227))) 63)) (-1852 (((-326 (-227)) (-326 (-227))) 79)) (-4133 (((-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 38)) (-3334 (((-112) (-657 (-326 (-227)))) 104)) (-4037 (((-112) (-326 (-227))) 36)) (-4001 (((-657 (-1180)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))))) 132)) (-2236 (((-657 (-326 (-227))) (-657 (-326 (-227)))) 108)) (-4084 (((-657 (-326 (-227))) (-657 (-326 (-227)))) 106)) (-1545 (((-702 (-227)) (-657 (-326 (-227))) (-784)) 120)) (-1964 (((-112) (-326 (-227))) 31) (((-112) (-657 (-326 (-227)))) 105)) (-2807 (((-657 (-227)) (-657 (-856 (-227))) (-227)) 15)) (-1480 (((-390) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) 126)) (-4091 (((-1057) (-1198) (-1057)) 46))) +(((-276) (-10 -7 (-15 -2807 ((-657 (-227)) (-657 (-856 (-227))) (-227))) (-15 -4133 ((-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))))) (-15 -3744 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -1852 ((-326 (-227)) (-326 (-227)))) (-15 -3334 ((-112) (-657 (-326 (-227))))) (-15 -1964 ((-112) (-657 (-326 (-227))))) (-15 -1964 ((-112) (-326 (-227)))) (-15 -1545 ((-702 (-227)) (-657 (-326 (-227))) (-784))) (-15 -4084 ((-657 (-326 (-227))) (-657 (-326 (-227))))) (-15 -2236 ((-657 (-326 (-227))) (-657 (-326 (-227))))) (-15 -4037 ((-112) (-326 (-227)))) (-15 -1998 ((-657 (-1198)) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))) (-15 -3375 ((-657 (-1198)) (-326 (-227)) (-784))) (-15 -4091 ((-1057) (-1198) (-1057))) (-15 -1480 ((-390) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))) (-15 -4001 ((-657 (-1180)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))))))) (T -276)) +((-4001 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))))) (-5 *2 (-657 (-1180))) (-5 *1 (-276)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) (-5 *2 (-390)) (-5 *1 (-276)))) (-4091 (*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-1198)) (-5 *1 (-276)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-784)) (-5 *2 (-657 (-1198))) (-5 *1 (-276)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) (-5 *2 (-657 (-1198))) (-5 *1 (-276)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-657 (-326 (-227)))) (-5 *1 (-276)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-657 (-326 (-227)))) (-5 *1 (-276)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-326 (-227)))) (-5 *4 (-784)) (-5 *2 (-702 (-227))) (-5 *1 (-276)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-657 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-657 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-1852 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-3744 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-4133 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (-5 *1 (-276)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-856 (-227)))) (-5 *4 (-227)) (-5 *2 (-657 *4)) (-5 *1 (-276))))) +(-10 -7 (-15 -2807 ((-657 (-227)) (-657 (-856 (-227))) (-227))) (-15 -4133 ((-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))))) (-15 -3744 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -1852 ((-326 (-227)) (-326 (-227)))) (-15 -3334 ((-112) (-657 (-326 (-227))))) (-15 -1964 ((-112) (-657 (-326 (-227))))) (-15 -1964 ((-112) (-326 (-227)))) (-15 -1545 ((-702 (-227)) (-657 (-326 (-227))) (-784))) (-15 -4084 ((-657 (-326 (-227))) (-657 (-326 (-227))))) (-15 -2236 ((-657 (-326 (-227))) (-657 (-326 (-227))))) (-15 -4037 ((-112) (-326 (-227)))) (-15 -1998 ((-657 (-1198)) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))) (-15 -3375 ((-657 (-1198)) (-326 (-227)) (-784))) (-15 -4091 ((-1057) (-1198) (-1057))) (-15 -1480 ((-390) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))) (-15 -4001 ((-657 (-1180)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))))))) +((-3423 (((-112) $ $) NIL)) (-1767 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 56)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 32) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-277) (-852)) (T -277)) +NIL +(-852) +((-3423 (((-112) $ $) NIL)) (-1767 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) 72) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 63)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 41) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) 43)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-278) (-852)) (T -278)) +NIL +(-852) +((-3423 (((-112) $ $) NIL)) (-1767 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) 90) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 85)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 52) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) 65)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-279) (-852)) (T -279)) +NIL +(-852) +((-3423 (((-112) $ $) NIL)) (-1767 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 73)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 45) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-280) (-852)) (T -280)) +NIL +(-852) +((-3423 (((-112) $ $) NIL)) (-1767 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 65)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 31) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-281) (-852)) (T -281)) +NIL +(-852) +((-3423 (((-112) $ $) NIL)) (-1767 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 90)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 33) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-282) (-852)) (T -282)) +NIL +(-852) +((-3423 (((-112) $ $) NIL)) (-1767 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 87)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 32) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-283) (-852)) (T -283)) +NIL +(-852) +((-3423 (((-112) $ $) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1618 (((-657 (-576)) $) 29)) (-4265 (((-784) $) 27)) (-3515 (((-877) $) 33) (($ (-657 (-576))) 23)) (-4166 (((-112) $ $) NIL)) (-3172 (($ (-784)) 30)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 9)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 17))) +(((-284) (-13 (-862) (-10 -8 (-15 -3515 ($ (-657 (-576)))) (-15 -4265 ((-784) $)) (-15 -1618 ((-657 (-576)) $)) (-15 -3172 ($ (-784)))))) (T -284)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-284)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-284)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-284)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-284))))) +(-13 (-862) (-10 -8 (-15 -3515 ($ (-657 (-576)))) (-15 -4265 ((-784) $)) (-15 -1618 ((-657 (-576)) $)) (-15 -3172 ($ (-784))))) +((-2143 ((|#2| |#2|) 77)) (-2012 ((|#2| |#2|) 65)) (-2896 (((-3 |#2| "failed") |#2| (-657 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2120 ((|#2| |#2|) 75)) (-1989 ((|#2| |#2|) 63)) (-2166 ((|#2| |#2|) 79)) (-2033 ((|#2| |#2|) 67)) (-1622 ((|#2|) 46)) (-1803 (((-115) (-115)) 100)) (-3707 ((|#2| |#2|) 61)) (-4290 (((-112) |#2|) 147)) (-4073 ((|#2| |#2|) 195)) (-2765 ((|#2| |#2|) 171)) (-3635 ((|#2|) 59)) (-3364 ((|#2|) 58)) (-2950 ((|#2| |#2|) 191)) (-3965 ((|#2| |#2|) 167)) (-1353 ((|#2| |#2|) 199)) (-4186 ((|#2| |#2|) 175)) (-3306 ((|#2| |#2|) 163)) (-2433 ((|#2| |#2|) 165)) (-2219 ((|#2| |#2|) 201)) (-3961 ((|#2| |#2|) 177)) (-3891 ((|#2| |#2|) 197)) (-2458 ((|#2| |#2|) 173)) (-4105 ((|#2| |#2|) 193)) (-1813 ((|#2| |#2|) 169)) (-3344 ((|#2| |#2|) 207)) (-2265 ((|#2| |#2|) 183)) (-3531 ((|#2| |#2|) 203)) (-3171 ((|#2| |#2|) 179)) (-3544 ((|#2| |#2|) 211)) (-3200 ((|#2| |#2|) 187)) (-1834 ((|#2| |#2|) 213)) (-1556 ((|#2| |#2|) 189)) (-1693 ((|#2| |#2|) 209)) (-2521 ((|#2| |#2|) 185)) (-2970 ((|#2| |#2|) 205)) (-1642 ((|#2| |#2|) 181)) (-4056 ((|#2| |#2|) 62)) (-2177 ((|#2| |#2|) 80)) (-2042 ((|#2| |#2|) 68)) (-2155 ((|#2| |#2|) 78)) (-2023 ((|#2| |#2|) 66)) (-2131 ((|#2| |#2|) 76)) (-2002 ((|#2| |#2|) 64)) (-2946 (((-112) (-115)) 98)) (-4110 ((|#2| |#2|) 83)) (-2082 ((|#2| |#2|) 71)) (-2188 ((|#2| |#2|) 81)) (-2055 ((|#2| |#2|) 69)) (-4137 ((|#2| |#2|) 85)) (-2100 ((|#2| |#2|) 73)) (-1864 ((|#2| |#2|) 86)) (-2110 ((|#2| |#2|) 74)) (-4123 ((|#2| |#2|) 84)) (-2090 ((|#2| |#2|) 72)) (-4097 ((|#2| |#2|) 82)) (-2070 ((|#2| |#2|) 70))) +(((-285 |#1| |#2|) (-10 -7 (-15 -4056 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -1989 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -2012 (|#2| |#2|)) (-15 -2023 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -2042 (|#2| |#2|)) (-15 -2055 (|#2| |#2|)) (-15 -2070 (|#2| |#2|)) (-15 -2082 (|#2| |#2|)) (-15 -2090 (|#2| |#2|)) (-15 -2100 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -2120 (|#2| |#2|)) (-15 -2131 (|#2| |#2|)) (-15 -2143 (|#2| |#2|)) (-15 -2155 (|#2| |#2|)) (-15 -2166 (|#2| |#2|)) (-15 -2177 (|#2| |#2|)) (-15 -2188 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4110 (|#2| |#2|)) (-15 -4123 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -1864 (|#2| |#2|)) (-15 -1622 (|#2|)) (-15 -2946 ((-112) (-115))) (-15 -1803 ((-115) (-115))) (-15 -3364 (|#2|)) (-15 -3635 (|#2|)) (-15 -2433 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -3965 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -2458 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3171 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -2265 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -3200 (|#2| |#2|)) (-15 -1556 (|#2| |#2|)) (-15 -2950 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -1353 (|#2| |#2|)) (-15 -2219 (|#2| |#2|)) (-15 -3531 (|#2| |#2|)) (-15 -2970 (|#2| |#2|)) (-15 -3344 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -3544 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -2896 ((-3 |#2| "failed") |#2| (-657 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4290 ((-112) |#2|))) (-568) (-13 (-442 |#1|) (-1024))) (T -285)) +((-4290 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-442 *4) (-1024))))) (-2896 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-657 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-442 *4) (-1024))) (-4 *4 (-568)) (-5 *1 (-285 *4 *2)))) (-1834 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3544 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-1693 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3344 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2970 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3531 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-1353 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4105 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2950 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-1556 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3200 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2265 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-1642 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3171 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-1813 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3965 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3306 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2433 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3635 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1024))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-3364 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1024))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) (-4 *4 (-13 (-442 *3) (-1024))))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1024))))) (-1622 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1024))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1864 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4123 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4110 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2188 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2177 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2166 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2143 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2131 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2120 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2100 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2090 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2082 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2070 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2055 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2042 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2023 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2012 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4056 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024)))))) +(-10 -7 (-15 -4056 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -1989 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -2012 (|#2| |#2|)) (-15 -2023 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -2042 (|#2| |#2|)) (-15 -2055 (|#2| |#2|)) (-15 -2070 (|#2| |#2|)) (-15 -2082 (|#2| |#2|)) (-15 -2090 (|#2| |#2|)) (-15 -2100 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -2120 (|#2| |#2|)) (-15 -2131 (|#2| |#2|)) (-15 -2143 (|#2| |#2|)) (-15 -2155 (|#2| |#2|)) (-15 -2166 (|#2| |#2|)) (-15 -2177 (|#2| |#2|)) (-15 -2188 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4110 (|#2| |#2|)) (-15 -4123 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -1864 (|#2| |#2|)) (-15 -1622 (|#2|)) (-15 -2946 ((-112) (-115))) (-15 -1803 ((-115) (-115))) (-15 -3364 (|#2|)) (-15 -3635 (|#2|)) (-15 -2433 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -3965 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -2458 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3171 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -2265 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -3200 (|#2| |#2|)) (-15 -1556 (|#2| |#2|)) (-15 -2950 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -1353 (|#2| |#2|)) (-15 -2219 (|#2| |#2|)) (-15 -3531 (|#2| |#2|)) (-15 -2970 (|#2| |#2|)) (-15 -3344 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -3544 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -2896 ((-3 |#2| "failed") |#2| (-657 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4290 ((-112) |#2|))) +((-3183 (((-3 |#2| "failed") (-657 (-624 |#2|)) |#2| (-1198)) 151)) (-2010 ((|#2| (-419 (-576)) |#2|) 49)) (-2820 ((|#2| |#2| (-624 |#2|)) 144)) (-3586 (((-2 (|:| |func| |#2|) (|:| |kers| (-657 (-624 |#2|))) (|:| |vals| (-657 |#2|))) |#2| (-1198)) 143)) (-3757 ((|#2| |#2| (-1198)) 20) ((|#2| |#2|) 23)) (-3435 ((|#2| |#2| (-1198)) 157) ((|#2| |#2|) 155))) +(((-286 |#1| |#2|) (-10 -7 (-15 -3435 (|#2| |#2|)) (-15 -3435 (|#2| |#2| (-1198))) (-15 -3586 ((-2 (|:| |func| |#2|) (|:| |kers| (-657 (-624 |#2|))) (|:| |vals| (-657 |#2|))) |#2| (-1198))) (-15 -3757 (|#2| |#2|)) (-15 -3757 (|#2| |#2| (-1198))) (-15 -3183 ((-3 |#2| "failed") (-657 (-624 |#2|)) |#2| (-1198))) (-15 -2820 (|#2| |#2| (-624 |#2|))) (-15 -2010 (|#2| (-419 (-576)) |#2|))) (-13 (-568) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -286)) +((-2010 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) (-2820 (*1 *2 *2 *3) (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))) (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *4 *2)))) (-3183 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-657 (-624 *2))) (-5 *4 (-1198)) (-4 *2 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *5 *2)))) (-3757 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) (-3757 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) (-3586 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-657 (-624 *3))) (|:| |vals| (-657 *3)))) (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-3435 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3)))))) +(-10 -7 (-15 -3435 (|#2| |#2|)) (-15 -3435 (|#2| |#2| (-1198))) (-15 -3586 ((-2 (|:| |func| |#2|) (|:| |kers| (-657 (-624 |#2|))) (|:| |vals| (-657 |#2|))) |#2| (-1198))) (-15 -3757 (|#2| |#2|)) (-15 -3757 (|#2| |#2| (-1198))) (-15 -3183 ((-3 |#2| "failed") (-657 (-624 |#2|)) |#2| (-1198))) (-15 -2820 (|#2| |#2| (-624 |#2|))) (-15 -2010 (|#2| (-419 (-576)) |#2|))) +((-3143 (((-3 |#3| "failed") |#3|) 120)) (-2143 ((|#3| |#3|) 142)) (-1659 (((-3 |#3| "failed") |#3|) 89)) (-2012 ((|#3| |#3|) 132)) (-3153 (((-3 |#3| "failed") |#3|) 65)) (-2120 ((|#3| |#3|) 140)) (-4189 (((-3 |#3| "failed") |#3|) 53)) (-1989 ((|#3| |#3|) 130)) (-2414 (((-3 |#3| "failed") |#3|) 122)) (-2166 ((|#3| |#3|) 144)) (-2877 (((-3 |#3| "failed") |#3|) 91)) (-2033 ((|#3| |#3|) 134)) (-1896 (((-3 |#3| "failed") |#3| (-784)) 41)) (-4380 (((-3 |#3| "failed") |#3|) 81)) (-3707 ((|#3| |#3|) 129)) (-1366 (((-3 |#3| "failed") |#3|) 51)) (-4056 ((|#3| |#3|) 128)) (-1938 (((-3 |#3| "failed") |#3|) 123)) (-2177 ((|#3| |#3|) 145)) (-2507 (((-3 |#3| "failed") |#3|) 92)) (-2042 ((|#3| |#3|) 135)) (-3273 (((-3 |#3| "failed") |#3|) 121)) (-2155 ((|#3| |#3|) 143)) (-3400 (((-3 |#3| "failed") |#3|) 90)) (-2023 ((|#3| |#3|) 133)) (-3108 (((-3 |#3| "failed") |#3|) 67)) (-2131 ((|#3| |#3|) 141)) (-2686 (((-3 |#3| "failed") |#3|) 55)) (-2002 ((|#3| |#3|) 131)) (-3413 (((-3 |#3| "failed") |#3|) 73)) (-4110 ((|#3| |#3|) 148)) (-3773 (((-3 |#3| "failed") |#3|) 114)) (-2082 ((|#3| |#3|) 152)) (-2706 (((-3 |#3| "failed") |#3|) 69)) (-2188 ((|#3| |#3|) 146)) (-2755 (((-3 |#3| "failed") |#3|) 57)) (-2055 ((|#3| |#3|) 136)) (-2744 (((-3 |#3| "failed") |#3|) 77)) (-4137 ((|#3| |#3|) 150)) (-2941 (((-3 |#3| "failed") |#3|) 61)) (-2100 ((|#3| |#3|) 138)) (-1442 (((-3 |#3| "failed") |#3|) 79)) (-1864 ((|#3| |#3|) 151)) (-3679 (((-3 |#3| "failed") |#3|) 63)) (-2110 ((|#3| |#3|) 139)) (-1608 (((-3 |#3| "failed") |#3|) 75)) (-4123 ((|#3| |#3|) 149)) (-2608 (((-3 |#3| "failed") |#3|) 117)) (-2090 ((|#3| |#3|) 153)) (-3689 (((-3 |#3| "failed") |#3|) 71)) (-4097 ((|#3| |#3|) 147)) (-2073 (((-3 |#3| "failed") |#3|) 59)) (-2070 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-419 (-576))) 47 (|has| |#1| (-374))))) +(((-287 |#1| |#2| |#3|) (-13 (-1005 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4056 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -1989 (|#3| |#3|)) (-15 -2002 (|#3| |#3|)) (-15 -2012 (|#3| |#3|)) (-15 -2023 (|#3| |#3|)) (-15 -2033 (|#3| |#3|)) (-15 -2042 (|#3| |#3|)) (-15 -2055 (|#3| |#3|)) (-15 -2070 (|#3| |#3|)) (-15 -2082 (|#3| |#3|)) (-15 -2090 (|#3| |#3|)) (-15 -2100 (|#3| |#3|)) (-15 -2110 (|#3| |#3|)) (-15 -2120 (|#3| |#3|)) (-15 -2131 (|#3| |#3|)) (-15 -2143 (|#3| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -2166 (|#3| |#3|)) (-15 -2177 (|#3| |#3|)) (-15 -2188 (|#3| |#3|)) (-15 -4097 (|#3| |#3|)) (-15 -4110 (|#3| |#3|)) (-15 -4123 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -1864 (|#3| |#3|)))) (-38 (-419 (-576))) (-1280 |#1|) (-1251 |#1| |#2|)) (T -287)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1280 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1251 *4 *5)))) (-4056 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2012 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2023 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2042 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2055 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2070 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2082 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2090 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2100 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2120 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2131 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2143 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2166 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2177 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2188 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4110 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4123 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-1864 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4))))) +(-13 (-1005 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4056 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -1989 (|#3| |#3|)) (-15 -2002 (|#3| |#3|)) (-15 -2012 (|#3| |#3|)) (-15 -2023 (|#3| |#3|)) (-15 -2033 (|#3| |#3|)) (-15 -2042 (|#3| |#3|)) (-15 -2055 (|#3| |#3|)) (-15 -2070 (|#3| |#3|)) (-15 -2082 (|#3| |#3|)) (-15 -2090 (|#3| |#3|)) (-15 -2100 (|#3| |#3|)) (-15 -2110 (|#3| |#3|)) (-15 -2120 (|#3| |#3|)) (-15 -2131 (|#3| |#3|)) (-15 -2143 (|#3| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -2166 (|#3| |#3|)) (-15 -2177 (|#3| |#3|)) (-15 -2188 (|#3| |#3|)) (-15 -4097 (|#3| |#3|)) (-15 -4110 (|#3| |#3|)) (-15 -4123 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -1864 (|#3| |#3|)))) +((-3143 (((-3 |#3| "failed") |#3|) 70)) (-2143 ((|#3| |#3|) 137)) (-1659 (((-3 |#3| "failed") |#3|) 54)) (-2012 ((|#3| |#3|) 125)) (-3153 (((-3 |#3| "failed") |#3|) 66)) (-2120 ((|#3| |#3|) 135)) (-4189 (((-3 |#3| "failed") |#3|) 50)) (-1989 ((|#3| |#3|) 123)) (-2414 (((-3 |#3| "failed") |#3|) 74)) (-2166 ((|#3| |#3|) 139)) (-2877 (((-3 |#3| "failed") |#3|) 58)) (-2033 ((|#3| |#3|) 127)) (-1896 (((-3 |#3| "failed") |#3| (-784)) 38)) (-4380 (((-3 |#3| "failed") |#3|) 48)) (-3707 ((|#3| |#3|) 111)) (-1366 (((-3 |#3| "failed") |#3|) 46)) (-4056 ((|#3| |#3|) 122)) (-1938 (((-3 |#3| "failed") |#3|) 76)) (-2177 ((|#3| |#3|) 140)) (-2507 (((-3 |#3| "failed") |#3|) 60)) (-2042 ((|#3| |#3|) 128)) (-3273 (((-3 |#3| "failed") |#3|) 72)) (-2155 ((|#3| |#3|) 138)) (-3400 (((-3 |#3| "failed") |#3|) 56)) (-2023 ((|#3| |#3|) 126)) (-3108 (((-3 |#3| "failed") |#3|) 68)) (-2131 ((|#3| |#3|) 136)) (-2686 (((-3 |#3| "failed") |#3|) 52)) (-2002 ((|#3| |#3|) 124)) (-3413 (((-3 |#3| "failed") |#3|) 78)) (-4110 ((|#3| |#3|) 143)) (-3773 (((-3 |#3| "failed") |#3|) 62)) (-2082 ((|#3| |#3|) 131)) (-2706 (((-3 |#3| "failed") |#3|) 112)) (-2188 ((|#3| |#3|) 141)) (-2755 (((-3 |#3| "failed") |#3|) 100)) (-2055 ((|#3| |#3|) 129)) (-2744 (((-3 |#3| "failed") |#3|) 116)) (-4137 ((|#3| |#3|) 145)) (-2941 (((-3 |#3| "failed") |#3|) 107)) (-2100 ((|#3| |#3|) 133)) (-1442 (((-3 |#3| "failed") |#3|) 117)) (-1864 ((|#3| |#3|) 146)) (-3679 (((-3 |#3| "failed") |#3|) 109)) (-2110 ((|#3| |#3|) 134)) (-1608 (((-3 |#3| "failed") |#3|) 80)) (-4123 ((|#3| |#3|) 144)) (-2608 (((-3 |#3| "failed") |#3|) 64)) (-2090 ((|#3| |#3|) 132)) (-3689 (((-3 |#3| "failed") |#3|) 113)) (-4097 ((|#3| |#3|) 142)) (-2073 (((-3 |#3| "failed") |#3|) 103)) (-2070 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-419 (-576))) 44 (|has| |#1| (-374))))) +(((-288 |#1| |#2| |#3| |#4|) (-13 (-1005 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4056 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -1989 (|#3| |#3|)) (-15 -2002 (|#3| |#3|)) (-15 -2012 (|#3| |#3|)) (-15 -2023 (|#3| |#3|)) (-15 -2033 (|#3| |#3|)) (-15 -2042 (|#3| |#3|)) (-15 -2055 (|#3| |#3|)) (-15 -2070 (|#3| |#3|)) (-15 -2082 (|#3| |#3|)) (-15 -2090 (|#3| |#3|)) (-15 -2100 (|#3| |#3|)) (-15 -2110 (|#3| |#3|)) (-15 -2120 (|#3| |#3|)) (-15 -2131 (|#3| |#3|)) (-15 -2143 (|#3| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -2166 (|#3| |#3|)) (-15 -2177 (|#3| |#3|)) (-15 -2188 (|#3| |#3|)) (-15 -4097 (|#3| |#3|)) (-15 -4110 (|#3| |#3|)) (-15 -4123 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -1864 (|#3| |#3|)))) (-38 (-419 (-576))) (-1249 |#1|) (-1272 |#1| |#2|) (-1005 |#2|)) (T -288)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1249 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1272 *4 *5)) (-4 *6 (-1005 *5)))) (-4056 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2012 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2023 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2042 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2055 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2070 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2082 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2090 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2100 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2120 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2131 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2143 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2166 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2177 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2188 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-4110 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-4123 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-1864 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4))))) +(-13 (-1005 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4056 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -1989 (|#3| |#3|)) (-15 -2002 (|#3| |#3|)) (-15 -2012 (|#3| |#3|)) (-15 -2023 (|#3| |#3|)) (-15 -2033 (|#3| |#3|)) (-15 -2042 (|#3| |#3|)) (-15 -2055 (|#3| |#3|)) (-15 -2070 (|#3| |#3|)) (-15 -2082 (|#3| |#3|)) (-15 -2090 (|#3| |#3|)) (-15 -2100 (|#3| |#3|)) (-15 -2110 (|#3| |#3|)) (-15 -2120 (|#3| |#3|)) (-15 -2131 (|#3| |#3|)) (-15 -2143 (|#3| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -2166 (|#3| |#3|)) (-15 -2177 (|#3| |#3|)) (-15 -2188 (|#3| |#3|)) (-15 -4097 (|#3| |#3|)) (-15 -4110 (|#3| |#3|)) (-15 -4123 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -1864 (|#3| |#3|)))) +((-3683 (((-112) $) 20)) (-2975 (((-1203) $) 7)) (-3947 (((-3 (-518) "failed") $) 14)) (-4074 (((-3 (-657 $) "failed") $) NIL)) (-4223 (((-3 (-518) "failed") $) 21)) (-3650 (((-3 (-1126) "failed") $) 18)) (-1807 (((-112) $) 16)) (-3515 (((-877) $) NIL)) (-4259 (((-112) $) 9))) +(((-289) (-13 (-625 (-877)) (-10 -8 (-15 -2975 ((-1203) $)) (-15 -1807 ((-112) $)) (-15 -3650 ((-3 (-1126) "failed") $)) (-15 -3683 ((-112) $)) (-15 -4223 ((-3 (-518) "failed") $)) (-15 -4259 ((-112) $)) (-15 -3947 ((-3 (-518) "failed") $)) (-15 -4074 ((-3 (-657 $) "failed") $))))) (T -289)) +((-2975 (*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-289)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-3650 (*1 *2 *1) (|partial| -12 (-5 *2 (-1126)) (-5 *1 (-289)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-4223 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-4259 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-3947 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-4074 (*1 *2 *1) (|partial| -12 (-5 *2 (-657 (-289))) (-5 *1 (-289))))) +(-13 (-625 (-877)) (-10 -8 (-15 -2975 ((-1203) $)) (-15 -1807 ((-112) $)) (-15 -3650 ((-3 (-1126) "failed") $)) (-15 -3683 ((-112) $)) (-15 -4223 ((-3 (-518) "failed") $)) (-15 -4259 ((-112) $)) (-15 -3947 ((-3 (-518) "failed") $)) (-15 -4074 ((-3 (-657 $) "failed") $)))) +((-4263 (((-609) $) 10)) (-2305 (((-597) $) 8)) (-3386 (((-301) $) 12)) (-3973 (($ (-597) (-609) (-301)) NIL)) (-3515 (((-877) $) 19))) +(((-290) (-13 (-625 (-877)) (-10 -8 (-15 -3973 ($ (-597) (-609) (-301))) (-15 -2305 ((-597) $)) (-15 -4263 ((-609) $)) (-15 -3386 ((-301) $))))) (T -290)) +((-3973 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) +(-13 (-625 (-877)) (-10 -8 (-15 -3973 ($ (-597) (-609) (-301))) (-15 -2305 ((-597) $)) (-15 -4263 ((-609) $)) (-15 -3386 ((-301) $)))) +((-2007 (($ (-1 (-112) |#2|) $) 24)) (-1620 (($ $) 38)) (-1920 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3901 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-1631 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2225 (($ |#2| $ (-576)) 20) (($ $ $ (-576)) 22)) (-3395 (($ $ (-576)) 11) (($ $ (-1256 (-576))) 14)) (-2752 (($ $ |#2|) 32) (($ $ $) NIL)) (-1637 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-657 $)) NIL))) +(((-291 |#1| |#2|) (-10 -8 (-15 -1631 (|#1| |#1| |#1|)) (-15 -1920 (|#1| |#2| |#1|)) (-15 -1631 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1920 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2752 (|#1| |#1| |#1|)) (-15 -2752 (|#1| |#1| |#2|)) (-15 -2225 (|#1| |#1| |#1| (-576))) (-15 -2225 (|#1| |#2| |#1| (-576))) (-15 -3395 (|#1| |#1| (-1256 (-576)))) (-15 -3395 (|#1| |#1| (-576))) (-15 -1637 (|#1| (-657 |#1|))) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#2| |#1|)) (-15 -1637 (|#1| |#1| |#2|)) (-15 -3901 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2007 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3901 (|#1| |#2| |#1|)) (-15 -1620 (|#1| |#1|))) (-292 |#2|) (-1239)) (T -291)) +NIL +(-10 -8 (-15 -1631 (|#1| |#1| |#1|)) (-15 -1920 (|#1| |#2| |#1|)) (-15 -1631 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1920 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2752 (|#1| |#1| |#1|)) (-15 -2752 (|#1| |#1| |#2|)) (-15 -2225 (|#1| |#1| |#1| (-576))) (-15 -2225 (|#1| |#2| |#1| (-576))) (-15 -3395 (|#1| |#1| (-1256 (-576)))) (-15 -3395 (|#1| |#1| (-576))) (-15 -1637 (|#1| (-657 |#1|))) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#2| |#1|)) (-15 -1637 (|#1| |#1| |#2|)) (-15 -3901 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2007 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3901 (|#1| |#2| |#1|)) (-15 -1620 (|#1| |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3590 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) 8)) (-3719 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 60 (|has| $ (-6 -4467)))) (-3726 (($ (-1 (-112) |#1|) $) 88)) (-2007 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-3588 (($ $) 86 (|has| |#1| (-1122)))) (-1620 (($ $) 80 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1920 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1122)))) (-3901 (($ |#1| $) 79 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) 52)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-4096 (($ (-784) |#1|) 70)) (-1786 (((-112) $ (-784)) 9)) (-3363 (((-576) $) 44 (|has| (-576) (-862)))) (-1631 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1833 (((-576) $) 45 (|has| (-576) (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-2701 (($ |#1| $ (-576)) 91) (($ $ $ (-576)) 90)) (-2225 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3309 (((-657 (-576)) $) 47)) (-4324 (((-112) (-576) $) 48)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3528 ((|#1| $) 43 (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1495 (($ $ |#1|) 42 (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) 49)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1256 (-576))) 71)) (-2683 (($ $ (-576)) 94) (($ $ (-1256 (-576))) 93)) (-3395 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-4136 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 72)) (-2752 (($ $ |#1|) 96) (($ $ $) 95)) (-1637 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-292 |#1|) (-141) (-1239)) (T -292)) +((-2752 (*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)))) (-2752 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-1256 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) (-1920 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) (-2701 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1239)))) (-2701 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) (-1631 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) (-3726 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) (-1920 (*1 *1 *2 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)) (-4 *2 (-1122)))) (-3588 (*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)) (-4 *2 (-1122)))) (-1631 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)) (-4 *2 (-862))))) +(-13 (-664 |t#1|) (-10 -8 (-6 -4467) (-15 -2752 ($ $ |t#1|)) (-15 -2752 ($ $ $)) (-15 -2683 ($ $ (-576))) (-15 -2683 ($ $ (-1256 (-576)))) (-15 -1920 ($ (-1 (-112) |t#1|) $)) (-15 -2701 ($ |t#1| $ (-576))) (-15 -2701 ($ $ $ (-576))) (-15 -1631 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3726 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -1920 ($ |t#1| $)) (-15 -3588 ($ $))) |%noBranch|) (IF (|has| |t#1| (-862)) (-15 -1631 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) ((** (($ $ $) 10))) (((-293 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-294)) (T -293)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2608 (($ $) 6)) (-2156 (($ $) 7)) (** (($ $ $) 8))) +((-3707 (($ $) 6)) (-4056 (($ $) 7)) (** (($ $ $) 8))) (((-294) (-141)) (T -294)) -((** (*1 *1 *1 *1) (-4 *1 (-294))) (-2156 (*1 *1 *1) (-4 *1 (-294))) (-2608 (*1 *1 *1) (-4 *1 (-294)))) -(-13 (-10 -8 (-15 -2608 ($ $)) (-15 -2156 ($ $)) (-15 ** ($ $ $)))) -((-1883 (((-656 (-1178 |#1|)) (-1178 |#1|) |#1|) 35)) (-3054 ((|#2| |#2| |#1|) 39)) (-4115 ((|#2| |#2| |#1|) 41)) (-3447 ((|#2| |#2| |#1|) 40))) -(((-295 |#1| |#2|) (-10 -7 (-15 -3054 (|#2| |#2| |#1|)) (-15 -3447 (|#2| |#2| |#1|)) (-15 -4115 (|#2| |#2| |#1|)) (-15 -1883 ((-656 (-1178 |#1|)) (-1178 |#1|) |#1|))) (-374) (-1279 |#1|)) (T -295)) -((-1883 (*1 *2 *3 *4) (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1178 *4))) (-5 *1 (-295 *4 *5)) (-5 *3 (-1178 *4)) (-4 *5 (-1279 *4)))) (-4115 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3)))) (-3447 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3)))) (-3054 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) -(-10 -7 (-15 -3054 (|#2| |#2| |#1|)) (-15 -3447 (|#2| |#2| |#1|)) (-15 -4115 (|#2| |#2| |#1|)) (-15 -1883 ((-656 (-1178 |#1|)) (-1178 |#1|) |#1|))) -((-4369 ((|#2| $ |#1|) 6))) -(((-296 |#1| |#2|) (-141) (-1238) (-1238)) (T -296)) -((-4369 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1238)) (-4 *2 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -4369 (|t#2| $ |t#1|)))) -(((-1238) . T)) -((-1910 ((|#3| $ |#2| |#3|) 12)) (-3721 ((|#3| $ |#2|) 10))) -(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -1910 (|#3| |#1| |#2| |#3|)) (-15 -3721 (|#3| |#1| |#2|))) (-298 |#2| |#3|) (-1121) (-1238)) (T -297)) -NIL -(-10 -8 (-15 -1910 (|#3| |#1| |#2| |#3|)) (-15 -3721 (|#3| |#1| |#2|))) -((-4268 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4465)))) (-1910 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4465)))) (-3721 ((|#2| $ |#1|) 11)) (-4369 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-298 |#1| |#2|) (-141) (-1121) (-1238)) (T -298)) -((-4369 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-3721 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-4268 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-1910 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238))))) -(-13 (-296 |t#1| |t#2|) (-10 -8 (-15 -4369 (|t#2| $ |t#1| |t#2|)) (-15 -3721 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4465)) (PROGN (-15 -4268 (|t#2| $ |t#1| |t#2|)) (-15 -1910 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-296 |#1| |#2|) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 37)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 44)) (-2390 (($ $) 41)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-4386 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-1895 (($ $ $) 35)) (-2721 (($ |#2| |#3|) 18)) (-1851 (((-3 $ "failed") $) NIL)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2486 (((-112) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1488 ((|#3| $) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 19)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1867 (((-3 $ "failed") $ $) NIL)) (-2812 (((-783) $) 36)) (-4369 ((|#2| $ |#2|) 46)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 23)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-4313 (($) 31 T CONST)) (-4322 (($) 39 T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40))) -(((-299 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -1488 (|#3| $)) (-15 -4113 (|#2| $)) (-15 -2721 ($ |#2| |#3|)) (-15 -1867 ((-3 $ "failed") $ $)) (-15 -1851 ((-3 $ "failed") $)) (-15 -1669 ($ $)))) (-174) (-1264 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -299)) -((-1851 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1488 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1264 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4113 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2721 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1264 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1867 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1669 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) -(-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -1488 (|#3| $)) (-15 -4113 (|#2| $)) (-15 -2721 ($ |#2| |#3|)) (-15 -1867 ((-3 $ "failed") $ $)) (-15 -1851 ((-3 $ "failed") $)) (-15 -1669 ($ $)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-576)) 33)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((** (*1 *1 *1 *1) (-4 *1 (-294))) (-4056 (*1 *1 *1) (-4 *1 (-294))) (-3707 (*1 *1 *1) (-4 *1 (-294)))) +(-13 (-10 -8 (-15 -3707 ($ $)) (-15 -4056 ($ $)) (-15 ** ($ $ $)))) +((-4314 (((-657 (-1179 |#1|)) (-1179 |#1|) |#1|) 35)) (-1446 ((|#2| |#2| |#1|) 39)) (-2457 ((|#2| |#2| |#1|) 41)) (-2680 ((|#2| |#2| |#1|) 40))) +(((-295 |#1| |#2|) (-10 -7 (-15 -1446 (|#2| |#2| |#1|)) (-15 -2680 (|#2| |#2| |#1|)) (-15 -2457 (|#2| |#2| |#1|)) (-15 -4314 ((-657 (-1179 |#1|)) (-1179 |#1|) |#1|))) (-374) (-1280 |#1|)) (T -295)) +((-4314 (*1 *2 *3 *4) (-12 (-4 *4 (-374)) (-5 *2 (-657 (-1179 *4))) (-5 *1 (-295 *4 *5)) (-5 *3 (-1179 *4)) (-4 *5 (-1280 *4)))) (-2457 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1280 *3)))) (-2680 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1280 *3)))) (-1446 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1280 *3))))) +(-10 -7 (-15 -1446 (|#2| |#2| |#1|)) (-15 -2680 (|#2| |#2| |#1|)) (-15 -2457 (|#2| |#2| |#1|)) (-15 -4314 ((-657 (-1179 |#1|)) (-1179 |#1|) |#1|))) +((-2780 ((|#2| $ |#1|) 6))) +(((-296 |#1| |#2|) (-141) (-1239) (-1239)) (T -296)) +((-2780 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1239)) (-4 *2 (-1239))))) +(-13 (-1239) (-10 -8 (-15 -2780 (|t#2| $ |t#1|)))) +(((-1239) . T)) +((-1810 ((|#3| $ |#2| |#3|) 12)) (-1741 ((|#3| $ |#2|) 10))) +(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -1810 (|#3| |#1| |#2| |#3|)) (-15 -1741 (|#3| |#1| |#2|))) (-298 |#2| |#3|) (-1122) (-1239)) (T -297)) +NIL +(-10 -8 (-15 -1810 (|#3| |#1| |#2| |#3|)) (-15 -1741 (|#3| |#1| |#2|))) +((-3719 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4467)))) (-1810 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4467)))) (-1741 ((|#2| $ |#1|) 11)) (-2780 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-298 |#1| |#2|) (-141) (-1122) (-1239)) (T -298)) +((-2780 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239)))) (-1741 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239)))) (-3719 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239)))) (-1810 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239))))) +(-13 (-296 |t#1| |t#2|) (-10 -8 (-15 -2780 (|t#2| $ |t#1| |t#2|)) (-15 -1741 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4467)) (PROGN (-15 -3719 (|t#2| $ |t#1| |t#2|)) (-15 -1810 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-296 |#1| |#2|) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 37)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 44)) (-2361 (($ $) 41)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3210 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-3355 (($ $ $) 35)) (-3662 (($ |#2| |#3|) 18)) (-3969 (((-3 $ "failed") $) NIL)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-3994 (((-112) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1648 ((|#3| $) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 19)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4145 (((-3 $ "failed") $ $) NIL)) (-4164 (((-784) $) 36)) (-2780 ((|#2| $ |#2|) 46)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 23)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2716 (($) 31 T CONST)) (-2725 (($) 39 T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 40))) +(((-299 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -1648 (|#3| $)) (-15 -3515 (|#2| $)) (-15 -3662 ($ |#2| |#3|)) (-15 -4145 ((-3 $ "failed") $ $)) (-15 -3969 ((-3 $ "failed") $)) (-15 -2098 ($ $)))) (-174) (-1265 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -299)) +((-3969 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1265 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1648 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1265 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3515 (*1 *2 *1) (-12 (-4 *2 (-1265 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3662 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1265 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4145 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1265 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2098 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1265 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) +(-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -1648 (|#3| $)) (-15 -3515 (|#2| $)) (-15 -3662 ($ |#2| |#3|)) (-15 -4145 ((-3 $ "failed") $ $)) (-15 -3969 ((-3 $ "failed") $)) (-15 -2098 ($ $)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-576)) 33)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-300) (-141)) (T -300)) NIL -(-13 (-1070) (-111 $ $) (-10 -7 (-6 -4457))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1519 (((-656 (-1106)) $) 10)) (-3371 (($ (-518) (-518) (-1125) $) 19)) (-1364 (($ (-518) (-656 (-984)) $) 23)) (-4289 (($) 25)) (-2383 (((-703 (-1125)) (-518) (-518) $) 18)) (-2224 (((-656 (-984)) (-518) $) 22)) (-3307 (($) 7)) (-1801 (($) 24)) (-4113 (((-876) $) 29)) (-3467 (($) 26))) -(((-301) (-13 (-625 (-876)) (-10 -8 (-15 -3307 ($)) (-15 -1519 ((-656 (-1106)) $)) (-15 -2383 ((-703 (-1125)) (-518) (-518) $)) (-15 -3371 ($ (-518) (-518) (-1125) $)) (-15 -2224 ((-656 (-984)) (-518) $)) (-15 -1364 ($ (-518) (-656 (-984)) $)) (-15 -1801 ($)) (-15 -4289 ($)) (-15 -3467 ($))))) (T -301)) -((-3307 (*1 *1) (-5 *1 (-301))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-656 (-1106))) (-5 *1 (-301)))) (-2383 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1125))) (-5 *1 (-301)))) (-3371 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-301)))) (-2224 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-656 (-984))) (-5 *1 (-301)))) (-1364 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-301)))) (-1801 (*1 *1) (-5 *1 (-301))) (-4289 (*1 *1) (-5 *1 (-301))) (-3467 (*1 *1) (-5 *1 (-301)))) -(-13 (-625 (-876)) (-10 -8 (-15 -3307 ($)) (-15 -1519 ((-656 (-1106)) $)) (-15 -2383 ((-703 (-1125)) (-518) (-518) $)) (-15 -3371 ($ (-518) (-518) (-1125) $)) (-15 -2224 ((-656 (-984)) (-518) $)) (-15 -1364 ($ (-518) (-656 (-984)) $)) (-15 -1801 ($)) (-15 -4289 ($)) (-15 -3467 ($)))) -((-3075 (((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))) 102)) (-1333 (((-656 (-701 (-419 (-971 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|)))))) (-701 (-419 (-971 |#1|)))) 97) (((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))) (-783) (-783)) 41)) (-3103 (((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))) 99)) (-3087 (((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|)))) 75)) (-3322 (((-656 (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (-701 (-419 (-971 |#1|)))) 74)) (-4358 (((-971 |#1|) (-701 (-419 (-971 |#1|)))) 55) (((-971 |#1|) (-701 (-419 (-971 |#1|))) (-1197)) 56))) -(((-302 |#1|) (-10 -7 (-15 -4358 ((-971 |#1|) (-701 (-419 (-971 |#1|))) (-1197))) (-15 -4358 ((-971 |#1|) (-701 (-419 (-971 |#1|))))) (-15 -3322 ((-656 (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (-701 (-419 (-971 |#1|))))) (-15 -3087 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))))) (-15 -1333 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))) (-783) (-783))) (-15 -1333 ((-656 (-701 (-419 (-971 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|)))))) (-701 (-419 (-971 |#1|))))) (-15 -3075 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|))))) (-15 -3103 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))))) (-464)) (T -302)) -((-3103 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4)))))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4)))))) (-1333 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5)))))) (-1333 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-971 *6)) (-1186 (-1197) (-971 *6)))) (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *6))))) (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-971 *6)))))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5)))))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-4 *4 (-464)) (-5 *2 (-656 (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4))))) (-5 *1 (-302 *4)))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-5 *2 (-971 *4)) (-5 *1 (-302 *4)) (-4 *4 (-464)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-971 *5)))) (-5 *4 (-1197)) (-5 *2 (-971 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464))))) -(-10 -7 (-15 -4358 ((-971 |#1|) (-701 (-419 (-971 |#1|))) (-1197))) (-15 -4358 ((-971 |#1|) (-701 (-419 (-971 |#1|))))) (-15 -3322 ((-656 (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (-701 (-419 (-971 |#1|))))) (-15 -3087 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))))) (-15 -1333 ((-656 (-701 (-419 (-971 |#1|)))) (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|))) (-701 (-419 (-971 |#1|))) (-783) (-783))) (-15 -1333 ((-656 (-701 (-419 (-971 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|)))))) (-701 (-419 (-971 |#1|))))) (-15 -3075 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|))))) (-15 -3103 ((-656 (-2 (|:| |eigval| (-3 (-419 (-971 |#1|)) (-1186 (-1197) (-971 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-971 |#1|))))))) (-701 (-419 (-971 |#1|)))))) -((-2423 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 14))) -(((-303 |#1| |#2|) (-10 -7 (-15 -2423 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-1238) (-1238)) (T -303)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6))))) -(-10 -7 (-15 -2423 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3114 (((-112) $) NIL (|has| |#1| (-21)))) (-3027 (($ $) 12)) (-1765 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1791 (($ $ $) 95 (|has| |#1| (-312)))) (-3170 (($) NIL (-3795 (|has| |#1| (-21)) (|has| |#1| (-738))) CONST)) (-1563 (($ $) 51 (|has| |#1| (-21)))) (-1326 (((-3 $ "failed") $) 62 (|has| |#1| (-738)))) (-1784 ((|#1| $) 11)) (-1851 (((-3 $ "failed") $) 60 (|has| |#1| (-738)))) (-2486 (((-112) $) NIL (|has| |#1| (-738)))) (-2423 (($ (-1 |#1| |#1|) $) 14)) (-1776 ((|#1| $) 10)) (-1470 (($ $) 50 (|has| |#1| (-21)))) (-3173 (((-3 $ "failed") $) 61 (|has| |#1| (-738)))) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-1669 (($ $) 64 (-3795 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2717 (((-656 $) $) 85 (|has| |#1| (-568)))) (-2145 (($ $ $) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 $)) 28 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-1197) |#1|) 17 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 21 (|has| |#1| (-526 (-1197) |#1|)))) (-2441 (($ |#1| |#1|) 9)) (-3181 (((-135)) 90 (|has| |#1| (-374)))) (-4107 (($ $ (-1197)) 87 (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-917 (-1197))))) (-2117 (($ $ $) NIL (|has| |#1| (-485)))) (-3871 (($ $ $) NIL (|has| |#1| (-485)))) (-4113 (($ (-576)) NIL (|has| |#1| (-1070))) (((-112) $) 37 (|has| |#1| (-1121))) (((-876) $) 36 (|has| |#1| (-1121)))) (-2910 (((-783)) 67 (|has| |#1| (-1070)) CONST)) (-2950 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-4313 (($) 47 (|has| |#1| (-21)) CONST)) (-4322 (($) 57 (|has| |#1| (-738)) CONST)) (-3157 (($ $ (-1197)) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-917 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-917 (-1197))))) (-3939 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1121)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 92 (-3795 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-4037 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-4026 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-576)) NIL (|has| |#1| (-485))) (($ $ (-783)) NIL (|has| |#1| (-738))) (($ $ (-940)) NIL (|has| |#1| (-1133)))) (* (($ $ |#1|) 55 (|has| |#1| (-1133))) (($ |#1| $) 54 (|has| |#1| (-1133))) (($ $ $) 53 (|has| |#1| (-1133))) (($ (-576) $) 70 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-940) $) NIL (|has| |#1| (-25))))) -(((-304 |#1|) (-13 (-1238) (-10 -8 (-15 -3939 ($ |#1| |#1|)) (-15 -2441 ($ |#1| |#1|)) (-15 -3027 ($ $)) (-15 -1776 (|#1| $)) (-15 -1784 (|#1| $)) (-15 -2423 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1197) |#1|)) (-6 (-526 (-1197) |#1|)) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -2145 ($ $ $)) (-15 -2145 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4026 ($ |#1| $)) (-15 -4026 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1470 ($ $)) (-15 -1563 ($ $)) (-15 -4037 ($ |#1| $)) (-15 -4037 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1133)) (PROGN (-6 (-1133)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -3173 ((-3 $ "failed") $)) (-15 -1326 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -3173 ((-3 $ "failed") $)) (-15 -1326 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -2717 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1295 |#1|)) (-15 -4047 ($ $ $)) (-15 -1669 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -1791 ($ $ $)) |%noBranch|))) (-1238)) (T -304)) -((-3939 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-2441 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-3027 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-1776 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-1784 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) (-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-304 *3)))) (-2145 (*1 *1 *1 *1) (-12 (-4 *2 (-319 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)) (-5 *1 (-304 *2)))) (-2145 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1121)) (-4 *3 (-1238)) (-5 *1 (-304 *3)))) (-4026 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) (-4026 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) (-1470 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-1563 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-4037 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-4037 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-3173 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238)))) (-1326 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) (-4 *3 (-1238)))) (-1791 (*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1238)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) (-4047 (*1 *1 *1 *1) (-3795 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) (-1669 (*1 *1 *1) (-3795 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238)))))) -(-13 (-1238) (-10 -8 (-15 -3939 ($ |#1| |#1|)) (-15 -2441 ($ |#1| |#1|)) (-15 -3027 ($ $)) (-15 -1776 (|#1| $)) (-15 -1784 (|#1| $)) (-15 -2423 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1197) |#1|)) (-6 (-526 (-1197) |#1|)) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -2145 ($ $ $)) (-15 -2145 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4026 ($ |#1| $)) (-15 -4026 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1470 ($ $)) (-15 -1563 ($ $)) (-15 -4037 ($ |#1| $)) (-15 -4037 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1133)) (PROGN (-6 (-1133)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -3173 ((-3 $ "failed") $)) (-15 -1326 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -3173 ((-3 $ "failed") $)) (-15 -1326 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -2717 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1295 |#1|)) (-15 -4047 ($ $ $)) (-15 -1669 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -1791 ($ $ $)) |%noBranch|))) -((-1957 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1978 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3657 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#2| $ |#1| |#2|) NIL)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2051 (((-3 |#2| "failed") |#1| $) NIL)) (-3170 (($) NIL T CONST)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-3872 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) NIL)) (-2825 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#2| $ |#1|) NIL)) (-3722 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 ((|#1| $) NIL (|has| |#1| (-861)))) (-2911 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1829 ((|#1| $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-2353 (((-656 |#1|) $) NIL)) (-4128 (((-112) |#1| $) NIL)) (-3743 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-3695 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-2863 (((-656 |#1|) $) NIL)) (-1389 (((-112) |#1| $) NIL)) (-3116 (((-1141) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-1755 ((|#2| $) NIL (|has| |#1| (-861)))) (-4220 (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL)) (-4267 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2885 (((-656 |#2|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3091 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-4113 (((-876) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2950 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-305 |#1| |#2|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) (-1121) (-1121)) (T -305)) -NIL -(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) -((-2178 (((-322) (-1179) (-656 (-1179))) 17) (((-322) (-1179) (-1179)) 16) (((-322) (-656 (-1179))) 15) (((-322) (-1179)) 14))) -(((-306) (-10 -7 (-15 -2178 ((-322) (-1179))) (-15 -2178 ((-322) (-656 (-1179)))) (-15 -2178 ((-322) (-1179) (-1179))) (-15 -2178 ((-322) (-1179) (-656 (-1179)))))) (T -306)) -((-2178 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1179))) (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) (-2178 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-322)) (-5 *1 (-306)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306))))) -(-10 -7 (-15 -2178 ((-322) (-1179))) (-15 -2178 ((-322) (-656 (-1179)))) (-15 -2178 ((-322) (-1179) (-1179))) (-15 -2178 ((-322) (-1179) (-656 (-1179))))) -((-2423 ((|#2| (-1 |#2| |#1|) (-1179) (-624 |#1|)) 18))) -(((-307 |#1| |#2|) (-10 -7 (-15 -2423 (|#2| (-1 |#2| |#1|) (-1179) (-624 |#1|)))) (-312) (-1238)) (T -307)) -((-2423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1179)) (-5 *5 (-624 *6)) (-4 *6 (-312)) (-4 *2 (-1238)) (-5 *1 (-307 *6 *2))))) -(-10 -7 (-15 -2423 (|#2| (-1 |#2| |#1|) (-1179) (-624 |#1|)))) -((-2423 ((|#2| (-1 |#2| |#1|) (-624 |#1|)) 17))) -(((-308 |#1| |#2|) (-10 -7 (-15 -2423 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) (-312) (-312)) (T -308)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2))))) -(-10 -7 (-15 -2423 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) -((-2866 (((-112) (-227)) 12))) -(((-309 |#1| |#2|) (-10 -7 (-15 -2866 ((-112) (-227)))) (-227) (-227)) (T -309)) -((-2866 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2866 ((-112) (-227)))) -((-2246 (((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227)))) 118)) (-4007 (((-1178 (-227)) (-1288 (-326 (-227))) (-656 (-1197)) (-1115 (-855 (-227)))) 135) (((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227)))) 72)) (-3228 (((-656 (-1179)) (-1178 (-227))) NIL)) (-1865 (((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227)))) 69)) (-1715 (((-656 (-227)) (-971 (-419 (-576))) (-1197) (-1115 (-855 (-227)))) 59)) (-4146 (((-656 (-1179)) (-656 (-227))) NIL)) (-2258 (((-227) (-1115 (-855 (-227)))) 29)) (-3546 (((-227) (-1115 (-855 (-227)))) 30)) (-1512 (((-112) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-1879 (((-1179) (-227)) NIL))) -(((-310) (-10 -7 (-15 -2258 ((-227) (-1115 (-855 (-227))))) (-15 -3546 ((-227) (-1115 (-855 (-227))))) (-15 -1512 ((-112) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1865 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -2246 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -4007 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -4007 ((-1178 (-227)) (-1288 (-326 (-227))) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -1715 ((-656 (-227)) (-971 (-419 (-576))) (-1197) (-1115 (-855 (-227))))) (-15 -1879 ((-1179) (-227))) (-15 -4146 ((-656 (-1179)) (-656 (-227)))) (-15 -3228 ((-656 (-1179)) (-1178 (-227)))))) (T -310)) -((-3228 (*1 *2 *3) (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-310)))) (-1715 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *4 (-1197)) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-4007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) (-4007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) (-2246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) (-1865 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-310)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))) -(-10 -7 (-15 -2258 ((-227) (-1115 (-855 (-227))))) (-15 -3546 ((-227) (-1115 (-855 (-227))))) (-15 -1512 ((-112) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1865 ((-656 (-227)) (-326 (-227)) (-1197) (-1115 (-855 (-227))))) (-15 -2246 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -4007 ((-1178 (-227)) (-326 (-227)) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -4007 ((-1178 (-227)) (-1288 (-326 (-227))) (-656 (-1197)) (-1115 (-855 (-227))))) (-15 -1715 ((-656 (-227)) (-971 (-419 (-576))) (-1197) (-1115 (-855 (-227))))) (-15 -1879 ((-1179) (-227))) (-15 -4146 ((-656 (-1179)) (-656 (-227)))) (-15 -3228 ((-656 (-1179)) (-1178 (-227))))) -((-4442 (((-656 (-624 $)) $) 27)) (-1791 (($ $ (-304 $)) 78) (($ $ (-656 (-304 $))) 139) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2982 (((-3 (-624 $) "failed") $) 127)) (-2317 (((-624 $) $) 126)) (-3043 (($ $) 17) (($ (-656 $)) 54)) (-1849 (((-656 (-115)) $) 35)) (-1401 (((-115) (-115)) 88)) (-3616 (((-112) $) 150)) (-2423 (($ (-1 $ $) (-624 $)) 86)) (-2875 (((-3 (-624 $) "failed") $) 94)) (-2772 (($ (-115) $) 59) (($ (-115) (-656 $)) 110)) (-4227 (((-112) $ (-115)) 132) (((-112) $ (-1197)) 131)) (-2955 (((-783) $) 44)) (-2197 (((-112) $ $) 57) (((-112) $ (-1197)) 49)) (-3955 (((-112) $) 148)) (-2145 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) 137) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 81) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) 67) (($ $ (-1197) (-1 $ $)) 72) (($ $ (-656 (-115)) (-656 (-1 $ $))) 80) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 82) (($ $ (-115) (-1 $ (-656 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-4369 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-656 $)) 123)) (-1328 (($ $) 51) (($ $ $) 135)) (-2345 (($ $) 15) (($ (-656 $)) 53)) (-1380 (((-112) (-115)) 21))) -(((-311 |#1|) (-10 -8 (-15 -3616 ((-112) |#1|)) (-15 -3955 ((-112) |#1|)) (-15 -2145 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2145 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2145 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2145 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -2145 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -2197 ((-112) |#1| (-1197))) (-15 -2197 ((-112) |#1| |#1|)) (-15 -2423 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -2772 (|#1| (-115) (-656 |#1|))) (-15 -2772 (|#1| (-115) |#1|)) (-15 -4227 ((-112) |#1| (-1197))) (-15 -4227 ((-112) |#1| (-115))) (-15 -1380 ((-112) (-115))) (-15 -1401 ((-115) (-115))) (-15 -1849 ((-656 (-115)) |#1|)) (-15 -4442 ((-656 (-624 |#1|)) |#1|)) (-15 -2875 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2955 ((-783) |#1|)) (-15 -1328 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -3043 (|#1| (-656 |#1|))) (-15 -3043 (|#1| |#1|)) (-15 -2345 (|#1| (-656 |#1|))) (-15 -2345 (|#1| |#1|)) (-15 -1791 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1791 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1791 (|#1| |#1| (-304 |#1|))) (-15 -4369 (|#1| (-115) (-656 |#1|))) (-15 -4369 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4369 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4369 (|#1| (-115) |#1| |#1|)) (-15 -4369 (|#1| (-115) |#1|)) (-15 -2145 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#1| |#1|)) (-15 -2145 (|#1| |#1| (-304 |#1|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2145 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2982 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2317 ((-624 |#1|) |#1|))) (-312)) (T -311)) -((-1401 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312))))) -(-10 -8 (-15 -3616 ((-112) |#1|)) (-15 -3955 ((-112) |#1|)) (-15 -2145 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2145 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2145 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2145 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -2145 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -2197 ((-112) |#1| (-1197))) (-15 -2197 ((-112) |#1| |#1|)) (-15 -2423 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -2772 (|#1| (-115) (-656 |#1|))) (-15 -2772 (|#1| (-115) |#1|)) (-15 -4227 ((-112) |#1| (-1197))) (-15 -4227 ((-112) |#1| (-115))) (-15 -1380 ((-112) (-115))) (-15 -1401 ((-115) (-115))) (-15 -1849 ((-656 (-115)) |#1|)) (-15 -4442 ((-656 (-624 |#1|)) |#1|)) (-15 -2875 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2955 ((-783) |#1|)) (-15 -1328 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -3043 (|#1| (-656 |#1|))) (-15 -3043 (|#1| |#1|)) (-15 -2345 (|#1| (-656 |#1|))) (-15 -2345 (|#1| |#1|)) (-15 -1791 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1791 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1791 (|#1| |#1| (-304 |#1|))) (-15 -4369 (|#1| (-115) (-656 |#1|))) (-15 -4369 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4369 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4369 (|#1| (-115) |#1| |#1|)) (-15 -4369 (|#1| (-115) |#1|)) (-15 -2145 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#1| |#1|)) (-15 -2145 (|#1| |#1| (-304 |#1|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2145 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2982 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2317 ((-624 |#1|) |#1|))) -((-1957 (((-112) $ $) 7)) (-4442 (((-656 (-624 $)) $) 39)) (-1791 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-2982 (((-3 (-624 $) "failed") $) 64)) (-2317 (((-624 $) $) 65)) (-3043 (($ $) 46) (($ (-656 $)) 45)) (-1849 (((-656 (-115)) $) 38)) (-1401 (((-115) (-115)) 37)) (-3616 (((-112) $) 17 (|has| $ (-1059 (-576))))) (-1634 (((-1193 $) (-624 $)) 20 (|has| $ (-1070)))) (-2423 (($ (-1 $ $) (-624 $)) 31)) (-2875 (((-3 (-624 $) "failed") $) 41)) (-2447 (((-1179) $) 10)) (-1388 (((-656 (-624 $)) $) 40)) (-2772 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-4227 (((-112) $ (-115)) 35) (((-112) $ (-1197)) 34)) (-2955 (((-783) $) 42)) (-3116 (((-1141) $) 11)) (-2197 (((-112) $ $) 30) (((-112) $ (-1197)) 29)) (-3955 (((-112) $) 18 (|has| $ (-1059 (-576))))) (-2145 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1197) (-1 $ (-656 $))) 26) (($ $ (-1197) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-4369 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-1328 (($ $) 44) (($ $ $) 43)) (-3881 (($ $) 19 (|has| $ (-1070)))) (-4113 (((-876) $) 12) (($ (-624 $)) 63)) (-2345 (($ $) 48) (($ (-656 $)) 47)) (-1380 (((-112) (-115)) 36)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) +(-13 (-1071) (-111 $ $) (-10 -7 (-6 -4459))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3852 (((-657 (-1107)) $) 10)) (-2761 (($ (-518) (-518) (-1126) $) 19)) (-1345 (($ (-518) (-657 (-985)) $) 23)) (-3548 (($) 25)) (-2292 (((-704 (-1126)) (-518) (-518) $) 18)) (-3231 (((-657 (-985)) (-518) $) 22)) (-3340 (($) 7)) (-1710 (($) 24)) (-3515 (((-877) $) 29)) (-2424 (($) 26))) +(((-301) (-13 (-625 (-877)) (-10 -8 (-15 -3340 ($)) (-15 -3852 ((-657 (-1107)) $)) (-15 -2292 ((-704 (-1126)) (-518) (-518) $)) (-15 -2761 ($ (-518) (-518) (-1126) $)) (-15 -3231 ((-657 (-985)) (-518) $)) (-15 -1345 ($ (-518) (-657 (-985)) $)) (-15 -1710 ($)) (-15 -3548 ($)) (-15 -2424 ($))))) (T -301)) +((-3340 (*1 *1) (-5 *1 (-301))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-657 (-1107))) (-5 *1 (-301)))) (-2292 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-704 (-1126))) (-5 *1 (-301)))) (-2761 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1126)) (-5 *1 (-301)))) (-3231 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-657 (-985))) (-5 *1 (-301)))) (-1345 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-657 (-985))) (-5 *1 (-301)))) (-1710 (*1 *1) (-5 *1 (-301))) (-3548 (*1 *1) (-5 *1 (-301))) (-2424 (*1 *1) (-5 *1 (-301)))) +(-13 (-625 (-877)) (-10 -8 (-15 -3340 ($)) (-15 -3852 ((-657 (-1107)) $)) (-15 -2292 ((-704 (-1126)) (-518) (-518) $)) (-15 -2761 ($ (-518) (-518) (-1126) $)) (-15 -3231 ((-657 (-985)) (-518) $)) (-15 -1345 ($ (-518) (-657 (-985)) $)) (-15 -1710 ($)) (-15 -3548 ($)) (-15 -2424 ($)))) +((-2855 (((-657 (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |geneigvec| (-657 (-702 (-419 (-972 |#1|))))))) (-702 (-419 (-972 |#1|)))) 102)) (-3535 (((-657 (-702 (-419 (-972 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 |#1|)))))) (-702 (-419 (-972 |#1|)))) 97) (((-657 (-702 (-419 (-972 |#1|)))) (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|))) (-702 (-419 (-972 |#1|))) (-784) (-784)) 41)) (-3114 (((-657 (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 |#1|))))))) (-702 (-419 (-972 |#1|)))) 99)) (-2965 (((-657 (-702 (-419 (-972 |#1|)))) (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|))) (-702 (-419 (-972 |#1|)))) 75)) (-3501 (((-657 (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (-702 (-419 (-972 |#1|)))) 74)) (-2948 (((-972 |#1|) (-702 (-419 (-972 |#1|)))) 55) (((-972 |#1|) (-702 (-419 (-972 |#1|))) (-1198)) 56))) +(((-302 |#1|) (-10 -7 (-15 -2948 ((-972 |#1|) (-702 (-419 (-972 |#1|))) (-1198))) (-15 -2948 ((-972 |#1|) (-702 (-419 (-972 |#1|))))) (-15 -3501 ((-657 (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (-702 (-419 (-972 |#1|))))) (-15 -2965 ((-657 (-702 (-419 (-972 |#1|)))) (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|))) (-702 (-419 (-972 |#1|))))) (-15 -3535 ((-657 (-702 (-419 (-972 |#1|)))) (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|))) (-702 (-419 (-972 |#1|))) (-784) (-784))) (-15 -3535 ((-657 (-702 (-419 (-972 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 |#1|)))))) (-702 (-419 (-972 |#1|))))) (-15 -2855 ((-657 (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |geneigvec| (-657 (-702 (-419 (-972 |#1|))))))) (-702 (-419 (-972 |#1|))))) (-15 -3114 ((-657 (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 |#1|))))))) (-702 (-419 (-972 |#1|)))))) (-464)) (T -302)) +((-3114 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-657 (-2 (|:| |eigval| (-3 (-419 (-972 *4)) (-1187 (-1198) (-972 *4)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-702 (-419 (-972 *4)))))) (-2855 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-657 (-2 (|:| |eigval| (-3 (-419 (-972 *4)) (-1187 (-1198) (-972 *4)))) (|:| |geneigvec| (-657 (-702 (-419 (-972 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-702 (-419 (-972 *4)))))) (-3535 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-972 *5)) (-1187 (-1198) (-972 *5)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 *4)))) (-4 *5 (-464)) (-5 *2 (-657 (-702 (-419 (-972 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-702 (-419 (-972 *5)))))) (-3535 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-972 *6)) (-1187 (-1198) (-972 *6)))) (-5 *5 (-784)) (-4 *6 (-464)) (-5 *2 (-657 (-702 (-419 (-972 *6))))) (-5 *1 (-302 *6)) (-5 *4 (-702 (-419 (-972 *6)))))) (-2965 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-972 *5)) (-1187 (-1198) (-972 *5)))) (-4 *5 (-464)) (-5 *2 (-657 (-702 (-419 (-972 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-702 (-419 (-972 *5)))))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-702 (-419 (-972 *4)))) (-4 *4 (-464)) (-5 *2 (-657 (-3 (-419 (-972 *4)) (-1187 (-1198) (-972 *4))))) (-5 *1 (-302 *4)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-702 (-419 (-972 *4)))) (-5 *2 (-972 *4)) (-5 *1 (-302 *4)) (-4 *4 (-464)))) (-2948 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-419 (-972 *5)))) (-5 *4 (-1198)) (-5 *2 (-972 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464))))) +(-10 -7 (-15 -2948 ((-972 |#1|) (-702 (-419 (-972 |#1|))) (-1198))) (-15 -2948 ((-972 |#1|) (-702 (-419 (-972 |#1|))))) (-15 -3501 ((-657 (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (-702 (-419 (-972 |#1|))))) (-15 -2965 ((-657 (-702 (-419 (-972 |#1|)))) (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|))) (-702 (-419 (-972 |#1|))))) (-15 -3535 ((-657 (-702 (-419 (-972 |#1|)))) (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|))) (-702 (-419 (-972 |#1|))) (-784) (-784))) (-15 -3535 ((-657 (-702 (-419 (-972 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 |#1|)))))) (-702 (-419 (-972 |#1|))))) (-15 -2855 ((-657 (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |geneigvec| (-657 (-702 (-419 (-972 |#1|))))))) (-702 (-419 (-972 |#1|))))) (-15 -3114 ((-657 (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 |#1|))))))) (-702 (-419 (-972 |#1|)))))) +((-4071 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 14))) +(((-303 |#1| |#2|) (-10 -7 (-15 -4071 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-1239) (-1239)) (T -303)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6))))) +(-10 -7 (-15 -4071 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2044 (((-112) $) NIL (|has| |#1| (-21)))) (-3655 (($ $) 12)) (-2423 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4043 (($ $ $) 95 (|has| |#1| (-312)))) (-2515 (($) NIL (-2748 (|has| |#1| (-21)) (|has| |#1| (-739))) CONST)) (-4287 (($ $) 51 (|has| |#1| (-21)))) (-3438 (((-3 $ "failed") $) 62 (|has| |#1| (-739)))) (-1691 ((|#1| $) 11)) (-3969 (((-3 $ "failed") $) 60 (|has| |#1| (-739)))) (-3994 (((-112) $) NIL (|has| |#1| (-739)))) (-4071 (($ (-1 |#1| |#1|) $) 14)) (-1678 ((|#1| $) 10)) (-1496 (($ $) 50 (|has| |#1| (-21)))) (-2542 (((-3 $ "failed") $) 61 (|has| |#1| (-739)))) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2098 (($ $) 64 (-2748 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2571 (((-657 $) $) 85 (|has| |#1| (-568)))) (-3205 (($ $ $) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 $)) 28 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-1198) |#1|) 17 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 21 (|has| |#1| (-526 (-1198) |#1|)))) (-2371 (($ |#1| |#1|) 9)) (-1451 (((-135)) 90 (|has| |#1| (-374)))) (-2209 (($ $ (-1198)) 87 (|has| |#1| (-918 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-918 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-918 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-918 (-1198))))) (-1587 (($ $ $) NIL (|has| |#1| (-485)))) (-1911 (($ $ $) NIL (|has| |#1| (-485)))) (-3515 (($ (-576)) NIL (|has| |#1| (-1071))) (((-112) $) 37 (|has| |#1| (-1122))) (((-877) $) 36 (|has| |#1| (-1122)))) (-3845 (((-784)) 67 (|has| |#1| (-1071)) CONST)) (-4166 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2716 (($) 47 (|has| |#1| (-21)) CONST)) (-2725 (($) 57 (|has| |#1| (-739)) CONST)) (-2066 (($ $ (-1198)) NIL (|has| |#1| (-918 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-918 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-918 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-918 (-1198))))) (-2881 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1122)))) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 92 (-2748 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-2982 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-2971 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-576)) NIL (|has| |#1| (-485))) (($ $ (-784)) NIL (|has| |#1| (-739))) (($ $ (-941)) NIL (|has| |#1| (-1134)))) (* (($ $ |#1|) 55 (|has| |#1| (-1134))) (($ |#1| $) 54 (|has| |#1| (-1134))) (($ $ $) 53 (|has| |#1| (-1134))) (($ (-576) $) 70 (|has| |#1| (-21))) (($ (-784) $) NIL (|has| |#1| (-21))) (($ (-941) $) NIL (|has| |#1| (-25))))) +(((-304 |#1|) (-13 (-1239) (-10 -8 (-15 -2881 ($ |#1| |#1|)) (-15 -2371 ($ |#1| |#1|)) (-15 -3655 ($ $)) (-15 -1678 (|#1| $)) (-15 -1691 (|#1| $)) (-15 -4071 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1198) |#1|)) (-6 (-526 (-1198) |#1|)) |%noBranch|) (IF (|has| |#1| (-1122)) (PROGN (-6 (-1122)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3205 ($ $ $)) (-15 -3205 ($ $ (-657 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2971 ($ |#1| $)) (-15 -2971 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1496 ($ $)) (-15 -4287 ($ $)) (-15 -2982 ($ |#1| $)) (-15 -2982 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1134)) (PROGN (-6 (-1134)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-739)) (PROGN (-6 (-739)) (-15 -2542 ((-3 $ "failed") $)) (-15 -3438 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -2542 ((-3 $ "failed") $)) (-15 -3438 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1071)) (PROGN (-6 (-1071)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-730 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -2571 ((-657 $) $)) |%noBranch|) (IF (|has| |#1| (-918 (-1198))) (-6 (-918 (-1198))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1296 |#1|)) (-15 -2995 ($ $ $)) (-15 -2098 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -4043 ($ $ $)) |%noBranch|))) (-1239)) (T -304)) +((-2881 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) (-2371 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) (-3655 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) (-1678 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) (-1691 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) (-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-304 *3)))) (-3205 (*1 *1 *1 *1) (-12 (-4 *2 (-319 *2)) (-4 *2 (-1122)) (-4 *2 (-1239)) (-5 *1 (-304 *2)))) (-3205 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1122)) (-4 *3 (-1239)) (-5 *1 (-304 *3)))) (-2971 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1239)))) (-2971 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1239)))) (-1496 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239)))) (-4287 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239)))) (-2982 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239)))) (-2982 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239)))) (-2542 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-739)) (-4 *2 (-1239)))) (-3438 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-739)) (-4 *2 (-1239)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-657 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) (-4 *3 (-1239)))) (-4043 (*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1239)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1134)) (-4 *2 (-1239)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1134)) (-4 *2 (-1239)))) (-2995 (*1 *1 *1 *1) (-2748 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1239))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1239))))) (-2098 (*1 *1 *1) (-2748 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1239))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1239)))))) +(-13 (-1239) (-10 -8 (-15 -2881 ($ |#1| |#1|)) (-15 -2371 ($ |#1| |#1|)) (-15 -3655 ($ $)) (-15 -1678 (|#1| $)) (-15 -1691 (|#1| $)) (-15 -4071 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1198) |#1|)) (-6 (-526 (-1198) |#1|)) |%noBranch|) (IF (|has| |#1| (-1122)) (PROGN (-6 (-1122)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3205 ($ $ $)) (-15 -3205 ($ $ (-657 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2971 ($ |#1| $)) (-15 -2971 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1496 ($ $)) (-15 -4287 ($ $)) (-15 -2982 ($ |#1| $)) (-15 -2982 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1134)) (PROGN (-6 (-1134)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-739)) (PROGN (-6 (-739)) (-15 -2542 ((-3 $ "failed") $)) (-15 -3438 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -2542 ((-3 $ "failed") $)) (-15 -3438 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1071)) (PROGN (-6 (-1071)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-730 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -2571 ((-657 $) $)) |%noBranch|) (IF (|has| |#1| (-918 (-1198))) (-6 (-918 (-1198))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1296 |#1|)) (-15 -2995 ($ $ $)) (-15 -2098 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -4043 ($ $ $)) |%noBranch|))) +((-3423 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4082 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3590 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#2| $ |#1| |#2|) NIL)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2244 (((-3 |#2| "failed") |#1| $) NIL)) (-2515 (($) NIL T CONST)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-1920 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) NIL)) (-3901 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#2| $ |#1|) NIL)) (-1448 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 ((|#1| $) NIL (|has| |#1| (-862)))) (-3855 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1833 ((|#1| $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3135 (((-657 |#1|) $) NIL)) (-2559 (((-112) |#1| $) NIL)) (-3107 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2701 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3309 (((-657 |#1|) $) NIL)) (-4324 (((-112) |#1| $) NIL)) (-1460 (((-1142) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3528 ((|#2| $) NIL (|has| |#1| (-862)))) (-4135 (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1495 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3585 (((-657 |#2|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3009 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3515 (((-877) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-4166 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-305 |#1| |#2|) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) (-1122) (-1122)) (T -305)) +NIL +(-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) +((-3235 (((-322) (-1180) (-657 (-1180))) 17) (((-322) (-1180) (-1180)) 16) (((-322) (-657 (-1180))) 15) (((-322) (-1180)) 14))) +(((-306) (-10 -7 (-15 -3235 ((-322) (-1180))) (-15 -3235 ((-322) (-657 (-1180)))) (-15 -3235 ((-322) (-1180) (-1180))) (-15 -3235 ((-322) (-1180) (-657 (-1180)))))) (T -306)) +((-3235 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-1180))) (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3235 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-322)) (-5 *1 (-306)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-306))))) +(-10 -7 (-15 -3235 ((-322) (-1180))) (-15 -3235 ((-322) (-657 (-1180)))) (-15 -3235 ((-322) (-1180) (-1180))) (-15 -3235 ((-322) (-1180) (-657 (-1180))))) +((-4071 ((|#2| (-1 |#2| |#1|) (-1180) (-624 |#1|)) 18))) +(((-307 |#1| |#2|) (-10 -7 (-15 -4071 (|#2| (-1 |#2| |#1|) (-1180) (-624 |#1|)))) (-312) (-1239)) (T -307)) +((-4071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1180)) (-5 *5 (-624 *6)) (-4 *6 (-312)) (-4 *2 (-1239)) (-5 *1 (-307 *6 *2))))) +(-10 -7 (-15 -4071 (|#2| (-1 |#2| |#1|) (-1180) (-624 |#1|)))) +((-4071 ((|#2| (-1 |#2| |#1|) (-624 |#1|)) 17))) +(((-308 |#1| |#2|) (-10 -7 (-15 -4071 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) (-312) (-312)) (T -308)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2))))) +(-10 -7 (-15 -4071 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) +((-3329 (((-112) (-227)) 12))) +(((-309 |#1| |#2|) (-10 -7 (-15 -3329 ((-112) (-227)))) (-227) (-227)) (T -309)) +((-3329 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3329 ((-112) (-227)))) +((-3417 (((-1179 (-227)) (-326 (-227)) (-657 (-1198)) (-1116 (-856 (-227)))) 118)) (-3874 (((-1179 (-227)) (-1289 (-326 (-227))) (-657 (-1198)) (-1116 (-856 (-227)))) 135) (((-1179 (-227)) (-326 (-227)) (-657 (-1198)) (-1116 (-856 (-227)))) 72)) (-1918 (((-657 (-1180)) (-1179 (-227))) NIL)) (-4118 (((-657 (-227)) (-326 (-227)) (-1198) (-1116 (-856 (-227)))) 69)) (-3089 (((-657 (-227)) (-972 (-419 (-576))) (-1198) (-1116 (-856 (-227)))) 59)) (-1543 (((-657 (-1180)) (-657 (-227))) NIL)) (-3583 (((-227) (-1116 (-856 (-227)))) 29)) (-1921 (((-227) (-1116 (-856 (-227)))) 30)) (-1882 (((-112) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-4269 (((-1180) (-227)) NIL))) +(((-310) (-10 -7 (-15 -3583 ((-227) (-1116 (-856 (-227))))) (-15 -1921 ((-227) (-1116 (-856 (-227))))) (-15 -1882 ((-112) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4118 ((-657 (-227)) (-326 (-227)) (-1198) (-1116 (-856 (-227))))) (-15 -3417 ((-1179 (-227)) (-326 (-227)) (-657 (-1198)) (-1116 (-856 (-227))))) (-15 -3874 ((-1179 (-227)) (-326 (-227)) (-657 (-1198)) (-1116 (-856 (-227))))) (-15 -3874 ((-1179 (-227)) (-1289 (-326 (-227))) (-657 (-1198)) (-1116 (-856 (-227))))) (-15 -3089 ((-657 (-227)) (-972 (-419 (-576))) (-1198) (-1116 (-856 (-227))))) (-15 -4269 ((-1180) (-227))) (-15 -1543 ((-657 (-1180)) (-657 (-227)))) (-15 -1918 ((-657 (-1180)) (-1179 (-227)))))) (T -310)) +((-1918 (*1 *2 *3) (-12 (-5 *3 (-1179 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-310)))) (-1543 (*1 *2 *3) (-12 (-5 *3 (-657 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-310)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1180)) (-5 *1 (-310)))) (-3089 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-972 (-419 (-576)))) (-5 *4 (-1198)) (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-310)))) (-3874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *4 (-657 (-1198))) (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-310)))) (-3874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-657 (-1198))) (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-310)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-657 (-1198))) (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-310)))) (-4118 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1198)) (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-310)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-310)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))) +(-10 -7 (-15 -3583 ((-227) (-1116 (-856 (-227))))) (-15 -1921 ((-227) (-1116 (-856 (-227))))) (-15 -1882 ((-112) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4118 ((-657 (-227)) (-326 (-227)) (-1198) (-1116 (-856 (-227))))) (-15 -3417 ((-1179 (-227)) (-326 (-227)) (-657 (-1198)) (-1116 (-856 (-227))))) (-15 -3874 ((-1179 (-227)) (-326 (-227)) (-657 (-1198)) (-1116 (-856 (-227))))) (-15 -3874 ((-1179 (-227)) (-1289 (-326 (-227))) (-657 (-1198)) (-1116 (-856 (-227))))) (-15 -3089 ((-657 (-227)) (-972 (-419 (-576))) (-1198) (-1116 (-856 (-227))))) (-15 -4269 ((-1180) (-227))) (-15 -1543 ((-657 (-1180)) (-657 (-227)))) (-15 -1918 ((-657 (-1180)) (-1179 (-227))))) +((-3941 (((-657 (-624 $)) $) 27)) (-4043 (($ $ (-304 $)) 78) (($ $ (-657 (-304 $))) 139) (($ $ (-657 (-624 $)) (-657 $)) NIL)) (-1593 (((-3 (-624 $) "failed") $) 127)) (-2830 (((-624 $) $) 126)) (-3816 (($ $) 17) (($ (-657 $)) 54)) (-3948 (((-657 (-115)) $) 35)) (-1803 (((-115) (-115)) 88)) (-1354 (((-112) $) 150)) (-4071 (($ (-1 $ $) (-624 $)) 86)) (-3449 (((-3 (-624 $) "failed") $) 94)) (-1662 (($ (-115) $) 59) (($ (-115) (-657 $)) 110)) (-4216 (((-112) $ (-115)) 132) (((-112) $ (-1198)) 131)) (-2363 (((-784) $) 44)) (-4275 (((-112) $ $) 57) (((-112) $ (-1198)) 49)) (-3341 (((-112) $) 148)) (-3205 (($ $ (-624 $) $) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL) (($ $ (-657 (-304 $))) 137) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ $))) 81) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-1198) (-1 $ (-657 $))) 67) (($ $ (-1198) (-1 $ $)) 72) (($ $ (-657 (-115)) (-657 (-1 $ $))) 80) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) 82) (($ $ (-115) (-1 $ (-657 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2780 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-657 $)) 123)) (-3469 (($ $) 51) (($ $ $) 135)) (-1791 (($ $) 15) (($ (-657 $)) 53)) (-2946 (((-112) (-115)) 21))) +(((-311 |#1|) (-10 -8 (-15 -1354 ((-112) |#1|)) (-15 -3341 ((-112) |#1|)) (-15 -3205 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3205 (|#1| |#1| (-115) (-1 |#1| (-657 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3205 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| |#1|)))) (-15 -3205 (|#1| |#1| (-1198) (-1 |#1| |#1|))) (-15 -3205 (|#1| |#1| (-1198) (-1 |#1| (-657 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| |#1|)))) (-15 -4275 ((-112) |#1| (-1198))) (-15 -4275 ((-112) |#1| |#1|)) (-15 -4071 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1662 (|#1| (-115) (-657 |#1|))) (-15 -1662 (|#1| (-115) |#1|)) (-15 -4216 ((-112) |#1| (-1198))) (-15 -4216 ((-112) |#1| (-115))) (-15 -2946 ((-112) (-115))) (-15 -1803 ((-115) (-115))) (-15 -3948 ((-657 (-115)) |#1|)) (-15 -3941 ((-657 (-624 |#1|)) |#1|)) (-15 -3449 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2363 ((-784) |#1|)) (-15 -3469 (|#1| |#1| |#1|)) (-15 -3469 (|#1| |#1|)) (-15 -3816 (|#1| (-657 |#1|))) (-15 -3816 (|#1| |#1|)) (-15 -1791 (|#1| (-657 |#1|))) (-15 -1791 (|#1| |#1|)) (-15 -4043 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -4043 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -4043 (|#1| |#1| (-304 |#1|))) (-15 -2780 (|#1| (-115) (-657 |#1|))) (-15 -2780 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2780 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2780 (|#1| (-115) |#1| |#1|)) (-15 -2780 (|#1| (-115) |#1|)) (-15 -3205 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#1| |#1|)) (-15 -3205 (|#1| |#1| (-304 |#1|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -3205 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1593 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2830 ((-624 |#1|) |#1|))) (-312)) (T -311)) +((-1803 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312))))) +(-10 -8 (-15 -1354 ((-112) |#1|)) (-15 -3341 ((-112) |#1|)) (-15 -3205 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3205 (|#1| |#1| (-115) (-1 |#1| (-657 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3205 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| |#1|)))) (-15 -3205 (|#1| |#1| (-1198) (-1 |#1| |#1|))) (-15 -3205 (|#1| |#1| (-1198) (-1 |#1| (-657 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| |#1|)))) (-15 -4275 ((-112) |#1| (-1198))) (-15 -4275 ((-112) |#1| |#1|)) (-15 -4071 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1662 (|#1| (-115) (-657 |#1|))) (-15 -1662 (|#1| (-115) |#1|)) (-15 -4216 ((-112) |#1| (-1198))) (-15 -4216 ((-112) |#1| (-115))) (-15 -2946 ((-112) (-115))) (-15 -1803 ((-115) (-115))) (-15 -3948 ((-657 (-115)) |#1|)) (-15 -3941 ((-657 (-624 |#1|)) |#1|)) (-15 -3449 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2363 ((-784) |#1|)) (-15 -3469 (|#1| |#1| |#1|)) (-15 -3469 (|#1| |#1|)) (-15 -3816 (|#1| (-657 |#1|))) (-15 -3816 (|#1| |#1|)) (-15 -1791 (|#1| (-657 |#1|))) (-15 -1791 (|#1| |#1|)) (-15 -4043 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -4043 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -4043 (|#1| |#1| (-304 |#1|))) (-15 -2780 (|#1| (-115) (-657 |#1|))) (-15 -2780 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2780 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2780 (|#1| (-115) |#1| |#1|)) (-15 -2780 (|#1| (-115) |#1|)) (-15 -3205 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#1| |#1|)) (-15 -3205 (|#1| |#1| (-304 |#1|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -3205 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1593 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2830 ((-624 |#1|) |#1|))) +((-3423 (((-112) $ $) 7)) (-3941 (((-657 (-624 $)) $) 39)) (-4043 (($ $ (-304 $)) 51) (($ $ (-657 (-304 $))) 50) (($ $ (-657 (-624 $)) (-657 $)) 49)) (-1593 (((-3 (-624 $) "failed") $) 64)) (-2830 (((-624 $) $) 65)) (-3816 (($ $) 46) (($ (-657 $)) 45)) (-3948 (((-657 (-115)) $) 38)) (-1803 (((-115) (-115)) 37)) (-1354 (((-112) $) 17 (|has| $ (-1060 (-576))))) (-3695 (((-1194 $) (-624 $)) 20 (|has| $ (-1071)))) (-4071 (($ (-1 $ $) (-624 $)) 31)) (-3449 (((-3 (-624 $) "failed") $) 41)) (-1708 (((-1180) $) 10)) (-1789 (((-657 (-624 $)) $) 40)) (-1662 (($ (-115) $) 33) (($ (-115) (-657 $)) 32)) (-4216 (((-112) $ (-115)) 35) (((-112) $ (-1198)) 34)) (-2363 (((-784) $) 42)) (-1460 (((-1142) $) 11)) (-4275 (((-112) $ $) 30) (((-112) $ (-1198)) 29)) (-3341 (((-112) $) 18 (|has| $ (-1060 (-576))))) (-3205 (($ $ (-624 $) $) 62) (($ $ (-657 (-624 $)) (-657 $)) 61) (($ $ (-657 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-657 $) (-657 $)) 57) (($ $ (-657 (-1198)) (-657 (-1 $ $))) 28) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) 27) (($ $ (-1198) (-1 $ (-657 $))) 26) (($ $ (-1198) (-1 $ $)) 25) (($ $ (-657 (-115)) (-657 (-1 $ $))) 24) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) 23) (($ $ (-115) (-1 $ (-657 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2780 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-657 $)) 52)) (-3469 (($ $) 44) (($ $ $) 43)) (-2005 (($ $) 19 (|has| $ (-1071)))) (-3515 (((-877) $) 12) (($ (-624 $)) 63)) (-1791 (($ $) 48) (($ (-657 $)) 47)) (-2946 (((-112) (-115)) 36)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) (((-312) (-141)) (T -312)) -((-4369 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4369 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4369 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4369 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4369 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-1791 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))) (-1791 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) (-1791 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-2345 (*1 *1 *1) (-4 *1 (-312))) (-2345 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-3043 (*1 *1 *1) (-4 *1 (-312))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-1328 (*1 *1 *1) (-4 *1 (-312))) (-1328 (*1 *1 *1 *1) (-4 *1 (-312))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) (-2875 (*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-4442 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115))))) (-1401 (*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1380 (*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-4227 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-4227 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) (-2772 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2772 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-2423 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) (-2197 (*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))) (-2197 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-1070)) (-4 *1 (-312)) (-5 *2 (-1193 *1)))) (-3881 (*1 *1 *1) (-12 (-4 *1 (-1070)) (-4 *1 (-312)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))) -(-13 (-1121) (-1059 (-624 $)) (-526 (-624 $) $) (-319 $) (-10 -8 (-15 -4369 ($ (-115) $)) (-15 -4369 ($ (-115) $ $)) (-15 -4369 ($ (-115) $ $ $)) (-15 -4369 ($ (-115) $ $ $ $)) (-15 -4369 ($ (-115) (-656 $))) (-15 -1791 ($ $ (-304 $))) (-15 -1791 ($ $ (-656 (-304 $)))) (-15 -1791 ($ $ (-656 (-624 $)) (-656 $))) (-15 -2345 ($ $)) (-15 -2345 ($ (-656 $))) (-15 -3043 ($ $)) (-15 -3043 ($ (-656 $))) (-15 -1328 ($ $)) (-15 -1328 ($ $ $)) (-15 -2955 ((-783) $)) (-15 -2875 ((-3 (-624 $) "failed") $)) (-15 -1388 ((-656 (-624 $)) $)) (-15 -4442 ((-656 (-624 $)) $)) (-15 -1849 ((-656 (-115)) $)) (-15 -1401 ((-115) (-115))) (-15 -1380 ((-112) (-115))) (-15 -4227 ((-112) $ (-115))) (-15 -4227 ((-112) $ (-1197))) (-15 -2772 ($ (-115) $)) (-15 -2772 ($ (-115) (-656 $))) (-15 -2423 ($ (-1 $ $) (-624 $))) (-15 -2197 ((-112) $ $)) (-15 -2197 ((-112) $ (-1197))) (-15 -2145 ($ $ (-656 (-1197)) (-656 (-1 $ $)))) (-15 -2145 ($ $ (-656 (-1197)) (-656 (-1 $ (-656 $))))) (-15 -2145 ($ $ (-1197) (-1 $ (-656 $)))) (-15 -2145 ($ $ (-1197) (-1 $ $))) (-15 -2145 ($ $ (-656 (-115)) (-656 (-1 $ $)))) (-15 -2145 ($ $ (-656 (-115)) (-656 (-1 $ (-656 $))))) (-15 -2145 ($ $ (-115) (-1 $ (-656 $)))) (-15 -2145 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1070)) (PROGN (-15 -1634 ((-1193 $) (-624 $))) (-15 -3881 ($ $))) |%noBranch|) (IF (|has| $ (-1059 (-576))) (PROGN (-15 -3955 ((-112) $)) (-15 -3616 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-628 #0=(-624 $)) . T) ((-625 (-876)) . T) ((-319 $) . T) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-1059 #0#) . T) ((-1121) . T) ((-1238) . T)) -((-3660 (((-656 |#1|) (-656 |#1|)) 10))) -(((-313 |#1|) (-10 -7 (-15 -3660 ((-656 |#1|) (-656 |#1|)))) (-860)) (T -313)) -((-3660 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) -(-10 -7 (-15 -3660 ((-656 |#1|) (-656 |#1|)))) -((-2423 (((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)) 17))) -(((-314 |#1| |#2|) (-10 -7 (-15 -2423 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) (-1070) (-1070)) (T -314)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6))))) -(-10 -7 (-15 -2423 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) -((-1996 (((-1288 (-326 (-390))) (-1288 (-326 (-227)))) 110)) (-3744 (((-1115 (-855 (-227))) (-1115 (-855 (-390)))) 43)) (-3228 (((-656 (-1179)) (-1178 (-227))) 92)) (-2967 (((-326 (-390)) (-971 (-227))) 53)) (-4207 (((-227) (-971 (-227))) 49)) (-1741 (((-1179) (-390)) 195)) (-3471 (((-855 (-227)) (-855 (-390))) 37)) (-1719 (((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1288 (-326 (-227)))) 165)) (-3096 (((-1056) (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) 207) (((-1056) (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))))) 205)) (-3563 (((-701 (-227)) (-656 (-227)) (-783)) 19)) (-2514 (((-1288 (-711)) (-656 (-227))) 99)) (-4146 (((-656 (-1179)) (-656 (-227))) 79)) (-2899 (((-3 (-326 (-227)) "failed") (-326 (-227))) 128)) (-2866 (((-112) (-227) (-1115 (-855 (-227)))) 117)) (-1448 (((-1056) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) 224)) (-2258 (((-227) (-1115 (-855 (-227)))) 112)) (-3546 (((-227) (-1115 (-855 (-227)))) 113)) (-4288 (((-227) (-419 (-576))) 31)) (-3512 (((-1179) (-390)) 77)) (-3671 (((-227) (-390)) 22)) (-3184 (((-390) (-1288 (-326 (-227)))) 177)) (-3676 (((-326 (-227)) (-326 (-390))) 28)) (-2428 (((-419 (-576)) (-326 (-227))) 56)) (-1354 (((-326 (-419 (-576))) (-326 (-227))) 73)) (-3118 (((-326 (-390)) (-326 (-227))) 103)) (-3436 (((-227) (-326 (-227))) 57)) (-3934 (((-656 (-227)) (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) 68)) (-2546 (((-1115 (-855 (-227))) (-1115 (-855 (-227)))) 65)) (-1879 (((-1179) (-227)) 76)) (-3254 (((-711) (-227)) 95)) (-4281 (((-419 (-576)) (-227)) 58)) (-1500 (((-326 (-390)) (-227)) 52)) (-1556 (((-656 (-1115 (-855 (-227)))) (-656 (-1115 (-855 (-390))))) 46)) (-2767 (((-1056) (-656 (-1056))) 191) (((-1056) (-1056) (-1056)) 185)) (-1727 (((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) -(((-315) (-10 -7 (-15 -3671 ((-227) (-390))) (-15 -3676 ((-326 (-227)) (-326 (-390)))) (-15 -3471 ((-855 (-227)) (-855 (-390)))) (-15 -3744 ((-1115 (-855 (-227))) (-1115 (-855 (-390))))) (-15 -1556 ((-656 (-1115 (-855 (-227)))) (-656 (-1115 (-855 (-390)))))) (-15 -4281 ((-419 (-576)) (-227))) (-15 -2428 ((-419 (-576)) (-326 (-227)))) (-15 -3436 ((-227) (-326 (-227)))) (-15 -2899 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3184 ((-390) (-1288 (-326 (-227))))) (-15 -1719 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1288 (-326 (-227))))) (-15 -1354 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -2546 ((-1115 (-855 (-227))) (-1115 (-855 (-227))))) (-15 -3934 ((-656 (-227)) (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))))) (-15 -3254 ((-711) (-227))) (-15 -2514 ((-1288 (-711)) (-656 (-227)))) (-15 -3118 ((-326 (-390)) (-326 (-227)))) (-15 -1996 ((-1288 (-326 (-390))) (-1288 (-326 (-227))))) (-15 -2866 ((-112) (-227) (-1115 (-855 (-227))))) (-15 -1879 ((-1179) (-227))) (-15 -3512 ((-1179) (-390))) (-15 -4146 ((-656 (-1179)) (-656 (-227)))) (-15 -3228 ((-656 (-1179)) (-1178 (-227)))) (-15 -2258 ((-227) (-1115 (-855 (-227))))) (-15 -3546 ((-227) (-1115 (-855 (-227))))) (-15 -2767 ((-1056) (-1056) (-1056))) (-15 -2767 ((-1056) (-656 (-1056)))) (-15 -1741 ((-1179) (-390))) (-15 -3096 ((-1056) (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))))) (-15 -3096 ((-1056) (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))))) (-15 -1727 ((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1448 ((-1056) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -2967 ((-326 (-390)) (-971 (-227)))) (-15 -4207 ((-227) (-971 (-227)))) (-15 -1500 ((-326 (-390)) (-227))) (-15 -4288 ((-227) (-419 (-576)))) (-15 -3563 ((-701 (-227)) (-656 (-227)) (-783))))) (T -315)) -((-3563 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-315)))) (-4288 (*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-971 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-971 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-656 (-1056))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-2767 (*1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-315)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-2866 (*1 *2 *3 *4) (-12 (-5 *4 (-1115 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-315)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-1288 (-326 (-390)))) (-5 *1 (-315)))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288 (-711))) (-5 *1 (-315)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-5 *2 (-656 (-227))) (-5 *1 (-315)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-1115 (-855 (-227)))) (-5 *1 (-315)))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) (-5 *1 (-315)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) (-5 *1 (-315)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))) (-2899 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-656 (-1115 (-855 (-390))))) (-5 *2 (-656 (-1115 (-855 (-227))))) (-5 *1 (-315)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-1115 (-855 (-390)))) (-5 *2 (-1115 (-855 (-227)))) (-5 *1 (-315)))) (-3471 (*1 *2 *3) (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) -(-10 -7 (-15 -3671 ((-227) (-390))) (-15 -3676 ((-326 (-227)) (-326 (-390)))) (-15 -3471 ((-855 (-227)) (-855 (-390)))) (-15 -3744 ((-1115 (-855 (-227))) (-1115 (-855 (-390))))) (-15 -1556 ((-656 (-1115 (-855 (-227)))) (-656 (-1115 (-855 (-390)))))) (-15 -4281 ((-419 (-576)) (-227))) (-15 -2428 ((-419 (-576)) (-326 (-227)))) (-15 -3436 ((-227) (-326 (-227)))) (-15 -2899 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3184 ((-390) (-1288 (-326 (-227))))) (-15 -1719 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1288 (-326 (-227))))) (-15 -1354 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -2546 ((-1115 (-855 (-227))) (-1115 (-855 (-227))))) (-15 -3934 ((-656 (-227)) (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))))) (-15 -3254 ((-711) (-227))) (-15 -2514 ((-1288 (-711)) (-656 (-227)))) (-15 -3118 ((-326 (-390)) (-326 (-227)))) (-15 -1996 ((-1288 (-326 (-390))) (-1288 (-326 (-227))))) (-15 -2866 ((-112) (-227) (-1115 (-855 (-227))))) (-15 -1879 ((-1179) (-227))) (-15 -3512 ((-1179) (-390))) (-15 -4146 ((-656 (-1179)) (-656 (-227)))) (-15 -3228 ((-656 (-1179)) (-1178 (-227)))) (-15 -2258 ((-227) (-1115 (-855 (-227))))) (-15 -3546 ((-227) (-1115 (-855 (-227))))) (-15 -2767 ((-1056) (-1056) (-1056))) (-15 -2767 ((-1056) (-656 (-1056)))) (-15 -1741 ((-1179) (-390))) (-15 -3096 ((-1056) (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))))) (-15 -3096 ((-1056) (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))))) (-15 -1727 ((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1448 ((-1056) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -2967 ((-326 (-390)) (-971 (-227)))) (-15 -4207 ((-227) (-971 (-227)))) (-15 -1500 ((-326 (-390)) (-227))) (-15 -4288 ((-227) (-419 (-576)))) (-15 -3563 ((-701 (-227)) (-656 (-227)) (-783)))) -((-4386 (((-112) $ $) 14)) (-1895 (($ $ $) 18)) (-1908 (($ $ $) 17)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 50)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 65)) (-3115 (($ $ $) 25) (($ (-656 $)) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-1946 (((-3 $ "failed") $ $) 21)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 53))) -(((-316 |#1|) (-10 -8 (-15 -2500 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -4397 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4397 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2549 |#1|)) |#1| |#1|)) (-15 -1895 (|#1| |#1| |#1|)) (-15 -1908 (|#1| |#1| |#1|)) (-15 -4386 ((-112) |#1| |#1|)) (-15 -4377 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -1607 ((-2 (|:| -2862 (-656 |#1|)) (|:| -2549 |#1|)) (-656 |#1|))) (-15 -3115 (|#1| (-656 |#1|))) (-15 -3115 (|#1| |#1| |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#1|))) (-317)) (T -316)) -NIL -(-10 -8 (-15 -2500 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -4397 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4397 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2549 |#1|)) |#1| |#1|)) (-15 -1895 (|#1| |#1| |#1|)) (-15 -1908 (|#1| |#1| |#1|)) (-15 -4386 ((-112) |#1| |#1|)) (-15 -4377 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -1607 ((-2 (|:| -2862 (-656 |#1|)) (|:| -2549 |#1|)) (-656 |#1|))) (-15 -3115 (|#1| (-656 |#1|))) (-15 -3115 (|#1| |#1| |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-4386 (((-112) $ $) 65)) (-3170 (($) 18 T CONST)) (-1895 (($ $ $) 61)) (-1851 (((-3 $ "failed") $) 37)) (-1908 (($ $ $) 62)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-2486 (((-112) $) 35)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2812 (((-783) $) 64)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2780 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2780 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2780 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2780 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2780 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-657 *1)) (-4 *1 (-312)))) (-4043 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))) (-4043 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-304 *1))) (-4 *1 (-312)))) (-4043 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-624 *1))) (-5 *3 (-657 *1)) (-4 *1 (-312)))) (-1791 (*1 *1 *1) (-4 *1 (-312))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-312)))) (-3816 (*1 *1 *1) (-4 *1 (-312))) (-3816 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-312)))) (-3469 (*1 *1 *1) (-4 *1 (-312))) (-3469 (*1 *1 *1 *1) (-4 *1 (-312))) (-2363 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-784)))) (-3449 (*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-657 (-624 *1))) (-4 *1 (-312)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-657 (-624 *1))) (-4 *1 (-312)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-657 (-115))))) (-1803 (*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2946 (*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-4216 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-4216 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1198)) (-5 *2 (-112)))) (-1662 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1662 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-657 *1)) (-4 *1 (-312)))) (-4071 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) (-4275 (*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))) (-4275 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1198)) (-5 *2 (-112)))) (-3205 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-1 *1 *1))) (-4 *1 (-312)))) (-3205 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-1 *1 (-657 *1)))) (-4 *1 (-312)))) (-3205 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1 *1 (-657 *1))) (-4 *1 (-312)))) (-3205 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3205 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-115))) (-5 *3 (-657 (-1 *1 *1))) (-4 *1 (-312)))) (-3205 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-115))) (-5 *3 (-657 (-1 *1 (-657 *1)))) (-4 *1 (-312)))) (-3205 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-657 *1))) (-4 *1 (-312)))) (-3205 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3695 (*1 *2 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-1071)) (-4 *1 (-312)) (-5 *2 (-1194 *1)))) (-2005 (*1 *1 *1) (-12 (-4 *1 (-1071)) (-4 *1 (-312)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-1060 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-1060 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))) +(-13 (-1122) (-1060 (-624 $)) (-526 (-624 $) $) (-319 $) (-10 -8 (-15 -2780 ($ (-115) $)) (-15 -2780 ($ (-115) $ $)) (-15 -2780 ($ (-115) $ $ $)) (-15 -2780 ($ (-115) $ $ $ $)) (-15 -2780 ($ (-115) (-657 $))) (-15 -4043 ($ $ (-304 $))) (-15 -4043 ($ $ (-657 (-304 $)))) (-15 -4043 ($ $ (-657 (-624 $)) (-657 $))) (-15 -1791 ($ $)) (-15 -1791 ($ (-657 $))) (-15 -3816 ($ $)) (-15 -3816 ($ (-657 $))) (-15 -3469 ($ $)) (-15 -3469 ($ $ $)) (-15 -2363 ((-784) $)) (-15 -3449 ((-3 (-624 $) "failed") $)) (-15 -1789 ((-657 (-624 $)) $)) (-15 -3941 ((-657 (-624 $)) $)) (-15 -3948 ((-657 (-115)) $)) (-15 -1803 ((-115) (-115))) (-15 -2946 ((-112) (-115))) (-15 -4216 ((-112) $ (-115))) (-15 -4216 ((-112) $ (-1198))) (-15 -1662 ($ (-115) $)) (-15 -1662 ($ (-115) (-657 $))) (-15 -4071 ($ (-1 $ $) (-624 $))) (-15 -4275 ((-112) $ $)) (-15 -4275 ((-112) $ (-1198))) (-15 -3205 ($ $ (-657 (-1198)) (-657 (-1 $ $)))) (-15 -3205 ($ $ (-657 (-1198)) (-657 (-1 $ (-657 $))))) (-15 -3205 ($ $ (-1198) (-1 $ (-657 $)))) (-15 -3205 ($ $ (-1198) (-1 $ $))) (-15 -3205 ($ $ (-657 (-115)) (-657 (-1 $ $)))) (-15 -3205 ($ $ (-657 (-115)) (-657 (-1 $ (-657 $))))) (-15 -3205 ($ $ (-115) (-1 $ (-657 $)))) (-15 -3205 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1071)) (PROGN (-15 -3695 ((-1194 $) (-624 $))) (-15 -2005 ($ $))) |%noBranch|) (IF (|has| $ (-1060 (-576))) (PROGN (-15 -3341 ((-112) $)) (-15 -1354 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-628 #0=(-624 $)) . T) ((-625 (-877)) . T) ((-319 $) . T) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-1060 #0#) . T) ((-1122) . T) ((-1239) . T)) +((-3625 (((-657 |#1|) (-657 |#1|)) 10))) +(((-313 |#1|) (-10 -7 (-15 -3625 ((-657 |#1|) (-657 |#1|)))) (-861)) (T -313)) +((-3625 (*1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-861)) (-5 *1 (-313 *3))))) +(-10 -7 (-15 -3625 ((-657 |#1|) (-657 |#1|)))) +((-4071 (((-702 |#2|) (-1 |#2| |#1|) (-702 |#1|)) 17))) +(((-314 |#1| |#2|) (-10 -7 (-15 -4071 ((-702 |#2|) (-1 |#2| |#1|) (-702 |#1|)))) (-1071) (-1071)) (T -314)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-702 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-5 *2 (-702 *6)) (-5 *1 (-314 *5 *6))))) +(-10 -7 (-15 -4071 ((-702 |#2|) (-1 |#2| |#1|) (-702 |#1|)))) +((-2797 (((-1289 (-326 (-390))) (-1289 (-326 (-227)))) 110)) (-3116 (((-1116 (-856 (-227))) (-1116 (-856 (-390)))) 43)) (-1918 (((-657 (-1180)) (-1179 (-227))) 92)) (-4315 (((-326 (-390)) (-972 (-227))) 53)) (-2099 (((-227) (-972 (-227))) 49)) (-2195 (((-1180) (-390)) 195)) (-2464 (((-856 (-227)) (-856 (-390))) 37)) (-3119 (((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1289 (-326 (-227)))) 165)) (-3050 (((-1057) (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) 207) (((-1057) (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))))) 205)) (-3962 (((-702 (-227)) (-657 (-227)) (-784)) 19)) (-4283 (((-1289 (-712)) (-657 (-227))) 99)) (-1543 (((-657 (-1180)) (-657 (-227))) 79)) (-2315 (((-3 (-326 (-227)) "failed") (-326 (-227))) 128)) (-3329 (((-112) (-227) (-1116 (-856 (-227)))) 117)) (-3611 (((-1057) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) 224)) (-3583 (((-227) (-1116 (-856 (-227)))) 112)) (-1921 (((-227) (-1116 (-856 (-227)))) 113)) (-3540 (((-227) (-419 (-576))) 31)) (-1634 (((-1180) (-390)) 77)) (-3737 (((-227) (-390)) 22)) (-1480 (((-390) (-1289 (-326 (-227)))) 177)) (-3780 (((-326 (-227)) (-326 (-390))) 28)) (-1532 (((-419 (-576)) (-326 (-227))) 56)) (-2003 (((-326 (-419 (-576))) (-326 (-227))) 73)) (-2071 (((-326 (-390)) (-326 (-227))) 103)) (-2162 (((-227) (-326 (-227))) 57)) (-1349 (((-657 (-227)) (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) 68)) (-3287 (((-1116 (-856 (-227))) (-1116 (-856 (-227)))) 65)) (-4269 (((-1180) (-227)) 76)) (-4085 (((-712) (-227)) 95)) (-3471 (((-419 (-576)) (-227)) 58)) (-1761 (((-326 (-390)) (-227)) 52)) (-4136 (((-657 (-1116 (-856 (-227)))) (-657 (-1116 (-856 (-390))))) 46)) (-1637 (((-1057) (-657 (-1057))) 191) (((-1057) (-1057) (-1057)) 185)) (-2039 (((-1057) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) +(((-315) (-10 -7 (-15 -3737 ((-227) (-390))) (-15 -3780 ((-326 (-227)) (-326 (-390)))) (-15 -2464 ((-856 (-227)) (-856 (-390)))) (-15 -3116 ((-1116 (-856 (-227))) (-1116 (-856 (-390))))) (-15 -4136 ((-657 (-1116 (-856 (-227)))) (-657 (-1116 (-856 (-390)))))) (-15 -3471 ((-419 (-576)) (-227))) (-15 -1532 ((-419 (-576)) (-326 (-227)))) (-15 -2162 ((-227) (-326 (-227)))) (-15 -2315 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -1480 ((-390) (-1289 (-326 (-227))))) (-15 -3119 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1289 (-326 (-227))))) (-15 -2003 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -3287 ((-1116 (-856 (-227))) (-1116 (-856 (-227))))) (-15 -1349 ((-657 (-227)) (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))))) (-15 -4085 ((-712) (-227))) (-15 -4283 ((-1289 (-712)) (-657 (-227)))) (-15 -2071 ((-326 (-390)) (-326 (-227)))) (-15 -2797 ((-1289 (-326 (-390))) (-1289 (-326 (-227))))) (-15 -3329 ((-112) (-227) (-1116 (-856 (-227))))) (-15 -4269 ((-1180) (-227))) (-15 -1634 ((-1180) (-390))) (-15 -1543 ((-657 (-1180)) (-657 (-227)))) (-15 -1918 ((-657 (-1180)) (-1179 (-227)))) (-15 -3583 ((-227) (-1116 (-856 (-227))))) (-15 -1921 ((-227) (-1116 (-856 (-227))))) (-15 -1637 ((-1057) (-1057) (-1057))) (-15 -1637 ((-1057) (-657 (-1057)))) (-15 -2195 ((-1180) (-390))) (-15 -3050 ((-1057) (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))))) (-15 -3050 ((-1057) (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))))) (-15 -2039 ((-1057) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3611 ((-1057) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -4315 ((-326 (-390)) (-972 (-227)))) (-15 -2099 ((-227) (-972 (-227)))) (-15 -1761 ((-326 (-390)) (-227))) (-15 -3540 ((-227) (-419 (-576)))) (-15 -3962 ((-702 (-227)) (-657 (-227)) (-784))))) (T -315)) +((-3962 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-227))) (-5 *4 (-784)) (-5 *2 (-702 (-227))) (-5 *1 (-315)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-2099 (*1 *2 *3) (-12 (-5 *3 (-972 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-972 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1057)) (-5 *1 (-315)))) (-2039 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1057)) (-5 *1 (-315)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) (-5 *2 (-1057)) (-5 *1 (-315)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *2 (-1057)) (-5 *1 (-315)))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1180)) (-5 *1 (-315)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-657 (-1057))) (-5 *2 (-1057)) (-5 *1 (-315)))) (-1637 (*1 *2 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-315)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-1179 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-315)))) (-1543 (*1 *2 *3) (-12 (-5 *3 (-657 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-315)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1180)) (-5 *1 (-315)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1180)) (-5 *1 (-315)))) (-3329 (*1 *2 *3 *4) (-12 (-5 *4 (-1116 (-856 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-315)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *2 (-1289 (-326 (-390)))) (-5 *1 (-315)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-657 (-227))) (-5 *2 (-1289 (-712))) (-5 *1 (-315)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-712)) (-5 *1 (-315)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-5 *2 (-657 (-227))) (-5 *1 (-315)))) (-3287 (*1 *2 *2) (-12 (-5 *2 (-1116 (-856 (-227)))) (-5 *1 (-315)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) (-5 *1 (-315)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *2 (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) (-5 *1 (-315)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))) (-2315 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-1532 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-3471 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-657 (-1116 (-856 (-390))))) (-5 *2 (-657 (-1116 (-856 (-227))))) (-5 *1 (-315)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-390)))) (-5 *2 (-1116 (-856 (-227)))) (-5 *1 (-315)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-856 (-390))) (-5 *2 (-856 (-227))) (-5 *1 (-315)))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) +(-10 -7 (-15 -3737 ((-227) (-390))) (-15 -3780 ((-326 (-227)) (-326 (-390)))) (-15 -2464 ((-856 (-227)) (-856 (-390)))) (-15 -3116 ((-1116 (-856 (-227))) (-1116 (-856 (-390))))) (-15 -4136 ((-657 (-1116 (-856 (-227)))) (-657 (-1116 (-856 (-390)))))) (-15 -3471 ((-419 (-576)) (-227))) (-15 -1532 ((-419 (-576)) (-326 (-227)))) (-15 -2162 ((-227) (-326 (-227)))) (-15 -2315 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -1480 ((-390) (-1289 (-326 (-227))))) (-15 -3119 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1289 (-326 (-227))))) (-15 -2003 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -3287 ((-1116 (-856 (-227))) (-1116 (-856 (-227))))) (-15 -1349 ((-657 (-227)) (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))))) (-15 -4085 ((-712) (-227))) (-15 -4283 ((-1289 (-712)) (-657 (-227)))) (-15 -2071 ((-326 (-390)) (-326 (-227)))) (-15 -2797 ((-1289 (-326 (-390))) (-1289 (-326 (-227))))) (-15 -3329 ((-112) (-227) (-1116 (-856 (-227))))) (-15 -4269 ((-1180) (-227))) (-15 -1634 ((-1180) (-390))) (-15 -1543 ((-657 (-1180)) (-657 (-227)))) (-15 -1918 ((-657 (-1180)) (-1179 (-227)))) (-15 -3583 ((-227) (-1116 (-856 (-227))))) (-15 -1921 ((-227) (-1116 (-856 (-227))))) (-15 -1637 ((-1057) (-1057) (-1057))) (-15 -1637 ((-1057) (-657 (-1057)))) (-15 -2195 ((-1180) (-390))) (-15 -3050 ((-1057) (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))))) (-15 -3050 ((-1057) (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))))) (-15 -2039 ((-1057) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3611 ((-1057) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -4315 ((-326 (-390)) (-972 (-227)))) (-15 -2099 ((-227) (-972 (-227)))) (-15 -1761 ((-326 (-390)) (-227))) (-15 -3540 ((-227) (-419 (-576)))) (-15 -3962 ((-702 (-227)) (-657 (-227)) (-784)))) +((-3210 (((-112) $ $) 14)) (-3355 (($ $ $) 18)) (-3369 (($ $ $) 17)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 50)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 65)) (-3431 (($ $ $) 25) (($ (-657 $)) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3409 (((-3 $ "failed") $ $) 21)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 53))) +(((-316 |#1|) (-10 -8 (-15 -4134 ((-3 (-657 |#1|) "failed") (-657 |#1|) |#1|)) (-15 -2171 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2171 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4083 |#1|)) |#1| |#1|)) (-15 -3355 (|#1| |#1| |#1|)) (-15 -3369 (|#1| |#1| |#1|)) (-15 -3210 ((-112) |#1| |#1|)) (-15 -3118 ((-3 (-657 |#1|) "failed") (-657 |#1|) |#1|)) (-15 -3389 ((-2 (|:| -1735 (-657 |#1|)) (|:| -4083 |#1|)) (-657 |#1|))) (-15 -3431 (|#1| (-657 |#1|))) (-15 -3431 (|#1| |#1| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|))) (-317)) (T -316)) +NIL +(-10 -8 (-15 -4134 ((-3 (-657 |#1|) "failed") (-657 |#1|) |#1|)) (-15 -2171 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2171 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4083 |#1|)) |#1| |#1|)) (-15 -3355 (|#1| |#1| |#1|)) (-15 -3369 (|#1| |#1| |#1|)) (-15 -3210 ((-112) |#1| |#1|)) (-15 -3118 ((-3 (-657 |#1|) "failed") (-657 |#1|) |#1|)) (-15 -3389 ((-2 (|:| -1735 (-657 |#1|)) (|:| -4083 |#1|)) (-657 |#1|))) (-15 -3431 (|#1| (-657 |#1|))) (-15 -3431 (|#1| |#1| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-3210 (((-112) $ $) 65)) (-2515 (($) 18 T CONST)) (-3355 (($ $ $) 61)) (-3969 (((-3 $ "failed") $) 37)) (-3369 (($ $ $) 62)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-3994 (((-112) $) 35)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-4164 (((-784) $) 64)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-317) (-141)) (T -317)) -((-4386 (*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783)))) (-3889 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-317)))) (-1908 (*1 *1 *1 *1) (-4 *1 (-317))) (-1895 (*1 *1 *1 *1) (-4 *1 (-317))) (-4397 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2549 *1))) (-4 *1 (-317)))) (-4397 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-317)))) (-2500 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) -(-13 (-939) (-10 -8 (-15 -4386 ((-112) $ $)) (-15 -2812 ((-783) $)) (-15 -3889 ((-2 (|:| -2675 $) (|:| -3561 $)) $ $)) (-15 -1908 ($ $ $)) (-15 -1895 ($ $ $)) (-15 -4397 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $)) (-15 -4397 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2500 ((-3 (-656 $) "failed") (-656 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2145 (($ $ (-656 |#2|) (-656 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-304 |#2|)) 11) (($ $ (-656 (-304 |#2|))) NIL))) -(((-318 |#1| |#2|) (-10 -8 (-15 -2145 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2145 (|#1| |#1| (-304 |#2|))) (-15 -2145 (|#1| |#1| |#2| |#2|)) (-15 -2145 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) (-319 |#2|) (-1121)) (T -318)) -NIL -(-10 -8 (-15 -2145 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2145 (|#1| |#1| (-304 |#2|))) (-15 -2145 (|#1| |#1| |#2| |#2|)) (-15 -2145 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) -((-2145 (($ $ (-656 |#1|) (-656 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-304 |#1|)) 11) (($ $ (-656 (-304 |#1|))) 10))) -(((-319 |#1|) (-141) (-1121)) (T -319)) -((-2145 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1121)))) (-2145 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1121))))) -(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -2145 ($ $ (-304 |t#1|))) (-15 -2145 ($ $ (-656 (-304 |t#1|)))))) +((-3210 (*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-784)))) (-3977 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-317)))) (-3369 (*1 *1 *1 *1) (-4 *1 (-317))) (-3355 (*1 *1 *1 *1) (-4 *1 (-317))) (-2171 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4083 *1))) (-4 *1 (-317)))) (-2171 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-317)))) (-4134 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-657 *1)) (-4 *1 (-317))))) +(-13 (-940) (-10 -8 (-15 -3210 ((-112) $ $)) (-15 -4164 ((-784) $)) (-15 -3977 ((-2 (|:| -2192 $) (|:| -3951 $)) $ $)) (-15 -3369 ($ $ $)) (-15 -3355 ($ $ $)) (-15 -2171 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $)) (-15 -2171 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -4134 ((-3 (-657 $) "failed") (-657 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3205 (($ $ (-657 |#2|) (-657 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-304 |#2|)) 11) (($ $ (-657 (-304 |#2|))) NIL))) +(((-318 |#1| |#2|) (-10 -8 (-15 -3205 (|#1| |#1| (-657 (-304 |#2|)))) (-15 -3205 (|#1| |#1| (-304 |#2|))) (-15 -3205 (|#1| |#1| |#2| |#2|)) (-15 -3205 (|#1| |#1| (-657 |#2|) (-657 |#2|)))) (-319 |#2|) (-1122)) (T -318)) +NIL +(-10 -8 (-15 -3205 (|#1| |#1| (-657 (-304 |#2|)))) (-15 -3205 (|#1| |#1| (-304 |#2|))) (-15 -3205 (|#1| |#1| |#2| |#2|)) (-15 -3205 (|#1| |#1| (-657 |#2|) (-657 |#2|)))) +((-3205 (($ $ (-657 |#1|) (-657 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-304 |#1|)) 11) (($ $ (-657 (-304 |#1|))) 10))) +(((-319 |#1|) (-141) (-1122)) (T -319)) +((-3205 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1122)))) (-3205 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1122))))) +(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -3205 ($ $ (-304 |t#1|))) (-15 -3205 ($ $ (-657 (-304 |t#1|)))))) (((-526 |#1| |#1|) . T)) -((-2145 ((|#1| (-1 |#1| (-576)) (-1199 (-419 (-576)))) 26))) -(((-320 |#1|) (-10 -7 (-15 -2145 (|#1| (-1 |#1| (-576)) (-1199 (-419 (-576)))))) (-38 (-419 (-576)))) (T -320)) -((-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1199 (-419 (-576)))) (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576))))))) -(-10 -7 (-15 -2145 (|#1| (-1 |#1| (-576)) (-1199 (-419 (-576)))))) -((-1957 (((-112) $ $) NIL)) (-2106 (((-576) $) 12)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2230 (((-1156) $) 9)) (-4113 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-321) (-13 (-1104) (-10 -8 (-15 -2230 ((-1156) $)) (-15 -2106 ((-576) $))))) (T -321)) -((-2230 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-321)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321))))) -(-13 (-1104) (-10 -8 (-15 -2230 ((-1156) $)) (-15 -2106 ((-576) $)))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 7)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 9))) -(((-322) (-1121)) (T -322)) -NIL -(-1121) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 60)) (-2628 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-317)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-1274 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-3 (-1273 |#2| |#3| |#4|) "failed") $) 26)) (-2317 (((-1274 |#1| |#2| |#3| |#4|) $) NIL) (((-1197) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-576) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-576)))) (((-1273 |#2| |#3| |#4|) $) NIL)) (-1895 (($ $ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-1274 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1288 (-1274 |#1| |#2| |#3| |#4|)))) (-701 $) (-1288 $)) NIL) (((-701 (-1274 |#1| |#2| |#3| |#4|)) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2279 (((-112) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-901 (-390))))) (-2486 (((-112) $) NIL)) (-2252 (($ $) NIL)) (-2687 (((-1274 |#1| |#2| |#3| |#4|) $) 22)) (-3552 (((-3 $ "failed") $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1173)))) (-3323 (((-112) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2907 (($ $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-3777 (($ $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-2423 (($ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) $) NIL)) (-2394 (((-3 (-855 |#2|) "failed") $) 80)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-1274 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1288 (-1274 |#1| |#2| |#3| |#4|)))) (-1288 $) $) NIL) (((-701 (-1274 |#1| |#2| |#3| |#4|)) (-1288 $)) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1173)) CONST)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2701 (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-317)))) (-3058 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)))) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2145 (($ $ (-656 (-1274 |#1| |#2| |#3| |#4|)) (-656 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-304 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-304 (-1274 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319 (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-1197)) (-656 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-526 (-1197) (-1274 |#1| |#2| |#3| |#4|)))) (($ $ (-1197) (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-526 (-1197) (-1274 |#1| |#2| |#3| |#4|))))) (-2812 (((-783) $) NIL)) (-4369 (($ $ (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-296 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4107 (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237)))) (-3591 (($ $) NIL)) (-2697 (((-1274 |#1| |#2| |#3| |#4|) $) 19)) (-1556 (((-907 (-576)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-626 (-548)))) (((-390) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1043))) (((-227) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1043)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1274 |#1| |#2| |#3| |#4|) (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-1274 |#1| |#2| |#3| |#4|)) 30) (($ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1059 (-1197)))) (($ (-1273 |#2| |#3| |#4|)) 37)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| (-1274 |#1| |#2| |#3| |#4|) (-928))) (|has| (-1274 |#1| |#2| |#3| |#4|) (-146))))) (-2910 (((-783)) NIL T CONST)) (-4081 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-832)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-919 (-1197)))) (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-237)))) (-3995 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-3975 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-3963 (((-112) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-861)))) (-4047 (($ $ $) 35) (($ (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) 32)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-1274 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1274 |#1| |#2| |#3| |#4|)) NIL))) -(((-323 |#1| |#2| |#3| |#4|) (-13 (-1013 (-1274 |#1| |#2| |#3| |#4|)) (-1059 (-1273 |#2| |#3| |#4|)) (-10 -8 (-15 -2394 ((-3 (-855 |#2|) "failed") $)) (-15 -4113 ($ (-1273 |#2| |#3| |#4|))))) (-13 (-1059 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1223) (-442 |#1|)) (-1197) |#2|) (T -323)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1273 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4) (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) (-2394 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4)))) -(-13 (-1013 (-1274 |#1| |#2| |#3| |#4|)) (-1059 (-1273 |#2| |#3| |#4|)) (-10 -8 (-15 -2394 ((-3 (-855 |#2|) "failed") $)) (-15 -4113 ($ (-1273 |#2| |#3| |#4|))))) -((-2423 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13))) -(((-324 |#1| |#2|) (-10 -7 (-15 -2423 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1121) (-1121)) (T -324)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6))))) -(-10 -7 (-15 -2423 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) -((-1630 (((-52) |#2| (-304 |#2|) (-783)) 40) (((-52) |#2| (-304 |#2|)) 32) (((-52) |#2| (-783)) 35) (((-52) |#2|) 33) (((-52) (-1197)) 26)) (-2861 (((-52) |#2| (-304 |#2|) (-419 (-576))) 59) (((-52) |#2| (-304 |#2|)) 56) (((-52) |#2| (-419 (-576))) 58) (((-52) |#2|) 57) (((-52) (-1197)) 55)) (-1648 (((-52) |#2| (-304 |#2|) (-419 (-576))) 54) (((-52) |#2| (-304 |#2|)) 51) (((-52) |#2| (-419 (-576))) 53) (((-52) |#2|) 52) (((-52) (-1197)) 50)) (-1639 (((-52) |#2| (-304 |#2|) (-576)) 47) (((-52) |#2| (-304 |#2|)) 44) (((-52) |#2| (-576)) 46) (((-52) |#2|) 45) (((-52) (-1197)) 43))) -(((-325 |#1| |#2|) (-10 -7 (-15 -1630 ((-52) (-1197))) (-15 -1630 ((-52) |#2|)) (-15 -1630 ((-52) |#2| (-783))) (-15 -1630 ((-52) |#2| (-304 |#2|))) (-15 -1630 ((-52) |#2| (-304 |#2|) (-783))) (-15 -1639 ((-52) (-1197))) (-15 -1639 ((-52) |#2|)) (-15 -1639 ((-52) |#2| (-576))) (-15 -1639 ((-52) |#2| (-304 |#2|))) (-15 -1639 ((-52) |#2| (-304 |#2|) (-576))) (-15 -1648 ((-52) (-1197))) (-15 -1648 ((-52) |#2|)) (-15 -1648 ((-52) |#2| (-419 (-576)))) (-15 -1648 ((-52) |#2| (-304 |#2|))) (-15 -1648 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -2861 ((-52) (-1197))) (-15 -2861 ((-52) |#2|)) (-15 -2861 ((-52) |#2| (-419 (-576)))) (-15 -2861 ((-52) |#2| (-304 |#2|))) (-15 -2861 ((-52) |#2| (-304 |#2|) (-419 (-576))))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -325)) -((-2861 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2861 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2861 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2861 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) (-1648 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-1648 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) (-1639 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 *5) (-651 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1639 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-1639 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1059 *4) (-651 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-1639 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) (-1630 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-1630 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4)))))) -(-10 -7 (-15 -1630 ((-52) (-1197))) (-15 -1630 ((-52) |#2|)) (-15 -1630 ((-52) |#2| (-783))) (-15 -1630 ((-52) |#2| (-304 |#2|))) (-15 -1630 ((-52) |#2| (-304 |#2|) (-783))) (-15 -1639 ((-52) (-1197))) (-15 -1639 ((-52) |#2|)) (-15 -1639 ((-52) |#2| (-576))) (-15 -1639 ((-52) |#2| (-304 |#2|))) (-15 -1639 ((-52) |#2| (-304 |#2|) (-576))) (-15 -1648 ((-52) (-1197))) (-15 -1648 ((-52) |#2|)) (-15 -1648 ((-52) |#2| (-419 (-576)))) (-15 -1648 ((-52) |#2| (-304 |#2|))) (-15 -1648 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -2861 ((-52) (-1197))) (-15 -2861 ((-52) |#2|)) (-15 -2861 ((-52) |#2| (-419 (-576)))) (-15 -2861 ((-52) |#2| (-304 |#2|))) (-15 -2861 ((-52) |#2| (-304 |#2|) (-419 (-576))))) -((-1957 (((-112) $ $) NIL)) (-2246 (((-656 $) $ (-1197)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $) (-1197)) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $)) NIL (|has| |#1| (-568))) (((-656 $) (-971 $)) NIL (|has| |#1| (-568)))) (-2811 (($ $ (-1197)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1193 $) (-1197)) NIL (|has| |#1| (-568))) (($ (-1193 $)) NIL (|has| |#1| (-568))) (($ (-971 $)) NIL (|has| |#1| (-568)))) (-3114 (((-112) $) 27 (-3795 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-1585 (((-656 (-1197)) $) 368)) (-1421 (((-419 (-1193 $)) $ (-624 $)) NIL (|has| |#1| (-568)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-4442 (((-656 (-624 $)) $) NIL)) (-3586 (($ $) 171 (|has| |#1| (-568)))) (-3435 (($ $) 147 (|has| |#1| (-568)))) (-1557 (($ $ (-1113 $)) 232 (|has| |#1| (-568))) (($ $ (-1197)) 228 (|has| |#1| (-568)))) (-1765 (((-3 $ "failed") $ $) NIL (-3795 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-1791 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) 386) (($ $ (-656 (-624 $)) (-656 $)) 430)) (-2725 (((-430 (-1193 $)) (-1193 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-2658 (($ $) NIL (|has| |#1| (-568)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-568)))) (-1462 (($ $) NIL (|has| |#1| (-568)))) (-4386 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3562 (($ $) 167 (|has| |#1| (-568)))) (-3412 (($ $) 143 (|has| |#1| (-568)))) (-3212 (($ $ (-576)) 73 (|has| |#1| (-568)))) (-3612 (($ $) 175 (|has| |#1| (-568)))) (-3461 (($ $) 151 (|has| |#1| (-568)))) (-3170 (($) NIL (-3795 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) (|has| |#1| (-1133))) CONST)) (-1499 (((-656 $) $ (-1197)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $) (-1197)) NIL (|has| |#1| (-568))) (((-656 $) (-1193 $)) NIL (|has| |#1| (-568))) (((-656 $) (-971 $)) NIL (|has| |#1| (-568)))) (-2467 (($ $ (-1197)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1193 $) (-1197)) 134 (|has| |#1| (-568))) (($ (-1193 $)) NIL (|has| |#1| (-568))) (($ (-971 $)) NIL (|has| |#1| (-568)))) (-2982 (((-3 (-624 $) "failed") $) 18) (((-3 (-1197) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-971 |#1|)) "failed") $) NIL (|has| |#1| (-568))) (((-3 (-971 |#1|) "failed") $) NIL (|has| |#1| (-1070))) (((-3 (-419 (-576)) "failed") $) 46 (-3795 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2317 (((-624 $) $) 12) (((-1197) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-971 |#1|)) $) NIL (|has| |#1| (-568))) (((-971 |#1|) $) NIL (|has| |#1| (-1070))) (((-419 (-576)) $) 319 (-3795 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-1895 (($ $ $) NIL (|has| |#1| (-568)))) (-1930 (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 125 (|has| |#1| (-1070))) (((-701 |#1|) (-701 $)) 115 (|has| |#1| (-1070))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (-2721 (($ $) 96 (|has| |#1| (-568)))) (-1851 (((-3 $ "failed") $) NIL (|has| |#1| (-1133)))) (-1908 (($ $ $) NIL (|has| |#1| (-568)))) (-4332 (($ $ (-1113 $)) 236 (|has| |#1| (-568))) (($ $ (-1197)) 234 (|has| |#1| (-568)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-568)))) (-2171 (((-112) $) NIL (|has| |#1| (-568)))) (-3396 (($ $ $) 202 (|has| |#1| (-568)))) (-2722 (($) 137 (|has| |#1| (-568)))) (-1595 (($ $ $) 222 (|has| |#1| (-568)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 392 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 399 (|has| |#1| (-901 (-390))))) (-3043 (($ $) NIL) (($ (-656 $)) NIL)) (-1849 (((-656 (-115)) $) NIL)) (-1401 (((-115) (-115)) 276)) (-2486 (((-112) $) 25 (|has| |#1| (-1133)))) (-3616 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-2252 (($ $) 72 (|has| |#1| (-1070)))) (-2687 (((-1146 |#1| (-624 $)) $) 91 (|has| |#1| (-1070)))) (-2320 (((-112) $) 62 (|has| |#1| (-568)))) (-4005 (($ $ (-576)) NIL (|has| |#1| (-568)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-1634 (((-1193 $) (-624 $)) 277 (|has| $ (-1070)))) (-2423 (($ (-1 $ $) (-624 $)) 426)) (-2875 (((-3 (-624 $) "failed") $) NIL)) (-2608 (($ $) 141 (|has| |#1| (-568)))) (-1828 (($ $) 247 (|has| |#1| (-568)))) (-2160 (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL (|has| |#1| (-1070))) (((-701 |#1|) (-1288 $)) NIL (|has| |#1| (-1070))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (-3076 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2447 (((-1179) $) NIL)) (-1388 (((-656 (-624 $)) $) 49)) (-2772 (($ (-115) $) NIL) (($ (-115) (-656 $)) 431)) (-4050 (((-3 (-656 $) "failed") $) NIL (|has| |#1| (-1133)))) (-3838 (((-3 (-2 (|:| |val| $) (|:| -4080 (-576))) "failed") $) NIL (|has| |#1| (-1070)))) (-2646 (((-3 (-656 $) "failed") $) 436 (|has| |#1| (-25)))) (-3453 (((-3 (-2 (|:| -2862 (-576)) (|:| |var| (-624 $))) "failed") $) 440 (|has| |#1| (-25)))) (-1608 (((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $) NIL (|has| |#1| (-1133))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $ (-115)) NIL (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $ (-1197)) NIL (|has| |#1| (-1070)))) (-4227 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) 51)) (-1669 (($ $) NIL (-3795 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3930 (($ $ (-1197)) 251 (|has| |#1| (-568))) (($ $ (-1113 $)) 253 (|has| |#1| (-568)))) (-2955 (((-783) $) NIL)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) 43)) (-1686 ((|#1| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 301 (|has| |#1| (-568)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2197 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-3426 (($ $ (-1197)) 226 (|has| |#1| (-568))) (($ $) 224 (|has| |#1| (-568)))) (-4372 (($ $) 218 (|has| |#1| (-568)))) (-3680 (((-430 (-1193 $)) (-1193 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-1452 (((-430 $) $) NIL (|has| |#1| (-568)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-568)))) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-2156 (($ $) 139 (|has| |#1| (-568)))) (-3955 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-2145 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 425) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) 379) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-626 (-548)))) (($ $) NIL (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1197)) 366 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1197)) 365 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ (-656 $))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ $)) NIL (|has| |#1| (-1070)))) (-2812 (((-783) $) NIL (|has| |#1| (-568)))) (-3363 (($ $) 239 (|has| |#1| (-568)))) (-4369 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-568)))) (-1328 (($ $) NIL) (($ $ $) NIL)) (-3399 (($ $) 249 (|has| |#1| (-568)))) (-2621 (($ $) 200 (|has| |#1| (-568)))) (-4107 (($ $ (-1197)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-1070)))) (-3591 (($ $) 74 (|has| |#1| (-568)))) (-2697 (((-1146 |#1| (-624 $)) $) 93 (|has| |#1| (-568)))) (-3881 (($ $) 317 (|has| $ (-1070)))) (-3623 (($ $) 177 (|has| |#1| (-568)))) (-3474 (($ $) 153 (|has| |#1| (-568)))) (-3599 (($ $) 173 (|has| |#1| (-568)))) (-3448 (($ $) 149 (|has| |#1| (-568)))) (-3574 (($ $) 169 (|has| |#1| (-568)))) (-3424 (($ $) 145 (|has| |#1| (-568)))) (-1556 (((-907 (-576)) $) NIL (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#1| (-626 (-907 (-390))))) (($ (-430 $)) NIL (|has| |#1| (-568))) (((-548) $) 363 (|has| |#1| (-626 (-548))))) (-2117 (($ $ $) NIL (|has| |#1| (-485)))) (-3871 (($ $ $) NIL (|has| |#1| (-485)))) (-4113 (((-876) $) 424) (($ (-624 $)) 415) (($ (-1197)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-568))) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) (($ (-1146 |#1| (-624 $))) 95 (|has| |#1| (-1070))) (($ (-419 |#1|)) NIL (|has| |#1| (-568))) (($ (-971 (-419 |#1|))) NIL (|has| |#1| (-568))) (($ (-419 (-971 (-419 |#1|)))) NIL (|has| |#1| (-568))) (($ (-419 (-971 |#1|))) NIL (|has| |#1| (-568))) (($ (-971 |#1|)) NIL (|has| |#1| (-1070))) (($ (-576)) 34 (-3795 (|has| |#1| (-1059 (-576))) (|has| |#1| (-1070)))) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-568)) (|has| |#1| (-1059 (-419 (-576))))))) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL (|has| |#1| (-1070)) CONST)) (-2345 (($ $) NIL) (($ (-656 $)) NIL)) (-1348 (($ $ $) 220 (|has| |#1| (-568)))) (-3242 (($ $ $) 206 (|has| |#1| (-568)))) (-3854 (($ $ $) 210 (|has| |#1| (-568)))) (-1772 (($ $ $) 204 (|has| |#1| (-568)))) (-2586 (($ $ $) 208 (|has| |#1| (-568)))) (-1380 (((-112) (-115)) 10)) (-2950 (((-112) $ $) 86)) (-3653 (($ $) 183 (|has| |#1| (-568)))) (-3510 (($ $) 159 (|has| |#1| (-568)))) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3632 (($ $) 179 (|has| |#1| (-568)))) (-3487 (($ $) 155 (|has| |#1| (-568)))) (-3673 (($ $) 187 (|has| |#1| (-568)))) (-3537 (($ $) 163 (|has| |#1| (-568)))) (-3699 (($ (-1197) $) NIL) (($ (-1197) $ $) NIL) (($ (-1197) $ $ $) NIL) (($ (-1197) $ $ $ $) NIL) (($ (-1197) (-656 $)) NIL)) (-2347 (($ $) 214 (|has| |#1| (-568)))) (-1958 (($ $) 212 (|has| |#1| (-568)))) (-1972 (($ $) 189 (|has| |#1| (-568)))) (-3550 (($ $) 165 (|has| |#1| (-568)))) (-3664 (($ $) 185 (|has| |#1| (-568)))) (-3523 (($ $) 161 (|has| |#1| (-568)))) (-3642 (($ $) 181 (|has| |#1| (-568)))) (-3498 (($ $) 157 (|has| |#1| (-568)))) (-2366 (($ $) 192 (|has| |#1| (-568)))) (-4313 (($) 21 (-3795 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) CONST)) (-3576 (($ $) 243 (|has| |#1| (-568)))) (-4322 (($) 23 (|has| |#1| (-1133)) CONST)) (-2257 (($ $) 194 (|has| |#1| (-568))) (($ $ $) 196 (|has| |#1| (-568)))) (-4335 (($ $) 241 (|has| |#1| (-568)))) (-3157 (($ $ (-1197)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-1070))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-1070)))) (-2191 (($ $) 245 (|has| |#1| (-568)))) (-2480 (($ $ $) 198 (|has| |#1| (-568)))) (-3939 (((-112) $ $) 88)) (-4047 (($ (-1146 |#1| (-624 $)) (-1146 |#1| (-624 $))) 106 (|has| |#1| (-568))) (($ $ $) 42 (-3795 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4037 (($ $ $) 40 (-3795 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (($ $) 29 (-3795 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (-4026 (($ $ $) 38 (-3795 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))))) (** (($ $ $) 64 (|has| |#1| (-568))) (($ $ (-419 (-576))) 314 (|has| |#1| (-568))) (($ $ (-576)) 80 (-3795 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 75 (|has| |#1| (-1133))) (($ $ (-940)) 84 (|has| |#1| (-1133)))) (* (($ (-419 (-576)) $) NIL (|has| |#1| (-568))) (($ $ (-419 (-576))) NIL (|has| |#1| (-568))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1070))) (($ $ $) 36 (|has| |#1| (-1133))) (($ (-576) $) 32 (-3795 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (($ (-783) $) NIL (-3795 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))) (($ (-940) $) NIL (-3795 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))))))) -(((-326 |#1|) (-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1223)) (-6 (-161)) (-6 (-641)) (-6 (-1160)) (-15 -2721 ($ $)) (-15 -2320 ((-112) $)) (-15 -3212 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -3680 ((-430 (-1193 $)) (-1193 $))) (-15 -2725 ((-430 (-1193 $)) (-1193 $)))) |%noBranch|) (IF (|has| |#1| (-1059 (-576))) (-6 (-1059 (-48))) |%noBranch|)) |%noBranch|))) (-1121)) (T -326)) -((-2721 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1121)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121)))) (-3212 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121)))) (-3680 (*1 *2 *3) (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121)))) (-2725 (*1 *2 *3) (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121))))) -(-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1223)) (-6 (-161)) (-6 (-641)) (-6 (-1160)) (-15 -2721 ($ $)) (-15 -2320 ((-112) $)) (-15 -3212 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -3680 ((-430 (-1193 $)) (-1193 $))) (-15 -2725 ((-430 (-1193 $)) (-1193 $)))) |%noBranch|) (IF (|has| |#1| (-1059 (-576))) (-6 (-1059 (-48))) |%noBranch|)) |%noBranch|))) -((-3460 (((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)) 89) (((-52) |#2| (-115) (-304 |#2|) (-304 |#2|)) 85) (((-52) |#2| (-115) (-304 |#2|) |#2|) 87) (((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|) 88) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 81) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 83) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 84) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 82) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 90) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|)) 86))) -(((-327 |#1| |#2|) (-10 -7 (-15 -3460 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -3460 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -3460 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3460 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3460 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3460 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3460 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -3460 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -3460 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -3460 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-568) (-626 (-548))) (-442 |#1|)) (T -327)) -((-3460 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3)))) (-3460 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3460 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3460 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *5)))) (-3460 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-3460 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3460 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-3460 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3460 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3460 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *6))))) -(-10 -7 (-15 -3460 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -3460 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -3460 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3460 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3460 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3460 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3460 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -3460 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -3460 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -3460 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) -((-3848 (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576) (-1179)) 67) (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576)) 68) (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576) (-1179)) 64) (((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576)) 65)) (-3811 (((-1 (-227) (-227)) (-227)) 66))) -(((-328) (-10 -7 (-15 -3811 ((-1 (-227) (-227)) (-227))) (-15 -3848 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576))) (-15 -3848 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576) (-1179))) (-15 -3848 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576))) (-15 -3848 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576) (-1179))))) (T -328)) -((-3848 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1179)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-3848 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-3848 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *7 (-1179)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-3848 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) (-3811 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) -(-10 -7 (-15 -3811 ((-1 (-227) (-227)) (-227))) (-15 -3848 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576))) (-15 -3848 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-1 (-227) (-227)) (-576) (-1179))) (-15 -3848 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576))) (-15 -3848 ((-1233 (-945)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-227) (-576) (-1179)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 26)) (-1585 (((-656 (-1103)) $) NIL)) (-1654 (((-1197) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-4087 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-4073 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 20)) (-3586 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL (|has| |#1| (-374)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3562 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2861 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-3612 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) NIL T CONST)) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-3310 (($ $) 36)) (-1851 (((-3 $ "failed") $) NIL)) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2171 (((-112) $) NIL (|has| |#1| (-374)))) (-2654 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) 16)) (-2486 (((-112) $) NIL)) (-4005 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4328 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-419 (-576))) NIL) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2608 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL (|has| |#1| (-374)))) (-4412 (($ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223)))))) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-2419 (($ $ (-419 (-576))) NIL)) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1774 (((-419 (-576)) $) 17)) (-1836 (($ (-1273 |#1| |#2| |#3|)) 11)) (-4080 (((-1273 |#1| |#2| |#3|) $) 12)) (-2156 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2812 (((-783) $) NIL (|has| |#1| (-374)))) (-4369 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-4107 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2196 (((-419 (-576)) $) NIL)) (-3623 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) 10)) (-4113 (((-876) $) 42) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2707 ((|#1| $ (-419 (-576))) 34)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-3188 ((|#1| $) NIL)) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3632 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 28)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 37)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-329 |#1| |#2| |#3|) (-13 (-1269 |#1|) (-804) (-10 -8 (-15 -1836 ($ (-1273 |#1| |#2| |#3|))) (-15 -4080 ((-1273 |#1| |#2| |#3|) $)) (-15 -1774 ((-419 (-576)) $)))) (-374) (-1197) |#1|) (T -329)) -((-1836 (*1 *1 *2) (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-1273 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) (-14 *5 *3))) (-1774 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) (-14 *5 *3)))) -(-13 (-1269 |#1|) (-804) (-10 -8 (-15 -1836 ($ (-1273 |#1| |#2| |#3|))) (-15 -4080 ((-1273 |#1| |#2| |#3|) $)) (-15 -1774 ((-419 (-576)) $)))) -((-4005 (((-2 (|:| -4080 (-783)) (|:| -2862 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783)) 35)) (-2608 (((-656 (-2 (|:| -2862 (-783)) (|:| |logand| |#1|))) (-430 |#1|)) 40))) -(((-330 |#1|) (-10 -7 (-15 -4005 ((-2 (|:| -4080 (-783)) (|:| -2862 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -2608 ((-656 (-2 (|:| -2862 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) (-568)) (T -330)) -((-2608 (*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) (-5 *2 (-656 (-2 (|:| -2862 (-783)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) (-4005 (*1 *2 *3 *4) (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -4080 (-783)) (|:| -2862 *5) (|:| |radicand| (-656 *5)))) (-5 *1 (-330 *5)) (-5 *4 (-783))))) -(-10 -7 (-15 -4005 ((-2 (|:| -4080 (-783)) (|:| -2862 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -2608 ((-656 (-2 (|:| -2862 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) -((-1585 (((-656 |#2|) (-1193 |#4|)) 44)) (-2968 ((|#3| (-576)) 47)) (-2332 (((-1193 |#4|) (-1193 |#3|)) 30)) (-3343 (((-1193 |#4|) (-1193 |#4|) (-576)) 66)) (-3739 (((-1193 |#3|) (-1193 |#4|)) 21)) (-2196 (((-656 (-783)) (-1193 |#4|) (-656 |#2|)) 41)) (-2591 (((-1193 |#3|) (-1193 |#4|) (-656 |#2|) (-656 |#3|)) 35))) -(((-331 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2591 ((-1193 |#3|) (-1193 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -2196 ((-656 (-783)) (-1193 |#4|) (-656 |#2|))) (-15 -1585 ((-656 |#2|) (-1193 |#4|))) (-15 -3739 ((-1193 |#3|) (-1193 |#4|))) (-15 -2332 ((-1193 |#4|) (-1193 |#3|))) (-15 -3343 ((-1193 |#4|) (-1193 |#4|) (-576))) (-15 -2968 (|#3| (-576)))) (-805) (-861) (-1070) (-968 |#3| |#1| |#2|)) (T -331)) -((-2968 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1070)) (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-968 *2 *4 *5)))) (-3343 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 *7)) (-5 *3 (-576)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *1 (-331 *4 *5 *6 *7)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-1193 *6)) (-4 *6 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-1193 *7)) (-5 *1 (-331 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-1193 *6)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-656 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) (-2196 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *8)) (-5 *4 (-656 *6)) (-4 *6 (-861)) (-4 *8 (-968 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1070)) (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) (-2591 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-1193 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) -(-10 -7 (-15 -2591 ((-1193 |#3|) (-1193 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -2196 ((-656 (-783)) (-1193 |#4|) (-656 |#2|))) (-15 -1585 ((-656 |#2|) (-1193 |#4|))) (-15 -3739 ((-1193 |#3|) (-1193 |#4|))) (-15 -2332 ((-1193 |#4|) (-1193 |#3|))) (-15 -3343 ((-1193 |#4|) (-1193 |#4|) (-576))) (-15 -2968 (|#3| (-576)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 19)) (-4073 (((-656 (-2 (|:| |gen| |#1|) (|:| -2156 (-576)))) $) 21)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2201 (((-783) $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-4158 ((|#1| $ (-576)) NIL)) (-4060 (((-576) $ (-576)) NIL)) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-2912 (($ (-1 |#1| |#1|) $) NIL)) (-1904 (($ (-1 (-576) (-576)) $) 11)) (-2447 (((-1179) $) NIL)) (-1799 (($ $ $) NIL (|has| (-576) (-804)))) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL) (($ |#1|) NIL)) (-2707 (((-576) |#1| $) NIL)) (-2950 (((-112) $ $) NIL)) (-4313 (($) NIL T CONST)) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) 29 (|has| |#1| (-861)))) (-4037 (($ $) 12) (($ $ $) 28)) (-4026 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL) (($ (-576) |#1|) 27))) -(((-332 |#1|) (-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|))) (-1121)) (T -332)) -NIL -(-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-4073 (((-656 (-2 (|:| |gen| |#1|) (|:| -2156 |#2|))) $) 28)) (-1765 (((-3 $ "failed") $ $) 20)) (-2201 (((-783) $) 29)) (-3170 (($) 18 T CONST)) (-2982 (((-3 |#1| "failed") $) 33)) (-2317 ((|#1| $) 34)) (-4158 ((|#1| $ (-576)) 26)) (-4060 ((|#2| $ (-576)) 27)) (-2912 (($ (-1 |#1| |#1|) $) 23)) (-1904 (($ (-1 |#2| |#2|) $) 24)) (-2447 (((-1179) $) 10)) (-1799 (($ $ $) 22 (|has| |#2| (-804)))) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ |#1|) 32)) (-2707 ((|#2| |#1| $) 25)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4026 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ |#2| |#1|) 30))) -(((-333 |#1| |#2|) (-141) (-1121) (-132)) (T -333)) -((-4026 (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) (-5 *2 (-783)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2156 *4)))))) (-4060 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1121)) (-4 *2 (-132)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1121)))) (-2707 (*1 *2 *3 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) (-1904 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)))) (-2912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)))) (-1799 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)) (-4 *3 (-804))))) -(-13 (-132) (-1059 |t#1|) (-10 -8 (-15 -4026 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2201 ((-783) $)) (-15 -4073 ((-656 (-2 (|:| |gen| |t#1|) (|:| -2156 |t#2|))) $)) (-15 -4060 (|t#2| $ (-576))) (-15 -4158 (|t#1| $ (-576))) (-15 -2707 (|t#2| |t#1| $)) (-15 -1904 ($ (-1 |t#2| |t#2|) $)) (-15 -2912 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-804)) (-15 -1799 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-1059 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-4073 (((-656 (-2 (|:| |gen| |#1|) (|:| -2156 (-783)))) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2201 (((-783) $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-4158 ((|#1| $ (-576)) NIL)) (-4060 (((-783) $ (-576)) NIL)) (-2912 (($ (-1 |#1| |#1|) $) NIL)) (-1904 (($ (-1 (-783) (-783)) $) NIL)) (-2447 (((-1179) $) NIL)) (-1799 (($ $ $) NIL (|has| (-783) (-804)))) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL) (($ |#1|) NIL)) (-2707 (((-783) |#1| $) NIL)) (-2950 (((-112) $ $) NIL)) (-4313 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4026 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-783) |#1|) NIL))) -(((-334 |#1|) (-333 |#1| (-783)) (-1121)) (T -334)) -NIL -(-333 |#1| (-783)) -((-1788 (($ $) 72)) (-1975 (($ $ |#2| |#3| $) 14)) (-3784 (($ (-1 |#3| |#3|) $) 51)) (-1678 (((-112) $) 42)) (-1686 ((|#2| $) 44)) (-1946 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1944 ((|#2| $) 68)) (-3244 (((-656 |#2|) $) 56)) (-1903 (($ $ $ (-783)) 37)) (-4047 (($ $ |#2|) 60))) -(((-335 |#1| |#2| |#3|) (-10 -8 (-15 -1788 (|#1| |#1|)) (-15 -1944 (|#2| |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1903 (|#1| |#1| |#1| (-783))) (-15 -1975 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3784 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3244 ((-656 |#2|) |#1|)) (-15 -1686 (|#2| |#1|)) (-15 -1678 ((-112) |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4047 (|#1| |#1| |#2|))) (-336 |#2| |#3|) (-1070) (-804)) (T -335)) -NIL -(-10 -8 (-15 -1788 (|#1| |#1|)) (-15 -1944 (|#2| |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1903 (|#1| |#1| |#1| (-783))) (-15 -1975 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3784 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3244 ((-656 |#2|) |#1|)) (-15 -1686 (|#2| |#1|)) (-15 -1678 ((-112) |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4047 (|#1| |#1| |#2|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2390 (($ $) 64 (|has| |#1| (-568)))) (-3302 (((-112) $) 66 (|has| |#1| (-568)))) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2982 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2317 (((-576) $) 99 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 96)) (-3310 (($ $) 72)) (-1851 (((-3 $ "failed") $) 37)) (-1788 (($ $) 84 (|has| |#1| (-464)))) (-1975 (($ $ |#1| |#2| $) 88)) (-2486 (((-112) $) 35)) (-2018 (((-783) $) 91)) (-4101 (((-112) $) 74)) (-1564 (($ |#1| |#2|) 73)) (-2192 ((|#2| $) 90)) (-3784 (($ (-1 |#2| |#2|) $) 89)) (-2423 (($ (-1 |#1| |#1|) $) 75)) (-1700 (($ $) 77)) (-1711 ((|#1| $) 78)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1678 (((-112) $) 94)) (-1686 ((|#1| $) 93)) (-1946 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-568)))) (-2196 ((|#2| $) 76)) (-1944 ((|#1| $) 85 (|has| |#1| (-464)))) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59) (($ (-419 (-576))) 69 (-3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-3244 (((-656 |#1|) $) 92)) (-2707 ((|#1| $ |#2|) 71)) (-4276 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-1903 (($ $ $ (-783)) 87 (|has| |#1| (-174)))) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-336 |#1| |#2|) (-141) (-1070) (-804)) (T -336)) -((-1678 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-112)))) (-1686 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-656 *3)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-783)))) (-2192 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-3784 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) (-1975 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) (-1903 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *3 (-174)))) (-1946 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-568)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-1788 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *2 (-464))))) -(-13 (-47 |t#1| |t#2|) (-423 |t#1|) (-10 -8 (-15 -1678 ((-112) $)) (-15 -1686 (|t#1| $)) (-15 -3244 ((-656 |t#1|) $)) (-15 -2018 ((-783) $)) (-15 -2192 (|t#2| $)) (-15 -3784 ($ (-1 |t#2| |t#2|) $)) (-15 -1975 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -1903 ($ $ $ (-783))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -1946 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -1944 (|t#1| $)) (-15 -1788 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-423 |#1|) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-2380 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4234 (((-112) $ (-783)) NIL)) (-1594 (((-112) (-112)) NIL)) (-4268 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1954 (($ (-1 (-112) |#1|) $) NIL)) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-1942 (($ $) NIL (|has| |#1| (-1121)))) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3872 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-2825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) NIL)) (-3539 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3682 (($ $ (-576)) NIL)) (-3350 (((-783) $) NIL)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1991 (($ (-783) |#1|) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-2745 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2748 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3695 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3059 (($ (-656 |#1|)) NIL)) (-1755 ((|#1| $) NIL (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4267 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2603 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-2335 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) NIL)) (-4022 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-337 |#1|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3059 ($ (-656 |#1|))) (-15 -3350 ((-783) $)) (-15 -3682 ($ $ (-576))) (-15 -1594 ((-112) (-112))))) (-1238)) (T -337)) -((-3059 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-337 *3)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1238))))) -(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3059 ($ (-656 |#1|))) (-15 -3350 ((-783) $)) (-15 -3682 ($ $ (-576))) (-15 -1594 ((-112) (-112))))) -((-2536 (((-112) $) 47)) (-3570 (((-783)) 23)) (-3832 ((|#2| $) 51) (($ $ (-940)) 121)) (-2201 (((-783)) 122)) (-2496 (($ (-1288 |#2|)) 20)) (-2882 (((-112) $) 134)) (-2595 ((|#2| $) 53) (($ $ (-940)) 118)) (-4293 (((-1193 |#2|) $) NIL) (((-1193 $) $ (-940)) 109)) (-2089 (((-1193 |#2|) $) 95)) (-3922 (((-1193 |#2|) $) 91) (((-3 (-1193 |#2|) "failed") $ $) 88)) (-4010 (($ $ (-1193 |#2|)) 58)) (-3835 (((-845 (-940))) 30) (((-940)) 48)) (-3181 (((-135)) 27)) (-2196 (((-845 (-940)) $) 32) (((-940) $) 137)) (-2174 (($) 128)) (-4314 (((-1288 |#2|) $) NIL) (((-701 |#2|) (-1288 $)) 42)) (-4276 (($ $) NIL) (((-3 $ "failed") $) 98)) (-1736 (((-112) $) 45))) -(((-338 |#1| |#2|) (-10 -8 (-15 -4276 ((-3 |#1| "failed") |#1|)) (-15 -2201 ((-783))) (-15 -4276 (|#1| |#1|)) (-15 -3922 ((-3 (-1193 |#2|) "failed") |#1| |#1|)) (-15 -3922 ((-1193 |#2|) |#1|)) (-15 -2089 ((-1193 |#2|) |#1|)) (-15 -4010 (|#1| |#1| (-1193 |#2|))) (-15 -2882 ((-112) |#1|)) (-15 -2174 (|#1|)) (-15 -3832 (|#1| |#1| (-940))) (-15 -2595 (|#1| |#1| (-940))) (-15 -4293 ((-1193 |#1|) |#1| (-940))) (-15 -3832 (|#2| |#1|)) (-15 -2595 (|#2| |#1|)) (-15 -2196 ((-940) |#1|)) (-15 -3835 ((-940))) (-15 -4293 ((-1193 |#2|) |#1|)) (-15 -2496 (|#1| (-1288 |#2|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1|)) (-15 -3570 ((-783))) (-15 -3835 ((-845 (-940)))) (-15 -2196 ((-845 (-940)) |#1|)) (-15 -2536 ((-112) |#1|)) (-15 -1736 ((-112) |#1|)) (-15 -3181 ((-135)))) (-339 |#2|) (-374)) (T -338)) -((-3181 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3835 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-845 (-940))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3570 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3835 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-940)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2201 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4))))) -(-10 -8 (-15 -4276 ((-3 |#1| "failed") |#1|)) (-15 -2201 ((-783))) (-15 -4276 (|#1| |#1|)) (-15 -3922 ((-3 (-1193 |#2|) "failed") |#1| |#1|)) (-15 -3922 ((-1193 |#2|) |#1|)) (-15 -2089 ((-1193 |#2|) |#1|)) (-15 -4010 (|#1| |#1| (-1193 |#2|))) (-15 -2882 ((-112) |#1|)) (-15 -2174 (|#1|)) (-15 -3832 (|#1| |#1| (-940))) (-15 -2595 (|#1| |#1| (-940))) (-15 -4293 ((-1193 |#1|) |#1| (-940))) (-15 -3832 (|#2| |#1|)) (-15 -2595 (|#2| |#1|)) (-15 -2196 ((-940) |#1|)) (-15 -3835 ((-940))) (-15 -4293 ((-1193 |#2|) |#1|)) (-15 -2496 (|#1| (-1288 |#2|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1|)) (-15 -3570 ((-783))) (-15 -3835 ((-845 (-940)))) (-15 -2196 ((-845 (-940)) |#1|)) (-15 -2536 ((-112) |#1|)) (-15 -1736 ((-112) |#1|)) (-15 -3181 ((-135)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-2536 (((-112) $) 104)) (-3570 (((-783)) 100)) (-3832 ((|#1| $) 151) (($ $ (-940)) 148 (|has| |#1| (-379)))) (-2063 (((-1210 (-940) (-783)) (-576)) 133 (|has| |#1| (-379)))) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 81)) (-3589 (((-430 $) $) 80)) (-4386 (((-112) $ $) 65)) (-2201 (((-783)) 123 (|has| |#1| (-379)))) (-3170 (($) 18 T CONST)) (-2982 (((-3 |#1| "failed") $) 111)) (-2317 ((|#1| $) 112)) (-2496 (($ (-1288 |#1|)) 157)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-379)))) (-1895 (($ $ $) 61)) (-1851 (((-3 $ "failed") $) 37)) (-4370 (($) 120 (|has| |#1| (-379)))) (-1908 (($ $ $) 62)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-3712 (($) 135 (|has| |#1| (-379)))) (-2616 (((-112) $) 136 (|has| |#1| (-379)))) (-2824 (($ $ (-783)) 97 (-3795 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2171 (((-112) $) 79)) (-3359 (((-940) $) 138 (|has| |#1| (-379))) (((-845 (-940)) $) 94 (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2486 (((-112) $) 35)) (-3121 (($) 146 (|has| |#1| (-379)))) (-2882 (((-112) $) 145 (|has| |#1| (-379)))) (-2595 ((|#1| $) 152) (($ $ (-940)) 149 (|has| |#1| (-379)))) (-3552 (((-3 $ "failed") $) 124 (|has| |#1| (-379)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-4293 (((-1193 |#1|) $) 156) (((-1193 $) $ (-940)) 150 (|has| |#1| (-379)))) (-3787 (((-940) $) 121 (|has| |#1| (-379)))) (-2089 (((-1193 |#1|) $) 142 (|has| |#1| (-379)))) (-3922 (((-1193 |#1|) $) 141 (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) 140 (|has| |#1| (-379)))) (-4010 (($ $ (-1193 |#1|)) 143 (|has| |#1| (-379)))) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 78)) (-3650 (($) 125 (|has| |#1| (-379)) CONST)) (-2411 (($ (-940)) 122 (|has| |#1| (-379)))) (-3464 (((-112) $) 103)) (-3116 (((-1141) $) 11)) (-2549 (($) 144 (|has| |#1| (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) 132 (|has| |#1| (-379)))) (-1452 (((-430 $) $) 82)) (-3835 (((-845 (-940))) 101) (((-940)) 154)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2812 (((-783) $) 64)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63)) (-3168 (((-783) $) 137 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 95 (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3181 (((-135)) 109)) (-4107 (($ $ (-783)) 128 (|has| |#1| (-379))) (($ $) 126 (|has| |#1| (-379)))) (-2196 (((-845 (-940)) $) 102) (((-940) $) 153)) (-3881 (((-1193 |#1|)) 155)) (-4223 (($) 134 (|has| |#1| (-379)))) (-2174 (($) 147 (|has| |#1| (-379)))) (-4314 (((-1288 |#1|) $) 159) (((-701 |#1|) (-1288 $)) 158)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 131 (|has| |#1| (-379)))) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-4276 (($ $) 130 (|has| |#1| (-379))) (((-3 $ "failed") $) 93 (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-2704 (((-1288 $)) 161) (((-1288 $) (-940)) 160)) (-4134 (((-112) $ $) 45)) (-1736 (((-112) $) 105)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-2510 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-3157 (($ $ (-783)) 129 (|has| |#1| (-379))) (($ $) 127 (|has| |#1| (-379)))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ $) 73) (($ $ |#1|) 108)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +((-3205 ((|#1| (-1 |#1| (-576)) (-1200 (-419 (-576)))) 26))) +(((-320 |#1|) (-10 -7 (-15 -3205 (|#1| (-1 |#1| (-576)) (-1200 (-419 (-576)))))) (-38 (-419 (-576)))) (T -320)) +((-3205 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1200 (-419 (-576)))) (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576))))))) +(-10 -7 (-15 -3205 (|#1| (-1 |#1| (-576)) (-1200 (-419 (-576)))))) +((-3423 (((-112) $ $) NIL)) (-2795 (((-576) $) 12)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3054 (((-1157) $) 9)) (-3515 (((-877) $) 19) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-321) (-13 (-1105) (-10 -8 (-15 -3054 ((-1157) $)) (-15 -2795 ((-576) $))))) (T -321)) +((-3054 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-321)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321))))) +(-13 (-1105) (-10 -8 (-15 -3054 ((-1157) $)) (-15 -2795 ((-576) $)))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 7)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 9))) +(((-322) (-1122)) (T -322)) +NIL +(-1122) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 60)) (-2923 (((-1275 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-317)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-929)))) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-929)))) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-833)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-1275 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-576)))) (((-3 (-1274 |#2| |#3| |#4|) "failed") $) 26)) (-2830 (((-1275 |#1| |#2| |#3| |#4|) $) NIL) (((-1198) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-576)))) (((-576) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-576)))) (((-1274 |#2| |#3| |#4|) $) NIL)) (-3355 (($ $ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-1275 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1289 (-1275 |#1| |#2| |#3| |#4|)))) (-702 $) (-1289 $)) NIL) (((-702 (-1275 |#1| |#2| |#3| |#4|)) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-557)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3810 (((-112) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-833)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-902 (-390))))) (-3994 (((-112) $) NIL)) (-3502 (($ $) NIL)) (-1590 (((-1275 |#1| |#2| |#3| |#4|) $) 22)) (-1955 (((-3 $ "failed") $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1174)))) (-3517 (((-112) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-833)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3740 (($ $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-862)))) (-2249 (($ $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-862)))) (-4071 (($ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) $) NIL)) (-2405 (((-3 (-856 |#2|) "failed") $) 80)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-1275 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1289 (-1275 |#1| |#2| |#3| |#4|)))) (-1289 $) $) NIL) (((-702 (-1275 |#1| |#2| |#3| |#4|)) (-1289 $)) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1174)) CONST)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2440 (($ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-317)))) (-2681 (((-1275 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-557)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-929)))) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3205 (($ $ (-657 (-1275 |#1| |#2| |#3| |#4|)) (-657 (-1275 |#1| |#2| |#3| |#4|))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-319 (-1275 |#1| |#2| |#3| |#4|)))) (($ $ (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-319 (-1275 |#1| |#2| |#3| |#4|)))) (($ $ (-304 (-1275 |#1| |#2| |#3| |#4|))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-319 (-1275 |#1| |#2| |#3| |#4|)))) (($ $ (-657 (-304 (-1275 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-319 (-1275 |#1| |#2| |#3| |#4|)))) (($ $ (-657 (-1198)) (-657 (-1275 |#1| |#2| |#3| |#4|))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-526 (-1198) (-1275 |#1| |#2| |#3| |#4|)))) (($ $ (-1198) (-1275 |#1| |#2| |#3| |#4|)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-526 (-1198) (-1275 |#1| |#2| |#3| |#4|))))) (-4164 (((-784) $) NIL)) (-2780 (($ $ (-1275 |#1| |#2| |#3| |#4|)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-296 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|))))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2209 (($ $ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-784)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-237)))) (-4226 (($ $) NIL)) (-1602 (((-1275 |#1| |#2| |#3| |#4|) $) 19)) (-4136 (((-908 (-576)) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-626 (-548)))) (((-390) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1044))) (((-227) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1044)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-1275 |#1| |#2| |#3| |#4|) (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-1275 |#1| |#2| |#3| |#4|)) 30) (($ (-1198)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-1198)))) (($ (-1274 |#2| |#3| |#4|)) 37)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| (-1275 |#1| |#2| |#3| |#4|) (-929))) (|has| (-1275 |#1| |#2| |#3| |#4|) (-146))))) (-3845 (((-784)) NIL T CONST)) (-2140 (((-1275 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-557)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2127 (($ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-833)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-784)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-237)))) (-2938 (((-112) $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-862)))) (-2913 (((-112) $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-862)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-862)))) (-2901 (((-112) $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-862)))) (-2995 (($ $ $) 35) (($ (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) 32)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-1275 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1275 |#1| |#2| |#3| |#4|)) NIL))) +(((-323 |#1| |#2| |#3| |#4|) (-13 (-1014 (-1275 |#1| |#2| |#3| |#4|)) (-1060 (-1274 |#2| |#3| |#4|)) (-10 -8 (-15 -2405 ((-3 (-856 |#2|) "failed") $)) (-15 -3515 ($ (-1274 |#2| |#3| |#4|))))) (-13 (-1060 (-576)) (-652 (-576)) (-464)) (-13 (-27) (-1224) (-442 |#1|)) (-1198) |#2|) (T -323)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1274 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-442 *3))) (-14 *5 (-1198)) (-14 *6 *4) (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) (-2405 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) (-5 *2 (-856 *4)) (-5 *1 (-323 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-442 *3))) (-14 *5 (-1198)) (-14 *6 *4)))) +(-13 (-1014 (-1275 |#1| |#2| |#3| |#4|)) (-1060 (-1274 |#2| |#3| |#4|)) (-10 -8 (-15 -2405 ((-3 (-856 |#2|) "failed") $)) (-15 -3515 ($ (-1274 |#2| |#3| |#4|))))) +((-4071 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13))) +(((-324 |#1| |#2|) (-10 -7 (-15 -4071 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1122) (-1122)) (T -324)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6))))) +(-10 -7 (-15 -4071 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) +((-2053 (((-52) |#2| (-304 |#2|) (-784)) 40) (((-52) |#2| (-304 |#2|)) 32) (((-52) |#2| (-784)) 35) (((-52) |#2|) 33) (((-52) (-1198)) 26)) (-3696 (((-52) |#2| (-304 |#2|) (-419 (-576))) 59) (((-52) |#2| (-304 |#2|)) 56) (((-52) |#2| (-419 (-576))) 58) (((-52) |#2|) 57) (((-52) (-1198)) 55)) (-2079 (((-52) |#2| (-304 |#2|) (-419 (-576))) 54) (((-52) |#2| (-304 |#2|)) 51) (((-52) |#2| (-419 (-576))) 53) (((-52) |#2|) 52) (((-52) (-1198)) 50)) (-2067 (((-52) |#2| (-304 |#2|) (-576)) 47) (((-52) |#2| (-304 |#2|)) 44) (((-52) |#2| (-576)) 46) (((-52) |#2|) 45) (((-52) (-1198)) 43))) +(((-325 |#1| |#2|) (-10 -7 (-15 -2053 ((-52) (-1198))) (-15 -2053 ((-52) |#2|)) (-15 -2053 ((-52) |#2| (-784))) (-15 -2053 ((-52) |#2| (-304 |#2|))) (-15 -2053 ((-52) |#2| (-304 |#2|) (-784))) (-15 -2067 ((-52) (-1198))) (-15 -2067 ((-52) |#2|)) (-15 -2067 ((-52) |#2| (-576))) (-15 -2067 ((-52) |#2| (-304 |#2|))) (-15 -2067 ((-52) |#2| (-304 |#2|) (-576))) (-15 -2079 ((-52) (-1198))) (-15 -2079 ((-52) |#2|)) (-15 -2079 ((-52) |#2| (-419 (-576)))) (-15 -2079 ((-52) |#2| (-304 |#2|))) (-15 -2079 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3696 ((-52) (-1198))) (-15 -3696 ((-52) |#2|)) (-15 -3696 ((-52) |#2| (-419 (-576)))) (-15 -3696 ((-52) |#2| (-304 |#2|))) (-15 -3696 ((-52) |#2| (-304 |#2|) (-419 (-576))))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -325)) +((-3696 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-3696 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) (-2079 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-2079 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) (-2067 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-464) (-1060 *5) (-652 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2067 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2067 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1060 *4) (-652 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-2067 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) (-2053 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-784)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-2053 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4)))))) +(-10 -7 (-15 -2053 ((-52) (-1198))) (-15 -2053 ((-52) |#2|)) (-15 -2053 ((-52) |#2| (-784))) (-15 -2053 ((-52) |#2| (-304 |#2|))) (-15 -2053 ((-52) |#2| (-304 |#2|) (-784))) (-15 -2067 ((-52) (-1198))) (-15 -2067 ((-52) |#2|)) (-15 -2067 ((-52) |#2| (-576))) (-15 -2067 ((-52) |#2| (-304 |#2|))) (-15 -2067 ((-52) |#2| (-304 |#2|) (-576))) (-15 -2079 ((-52) (-1198))) (-15 -2079 ((-52) |#2|)) (-15 -2079 ((-52) |#2| (-419 (-576)))) (-15 -2079 ((-52) |#2| (-304 |#2|))) (-15 -2079 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3696 ((-52) (-1198))) (-15 -3696 ((-52) |#2|)) (-15 -3696 ((-52) |#2| (-419 (-576)))) (-15 -3696 ((-52) |#2| (-304 |#2|))) (-15 -3696 ((-52) |#2| (-304 |#2|) (-419 (-576))))) +((-3423 (((-112) $ $) NIL)) (-3417 (((-657 $) $ (-1198)) NIL (|has| |#1| (-568))) (((-657 $) $) NIL (|has| |#1| (-568))) (((-657 $) (-1194 $) (-1198)) NIL (|has| |#1| (-568))) (((-657 $) (-1194 $)) NIL (|has| |#1| (-568))) (((-657 $) (-972 $)) NIL (|has| |#1| (-568)))) (-4152 (($ $ (-1198)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1194 $) (-1198)) NIL (|has| |#1| (-568))) (($ (-1194 $)) NIL (|has| |#1| (-568))) (($ (-972 $)) NIL (|has| |#1| (-568)))) (-2044 (((-112) $) 27 (-2748 (|has| |#1| (-25)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))))) (-1998 (((-657 (-1198)) $) 368)) (-1825 (((-419 (-1194 $)) $ (-624 $)) NIL (|has| |#1| (-568)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-3941 (((-657 (-624 $)) $) NIL)) (-2143 (($ $) 171 (|has| |#1| (-568)))) (-2012 (($ $) 147 (|has| |#1| (-568)))) (-4218 (($ $ (-1114 $)) 232 (|has| |#1| (-568))) (($ $ (-1198)) 228 (|has| |#1| (-568)))) (-2423 (((-3 $ "failed") $ $) NIL (-2748 (|has| |#1| (-21)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))))) (-4043 (($ $ (-304 $)) NIL) (($ $ (-657 (-304 $))) 386) (($ $ (-657 (-624 $)) (-657 $)) 430)) (-2628 (((-430 (-1194 $)) (-1194 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-3188 (($ $) NIL (|has| |#1| (-568)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-568)))) (-1866 (($ $) NIL (|has| |#1| (-568)))) (-3210 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2120 (($ $) 167 (|has| |#1| (-568)))) (-1989 (($ $) 143 (|has| |#1| (-568)))) (-1754 (($ $ (-576)) 73 (|has| |#1| (-568)))) (-2166 (($ $) 175 (|has| |#1| (-568)))) (-2033 (($ $) 151 (|has| |#1| (-568)))) (-2515 (($) NIL (-2748 (|has| |#1| (-25)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))) (|has| |#1| (-1134))) CONST)) (-1751 (((-657 $) $ (-1198)) NIL (|has| |#1| (-568))) (((-657 $) $) NIL (|has| |#1| (-568))) (((-657 $) (-1194 $) (-1198)) NIL (|has| |#1| (-568))) (((-657 $) (-1194 $)) NIL (|has| |#1| (-568))) (((-657 $) (-972 $)) NIL (|has| |#1| (-568)))) (-1913 (($ $ (-1198)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1194 $) (-1198)) 134 (|has| |#1| (-568))) (($ (-1194 $)) NIL (|has| |#1| (-568))) (($ (-972 $)) NIL (|has| |#1| (-568)))) (-1593 (((-3 (-624 $) "failed") $) 18) (((-3 (-1198) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-972 |#1|)) "failed") $) NIL (|has| |#1| (-568))) (((-3 (-972 |#1|) "failed") $) NIL (|has| |#1| (-1071))) (((-3 (-419 (-576)) "failed") $) 46 (-2748 (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-2830 (((-624 $) $) 12) (((-1198) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-972 |#1|)) $) NIL (|has| |#1| (-568))) (((-972 |#1|) $) NIL (|has| |#1| (-1071))) (((-419 (-576)) $) 319 (-2748 (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-3355 (($ $ $) NIL (|has| |#1| (-568)))) (-3439 (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 125 (|has| |#1| (-1071))) (((-702 |#1|) (-702 $)) 115 (|has| |#1| (-1071))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (-3662 (($ $) 96 (|has| |#1| (-568)))) (-3969 (((-3 $ "failed") $) NIL (|has| |#1| (-1134)))) (-3369 (($ $ $) NIL (|has| |#1| (-568)))) (-3964 (($ $ (-1114 $)) 236 (|has| |#1| (-568))) (($ $ (-1198)) 234 (|has| |#1| (-568)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-568)))) (-4009 (((-112) $) NIL (|has| |#1| (-568)))) (-2985 (($ $ $) 202 (|has| |#1| (-568)))) (-1622 (($) 137 (|has| |#1| (-568)))) (-3262 (($ $ $) 222 (|has| |#1| (-568)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 392 (|has| |#1| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 399 (|has| |#1| (-902 (-390))))) (-3816 (($ $) NIL) (($ (-657 $)) NIL)) (-3948 (((-657 (-115)) $) NIL)) (-1803 (((-115) (-115)) 276)) (-3994 (((-112) $) 25 (|has| |#1| (-1134)))) (-1354 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-3502 (($ $) 72 (|has| |#1| (-1071)))) (-1590 (((-1147 |#1| (-624 $)) $) 91 (|has| |#1| (-1071)))) (-2883 (((-112) $) 62 (|has| |#1| (-568)))) (-3856 (($ $ (-576)) NIL (|has| |#1| (-568)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-568)))) (-3695 (((-1194 $) (-624 $)) 277 (|has| $ (-1071)))) (-4071 (($ (-1 $ $) (-624 $)) 426)) (-3449 (((-3 (-624 $) "failed") $) NIL)) (-3707 (($ $) 141 (|has| |#1| (-568)))) (-3809 (($ $) 247 (|has| |#1| (-568)))) (-1993 (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL (|has| |#1| (-1071))) (((-702 |#1|) (-1289 $)) NIL (|has| |#1| (-1071))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (-3388 (($ (-657 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-1708 (((-1180) $) NIL)) (-1789 (((-657 (-624 $)) $) 49)) (-1662 (($ (-115) $) NIL) (($ (-115) (-657 $)) 431)) (-2998 (((-3 (-657 $) "failed") $) NIL (|has| |#1| (-1134)))) (-1588 (((-3 (-2 (|:| |val| $) (|:| -2128 (-576))) "failed") $) NIL (|has| |#1| (-1071)))) (-3097 (((-3 (-657 $) "failed") $) 436 (|has| |#1| (-25)))) (-2303 (((-3 (-2 (|:| -1735 (-576)) (|:| |var| (-624 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3403 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $) NIL (|has| |#1| (-1134))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $ (-115)) NIL (|has| |#1| (-1071))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $ (-1198)) NIL (|has| |#1| (-1071)))) (-4216 (((-112) $ (-115)) NIL) (((-112) $ (-1198)) 51)) (-2098 (($ $) NIL (-2748 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4426 (($ $ (-1198)) 251 (|has| |#1| (-568))) (($ $ (-1114 $)) 253 (|has| |#1| (-568)))) (-2363 (((-784) $) NIL)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) 43)) (-2118 ((|#1| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 301 (|has| |#1| (-568)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-4275 (((-112) $ $) NIL) (((-112) $ (-1198)) NIL)) (-2064 (($ $ (-1198)) 226 (|has| |#1| (-568))) (($ $) 224 (|has| |#1| (-568)))) (-3067 (($ $) 218 (|has| |#1| (-568)))) (-3828 (((-430 (-1194 $)) (-1194 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-1856 (((-430 $) $) NIL (|has| |#1| (-568)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-568)))) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-568)))) (-4056 (($ $) 139 (|has| |#1| (-568)))) (-3341 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-3205 (($ $ (-624 $) $) NIL) (($ $ (-657 (-624 $)) (-657 $)) 425) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-1198) (-1 $ (-657 $))) NIL) (($ $ (-1198) (-1 $ $)) NIL) (($ $ (-657 (-115)) (-657 (-1 $ $))) 379) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-115) (-1 $ (-657 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-626 (-548)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-626 (-548)))) (($ $) NIL (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1198)) 366 (|has| |#1| (-626 (-548)))) (($ $ (-657 (-115)) (-657 $) (-1198)) 365 (|has| |#1| (-626 (-548)))) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ $))) NIL (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ (-657 $)))) NIL (|has| |#1| (-1071))) (($ $ (-1198) (-784) (-1 $ (-657 $))) NIL (|has| |#1| (-1071))) (($ $ (-1198) (-784) (-1 $ $)) NIL (|has| |#1| (-1071)))) (-4164 (((-784) $) NIL (|has| |#1| (-568)))) (-1946 (($ $) 239 (|has| |#1| (-568)))) (-2780 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-657 $)) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-568)))) (-3469 (($ $) NIL) (($ $ $) NIL)) (-1976 (($ $) 249 (|has| |#1| (-568)))) (-2847 (($ $) 200 (|has| |#1| (-568)))) (-2209 (($ $ (-1198)) NIL (|has| |#1| (-1071))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-1071))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-1071)))) (-4226 (($ $) 74 (|has| |#1| (-568)))) (-1602 (((-1147 |#1| (-624 $)) $) 93 (|has| |#1| (-568)))) (-2005 (($ $) 317 (|has| $ (-1071)))) (-2177 (($ $) 177 (|has| |#1| (-568)))) (-2042 (($ $) 153 (|has| |#1| (-568)))) (-2155 (($ $) 173 (|has| |#1| (-568)))) (-2023 (($ $) 149 (|has| |#1| (-568)))) (-2131 (($ $) 169 (|has| |#1| (-568)))) (-2002 (($ $) 145 (|has| |#1| (-568)))) (-4136 (((-908 (-576)) $) NIL (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| |#1| (-626 (-908 (-390))))) (($ (-430 $)) NIL (|has| |#1| (-568))) (((-548) $) 363 (|has| |#1| (-626 (-548))))) (-1587 (($ $ $) NIL (|has| |#1| (-485)))) (-1911 (($ $ $) NIL (|has| |#1| (-485)))) (-3515 (((-877) $) 424) (($ (-624 $)) 415) (($ (-1198)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-568))) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576))))) (($ (-1147 |#1| (-624 $))) 95 (|has| |#1| (-1071))) (($ (-419 |#1|)) NIL (|has| |#1| (-568))) (($ (-972 (-419 |#1|))) NIL (|has| |#1| (-568))) (($ (-419 (-972 (-419 |#1|)))) NIL (|has| |#1| (-568))) (($ (-419 (-972 |#1|))) NIL (|has| |#1| (-568))) (($ (-972 |#1|)) NIL (|has| |#1| (-1071))) (($ (-576)) 34 (-2748 (|has| |#1| (-1060 (-576))) (|has| |#1| (-1071)))) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-568)) (|has| |#1| (-1060 (-419 (-576))))))) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL (|has| |#1| (-1071)) CONST)) (-1791 (($ $) NIL) (($ (-657 $)) NIL)) (-1940 (($ $ $) 220 (|has| |#1| (-568)))) (-3966 (($ $ $) 206 (|has| |#1| (-568)))) (-1756 (($ $ $) 210 (|has| |#1| (-568)))) (-2491 (($ $ $) 204 (|has| |#1| (-568)))) (-3771 (($ $ $) 208 (|has| |#1| (-568)))) (-2946 (((-112) (-115)) 10)) (-4166 (((-112) $ $) 86)) (-4110 (($ $) 183 (|has| |#1| (-568)))) (-2082 (($ $) 159 (|has| |#1| (-568)))) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2188 (($ $) 179 (|has| |#1| (-568)))) (-2055 (($ $) 155 (|has| |#1| (-568)))) (-4137 (($ $) 187 (|has| |#1| (-568)))) (-2100 (($ $) 163 (|has| |#1| (-568)))) (-4171 (($ (-1198) $) NIL) (($ (-1198) $ $) NIL) (($ (-1198) $ $ $) NIL) (($ (-1198) $ $ $ $) NIL) (($ (-1198) (-657 $)) NIL)) (-3129 (($ $) 214 (|has| |#1| (-568)))) (-3758 (($ $) 212 (|has| |#1| (-568)))) (-1864 (($ $) 189 (|has| |#1| (-568)))) (-2110 (($ $) 165 (|has| |#1| (-568)))) (-4123 (($ $) 185 (|has| |#1| (-568)))) (-2090 (($ $) 161 (|has| |#1| (-568)))) (-4097 (($ $) 181 (|has| |#1| (-568)))) (-2070 (($ $) 157 (|has| |#1| (-568)))) (-2127 (($ $) 192 (|has| |#1| (-568)))) (-2716 (($) 21 (-2748 (|has| |#1| (-25)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) CONST)) (-4080 (($ $) 243 (|has| |#1| (-568)))) (-2725 (($) 23 (|has| |#1| (-1134)) CONST)) (-3571 (($ $) 194 (|has| |#1| (-568))) (($ $ $) 196 (|has| |#1| (-568)))) (-3984 (($ $) 241 (|has| |#1| (-568)))) (-2066 (($ $ (-1198)) NIL (|has| |#1| (-1071))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-1071))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-1071)))) (-4208 (($ $) 245 (|has| |#1| (-568)))) (-3939 (($ $ $) 198 (|has| |#1| (-568)))) (-2881 (((-112) $ $) 88)) (-2995 (($ (-1147 |#1| (-624 $)) (-1147 |#1| (-624 $))) 106 (|has| |#1| (-568))) (($ $ $) 42 (-2748 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2982 (($ $ $) 40 (-2748 (|has| |#1| (-21)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (($ $) 29 (-2748 (|has| |#1| (-21)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))))) (-2971 (($ $ $) 38 (-2748 (|has| |#1| (-25)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))))) (** (($ $ $) 64 (|has| |#1| (-568))) (($ $ (-419 (-576))) 314 (|has| |#1| (-568))) (($ $ (-576)) 80 (-2748 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-784)) 75 (|has| |#1| (-1134))) (($ $ (-941)) 84 (|has| |#1| (-1134)))) (* (($ (-419 (-576)) $) NIL (|has| |#1| (-568))) (($ $ (-419 (-576))) NIL (|has| |#1| (-568))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1071))) (($ $ $) 36 (|has| |#1| (-1134))) (($ (-576) $) 32 (-2748 (|has| |#1| (-21)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (($ (-784) $) NIL (-2748 (|has| |#1| (-25)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (($ (-941) $) NIL (-2748 (|has| |#1| (-25)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))))) +(((-326 |#1|) (-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1224)) (-6 (-161)) (-6 (-641)) (-6 (-1161)) (-15 -3662 ($ $)) (-15 -2883 ((-112) $)) (-15 -1754 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -3828 ((-430 (-1194 $)) (-1194 $))) (-15 -2628 ((-430 (-1194 $)) (-1194 $)))) |%noBranch|) (IF (|has| |#1| (-1060 (-576))) (-6 (-1060 (-48))) |%noBranch|)) |%noBranch|))) (-1122)) (T -326)) +((-3662 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1122)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1122)))) (-1754 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1122)))) (-3828 (*1 *2 *3) (-12 (-5 *2 (-430 (-1194 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1194 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1122)))) (-2628 (*1 *2 *3) (-12 (-5 *2 (-430 (-1194 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1194 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1122))))) +(-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1224)) (-6 (-161)) (-6 (-641)) (-6 (-1161)) (-15 -3662 ($ $)) (-15 -2883 ((-112) $)) (-15 -1754 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -3828 ((-430 (-1194 $)) (-1194 $))) (-15 -2628 ((-430 (-1194 $)) (-1194 $)))) |%noBranch|) (IF (|has| |#1| (-1060 (-576))) (-6 (-1060 (-48))) |%noBranch|)) |%noBranch|))) +((-2359 (((-52) |#2| (-115) (-304 |#2|) (-657 |#2|)) 89) (((-52) |#2| (-115) (-304 |#2|) (-304 |#2|)) 85) (((-52) |#2| (-115) (-304 |#2|) |#2|) 87) (((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|) 88) (((-52) (-657 |#2|) (-657 (-115)) (-304 |#2|) (-657 (-304 |#2|))) 81) (((-52) (-657 |#2|) (-657 (-115)) (-304 |#2|) (-657 |#2|)) 83) (((-52) (-657 (-304 |#2|)) (-657 (-115)) (-304 |#2|) (-657 |#2|)) 84) (((-52) (-657 (-304 |#2|)) (-657 (-115)) (-304 |#2|) (-657 (-304 |#2|))) 82) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-657 |#2|)) 90) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|)) 86))) +(((-327 |#1| |#2|) (-10 -7 (-15 -2359 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -2359 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-657 |#2|))) (-15 -2359 ((-52) (-657 (-304 |#2|)) (-657 (-115)) (-304 |#2|) (-657 (-304 |#2|)))) (-15 -2359 ((-52) (-657 (-304 |#2|)) (-657 (-115)) (-304 |#2|) (-657 |#2|))) (-15 -2359 ((-52) (-657 |#2|) (-657 (-115)) (-304 |#2|) (-657 |#2|))) (-15 -2359 ((-52) (-657 |#2|) (-657 (-115)) (-304 |#2|) (-657 (-304 |#2|)))) (-15 -2359 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -2359 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -2359 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -2359 ((-52) |#2| (-115) (-304 |#2|) (-657 |#2|)))) (-13 (-568) (-626 (-548))) (-442 |#1|)) (T -327)) +((-2359 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-657 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3)))) (-2359 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-2359 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-2359 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *5)))) (-2359 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 (-115))) (-5 *6 (-657 (-304 *8))) (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-2359 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-657 *7)) (-5 *4 (-657 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2359 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-657 (-304 *8))) (-5 *4 (-657 (-115))) (-5 *5 (-304 *8)) (-5 *6 (-657 *8)) (-4 *8 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-2359 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-657 (-304 *7))) (-5 *4 (-657 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2359 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-657 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2359 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *6))))) +(-10 -7 (-15 -2359 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -2359 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-657 |#2|))) (-15 -2359 ((-52) (-657 (-304 |#2|)) (-657 (-115)) (-304 |#2|) (-657 (-304 |#2|)))) (-15 -2359 ((-52) (-657 (-304 |#2|)) (-657 (-115)) (-304 |#2|) (-657 |#2|))) (-15 -2359 ((-52) (-657 |#2|) (-657 (-115)) (-304 |#2|) (-657 |#2|))) (-15 -2359 ((-52) (-657 |#2|) (-657 (-115)) (-304 |#2|) (-657 (-304 |#2|)))) (-15 -2359 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -2359 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -2359 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -2359 ((-52) |#2| (-115) (-304 |#2|) (-657 |#2|)))) +((-1695 (((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-227) (-576) (-1180)) 67) (((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-227) (-576)) 68) (((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-1 (-227) (-227)) (-576) (-1180)) 64) (((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-1 (-227) (-227)) (-576)) 65)) (-2526 (((-1 (-227) (-227)) (-227)) 66))) +(((-328) (-10 -7 (-15 -2526 ((-1 (-227) (-227)) (-227))) (-15 -1695 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-1 (-227) (-227)) (-576))) (-15 -1695 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-1 (-227) (-227)) (-576) (-1180))) (-15 -1695 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-227) (-576))) (-15 -1695 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-227) (-576) (-1180))))) (T -328)) +((-1695 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1116 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1180)) (-5 *2 (-1234 (-946))) (-5 *1 (-328)))) (-1695 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1116 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *2 (-1234 (-946))) (-5 *1 (-328)))) (-1695 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1116 (-227))) (-5 *6 (-576)) (-5 *7 (-1180)) (-5 *2 (-1234 (-946))) (-5 *1 (-328)))) (-1695 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1116 (-227))) (-5 *6 (-576)) (-5 *2 (-1234 (-946))) (-5 *1 (-328)))) (-2526 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) +(-10 -7 (-15 -2526 ((-1 (-227) (-227)) (-227))) (-15 -1695 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-1 (-227) (-227)) (-576))) (-15 -1695 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-1 (-227) (-227)) (-576) (-1180))) (-15 -1695 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-227) (-576))) (-15 -1695 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-227) (-576) (-1180)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 26)) (-1998 (((-657 (-1104)) $) NIL)) (-2993 (((-1198) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2212 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3212 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 20)) (-2143 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-374)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1866 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2120 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3696 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2166 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) NIL T CONST)) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-2165 (($ $) 36)) (-3969 (((-3 $ "failed") $) NIL)) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4009 (((-112) $) NIL (|has| |#1| (-374)))) (-3155 (((-112) $) NIL)) (-1622 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) 16)) (-3994 (((-112) $) NIL)) (-3856 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $ (-941)) NIL) (($ $ (-419 (-576))) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-419 (-576))) NIL) (($ $ (-1104) (-419 (-576))) NIL) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3707 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL (|has| |#1| (-374)))) (-2320 (($ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224)))))) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-1456 (($ $ (-419 (-576))) NIL)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2510 (((-419 (-576)) $) 17)) (-1912 (($ (-1274 |#1| |#2| |#3|)) 11)) (-2128 (((-1274 |#1| |#2| |#3|) $) 12)) (-4056 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-4164 (((-784) $) NIL (|has| |#1| (-374)))) (-2780 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1134)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-2209 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-4265 (((-419 (-576)) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) 10)) (-3515 (((-877) $) 42) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2498 ((|#1| $ (-419 (-576))) 34)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-3713 ((|#1| $) NIL)) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 28)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 37)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-329 |#1| |#2| |#3|) (-13 (-1270 |#1|) (-805) (-10 -8 (-15 -1912 ($ (-1274 |#1| |#2| |#3|))) (-15 -2128 ((-1274 |#1| |#2| |#3|) $)) (-15 -2510 ((-419 (-576)) $)))) (-374) (-1198) |#1|) (T -329)) +((-1912 (*1 *1 *2) (-12 (-5 *2 (-1274 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1198)) (-14 *5 *3))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1198)) (-14 *5 *3)))) +(-13 (-1270 |#1|) (-805) (-10 -8 (-15 -1912 ($ (-1274 |#1| |#2| |#3|))) (-15 -2128 ((-1274 |#1| |#2| |#3|) $)) (-15 -2510 ((-419 (-576)) $)))) +((-3856 (((-2 (|:| -2128 (-784)) (|:| -1735 |#1|) (|:| |radicand| (-657 |#1|))) (-430 |#1|) (-784)) 35)) (-3707 (((-657 (-2 (|:| -1735 (-784)) (|:| |logand| |#1|))) (-430 |#1|)) 40))) +(((-330 |#1|) (-10 -7 (-15 -3856 ((-2 (|:| -2128 (-784)) (|:| -1735 |#1|) (|:| |radicand| (-657 |#1|))) (-430 |#1|) (-784))) (-15 -3707 ((-657 (-2 (|:| -1735 (-784)) (|:| |logand| |#1|))) (-430 |#1|)))) (-568)) (T -330)) +((-3707 (*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) (-5 *2 (-657 (-2 (|:| -1735 (-784)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -2128 (-784)) (|:| -1735 *5) (|:| |radicand| (-657 *5)))) (-5 *1 (-330 *5)) (-5 *4 (-784))))) +(-10 -7 (-15 -3856 ((-2 (|:| -2128 (-784)) (|:| -1735 |#1|) (|:| |radicand| (-657 |#1|))) (-430 |#1|) (-784))) (-15 -3707 ((-657 (-2 (|:| -1735 (-784)) (|:| |logand| |#1|))) (-430 |#1|)))) +((-1998 (((-657 |#2|) (-1194 |#4|)) 44)) (-4325 ((|#3| (-576)) 47)) (-2996 (((-1194 |#4|) (-1194 |#3|)) 30)) (-3753 (((-1194 |#4|) (-1194 |#4|) (-576)) 66)) (-3076 (((-1194 |#3|) (-1194 |#4|)) 21)) (-4265 (((-657 (-784)) (-1194 |#4|) (-657 |#2|)) 41)) (-3825 (((-1194 |#3|) (-1194 |#4|) (-657 |#2|) (-657 |#3|)) 35))) +(((-331 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3825 ((-1194 |#3|) (-1194 |#4|) (-657 |#2|) (-657 |#3|))) (-15 -4265 ((-657 (-784)) (-1194 |#4|) (-657 |#2|))) (-15 -1998 ((-657 |#2|) (-1194 |#4|))) (-15 -3076 ((-1194 |#3|) (-1194 |#4|))) (-15 -2996 ((-1194 |#4|) (-1194 |#3|))) (-15 -3753 ((-1194 |#4|) (-1194 |#4|) (-576))) (-15 -4325 (|#3| (-576)))) (-806) (-862) (-1071) (-969 |#3| |#1| |#2|)) (T -331)) +((-4325 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1071)) (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-969 *2 *4 *5)))) (-3753 (*1 *2 *2 *3) (-12 (-5 *2 (-1194 *7)) (-5 *3 (-576)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-5 *1 (-331 *4 *5 *6 *7)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-1194 *6)) (-4 *6 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-1194 *7)) (-5 *1 (-331 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-1194 *7)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-5 *2 (-1194 *6)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-1194 *7)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-5 *2 (-657 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) (-4265 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *8)) (-5 *4 (-657 *6)) (-4 *6 (-862)) (-4 *8 (-969 *7 *5 *6)) (-4 *5 (-806)) (-4 *7 (-1071)) (-5 *2 (-657 (-784))) (-5 *1 (-331 *5 *6 *7 *8)))) (-3825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1194 *9)) (-5 *4 (-657 *7)) (-5 *5 (-657 *8)) (-4 *7 (-862)) (-4 *8 (-1071)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-806)) (-5 *2 (-1194 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) +(-10 -7 (-15 -3825 ((-1194 |#3|) (-1194 |#4|) (-657 |#2|) (-657 |#3|))) (-15 -4265 ((-657 (-784)) (-1194 |#4|) (-657 |#2|))) (-15 -1998 ((-657 |#2|) (-1194 |#4|))) (-15 -3076 ((-1194 |#3|) (-1194 |#4|))) (-15 -2996 ((-1194 |#4|) (-1194 |#3|))) (-15 -3753 ((-1194 |#4|) (-1194 |#4|) (-576))) (-15 -4325 (|#3| (-576)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 19)) (-3212 (((-657 (-2 (|:| |gen| |#1|) (|:| -4056 (-576)))) $) 21)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2148 (((-784) $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL)) (-2830 ((|#1| $) NIL)) (-1656 ((|#1| $ (-576)) NIL)) (-3083 (((-576) $ (-576)) NIL)) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-3865 (($ (-1 |#1| |#1|) $) NIL)) (-3204 (($ (-1 (-576) (-576)) $) 11)) (-1708 (((-1180) $) NIL)) (-1540 (($ $ $) NIL (|has| (-576) (-805)))) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL) (($ |#1|) NIL)) (-2498 (((-576) |#1| $) NIL)) (-4166 (((-112) $ $) NIL)) (-2716 (($) NIL T CONST)) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) 29 (|has| |#1| (-862)))) (-2982 (($ $) 12) (($ $ $) 28)) (-2971 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL) (($ (-576) |#1|) 27))) +(((-332 |#1|) (-13 (-21) (-730 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-862)) (-6 (-862)) |%noBranch|))) (-1122)) (T -332)) +NIL +(-13 (-21) (-730 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-862)) (-6 (-862)) |%noBranch|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3212 (((-657 (-2 (|:| |gen| |#1|) (|:| -4056 |#2|))) $) 28)) (-2423 (((-3 $ "failed") $ $) 20)) (-2148 (((-784) $) 29)) (-2515 (($) 18 T CONST)) (-1593 (((-3 |#1| "failed") $) 33)) (-2830 ((|#1| $) 34)) (-1656 ((|#1| $ (-576)) 26)) (-3083 ((|#2| $ (-576)) 27)) (-3865 (($ (-1 |#1| |#1|) $) 23)) (-3204 (($ (-1 |#2| |#2|) $) 24)) (-1708 (((-1180) $) 10)) (-1540 (($ $ $) 22 (|has| |#2| (-805)))) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ |#1|) 32)) (-2498 ((|#2| |#1| $) 25)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2971 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ |#2| |#1|) 30))) +(((-333 |#1| |#2|) (-141) (-1122) (-132)) (T -333)) +((-2971 (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-132)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-132)) (-5 *2 (-784)))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-132)) (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4056 *4)))))) (-3083 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1122)) (-4 *2 (-132)))) (-1656 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1122)))) (-2498 (*1 *2 *3 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-132)))) (-3204 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-132)))) (-3865 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-132)))) (-1540 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-132)) (-4 *3 (-805))))) +(-13 (-132) (-1060 |t#1|) (-10 -8 (-15 -2971 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2148 ((-784) $)) (-15 -3212 ((-657 (-2 (|:| |gen| |t#1|) (|:| -4056 |t#2|))) $)) (-15 -3083 (|t#2| $ (-576))) (-15 -1656 (|t#1| $ (-576))) (-15 -2498 (|t#2| |t#1| $)) (-15 -3204 ($ (-1 |t#2| |t#2|) $)) (-15 -3865 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-805)) (-15 -1540 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-1060 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3212 (((-657 (-2 (|:| |gen| |#1|) (|:| -4056 (-784)))) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2148 (((-784) $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL)) (-2830 ((|#1| $) NIL)) (-1656 ((|#1| $ (-576)) NIL)) (-3083 (((-784) $ (-576)) NIL)) (-3865 (($ (-1 |#1| |#1|) $) NIL)) (-3204 (($ (-1 (-784) (-784)) $) NIL)) (-1708 (((-1180) $) NIL)) (-1540 (($ $ $) NIL (|has| (-784) (-805)))) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL) (($ |#1|) NIL)) (-2498 (((-784) |#1| $) NIL)) (-4166 (((-112) $ $) NIL)) (-2716 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2971 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-784) |#1|) NIL))) +(((-334 |#1|) (-333 |#1| (-784)) (-1122)) (T -334)) +NIL +(-333 |#1| (-784)) +((-1445 (($ $) 72)) (-2643 (($ $ |#2| |#3| $) 14)) (-2308 (($ (-1 |#3| |#3|) $) 51)) (-2108 (((-112) $) 42)) (-2118 ((|#2| $) 44)) (-3409 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3614 ((|#2| $) 68)) (-3987 (((-657 |#2|) $) 56)) (-3194 (($ $ $ (-784)) 37)) (-2995 (($ $ |#2|) 60))) +(((-335 |#1| |#2| |#3|) (-10 -8 (-15 -1445 (|#1| |#1|)) (-15 -3614 (|#2| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3194 (|#1| |#1| |#1| (-784))) (-15 -2643 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2308 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3987 ((-657 |#2|) |#1|)) (-15 -2118 (|#2| |#1|)) (-15 -2108 ((-112) |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2995 (|#1| |#1| |#2|))) (-336 |#2| |#3|) (-1071) (-805)) (T -335)) +NIL +(-10 -8 (-15 -1445 (|#1| |#1|)) (-15 -3614 (|#2| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3194 (|#1| |#1| |#1| (-784))) (-15 -2643 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2308 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3987 ((-657 |#2|) |#1|)) (-15 -2118 (|#2| |#1|)) (-15 -2108 ((-112) |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2995 (|#1| |#1| |#2|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2361 (($ $) 64 (|has| |#1| (-568)))) (-3286 (((-112) $) 66 (|has| |#1| (-568)))) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1593 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2830 (((-576) $) 99 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 96)) (-2165 (($ $) 72)) (-3969 (((-3 $ "failed") $) 37)) (-1445 (($ $) 84 (|has| |#1| (-464)))) (-2643 (($ $ |#1| |#2| $) 88)) (-3994 (((-112) $) 35)) (-2977 (((-784) $) 91)) (-2343 (((-112) $) 74)) (-1974 (($ |#1| |#2|) 73)) (-4219 ((|#2| $) 90)) (-2308 (($ (-1 |#2| |#2|) $) 89)) (-4071 (($ (-1 |#1| |#1|) $) 75)) (-2129 (($ $) 77)) (-2141 ((|#1| $) 78)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-2108 (((-112) $) 94)) (-2118 ((|#1| $) 93)) (-3409 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-568)))) (-4265 ((|#2| $) 76)) (-3614 ((|#1| $) 85 (|has| |#1| (-464)))) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59) (($ (-419 (-576))) 69 (-2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-3987 (((-657 |#1|) $) 92)) (-2498 ((|#1| $ |#2|) 71)) (-3414 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-3194 (($ $ $ (-784)) 87 (|has| |#1| (-174)))) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-336 |#1| |#2|) (-141) (-1071) (-805)) (T -336)) +((-2108 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-112)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-657 *3)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-784)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-2308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)))) (-2643 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) (-3194 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-4 *3 (-174)))) (-3409 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)) (-4 *2 (-568)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)) (-4 *2 (-464)))) (-1445 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)) (-4 *2 (-464))))) +(-13 (-47 |t#1| |t#2|) (-423 |t#1|) (-10 -8 (-15 -2108 ((-112) $)) (-15 -2118 (|t#1| $)) (-15 -3987 ((-657 |t#1|) $)) (-15 -2977 ((-784) $)) (-15 -4219 (|t#2| $)) (-15 -2308 ($ (-1 |t#2| |t#2|) $)) (-15 -2643 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -3194 ($ $ $ (-784))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -3409 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3614 (|t#1| $)) (-15 -1445 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-423 |#1|) . T) ((-568) |has| |#1| (-568)) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) . T) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1698 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1832 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-4284 (((-112) $ (-784)) NIL)) (-3251 (((-112) (-112)) NIL)) (-3719 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-3726 (($ (-1 (-112) |#1|) $) NIL)) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-3588 (($ $) NIL (|has| |#1| (-1122)))) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1920 (($ |#1| $) NIL (|has| |#1| (-1122))) (($ (-1 (-112) |#1|) $) NIL)) (-3901 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) NIL)) (-3619 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-3850 (($ $ (-576)) NIL)) (-3832 (((-784) $) NIL)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-4096 (($ (-784) |#1|) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-1631 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2701 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2225 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2689 (($ (-657 |#1|)) NIL)) (-3528 ((|#1| $) NIL (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1495 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-2683 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-3395 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) NIL)) (-2752 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1637 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-337 |#1|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -2689 ($ (-657 |#1|))) (-15 -3832 ((-784) $)) (-15 -3850 ($ $ (-576))) (-15 -3251 ((-112) (-112))))) (-1239)) (T -337)) +((-2689 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-337 *3)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-337 *3)) (-4 *3 (-1239)))) (-3850 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1239)))) (-3251 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1239))))) +(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -2689 ($ (-657 |#1|))) (-15 -3832 ((-784) $)) (-15 -3850 ($ $ (-576))) (-15 -3251 ((-112) (-112))))) +((-1388 (((-112) $) 47)) (-4025 (((-784)) 23)) (-2256 ((|#2| $) 51) (($ $ (-941)) 121)) (-2148 (((-784)) 122)) (-4093 (($ (-1289 |#2|)) 20)) (-3547 (((-112) $) 134)) (-3869 ((|#2| $) 53) (($ $ (-941)) 118)) (-3604 (((-1194 |#2|) $) NIL) (((-1194 $) $ (-941)) 109)) (-2514 (((-1194 |#2|) $) 95)) (-4348 (((-1194 |#2|) $) 91) (((-3 (-1194 |#2|) "failed") $ $) 88)) (-3905 (($ $ (-1194 |#2|)) 58)) (-1559 (((-846 (-941))) 30) (((-941)) 48)) (-1451 (((-135)) 27)) (-4265 (((-846 (-941)) $) 32) (((-941) $) 137)) (-4039 (($) 128)) (-3806 (((-1289 |#2|) $) NIL) (((-702 |#2|) (-1289 $)) 42)) (-3414 (($ $) NIL) (((-3 $ "failed") $) 98)) (-2137 (((-112) $) 45))) +(((-338 |#1| |#2|) (-10 -8 (-15 -3414 ((-3 |#1| "failed") |#1|)) (-15 -2148 ((-784))) (-15 -3414 (|#1| |#1|)) (-15 -4348 ((-3 (-1194 |#2|) "failed") |#1| |#1|)) (-15 -4348 ((-1194 |#2|) |#1|)) (-15 -2514 ((-1194 |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1194 |#2|))) (-15 -3547 ((-112) |#1|)) (-15 -4039 (|#1|)) (-15 -2256 (|#1| |#1| (-941))) (-15 -3869 (|#1| |#1| (-941))) (-15 -3604 ((-1194 |#1|) |#1| (-941))) (-15 -2256 (|#2| |#1|)) (-15 -3869 (|#2| |#1|)) (-15 -4265 ((-941) |#1|)) (-15 -1559 ((-941))) (-15 -3604 ((-1194 |#2|) |#1|)) (-15 -4093 (|#1| (-1289 |#2|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1|)) (-15 -4025 ((-784))) (-15 -1559 ((-846 (-941)))) (-15 -4265 ((-846 (-941)) |#1|)) (-15 -1388 ((-112) |#1|)) (-15 -2137 ((-112) |#1|)) (-15 -1451 ((-135)))) (-339 |#2|) (-374)) (T -338)) +((-1451 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1559 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-846 (-941))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-4025 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-784)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1559 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-941)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2148 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-784)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4))))) +(-10 -8 (-15 -3414 ((-3 |#1| "failed") |#1|)) (-15 -2148 ((-784))) (-15 -3414 (|#1| |#1|)) (-15 -4348 ((-3 (-1194 |#2|) "failed") |#1| |#1|)) (-15 -4348 ((-1194 |#2|) |#1|)) (-15 -2514 ((-1194 |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1194 |#2|))) (-15 -3547 ((-112) |#1|)) (-15 -4039 (|#1|)) (-15 -2256 (|#1| |#1| (-941))) (-15 -3869 (|#1| |#1| (-941))) (-15 -3604 ((-1194 |#1|) |#1| (-941))) (-15 -2256 (|#2| |#1|)) (-15 -3869 (|#2| |#1|)) (-15 -4265 ((-941) |#1|)) (-15 -1559 ((-941))) (-15 -3604 ((-1194 |#2|) |#1|)) (-15 -4093 (|#1| (-1289 |#2|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1|)) (-15 -4025 ((-784))) (-15 -1559 ((-846 (-941)))) (-15 -4265 ((-846 (-941)) |#1|)) (-15 -1388 ((-112) |#1|)) (-15 -2137 ((-112) |#1|)) (-15 -1451 ((-135)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-1388 (((-112) $) 104)) (-4025 (((-784)) 100)) (-2256 ((|#1| $) 151) (($ $ (-941)) 148 (|has| |#1| (-379)))) (-2266 (((-1211 (-941) (-784)) (-576)) 133 (|has| |#1| (-379)))) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 81)) (-4215 (((-430 $) $) 80)) (-3210 (((-112) $ $) 65)) (-2148 (((-784)) 123 (|has| |#1| (-379)))) (-2515 (($) 18 T CONST)) (-1593 (((-3 |#1| "failed") $) 111)) (-2830 ((|#1| $) 112)) (-4093 (($ (-1289 |#1|)) 157)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-379)))) (-3355 (($ $ $) 61)) (-3969 (((-3 $ "failed") $) 37)) (-1876 (($) 120 (|has| |#1| (-379)))) (-3369 (($ $ $) 62)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-2846 (($) 135 (|has| |#1| (-379)))) (-2798 (((-112) $) 136 (|has| |#1| (-379)))) (-4266 (($ $ (-784)) 97 (-2748 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4009 (((-112) $) 79)) (-2650 (((-941) $) 138 (|has| |#1| (-379))) (((-846 (-941)) $) 94 (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3994 (((-112) $) 35)) (-2084 (($) 146 (|has| |#1| (-379)))) (-3547 (((-112) $) 145 (|has| |#1| (-379)))) (-3869 ((|#1| $) 152) (($ $ (-941)) 149 (|has| |#1| (-379)))) (-1955 (((-3 $ "failed") $) 124 (|has| |#1| (-379)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3604 (((-1194 |#1|) $) 156) (((-1194 $) $ (-941)) 150 (|has| |#1| (-379)))) (-2327 (((-941) $) 121 (|has| |#1| (-379)))) (-2514 (((-1194 |#1|) $) 142 (|has| |#1| (-379)))) (-4348 (((-1194 |#1|) $) 141 (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) 140 (|has| |#1| (-379)))) (-3905 (($ $ (-1194 |#1|)) 143 (|has| |#1| (-379)))) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 78)) (-1679 (($) 125 (|has| |#1| (-379)) CONST)) (-3146 (($ (-941)) 122 (|has| |#1| (-379)))) (-2395 (((-112) $) 103)) (-1460 (((-1142) $) 11)) (-4083 (($) 144 (|has| |#1| (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) 132 (|has| |#1| (-379)))) (-1856 (((-430 $) $) 82)) (-1559 (((-846 (-941))) 101) (((-941)) 154)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-4164 (((-784) $) 64)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63)) (-2495 (((-784) $) 137 (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) 95 (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1451 (((-135)) 109)) (-2209 (($ $ (-784)) 128 (|has| |#1| (-379))) (($ $) 126 (|has| |#1| (-379)))) (-4265 (((-846 (-941)) $) 102) (((-941) $) 153)) (-2005 (((-1194 |#1|)) 155)) (-4170 (($) 134 (|has| |#1| (-379)))) (-4039 (($) 147 (|has| |#1| (-379)))) (-3806 (((-1289 |#1|) $) 159) (((-702 |#1|) (-1289 $)) 158)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 131 (|has| |#1| (-379)))) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3414 (($ $) 130 (|has| |#1| (-379))) (((-3 $ "failed") $) 93 (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2469 (((-1289 $)) 161) (((-1289 $) (-941)) 160)) (-2607 (((-112) $ $) 45)) (-2137 (((-112) $) 105)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-4237 (($ $) 99 (|has| |#1| (-379))) (($ $ (-784)) 98 (|has| |#1| (-379)))) (-2066 (($ $ (-784)) 129 (|has| |#1| (-379))) (($ $) 127 (|has| |#1| (-379)))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ $) 73) (($ $ |#1|) 108)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) (((-339 |#1|) (-141) (-374)) (T -339)) -((-2704 (*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1288 *1)) (-4 *1 (-339 *3)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-940)) (-4 *4 (-374)) (-5 *2 (-1288 *1)) (-4 *1 (-339 *4)))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1288 *3)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) (-3881 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) (-3835 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) (-2595 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-4293 (*1 *2 *1 *3) (-12 (-5 *3 (-940)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1193 *1)) (-4 *1 (-339 *4)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-3832 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-2174 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-3121 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) (-2549 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-4010 (*1 *1 *1 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) (-4 *3 (-374)))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1193 *3)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1193 *3)))) (-3922 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1193 *3))))) -(-13 (-1307 |t#1|) (-1059 |t#1|) (-10 -8 (-15 -2704 ((-1288 $))) (-15 -2704 ((-1288 $) (-940))) (-15 -4314 ((-1288 |t#1|) $)) (-15 -4314 ((-701 |t#1|) (-1288 $))) (-15 -2496 ($ (-1288 |t#1|))) (-15 -4293 ((-1193 |t#1|) $)) (-15 -3881 ((-1193 |t#1|))) (-15 -3835 ((-940))) (-15 -2196 ((-940) $)) (-15 -2595 (|t#1| $)) (-15 -3832 (|t#1| $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-360)) (-15 -4293 ((-1193 $) $ (-940))) (-15 -2595 ($ $ (-940))) (-15 -3832 ($ $ (-940))) (-15 -2174 ($)) (-15 -3121 ($)) (-15 -2882 ((-112) $)) (-15 -2549 ($)) (-15 -4010 ($ $ (-1193 |t#1|))) (-15 -2089 ((-1193 |t#1|) $)) (-15 -3922 ((-1193 |t#1|) $)) (-15 -3922 ((-3 (-1193 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3795 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-234 $) |has| |#1| (-379)) ((-238) |has| |#1| (-379)) ((-237) |has| |#1| (-379)) ((-248) . T) ((-300) . T) ((-317) . T) ((-1307 |#1|) . T) ((-374) . T) ((-414) -3795 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-379) |has| |#1| (-379)) ((-360) |has| |#1| (-379)) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-379)) ((-1238) . T) ((-1242) . T) ((-1295 |#1|) . T)) -((-1957 (((-112) $ $) NIL)) (-2544 (($ (-1196) $) 100)) (-4443 (($) 89)) (-1777 (((-1141) (-1141)) 9)) (-2550 (($) 90)) (-3473 (($) 104) (($ (-326 (-711))) 112) (($ (-326 (-713))) 108) (($ (-326 (-706))) 116) (($ (-326 (-390))) 123) (($ (-326 (-576))) 119) (($ (-326 (-171 (-390)))) 127)) (-2691 (($ (-1196) $) 101)) (-3404 (($ (-656 (-876))) 91)) (-3280 (((-1293) $) 87)) (-3548 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1598 (($ (-1141)) 58)) (-4361 (((-1125) $) 30)) (-2517 (($ (-1113 (-971 (-576))) $) 97) (($ (-1113 (-971 (-576))) (-971 (-576)) $) 98)) (-3028 (($ (-1141)) 99)) (-3654 (($ (-1196) $) 129) (($ (-1196) $ $) 130)) (-1646 (($ (-1197) (-656 (-1197))) 88)) (-3308 (($ (-1179)) 94) (($ (-656 (-1179))) 92)) (-4113 (((-876) $) 132)) (-3536 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1617 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3617 (-112)) (|:| -1690 (-2 (|:| |ints2Floats?| (-112)) (|:| -1617 (-876)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -1848 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -4159 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -4159 $))) (|:| |commonBranch| (-2 (|:| -4149 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876)))) $) 50)) (-2120 (($ (-1179)) 202)) (-2227 (($ (-656 $)) 128)) (-2950 (((-112) $ $) NIL)) (-4263 (($ (-1197) (-1179)) 135) (($ (-1197) (-326 (-713))) 175) (($ (-1197) (-326 (-711))) 176) (($ (-1197) (-326 (-706))) 177) (($ (-1197) (-701 (-713))) 138) (($ (-1197) (-701 (-711))) 141) (($ (-1197) (-701 (-706))) 144) (($ (-1197) (-1288 (-713))) 147) (($ (-1197) (-1288 (-711))) 150) (($ (-1197) (-1288 (-706))) 153) (($ (-1197) (-701 (-326 (-713)))) 156) (($ (-1197) (-701 (-326 (-711)))) 159) (($ (-1197) (-701 (-326 (-706)))) 162) (($ (-1197) (-1288 (-326 (-713)))) 165) (($ (-1197) (-1288 (-326 (-711)))) 168) (($ (-1197) (-1288 (-326 (-706)))) 171) (($ (-1197) (-656 (-971 (-576))) (-326 (-713))) 172) (($ (-1197) (-656 (-971 (-576))) (-326 (-711))) 173) (($ (-1197) (-656 (-971 (-576))) (-326 (-706))) 174) (($ (-1197) (-326 (-576))) 199) (($ (-1197) (-326 (-390))) 200) (($ (-1197) (-326 (-171 (-390)))) 201) (($ (-1197) (-701 (-326 (-576)))) 180) (($ (-1197) (-701 (-326 (-390)))) 183) (($ (-1197) (-701 (-326 (-171 (-390))))) 186) (($ (-1197) (-1288 (-326 (-576)))) 189) (($ (-1197) (-1288 (-326 (-390)))) 192) (($ (-1197) (-1288 (-326 (-171 (-390))))) 195) (($ (-1197) (-656 (-971 (-576))) (-326 (-576))) 196) (($ (-1197) (-656 (-971 (-576))) (-326 (-390))) 197) (($ (-1197) (-656 (-971 (-576))) (-326 (-171 (-390)))) 198)) (-3939 (((-112) $ $) NIL))) -(((-340) (-13 (-1121) (-10 -8 (-15 -2517 ($ (-1113 (-971 (-576))) $)) (-15 -2517 ($ (-1113 (-971 (-576))) (-971 (-576)) $)) (-15 -2544 ($ (-1196) $)) (-15 -2691 ($ (-1196) $)) (-15 -1598 ($ (-1141))) (-15 -3028 ($ (-1141))) (-15 -3308 ($ (-1179))) (-15 -3308 ($ (-656 (-1179)))) (-15 -2120 ($ (-1179))) (-15 -3473 ($)) (-15 -3473 ($ (-326 (-711)))) (-15 -3473 ($ (-326 (-713)))) (-15 -3473 ($ (-326 (-706)))) (-15 -3473 ($ (-326 (-390)))) (-15 -3473 ($ (-326 (-576)))) (-15 -3473 ($ (-326 (-171 (-390))))) (-15 -3654 ($ (-1196) $)) (-15 -3654 ($ (-1196) $ $)) (-15 -4263 ($ (-1197) (-1179))) (-15 -4263 ($ (-1197) (-326 (-713)))) (-15 -4263 ($ (-1197) (-326 (-711)))) (-15 -4263 ($ (-1197) (-326 (-706)))) (-15 -4263 ($ (-1197) (-701 (-713)))) (-15 -4263 ($ (-1197) (-701 (-711)))) (-15 -4263 ($ (-1197) (-701 (-706)))) (-15 -4263 ($ (-1197) (-1288 (-713)))) (-15 -4263 ($ (-1197) (-1288 (-711)))) (-15 -4263 ($ (-1197) (-1288 (-706)))) (-15 -4263 ($ (-1197) (-701 (-326 (-713))))) (-15 -4263 ($ (-1197) (-701 (-326 (-711))))) (-15 -4263 ($ (-1197) (-701 (-326 (-706))))) (-15 -4263 ($ (-1197) (-1288 (-326 (-713))))) (-15 -4263 ($ (-1197) (-1288 (-326 (-711))))) (-15 -4263 ($ (-1197) (-1288 (-326 (-706))))) (-15 -4263 ($ (-1197) (-656 (-971 (-576))) (-326 (-713)))) (-15 -4263 ($ (-1197) (-656 (-971 (-576))) (-326 (-711)))) (-15 -4263 ($ (-1197) (-656 (-971 (-576))) (-326 (-706)))) (-15 -4263 ($ (-1197) (-326 (-576)))) (-15 -4263 ($ (-1197) (-326 (-390)))) (-15 -4263 ($ (-1197) (-326 (-171 (-390))))) (-15 -4263 ($ (-1197) (-701 (-326 (-576))))) (-15 -4263 ($ (-1197) (-701 (-326 (-390))))) (-15 -4263 ($ (-1197) (-701 (-326 (-171 (-390)))))) (-15 -4263 ($ (-1197) (-1288 (-326 (-576))))) (-15 -4263 ($ (-1197) (-1288 (-326 (-390))))) (-15 -4263 ($ (-1197) (-1288 (-326 (-171 (-390)))))) (-15 -4263 ($ (-1197) (-656 (-971 (-576))) (-326 (-576)))) (-15 -4263 ($ (-1197) (-656 (-971 (-576))) (-326 (-390)))) (-15 -4263 ($ (-1197) (-656 (-971 (-576))) (-326 (-171 (-390))))) (-15 -2227 ($ (-656 $))) (-15 -4443 ($)) (-15 -2550 ($)) (-15 -3404 ($ (-656 (-876)))) (-15 -1646 ($ (-1197) (-656 (-1197)))) (-15 -3548 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3536 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1617 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3617 (-112)) (|:| -1690 (-2 (|:| |ints2Floats?| (-112)) (|:| -1617 (-876)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -1848 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -4159 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -4159 $))) (|:| |commonBranch| (-2 (|:| -4149 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876)))) $)) (-15 -3280 ((-1293) $)) (-15 -4361 ((-1125) $)) (-15 -1777 ((-1141) (-1141)))))) (T -340)) -((-2517 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *1 (-340)))) (-2517 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *3 (-971 (-576))) (-5 *1 (-340)))) (-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-2691 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-1598 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340)))) (-3028 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340)))) (-3308 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340)))) (-3308 (*1 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-340)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340)))) (-3473 (*1 *1) (-5 *1 (-340))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3654 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-3654 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-713))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-711))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-706))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-713)))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-711)))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-706)))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-713))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-711))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-706))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-576)))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-390)))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-576))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-390))) (-5 *1 (-340)))) (-4263 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340)))) (-4443 (*1 *1) (-5 *1 (-340))) (-2550 (*1 *1) (-5 *1 (-340))) (-3404 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-340)))) (-1646 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-340)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1617 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| (-2 (|:| -3617 (-112)) (|:| -1690 (-2 (|:| |ints2Floats?| (-112)) (|:| -1617 (-876)))))) (|:| |blockBranch| (-656 (-340))) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -1848 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -4159 (-340)))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -4159 (-340)))) (|:| |commonBranch| (-2 (|:| -4149 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876))))) (-5 *1 (-340)))) (-3280 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-340)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-340)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) -(-13 (-1121) (-10 -8 (-15 -2517 ($ (-1113 (-971 (-576))) $)) (-15 -2517 ($ (-1113 (-971 (-576))) (-971 (-576)) $)) (-15 -2544 ($ (-1196) $)) (-15 -2691 ($ (-1196) $)) (-15 -1598 ($ (-1141))) (-15 -3028 ($ (-1141))) (-15 -3308 ($ (-1179))) (-15 -3308 ($ (-656 (-1179)))) (-15 -2120 ($ (-1179))) (-15 -3473 ($)) (-15 -3473 ($ (-326 (-711)))) (-15 -3473 ($ (-326 (-713)))) (-15 -3473 ($ (-326 (-706)))) (-15 -3473 ($ (-326 (-390)))) (-15 -3473 ($ (-326 (-576)))) (-15 -3473 ($ (-326 (-171 (-390))))) (-15 -3654 ($ (-1196) $)) (-15 -3654 ($ (-1196) $ $)) (-15 -4263 ($ (-1197) (-1179))) (-15 -4263 ($ (-1197) (-326 (-713)))) (-15 -4263 ($ (-1197) (-326 (-711)))) (-15 -4263 ($ (-1197) (-326 (-706)))) (-15 -4263 ($ (-1197) (-701 (-713)))) (-15 -4263 ($ (-1197) (-701 (-711)))) (-15 -4263 ($ (-1197) (-701 (-706)))) (-15 -4263 ($ (-1197) (-1288 (-713)))) (-15 -4263 ($ (-1197) (-1288 (-711)))) (-15 -4263 ($ (-1197) (-1288 (-706)))) (-15 -4263 ($ (-1197) (-701 (-326 (-713))))) (-15 -4263 ($ (-1197) (-701 (-326 (-711))))) (-15 -4263 ($ (-1197) (-701 (-326 (-706))))) (-15 -4263 ($ (-1197) (-1288 (-326 (-713))))) (-15 -4263 ($ (-1197) (-1288 (-326 (-711))))) (-15 -4263 ($ (-1197) (-1288 (-326 (-706))))) (-15 -4263 ($ (-1197) (-656 (-971 (-576))) (-326 (-713)))) (-15 -4263 ($ (-1197) (-656 (-971 (-576))) (-326 (-711)))) (-15 -4263 ($ (-1197) (-656 (-971 (-576))) (-326 (-706)))) (-15 -4263 ($ (-1197) (-326 (-576)))) (-15 -4263 ($ (-1197) (-326 (-390)))) (-15 -4263 ($ (-1197) (-326 (-171 (-390))))) (-15 -4263 ($ (-1197) (-701 (-326 (-576))))) (-15 -4263 ($ (-1197) (-701 (-326 (-390))))) (-15 -4263 ($ (-1197) (-701 (-326 (-171 (-390)))))) (-15 -4263 ($ (-1197) (-1288 (-326 (-576))))) (-15 -4263 ($ (-1197) (-1288 (-326 (-390))))) (-15 -4263 ($ (-1197) (-1288 (-326 (-171 (-390)))))) (-15 -4263 ($ (-1197) (-656 (-971 (-576))) (-326 (-576)))) (-15 -4263 ($ (-1197) (-656 (-971 (-576))) (-326 (-390)))) (-15 -4263 ($ (-1197) (-656 (-971 (-576))) (-326 (-171 (-390))))) (-15 -2227 ($ (-656 $))) (-15 -4443 ($)) (-15 -2550 ($)) (-15 -3404 ($ (-656 (-876)))) (-15 -1646 ($ (-1197) (-656 (-1197)))) (-15 -3548 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3536 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-656 (-971 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1617 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3617 (-112)) (|:| -1690 (-2 (|:| |ints2Floats?| (-112)) (|:| -1617 (-876)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -1848 (-1113 (-971 (-576)))) (|:| |span| (-971 (-576))) (|:| -4159 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -4159 $))) (|:| |commonBranch| (-2 (|:| -4149 (-1197)) (|:| |contents| (-656 (-1197))))) (|:| |printBranch| (-656 (-876)))) $)) (-15 -3280 ((-1293) $)) (-15 -4361 ((-1125) $)) (-15 -1777 ((-1141) (-1141))))) -((-1957 (((-112) $ $) NIL)) (-3569 (((-112) $) 13)) (-3412 (($ |#1|) 10)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3424 (($ |#1|) 12)) (-4113 (((-876) $) 19)) (-2950 (((-112) $ $) NIL)) (-1997 ((|#1| $) 14)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 21))) -(((-341 |#1|) (-13 (-861) (-10 -8 (-15 -3412 ($ |#1|)) (-15 -3424 ($ |#1|)) (-15 -3569 ((-112) $)) (-15 -1997 (|#1| $)))) (-861)) (T -341)) -((-3412 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) (-3424 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-861)))) (-1997 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861))))) -(-13 (-861) (-10 -8 (-15 -3412 ($ |#1|)) (-15 -3424 ($ |#1|)) (-15 -3569 ((-112) $)) (-15 -1997 (|#1| $)))) -((-2669 (((-340) (-1197) (-971 (-576))) 23)) (-2810 (((-340) (-1197) (-971 (-576))) 27)) (-4331 (((-340) (-1197) (-1113 (-971 (-576))) (-1113 (-971 (-576)))) 26) (((-340) (-1197) (-971 (-576)) (-971 (-576))) 24)) (-3369 (((-340) (-1197) (-971 (-576))) 31))) -(((-342) (-10 -7 (-15 -2669 ((-340) (-1197) (-971 (-576)))) (-15 -4331 ((-340) (-1197) (-971 (-576)) (-971 (-576)))) (-15 -4331 ((-340) (-1197) (-1113 (-971 (-576))) (-1113 (-971 (-576))))) (-15 -2810 ((-340) (-1197) (-971 (-576)))) (-15 -3369 ((-340) (-1197) (-971 (-576)))))) (T -342)) -((-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-4331 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-1113 (-971 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) (-4331 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) (-5 *1 (-342))))) -(-10 -7 (-15 -2669 ((-340) (-1197) (-971 (-576)))) (-15 -4331 ((-340) (-1197) (-971 (-576)) (-971 (-576)))) (-15 -4331 ((-340) (-1197) (-1113 (-971 (-576))) (-1113 (-971 (-576))))) (-15 -2810 ((-340) (-1197) (-971 (-576)))) (-15 -3369 ((-340) (-1197) (-971 (-576))))) -((-1957 (((-112) $ $) NIL)) (-3605 (((-518) $) 20)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2418 (((-977 (-783)) $) 18)) (-4166 (((-256) $) 7)) (-4113 (((-876) $) 26)) (-4024 (((-977 (-185 (-140))) $) 16)) (-2950 (((-112) $ $) NIL)) (-2965 (((-656 (-887 (-1202) (-783))) $) 12)) (-3939 (((-112) $ $) 22))) -(((-343) (-13 (-1121) (-10 -8 (-15 -4166 ((-256) $)) (-15 -2965 ((-656 (-887 (-1202) (-783))) $)) (-15 -2418 ((-977 (-783)) $)) (-15 -4024 ((-977 (-185 (-140))) $)) (-15 -3605 ((-518) $))))) (T -343)) -((-4166 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-1202) (-783)))) (-5 *1 (-343)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-977 (-783))) (-5 *1 (-343)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-977 (-185 (-140)))) (-5 *1 (-343)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) -(-13 (-1121) (-10 -8 (-15 -4166 ((-256) $)) (-15 -2965 ((-656 (-887 (-1202) (-783))) $)) (-15 -2418 ((-977 (-783)) $)) (-15 -4024 ((-977 (-185 (-140))) $)) (-15 -3605 ((-518) $)))) -((-2423 (((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)) 33))) -(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2423 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-374) (-1264 |#5|) (-1264 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -344)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *9 (-374)) (-4 *10 (-1264 *9)) (-4 *11 (-1264 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11))))) -(-10 -7 (-15 -2423 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) -((-2004 (((-112) $) 14))) -(((-345 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2004 ((-112) |#1|))) (-346 |#2| |#3| |#4| |#5|) (-374) (-1264 |#2|) (-1264 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -345)) -NIL -(-10 -8 (-15 -2004 ((-112) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2721 (($ $) 29)) (-2004 (((-112) $) 28)) (-2447 (((-1179) $) 10)) (-3208 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 35)) (-3116 (((-1141) $) 11)) (-2549 (((-3 |#4| "failed") $) 27)) (-3225 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-576)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3325 (((-2 (|:| -1685 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) -(((-346 |#1| |#2| |#3| |#4|) (-141) (-374) (-1264 |t#1|) (-1264 (-419 |t#2|)) (-353 |t#1| |t#2| |t#3|)) (T -346)) -((-3208 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-3225 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) (-4 *1 (-346 *3 *4 *5 *6)))) (-3225 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) (-3225 (*1 *1 *2 *2) (-12 (-4 *2 (-374)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) (-3225 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1264 *2)) (-4 *5 (-1264 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) (-4 *6 (-353 *2 *4 *5)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-2 (|:| -1685 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-2721 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))) (-2549 (*1 *2 *1) (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *2 (-353 *3 *4 *5)))) (-3225 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-374)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3208 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -3225 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -3225 ($ |t#4|)) (-15 -3225 ($ |t#1| |t#1|)) (-15 -3225 ($ |t#1| |t#1| (-576))) (-15 -3325 ((-2 (|:| -1685 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2721 ($ $)) (-15 -2004 ((-112) $)) (-15 -2549 ((-3 |t#4| "failed") $)) (-15 -3225 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2721 (($ $) 33)) (-2004 (((-112) $) NIL)) (-2447 (((-1179) $) NIL)) (-2520 (((-1288 |#4|) $) 134)) (-3208 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31)) (-3116 (((-1141) $) NIL)) (-2549 (((-3 |#4| "failed") $) 36)) (-2397 (((-1288 |#4|) $) 126)) (-3225 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-576)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3325 (((-2 (|:| -1685 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4113 (((-876) $) 17)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 14 T CONST)) (-3939 (((-112) $ $) 20)) (-4037 (($ $) 27) (($ $ $) NIL)) (-4026 (($ $ $) 25)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 23))) -(((-347 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2397 ((-1288 |#4|) $)) (-15 -2520 ((-1288 |#4|) $)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -347)) -((-2397 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))) (-2520 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5))))) -(-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2397 ((-1288 |#4|) $)) (-15 -2520 ((-1288 |#4|) $)))) -((-2145 (($ $ (-1197) |#2|) NIL) (($ $ (-656 (-1197)) (-656 |#2|)) 20) (($ $ (-656 (-304 |#2|))) 15) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-4369 (($ $ |#2|) 11))) -(((-348 |#1| |#2|) (-10 -8 (-15 -4369 (|#1| |#1| |#2|)) (-15 -2145 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2145 (|#1| |#1| |#2| |#2|)) (-15 -2145 (|#1| |#1| (-304 |#2|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 |#2|))) (-15 -2145 (|#1| |#1| (-1197) |#2|))) (-349 |#2|) (-1121)) (T -348)) -NIL -(-10 -8 (-15 -4369 (|#1| |#1| |#2|)) (-15 -2145 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2145 (|#1| |#1| |#2| |#2|)) (-15 -2145 (|#1| |#1| (-304 |#2|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 |#2|))) (-15 -2145 (|#1| |#1| (-1197) |#2|))) -((-2423 (($ (-1 |#1| |#1|) $) 6)) (-2145 (($ $ (-1197) |#1|) 17 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 16 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-656 (-304 |#1|))) 15 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 14 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-319 |#1|))) (($ $ (-656 |#1|) (-656 |#1|)) 12 (|has| |#1| (-319 |#1|)))) (-4369 (($ $ |#1|) 11 (|has| |#1| (-296 |#1| |#1|))))) -(((-349 |#1|) (-141) (-1121)) (T -349)) -((-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1121))))) -(-13 (-10 -8 (-15 -2423 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-296 |t#1| |t#1|)) (-6 (-296 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1197) |t#1|)) (-6 (-526 (-1197) |t#1|)) |%noBranch|))) -(((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-1238) |has| |#1| (-296 |#1| |#1|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1585 (((-656 (-1197)) $) NIL)) (-1684 (((-112)) 96) (((-112) (-112)) 97)) (-4442 (((-656 (-624 $)) $) NIL)) (-3586 (($ $) NIL)) (-3435 (($ $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-1791 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1462 (($ $) NIL)) (-3562 (($ $) NIL)) (-3412 (($ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-624 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-326 |#3|)) 76) (((-3 $ "failed") (-1197)) 103) (((-3 $ "failed") (-326 (-576))) 64 (|has| |#3| (-1059 (-576)))) (((-3 $ "failed") (-419 (-971 (-576)))) 70 (|has| |#3| (-1059 (-576)))) (((-3 $ "failed") (-971 (-576))) 65 (|has| |#3| (-1059 (-576)))) (((-3 $ "failed") (-326 (-390))) 94 (|has| |#3| (-1059 (-390)))) (((-3 $ "failed") (-419 (-971 (-390)))) 88 (|has| |#3| (-1059 (-390)))) (((-3 $ "failed") (-971 (-390))) 83 (|has| |#3| (-1059 (-390))))) (-2317 (((-624 $) $) NIL) ((|#3| $) NIL) (($ (-326 |#3|)) 77) (($ (-1197)) 104) (($ (-326 (-576))) 66 (|has| |#3| (-1059 (-576)))) (($ (-419 (-971 (-576)))) 71 (|has| |#3| (-1059 (-576)))) (($ (-971 (-576))) 67 (|has| |#3| (-1059 (-576)))) (($ (-326 (-390))) 95 (|has| |#3| (-1059 (-390)))) (($ (-419 (-971 (-390)))) 89 (|has| |#3| (-1059 (-390)))) (($ (-971 (-390))) 85 (|has| |#3| (-1059 (-390))))) (-1851 (((-3 $ "failed") $) NIL)) (-2722 (($) 101)) (-3043 (($ $) NIL) (($ (-656 $)) NIL)) (-1849 (((-656 (-115)) $) NIL)) (-1401 (((-115) (-115)) NIL)) (-2486 (((-112) $) NIL)) (-3616 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-1634 (((-1193 $) (-624 $)) NIL (|has| $ (-1070)))) (-2423 (($ (-1 $ $) (-624 $)) NIL)) (-2875 (((-3 (-624 $) "failed") $) NIL)) (-2485 (($ $) 99)) (-2608 (($ $) NIL)) (-2447 (((-1179) $) NIL)) (-1388 (((-656 (-624 $)) $) NIL)) (-2772 (($ (-115) $) 98) (($ (-115) (-656 $)) NIL)) (-4227 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) NIL)) (-2955 (((-783) $) NIL)) (-3116 (((-1141) $) NIL)) (-2197 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-2156 (($ $) NIL)) (-3955 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-2145 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-4369 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-1328 (($ $) NIL) (($ $ $) NIL)) (-4107 (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-3881 (($ $) NIL (|has| $ (-1070)))) (-3574 (($ $) NIL)) (-3424 (($ $) NIL)) (-4113 (((-876) $) NIL) (($ (-624 $)) NIL) (($ |#3|) NIL) (($ (-576)) NIL) (((-326 |#3|) $) 102)) (-2910 (((-783)) NIL T CONST)) (-2345 (($ $) NIL) (($ (-656 $)) NIL)) (-1380 (((-112) (-115)) NIL)) (-2950 (((-112) $ $) NIL)) (-3510 (($ $) NIL)) (-3487 (($ $) NIL)) (-3498 (($ $) NIL)) (-2366 (($ $) NIL)) (-4313 (($) 100 T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) -(((-350 |#1| |#2| |#3|) (-13 (-312) (-38 |#3|) (-1059 |#3|) (-917 (-1197)) (-10 -8 (-15 -2317 ($ (-326 |#3|))) (-15 -2982 ((-3 $ "failed") (-326 |#3|))) (-15 -2317 ($ (-1197))) (-15 -2982 ((-3 $ "failed") (-1197))) (-15 -4113 ((-326 |#3|) $)) (IF (|has| |#3| (-1059 (-576))) (PROGN (-15 -2317 ($ (-326 (-576)))) (-15 -2982 ((-3 $ "failed") (-326 (-576)))) (-15 -2317 ($ (-419 (-971 (-576))))) (-15 -2982 ((-3 $ "failed") (-419 (-971 (-576))))) (-15 -2317 ($ (-971 (-576)))) (-15 -2982 ((-3 $ "failed") (-971 (-576))))) |%noBranch|) (IF (|has| |#3| (-1059 (-390))) (PROGN (-15 -2317 ($ (-326 (-390)))) (-15 -2982 ((-3 $ "failed") (-326 (-390)))) (-15 -2317 ($ (-419 (-971 (-390))))) (-15 -2982 ((-3 $ "failed") (-419 (-971 (-390))))) (-15 -2317 ($ (-971 (-390)))) (-15 -2982 ((-3 $ "failed") (-971 (-390))))) |%noBranch|) (-15 -2366 ($ $)) (-15 -1462 ($ $)) (-15 -2156 ($ $)) (-15 -2608 ($ $)) (-15 -2485 ($ $)) (-15 -3412 ($ $)) (-15 -3424 ($ $)) (-15 -3435 ($ $)) (-15 -3487 ($ $)) (-15 -3498 ($ $)) (-15 -3510 ($ $)) (-15 -3562 ($ $)) (-15 -3574 ($ $)) (-15 -3586 ($ $)) (-15 -2722 ($)) (-15 -1585 ((-656 (-1197)) $)) (-15 -1684 ((-112))) (-15 -1684 ((-112) (-112))))) (-656 (-1197)) (-656 (-1197)) (-399)) (T -350)) -((-2317 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-971 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-2366 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-1462 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-2608 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-2485 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3424 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3435 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3487 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3498 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3510 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3562 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3574 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-3586 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-2722 (*1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) (-1684 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) (-1684 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399))))) -(-13 (-312) (-38 |#3|) (-1059 |#3|) (-917 (-1197)) (-10 -8 (-15 -2317 ($ (-326 |#3|))) (-15 -2982 ((-3 $ "failed") (-326 |#3|))) (-15 -2317 ($ (-1197))) (-15 -2982 ((-3 $ "failed") (-1197))) (-15 -4113 ((-326 |#3|) $)) (IF (|has| |#3| (-1059 (-576))) (PROGN (-15 -2317 ($ (-326 (-576)))) (-15 -2982 ((-3 $ "failed") (-326 (-576)))) (-15 -2317 ($ (-419 (-971 (-576))))) (-15 -2982 ((-3 $ "failed") (-419 (-971 (-576))))) (-15 -2317 ($ (-971 (-576)))) (-15 -2982 ((-3 $ "failed") (-971 (-576))))) |%noBranch|) (IF (|has| |#3| (-1059 (-390))) (PROGN (-15 -2317 ($ (-326 (-390)))) (-15 -2982 ((-3 $ "failed") (-326 (-390)))) (-15 -2317 ($ (-419 (-971 (-390))))) (-15 -2982 ((-3 $ "failed") (-419 (-971 (-390))))) (-15 -2317 ($ (-971 (-390)))) (-15 -2982 ((-3 $ "failed") (-971 (-390))))) |%noBranch|) (-15 -2366 ($ $)) (-15 -1462 ($ $)) (-15 -2156 ($ $)) (-15 -2608 ($ $)) (-15 -2485 ($ $)) (-15 -3412 ($ $)) (-15 -3424 ($ $)) (-15 -3435 ($ $)) (-15 -3487 ($ $)) (-15 -3498 ($ $)) (-15 -3510 ($ $)) (-15 -3562 ($ $)) (-15 -3574 ($ $)) (-15 -3586 ($ $)) (-15 -2722 ($)) (-15 -1585 ((-656 (-1197)) $)) (-15 -1684 ((-112))) (-15 -1684 ((-112) (-112))))) -((-2423 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2423 (|#8| (-1 |#5| |#1|) |#4|))) (-1242) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-1242) (-1264 |#5|) (-1264 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -351)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1242)) (-4 *8 (-1242)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *9 (-1264 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1264 (-419 *9)))))) -(-10 -7 (-15 -2423 (|#8| (-1 |#5| |#1|) |#4|))) -((-4407 (((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) $) 39)) (-2496 (($ (-1288 (-419 |#3|)) (-1288 $)) NIL) (($ (-1288 (-419 |#3|))) NIL) (($ (-1288 |#3|) |#3|) 173)) (-2938 (((-1288 $) (-1288 $)) 156)) (-2695 (((-656 (-656 |#2|))) 126)) (-2473 (((-112) |#2| |#2|) 76)) (-1788 (($ $) 148)) (-2582 (((-783)) 172)) (-4141 (((-1288 $) (-1288 $)) 218)) (-2596 (((-656 (-971 |#2|)) (-1197)) 115)) (-2847 (((-112) $) 169)) (-3126 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-2330 (((-3 |#3| "failed")) 52)) (-3213 (((-783)) 184)) (-4369 ((|#2| $ |#2| |#2|) 140)) (-1544 (((-3 |#3| "failed")) 71)) (-4107 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-2430 (((-1288 $) (-1288 $)) 162)) (-2495 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-4013 (((-112)) 34))) -(((-352 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2695 ((-656 (-656 |#2|)))) (-15 -2596 ((-656 (-971 |#2|)) (-1197))) (-15 -2495 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2330 ((-3 |#3| "failed"))) (-15 -1544 ((-3 |#3| "failed"))) (-15 -4369 (|#2| |#1| |#2| |#2|)) (-15 -1788 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3126 ((-112) |#1| |#3|)) (-15 -3126 ((-112) |#1| |#2|)) (-15 -2496 (|#1| (-1288 |#3|) |#3|)) (-15 -4407 ((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2938 ((-1288 |#1|) (-1288 |#1|))) (-15 -4141 ((-1288 |#1|) (-1288 |#1|))) (-15 -2430 ((-1288 |#1|) (-1288 |#1|))) (-15 -3126 ((-112) |#1|)) (-15 -2847 ((-112) |#1|)) (-15 -2473 ((-112) |#2| |#2|)) (-15 -4013 ((-112))) (-15 -3213 ((-783))) (-15 -2582 ((-783))) (-15 -4107 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -4107 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2496 (|#1| (-1288 (-419 |#3|)))) (-15 -2496 (|#1| (-1288 (-419 |#3|)) (-1288 |#1|)))) (-353 |#2| |#3| |#4|) (-1242) (-1264 |#2|) (-1264 (-419 |#3|))) (T -352)) -((-2582 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3213 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-4013 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-2473 (*1 *2 *3 *3) (-12 (-4 *3 (-1242)) (-4 *5 (-1264 *3)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) (-1544 (*1 *2) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-2330 (*1 *2) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-656 (-971 *5))) (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) (-2695 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))) -(-10 -8 (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -2695 ((-656 (-656 |#2|)))) (-15 -2596 ((-656 (-971 |#2|)) (-1197))) (-15 -2495 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2330 ((-3 |#3| "failed"))) (-15 -1544 ((-3 |#3| "failed"))) (-15 -4369 (|#2| |#1| |#2| |#2|)) (-15 -1788 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3126 ((-112) |#1| |#3|)) (-15 -3126 ((-112) |#1| |#2|)) (-15 -2496 (|#1| (-1288 |#3|) |#3|)) (-15 -4407 ((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2938 ((-1288 |#1|) (-1288 |#1|))) (-15 -4141 ((-1288 |#1|) (-1288 |#1|))) (-15 -2430 ((-1288 |#1|) (-1288 |#1|))) (-15 -3126 ((-112) |#1|)) (-15 -2847 ((-112) |#1|)) (-15 -2473 ((-112) |#2| |#2|)) (-15 -4013 ((-112))) (-15 -3213 ((-783))) (-15 -2582 ((-783))) (-15 -4107 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -4107 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2496 (|#1| (-1288 (-419 |#3|)))) (-15 -2496 (|#1| (-1288 (-419 |#3|)) (-1288 |#1|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-4407 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 211)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 105 (|has| (-419 |#2|) (-374)))) (-2390 (($ $) 106 (|has| (-419 |#2|) (-374)))) (-3302 (((-112) $) 108 (|has| (-419 |#2|) (-374)))) (-2637 (((-701 (-419 |#2|)) (-1288 $)) 53) (((-701 (-419 |#2|))) 68)) (-3832 (((-419 |#2|) $) 59)) (-2063 (((-1210 (-940) (-783)) (-576)) 158 (|has| (-419 |#2|) (-360)))) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 125 (|has| (-419 |#2|) (-374)))) (-3589 (((-430 $) $) 126 (|has| (-419 |#2|) (-374)))) (-4386 (((-112) $ $) 116 (|has| (-419 |#2|) (-374)))) (-2201 (((-783)) 99 (|has| (-419 |#2|) (-379)))) (-3974 (((-112)) 228)) (-1374 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-3170 (($) 18 T CONST)) (-2982 (((-3 (-576) "failed") $) 185 (|has| (-419 |#2|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) 180)) (-2317 (((-576) $) 184 (|has| (-419 |#2|) (-1059 (-576)))) (((-419 (-576)) $) 182 (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-419 |#2|) $) 181)) (-2496 (($ (-1288 (-419 |#2|)) (-1288 $)) 55) (($ (-1288 (-419 |#2|))) 71) (($ (-1288 |#2|) |#2|) 210)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-419 |#2|) (-360)))) (-1895 (($ $ $) 120 (|has| (-419 |#2|) (-374)))) (-1481 (((-701 (-419 |#2|)) $ (-1288 $)) 60) (((-701 (-419 |#2|)) $) 66)) (-1930 (((-701 (-576)) (-701 $)) 177 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 176 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-701 $) (-1288 $)) 175) (((-701 (-419 |#2|)) (-701 $)) 174)) (-2938 (((-1288 $) (-1288 $)) 216)) (-2721 (($ |#3|) 169) (((-3 $ "failed") (-419 |#3|)) 166 (|has| (-419 |#2|) (-374)))) (-1851 (((-3 $ "failed") $) 37)) (-2695 (((-656 (-656 |#1|))) 197 (|has| |#1| (-379)))) (-2473 (((-112) |#1| |#1|) 232)) (-4135 (((-940)) 61)) (-4370 (($) 102 (|has| (-419 |#2|) (-379)))) (-4198 (((-112)) 225)) (-1656 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-1908 (($ $ $) 119 (|has| (-419 |#2|) (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 114 (|has| (-419 |#2|) (-374)))) (-1788 (($ $) 203)) (-3712 (($) 160 (|has| (-419 |#2|) (-360)))) (-2616 (((-112) $) 161 (|has| (-419 |#2|) (-360)))) (-2824 (($ $ (-783)) 152 (|has| (-419 |#2|) (-360))) (($ $) 151 (|has| (-419 |#2|) (-360)))) (-2171 (((-112) $) 127 (|has| (-419 |#2|) (-374)))) (-3359 (((-940) $) 163 (|has| (-419 |#2|) (-360))) (((-845 (-940)) $) 149 (|has| (-419 |#2|) (-360)))) (-2486 (((-112) $) 35)) (-2582 (((-783)) 235)) (-4141 (((-1288 $) (-1288 $)) 217)) (-2595 (((-419 |#2|) $) 58)) (-2596 (((-656 (-971 |#1|)) (-1197)) 198 (|has| |#1| (-374)))) (-3552 (((-3 $ "failed") $) 153 (|has| (-419 |#2|) (-360)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| (-419 |#2|) (-374)))) (-4293 ((|#3| $) 51 (|has| (-419 |#2|) (-374)))) (-3787 (((-940) $) 101 (|has| (-419 |#2|) (-379)))) (-2709 ((|#3| $) 167)) (-2160 (((-701 (-576)) (-1288 $)) 179 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 178 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) 173) (((-701 (-419 |#2|)) (-1288 $)) 172)) (-3076 (($ (-656 $)) 112 (|has| (-419 |#2|) (-374))) (($ $ $) 111 (|has| (-419 |#2|) (-374)))) (-2447 (((-1179) $) 10)) (-2204 (((-701 (-419 |#2|))) 212)) (-1498 (((-701 (-419 |#2|))) 214)) (-1669 (($ $) 128 (|has| (-419 |#2|) (-374)))) (-2680 (($ (-1288 |#2|) |#2|) 208)) (-4011 (((-701 (-419 |#2|))) 213)) (-2205 (((-701 (-419 |#2|))) 215)) (-1417 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207)) (-2525 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 209)) (-3305 (((-1288 $)) 221)) (-4329 (((-1288 $)) 222)) (-2847 (((-112) $) 220)) (-3126 (((-112) $) 219) (((-112) $ |#1|) 206) (((-112) $ |#2|) 205)) (-3650 (($) 154 (|has| (-419 |#2|) (-360)) CONST)) (-2411 (($ (-940)) 100 (|has| (-419 |#2|) (-379)))) (-2330 (((-3 |#2| "failed")) 200)) (-3116 (((-1141) $) 11)) (-3213 (((-783)) 234)) (-2549 (($) 171)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 113 (|has| (-419 |#2|) (-374)))) (-3115 (($ (-656 $)) 110 (|has| (-419 |#2|) (-374))) (($ $ $) 109 (|has| (-419 |#2|) (-374)))) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) 157 (|has| (-419 |#2|) (-360)))) (-1452 (((-430 $) $) 124 (|has| (-419 |#2|) (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 121 (|has| (-419 |#2|) (-374)))) (-1946 (((-3 $ "failed") $ $) 104 (|has| (-419 |#2|) (-374)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| (-419 |#2|) (-374)))) (-2812 (((-783) $) 117 (|has| (-419 |#2|) (-374)))) (-4369 ((|#1| $ |#1| |#1|) 202)) (-1544 (((-3 |#2| "failed")) 201)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 118 (|has| (-419 |#2|) (-374)))) (-1790 (((-419 |#2|) (-1288 $)) 54) (((-419 |#2|)) 67)) (-3168 (((-783) $) 162 (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) 150 (|has| (-419 |#2|) (-360)))) (-4107 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 136 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 135 (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 204) (($ $ (-656 (-1197)) (-656 (-783))) 141 (-3795 (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2311 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197) (-783)) 140 (-3795 (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2311 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1197))) 139 (-3795 (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2311 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197)) 137 (-3795 (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2311 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 147 (-3795 (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2311 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 145 (-3795 (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2311 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2828 (((-701 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) 165 (|has| (-419 |#2|) (-374)))) (-3881 ((|#3|) 170)) (-4223 (($) 159 (|has| (-419 |#2|) (-360)))) (-4314 (((-1288 (-419 |#2|)) $ (-1288 $)) 57) (((-701 (-419 |#2|)) (-1288 $) (-1288 $)) 56) (((-1288 (-419 |#2|)) $) 73) (((-701 (-419 |#2|)) (-1288 $)) 72)) (-1556 (((-1288 (-419 |#2|)) $) 70) (($ (-1288 (-419 |#2|))) 69) ((|#3| $) 186) (($ |#3|) 168)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 156 (|has| (-419 |#2|) (-360)))) (-2430 (((-1288 $) (-1288 $)) 218)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ (-419 |#2|)) 44) (($ (-419 (-576))) 98 (-3795 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-1059 (-419 (-576)))))) (($ $) 103 (|has| (-419 |#2|) (-374)))) (-4276 (($ $) 155 (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) 50 (|has| (-419 |#2|) (-146)))) (-4358 ((|#3| $) 52)) (-2910 (((-783)) 32 T CONST)) (-4265 (((-112)) 231)) (-1964 (((-112) |#1|) 230) (((-112) |#2|) 229)) (-2950 (((-112) $ $) 6)) (-2704 (((-1288 $)) 74)) (-4134 (((-112) $ $) 107 (|has| (-419 |#2|) (-374)))) (-2495 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199)) (-4013 (((-112)) 233)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 134 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 133 (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1197)) (-656 (-783))) 144 (-3795 (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2311 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197) (-783)) 143 (-3795 (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2311 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1197))) 142 (-3795 (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2311 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-1197)) 138 (-3795 (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-2311 (|has| (-419 |#2|) (-919 (-1197))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 148 (-3795 (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2311 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 146 (-3795 (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2311 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2311 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ $) 132 (|has| (-419 |#2|) (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| (-419 |#2|) (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 |#2|)) 46) (($ (-419 |#2|) $) 45) (($ (-419 (-576)) $) 131 (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) 130 (|has| (-419 |#2|) (-374))))) -(((-353 |#1| |#2| |#3|) (-141) (-1242) (-1264 |t#1|) (-1264 (-419 |t#2|))) (T -353)) -((-2582 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783)))) (-3213 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783)))) (-4013 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-2473 (*1 *2 *3 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-4265 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-1964 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-1964 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-3974 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-1374 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-1374 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-4198 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-1656 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-1656 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-4329 (*1 *2) (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)))) (-3305 (*1 *2) (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-2430 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-4141 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-2205 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-1498 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-4011 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2204 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-4407 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4))))) (-2496 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) (-2525 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4))))) (-2680 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5))))) (-3126 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) (-3126 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) (-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-1788 (*1 *1 *1) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))))) (-4369 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))))) (-1544 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3)))) (-2330 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3)))) (-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1242)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-353 *4 *5 *6)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *4 (-374)) (-5 *2 (-656 (-971 *4))))) (-2695 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) -(-13 (-736 (-419 |t#2|) |t#3|) (-10 -8 (-15 -2582 ((-783))) (-15 -3213 ((-783))) (-15 -4013 ((-112))) (-15 -2473 ((-112) |t#1| |t#1|)) (-15 -4265 ((-112))) (-15 -1964 ((-112) |t#1|)) (-15 -1964 ((-112) |t#2|)) (-15 -3974 ((-112))) (-15 -1374 ((-112) |t#1|)) (-15 -1374 ((-112) |t#2|)) (-15 -4198 ((-112))) (-15 -1656 ((-112) |t#1|)) (-15 -1656 ((-112) |t#2|)) (-15 -4329 ((-1288 $))) (-15 -3305 ((-1288 $))) (-15 -2847 ((-112) $)) (-15 -3126 ((-112) $)) (-15 -2430 ((-1288 $) (-1288 $))) (-15 -4141 ((-1288 $) (-1288 $))) (-15 -2938 ((-1288 $) (-1288 $))) (-15 -2205 ((-701 (-419 |t#2|)))) (-15 -1498 ((-701 (-419 |t#2|)))) (-15 -4011 ((-701 (-419 |t#2|)))) (-15 -2204 ((-701 (-419 |t#2|)))) (-15 -4407 ((-2 (|:| |num| (-1288 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2496 ($ (-1288 |t#2|) |t#2|)) (-15 -2525 ((-2 (|:| |num| (-1288 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2680 ($ (-1288 |t#2|) |t#2|)) (-15 -1417 ((-2 (|:| |num| (-701 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3126 ((-112) $ |t#1|)) (-15 -3126 ((-112) $ |t#2|)) (-15 -4107 ($ $ (-1 |t#2| |t#2|))) (-15 -1788 ($ $)) (-15 -4369 (|t#1| $ |t#1| |t#1|)) (-15 -1544 ((-3 |t#2| "failed"))) (-15 -2330 ((-3 |t#2| "failed"))) (-15 -2495 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-374)) (-15 -2596 ((-656 (-971 |t#1|)) (-1197))) |%noBranch|) (IF (|has| |t#1| (-379)) (-15 -2695 ((-656 (-656 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-38 #1=(-419 |#2|)) . T) ((-38 $) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-102) . T) ((-111 #0# #0#) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-146))) ((-148) |has| (-419 |#2|) (-148)) ((-628 #0#) -3795 (|has| (-419 |#2|) (-1059 (-419 (-576)))) (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-628 #1#) . T) ((-628 (-576)) . T) ((-628 $) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-625 (-876)) . T) ((-174) . T) ((-626 |#3|) . T) ((-234 $) -3795 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-232 #1#) |has| (-419 |#2|) (-374)) ((-238) -3795 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-237) -3795 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-272 #1#) |has| (-419 |#2|) (-374)) ((-248) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-300) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-317) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-374) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-414) |has| (-419 |#2|) (-360)) ((-379) -3795 (|has| (-419 |#2|) (-379)) (|has| (-419 |#2|) (-360))) ((-360) |has| (-419 |#2|) (-360)) ((-381 #1# |#3|) . T) ((-421 #1# |#3|) . T) ((-388 #1#) . T) ((-423 #1#) . T) ((-464) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-568) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #0#) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #1#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-660 #1#) . T) ((-660 #2=(-576)) |has| (-419 |#2|) (-651 (-576))) ((-660 $) . T) ((-652 #0#) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-652 #1#) . T) ((-652 $) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-651 #1#) . T) ((-651 #2#) |has| (-419 |#2|) (-651 (-576))) ((-729 #0#) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-729 #1#) . T) ((-729 $) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-736 #1# |#3|) . T) ((-738) . T) ((-911 $ #3=(-1197)) -3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197))))) ((-917 (-1197)) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) ((-919 #3#) -3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197))))) ((-939) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1059 (-419 (-576))) |has| (-419 |#2|) (-1059 (-419 (-576)))) ((-1059 #1#) . T) ((-1059 (-576)) |has| (-419 |#2|) (-1059 (-576))) ((-1072 #0#) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1072 #1#) . T) ((-1072 $) . T) ((-1077 #0#) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1077 #1#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| (-419 |#2|) (-360)) ((-1238) . T) ((-1242) -3795 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2536 (((-112) $) NIL)) (-3570 (((-783)) NIL)) (-3832 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2063 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-929 |#1|) (-379)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) NIL (|has| (-929 |#1|) (-379)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-929 |#1|) "failed") $) NIL)) (-2317 (((-929 |#1|) $) NIL)) (-2496 (($ (-1288 (-929 |#1|))) NIL)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-929 |#1|) (-379)))) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| (-929 |#1|) (-379)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3712 (($) NIL (|has| (-929 |#1|) (-379)))) (-2616 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2824 (($ $ (-783)) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379)))) (($ $) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2171 (((-112) $) NIL)) (-3359 (((-940) $) NIL (|has| (-929 |#1|) (-379))) (((-845 (-940)) $) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2486 (((-112) $) NIL)) (-3121 (($) NIL (|has| (-929 |#1|) (-379)))) (-2882 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2595 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3552 (((-3 $ "failed") $) NIL (|has| (-929 |#1|) (-379)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4293 (((-1193 (-929 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3787 (((-940) $) NIL (|has| (-929 |#1|) (-379)))) (-2089 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379)))) (-3922 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-1193 (-929 |#1|)) "failed") $ $) NIL (|has| (-929 |#1|) (-379)))) (-4010 (($ $ (-1193 (-929 |#1|))) NIL (|has| (-929 |#1|) (-379)))) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| (-929 |#1|) (-379)) CONST)) (-2411 (($ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3464 (((-112) $) NIL)) (-3116 (((-1141) $) NIL)) (-2906 (((-977 (-1141))) NIL)) (-2549 (($) NIL (|has| (-929 |#1|) (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL (|has| (-929 |#1|) (-379)))) (-1452 (((-430 $) $) NIL)) (-3835 (((-845 (-940))) NIL) (((-940)) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-3168 (((-783) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3181 (((-135)) NIL)) (-4107 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2196 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3881 (((-1193 (-929 |#1|))) NIL)) (-4223 (($) NIL (|has| (-929 |#1|) (-379)))) (-2174 (($) NIL (|has| (-929 |#1|) (-379)))) (-4314 (((-1288 (-929 |#1|)) $) NIL) (((-701 (-929 |#1|)) (-1288 $)) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-929 |#1|) (-379)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-929 |#1|)) NIL)) (-4276 (($ $) NIL (|has| (-929 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-4134 (((-112) $ $) NIL)) (-1736 (((-112) $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| (-929 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-929 |#1|) (-379)))) (-3157 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ (-929 |#1|)) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-929 |#1|)) NIL) (($ (-929 |#1|) $) NIL))) -(((-354 |#1| |#2|) (-13 (-339 (-929 |#1|)) (-10 -7 (-15 -2906 ((-977 (-1141)))))) (-940) (-940)) (T -354)) -((-2906 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-354 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940))))) -(-13 (-339 (-929 |#1|)) (-10 -7 (-15 -2906 ((-977 (-1141)))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 58)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2536 (((-112) $) NIL)) (-3570 (((-783)) NIL)) (-3832 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2063 (((-1210 (-940) (-783)) (-576)) 56 (|has| |#1| (-379)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) NIL (|has| |#1| (-379)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) 142)) (-2317 ((|#1| $) 113)) (-2496 (($ (-1288 |#1|)) 130)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-379)))) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) 124 (|has| |#1| (-379)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3712 (($) 160 (|has| |#1| (-379)))) (-2616 (((-112) $) 66 (|has| |#1| (-379)))) (-2824 (($ $ (-783)) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2171 (((-112) $) NIL)) (-3359 (((-940) $) 60 (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2486 (((-112) $) 62)) (-3121 (($) 162 (|has| |#1| (-379)))) (-2882 (((-112) $) NIL (|has| |#1| (-379)))) (-2595 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4293 (((-1193 |#1|) $) 117) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-3787 (((-940) $) 171 (|has| |#1| (-379)))) (-2089 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3922 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4010 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 178)) (-3650 (($) NIL (|has| |#1| (-379)) CONST)) (-2411 (($ (-940)) 96 (|has| |#1| (-379)))) (-3464 (((-112) $) 147)) (-3116 (((-1141) $) NIL)) (-2906 (((-977 (-1141))) 57)) (-2549 (($) 158 (|has| |#1| (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) 119 (|has| |#1| (-379)))) (-1452 (((-430 $) $) NIL)) (-3835 (((-845 (-940))) 90) (((-940)) 91)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-3168 (((-783) $) 161 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 154 (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3181 (((-135)) NIL)) (-4107 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2196 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3881 (((-1193 |#1|)) 122)) (-4223 (($) 159 (|has| |#1| (-379)))) (-2174 (($) 167 (|has| |#1| (-379)))) (-4314 (((-1288 |#1|) $) 77) (((-701 |#1|) (-1288 $)) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4113 (((-876) $) 174) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 100)) (-4276 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2910 (((-783)) 155 T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) 144) (((-1288 $) (-940)) 98)) (-4134 (((-112) $ $) NIL)) (-1736 (((-112) $) NIL)) (-4313 (($) 67 T CONST)) (-4322 (($) 103 T CONST)) (-2510 (($ $) 107 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3157 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3939 (((-112) $ $) 65)) (-4047 (($ $ $) 176) (($ $ |#1|) 177)) (-4037 (($ $) 157) (($ $ $) NIL)) (-4026 (($ $ $) 86)) (** (($ $ (-940)) 180) (($ $ (-783)) 181) (($ $ (-576)) 179)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 102) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) -(((-355 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2906 ((-977 (-1141)))))) (-360) (-1193 |#1|)) (T -355)) -((-2906 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) (-14 *4 (-1193 *3))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2906 ((-977 (-1141)))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2536 (((-112) $) NIL)) (-3570 (((-783)) NIL)) (-3832 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2063 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) NIL (|has| |#1| (-379)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-2496 (($ (-1288 |#1|)) NIL)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| |#1| (-379)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3712 (($) NIL (|has| |#1| (-379)))) (-2616 (((-112) $) NIL (|has| |#1| (-379)))) (-2824 (($ $ (-783)) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2171 (((-112) $) NIL)) (-3359 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2486 (((-112) $) NIL)) (-3121 (($) NIL (|has| |#1| (-379)))) (-2882 (((-112) $) NIL (|has| |#1| (-379)))) (-2595 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4293 (((-1193 |#1|) $) NIL) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-3787 (((-940) $) NIL (|has| |#1| (-379)))) (-2089 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3922 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4010 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| |#1| (-379)) CONST)) (-2411 (($ (-940)) NIL (|has| |#1| (-379)))) (-3464 (((-112) $) NIL)) (-3116 (((-1141) $) NIL)) (-2906 (((-977 (-1141))) NIL)) (-2549 (($) NIL (|has| |#1| (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL (|has| |#1| (-379)))) (-1452 (((-430 $) $) NIL)) (-3835 (((-845 (-940))) NIL) (((-940)) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-3168 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3181 (((-135)) NIL)) (-4107 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2196 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3881 (((-1193 |#1|)) NIL)) (-4223 (($) NIL (|has| |#1| (-379)))) (-2174 (($) NIL (|has| |#1| (-379)))) (-4314 (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-4276 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-4134 (((-112) $ $) NIL)) (-1736 (((-112) $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3157 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-356 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2906 ((-977 (-1141)))))) (-360) (-940)) (T -356)) -((-2906 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2906 ((-977 (-1141)))))) -((-3842 (((-783) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141)))))) 61)) (-4390 (((-977 (-1141)) (-1193 |#1|)) 112)) (-3916 (((-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))) (-1193 |#1|)) 103)) (-4366 (((-701 |#1|) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141)))))) 113)) (-1756 (((-3 (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))) "failed") (-940)) 13)) (-1721 (((-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141)))))) (-940)) 18))) -(((-357 |#1|) (-10 -7 (-15 -4390 ((-977 (-1141)) (-1193 |#1|))) (-15 -3916 ((-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))) (-1193 |#1|))) (-15 -4366 ((-701 |#1|) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))))) (-15 -3842 ((-783) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))))) (-15 -1756 ((-3 (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))) "failed") (-940))) (-15 -1721 ((-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141)))))) (-940)))) (-360)) (T -357)) -((-1721 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-3 (-1193 *4) (-1288 (-656 (-2 (|:| -1690 *4) (|:| -2411 (-1141))))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-1756 (*1 *2 *3) (|partial| -12 (-5 *3 (-940)) (-5 *2 (-1288 (-656 (-2 (|:| -1690 *4) (|:| -2411 (-1141)))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-3842 (*1 *2 *3) (-12 (-5 *3 (-1288 (-656 (-2 (|:| -1690 *4) (|:| -2411 (-1141)))))) (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-1288 (-656 (-2 (|:| -1690 *4) (|:| -2411 (-1141)))))) (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-1288 (-656 (-2 (|:| -1690 *4) (|:| -2411 (-1141)))))) (-5 *1 (-357 *4)))) (-4390 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-977 (-1141))) (-5 *1 (-357 *4))))) -(-10 -7 (-15 -4390 ((-977 (-1141)) (-1193 |#1|))) (-15 -3916 ((-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))) (-1193 |#1|))) (-15 -4366 ((-701 |#1|) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))))) (-15 -3842 ((-783) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))))) (-15 -1756 ((-3 (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))) "failed") (-940))) (-15 -1721 ((-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141)))))) (-940)))) -((-4113 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) -(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -4113 (|#3| |#1|)) (-15 -4113 (|#1| |#3|))) (-339 |#2|) (-360) (-339 |#2|)) (T -358)) -((-4113 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) (-4113 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4))))) -(-10 -7 (-15 -4113 (|#3| |#1|)) (-15 -4113 (|#1| |#3|))) -((-2616 (((-112) $) 60)) (-3359 (((-845 (-940)) $) 23) (((-940) $) 64)) (-3552 (((-3 $ "failed") $) 18)) (-3650 (($) 9)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 114)) (-3168 (((-3 (-783) "failed") $ $) 92) (((-783) $) 79)) (-4107 (($ $) 8) (($ $ (-783)) NIL)) (-4223 (($) 53)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 38)) (-4276 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-359 |#1|) (-10 -8 (-15 -3359 ((-940) |#1|)) (-15 -3168 ((-783) |#1|)) (-15 -2616 ((-112) |#1|)) (-15 -4223 (|#1|)) (-15 -4055 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -4276 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 -3650 (|#1|)) (-15 -3552 ((-3 |#1| "failed") |#1|)) (-15 -3168 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3359 ((-845 (-940)) |#1|)) (-15 -4276 ((-3 |#1| "failed") |#1|)) (-15 -2142 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) (-360)) (T -359)) -NIL -(-10 -8 (-15 -3359 ((-940) |#1|)) (-15 -3168 ((-783) |#1|)) (-15 -2616 ((-112) |#1|)) (-15 -4223 (|#1|)) (-15 -4055 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -4276 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 -3650 (|#1|)) (-15 -3552 ((-3 |#1| "failed") |#1|)) (-15 -3168 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3359 ((-845 (-940)) |#1|)) (-15 -4276 ((-3 |#1| "failed") |#1|)) (-15 -2142 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-2063 (((-1210 (-940) (-783)) (-576)) 102)) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 81)) (-3589 (((-430 $) $) 80)) (-4386 (((-112) $ $) 65)) (-2201 (((-783)) 112)) (-3170 (($) 18 T CONST)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-1895 (($ $ $) 61)) (-1851 (((-3 $ "failed") $) 37)) (-4370 (($) 115)) (-1908 (($ $ $) 62)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-3712 (($) 100)) (-2616 (((-112) $) 99)) (-2824 (($ $) 87) (($ $ (-783)) 86)) (-2171 (((-112) $) 79)) (-3359 (((-845 (-940)) $) 89) (((-940) $) 97)) (-2486 (((-112) $) 35)) (-3552 (((-3 $ "failed") $) 111)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3787 (((-940) $) 114)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 78)) (-3650 (($) 110 T CONST)) (-2411 (($ (-940)) 113)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) 103)) (-1452 (((-430 $) $) 82)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2812 (((-783) $) 64)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63)) (-3168 (((-3 (-783) "failed") $ $) 88) (((-783) $) 98)) (-4107 (($ $) 109) (($ $ (-783)) 107)) (-4223 (($) 101)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 104)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-4276 (((-3 $ "failed") $) 90) (($ $) 105)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $) 108) (($ $ (-783)) 106)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ $) 73)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-2469 (*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1289 *1)) (-4 *1 (-339 *3)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-941)) (-4 *4 (-374)) (-5 *2 (-1289 *1)) (-4 *1 (-339 *4)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1289 *3)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) (-5 *2 (-702 *4)))) (-4093 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1194 *3)))) (-2005 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1194 *3)))) (-1559 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-941)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-941)))) (-3869 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-3604 (*1 *2 *1 *3) (-12 (-5 *3 (-941)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1194 *1)) (-4 *1 (-339 *4)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-2256 (*1 *1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-4039 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-2084 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) (-4083 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1194 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) (-4 *3 (-374)))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1194 *3)))) (-4348 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1194 *3)))) (-4348 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1194 *3))))) +(-13 (-1308 |t#1|) (-1060 |t#1|) (-10 -8 (-15 -2469 ((-1289 $))) (-15 -2469 ((-1289 $) (-941))) (-15 -3806 ((-1289 |t#1|) $)) (-15 -3806 ((-702 |t#1|) (-1289 $))) (-15 -4093 ($ (-1289 |t#1|))) (-15 -3604 ((-1194 |t#1|) $)) (-15 -2005 ((-1194 |t#1|))) (-15 -1559 ((-941))) (-15 -4265 ((-941) $)) (-15 -3869 (|t#1| $)) (-15 -2256 (|t#1| $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-360)) (-15 -3604 ((-1194 $) $ (-941))) (-15 -3869 ($ $ (-941))) (-15 -2256 ($ $ (-941))) (-15 -4039 ($)) (-15 -2084 ($)) (-15 -3547 ((-112) $)) (-15 -4083 ($)) (-15 -3905 ($ $ (-1194 |t#1|))) (-15 -2514 ((-1194 |t#1|) $)) (-15 -4348 ((-1194 |t#1|) $)) (-15 -4348 ((-3 (-1194 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2748 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-234 $) |has| |#1| (-379)) ((-238) |has| |#1| (-379)) ((-237) |has| |#1| (-379)) ((-248) . T) ((-300) . T) ((-317) . T) ((-1308 |#1|) . T) ((-374) . T) ((-414) -2748 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-379) |has| |#1| (-379)) ((-360) |has| |#1| (-379)) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 |#1|) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1060 |#1|) . T) ((-1073 #0#) . T) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 |#1|) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) |has| |#1| (-379)) ((-1239) . T) ((-1243) . T) ((-1296 |#1|) . T)) +((-3423 (((-112) $ $) NIL)) (-3269 (($ (-1197) $) 100)) (-2275 (($) 89)) (-2529 (((-1142) (-1142)) 9)) (-1398 (($) 90)) (-2481 (($) 104) (($ (-326 (-712))) 112) (($ (-326 (-714))) 108) (($ (-326 (-707))) 116) (($ (-326 (-390))) 123) (($ (-326 (-576))) 119) (($ (-326 (-171 (-390)))) 127)) (-2347 (($ (-1197) $) 101)) (-3034 (($ (-657 (-877))) 91)) (-4367 (((-1294) $) 87)) (-1429 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3284 (($ (-1142)) 58)) (-2980 (((-1126) $) 30)) (-4304 (($ (-1114 (-972 (-576))) $) 97) (($ (-1114 (-972 (-576))) (-972 (-576)) $) 98)) (-1436 (($ (-1142)) 99)) (-2824 (($ (-1197) $) 129) (($ (-1197) $ $) 130)) (-2448 (($ (-1198) (-657 (-1198))) 88)) (-3706 (($ (-1180)) 94) (($ (-657 (-1180))) 92)) (-3515 (((-877) $) 132)) (-4338 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1198)) (|:| |arrayIndex| (-657 (-972 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2949 (-877)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1197)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1368 (-112)) (|:| -3037 (-2 (|:| |ints2Floats?| (-112)) (|:| -2949 (-877)))))) (|:| |blockBranch| (-657 $)) (|:| |commentBranch| (-657 (-1180))) (|:| |callBranch| (-1180)) (|:| |forBranch| (-2 (|:| -3936 (-1114 (-972 (-576)))) (|:| |span| (-972 (-576))) (|:| -2645 $))) (|:| |labelBranch| (-1142)) (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -2645 $))) (|:| |commonBranch| (-2 (|:| -2634 (-1198)) (|:| |contents| (-657 (-1198))))) (|:| |printBranch| (-657 (-877)))) $) 50)) (-1609 (($ (-1180)) 202)) (-3263 (($ (-657 $)) 128)) (-4166 (((-112) $ $) NIL)) (-1457 (($ (-1198) (-1180)) 135) (($ (-1198) (-326 (-714))) 175) (($ (-1198) (-326 (-712))) 176) (($ (-1198) (-326 (-707))) 177) (($ (-1198) (-702 (-714))) 138) (($ (-1198) (-702 (-712))) 141) (($ (-1198) (-702 (-707))) 144) (($ (-1198) (-1289 (-714))) 147) (($ (-1198) (-1289 (-712))) 150) (($ (-1198) (-1289 (-707))) 153) (($ (-1198) (-702 (-326 (-714)))) 156) (($ (-1198) (-702 (-326 (-712)))) 159) (($ (-1198) (-702 (-326 (-707)))) 162) (($ (-1198) (-1289 (-326 (-714)))) 165) (($ (-1198) (-1289 (-326 (-712)))) 168) (($ (-1198) (-1289 (-326 (-707)))) 171) (($ (-1198) (-657 (-972 (-576))) (-326 (-714))) 172) (($ (-1198) (-657 (-972 (-576))) (-326 (-712))) 173) (($ (-1198) (-657 (-972 (-576))) (-326 (-707))) 174) (($ (-1198) (-326 (-576))) 199) (($ (-1198) (-326 (-390))) 200) (($ (-1198) (-326 (-171 (-390)))) 201) (($ (-1198) (-702 (-326 (-576)))) 180) (($ (-1198) (-702 (-326 (-390)))) 183) (($ (-1198) (-702 (-326 (-171 (-390))))) 186) (($ (-1198) (-1289 (-326 (-576)))) 189) (($ (-1198) (-1289 (-326 (-390)))) 192) (($ (-1198) (-1289 (-326 (-171 (-390))))) 195) (($ (-1198) (-657 (-972 (-576))) (-326 (-576))) 196) (($ (-1198) (-657 (-972 (-576))) (-326 (-390))) 197) (($ (-1198) (-657 (-972 (-576))) (-326 (-171 (-390)))) 198)) (-2881 (((-112) $ $) NIL))) +(((-340) (-13 (-1122) (-10 -8 (-15 -4304 ($ (-1114 (-972 (-576))) $)) (-15 -4304 ($ (-1114 (-972 (-576))) (-972 (-576)) $)) (-15 -3269 ($ (-1197) $)) (-15 -2347 ($ (-1197) $)) (-15 -3284 ($ (-1142))) (-15 -1436 ($ (-1142))) (-15 -3706 ($ (-1180))) (-15 -3706 ($ (-657 (-1180)))) (-15 -1609 ($ (-1180))) (-15 -2481 ($)) (-15 -2481 ($ (-326 (-712)))) (-15 -2481 ($ (-326 (-714)))) (-15 -2481 ($ (-326 (-707)))) (-15 -2481 ($ (-326 (-390)))) (-15 -2481 ($ (-326 (-576)))) (-15 -2481 ($ (-326 (-171 (-390))))) (-15 -2824 ($ (-1197) $)) (-15 -2824 ($ (-1197) $ $)) (-15 -1457 ($ (-1198) (-1180))) (-15 -1457 ($ (-1198) (-326 (-714)))) (-15 -1457 ($ (-1198) (-326 (-712)))) (-15 -1457 ($ (-1198) (-326 (-707)))) (-15 -1457 ($ (-1198) (-702 (-714)))) (-15 -1457 ($ (-1198) (-702 (-712)))) (-15 -1457 ($ (-1198) (-702 (-707)))) (-15 -1457 ($ (-1198) (-1289 (-714)))) (-15 -1457 ($ (-1198) (-1289 (-712)))) (-15 -1457 ($ (-1198) (-1289 (-707)))) (-15 -1457 ($ (-1198) (-702 (-326 (-714))))) (-15 -1457 ($ (-1198) (-702 (-326 (-712))))) (-15 -1457 ($ (-1198) (-702 (-326 (-707))))) (-15 -1457 ($ (-1198) (-1289 (-326 (-714))))) (-15 -1457 ($ (-1198) (-1289 (-326 (-712))))) (-15 -1457 ($ (-1198) (-1289 (-326 (-707))))) (-15 -1457 ($ (-1198) (-657 (-972 (-576))) (-326 (-714)))) (-15 -1457 ($ (-1198) (-657 (-972 (-576))) (-326 (-712)))) (-15 -1457 ($ (-1198) (-657 (-972 (-576))) (-326 (-707)))) (-15 -1457 ($ (-1198) (-326 (-576)))) (-15 -1457 ($ (-1198) (-326 (-390)))) (-15 -1457 ($ (-1198) (-326 (-171 (-390))))) (-15 -1457 ($ (-1198) (-702 (-326 (-576))))) (-15 -1457 ($ (-1198) (-702 (-326 (-390))))) (-15 -1457 ($ (-1198) (-702 (-326 (-171 (-390)))))) (-15 -1457 ($ (-1198) (-1289 (-326 (-576))))) (-15 -1457 ($ (-1198) (-1289 (-326 (-390))))) (-15 -1457 ($ (-1198) (-1289 (-326 (-171 (-390)))))) (-15 -1457 ($ (-1198) (-657 (-972 (-576))) (-326 (-576)))) (-15 -1457 ($ (-1198) (-657 (-972 (-576))) (-326 (-390)))) (-15 -1457 ($ (-1198) (-657 (-972 (-576))) (-326 (-171 (-390))))) (-15 -3263 ($ (-657 $))) (-15 -2275 ($)) (-15 -1398 ($)) (-15 -3034 ($ (-657 (-877)))) (-15 -2448 ($ (-1198) (-657 (-1198)))) (-15 -1429 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4338 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1198)) (|:| |arrayIndex| (-657 (-972 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2949 (-877)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1197)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1368 (-112)) (|:| -3037 (-2 (|:| |ints2Floats?| (-112)) (|:| -2949 (-877)))))) (|:| |blockBranch| (-657 $)) (|:| |commentBranch| (-657 (-1180))) (|:| |callBranch| (-1180)) (|:| |forBranch| (-2 (|:| -3936 (-1114 (-972 (-576)))) (|:| |span| (-972 (-576))) (|:| -2645 $))) (|:| |labelBranch| (-1142)) (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -2645 $))) (|:| |commonBranch| (-2 (|:| -2634 (-1198)) (|:| |contents| (-657 (-1198))))) (|:| |printBranch| (-657 (-877)))) $)) (-15 -4367 ((-1294) $)) (-15 -2980 ((-1126) $)) (-15 -2529 ((-1142) (-1142)))))) (T -340)) +((-4304 (*1 *1 *2 *1) (-12 (-5 *2 (-1114 (-972 (-576)))) (-5 *1 (-340)))) (-4304 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1114 (-972 (-576)))) (-5 *3 (-972 (-576))) (-5 *1 (-340)))) (-3269 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340)))) (-2347 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340)))) (-3284 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-340)))) (-1436 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-340)))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-340)))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-340)))) (-1609 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-340)))) (-2481 (*1 *1) (-5 *1 (-340))) (-2481 (*1 *1 *2) (-12 (-5 *2 (-326 (-712))) (-5 *1 (-340)))) (-2481 (*1 *1 *2) (-12 (-5 *2 (-326 (-714))) (-5 *1 (-340)))) (-2481 (*1 *1 *2) (-12 (-5 *2 (-326 (-707))) (-5 *1 (-340)))) (-2481 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) (-2481 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) (-2481 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-2824 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340)))) (-2824 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1180)) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-714))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-712))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-707))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-714))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-712))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-707))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-714))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-712))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-707))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-714)))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-712)))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-707)))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-714)))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-712)))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-707)))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-326 (-714))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-326 (-712))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-326 (-707))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-576)))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-390)))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-576)))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-390)))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-326 (-576))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-326 (-390))) (-5 *1 (-340)))) (-1457 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3263 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-5 *1 (-340)))) (-2275 (*1 *1) (-5 *1 (-340))) (-1398 (*1 *1) (-5 *1 (-340))) (-3034 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-340)))) (-2448 (*1 *1 *2 *3) (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1198)) (-5 *1 (-340)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340)))) (-4338 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1198)) (|:| |arrayIndex| (-657 (-972 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2949 (-877)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1197)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| (-2 (|:| -1368 (-112)) (|:| -3037 (-2 (|:| |ints2Floats?| (-112)) (|:| -2949 (-877)))))) (|:| |blockBranch| (-657 (-340))) (|:| |commentBranch| (-657 (-1180))) (|:| |callBranch| (-1180)) (|:| |forBranch| (-2 (|:| -3936 (-1114 (-972 (-576)))) (|:| |span| (-972 (-576))) (|:| -2645 (-340)))) (|:| |labelBranch| (-1142)) (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -2645 (-340)))) (|:| |commonBranch| (-2 (|:| -2634 (-1198)) (|:| |contents| (-657 (-1198))))) (|:| |printBranch| (-657 (-877))))) (-5 *1 (-340)))) (-4367 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-340)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-340)))) (-2529 (*1 *2 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-340))))) +(-13 (-1122) (-10 -8 (-15 -4304 ($ (-1114 (-972 (-576))) $)) (-15 -4304 ($ (-1114 (-972 (-576))) (-972 (-576)) $)) (-15 -3269 ($ (-1197) $)) (-15 -2347 ($ (-1197) $)) (-15 -3284 ($ (-1142))) (-15 -1436 ($ (-1142))) (-15 -3706 ($ (-1180))) (-15 -3706 ($ (-657 (-1180)))) (-15 -1609 ($ (-1180))) (-15 -2481 ($)) (-15 -2481 ($ (-326 (-712)))) (-15 -2481 ($ (-326 (-714)))) (-15 -2481 ($ (-326 (-707)))) (-15 -2481 ($ (-326 (-390)))) (-15 -2481 ($ (-326 (-576)))) (-15 -2481 ($ (-326 (-171 (-390))))) (-15 -2824 ($ (-1197) $)) (-15 -2824 ($ (-1197) $ $)) (-15 -1457 ($ (-1198) (-1180))) (-15 -1457 ($ (-1198) (-326 (-714)))) (-15 -1457 ($ (-1198) (-326 (-712)))) (-15 -1457 ($ (-1198) (-326 (-707)))) (-15 -1457 ($ (-1198) (-702 (-714)))) (-15 -1457 ($ (-1198) (-702 (-712)))) (-15 -1457 ($ (-1198) (-702 (-707)))) (-15 -1457 ($ (-1198) (-1289 (-714)))) (-15 -1457 ($ (-1198) (-1289 (-712)))) (-15 -1457 ($ (-1198) (-1289 (-707)))) (-15 -1457 ($ (-1198) (-702 (-326 (-714))))) (-15 -1457 ($ (-1198) (-702 (-326 (-712))))) (-15 -1457 ($ (-1198) (-702 (-326 (-707))))) (-15 -1457 ($ (-1198) (-1289 (-326 (-714))))) (-15 -1457 ($ (-1198) (-1289 (-326 (-712))))) (-15 -1457 ($ (-1198) (-1289 (-326 (-707))))) (-15 -1457 ($ (-1198) (-657 (-972 (-576))) (-326 (-714)))) (-15 -1457 ($ (-1198) (-657 (-972 (-576))) (-326 (-712)))) (-15 -1457 ($ (-1198) (-657 (-972 (-576))) (-326 (-707)))) (-15 -1457 ($ (-1198) (-326 (-576)))) (-15 -1457 ($ (-1198) (-326 (-390)))) (-15 -1457 ($ (-1198) (-326 (-171 (-390))))) (-15 -1457 ($ (-1198) (-702 (-326 (-576))))) (-15 -1457 ($ (-1198) (-702 (-326 (-390))))) (-15 -1457 ($ (-1198) (-702 (-326 (-171 (-390)))))) (-15 -1457 ($ (-1198) (-1289 (-326 (-576))))) (-15 -1457 ($ (-1198) (-1289 (-326 (-390))))) (-15 -1457 ($ (-1198) (-1289 (-326 (-171 (-390)))))) (-15 -1457 ($ (-1198) (-657 (-972 (-576))) (-326 (-576)))) (-15 -1457 ($ (-1198) (-657 (-972 (-576))) (-326 (-390)))) (-15 -1457 ($ (-1198) (-657 (-972 (-576))) (-326 (-171 (-390))))) (-15 -3263 ($ (-657 $))) (-15 -2275 ($)) (-15 -1398 ($)) (-15 -3034 ($ (-657 (-877)))) (-15 -2448 ($ (-1198) (-657 (-1198)))) (-15 -1429 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4338 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1198)) (|:| |arrayIndex| (-657 (-972 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2949 (-877)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1197)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1368 (-112)) (|:| -3037 (-2 (|:| |ints2Floats?| (-112)) (|:| -2949 (-877)))))) (|:| |blockBranch| (-657 $)) (|:| |commentBranch| (-657 (-1180))) (|:| |callBranch| (-1180)) (|:| |forBranch| (-2 (|:| -3936 (-1114 (-972 (-576)))) (|:| |span| (-972 (-576))) (|:| -2645 $))) (|:| |labelBranch| (-1142)) (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -2645 $))) (|:| |commonBranch| (-2 (|:| -2634 (-1198)) (|:| |contents| (-657 (-1198))))) (|:| |printBranch| (-657 (-877)))) $)) (-15 -4367 ((-1294) $)) (-15 -2980 ((-1126) $)) (-15 -2529 ((-1142) (-1142))))) +((-3423 (((-112) $ $) NIL)) (-4014 (((-112) $) 13)) (-1989 (($ |#1|) 10)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2002 (($ |#1|) 12)) (-3515 (((-877) $) 19)) (-4166 (((-112) $ $) NIL)) (-2805 ((|#1| $) 14)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 21))) +(((-341 |#1|) (-13 (-862) (-10 -8 (-15 -1989 ($ |#1|)) (-15 -2002 ($ |#1|)) (-15 -4014 ((-112) $)) (-15 -2805 (|#1| $)))) (-862)) (T -341)) +((-1989 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-2002 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862)))) (-2805 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862))))) +(-13 (-862) (-10 -8 (-15 -1989 ($ |#1|)) (-15 -2002 ($ |#1|)) (-15 -4014 ((-112) $)) (-15 -2805 (|#1| $)))) +((-2123 (((-340) (-1198) (-972 (-576))) 23)) (-4141 (((-340) (-1198) (-972 (-576))) 27)) (-3952 (((-340) (-1198) (-1114 (-972 (-576))) (-1114 (-972 (-576)))) 26) (((-340) (-1198) (-972 (-576)) (-972 (-576))) 24)) (-2739 (((-340) (-1198) (-972 (-576))) 31))) +(((-342) (-10 -7 (-15 -2123 ((-340) (-1198) (-972 (-576)))) (-15 -3952 ((-340) (-1198) (-972 (-576)) (-972 (-576)))) (-15 -3952 ((-340) (-1198) (-1114 (-972 (-576))) (-1114 (-972 (-576))))) (-15 -4141 ((-340) (-1198) (-972 (-576)))) (-15 -2739 ((-340) (-1198) (-972 (-576)))))) (T -342)) +((-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-1114 (-972 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) (-5 *1 (-342))))) +(-10 -7 (-15 -2123 ((-340) (-1198) (-972 (-576)))) (-15 -3952 ((-340) (-1198) (-972 (-576)) (-972 (-576)))) (-15 -3952 ((-340) (-1198) (-1114 (-972 (-576))) (-1114 (-972 (-576))))) (-15 -4141 ((-340) (-1198) (-972 (-576)))) (-15 -2739 ((-340) (-1198) (-972 (-576))))) +((-3423 (((-112) $ $) NIL)) (-4362 (((-518) $) 20)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2613 (((-978 (-784)) $) 18)) (-1729 (((-256) $) 7)) (-3515 (((-877) $) 26)) (-1586 (((-978 (-185 (-140))) $) 16)) (-4166 (((-112) $ $) NIL)) (-4292 (((-657 (-888 (-1203) (-784))) $) 12)) (-2881 (((-112) $ $) 22))) +(((-343) (-13 (-1122) (-10 -8 (-15 -1729 ((-256) $)) (-15 -4292 ((-657 (-888 (-1203) (-784))) $)) (-15 -2613 ((-978 (-784)) $)) (-15 -1586 ((-978 (-185 (-140))) $)) (-15 -4362 ((-518) $))))) (T -343)) +((-1729 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-657 (-888 (-1203) (-784)))) (-5 *1 (-343)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-978 (-784))) (-5 *1 (-343)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-978 (-185 (-140)))) (-5 *1 (-343)))) (-4362 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) +(-13 (-1122) (-10 -8 (-15 -1729 ((-256) $)) (-15 -4292 ((-657 (-888 (-1203) (-784))) $)) (-15 -2613 ((-978 (-784)) $)) (-15 -1586 ((-978 (-185 (-140))) $)) (-15 -4362 ((-518) $)))) +((-4071 (((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)) 33))) +(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4071 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-374) (-1265 |#5|) (-1265 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -344)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *9 (-374)) (-4 *10 (-1265 *9)) (-4 *11 (-1265 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11))))) +(-10 -7 (-15 -4071 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) +((-2856 (((-112) $) 14))) +(((-345 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2856 ((-112) |#1|))) (-346 |#2| |#3| |#4| |#5|) (-374) (-1265 |#2|) (-1265 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -345)) +NIL +(-10 -8 (-15 -2856 ((-112) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3662 (($ $) 29)) (-2856 (((-112) $) 28)) (-1708 (((-1180) $) 10)) (-1712 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 35)) (-1460 (((-1142) $) 11)) (-4083 (((-3 |#4| "failed") $) 27)) (-1884 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-576)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3545 (((-2 (|:| -3031 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24))) +(((-346 |#1| |#2| |#3| |#4|) (-141) (-374) (-1265 |t#1|) (-1265 (-419 |t#2|)) (-353 |t#1| |t#2| |t#3|)) (T -346)) +((-1712 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-1884 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) (-4 *1 (-346 *3 *4 *5 *6)))) (-1884 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) (-1884 (*1 *1 *2 *2) (-12 (-4 *2 (-374)) (-4 *3 (-1265 *2)) (-4 *4 (-1265 (-419 *3))) (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) (-1884 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1265 *2)) (-4 *5 (-1265 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) (-4 *6 (-353 *2 *4 *5)))) (-3545 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-2 (|:| -3031 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-3662 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1265 *2)) (-4 *4 (-1265 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))) (-4083 (*1 *2 *1) (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *2 (-353 *3 *4 *5)))) (-1884 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-374)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 (-419 *3))) (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1712 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -1884 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -1884 ($ |t#4|)) (-15 -1884 ($ |t#1| |t#1|)) (-15 -1884 ($ |t#1| |t#1| (-576))) (-15 -3545 ((-2 (|:| -3031 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3662 ($ $)) (-15 -2856 ((-112) $)) (-15 -4083 ((-3 |t#4| "failed") $)) (-15 -1884 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3662 (($ $) 33)) (-2856 (((-112) $) NIL)) (-1708 (((-1180) $) NIL)) (-4340 (((-1289 |#4|) $) 134)) (-1712 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31)) (-1460 (((-1142) $) NIL)) (-4083 (((-3 |#4| "failed") $) 36)) (-2434 (((-1289 |#4|) $) 126)) (-1884 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-576)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3545 (((-2 (|:| -3031 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3515 (((-877) $) 17)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 14 T CONST)) (-2881 (((-112) $ $) 20)) (-2982 (($ $) 27) (($ $ $) NIL)) (-2971 (($ $ $) 25)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 23))) +(((-347 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2434 ((-1289 |#4|) $)) (-15 -4340 ((-1289 |#4|) $)))) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -347)) +((-2434 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-1289 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))) (-4340 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-1289 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5))))) +(-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2434 ((-1289 |#4|) $)) (-15 -4340 ((-1289 |#4|) $)))) +((-3205 (($ $ (-1198) |#2|) NIL) (($ $ (-657 (-1198)) (-657 |#2|)) 20) (($ $ (-657 (-304 |#2|))) 15) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-657 |#2|) (-657 |#2|)) NIL)) (-2780 (($ $ |#2|) 11))) +(((-348 |#1| |#2|) (-10 -8 (-15 -2780 (|#1| |#1| |#2|)) (-15 -3205 (|#1| |#1| (-657 |#2|) (-657 |#2|))) (-15 -3205 (|#1| |#1| |#2| |#2|)) (-15 -3205 (|#1| |#1| (-304 |#2|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#2|)))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 |#2|))) (-15 -3205 (|#1| |#1| (-1198) |#2|))) (-349 |#2|) (-1122)) (T -348)) +NIL +(-10 -8 (-15 -2780 (|#1| |#1| |#2|)) (-15 -3205 (|#1| |#1| (-657 |#2|) (-657 |#2|))) (-15 -3205 (|#1| |#1| |#2| |#2|)) (-15 -3205 (|#1| |#1| (-304 |#2|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#2|)))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 |#2|))) (-15 -3205 (|#1| |#1| (-1198) |#2|))) +((-4071 (($ (-1 |#1| |#1|) $) 6)) (-3205 (($ $ (-1198) |#1|) 17 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 16 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-657 (-304 |#1|))) 15 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 14 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-319 |#1|))) (($ $ (-657 |#1|) (-657 |#1|)) 12 (|has| |#1| (-319 |#1|)))) (-2780 (($ $ |#1|) 11 (|has| |#1| (-296 |#1| |#1|))))) +(((-349 |#1|) (-141) (-1122)) (T -349)) +((-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1122))))) +(-13 (-10 -8 (-15 -4071 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-296 |t#1| |t#1|)) (-6 (-296 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1198) |t#1|)) (-6 (-526 (-1198) |t#1|)) |%noBranch|))) +(((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-1239) |has| |#1| (-296 |#1| |#1|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1998 (((-657 (-1198)) $) NIL)) (-2840 (((-112)) 96) (((-112) (-112)) 97)) (-3941 (((-657 (-624 $)) $) NIL)) (-2143 (($ $) NIL)) (-2012 (($ $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $ (-304 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL)) (-1866 (($ $) NIL)) (-2120 (($ $) NIL)) (-1989 (($ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-624 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-326 |#3|)) 76) (((-3 $ "failed") (-1198)) 103) (((-3 $ "failed") (-326 (-576))) 64 (|has| |#3| (-1060 (-576)))) (((-3 $ "failed") (-419 (-972 (-576)))) 70 (|has| |#3| (-1060 (-576)))) (((-3 $ "failed") (-972 (-576))) 65 (|has| |#3| (-1060 (-576)))) (((-3 $ "failed") (-326 (-390))) 94 (|has| |#3| (-1060 (-390)))) (((-3 $ "failed") (-419 (-972 (-390)))) 88 (|has| |#3| (-1060 (-390)))) (((-3 $ "failed") (-972 (-390))) 83 (|has| |#3| (-1060 (-390))))) (-2830 (((-624 $) $) NIL) ((|#3| $) NIL) (($ (-326 |#3|)) 77) (($ (-1198)) 104) (($ (-326 (-576))) 66 (|has| |#3| (-1060 (-576)))) (($ (-419 (-972 (-576)))) 71 (|has| |#3| (-1060 (-576)))) (($ (-972 (-576))) 67 (|has| |#3| (-1060 (-576)))) (($ (-326 (-390))) 95 (|has| |#3| (-1060 (-390)))) (($ (-419 (-972 (-390)))) 89 (|has| |#3| (-1060 (-390)))) (($ (-972 (-390))) 85 (|has| |#3| (-1060 (-390))))) (-3969 (((-3 $ "failed") $) NIL)) (-1622 (($) 101)) (-3816 (($ $) NIL) (($ (-657 $)) NIL)) (-3948 (((-657 (-115)) $) NIL)) (-1803 (((-115) (-115)) NIL)) (-3994 (((-112) $) NIL)) (-1354 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-3695 (((-1194 $) (-624 $)) NIL (|has| $ (-1071)))) (-4071 (($ (-1 $ $) (-624 $)) NIL)) (-3449 (((-3 (-624 $) "failed") $) NIL)) (-2365 (($ $) 99)) (-3707 (($ $) NIL)) (-1708 (((-1180) $) NIL)) (-1789 (((-657 (-624 $)) $) NIL)) (-1662 (($ (-115) $) 98) (($ (-115) (-657 $)) NIL)) (-4216 (((-112) $ (-115)) NIL) (((-112) $ (-1198)) NIL)) (-2363 (((-784) $) NIL)) (-1460 (((-1142) $) NIL)) (-4275 (((-112) $ $) NIL) (((-112) $ (-1198)) NIL)) (-4056 (($ $) NIL)) (-3341 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-3205 (($ $ (-624 $) $) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-1198) (-1 $ (-657 $))) NIL) (($ $ (-1198) (-1 $ $)) NIL) (($ $ (-657 (-115)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-115) (-1 $ (-657 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2780 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-657 $)) NIL)) (-3469 (($ $) NIL) (($ $ $) NIL)) (-2209 (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-2005 (($ $) NIL (|has| $ (-1071)))) (-2131 (($ $) NIL)) (-2002 (($ $) NIL)) (-3515 (((-877) $) NIL) (($ (-624 $)) NIL) (($ |#3|) NIL) (($ (-576)) NIL) (((-326 |#3|) $) 102)) (-3845 (((-784)) NIL T CONST)) (-1791 (($ $) NIL) (($ (-657 $)) NIL)) (-2946 (((-112) (-115)) NIL)) (-4166 (((-112) $ $) NIL)) (-2082 (($ $) NIL)) (-2055 (($ $) NIL)) (-2070 (($ $) NIL)) (-2127 (($ $) NIL)) (-2716 (($) 100 T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $ $) NIL) (($ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-784)) NIL) (($ $ (-941)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-784) $) NIL) (($ (-941) $) NIL))) +(((-350 |#1| |#2| |#3|) (-13 (-312) (-38 |#3|) (-1060 |#3|) (-918 (-1198)) (-10 -8 (-15 -2830 ($ (-326 |#3|))) (-15 -1593 ((-3 $ "failed") (-326 |#3|))) (-15 -2830 ($ (-1198))) (-15 -1593 ((-3 $ "failed") (-1198))) (-15 -3515 ((-326 |#3|) $)) (IF (|has| |#3| (-1060 (-576))) (PROGN (-15 -2830 ($ (-326 (-576)))) (-15 -1593 ((-3 $ "failed") (-326 (-576)))) (-15 -2830 ($ (-419 (-972 (-576))))) (-15 -1593 ((-3 $ "failed") (-419 (-972 (-576))))) (-15 -2830 ($ (-972 (-576)))) (-15 -1593 ((-3 $ "failed") (-972 (-576))))) |%noBranch|) (IF (|has| |#3| (-1060 (-390))) (PROGN (-15 -2830 ($ (-326 (-390)))) (-15 -1593 ((-3 $ "failed") (-326 (-390)))) (-15 -2830 ($ (-419 (-972 (-390))))) (-15 -1593 ((-3 $ "failed") (-419 (-972 (-390))))) (-15 -2830 ($ (-972 (-390)))) (-15 -1593 ((-3 $ "failed") (-972 (-390))))) |%noBranch|) (-15 -2127 ($ $)) (-15 -1866 ($ $)) (-15 -4056 ($ $)) (-15 -3707 ($ $)) (-15 -2365 ($ $)) (-15 -1989 ($ $)) (-15 -2002 ($ $)) (-15 -2012 ($ $)) (-15 -2055 ($ $)) (-15 -2070 ($ $)) (-15 -2082 ($ $)) (-15 -2120 ($ $)) (-15 -2131 ($ $)) (-15 -2143 ($ $)) (-15 -1622 ($)) (-15 -1998 ((-657 (-1198)) $)) (-15 -2840 ((-112))) (-15 -2840 ((-112) (-112))))) (-657 (-1198)) (-657 (-1198)) (-399)) (T -350)) +((-2830 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 *2)) (-14 *4 (-657 *2)) (-4 *5 (-399)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 *2)) (-14 *4 (-657 *2)) (-4 *5 (-399)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-972 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-972 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-972 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-972 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2127 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-1866 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-4056 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-3707 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2365 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-1989 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2002 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2012 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2055 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2070 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2082 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2120 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2131 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2143 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-1622 (*1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) (-2840 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2840 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399))))) +(-13 (-312) (-38 |#3|) (-1060 |#3|) (-918 (-1198)) (-10 -8 (-15 -2830 ($ (-326 |#3|))) (-15 -1593 ((-3 $ "failed") (-326 |#3|))) (-15 -2830 ($ (-1198))) (-15 -1593 ((-3 $ "failed") (-1198))) (-15 -3515 ((-326 |#3|) $)) (IF (|has| |#3| (-1060 (-576))) (PROGN (-15 -2830 ($ (-326 (-576)))) (-15 -1593 ((-3 $ "failed") (-326 (-576)))) (-15 -2830 ($ (-419 (-972 (-576))))) (-15 -1593 ((-3 $ "failed") (-419 (-972 (-576))))) (-15 -2830 ($ (-972 (-576)))) (-15 -1593 ((-3 $ "failed") (-972 (-576))))) |%noBranch|) (IF (|has| |#3| (-1060 (-390))) (PROGN (-15 -2830 ($ (-326 (-390)))) (-15 -1593 ((-3 $ "failed") (-326 (-390)))) (-15 -2830 ($ (-419 (-972 (-390))))) (-15 -1593 ((-3 $ "failed") (-419 (-972 (-390))))) (-15 -2830 ($ (-972 (-390)))) (-15 -1593 ((-3 $ "failed") (-972 (-390))))) |%noBranch|) (-15 -2127 ($ $)) (-15 -1866 ($ $)) (-15 -4056 ($ $)) (-15 -3707 ($ $)) (-15 -2365 ($ $)) (-15 -1989 ($ $)) (-15 -2002 ($ $)) (-15 -2012 ($ $)) (-15 -2055 ($ $)) (-15 -2070 ($ $)) (-15 -2082 ($ $)) (-15 -2120 ($ $)) (-15 -2131 ($ $)) (-15 -2143 ($ $)) (-15 -1622 ($)) (-15 -1998 ((-657 (-1198)) $)) (-15 -2840 ((-112))) (-15 -2840 ((-112) (-112))))) +((-4071 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4071 (|#8| (-1 |#5| |#1|) |#4|))) (-1243) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-1243) (-1265 |#5|) (-1265 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -351)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1243)) (-4 *8 (-1243)) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *9 (-1265 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1265 (-419 *9)))))) +(-10 -7 (-15 -4071 (|#8| (-1 |#5| |#1|) |#4|))) +((-2270 (((-2 (|:| |num| (-1289 |#3|)) (|:| |den| |#3|)) $) 39)) (-4093 (($ (-1289 (-419 |#3|)) (-1289 $)) NIL) (($ (-1289 (-419 |#3|))) NIL) (($ (-1289 |#3|) |#3|) 173)) (-4022 (((-1289 $) (-1289 $)) 156)) (-2390 (((-657 (-657 |#2|))) 126)) (-1972 (((-112) |#2| |#2|) 76)) (-1445 (($ $) 148)) (-3728 (((-784)) 172)) (-2659 (((-1289 $) (-1289 $)) 218)) (-3878 (((-657 (-972 |#2|)) (-1198)) 115)) (-1384 (((-112) $) 169)) (-2122 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-2972 (((-3 |#3| "failed")) 52)) (-1762 (((-784)) 184)) (-2780 ((|#2| $ |#2| |#2|) 140)) (-4099 (((-3 |#3| "failed")) 71)) (-2209 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-784)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL) (($ $ (-784)) NIL) (($ $) NIL)) (-1551 (((-1289 $) (-1289 $)) 162)) (-4079 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-3934 (((-112)) 34))) +(((-352 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2390 ((-657 (-657 |#2|)))) (-15 -3878 ((-657 (-972 |#2|)) (-1198))) (-15 -4079 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2972 ((-3 |#3| "failed"))) (-15 -4099 ((-3 |#3| "failed"))) (-15 -2780 (|#2| |#1| |#2| |#2|)) (-15 -1445 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2122 ((-112) |#1| |#3|)) (-15 -2122 ((-112) |#1| |#2|)) (-15 -4093 (|#1| (-1289 |#3|) |#3|)) (-15 -2270 ((-2 (|:| |num| (-1289 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4022 ((-1289 |#1|) (-1289 |#1|))) (-15 -2659 ((-1289 |#1|) (-1289 |#1|))) (-15 -1551 ((-1289 |#1|) (-1289 |#1|))) (-15 -2122 ((-112) |#1|)) (-15 -1384 ((-112) |#1|)) (-15 -1972 ((-112) |#2| |#2|)) (-15 -3934 ((-112))) (-15 -1762 ((-784))) (-15 -3728 ((-784))) (-15 -2209 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-784))) (-15 -2209 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -4093 (|#1| (-1289 (-419 |#3|)))) (-15 -4093 (|#1| (-1289 (-419 |#3|)) (-1289 |#1|)))) (-353 |#2| |#3| |#4|) (-1243) (-1265 |#2|) (-1265 (-419 |#3|))) (T -352)) +((-3728 (*1 *2) (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-784)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-1762 (*1 *2) (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-784)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3934 (*1 *2) (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-1972 (*1 *2 *3 *3) (-12 (-4 *3 (-1243)) (-4 *5 (-1265 *3)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) (-4099 (*1 *2) (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1265 (-419 *2))) (-4 *2 (-1265 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-2972 (*1 *2) (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1265 (-419 *2))) (-4 *2 (-1265 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *5 (-1243)) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-5 *2 (-657 (-972 *5))) (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) (-2390 (*1 *2) (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-657 (-657 *4))) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))) +(-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2390 ((-657 (-657 |#2|)))) (-15 -3878 ((-657 (-972 |#2|)) (-1198))) (-15 -4079 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2972 ((-3 |#3| "failed"))) (-15 -4099 ((-3 |#3| "failed"))) (-15 -2780 (|#2| |#1| |#2| |#2|)) (-15 -1445 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2122 ((-112) |#1| |#3|)) (-15 -2122 ((-112) |#1| |#2|)) (-15 -4093 (|#1| (-1289 |#3|) |#3|)) (-15 -2270 ((-2 (|:| |num| (-1289 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4022 ((-1289 |#1|) (-1289 |#1|))) (-15 -2659 ((-1289 |#1|) (-1289 |#1|))) (-15 -1551 ((-1289 |#1|) (-1289 |#1|))) (-15 -2122 ((-112) |#1|)) (-15 -1384 ((-112) |#1|)) (-15 -1972 ((-112) |#2| |#2|)) (-15 -3934 ((-112))) (-15 -1762 ((-784))) (-15 -3728 ((-784))) (-15 -2209 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-784))) (-15 -2209 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -4093 (|#1| (-1289 (-419 |#3|)))) (-15 -4093 (|#1| (-1289 (-419 |#3|)) (-1289 |#1|)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2270 (((-2 (|:| |num| (-1289 |#2|)) (|:| |den| |#2|)) $) 211)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 105 (|has| (-419 |#2|) (-374)))) (-2361 (($ $) 106 (|has| (-419 |#2|) (-374)))) (-3286 (((-112) $) 108 (|has| (-419 |#2|) (-374)))) (-3011 (((-702 (-419 |#2|)) (-1289 $)) 53) (((-702 (-419 |#2|))) 68)) (-2256 (((-419 |#2|) $) 59)) (-2266 (((-1211 (-941) (-784)) (-576)) 158 (|has| (-419 |#2|) (-360)))) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 125 (|has| (-419 |#2|) (-374)))) (-4215 (((-430 $) $) 126 (|has| (-419 |#2|) (-374)))) (-3210 (((-112) $ $) 116 (|has| (-419 |#2|) (-374)))) (-2148 (((-784)) 99 (|has| (-419 |#2|) (-379)))) (-3534 (((-112)) 228)) (-1603 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-2515 (($) 18 T CONST)) (-1593 (((-3 (-576) "failed") $) 185 (|has| (-419 |#2|) (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| (-419 |#2|) (-1060 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) 180)) (-2830 (((-576) $) 184 (|has| (-419 |#2|) (-1060 (-576)))) (((-419 (-576)) $) 182 (|has| (-419 |#2|) (-1060 (-419 (-576))))) (((-419 |#2|) $) 181)) (-4093 (($ (-1289 (-419 |#2|)) (-1289 $)) 55) (($ (-1289 (-419 |#2|))) 71) (($ (-1289 |#2|) |#2|) 210)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-419 |#2|) (-360)))) (-3355 (($ $ $) 120 (|has| (-419 |#2|) (-374)))) (-1584 (((-702 (-419 |#2|)) $ (-1289 $)) 60) (((-702 (-419 |#2|)) $) 66)) (-3439 (((-702 (-576)) (-702 $)) 177 (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 176 (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-419 |#2|))) (|:| |vec| (-1289 (-419 |#2|)))) (-702 $) (-1289 $)) 175) (((-702 (-419 |#2|)) (-702 $)) 174)) (-4022 (((-1289 $) (-1289 $)) 216)) (-3662 (($ |#3|) 169) (((-3 $ "failed") (-419 |#3|)) 166 (|has| (-419 |#2|) (-374)))) (-3969 (((-3 $ "failed") $) 37)) (-2390 (((-657 (-657 |#1|))) 197 (|has| |#1| (-379)))) (-1972 (((-112) |#1| |#1|) 232)) (-4343 (((-941)) 61)) (-1876 (($) 102 (|has| (-419 |#2|) (-379)))) (-2022 (((-112)) 225)) (-2629 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-3369 (($ $ $) 119 (|has| (-419 |#2|) (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 114 (|has| (-419 |#2|) (-374)))) (-1445 (($ $) 203)) (-2846 (($) 160 (|has| (-419 |#2|) (-360)))) (-2798 (((-112) $) 161 (|has| (-419 |#2|) (-360)))) (-4266 (($ $ (-784)) 152 (|has| (-419 |#2|) (-360))) (($ $) 151 (|has| (-419 |#2|) (-360)))) (-4009 (((-112) $) 127 (|has| (-419 |#2|) (-374)))) (-2650 (((-941) $) 163 (|has| (-419 |#2|) (-360))) (((-846 (-941)) $) 149 (|has| (-419 |#2|) (-360)))) (-3994 (((-112) $) 35)) (-3728 (((-784)) 235)) (-2659 (((-1289 $) (-1289 $)) 217)) (-3869 (((-419 |#2|) $) 58)) (-3878 (((-657 (-972 |#1|)) (-1198)) 198 (|has| |#1| (-374)))) (-1955 (((-3 $ "failed") $) 153 (|has| (-419 |#2|) (-360)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 123 (|has| (-419 |#2|) (-374)))) (-3604 ((|#3| $) 51 (|has| (-419 |#2|) (-374)))) (-2327 (((-941) $) 101 (|has| (-419 |#2|) (-379)))) (-3647 ((|#3| $) 167)) (-1993 (((-702 (-576)) (-1289 $)) 179 (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 178 (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-419 |#2|))) (|:| |vec| (-1289 (-419 |#2|)))) (-1289 $) $) 173) (((-702 (-419 |#2|)) (-1289 $)) 172)) (-3388 (($ (-657 $)) 112 (|has| (-419 |#2|) (-374))) (($ $ $) 111 (|has| (-419 |#2|) (-374)))) (-1708 (((-1180) $) 10)) (-4332 (((-702 (-419 |#2|))) 212)) (-1740 (((-702 (-419 |#2|))) 214)) (-2098 (($ $) 128 (|has| (-419 |#2|) (-374)))) (-2248 (($ (-1289 |#2|) |#2|) 208)) (-3914 (((-702 (-419 |#2|))) 213)) (-4346 (((-702 (-419 |#2|))) 215)) (-3281 (((-2 (|:| |num| (-702 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207)) (-4393 (((-2 (|:| |num| (-1289 |#2|)) (|:| |den| |#2|)) $) 209)) (-3317 (((-1289 $)) 221)) (-3929 (((-1289 $)) 222)) (-1384 (((-112) $) 220)) (-2122 (((-112) $) 219) (((-112) $ |#1|) 206) (((-112) $ |#2|) 205)) (-1679 (($) 154 (|has| (-419 |#2|) (-360)) CONST)) (-3146 (($ (-941)) 100 (|has| (-419 |#2|) (-379)))) (-2972 (((-3 |#2| "failed")) 200)) (-1460 (((-1142) $) 11)) (-1762 (((-784)) 234)) (-4083 (($) 171)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 113 (|has| (-419 |#2|) (-374)))) (-3431 (($ (-657 $)) 110 (|has| (-419 |#2|) (-374))) (($ $ $) 109 (|has| (-419 |#2|) (-374)))) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) 157 (|has| (-419 |#2|) (-360)))) (-1856 (((-430 $) $) 124 (|has| (-419 |#2|) (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 121 (|has| (-419 |#2|) (-374)))) (-3409 (((-3 $ "failed") $ $) 104 (|has| (-419 |#2|) (-374)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 115 (|has| (-419 |#2|) (-374)))) (-4164 (((-784) $) 117 (|has| (-419 |#2|) (-374)))) (-2780 ((|#1| $ |#1| |#1|) 202)) (-4099 (((-3 |#2| "failed")) 201)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 118 (|has| (-419 |#2|) (-374)))) (-1465 (((-419 |#2|) (-1289 $)) 54) (((-419 |#2|)) 67)) (-2495 (((-784) $) 162 (|has| (-419 |#2|) (-360))) (((-3 (-784) "failed") $ $) 150 (|has| (-419 |#2|) (-360)))) (-2209 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 136 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-784)) 135 (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 204) (($ $ (-657 (-1198)) (-657 (-784))) 141 (-2748 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2675 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-1198) (-784)) 140 (-2748 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2675 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-657 (-1198))) 139 (-2748 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2675 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-1198)) 137 (-2748 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2675 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-784)) 147 (-2748 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2675 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 145 (-2748 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2675 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4301 (((-702 (-419 |#2|)) (-1289 $) (-1 (-419 |#2|) (-419 |#2|))) 165 (|has| (-419 |#2|) (-374)))) (-2005 ((|#3|) 170)) (-4170 (($) 159 (|has| (-419 |#2|) (-360)))) (-3806 (((-1289 (-419 |#2|)) $ (-1289 $)) 57) (((-702 (-419 |#2|)) (-1289 $) (-1289 $)) 56) (((-1289 (-419 |#2|)) $) 73) (((-702 (-419 |#2|)) (-1289 $)) 72)) (-4136 (((-1289 (-419 |#2|)) $) 70) (($ (-1289 (-419 |#2|))) 69) ((|#3| $) 186) (($ |#3|) 168)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 156 (|has| (-419 |#2|) (-360)))) (-1551 (((-1289 $) (-1289 $)) 218)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ (-419 |#2|)) 44) (($ (-419 (-576))) 98 (-2748 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-1060 (-419 (-576)))))) (($ $) 103 (|has| (-419 |#2|) (-374)))) (-3414 (($ $) 155 (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) 50 (|has| (-419 |#2|) (-146)))) (-2948 ((|#3| $) 52)) (-3845 (((-784)) 32 T CONST)) (-1478 (((-112)) 231)) (-3814 (((-112) |#1|) 230) (((-112) |#2|) 229)) (-4166 (((-112) $ $) 6)) (-2469 (((-1289 $)) 74)) (-2607 (((-112) $ $) 107 (|has| (-419 |#2|) (-374)))) (-4079 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199)) (-3934 (((-112)) 233)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 134 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-784)) 133 (|has| (-419 |#2|) (-374))) (($ $ (-657 (-1198)) (-657 (-784))) 144 (-2748 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2675 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-1198) (-784)) 143 (-2748 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2675 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-657 (-1198))) 142 (-2748 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2675 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-1198)) 138 (-2748 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2675 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-784)) 148 (-2748 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2675 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 146 (-2748 (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2675 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2675 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ $) 132 (|has| (-419 |#2|) (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 129 (|has| (-419 |#2|) (-374)))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 |#2|)) 46) (($ (-419 |#2|) $) 45) (($ (-419 (-576)) $) 131 (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) 130 (|has| (-419 |#2|) (-374))))) +(((-353 |#1| |#2| |#3|) (-141) (-1243) (-1265 |t#1|) (-1265 (-419 |t#2|))) (T -353)) +((-3728 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-784)))) (-1762 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-784)))) (-3934 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-1972 (*1 *2 *3 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-1478 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-3814 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-3814 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) (-3534 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-1603 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-1603 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) (-2022 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-2629 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-2629 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) (-3929 (*1 *2) (-12 (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)))) (-3317 (*1 *2) (-12 (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)))) (-1384 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))))) (-2659 (*1 *2 *2) (-12 (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))))) (-4346 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4))))) (-1740 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4))))) (-3914 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4))))) (-4332 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4))))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1289 *4)) (|:| |den| *4))))) (-4093 (*1 *1 *2 *3) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1265 *4)) (-4 *4 (-1243)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1265 (-419 *3))))) (-4393 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1289 *4)) (|:| |den| *4))))) (-2248 (*1 *1 *2 *3) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1265 *4)) (-4 *4 (-1243)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1265 (-419 *3))))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-2 (|:| |num| (-702 *5)) (|:| |den| *5))))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))))) (-1445 (*1 *1 *1) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1243)) (-4 *3 (-1265 *2)) (-4 *4 (-1265 (-419 *3))))) (-2780 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1243)) (-4 *3 (-1265 *2)) (-4 *4 (-1265 (-419 *3))))) (-4099 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1243)) (-4 *4 (-1265 (-419 *2))) (-4 *2 (-1265 *3)))) (-2972 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1243)) (-4 *4 (-1265 (-419 *2))) (-4 *2 (-1265 *3)))) (-4079 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-1243)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-353 *4 *5 *6)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-4 *4 (-374)) (-5 *2 (-657 (-972 *4))))) (-2390 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-657 (-657 *3)))))) +(-13 (-737 (-419 |t#2|) |t#3|) (-10 -8 (-15 -3728 ((-784))) (-15 -1762 ((-784))) (-15 -3934 ((-112))) (-15 -1972 ((-112) |t#1| |t#1|)) (-15 -1478 ((-112))) (-15 -3814 ((-112) |t#1|)) (-15 -3814 ((-112) |t#2|)) (-15 -3534 ((-112))) (-15 -1603 ((-112) |t#1|)) (-15 -1603 ((-112) |t#2|)) (-15 -2022 ((-112))) (-15 -2629 ((-112) |t#1|)) (-15 -2629 ((-112) |t#2|)) (-15 -3929 ((-1289 $))) (-15 -3317 ((-1289 $))) (-15 -1384 ((-112) $)) (-15 -2122 ((-112) $)) (-15 -1551 ((-1289 $) (-1289 $))) (-15 -2659 ((-1289 $) (-1289 $))) (-15 -4022 ((-1289 $) (-1289 $))) (-15 -4346 ((-702 (-419 |t#2|)))) (-15 -1740 ((-702 (-419 |t#2|)))) (-15 -3914 ((-702 (-419 |t#2|)))) (-15 -4332 ((-702 (-419 |t#2|)))) (-15 -2270 ((-2 (|:| |num| (-1289 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4093 ($ (-1289 |t#2|) |t#2|)) (-15 -4393 ((-2 (|:| |num| (-1289 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2248 ($ (-1289 |t#2|) |t#2|)) (-15 -3281 ((-2 (|:| |num| (-702 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2122 ((-112) $ |t#1|)) (-15 -2122 ((-112) $ |t#2|)) (-15 -2209 ($ $ (-1 |t#2| |t#2|))) (-15 -1445 ($ $)) (-15 -2780 (|t#1| $ |t#1| |t#1|)) (-15 -4099 ((-3 |t#2| "failed"))) (-15 -2972 ((-3 |t#2| "failed"))) (-15 -4079 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-374)) (-15 -3878 ((-657 (-972 |t#1|)) (-1198))) |%noBranch|) (IF (|has| |t#1| (-379)) (-15 -2390 ((-657 (-657 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-38 #1=(-419 |#2|)) . T) ((-38 $) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-102) . T) ((-111 #0# #0#) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-146))) ((-148) |has| (-419 |#2|) (-148)) ((-628 #0#) -2748 (|has| (-419 |#2|) (-1060 (-419 (-576)))) (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-628 #1#) . T) ((-628 (-576)) . T) ((-628 $) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-625 (-877)) . T) ((-174) . T) ((-626 |#3|) . T) ((-234 $) -2748 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-232 #1#) |has| (-419 |#2|) (-374)) ((-238) -2748 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-237) -2748 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-272 #1#) |has| (-419 |#2|) (-374)) ((-248) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-300) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-317) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-374) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-414) |has| (-419 |#2|) (-360)) ((-379) -2748 (|has| (-419 |#2|) (-379)) (|has| (-419 |#2|) (-360))) ((-360) |has| (-419 |#2|) (-360)) ((-381 #1# |#3|) . T) ((-421 #1# |#3|) . T) ((-388 #1#) . T) ((-423 #1#) . T) ((-464) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-568) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-659 #0#) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-659 #1#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-661 #1#) . T) ((-661 #2=(-576)) |has| (-419 |#2|) (-652 (-576))) ((-661 $) . T) ((-653 #0#) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-653 #1#) . T) ((-653 $) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-652 #1#) . T) ((-652 #2#) |has| (-419 |#2|) (-652 (-576))) ((-730 #0#) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-730 #1#) . T) ((-730 $) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-737 #1# |#3|) . T) ((-739) . T) ((-912 $ #3=(-1198)) -2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198))))) ((-918 (-1198)) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) ((-920 #3#) -2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198))))) ((-940) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1060 (-419 (-576))) |has| (-419 |#2|) (-1060 (-419 (-576)))) ((-1060 #1#) . T) ((-1060 (-576)) |has| (-419 |#2|) (-1060 (-576))) ((-1073 #0#) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1073 #1#) . T) ((-1073 $) . T) ((-1078 #0#) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1078 #1#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) |has| (-419 |#2|) (-360)) ((-1239) . T) ((-1243) -2748 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1388 (((-112) $) NIL)) (-4025 (((-784)) NIL)) (-2256 (((-930 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-2266 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-930 |#1|) (-379)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) NIL (|has| (-930 |#1|) (-379)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-930 |#1|) "failed") $) NIL)) (-2830 (((-930 |#1|) $) NIL)) (-4093 (($ (-1289 (-930 |#1|))) NIL)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-930 |#1|) (-379)))) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| (-930 |#1|) (-379)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2846 (($) NIL (|has| (-930 |#1|) (-379)))) (-2798 (((-112) $) NIL (|has| (-930 |#1|) (-379)))) (-4266 (($ $ (-784)) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379)))) (($ $) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-4009 (((-112) $) NIL)) (-2650 (((-941) $) NIL (|has| (-930 |#1|) (-379))) (((-846 (-941)) $) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-3994 (((-112) $) NIL)) (-2084 (($) NIL (|has| (-930 |#1|) (-379)))) (-3547 (((-112) $) NIL (|has| (-930 |#1|) (-379)))) (-3869 (((-930 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-1955 (((-3 $ "failed") $) NIL (|has| (-930 |#1|) (-379)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3604 (((-1194 (-930 |#1|)) $) NIL) (((-1194 $) $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-2327 (((-941) $) NIL (|has| (-930 |#1|) (-379)))) (-2514 (((-1194 (-930 |#1|)) $) NIL (|has| (-930 |#1|) (-379)))) (-4348 (((-1194 (-930 |#1|)) $) NIL (|has| (-930 |#1|) (-379))) (((-3 (-1194 (-930 |#1|)) "failed") $ $) NIL (|has| (-930 |#1|) (-379)))) (-3905 (($ $ (-1194 (-930 |#1|))) NIL (|has| (-930 |#1|) (-379)))) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| (-930 |#1|) (-379)) CONST)) (-3146 (($ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-2395 (((-112) $) NIL)) (-1460 (((-1142) $) NIL)) (-3808 (((-978 (-1142))) NIL)) (-4083 (($) NIL (|has| (-930 |#1|) (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL (|has| (-930 |#1|) (-379)))) (-1856 (((-430 $) $) NIL)) (-1559 (((-846 (-941))) NIL) (((-941)) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2495 (((-784) $) NIL (|has| (-930 |#1|) (-379))) (((-3 (-784) "failed") $ $) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-1451 (((-135)) NIL)) (-2209 (($ $ (-784)) NIL (|has| (-930 |#1|) (-379))) (($ $) NIL (|has| (-930 |#1|) (-379)))) (-4265 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-2005 (((-1194 (-930 |#1|))) NIL)) (-4170 (($) NIL (|has| (-930 |#1|) (-379)))) (-4039 (($) NIL (|has| (-930 |#1|) (-379)))) (-3806 (((-1289 (-930 |#1|)) $) NIL) (((-702 (-930 |#1|)) (-1289 $)) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| (-930 |#1|) (-379)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-930 |#1|)) NIL)) (-3414 (($ $) NIL (|has| (-930 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-2607 (((-112) $ $) NIL)) (-2137 (((-112) $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| (-930 |#1|) (-379))) (($ $ (-784)) NIL (|has| (-930 |#1|) (-379)))) (-2066 (($ $ (-784)) NIL (|has| (-930 |#1|) (-379))) (($ $) NIL (|has| (-930 |#1|) (-379)))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL) (($ $ (-930 |#1|)) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-930 |#1|)) NIL) (($ (-930 |#1|) $) NIL))) +(((-354 |#1| |#2|) (-13 (-339 (-930 |#1|)) (-10 -7 (-15 -3808 ((-978 (-1142)))))) (-941) (-941)) (T -354)) +((-3808 (*1 *2) (-12 (-5 *2 (-978 (-1142))) (-5 *1 (-354 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941))))) +(-13 (-339 (-930 |#1|)) (-10 -7 (-15 -3808 ((-978 (-1142)))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 58)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1388 (((-112) $) NIL)) (-4025 (((-784)) NIL)) (-2256 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-2266 (((-1211 (-941) (-784)) (-576)) 56 (|has| |#1| (-379)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) NIL (|has| |#1| (-379)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) 142)) (-2830 ((|#1| $) 113)) (-4093 (($ (-1289 |#1|)) 130)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-379)))) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) 124 (|has| |#1| (-379)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2846 (($) 160 (|has| |#1| (-379)))) (-2798 (((-112) $) 66 (|has| |#1| (-379)))) (-4266 (($ $ (-784)) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4009 (((-112) $) NIL)) (-2650 (((-941) $) 60 (|has| |#1| (-379))) (((-846 (-941)) $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3994 (((-112) $) 62)) (-2084 (($) 162 (|has| |#1| (-379)))) (-3547 (((-112) $) NIL (|has| |#1| (-379)))) (-3869 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-1955 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3604 (((-1194 |#1|) $) 117) (((-1194 $) $ (-941)) NIL (|has| |#1| (-379)))) (-2327 (((-941) $) 171 (|has| |#1| (-379)))) (-2514 (((-1194 |#1|) $) NIL (|has| |#1| (-379)))) (-4348 (((-1194 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3905 (($ $ (-1194 |#1|)) NIL (|has| |#1| (-379)))) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 178)) (-1679 (($) NIL (|has| |#1| (-379)) CONST)) (-3146 (($ (-941)) 96 (|has| |#1| (-379)))) (-2395 (((-112) $) 147)) (-1460 (((-1142) $) NIL)) (-3808 (((-978 (-1142))) 57)) (-4083 (($) 158 (|has| |#1| (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) 119 (|has| |#1| (-379)))) (-1856 (((-430 $) $) NIL)) (-1559 (((-846 (-941))) 90) (((-941)) 91)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2495 (((-784) $) 161 (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) 154 (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1451 (((-135)) NIL)) (-2209 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-4265 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-2005 (((-1194 |#1|)) 122)) (-4170 (($) 159 (|has| |#1| (-379)))) (-4039 (($) 167 (|has| |#1| (-379)))) (-3806 (((-1289 |#1|) $) 77) (((-702 |#1|) (-1289 $)) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-379)))) (-3515 (((-877) $) 174) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 100)) (-3414 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3845 (((-784)) 155 T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) 144) (((-1289 $) (-941)) 98)) (-2607 (((-112) $ $) NIL)) (-2137 (((-112) $) NIL)) (-2716 (($) 67 T CONST)) (-2725 (($) 103 T CONST)) (-4237 (($ $) 107 (|has| |#1| (-379))) (($ $ (-784)) NIL (|has| |#1| (-379)))) (-2066 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2881 (((-112) $ $) 65)) (-2995 (($ $ $) 176) (($ $ |#1|) 177)) (-2982 (($ $) 157) (($ $ $) NIL)) (-2971 (($ $ $) 86)) (** (($ $ (-941)) 180) (($ $ (-784)) 181) (($ $ (-576)) 179)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 102) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) +(((-355 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3808 ((-978 (-1142)))))) (-360) (-1194 |#1|)) (T -355)) +((-3808 (*1 *2) (-12 (-5 *2 (-978 (-1142))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) (-14 *4 (-1194 *3))))) +(-13 (-339 |#1|) (-10 -7 (-15 -3808 ((-978 (-1142)))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1388 (((-112) $) NIL)) (-4025 (((-784)) NIL)) (-2256 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-2266 (((-1211 (-941) (-784)) (-576)) NIL (|has| |#1| (-379)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) NIL (|has| |#1| (-379)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL)) (-2830 ((|#1| $) NIL)) (-4093 (($ (-1289 |#1|)) NIL)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| |#1| (-379)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2846 (($) NIL (|has| |#1| (-379)))) (-2798 (((-112) $) NIL (|has| |#1| (-379)))) (-4266 (($ $ (-784)) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4009 (((-112) $) NIL)) (-2650 (((-941) $) NIL (|has| |#1| (-379))) (((-846 (-941)) $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3994 (((-112) $) NIL)) (-2084 (($) NIL (|has| |#1| (-379)))) (-3547 (((-112) $) NIL (|has| |#1| (-379)))) (-3869 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-1955 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3604 (((-1194 |#1|) $) NIL) (((-1194 $) $ (-941)) NIL (|has| |#1| (-379)))) (-2327 (((-941) $) NIL (|has| |#1| (-379)))) (-2514 (((-1194 |#1|) $) NIL (|has| |#1| (-379)))) (-4348 (((-1194 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3905 (($ $ (-1194 |#1|)) NIL (|has| |#1| (-379)))) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| |#1| (-379)) CONST)) (-3146 (($ (-941)) NIL (|has| |#1| (-379)))) (-2395 (((-112) $) NIL)) (-1460 (((-1142) $) NIL)) (-3808 (((-978 (-1142))) NIL)) (-4083 (($) NIL (|has| |#1| (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL (|has| |#1| (-379)))) (-1856 (((-430 $) $) NIL)) (-1559 (((-846 (-941))) NIL) (((-941)) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2495 (((-784) $) NIL (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1451 (((-135)) NIL)) (-2209 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-4265 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-2005 (((-1194 |#1|)) NIL)) (-4170 (($) NIL (|has| |#1| (-379)))) (-4039 (($) NIL (|has| |#1| (-379)))) (-3806 (((-1289 |#1|) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-379)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3414 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-2607 (((-112) $ $) NIL)) (-2137 (((-112) $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| |#1| (-379))) (($ $ (-784)) NIL (|has| |#1| (-379)))) (-2066 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-356 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3808 ((-978 (-1142)))))) (-360) (-941)) (T -356)) +((-3808 (*1 *2) (-12 (-5 *2 (-978 (-1142))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) (-14 *4 (-941))))) +(-13 (-339 |#1|) (-10 -7 (-15 -3808 ((-978 (-1142)))))) +((-1630 (((-784) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142)))))) 61)) (-3250 (((-978 (-1142)) (-1194 |#1|)) 112)) (-4277 (((-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))) (-1194 |#1|)) 103)) (-3022 (((-702 |#1|) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142)))))) 113)) (-2340 (((-3 (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))) "failed") (-941)) 13)) (-1970 (((-3 (-1194 |#1|) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142)))))) (-941)) 18))) +(((-357 |#1|) (-10 -7 (-15 -3250 ((-978 (-1142)) (-1194 |#1|))) (-15 -4277 ((-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))) (-1194 |#1|))) (-15 -3022 ((-702 |#1|) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))))) (-15 -1630 ((-784) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))))) (-15 -2340 ((-3 (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))) "failed") (-941))) (-15 -1970 ((-3 (-1194 |#1|) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142)))))) (-941)))) (-360)) (T -357)) +((-1970 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-3 (-1194 *4) (-1289 (-657 (-2 (|:| -3037 *4) (|:| -3146 (-1142))))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-2340 (*1 *2 *3) (|partial| -12 (-5 *3 (-941)) (-5 *2 (-1289 (-657 (-2 (|:| -3037 *4) (|:| -3146 (-1142)))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-1289 (-657 (-2 (|:| -3037 *4) (|:| -3146 (-1142)))))) (-4 *4 (-360)) (-5 *2 (-784)) (-5 *1 (-357 *4)))) (-3022 (*1 *2 *3) (-12 (-5 *3 (-1289 (-657 (-2 (|:| -3037 *4) (|:| -3146 (-1142)))))) (-4 *4 (-360)) (-5 *2 (-702 *4)) (-5 *1 (-357 *4)))) (-4277 (*1 *2 *3) (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-1289 (-657 (-2 (|:| -3037 *4) (|:| -3146 (-1142)))))) (-5 *1 (-357 *4)))) (-3250 (*1 *2 *3) (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-978 (-1142))) (-5 *1 (-357 *4))))) +(-10 -7 (-15 -3250 ((-978 (-1142)) (-1194 |#1|))) (-15 -4277 ((-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))) (-1194 |#1|))) (-15 -3022 ((-702 |#1|) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))))) (-15 -1630 ((-784) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))))) (-15 -2340 ((-3 (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))) "failed") (-941))) (-15 -1970 ((-3 (-1194 |#1|) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142)))))) (-941)))) +((-3515 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) +(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -3515 (|#3| |#1|)) (-15 -3515 (|#1| |#3|))) (-339 |#2|) (-360) (-339 |#2|)) (T -358)) +((-3515 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) (-3515 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4))))) +(-10 -7 (-15 -3515 (|#3| |#1|)) (-15 -3515 (|#1| |#3|))) +((-2798 (((-112) $) 60)) (-2650 (((-846 (-941)) $) 23) (((-941) $) 64)) (-1955 (((-3 $ "failed") $) 18)) (-1679 (($) 9)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 114)) (-2495 (((-3 (-784) "failed") $ $) 92) (((-784) $) 79)) (-2209 (($ $) 8) (($ $ (-784)) NIL)) (-4170 (($) 53)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 38)) (-3414 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-359 |#1|) (-10 -8 (-15 -2650 ((-941) |#1|)) (-15 -2495 ((-784) |#1|)) (-15 -2798 ((-112) |#1|)) (-15 -4170 (|#1|)) (-15 -3036 ((-3 (-1289 |#1|) "failed") (-702 |#1|))) (-15 -3414 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 -1679 (|#1|)) (-15 -1955 ((-3 |#1| "failed") |#1|)) (-15 -2495 ((-3 (-784) "failed") |#1| |#1|)) (-15 -2650 ((-846 (-941)) |#1|)) (-15 -3414 ((-3 |#1| "failed") |#1|)) (-15 -1828 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|)))) (-360)) (T -359)) +NIL +(-10 -8 (-15 -2650 ((-941) |#1|)) (-15 -2495 ((-784) |#1|)) (-15 -2798 ((-112) |#1|)) (-15 -4170 (|#1|)) (-15 -3036 ((-3 (-1289 |#1|) "failed") (-702 |#1|))) (-15 -3414 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 -1679 (|#1|)) (-15 -1955 ((-3 |#1| "failed") |#1|)) (-15 -2495 ((-3 (-784) "failed") |#1| |#1|)) (-15 -2650 ((-846 (-941)) |#1|)) (-15 -3414 ((-3 |#1| "failed") |#1|)) (-15 -1828 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2266 (((-1211 (-941) (-784)) (-576)) 102)) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 81)) (-4215 (((-430 $) $) 80)) (-3210 (((-112) $ $) 65)) (-2148 (((-784)) 112)) (-2515 (($) 18 T CONST)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-3355 (($ $ $) 61)) (-3969 (((-3 $ "failed") $) 37)) (-1876 (($) 115)) (-3369 (($ $ $) 62)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-2846 (($) 100)) (-2798 (((-112) $) 99)) (-4266 (($ $) 87) (($ $ (-784)) 86)) (-4009 (((-112) $) 79)) (-2650 (((-846 (-941)) $) 89) (((-941) $) 97)) (-3994 (((-112) $) 35)) (-1955 (((-3 $ "failed") $) 111)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-2327 (((-941) $) 114)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 78)) (-1679 (($) 110 T CONST)) (-3146 (($ (-941)) 113)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) 103)) (-1856 (((-430 $) $) 82)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-4164 (((-784) $) 64)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63)) (-2495 (((-3 (-784) "failed") $ $) 88) (((-784) $) 98)) (-2209 (($ $) 109) (($ $ (-784)) 107)) (-4170 (($) 101)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 104)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3414 (((-3 $ "failed") $) 90) (($ $) 105)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $) 108) (($ $ (-784)) 106)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ $) 73)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-360) (-141)) (T -360)) -((-4276 (*1 *1 *1) (-4 *1 (-360))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1288 *1)))) (-3409 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))))) (-2063 (*1 *2 *3) (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1210 (-940) (-783))))) (-4223 (*1 *1) (-4 *1 (-360))) (-3712 (*1 *1) (-4 *1 (-360))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) (-3168 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-940)))) (-4242 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-414) (-379) (-1173) (-238) (-10 -8 (-15 -4276 ($ $)) (-15 -4055 ((-3 (-1288 $) "failed") (-701 $))) (-15 -3409 ((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576)))))) (-15 -2063 ((-1210 (-940) (-783)) (-576))) (-15 -4223 ($)) (-15 -3712 ($)) (-15 -2616 ((-112) $)) (-15 -3168 ((-783) $)) (-15 -3359 ((-940) $)) (-15 -4242 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) . T) ((-379) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) . T) ((-1238) . T) ((-1242) . T)) -((-3876 (((-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|) 55)) (-4329 (((-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 53))) -(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -4329 ((-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -3876 ((-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $)))) (-1264 |#1|) (-421 |#1| |#2|)) (T -361)) -((-3876 (*1 *2 *3) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -2704 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-4329 (*1 *2) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -2704 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(-10 -7 (-15 -4329 ((-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -3876 ((-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2536 (((-112) $) NIL)) (-3570 (((-783)) NIL)) (-3832 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2063 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-929 |#1|) (-379)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-3842 (((-783)) NIL)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) NIL (|has| (-929 |#1|) (-379)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-929 |#1|) "failed") $) NIL)) (-2317 (((-929 |#1|) $) NIL)) (-2496 (($ (-1288 (-929 |#1|))) NIL)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-929 |#1|) (-379)))) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| (-929 |#1|) (-379)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3712 (($) NIL (|has| (-929 |#1|) (-379)))) (-2616 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2824 (($ $ (-783)) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379)))) (($ $) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2171 (((-112) $) NIL)) (-3359 (((-940) $) NIL (|has| (-929 |#1|) (-379))) (((-845 (-940)) $) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2486 (((-112) $) NIL)) (-3121 (($) NIL (|has| (-929 |#1|) (-379)))) (-2882 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2595 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3552 (((-3 $ "failed") $) NIL (|has| (-929 |#1|) (-379)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4293 (((-1193 (-929 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3787 (((-940) $) NIL (|has| (-929 |#1|) (-379)))) (-2089 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379)))) (-3922 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-1193 (-929 |#1|)) "failed") $ $) NIL (|has| (-929 |#1|) (-379)))) (-4010 (($ $ (-1193 (-929 |#1|))) NIL (|has| (-929 |#1|) (-379)))) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| (-929 |#1|) (-379)) CONST)) (-2411 (($ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3464 (((-112) $) NIL)) (-3116 (((-1141) $) NIL)) (-3315 (((-1288 (-656 (-2 (|:| -1690 (-929 |#1|)) (|:| -2411 (-1141)))))) NIL)) (-4241 (((-701 (-929 |#1|))) NIL)) (-2549 (($) NIL (|has| (-929 |#1|) (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL (|has| (-929 |#1|) (-379)))) (-1452 (((-430 $) $) NIL)) (-3835 (((-845 (-940))) NIL) (((-940)) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-3168 (((-783) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3181 (((-135)) NIL)) (-4107 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2196 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3881 (((-1193 (-929 |#1|))) NIL)) (-4223 (($) NIL (|has| (-929 |#1|) (-379)))) (-2174 (($) NIL (|has| (-929 |#1|) (-379)))) (-4314 (((-1288 (-929 |#1|)) $) NIL) (((-701 (-929 |#1|)) (-1288 $)) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-929 |#1|) (-379)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-929 |#1|)) NIL)) (-4276 (($ $) NIL (|has| (-929 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-4134 (((-112) $ $) NIL)) (-1736 (((-112) $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| (-929 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-929 |#1|) (-379)))) (-3157 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ (-929 |#1|)) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-929 |#1|)) NIL) (($ (-929 |#1|) $) NIL))) -(((-362 |#1| |#2|) (-13 (-339 (-929 |#1|)) (-10 -7 (-15 -3315 ((-1288 (-656 (-2 (|:| -1690 (-929 |#1|)) (|:| -2411 (-1141))))))) (-15 -4241 ((-701 (-929 |#1|)))) (-15 -3842 ((-783))))) (-940) (-940)) (T -362)) -((-3315 (*1 *2) (-12 (-5 *2 (-1288 (-656 (-2 (|:| -1690 (-929 *3)) (|:| -2411 (-1141)))))) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-4241 (*1 *2) (-12 (-5 *2 (-701 (-929 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-3842 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940))))) -(-13 (-339 (-929 |#1|)) (-10 -7 (-15 -3315 ((-1288 (-656 (-2 (|:| -1690 (-929 |#1|)) (|:| -2411 (-1141))))))) (-15 -4241 ((-701 (-929 |#1|)))) (-15 -3842 ((-783))))) -((-1957 (((-112) $ $) 73)) (-3114 (((-112) $) 88)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2536 (((-112) $) NIL)) (-3570 (((-783)) NIL)) (-3832 ((|#1| $) 106) (($ $ (-940)) 104 (|has| |#1| (-379)))) (-2063 (((-1210 (-940) (-783)) (-576)) 170 (|has| |#1| (-379)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-3842 (((-783)) 103)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) 187 (|has| |#1| (-379)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) 127)) (-2317 ((|#1| $) 105)) (-2496 (($ (-1288 |#1|)) 71)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-379)))) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) 182 (|has| |#1| (-379)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3712 (($) 171 (|has| |#1| (-379)))) (-2616 (((-112) $) NIL (|has| |#1| (-379)))) (-2824 (($ $ (-783)) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2171 (((-112) $) NIL)) (-3359 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2486 (((-112) $) NIL)) (-3121 (($) 113 (|has| |#1| (-379)))) (-2882 (((-112) $) 200 (|has| |#1| (-379)))) (-2595 ((|#1| $) 108) (($ $ (-940)) 107 (|has| |#1| (-379)))) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4293 (((-1193 |#1|) $) 214) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-3787 (((-940) $) 148 (|has| |#1| (-379)))) (-2089 (((-1193 |#1|) $) 87 (|has| |#1| (-379)))) (-3922 (((-1193 |#1|) $) 84 (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) 96 (|has| |#1| (-379)))) (-4010 (($ $ (-1193 |#1|)) 83 (|has| |#1| (-379)))) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 218)) (-3650 (($) NIL (|has| |#1| (-379)) CONST)) (-2411 (($ (-940)) 150 (|has| |#1| (-379)))) (-3464 (((-112) $) 123)) (-3116 (((-1141) $) NIL)) (-3315 (((-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141)))))) 97)) (-4241 (((-701 |#1|)) 101)) (-2549 (($) 110 (|has| |#1| (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) 173 (|has| |#1| (-379)))) (-1452 (((-430 $) $) NIL)) (-3835 (((-845 (-940))) NIL) (((-940)) 174)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-3168 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3181 (((-135)) NIL)) (-4107 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2196 (((-845 (-940)) $) NIL) (((-940) $) 75)) (-3881 (((-1193 |#1|)) 175)) (-4223 (($) 147 (|has| |#1| (-379)))) (-2174 (($) NIL (|has| |#1| (-379)))) (-4314 (((-1288 |#1|) $) 121) (((-701 |#1|) (-1288 $)) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4113 (((-876) $) 140) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 70)) (-4276 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2910 (((-783)) 180 T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) 197) (((-1288 $) (-940)) 116)) (-4134 (((-112) $ $) NIL)) (-1736 (((-112) $) NIL)) (-4313 (($) 186 T CONST)) (-4322 (($) 161 T CONST)) (-2510 (($ $) 122 (|has| |#1| (-379))) (($ $ (-783)) 114 (|has| |#1| (-379)))) (-3157 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3939 (((-112) $ $) 208)) (-4047 (($ $ $) 119) (($ $ |#1|) 120)) (-4037 (($ $) 202) (($ $ $) 206)) (-4026 (($ $ $) 204)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 153)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 211) (($ $ $) 164) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) -(((-363 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3315 ((-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))))) (-15 -4241 ((-701 |#1|))) (-15 -3842 ((-783))))) (-360) (-3 (-1193 |#1|) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))))) (T -363)) -((-3315 (*1 *2) (-12 (-5 *2 (-1288 (-656 (-2 (|:| -1690 *3) (|:| -2411 (-1141)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) *2)))) (-4241 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) (-1288 (-656 (-2 (|:| -1690 *3) (|:| -2411 (-1141))))))))) (-3842 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) (-1288 (-656 (-2 (|:| -1690 *3) (|:| -2411 (-1141)))))))))) -(-13 (-339 |#1|) (-10 -7 (-15 -3315 ((-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))))) (-15 -4241 ((-701 |#1|))) (-15 -3842 ((-783))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2536 (((-112) $) NIL)) (-3570 (((-783)) NIL)) (-3832 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2063 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-3842 (((-783)) NIL)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) NIL (|has| |#1| (-379)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-2496 (($ (-1288 |#1|)) NIL)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| |#1| (-379)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3712 (($) NIL (|has| |#1| (-379)))) (-2616 (((-112) $) NIL (|has| |#1| (-379)))) (-2824 (($ $ (-783)) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2171 (((-112) $) NIL)) (-3359 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2486 (((-112) $) NIL)) (-3121 (($) NIL (|has| |#1| (-379)))) (-2882 (((-112) $) NIL (|has| |#1| (-379)))) (-2595 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4293 (((-1193 |#1|) $) NIL) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-3787 (((-940) $) NIL (|has| |#1| (-379)))) (-2089 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3922 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4010 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| |#1| (-379)) CONST)) (-2411 (($ (-940)) NIL (|has| |#1| (-379)))) (-3464 (((-112) $) NIL)) (-3116 (((-1141) $) NIL)) (-3315 (((-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141)))))) NIL)) (-4241 (((-701 |#1|)) NIL)) (-2549 (($) NIL (|has| |#1| (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL (|has| |#1| (-379)))) (-1452 (((-430 $) $) NIL)) (-3835 (((-845 (-940))) NIL) (((-940)) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-3168 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3181 (((-135)) NIL)) (-4107 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2196 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3881 (((-1193 |#1|)) NIL)) (-4223 (($) NIL (|has| |#1| (-379)))) (-2174 (($) NIL (|has| |#1| (-379)))) (-4314 (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-4276 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-4134 (((-112) $ $) NIL)) (-1736 (((-112) $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3157 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-364 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3315 ((-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))))) (-15 -4241 ((-701 |#1|))) (-15 -3842 ((-783))))) (-360) (-940)) (T -364)) -((-3315 (*1 *2) (-12 (-5 *2 (-1288 (-656 (-2 (|:| -1690 *3) (|:| -2411 (-1141)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940)))) (-4241 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940)))) (-3842 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940))))) -(-13 (-339 |#1|) (-10 -7 (-15 -3315 ((-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))))) (-15 -4241 ((-701 |#1|))) (-15 -3842 ((-783))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2536 (((-112) $) NIL)) (-3570 (((-783)) NIL)) (-3832 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-2063 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-929 |#1|) (-379)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) NIL (|has| (-929 |#1|) (-379)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-929 |#1|) "failed") $) NIL)) (-2317 (((-929 |#1|) $) NIL)) (-2496 (($ (-1288 (-929 |#1|))) NIL)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-929 |#1|) (-379)))) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| (-929 |#1|) (-379)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3712 (($) NIL (|has| (-929 |#1|) (-379)))) (-2616 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2824 (($ $ (-783)) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379)))) (($ $) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2171 (((-112) $) NIL)) (-3359 (((-940) $) NIL (|has| (-929 |#1|) (-379))) (((-845 (-940)) $) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2486 (((-112) $) NIL)) (-3121 (($) NIL (|has| (-929 |#1|) (-379)))) (-2882 (((-112) $) NIL (|has| (-929 |#1|) (-379)))) (-2595 (((-929 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3552 (((-3 $ "failed") $) NIL (|has| (-929 |#1|) (-379)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4293 (((-1193 (-929 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3787 (((-940) $) NIL (|has| (-929 |#1|) (-379)))) (-2089 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379)))) (-3922 (((-1193 (-929 |#1|)) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-1193 (-929 |#1|)) "failed") $ $) NIL (|has| (-929 |#1|) (-379)))) (-4010 (($ $ (-1193 (-929 |#1|))) NIL (|has| (-929 |#1|) (-379)))) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| (-929 |#1|) (-379)) CONST)) (-2411 (($ (-940)) NIL (|has| (-929 |#1|) (-379)))) (-3464 (((-112) $) NIL)) (-3116 (((-1141) $) NIL)) (-2549 (($) NIL (|has| (-929 |#1|) (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL (|has| (-929 |#1|) (-379)))) (-1452 (((-430 $) $) NIL)) (-3835 (((-845 (-940))) NIL) (((-940)) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-3168 (((-783) $) NIL (|has| (-929 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-3181 (((-135)) NIL)) (-4107 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-2196 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3881 (((-1193 (-929 |#1|))) NIL)) (-4223 (($) NIL (|has| (-929 |#1|) (-379)))) (-2174 (($) NIL (|has| (-929 |#1|) (-379)))) (-4314 (((-1288 (-929 |#1|)) $) NIL) (((-701 (-929 |#1|)) (-1288 $)) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-929 |#1|) (-379)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-929 |#1|)) NIL)) (-4276 (($ $) NIL (|has| (-929 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3795 (|has| (-929 |#1|) (-146)) (|has| (-929 |#1|) (-379))))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-4134 (((-112) $ $) NIL)) (-1736 (((-112) $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| (-929 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-929 |#1|) (-379)))) (-3157 (($ $ (-783)) NIL (|has| (-929 |#1|) (-379))) (($ $) NIL (|has| (-929 |#1|) (-379)))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ (-929 |#1|)) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-929 |#1|)) NIL) (($ (-929 |#1|) $) NIL))) -(((-365 |#1| |#2|) (-339 (-929 |#1|)) (-940) (-940)) (T -365)) -NIL -(-339 (-929 |#1|)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2536 (((-112) $) NIL)) (-3570 (((-783)) NIL)) (-3832 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2063 (((-1210 (-940) (-783)) (-576)) 129 (|has| |#1| (-379)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) 155 (|has| |#1| (-379)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) 103)) (-2317 ((|#1| $) 100)) (-2496 (($ (-1288 |#1|)) 95)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-379)))) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) 92 (|has| |#1| (-379)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3712 (($) 51 (|has| |#1| (-379)))) (-2616 (((-112) $) NIL (|has| |#1| (-379)))) (-2824 (($ $ (-783)) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2171 (((-112) $) NIL)) (-3359 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2486 (((-112) $) NIL)) (-3121 (($) 130 (|has| |#1| (-379)))) (-2882 (((-112) $) 84 (|has| |#1| (-379)))) (-2595 ((|#1| $) 47) (($ $ (-940)) 52 (|has| |#1| (-379)))) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4293 (((-1193 |#1|) $) 75) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-3787 (((-940) $) 107 (|has| |#1| (-379)))) (-2089 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3922 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4010 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| |#1| (-379)) CONST)) (-2411 (($ (-940)) 105 (|has| |#1| (-379)))) (-3464 (((-112) $) 157)) (-3116 (((-1141) $) NIL)) (-2549 (($) 44 (|has| |#1| (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) 124 (|has| |#1| (-379)))) (-1452 (((-430 $) $) NIL)) (-3835 (((-845 (-940))) NIL) (((-940)) 154)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-3168 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3181 (((-135)) NIL)) (-4107 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2196 (((-845 (-940)) $) NIL) (((-940) $) 67)) (-3881 (((-1193 |#1|)) 98)) (-4223 (($) 135 (|has| |#1| (-379)))) (-2174 (($) NIL (|has| |#1| (-379)))) (-4314 (((-1288 |#1|) $) 63) (((-701 |#1|) (-1288 $)) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4113 (((-876) $) 153) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 97)) (-4276 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2910 (((-783)) 159 T CONST)) (-2950 (((-112) $ $) 161)) (-2704 (((-1288 $)) 119) (((-1288 $) (-940)) 58)) (-4134 (((-112) $ $) NIL)) (-1736 (((-112) $) NIL)) (-4313 (($) 121 T CONST)) (-4322 (($) 40 T CONST)) (-2510 (($ $) 78 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3157 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3939 (((-112) $ $) 117)) (-4047 (($ $ $) 109) (($ $ |#1|) 110)) (-4037 (($ $) 90) (($ $ $) 115)) (-4026 (($ $ $) 113)) (** (($ $ (-940)) NIL) (($ $ (-783)) 53) (($ $ (-576)) 138)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 88) (($ $ $) 65) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) -(((-366 |#1| |#2|) (-339 |#1|) (-360) (-1193 |#1|)) (T -366)) +((-3414 (*1 *1 *1) (-4 *1 (-360))) (-3036 (*1 *2 *3) (|partial| -12 (-5 *3 (-702 *1)) (-4 *1 (-360)) (-5 *2 (-1289 *1)))) (-3092 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))))) (-2266 (*1 *2 *3) (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1211 (-941) (-784))))) (-4170 (*1 *1) (-4 *1 (-360))) (-2846 (*1 *1) (-4 *1 (-360))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) (-2495 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-784)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-941)))) (-4375 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-414) (-379) (-1174) (-238) (-10 -8 (-15 -3414 ($ $)) (-15 -3036 ((-3 (-1289 $) "failed") (-702 $))) (-15 -3092 ((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576)))))) (-15 -2266 ((-1211 (-941) (-784)) (-576))) (-15 -4170 ($)) (-15 -2846 ($)) (-15 -2798 ((-112) $)) (-15 -2495 ((-784) $)) (-15 -2650 ((-941) $)) (-15 -4375 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) . T) ((-379) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) . T) ((-1239) . T) ((-1243) . T)) +((-1951 (((-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) |#1|) 55)) (-3929 (((-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|)))) 53))) +(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -3929 ((-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))))) (-15 -1951 ((-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) |#1|))) (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $)))) (-1265 |#1|) (-421 |#1| |#2|)) (T -361)) +((-1951 (*1 *2 *3) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *2 (-2 (|:| -2469 (-702 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-702 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3929 (*1 *2) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *2 (-2 (|:| -2469 (-702 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-702 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(-10 -7 (-15 -3929 ((-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))))) (-15 -1951 ((-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) |#1|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1388 (((-112) $) NIL)) (-4025 (((-784)) NIL)) (-2256 (((-930 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-2266 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-930 |#1|) (-379)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-1630 (((-784)) NIL)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) NIL (|has| (-930 |#1|) (-379)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-930 |#1|) "failed") $) NIL)) (-2830 (((-930 |#1|) $) NIL)) (-4093 (($ (-1289 (-930 |#1|))) NIL)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-930 |#1|) (-379)))) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| (-930 |#1|) (-379)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2846 (($) NIL (|has| (-930 |#1|) (-379)))) (-2798 (((-112) $) NIL (|has| (-930 |#1|) (-379)))) (-4266 (($ $ (-784)) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379)))) (($ $) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-4009 (((-112) $) NIL)) (-2650 (((-941) $) NIL (|has| (-930 |#1|) (-379))) (((-846 (-941)) $) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-3994 (((-112) $) NIL)) (-2084 (($) NIL (|has| (-930 |#1|) (-379)))) (-3547 (((-112) $) NIL (|has| (-930 |#1|) (-379)))) (-3869 (((-930 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-1955 (((-3 $ "failed") $) NIL (|has| (-930 |#1|) (-379)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3604 (((-1194 (-930 |#1|)) $) NIL) (((-1194 $) $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-2327 (((-941) $) NIL (|has| (-930 |#1|) (-379)))) (-2514 (((-1194 (-930 |#1|)) $) NIL (|has| (-930 |#1|) (-379)))) (-4348 (((-1194 (-930 |#1|)) $) NIL (|has| (-930 |#1|) (-379))) (((-3 (-1194 (-930 |#1|)) "failed") $ $) NIL (|has| (-930 |#1|) (-379)))) (-3905 (($ $ (-1194 (-930 |#1|))) NIL (|has| (-930 |#1|) (-379)))) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| (-930 |#1|) (-379)) CONST)) (-3146 (($ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-2395 (((-112) $) NIL)) (-1460 (((-1142) $) NIL)) (-3418 (((-1289 (-657 (-2 (|:| -3037 (-930 |#1|)) (|:| -3146 (-1142)))))) NIL)) (-4364 (((-702 (-930 |#1|))) NIL)) (-4083 (($) NIL (|has| (-930 |#1|) (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL (|has| (-930 |#1|) (-379)))) (-1856 (((-430 $) $) NIL)) (-1559 (((-846 (-941))) NIL) (((-941)) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2495 (((-784) $) NIL (|has| (-930 |#1|) (-379))) (((-3 (-784) "failed") $ $) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-1451 (((-135)) NIL)) (-2209 (($ $ (-784)) NIL (|has| (-930 |#1|) (-379))) (($ $) NIL (|has| (-930 |#1|) (-379)))) (-4265 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-2005 (((-1194 (-930 |#1|))) NIL)) (-4170 (($) NIL (|has| (-930 |#1|) (-379)))) (-4039 (($) NIL (|has| (-930 |#1|) (-379)))) (-3806 (((-1289 (-930 |#1|)) $) NIL) (((-702 (-930 |#1|)) (-1289 $)) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| (-930 |#1|) (-379)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-930 |#1|)) NIL)) (-3414 (($ $) NIL (|has| (-930 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-2607 (((-112) $ $) NIL)) (-2137 (((-112) $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| (-930 |#1|) (-379))) (($ $ (-784)) NIL (|has| (-930 |#1|) (-379)))) (-2066 (($ $ (-784)) NIL (|has| (-930 |#1|) (-379))) (($ $) NIL (|has| (-930 |#1|) (-379)))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL) (($ $ (-930 |#1|)) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-930 |#1|)) NIL) (($ (-930 |#1|) $) NIL))) +(((-362 |#1| |#2|) (-13 (-339 (-930 |#1|)) (-10 -7 (-15 -3418 ((-1289 (-657 (-2 (|:| -3037 (-930 |#1|)) (|:| -3146 (-1142))))))) (-15 -4364 ((-702 (-930 |#1|)))) (-15 -1630 ((-784))))) (-941) (-941)) (T -362)) +((-3418 (*1 *2) (-12 (-5 *2 (-1289 (-657 (-2 (|:| -3037 (-930 *3)) (|:| -3146 (-1142)))))) (-5 *1 (-362 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941)))) (-4364 (*1 *2) (-12 (-5 *2 (-702 (-930 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941)))) (-1630 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-362 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941))))) +(-13 (-339 (-930 |#1|)) (-10 -7 (-15 -3418 ((-1289 (-657 (-2 (|:| -3037 (-930 |#1|)) (|:| -3146 (-1142))))))) (-15 -4364 ((-702 (-930 |#1|)))) (-15 -1630 ((-784))))) +((-3423 (((-112) $ $) 73)) (-2044 (((-112) $) 88)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1388 (((-112) $) NIL)) (-4025 (((-784)) NIL)) (-2256 ((|#1| $) 106) (($ $ (-941)) 104 (|has| |#1| (-379)))) (-2266 (((-1211 (-941) (-784)) (-576)) 170 (|has| |#1| (-379)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-1630 (((-784)) 103)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) 187 (|has| |#1| (-379)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) 127)) (-2830 ((|#1| $) 105)) (-4093 (($ (-1289 |#1|)) 71)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-379)))) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) 182 (|has| |#1| (-379)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2846 (($) 171 (|has| |#1| (-379)))) (-2798 (((-112) $) NIL (|has| |#1| (-379)))) (-4266 (($ $ (-784)) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4009 (((-112) $) NIL)) (-2650 (((-941) $) NIL (|has| |#1| (-379))) (((-846 (-941)) $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3994 (((-112) $) NIL)) (-2084 (($) 113 (|has| |#1| (-379)))) (-3547 (((-112) $) 200 (|has| |#1| (-379)))) (-3869 ((|#1| $) 108) (($ $ (-941)) 107 (|has| |#1| (-379)))) (-1955 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3604 (((-1194 |#1|) $) 214) (((-1194 $) $ (-941)) NIL (|has| |#1| (-379)))) (-2327 (((-941) $) 148 (|has| |#1| (-379)))) (-2514 (((-1194 |#1|) $) 87 (|has| |#1| (-379)))) (-4348 (((-1194 |#1|) $) 84 (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) 96 (|has| |#1| (-379)))) (-3905 (($ $ (-1194 |#1|)) 83 (|has| |#1| (-379)))) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 218)) (-1679 (($) NIL (|has| |#1| (-379)) CONST)) (-3146 (($ (-941)) 150 (|has| |#1| (-379)))) (-2395 (((-112) $) 123)) (-1460 (((-1142) $) NIL)) (-3418 (((-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142)))))) 97)) (-4364 (((-702 |#1|)) 101)) (-4083 (($) 110 (|has| |#1| (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) 173 (|has| |#1| (-379)))) (-1856 (((-430 $) $) NIL)) (-1559 (((-846 (-941))) NIL) (((-941)) 174)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2495 (((-784) $) NIL (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1451 (((-135)) NIL)) (-2209 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-4265 (((-846 (-941)) $) NIL) (((-941) $) 75)) (-2005 (((-1194 |#1|)) 175)) (-4170 (($) 147 (|has| |#1| (-379)))) (-4039 (($) NIL (|has| |#1| (-379)))) (-3806 (((-1289 |#1|) $) 121) (((-702 |#1|) (-1289 $)) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-379)))) (-3515 (((-877) $) 140) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 70)) (-3414 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3845 (((-784)) 180 T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) 197) (((-1289 $) (-941)) 116)) (-2607 (((-112) $ $) NIL)) (-2137 (((-112) $) NIL)) (-2716 (($) 186 T CONST)) (-2725 (($) 161 T CONST)) (-4237 (($ $) 122 (|has| |#1| (-379))) (($ $ (-784)) 114 (|has| |#1| (-379)))) (-2066 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2881 (((-112) $ $) 208)) (-2995 (($ $ $) 119) (($ $ |#1|) 120)) (-2982 (($ $) 202) (($ $ $) 206)) (-2971 (($ $ $) 204)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 153)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 211) (($ $ $) 164) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) +(((-363 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3418 ((-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))))) (-15 -4364 ((-702 |#1|))) (-15 -1630 ((-784))))) (-360) (-3 (-1194 |#1|) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))))) (T -363)) +((-3418 (*1 *2) (-12 (-5 *2 (-1289 (-657 (-2 (|:| -3037 *3) (|:| -3146 (-1142)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1194 *3) *2)))) (-4364 (*1 *2) (-12 (-5 *2 (-702 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1194 *3) (-1289 (-657 (-2 (|:| -3037 *3) (|:| -3146 (-1142))))))))) (-1630 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1194 *3) (-1289 (-657 (-2 (|:| -3037 *3) (|:| -3146 (-1142)))))))))) +(-13 (-339 |#1|) (-10 -7 (-15 -3418 ((-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))))) (-15 -4364 ((-702 |#1|))) (-15 -1630 ((-784))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1388 (((-112) $) NIL)) (-4025 (((-784)) NIL)) (-2256 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-2266 (((-1211 (-941) (-784)) (-576)) NIL (|has| |#1| (-379)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-1630 (((-784)) NIL)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) NIL (|has| |#1| (-379)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL)) (-2830 ((|#1| $) NIL)) (-4093 (($ (-1289 |#1|)) NIL)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| |#1| (-379)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2846 (($) NIL (|has| |#1| (-379)))) (-2798 (((-112) $) NIL (|has| |#1| (-379)))) (-4266 (($ $ (-784)) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4009 (((-112) $) NIL)) (-2650 (((-941) $) NIL (|has| |#1| (-379))) (((-846 (-941)) $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3994 (((-112) $) NIL)) (-2084 (($) NIL (|has| |#1| (-379)))) (-3547 (((-112) $) NIL (|has| |#1| (-379)))) (-3869 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-1955 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3604 (((-1194 |#1|) $) NIL) (((-1194 $) $ (-941)) NIL (|has| |#1| (-379)))) (-2327 (((-941) $) NIL (|has| |#1| (-379)))) (-2514 (((-1194 |#1|) $) NIL (|has| |#1| (-379)))) (-4348 (((-1194 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3905 (($ $ (-1194 |#1|)) NIL (|has| |#1| (-379)))) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| |#1| (-379)) CONST)) (-3146 (($ (-941)) NIL (|has| |#1| (-379)))) (-2395 (((-112) $) NIL)) (-1460 (((-1142) $) NIL)) (-3418 (((-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142)))))) NIL)) (-4364 (((-702 |#1|)) NIL)) (-4083 (($) NIL (|has| |#1| (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL (|has| |#1| (-379)))) (-1856 (((-430 $) $) NIL)) (-1559 (((-846 (-941))) NIL) (((-941)) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2495 (((-784) $) NIL (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1451 (((-135)) NIL)) (-2209 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-4265 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-2005 (((-1194 |#1|)) NIL)) (-4170 (($) NIL (|has| |#1| (-379)))) (-4039 (($) NIL (|has| |#1| (-379)))) (-3806 (((-1289 |#1|) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-379)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3414 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-2607 (((-112) $ $) NIL)) (-2137 (((-112) $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| |#1| (-379))) (($ $ (-784)) NIL (|has| |#1| (-379)))) (-2066 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-364 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3418 ((-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))))) (-15 -4364 ((-702 |#1|))) (-15 -1630 ((-784))))) (-360) (-941)) (T -364)) +((-3418 (*1 *2) (-12 (-5 *2 (-1289 (-657 (-2 (|:| -3037 *3) (|:| -3146 (-1142)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-941)))) (-4364 (*1 *2) (-12 (-5 *2 (-702 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-941)))) (-1630 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-941))))) +(-13 (-339 |#1|) (-10 -7 (-15 -3418 ((-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))))) (-15 -4364 ((-702 |#1|))) (-15 -1630 ((-784))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1388 (((-112) $) NIL)) (-4025 (((-784)) NIL)) (-2256 (((-930 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-2266 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-930 |#1|) (-379)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) NIL (|has| (-930 |#1|) (-379)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-930 |#1|) "failed") $) NIL)) (-2830 (((-930 |#1|) $) NIL)) (-4093 (($ (-1289 (-930 |#1|))) NIL)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-930 |#1|) (-379)))) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| (-930 |#1|) (-379)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2846 (($) NIL (|has| (-930 |#1|) (-379)))) (-2798 (((-112) $) NIL (|has| (-930 |#1|) (-379)))) (-4266 (($ $ (-784)) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379)))) (($ $) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-4009 (((-112) $) NIL)) (-2650 (((-941) $) NIL (|has| (-930 |#1|) (-379))) (((-846 (-941)) $) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-3994 (((-112) $) NIL)) (-2084 (($) NIL (|has| (-930 |#1|) (-379)))) (-3547 (((-112) $) NIL (|has| (-930 |#1|) (-379)))) (-3869 (((-930 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-1955 (((-3 $ "failed") $) NIL (|has| (-930 |#1|) (-379)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3604 (((-1194 (-930 |#1|)) $) NIL) (((-1194 $) $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-2327 (((-941) $) NIL (|has| (-930 |#1|) (-379)))) (-2514 (((-1194 (-930 |#1|)) $) NIL (|has| (-930 |#1|) (-379)))) (-4348 (((-1194 (-930 |#1|)) $) NIL (|has| (-930 |#1|) (-379))) (((-3 (-1194 (-930 |#1|)) "failed") $ $) NIL (|has| (-930 |#1|) (-379)))) (-3905 (($ $ (-1194 (-930 |#1|))) NIL (|has| (-930 |#1|) (-379)))) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| (-930 |#1|) (-379)) CONST)) (-3146 (($ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-2395 (((-112) $) NIL)) (-1460 (((-1142) $) NIL)) (-4083 (($) NIL (|has| (-930 |#1|) (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL (|has| (-930 |#1|) (-379)))) (-1856 (((-430 $) $) NIL)) (-1559 (((-846 (-941))) NIL) (((-941)) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2495 (((-784) $) NIL (|has| (-930 |#1|) (-379))) (((-3 (-784) "failed") $ $) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-1451 (((-135)) NIL)) (-2209 (($ $ (-784)) NIL (|has| (-930 |#1|) (-379))) (($ $) NIL (|has| (-930 |#1|) (-379)))) (-4265 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-2005 (((-1194 (-930 |#1|))) NIL)) (-4170 (($) NIL (|has| (-930 |#1|) (-379)))) (-4039 (($) NIL (|has| (-930 |#1|) (-379)))) (-3806 (((-1289 (-930 |#1|)) $) NIL) (((-702 (-930 |#1|)) (-1289 $)) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| (-930 |#1|) (-379)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-930 |#1|)) NIL)) (-3414 (($ $) NIL (|has| (-930 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2748 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-2607 (((-112) $ $) NIL)) (-2137 (((-112) $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| (-930 |#1|) (-379))) (($ $ (-784)) NIL (|has| (-930 |#1|) (-379)))) (-2066 (($ $ (-784)) NIL (|has| (-930 |#1|) (-379))) (($ $) NIL (|has| (-930 |#1|) (-379)))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL) (($ $ (-930 |#1|)) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-930 |#1|)) NIL) (($ (-930 |#1|) $) NIL))) +(((-365 |#1| |#2|) (-339 (-930 |#1|)) (-941) (-941)) (T -365)) +NIL +(-339 (-930 |#1|)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1388 (((-112) $) NIL)) (-4025 (((-784)) NIL)) (-2256 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-2266 (((-1211 (-941) (-784)) (-576)) 129 (|has| |#1| (-379)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) 155 (|has| |#1| (-379)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) 103)) (-2830 ((|#1| $) 100)) (-4093 (($ (-1289 |#1|)) 95)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-379)))) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) 92 (|has| |#1| (-379)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2846 (($) 51 (|has| |#1| (-379)))) (-2798 (((-112) $) NIL (|has| |#1| (-379)))) (-4266 (($ $ (-784)) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4009 (((-112) $) NIL)) (-2650 (((-941) $) NIL (|has| |#1| (-379))) (((-846 (-941)) $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3994 (((-112) $) NIL)) (-2084 (($) 130 (|has| |#1| (-379)))) (-3547 (((-112) $) 84 (|has| |#1| (-379)))) (-3869 ((|#1| $) 47) (($ $ (-941)) 52 (|has| |#1| (-379)))) (-1955 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3604 (((-1194 |#1|) $) 75) (((-1194 $) $ (-941)) NIL (|has| |#1| (-379)))) (-2327 (((-941) $) 107 (|has| |#1| (-379)))) (-2514 (((-1194 |#1|) $) NIL (|has| |#1| (-379)))) (-4348 (((-1194 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3905 (($ $ (-1194 |#1|)) NIL (|has| |#1| (-379)))) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| |#1| (-379)) CONST)) (-3146 (($ (-941)) 105 (|has| |#1| (-379)))) (-2395 (((-112) $) 157)) (-1460 (((-1142) $) NIL)) (-4083 (($) 44 (|has| |#1| (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) 124 (|has| |#1| (-379)))) (-1856 (((-430 $) $) NIL)) (-1559 (((-846 (-941))) NIL) (((-941)) 154)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2495 (((-784) $) NIL (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1451 (((-135)) NIL)) (-2209 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-4265 (((-846 (-941)) $) NIL) (((-941) $) 67)) (-2005 (((-1194 |#1|)) 98)) (-4170 (($) 135 (|has| |#1| (-379)))) (-4039 (($) NIL (|has| |#1| (-379)))) (-3806 (((-1289 |#1|) $) 63) (((-702 |#1|) (-1289 $)) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-379)))) (-3515 (((-877) $) 153) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 97)) (-3414 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3845 (((-784)) 159 T CONST)) (-4166 (((-112) $ $) 161)) (-2469 (((-1289 $)) 119) (((-1289 $) (-941)) 58)) (-2607 (((-112) $ $) NIL)) (-2137 (((-112) $) NIL)) (-2716 (($) 121 T CONST)) (-2725 (($) 40 T CONST)) (-4237 (($ $) 78 (|has| |#1| (-379))) (($ $ (-784)) NIL (|has| |#1| (-379)))) (-2066 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2881 (((-112) $ $) 117)) (-2995 (($ $ $) 109) (($ $ |#1|) 110)) (-2982 (($ $) 90) (($ $ $) 115)) (-2971 (($ $ $) 113)) (** (($ $ (-941)) NIL) (($ $ (-784)) 53) (($ $ (-576)) 138)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 88) (($ $ $) 65) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) +(((-366 |#1| |#2|) (-339 |#1|) (-360) (-1194 |#1|)) (T -366)) NIL (-339 |#1|) -((-2095 ((|#1| (-1193 |#2|)) 59))) -(((-367 |#1| |#2|) (-10 -7 (-15 -2095 (|#1| (-1193 |#2|)))) (-13 (-414) (-10 -7 (-15 -4113 (|#1| |#2|)) (-15 -3787 ((-940) |#1|)) (-15 -2704 ((-1288 |#1|) (-940))) (-15 -2510 (|#1| |#1|)))) (-360)) (T -367)) -((-2095 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-4 *2 (-13 (-414) (-10 -7 (-15 -4113 (*2 *4)) (-15 -3787 ((-940) *2)) (-15 -2704 ((-1288 *2) (-940))) (-15 -2510 (*2 *2))))) (-5 *1 (-367 *2 *4))))) -(-10 -7 (-15 -2095 (|#1| (-1193 |#2|)))) -((-1792 (((-977 (-1193 |#1|)) (-1193 |#1|)) 49)) (-4370 (((-1193 |#1|) (-940) (-940)) 154) (((-1193 |#1|) (-940)) 150)) (-2616 (((-112) (-1193 |#1|)) 107)) (-3320 (((-940) (-940)) 85)) (-4212 (((-940) (-940)) 92)) (-2030 (((-940) (-940)) 83)) (-2882 (((-112) (-1193 |#1|)) 111)) (-2796 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 135)) (-2999 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 140)) (-1405 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 139)) (-3248 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 138)) (-2162 (((-3 (-1193 |#1|) "failed") (-1193 |#1|)) 131)) (-2975 (((-1193 |#1|) (-1193 |#1|)) 71)) (-2837 (((-1193 |#1|) (-940)) 145)) (-1402 (((-1193 |#1|) (-940)) 148)) (-1694 (((-1193 |#1|) (-940)) 147)) (-3851 (((-1193 |#1|) (-940)) 146)) (-3339 (((-1193 |#1|) (-940)) 143))) -(((-368 |#1|) (-10 -7 (-15 -2616 ((-112) (-1193 |#1|))) (-15 -2882 ((-112) (-1193 |#1|))) (-15 -2030 ((-940) (-940))) (-15 -3320 ((-940) (-940))) (-15 -4212 ((-940) (-940))) (-15 -3339 ((-1193 |#1|) (-940))) (-15 -2837 ((-1193 |#1|) (-940))) (-15 -3851 ((-1193 |#1|) (-940))) (-15 -1694 ((-1193 |#1|) (-940))) (-15 -1402 ((-1193 |#1|) (-940))) (-15 -2162 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -2796 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -3248 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1405 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -2999 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -4370 ((-1193 |#1|) (-940))) (-15 -4370 ((-1193 |#1|) (-940) (-940))) (-15 -2975 ((-1193 |#1|) (-1193 |#1|))) (-15 -1792 ((-977 (-1193 |#1|)) (-1193 |#1|)))) (-360)) (T -368)) -((-1792 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-977 (-1193 *4))) (-5 *1 (-368 *4)) (-5 *3 (-1193 *4)))) (-2975 (*1 *2 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-4370 (*1 *2 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2999 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1405 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3248 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2796 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2162 (*1 *2 *2) (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3851 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4212 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3320 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2030 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4))))) -(-10 -7 (-15 -2616 ((-112) (-1193 |#1|))) (-15 -2882 ((-112) (-1193 |#1|))) (-15 -2030 ((-940) (-940))) (-15 -3320 ((-940) (-940))) (-15 -4212 ((-940) (-940))) (-15 -3339 ((-1193 |#1|) (-940))) (-15 -2837 ((-1193 |#1|) (-940))) (-15 -3851 ((-1193 |#1|) (-940))) (-15 -1694 ((-1193 |#1|) (-940))) (-15 -1402 ((-1193 |#1|) (-940))) (-15 -2162 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -2796 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -3248 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -1405 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -2999 ((-3 (-1193 |#1|) "failed") (-1193 |#1|))) (-15 -4370 ((-1193 |#1|) (-940))) (-15 -4370 ((-1193 |#1|) (-940) (-940))) (-15 -2975 ((-1193 |#1|) (-1193 |#1|))) (-15 -1792 ((-977 (-1193 |#1|)) (-1193 |#1|)))) -((-1626 (((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|) 38))) -(((-369 |#1| |#2| |#3|) (-10 -7 (-15 -1626 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) (-360) (-1264 |#1|) (-1264 |#2|)) (T -369)) -((-1626 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3))))) -(-10 -7 (-15 -1626 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2536 (((-112) $) NIL)) (-3570 (((-783)) NIL)) (-3832 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-2063 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) NIL (|has| |#1| (-379)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-2496 (($ (-1288 |#1|)) NIL)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| |#1| (-379)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3712 (($) NIL (|has| |#1| (-379)))) (-2616 (((-112) $) NIL (|has| |#1| (-379)))) (-2824 (($ $ (-783)) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2171 (((-112) $) NIL)) (-3359 (((-940) $) NIL (|has| |#1| (-379))) (((-845 (-940)) $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2486 (((-112) $) NIL)) (-3121 (($) NIL (|has| |#1| (-379)))) (-2882 (((-112) $) NIL (|has| |#1| (-379)))) (-2595 ((|#1| $) NIL) (($ $ (-940)) NIL (|has| |#1| (-379)))) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4293 (((-1193 |#1|) $) NIL) (((-1193 $) $ (-940)) NIL (|has| |#1| (-379)))) (-3787 (((-940) $) NIL (|has| |#1| (-379)))) (-2089 (((-1193 |#1|) $) NIL (|has| |#1| (-379)))) (-3922 (((-1193 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1193 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4010 (($ $ (-1193 |#1|)) NIL (|has| |#1| (-379)))) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| |#1| (-379)) CONST)) (-2411 (($ (-940)) NIL (|has| |#1| (-379)))) (-3464 (((-112) $) NIL)) (-3116 (((-1141) $) NIL)) (-2549 (($) NIL (|has| |#1| (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL (|has| |#1| (-379)))) (-1452 (((-430 $) $) NIL)) (-3835 (((-845 (-940))) NIL) (((-940)) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-3168 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3181 (((-135)) NIL)) (-4107 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2196 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3881 (((-1193 |#1|)) NIL)) (-4223 (($) NIL (|has| |#1| (-379)))) (-2174 (($) NIL (|has| |#1| (-379)))) (-4314 (((-1288 |#1|) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-4276 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-4134 (((-112) $ $) NIL)) (-1736 (((-112) $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3157 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-370 |#1| |#2|) (-339 |#1|) (-360) (-940)) (T -370)) +((-2569 ((|#1| (-1194 |#2|)) 59))) +(((-367 |#1| |#2|) (-10 -7 (-15 -2569 (|#1| (-1194 |#2|)))) (-13 (-414) (-10 -7 (-15 -3515 (|#1| |#2|)) (-15 -2327 ((-941) |#1|)) (-15 -2469 ((-1289 |#1|) (-941))) (-15 -4237 (|#1| |#1|)))) (-360)) (T -367)) +((-2569 (*1 *2 *3) (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-4 *2 (-13 (-414) (-10 -7 (-15 -3515 (*2 *4)) (-15 -2327 ((-941) *2)) (-15 -2469 ((-1289 *2) (-941))) (-15 -4237 (*2 *2))))) (-5 *1 (-367 *2 *4))))) +(-10 -7 (-15 -2569 (|#1| (-1194 |#2|)))) +((-1475 (((-978 (-1194 |#1|)) (-1194 |#1|)) 49)) (-1876 (((-1194 |#1|) (-941) (-941)) 154) (((-1194 |#1|) (-941)) 150)) (-2798 (((-112) (-1194 |#1|)) 107)) (-3475 (((-941) (-941)) 85)) (-4048 (((-941) (-941)) 92)) (-3094 (((-941) (-941)) 83)) (-3547 (((-112) (-1194 |#1|)) 111)) (-3976 (((-3 (-1194 |#1|) "failed") (-1194 |#1|)) 135)) (-3332 (((-3 (-1194 |#1|) "failed") (-1194 |#1|)) 140)) (-3674 (((-3 (-1194 |#1|) "failed") (-1194 |#1|)) 139)) (-4028 (((-3 (-1194 |#1|) "failed") (-1194 |#1|)) 138)) (-3912 (((-3 (-1194 |#1|) "failed") (-1194 |#1|)) 131)) (-4403 (((-1194 |#1|) (-1194 |#1|)) 71)) (-4400 (((-1194 |#1|) (-941)) 145)) (-3633 (((-1194 |#1|) (-941)) 148)) (-2900 (((-1194 |#1|) (-941)) 147)) (-1723 (((-1194 |#1|) (-941)) 146)) (-3709 (((-1194 |#1|) (-941)) 143))) +(((-368 |#1|) (-10 -7 (-15 -2798 ((-112) (-1194 |#1|))) (-15 -3547 ((-112) (-1194 |#1|))) (-15 -3094 ((-941) (-941))) (-15 -3475 ((-941) (-941))) (-15 -4048 ((-941) (-941))) (-15 -3709 ((-1194 |#1|) (-941))) (-15 -4400 ((-1194 |#1|) (-941))) (-15 -1723 ((-1194 |#1|) (-941))) (-15 -2900 ((-1194 |#1|) (-941))) (-15 -3633 ((-1194 |#1|) (-941))) (-15 -3912 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -3976 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -4028 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -3674 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -3332 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -1876 ((-1194 |#1|) (-941))) (-15 -1876 ((-1194 |#1|) (-941) (-941))) (-15 -4403 ((-1194 |#1|) (-1194 |#1|))) (-15 -1475 ((-978 (-1194 |#1|)) (-1194 |#1|)))) (-360)) (T -368)) +((-1475 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-978 (-1194 *4))) (-5 *1 (-368 *4)) (-5 *3 (-1194 *4)))) (-4403 (*1 *2 *2) (-12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1876 (*1 *2 *3 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1876 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3332 (*1 *2 *2) (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3674 (*1 *2 *2) (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-4028 (*1 *2 *2) (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3976 (*1 *2 *2) (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3912 (*1 *2 *2) (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3633 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4048 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4))))) +(-10 -7 (-15 -2798 ((-112) (-1194 |#1|))) (-15 -3547 ((-112) (-1194 |#1|))) (-15 -3094 ((-941) (-941))) (-15 -3475 ((-941) (-941))) (-15 -4048 ((-941) (-941))) (-15 -3709 ((-1194 |#1|) (-941))) (-15 -4400 ((-1194 |#1|) (-941))) (-15 -1723 ((-1194 |#1|) (-941))) (-15 -2900 ((-1194 |#1|) (-941))) (-15 -3633 ((-1194 |#1|) (-941))) (-15 -3912 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -3976 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -4028 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -3674 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -3332 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -1876 ((-1194 |#1|) (-941))) (-15 -1876 ((-1194 |#1|) (-941) (-941))) (-15 -4403 ((-1194 |#1|) (-1194 |#1|))) (-15 -1475 ((-978 (-1194 |#1|)) (-1194 |#1|)))) +((-3606 (((-3 (-657 |#3|) "failed") (-657 |#3|) |#3|) 38))) +(((-369 |#1| |#2| |#3|) (-10 -7 (-15 -3606 ((-3 (-657 |#3|) "failed") (-657 |#3|) |#3|))) (-360) (-1265 |#1|) (-1265 |#2|)) (T -369)) +((-3606 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3))))) +(-10 -7 (-15 -3606 ((-3 (-657 |#3|) "failed") (-657 |#3|) |#3|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1388 (((-112) $) NIL)) (-4025 (((-784)) NIL)) (-2256 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-2266 (((-1211 (-941) (-784)) (-576)) NIL (|has| |#1| (-379)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) NIL (|has| |#1| (-379)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL)) (-2830 ((|#1| $) NIL)) (-4093 (($ (-1289 |#1|)) NIL)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| |#1| (-379)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2846 (($) NIL (|has| |#1| (-379)))) (-2798 (((-112) $) NIL (|has| |#1| (-379)))) (-4266 (($ $ (-784)) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4009 (((-112) $) NIL)) (-2650 (((-941) $) NIL (|has| |#1| (-379))) (((-846 (-941)) $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3994 (((-112) $) NIL)) (-2084 (($) NIL (|has| |#1| (-379)))) (-3547 (((-112) $) NIL (|has| |#1| (-379)))) (-3869 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-1955 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3604 (((-1194 |#1|) $) NIL) (((-1194 $) $ (-941)) NIL (|has| |#1| (-379)))) (-2327 (((-941) $) NIL (|has| |#1| (-379)))) (-2514 (((-1194 |#1|) $) NIL (|has| |#1| (-379)))) (-4348 (((-1194 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3905 (($ $ (-1194 |#1|)) NIL (|has| |#1| (-379)))) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| |#1| (-379)) CONST)) (-3146 (($ (-941)) NIL (|has| |#1| (-379)))) (-2395 (((-112) $) NIL)) (-1460 (((-1142) $) NIL)) (-4083 (($) NIL (|has| |#1| (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL (|has| |#1| (-379)))) (-1856 (((-430 $) $) NIL)) (-1559 (((-846 (-941))) NIL) (((-941)) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2495 (((-784) $) NIL (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1451 (((-135)) NIL)) (-2209 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-4265 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-2005 (((-1194 |#1|)) NIL)) (-4170 (($) NIL (|has| |#1| (-379)))) (-4039 (($) NIL (|has| |#1| (-379)))) (-3806 (((-1289 |#1|) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-379)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3414 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-2607 (((-112) $ $) NIL)) (-2137 (((-112) $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| |#1| (-379))) (($ $ (-784)) NIL (|has| |#1| (-379)))) (-2066 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-370 |#1| |#2|) (-339 |#1|) (-360) (-941)) (T -370)) NIL (-339 |#1|) -((-3071 (((-112) (-656 (-971 |#1|))) 41)) (-3790 (((-656 (-971 |#1|)) (-656 (-971 |#1|))) 53)) (-3328 (((-3 (-656 (-971 |#1|)) "failed") (-656 (-971 |#1|))) 48))) -(((-371 |#1| |#2|) (-10 -7 (-15 -3071 ((-112) (-656 (-971 |#1|)))) (-15 -3328 ((-3 (-656 (-971 |#1|)) "failed") (-656 (-971 |#1|)))) (-15 -3790 ((-656 (-971 |#1|)) (-656 (-971 |#1|))))) (-464) (-656 (-1197))) (T -371)) -((-3790 (*1 *2 *2) (-12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1197))))) (-3328 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1197))))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-112)) (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1197)))))) -(-10 -7 (-15 -3071 ((-112) (-656 (-971 |#1|)))) (-15 -3328 ((-3 (-656 (-971 |#1|)) "failed") (-656 (-971 |#1|)))) (-15 -3790 ((-656 (-971 |#1|)) (-656 (-971 |#1|))))) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783) $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-2486 (((-112) $) 17)) (-4158 ((|#1| $ (-576)) NIL)) (-1450 (((-576) $ (-576)) NIL)) (-2912 (($ (-1 |#1| |#1|) $) 34)) (-1477 (($ (-1 (-576) (-576)) $) 26)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 28)) (-3116 (((-1141) $) NIL)) (-3497 (((-656 (-2 (|:| |gen| |#1|) (|:| -2156 (-576)))) $) 30)) (-2117 (($ $ $) NIL)) (-3871 (($ $ $) NIL)) (-4113 (((-876) $) 40) (($ |#1|) NIL)) (-2950 (((-112) $ $) NIL)) (-4322 (($) 11 T CONST)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ |#1| (-576)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-372 |#1|) (-13 (-485) (-1059 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2201 ((-783) $)) (-15 -1450 ((-576) $ (-576))) (-15 -4158 (|#1| $ (-576))) (-15 -1477 ($ (-1 (-576) (-576)) $)) (-15 -2912 ($ (-1 |#1| |#1|) $)) (-15 -3497 ((-656 (-2 (|:| |gen| |#1|) (|:| -2156 (-576)))) $)))) (-1121)) (T -372)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) (-1450 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) (-2912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-372 *3)))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2156 (-576))))) (-5 *1 (-372 *3)) (-4 *3 (-1121))))) -(-13 (-485) (-1059 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2201 ((-783) $)) (-15 -1450 ((-576) $ (-576))) (-15 -4158 (|#1| $ (-576))) (-15 -1477 ($ (-1 (-576) (-576)) $)) (-15 -2912 ($ (-1 |#1| |#1|) $)) (-15 -3497 ((-656 (-2 (|:| |gen| |#1|) (|:| -2156 (-576)))) $)))) -((-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 13)) (-2390 (($ $) 14)) (-3589 (((-430 $) $) 34)) (-2171 (((-112) $) 30)) (-1669 (($ $) 19)) (-3115 (($ $ $) 25) (($ (-656 $)) NIL)) (-1452 (((-430 $) $) 35)) (-1946 (((-3 $ "failed") $ $) 24)) (-2812 (((-783) $) 28)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 39)) (-4134 (((-112) $ $) 16)) (-4047 (($ $ $) 37))) -(((-373 |#1|) (-10 -8 (-15 -4047 (|#1| |#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -2171 ((-112) |#1|)) (-15 -3589 ((-430 |#1|) |#1|)) (-15 -1452 ((-430 |#1|) |#1|)) (-15 -3889 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -2812 ((-783) |#1|)) (-15 -3115 (|#1| (-656 |#1|))) (-15 -3115 (|#1| |#1| |#1|)) (-15 -4134 ((-112) |#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -1432 ((-2 (|:| -2946 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#1|))) (-374)) (T -373)) -NIL -(-10 -8 (-15 -4047 (|#1| |#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -2171 ((-112) |#1|)) (-15 -3589 ((-430 |#1|) |#1|)) (-15 -1452 ((-430 |#1|) |#1|)) (-15 -3889 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -2812 ((-783) |#1|)) (-15 -3115 (|#1| (-656 |#1|))) (-15 -3115 (|#1| |#1| |#1|)) (-15 -4134 ((-112) |#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -1432 ((-2 (|:| -2946 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 81)) (-3589 (((-430 $) $) 80)) (-4386 (((-112) $ $) 65)) (-3170 (($) 18 T CONST)) (-1895 (($ $ $) 61)) (-1851 (((-3 $ "failed") $) 37)) (-1908 (($ $ $) 62)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-2171 (((-112) $) 79)) (-2486 (((-112) $) 35)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 78)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-1452 (((-430 $) $) 82)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2812 (((-783) $) 64)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ $) 73)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-2816 (((-112) (-657 (-972 |#1|))) 41)) (-2356 (((-657 (-972 |#1|)) (-657 (-972 |#1|))) 53)) (-3570 (((-3 (-657 (-972 |#1|)) "failed") (-657 (-972 |#1|))) 48))) +(((-371 |#1| |#2|) (-10 -7 (-15 -2816 ((-112) (-657 (-972 |#1|)))) (-15 -3570 ((-3 (-657 (-972 |#1|)) "failed") (-657 (-972 |#1|)))) (-15 -2356 ((-657 (-972 |#1|)) (-657 (-972 |#1|))))) (-464) (-657 (-1198))) (T -371)) +((-2356 (*1 *2 *2) (-12 (-5 *2 (-657 (-972 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-657 (-1198))))) (-3570 (*1 *2 *2) (|partial| -12 (-5 *2 (-657 (-972 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-657 (-1198))))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-464)) (-5 *2 (-112)) (-5 *1 (-371 *4 *5)) (-14 *5 (-657 (-1198)))))) +(-10 -7 (-15 -2816 ((-112) (-657 (-972 |#1|)))) (-15 -3570 ((-3 (-657 (-972 |#1|)) "failed") (-657 (-972 |#1|)))) (-15 -2356 ((-657 (-972 |#1|)) (-657 (-972 |#1|))))) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784) $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL)) (-2830 ((|#1| $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3994 (((-112) $) 17)) (-1656 ((|#1| $ (-576)) NIL)) (-3640 (((-576) $ (-576)) NIL)) (-3865 (($ (-1 |#1| |#1|) $) 34)) (-1555 (($ (-1 (-576) (-576)) $) 26)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 28)) (-1460 (((-1142) $) NIL)) (-1502 (((-657 (-2 (|:| |gen| |#1|) (|:| -4056 (-576)))) $) 30)) (-1587 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-3515 (((-877) $) 40) (($ |#1|) NIL)) (-4166 (((-112) $ $) NIL)) (-2725 (($) 11 T CONST)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL) (($ |#1| (-576)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-372 |#1|) (-13 (-485) (-1060 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2148 ((-784) $)) (-15 -3640 ((-576) $ (-576))) (-15 -1656 (|#1| $ (-576))) (-15 -1555 ($ (-1 (-576) (-576)) $)) (-15 -3865 ($ (-1 |#1| |#1|) $)) (-15 -1502 ((-657 (-2 (|:| |gen| |#1|) (|:| -4056 (-576)))) $)))) (-1122)) (T -372)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1122)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1122)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1122)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-372 *3)) (-4 *3 (-1122)))) (-3640 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1122)))) (-1656 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1122)))) (-1555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1122)))) (-3865 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-372 *3)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4056 (-576))))) (-5 *1 (-372 *3)) (-4 *3 (-1122))))) +(-13 (-485) (-1060 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2148 ((-784) $)) (-15 -3640 ((-576) $ (-576))) (-15 -1656 (|#1| $ (-576))) (-15 -1555 ($ (-1 (-576) (-576)) $)) (-15 -3865 ($ (-1 |#1| |#1|) $)) (-15 -1502 ((-657 (-2 (|:| |gen| |#1|) (|:| -4056 (-576)))) $)))) +((-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 13)) (-2361 (($ $) 14)) (-4215 (((-430 $) $) 34)) (-4009 (((-112) $) 30)) (-2098 (($ $) 19)) (-3431 (($ $ $) 25) (($ (-657 $)) NIL)) (-1856 (((-430 $) $) 35)) (-3409 (((-3 $ "failed") $ $) 24)) (-4164 (((-784) $) 28)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 39)) (-2607 (((-112) $ $) 16)) (-2995 (($ $ $) 37))) +(((-373 |#1|) (-10 -8 (-15 -2995 (|#1| |#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -4009 ((-112) |#1|)) (-15 -4215 ((-430 |#1|) |#1|)) (-15 -1856 ((-430 |#1|) |#1|)) (-15 -3977 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -4164 ((-784) |#1|)) (-15 -3431 (|#1| (-657 |#1|))) (-15 -3431 (|#1| |#1| |#1|)) (-15 -2607 ((-112) |#1| |#1|)) (-15 -2361 (|#1| |#1|)) (-15 -3422 ((-2 (|:| -4119 |#1|) (|:| -4453 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|))) (-374)) (T -373)) +NIL +(-10 -8 (-15 -2995 (|#1| |#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -4009 ((-112) |#1|)) (-15 -4215 ((-430 |#1|) |#1|)) (-15 -1856 ((-430 |#1|) |#1|)) (-15 -3977 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -4164 ((-784) |#1|)) (-15 -3431 (|#1| (-657 |#1|))) (-15 -3431 (|#1| |#1| |#1|)) (-15 -2607 ((-112) |#1| |#1|)) (-15 -2361 (|#1| |#1|)) (-15 -3422 ((-2 (|:| -4119 |#1|) (|:| -4453 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 81)) (-4215 (((-430 $) $) 80)) (-3210 (((-112) $ $) 65)) (-2515 (($) 18 T CONST)) (-3355 (($ $ $) 61)) (-3969 (((-3 $ "failed") $) 37)) (-3369 (($ $ $) 62)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-4009 (((-112) $) 79)) (-3994 (((-112) $) 35)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 78)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-1856 (((-430 $) $) 82)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-4164 (((-784) $) 64)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ $) 73)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-374) (-141)) (T -374)) -((-4047 (*1 *1 *1 *1) (-4 *1 (-374)))) -(-13 (-317) (-1242) (-248) (-10 -8 (-15 -4047 ($ $ $)) (-6 -4462) (-6 -4456))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-1957 (((-112) $ $) 7)) (-4319 ((|#2| $ |#2|) 14)) (-2548 (($ $ (-1179)) 19)) (-3354 ((|#2| $) 15)) (-3823 (($ |#1|) 21) (($ |#1| (-1179)) 20)) (-4149 ((|#1| $) 17)) (-2447 (((-1179) $) 10)) (-3709 (((-1179) $) 16)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2481 (($ $) 18)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) -(((-375 |#1| |#2|) (-141) (-1121) (-1121)) (T -375)) -((-3823 (*1 *1 *2) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3823 (*1 *1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1121)) (-4 *4 (-1121)))) (-2548 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-4149 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-1179)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-4319 (*1 *2 *1 *2) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) -(-13 (-1121) (-10 -8 (-15 -3823 ($ |t#1|)) (-15 -3823 ($ |t#1| (-1179))) (-15 -2548 ($ $ (-1179))) (-15 -2481 ($ $)) (-15 -4149 (|t#1| $)) (-15 -3709 ((-1179) $)) (-15 -3354 (|t#2| $)) (-15 -4319 (|t#2| $ |t#2|)))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-4319 ((|#1| $ |#1|) 31)) (-2548 (($ $ (-1179)) 23)) (-1763 (((-3 |#1| "failed") $) 30)) (-3354 ((|#1| $) 28)) (-3823 (($ (-400)) 22) (($ (-400) (-1179)) 21)) (-4149 (((-400) $) 25)) (-2447 (((-1179) $) NIL)) (-3709 (((-1179) $) 26)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 20)) (-2481 (($ $) 24)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 19))) -(((-376 |#1|) (-13 (-375 (-400) |#1|) (-10 -8 (-15 -1763 ((-3 |#1| "failed") $)))) (-1121)) (T -376)) -((-1763 (*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1121))))) -(-13 (-375 (-400) |#1|) (-10 -8 (-15 -1763 ((-3 |#1| "failed") $)))) -((-2272 (((-1288 (-701 |#2|)) (-1288 $)) 67)) (-3778 (((-701 |#2|) (-1288 $)) 139)) (-4038 ((|#2| $) 36)) (-3140 (((-701 |#2|) $ (-1288 $)) 142)) (-3592 (((-3 $ "failed") $) 89)) (-3789 ((|#2| $) 39)) (-2962 (((-1193 |#2|) $) 98)) (-1339 ((|#2| (-1288 $)) 122)) (-1581 (((-1193 |#2|) $) 32)) (-4393 (((-112)) 116)) (-2496 (($ (-1288 |#2|) (-1288 $)) 132)) (-1851 (((-3 $ "failed") $) 93)) (-3524 (((-112)) 111)) (-2344 (((-112)) 106)) (-1824 (((-112)) 58)) (-2112 (((-701 |#2|) (-1288 $)) 137)) (-2636 ((|#2| $) 35)) (-3417 (((-701 |#2|) $ (-1288 $)) 141)) (-1584 (((-3 $ "failed") $) 87)) (-1734 ((|#2| $) 38)) (-2631 (((-1193 |#2|) $) 97)) (-3223 ((|#2| (-1288 $)) 120)) (-1496 (((-1193 |#2|) $) 30)) (-2110 (((-112)) 115)) (-2598 (((-112)) 108)) (-1717 (((-112)) 56)) (-2826 (((-112)) 103)) (-2013 (((-112)) 117)) (-4314 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) 128)) (-3472 (((-112)) 113)) (-2638 (((-656 (-1288 |#2|))) 102)) (-3944 (((-112)) 114)) (-3666 (((-112)) 112)) (-2883 (((-112)) 51)) (-2283 (((-112)) 118))) -(((-377 |#1| |#2|) (-10 -8 (-15 -2962 ((-1193 |#2|) |#1|)) (-15 -2631 ((-1193 |#2|) |#1|)) (-15 -2638 ((-656 (-1288 |#2|)))) (-15 -3592 ((-3 |#1| "failed") |#1|)) (-15 -1584 ((-3 |#1| "failed") |#1|)) (-15 -1851 ((-3 |#1| "failed") |#1|)) (-15 -2344 ((-112))) (-15 -2598 ((-112))) (-15 -3524 ((-112))) (-15 -1717 ((-112))) (-15 -1824 ((-112))) (-15 -2826 ((-112))) (-15 -2283 ((-112))) (-15 -2013 ((-112))) (-15 -4393 ((-112))) (-15 -2110 ((-112))) (-15 -2883 ((-112))) (-15 -3944 ((-112))) (-15 -3666 ((-112))) (-15 -3472 ((-112))) (-15 -1581 ((-1193 |#2|) |#1|)) (-15 -1496 ((-1193 |#2|) |#1|)) (-15 -3778 ((-701 |#2|) (-1288 |#1|))) (-15 -2112 ((-701 |#2|) (-1288 |#1|))) (-15 -1339 (|#2| (-1288 |#1|))) (-15 -3223 (|#2| (-1288 |#1|))) (-15 -2496 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3789 (|#2| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -4038 (|#2| |#1|)) (-15 -2636 (|#2| |#1|)) (-15 -3140 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -3417 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -2272 ((-1288 (-701 |#2|)) (-1288 |#1|)))) (-378 |#2|) (-174)) (T -377)) -((-3472 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3666 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3944 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2883 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2110 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4393 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2013 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2283 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2826 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1824 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3524 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2598 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2344 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2638 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1288 *4))) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4))))) -(-10 -8 (-15 -2962 ((-1193 |#2|) |#1|)) (-15 -2631 ((-1193 |#2|) |#1|)) (-15 -2638 ((-656 (-1288 |#2|)))) (-15 -3592 ((-3 |#1| "failed") |#1|)) (-15 -1584 ((-3 |#1| "failed") |#1|)) (-15 -1851 ((-3 |#1| "failed") |#1|)) (-15 -2344 ((-112))) (-15 -2598 ((-112))) (-15 -3524 ((-112))) (-15 -1717 ((-112))) (-15 -1824 ((-112))) (-15 -2826 ((-112))) (-15 -2283 ((-112))) (-15 -2013 ((-112))) (-15 -4393 ((-112))) (-15 -2110 ((-112))) (-15 -2883 ((-112))) (-15 -3944 ((-112))) (-15 -3666 ((-112))) (-15 -3472 ((-112))) (-15 -1581 ((-1193 |#2|) |#1|)) (-15 -1496 ((-1193 |#2|) |#1|)) (-15 -3778 ((-701 |#2|) (-1288 |#1|))) (-15 -2112 ((-701 |#2|) (-1288 |#1|))) (-15 -1339 (|#2| (-1288 |#1|))) (-15 -3223 (|#2| (-1288 |#1|))) (-15 -2496 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3789 (|#2| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -4038 (|#2| |#1|)) (-15 -2636 (|#2| |#1|)) (-15 -3140 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -3417 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -2272 ((-1288 (-701 |#2|)) (-1288 |#1|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-2946 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-1765 (((-3 $ "failed") $ $) 20)) (-2272 (((-1288 (-701 |#1|)) (-1288 $)) 83)) (-3057 (((-1288 $)) 86)) (-3170 (($) 18 T CONST)) (-3235 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-2991 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-3778 (((-701 |#1|) (-1288 $)) 70)) (-4038 ((|#1| $) 79)) (-3140 (((-701 |#1|) $ (-1288 $)) 81)) (-3592 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-1578 (($ $ (-940)) 31)) (-3789 ((|#1| $) 77)) (-2962 (((-1193 |#1|) $) 47 (|has| |#1| (-568)))) (-1339 ((|#1| (-1288 $)) 72)) (-1581 (((-1193 |#1|) $) 68)) (-4393 (((-112)) 62)) (-2496 (($ (-1288 |#1|) (-1288 $)) 74)) (-1851 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-4135 (((-940)) 85)) (-3163 (((-112)) 59)) (-3107 (($ $ (-940)) 38)) (-3524 (((-112)) 55)) (-2344 (((-112)) 53)) (-1824 (((-112)) 57)) (-1386 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-2338 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-2112 (((-701 |#1|) (-1288 $)) 71)) (-2636 ((|#1| $) 80)) (-3417 (((-701 |#1|) $ (-1288 $)) 82)) (-1584 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-3303 (($ $ (-940)) 32)) (-1734 ((|#1| $) 78)) (-2631 (((-1193 |#1|) $) 48 (|has| |#1| (-568)))) (-3223 ((|#1| (-1288 $)) 73)) (-1496 (((-1193 |#1|) $) 69)) (-2110 (((-112)) 63)) (-2447 (((-1179) $) 10)) (-2598 (((-112)) 54)) (-1717 (((-112)) 56)) (-2826 (((-112)) 58)) (-3116 (((-1141) $) 11)) (-2013 (((-112)) 61)) (-4314 (((-1288 |#1|) $ (-1288 $)) 76) (((-701 |#1|) (-1288 $) (-1288 $)) 75)) (-1937 (((-656 (-971 |#1|)) (-1288 $)) 84)) (-3871 (($ $ $) 28)) (-3472 (((-112)) 67)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-2638 (((-656 (-1288 |#1|))) 49 (|has| |#1| (-568)))) (-3628 (($ $ $ $) 29)) (-3944 (((-112)) 65)) (-3485 (($ $ $) 27)) (-3666 (((-112)) 66)) (-2883 (((-112)) 64)) (-2283 (((-112)) 60)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-2995 (*1 *1 *1 *1) (-4 *1 (-374)))) +(-13 (-317) (-1243) (-248) (-10 -8 (-15 -2995 ($ $ $)) (-6 -4464) (-6 -4458))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) +((-3423 (((-112) $ $) 7)) (-3859 ((|#2| $ |#2|) 14)) (-3312 (($ $ (-1180)) 19)) (-3862 ((|#2| $) 15)) (-3179 (($ |#1|) 21) (($ |#1| (-1180)) 20)) (-2634 ((|#1| $) 17)) (-1708 (((-1180) $) 10)) (-2817 (((-1180) $) 16)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-3950 (($ $) 18)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) +(((-375 |#1| |#2|) (-141) (-1122) (-1122)) (T -375)) +((-3179 (*1 *1 *2) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-3179 (*1 *1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1122)) (-4 *4 (-1122)))) (-3312 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-3950 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-2634 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-1180)))) (-3862 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-3859 (*1 *2 *1 *2) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) +(-13 (-1122) (-10 -8 (-15 -3179 ($ |t#1|)) (-15 -3179 ($ |t#1| (-1180))) (-15 -3312 ($ $ (-1180))) (-15 -3950 ($ $)) (-15 -2634 (|t#1| $)) (-15 -2817 ((-1180) $)) (-15 -3862 (|t#2| $)) (-15 -3859 (|t#2| $ |t#2|)))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-3859 ((|#1| $ |#1|) 31)) (-3312 (($ $ (-1180)) 23)) (-2412 (((-3 |#1| "failed") $) 30)) (-3862 ((|#1| $) 28)) (-3179 (($ (-400)) 22) (($ (-400) (-1180)) 21)) (-2634 (((-400) $) 25)) (-1708 (((-1180) $) NIL)) (-2817 (((-1180) $) 26)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 20)) (-3950 (($ $) 24)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 19))) +(((-376 |#1|) (-13 (-375 (-400) |#1|) (-10 -8 (-15 -2412 ((-3 |#1| "failed") $)))) (-1122)) (T -376)) +((-2412 (*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1122))))) +(-13 (-375 (-400) |#1|) (-10 -8 (-15 -2412 ((-3 |#1| "failed") $)))) +((-3731 (((-1289 (-702 |#2|)) (-1289 $)) 67)) (-2259 (((-702 |#2|) (-1289 $)) 139)) (-2873 ((|#2| $) 36)) (-2246 (((-702 |#2|) $ (-1289 $)) 142)) (-4236 (((-3 $ "failed") $) 89)) (-2348 ((|#2| $) 39)) (-4270 (((-1194 |#2|) $) 98)) (-3612 ((|#2| (-1289 $)) 122)) (-4446 (((-1194 |#2|) $) 32)) (-3282 (((-112)) 116)) (-4093 (($ (-1289 |#2|) (-1289 $)) 132)) (-3969 (((-3 $ "failed") $) 93)) (-1738 (((-112)) 111)) (-3111 (((-112)) 106)) (-1790 (((-112)) 58)) (-1546 (((-702 |#2|) (-1289 $)) 137)) (-3001 ((|#2| $) 35)) (-3138 (((-702 |#2|) $ (-1289 $)) 141)) (-3157 (((-3 $ "failed") $) 87)) (-2115 ((|#2| $) 38)) (-2954 (((-1194 |#2|) $) 97)) (-1861 ((|#2| (-1289 $)) 120)) (-1720 (((-1194 |#2|) $) 30)) (-1525 (((-112)) 115)) (-3897 (((-112)) 108)) (-3110 (((-112)) 56)) (-4278 (((-112)) 103)) (-2931 (((-112)) 117)) (-3806 (((-1289 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) (-1289 $) (-1289 $)) 128)) (-2473 (((-112)) 113)) (-3020 (((-657 (-1289 |#2|))) 102)) (-1433 (((-112)) 114)) (-3692 (((-112)) 112)) (-3560 (((-112)) 51)) (-3844 (((-112)) 118))) +(((-377 |#1| |#2|) (-10 -8 (-15 -4270 ((-1194 |#2|) |#1|)) (-15 -2954 ((-1194 |#2|) |#1|)) (-15 -3020 ((-657 (-1289 |#2|)))) (-15 -4236 ((-3 |#1| "failed") |#1|)) (-15 -3157 ((-3 |#1| "failed") |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 -3111 ((-112))) (-15 -3897 ((-112))) (-15 -1738 ((-112))) (-15 -3110 ((-112))) (-15 -1790 ((-112))) (-15 -4278 ((-112))) (-15 -3844 ((-112))) (-15 -2931 ((-112))) (-15 -3282 ((-112))) (-15 -1525 ((-112))) (-15 -3560 ((-112))) (-15 -1433 ((-112))) (-15 -3692 ((-112))) (-15 -2473 ((-112))) (-15 -4446 ((-1194 |#2|) |#1|)) (-15 -1720 ((-1194 |#2|) |#1|)) (-15 -2259 ((-702 |#2|) (-1289 |#1|))) (-15 -1546 ((-702 |#2|) (-1289 |#1|))) (-15 -3612 (|#2| (-1289 |#1|))) (-15 -1861 (|#2| (-1289 |#1|))) (-15 -4093 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -2348 (|#2| |#1|)) (-15 -2115 (|#2| |#1|)) (-15 -2873 (|#2| |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -2246 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3138 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3731 ((-1289 (-702 |#2|)) (-1289 |#1|)))) (-378 |#2|) (-174)) (T -377)) +((-2473 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3692 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1433 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3560 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1525 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3282 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2931 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3844 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4278 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1790 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3110 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1738 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3897 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3111 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3020 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-657 (-1289 *4))) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4))))) +(-10 -8 (-15 -4270 ((-1194 |#2|) |#1|)) (-15 -2954 ((-1194 |#2|) |#1|)) (-15 -3020 ((-657 (-1289 |#2|)))) (-15 -4236 ((-3 |#1| "failed") |#1|)) (-15 -3157 ((-3 |#1| "failed") |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 -3111 ((-112))) (-15 -3897 ((-112))) (-15 -1738 ((-112))) (-15 -3110 ((-112))) (-15 -1790 ((-112))) (-15 -4278 ((-112))) (-15 -3844 ((-112))) (-15 -2931 ((-112))) (-15 -3282 ((-112))) (-15 -1525 ((-112))) (-15 -3560 ((-112))) (-15 -1433 ((-112))) (-15 -3692 ((-112))) (-15 -2473 ((-112))) (-15 -4446 ((-1194 |#2|) |#1|)) (-15 -1720 ((-1194 |#2|) |#1|)) (-15 -2259 ((-702 |#2|) (-1289 |#1|))) (-15 -1546 ((-702 |#2|) (-1289 |#1|))) (-15 -3612 (|#2| (-1289 |#1|))) (-15 -1861 (|#2| (-1289 |#1|))) (-15 -4093 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -2348 (|#2| |#1|)) (-15 -2115 (|#2| |#1|)) (-15 -2873 (|#2| |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -2246 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3138 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3731 ((-1289 (-702 |#2|)) (-1289 |#1|)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-4119 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-2423 (((-3 $ "failed") $ $) 20)) (-3731 (((-1289 (-702 |#1|)) (-1289 $)) 83)) (-2672 (((-1289 $)) 86)) (-2515 (($) 18 T CONST)) (-1992 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) 45 (|has| |#1| (-568)))) (-3247 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-2259 (((-702 |#1|) (-1289 $)) 70)) (-2873 ((|#1| $) 79)) (-2246 (((-702 |#1|) $ (-1289 $)) 81)) (-4236 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-4408 (($ $ (-941)) 31)) (-2348 ((|#1| $) 77)) (-4270 (((-1194 |#1|) $) 47 (|has| |#1| (-568)))) (-3612 ((|#1| (-1289 $)) 72)) (-4446 (((-1194 |#1|) $) 68)) (-3282 (((-112)) 62)) (-4093 (($ (-1289 |#1|) (-1289 $)) 74)) (-3969 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-4343 (((-941)) 85)) (-2449 (((-112)) 59)) (-3152 (($ $ (-941)) 38)) (-1738 (((-112)) 55)) (-3111 (((-112)) 53)) (-1790 (((-112)) 57)) (-2427 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) 46 (|has| |#1| (-568)))) (-3047 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-1546 (((-702 |#1|) (-1289 $)) 71)) (-3001 ((|#1| $) 80)) (-3138 (((-702 |#1|) $ (-1289 $)) 82)) (-3157 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-3296 (($ $ (-941)) 32)) (-2115 ((|#1| $) 78)) (-2954 (((-1194 |#1|) $) 48 (|has| |#1| (-568)))) (-1861 ((|#1| (-1289 $)) 73)) (-1720 (((-1194 |#1|) $) 69)) (-1525 (((-112)) 63)) (-1708 (((-1180) $) 10)) (-3897 (((-112)) 54)) (-3110 (((-112)) 56)) (-4278 (((-112)) 58)) (-1460 (((-1142) $) 11)) (-2931 (((-112)) 61)) (-3806 (((-1289 |#1|) $ (-1289 $)) 76) (((-702 |#1|) (-1289 $) (-1289 $)) 75)) (-3522 (((-657 (-972 |#1|)) (-1289 $)) 84)) (-1911 (($ $ $) 28)) (-2473 (((-112)) 67)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-3020 (((-657 (-1289 |#1|))) 49 (|has| |#1| (-568)))) (-3280 (($ $ $ $) 29)) (-1433 (((-112)) 65)) (-2566 (($ $ $) 27)) (-3692 (((-112)) 66)) (-3560 (((-112)) 64)) (-3844 (((-112)) 60)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 33)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-378 |#1|) (-141) (-174)) (T -378)) -((-3057 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-378 *3)))) (-4135 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-940)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-656 (-971 *4))))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1288 (-701 *4))))) (-3417 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3140 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1734 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-4314 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1288 *4)))) (-4314 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2496 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3)))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3)))) (-3472 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3666 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3944 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2883 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2110 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4393 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2013 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2283 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3163 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2826 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1824 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1717 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3524 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2598 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2344 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1851 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1584 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-3592 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2638 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-656 (-1288 *3))))) (-2631 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1193 *3)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1193 *3)))) (-1386 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2704 (-656 *1)))) (-4 *1 (-378 *3)))) (-3235 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2704 (-656 *1)))) (-4 *1 (-378 *3)))) (-2338 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-2991 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-2946 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(-13 (-756 |t#1|) (-10 -8 (-15 -3057 ((-1288 $))) (-15 -4135 ((-940))) (-15 -1937 ((-656 (-971 |t#1|)) (-1288 $))) (-15 -2272 ((-1288 (-701 |t#1|)) (-1288 $))) (-15 -3417 ((-701 |t#1|) $ (-1288 $))) (-15 -3140 ((-701 |t#1|) $ (-1288 $))) (-15 -2636 (|t#1| $)) (-15 -4038 (|t#1| $)) (-15 -1734 (|t#1| $)) (-15 -3789 (|t#1| $)) (-15 -4314 ((-1288 |t#1|) $ (-1288 $))) (-15 -4314 ((-701 |t#1|) (-1288 $) (-1288 $))) (-15 -2496 ($ (-1288 |t#1|) (-1288 $))) (-15 -3223 (|t#1| (-1288 $))) (-15 -1339 (|t#1| (-1288 $))) (-15 -2112 ((-701 |t#1|) (-1288 $))) (-15 -3778 ((-701 |t#1|) (-1288 $))) (-15 -1496 ((-1193 |t#1|) $)) (-15 -1581 ((-1193 |t#1|) $)) (-15 -3472 ((-112))) (-15 -3666 ((-112))) (-15 -3944 ((-112))) (-15 -2883 ((-112))) (-15 -2110 ((-112))) (-15 -4393 ((-112))) (-15 -2013 ((-112))) (-15 -2283 ((-112))) (-15 -3163 ((-112))) (-15 -2826 ((-112))) (-15 -1824 ((-112))) (-15 -1717 ((-112))) (-15 -3524 ((-112))) (-15 -2598 ((-112))) (-15 -2344 ((-112))) (IF (|has| |t#1| (-568)) (PROGN (-15 -1851 ((-3 $ "failed") $)) (-15 -1584 ((-3 $ "failed") $)) (-15 -3592 ((-3 $ "failed") $)) (-15 -2638 ((-656 (-1288 |t#1|)))) (-15 -2631 ((-1193 |t#1|) $)) (-15 -2962 ((-1193 |t#1|) $)) (-15 -1386 ((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed"))) (-15 -3235 ((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed"))) (-15 -2338 ((-3 $ "failed"))) (-15 -2991 ((-3 $ "failed"))) (-15 -2946 ((-3 $ "failed"))) (-6 -4461)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-2201 (((-783)) 17)) (-4370 (($) 14)) (-3787 (((-940) $) 15)) (-2447 (((-1179) $) 10)) (-2411 (($ (-940)) 16)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) +((-2672 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1289 *1)) (-4 *1 (-378 *3)))) (-4343 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-941)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-657 (-972 *4))))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1289 (-702 *4))))) (-3138 (*1 *2 *1 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-702 *4)))) (-2246 (*1 *2 *1 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-702 *4)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2873 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2115 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2348 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3806 (*1 *2 *1 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1289 *4)))) (-3806 (*1 *2 *3 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-702 *4)))) (-4093 (*1 *1 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-1289 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4)))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-702 *4)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-702 *4)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1194 *3)))) (-4446 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1194 *3)))) (-2473 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3692 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1433 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3560 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1525 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3282 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2931 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3844 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2449 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4278 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1790 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3110 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1738 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3897 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3111 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3969 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-3157 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-4236 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-3020 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-657 (-1289 *3))))) (-2954 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1194 *3)))) (-4270 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1194 *3)))) (-2427 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2469 (-657 *1)))) (-4 *1 (-378 *3)))) (-1992 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2469 (-657 *1)))) (-4 *1 (-378 *3)))) (-3047 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-3247 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-4119 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) +(-13 (-757 |t#1|) (-10 -8 (-15 -2672 ((-1289 $))) (-15 -4343 ((-941))) (-15 -3522 ((-657 (-972 |t#1|)) (-1289 $))) (-15 -3731 ((-1289 (-702 |t#1|)) (-1289 $))) (-15 -3138 ((-702 |t#1|) $ (-1289 $))) (-15 -2246 ((-702 |t#1|) $ (-1289 $))) (-15 -3001 (|t#1| $)) (-15 -2873 (|t#1| $)) (-15 -2115 (|t#1| $)) (-15 -2348 (|t#1| $)) (-15 -3806 ((-1289 |t#1|) $ (-1289 $))) (-15 -3806 ((-702 |t#1|) (-1289 $) (-1289 $))) (-15 -4093 ($ (-1289 |t#1|) (-1289 $))) (-15 -1861 (|t#1| (-1289 $))) (-15 -3612 (|t#1| (-1289 $))) (-15 -1546 ((-702 |t#1|) (-1289 $))) (-15 -2259 ((-702 |t#1|) (-1289 $))) (-15 -1720 ((-1194 |t#1|) $)) (-15 -4446 ((-1194 |t#1|) $)) (-15 -2473 ((-112))) (-15 -3692 ((-112))) (-15 -1433 ((-112))) (-15 -3560 ((-112))) (-15 -1525 ((-112))) (-15 -3282 ((-112))) (-15 -2931 ((-112))) (-15 -3844 ((-112))) (-15 -2449 ((-112))) (-15 -4278 ((-112))) (-15 -1790 ((-112))) (-15 -3110 ((-112))) (-15 -1738 ((-112))) (-15 -3897 ((-112))) (-15 -3111 ((-112))) (IF (|has| |t#1| (-568)) (PROGN (-15 -3969 ((-3 $ "failed") $)) (-15 -3157 ((-3 $ "failed") $)) (-15 -4236 ((-3 $ "failed") $)) (-15 -3020 ((-657 (-1289 |t#1|)))) (-15 -2954 ((-1194 |t#1|) $)) (-15 -4270 ((-1194 |t#1|) $)) (-15 -2427 ((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed"))) (-15 -1992 ((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed"))) (-15 -3047 ((-3 $ "failed"))) (-15 -3247 ((-3 $ "failed"))) (-15 -4119 ((-3 $ "failed"))) (-6 -4463)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-733) . T) ((-757 |#1|) . T) ((-774) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-2148 (((-784)) 17)) (-1876 (($) 14)) (-2327 (((-941) $) 15)) (-1708 (((-1180) $) 10)) (-3146 (($ (-941)) 16)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) (((-379) (-141)) (T -379)) -((-2201 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-379)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-940)))) (-4370 (*1 *1) (-4 *1 (-379)))) -(-13 (-1121) (-10 -8 (-15 -2201 ((-783))) (-15 -2411 ($ (-940))) (-15 -3787 ((-940) $)) (-15 -4370 ($)))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-2637 (((-701 |#2|) (-1288 $)) 45)) (-2496 (($ (-1288 |#2|) (-1288 $)) 39)) (-1481 (((-701 |#2|) $ (-1288 $)) 47)) (-1790 ((|#2| (-1288 $)) 13)) (-4314 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) 27))) -(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -2637 ((-701 |#2|) (-1288 |#1|))) (-15 -1790 (|#2| (-1288 |#1|))) (-15 -2496 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1481 ((-701 |#2|) |#1| (-1288 |#1|)))) (-381 |#2| |#3|) (-174) (-1264 |#2|)) (T -380)) -NIL -(-10 -8 (-15 -2637 ((-701 |#2|) (-1288 |#1|))) (-15 -1790 (|#2| (-1288 |#1|))) (-15 -2496 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1481 ((-701 |#2|) |#1| (-1288 |#1|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-2637 (((-701 |#1|) (-1288 $)) 53)) (-3832 ((|#1| $) 59)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2496 (($ (-1288 |#1|) (-1288 $)) 55)) (-1481 (((-701 |#1|) $ (-1288 $)) 60)) (-1851 (((-3 $ "failed") $) 37)) (-4135 (((-940)) 61)) (-2486 (((-112) $) 35)) (-2595 ((|#1| $) 58)) (-4293 ((|#2| $) 51 (|has| |#1| (-374)))) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1790 ((|#1| (-1288 $)) 54)) (-4314 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-4276 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4358 ((|#2| $) 52)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-381 |#1| |#2|) (-141) (-174) (-1264 |t#1|)) (T -381)) -((-4135 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-940)))) (-1481 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) (-2595 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) (-4314 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *4)))) (-4314 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-2496 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) (-4 *1 (-381 *4 *5)) (-4 *5 (-1264 *4)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1264 *2)) (-4 *2 (-174)))) (-2637 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) (-4 *2 (-1264 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -4135 ((-940))) (-15 -1481 ((-701 |t#1|) $ (-1288 $))) (-15 -3832 (|t#1| $)) (-15 -2595 (|t#1| $)) (-15 -4314 ((-1288 |t#1|) $ (-1288 $))) (-15 -4314 ((-701 |t#1|) (-1288 $) (-1288 $))) (-15 -2496 ($ (-1288 |t#1|) (-1288 $))) (-15 -1790 (|t#1| (-1288 $))) (-15 -2637 ((-701 |t#1|) (-1288 $))) (-15 -4358 (|t#2| $)) (IF (|has| |t#1| (-374)) (-15 -4293 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-4324 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2721 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2423 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2423 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2721 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4324 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1238) (-384 |#1|) (-1238) (-384 |#3|)) (T -382)) -((-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5))))) -(-10 -7 (-15 -2423 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2721 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4324 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2919 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3519 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2380 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4204 (($ $) 25)) (-3539 (((-576) (-1 (-112) |#2|) $) NIL) (((-576) |#2| $) 11) (((-576) |#2| $ (-576)) NIL)) (-2748 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-383 |#1| |#2|) (-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2919 ((-112) |#1|)) (-15 -2380 (|#1| |#1|)) (-15 -2748 (|#1| |#1| |#1|)) (-15 -3539 ((-576) |#2| |#1| (-576))) (-15 -3539 ((-576) |#2| |#1|)) (-15 -3539 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2919 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2380 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4204 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-384 |#2|) (-1238)) (T -383)) -NIL -(-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2919 ((-112) |#1|)) (-15 -2380 (|#1| |#1|)) (-15 -2748 (|#1| |#1| |#1|)) (-15 -3539 ((-576) |#2| |#1| (-576))) (-15 -3539 ((-576) |#2| |#1|)) (-15 -3539 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2919 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2380 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4204 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3657 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465))))) (-2380 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-4234 (((-112) $ (-783)) 8)) (-4268 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-1542 (($ $) 93 (|has| $ (-6 -4465)))) (-4204 (($ $) 103)) (-3841 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) 52)) (-3539 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1991 (($ (-783) |#1|) 70)) (-3215 (((-112) $ (-783)) 9)) (-1605 (((-576) $) 44 (|has| (-576) (-861)))) (-2907 (($ $ $) 85 (|has| |#1| (-861)))) (-2748 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1829 (((-576) $) 45 (|has| (-576) (-861)))) (-3777 (($ $ $) 86 (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3386 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2863 (((-656 (-576)) $) 47)) (-1389 (((-112) (-576) $) 48)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1755 ((|#1| $) 43 (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4267 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) 49)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-2335 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3218 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-4287 (($ $) 13)) (-1556 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 72)) (-2767 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3975 (((-112) $ $) 89 (|has| |#1| (-861)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3984 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3963 (((-112) $ $) 90 (|has| |#1| (-861)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-384 |#1|) (-141) (-1238)) (T -384)) -((-2748 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-4204 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)))) (-2380 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-2919 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-3539 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) (-5 *2 (-576)))) (-3539 (*1 *2 *3 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-576)))) (-3539 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)))) (-2748 (*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) (-2380 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) (-2919 (*1 *2 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-861)) (-5 *2 (-112)))) (-3218 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4465)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-1542 (*1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-384 *2)) (-4 *2 (-1238)))) (-3519 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4465)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) (-3519 (*1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861))))) -(-13 (-663 |t#1|) (-10 -8 (-6 -4464) (-15 -2748 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4204 ($ $)) (-15 -2380 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2919 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3539 ((-576) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -3539 ((-576) |t#1| $)) (-15 -3539 ((-576) |t#1| $ (-576)))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-6 (-861)) (-15 -2748 ($ $ $)) (-15 -2380 ($ $)) (-15 -2919 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4465)) (PROGN (-15 -3218 ($ $ $ (-576))) (-15 -1542 ($ $)) (-15 -3519 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-15 -3519 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1418 (((-656 |#1|) $) 37)) (-4034 (($ $ (-783)) 38)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-4085 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 41)) (-4027 (($ $) 39)) (-3324 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 42)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2145 (($ $ |#1| $) 36) (($ $ (-656 |#1|) (-656 $)) 35)) (-2196 (((-783) $) 43)) (-4125 (($ $ $) 34)) (-4113 (((-876) $) 12) (($ |#1|) 46) (((-1303 |#1| |#2|) $) 45) (((-1312 |#1| |#2|) $) 44)) (-2862 ((|#2| (-1312 |#1| |#2|) $) 47)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3250 (($ (-684 |#1|)) 40)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#2|) 33 (|has| |#2| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) -(((-385 |#1| |#2|) (-141) (-861) (-174)) (T -385)) -((-2862 (*1 *2 *3 *1) (-12 (-5 *3 (-1312 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-861)) (-4 *2 (-174)))) (-4113 (*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1303 *3 *4)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1312 *3 *4)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-783)))) (-3324 (*1 *2 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4085 (*1 *2 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3250 (*1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-4 *1 (-385 *3 *4)) (-4 *4 (-174)))) (-4027 (*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-4034 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-1418 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-656 *3)))) (-2145 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-861)) (-4 *5 (-174))))) -(-13 (-646 |t#2|) (-10 -8 (-15 -2862 (|t#2| (-1312 |t#1| |t#2|) $)) (-15 -4113 ($ |t#1|)) (-15 -4113 ((-1303 |t#1| |t#2|) $)) (-15 -4113 ((-1312 |t#1| |t#2|) $)) (-15 -2196 ((-783) $)) (-15 -3324 ((-1312 |t#1| |t#2|) (-1312 |t#1| |t#2|) $)) (-15 -4085 ((-1312 |t#1| |t#2|) (-1312 |t#1| |t#2|) $)) (-15 -3250 ($ (-684 |t#1|))) (-15 -4027 ($ $)) (-15 -4034 ($ $ (-783))) (-15 -1418 ((-656 |t#1|) $)) (-15 -2145 ($ $ |t#1| $)) (-15 -2145 ($ $ (-656 |t#1|) (-656 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-660 |#2|) . T) ((-646 |#2|) . T) ((-652 |#2|) . T) ((-729 |#2|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1121) . T) ((-1238) . T)) -((-2327 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-3957 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3633 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) -(((-386 |#1| |#2|) (-10 -7 (-15 -3957 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3633 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2327 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1238) (-13 (-384 |#1|) (-10 -7 (-6 -4465)))) (T -386)) -((-2327 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465)))))) (-3633 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465)))))) (-3957 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) -(-10 -7 (-15 -3957 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3633 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2327 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-1930 (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 22) (((-701 (-576)) (-701 $)) 14))) -(((-387 |#1| |#2|) (-10 -8 (-15 -1930 ((-701 (-576)) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-701 |#2|) (-701 |#1|)))) (-388 |#2|) (-1070)) (T -387)) -NIL -(-10 -8 (-15 -1930 ((-701 (-576)) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-701 |#2|) (-701 |#1|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1930 (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 29) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 41 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 40 (|has| |#1| (-651 (-576))))) (-2160 (((-701 |#1|) (-1288 $)) 32) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 31) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 39 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-1288 $)) 38 (|has| |#1| (-651 (-576))))) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) -(((-388 |#1|) (-141) (-1070)) (T -388)) -NIL -(-13 (-651 |t#1|) (-10 -7 (IF (|has| |t#1| (-651 (-576))) (-6 (-651 (-576))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 #0=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-651 #0#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1893 (((-656 (-304 (-971 (-171 |#1|)))) (-304 (-419 (-971 (-171 (-576))))) |#1|) 51) (((-656 (-304 (-971 (-171 |#1|)))) (-419 (-971 (-171 (-576)))) |#1|) 50) (((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-304 (-419 (-971 (-171 (-576)))))) |#1|) 47) (((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-419 (-971 (-171 (-576))))) |#1|) 41)) (-2785 (((-656 (-656 (-171 |#1|))) (-656 (-419 (-971 (-171 (-576))))) (-656 (-1197)) |#1|) 30) (((-656 (-171 |#1|)) (-419 (-971 (-171 (-576)))) |#1|) 18))) -(((-389 |#1|) (-10 -7 (-15 -1893 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -1893 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-304 (-419 (-971 (-171 (-576)))))) |#1|)) (-15 -1893 ((-656 (-304 (-971 (-171 |#1|)))) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -1893 ((-656 (-304 (-971 (-171 |#1|)))) (-304 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -2785 ((-656 (-171 |#1|)) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -2785 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-971 (-171 (-576))))) (-656 (-1197)) |#1|))) (-13 (-374) (-860))) (T -389)) -((-2785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 (-171 *5)))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860))))) (-2785 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 (-171 (-576)))))) (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-171 (-576))))) (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-971 (-171 (-576))))))) (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -1893 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -1893 ((-656 (-656 (-304 (-971 (-171 |#1|))))) (-656 (-304 (-419 (-971 (-171 (-576)))))) |#1|)) (-15 -1893 ((-656 (-304 (-971 (-171 |#1|)))) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -1893 ((-656 (-304 (-971 (-171 |#1|)))) (-304 (-419 (-971 (-171 (-576))))) |#1|)) (-15 -2785 ((-656 (-171 |#1|)) (-419 (-971 (-171 (-576)))) |#1|)) (-15 -2785 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-971 (-171 (-576))))) (-656 (-1197)) |#1|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 35)) (-2628 (((-576) $) 62)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-4087 (($ $) 136)) (-3586 (($ $) 98)) (-3435 (($ $) 90)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1462 (($ $) 47)) (-4386 (((-112) $ $) NIL)) (-3562 (($ $) 96)) (-3412 (($ $) 85)) (-1527 (((-576) $) 78)) (-3385 (($ $ (-576)) 73)) (-3612 (($ $) NIL)) (-3461 (($ $) NIL)) (-3170 (($) NIL T CONST)) (-4174 (($ $) 138)) (-2982 (((-3 (-576) "failed") $) 231) (((-3 (-419 (-576)) "failed") $) 227)) (-2317 (((-576) $) 229) (((-419 (-576)) $) 225)) (-1895 (($ $ $) NIL)) (-3432 (((-576) $ $) 125)) (-1851 (((-3 $ "failed") $) 141)) (-2356 (((-419 (-576)) $ (-783)) 232) (((-419 (-576)) $ (-783) (-783)) 224)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2758 (((-940)) 121) (((-940) (-940)) 122 (|has| $ (-6 -4455)))) (-2279 (((-112) $) 130)) (-2722 (($) 41)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL)) (-4256 (((-1293) (-783)) 191)) (-2399 (((-1293)) 196) (((-1293) (-783)) 197)) (-2414 (((-1293)) 198) (((-1293) (-783)) 199)) (-2424 (((-1293)) 194) (((-1293) (-783)) 195)) (-3359 (((-576) $) 68)) (-2486 (((-112) $) 40)) (-4005 (($ $ (-576)) NIL)) (-2874 (($ $) 51)) (-2595 (($ $) NIL)) (-3323 (((-112) $) 37)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2907 (($ $ $) NIL) (($) NIL (-12 (-2299 (|has| $ (-6 -4447))) (-2299 (|has| $ (-6 -4455)))))) (-3777 (($ $ $) NIL) (($) NIL (-12 (-2299 (|has| $ (-6 -4447))) (-2299 (|has| $ (-6 -4455)))))) (-1361 (((-576) $) 17)) (-3330 (($) 106) (($ $) 113)) (-2485 (($) 112) (($ $) 114)) (-2608 (($ $) 101)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 143)) (-2627 (((-940) (-576)) 46 (|has| $ (-6 -4455)))) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2701 (($ $) 60)) (-3058 (($ $) 135)) (-2633 (($ (-576) (-576)) 131) (($ (-576) (-576) (-940)) 132)) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4080 (((-576) $) 19)) (-1897 (($) 115)) (-2156 (($ $) 95)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-2539 (((-940)) 123) (((-940) (-940)) 124 (|has| $ (-6 -4455)))) (-4107 (($ $) 142) (($ $ (-783)) NIL)) (-1449 (((-940) (-576)) 50 (|has| $ (-6 -4455)))) (-3623 (($ $) NIL)) (-3474 (($ $) NIL)) (-3599 (($ $) NIL)) (-3448 (($ $) NIL)) (-3574 (($ $) 97)) (-3424 (($ $) 89)) (-1556 (((-390) $) 216) (((-227) $) 218) (((-907 (-390)) $) NIL) (((-1179) $) 202) (((-548) $) 214) (($ (-227)) 223)) (-4113 (((-876) $) 206) (($ (-576)) 228) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 228) (($ (-419 (-576))) NIL) (((-227) $) 219)) (-2910 (((-783)) NIL T CONST)) (-4081 (($ $) 137)) (-4252 (((-940)) 61) (((-940) (-940)) 80 (|has| $ (-6 -4455)))) (-2950 (((-112) $ $) NIL)) (-1869 (((-940)) 126)) (-3653 (($ $) 104)) (-3510 (($ $) 49) (($ $ $) 59)) (-4134 (((-112) $ $) NIL)) (-3632 (($ $) 102)) (-3487 (($ $) 39)) (-3673 (($ $) NIL)) (-3537 (($ $) NIL)) (-1972 (($ $) NIL)) (-3550 (($ $) NIL)) (-3664 (($ $) NIL)) (-3523 (($ $) NIL)) (-3642 (($ $) 103)) (-3498 (($ $) 52)) (-2366 (($ $) 58)) (-4313 (($) 36 T CONST)) (-4322 (($) 43 T CONST)) (-2172 (((-1179) $) 27) (((-1179) $ (-112)) 29) (((-1293) (-834) $) 30) (((-1293) (-834) $ (-112)) 31)) (-3157 (($ $) NIL) (($ $ (-783)) NIL)) (-3995 (((-112) $ $) 203)) (-3975 (((-112) $ $) 45)) (-3939 (((-112) $ $) 56)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 57)) (-4047 (($ $ $) 48) (($ $ (-576)) 42)) (-4037 (($ $) 38) (($ $ $) 53)) (-4026 (($ $ $) 72)) (** (($ $ (-940)) 83) (($ $ (-783)) NIL) (($ $ (-576)) 107) (($ $ (-419 (-576))) 154) (($ $ $) 145)) (* (($ (-940) $) 79) (($ (-783) $) NIL) (($ (-576) $) 84) (($ $ $) 71) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-390) (-13 (-416) (-238) (-626 (-1179)) (-840) (-625 (-227)) (-1223) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -4047 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2874 ($ $)) (-15 -3432 ((-576) $ $)) (-15 -3385 ($ $ (-576))) (-15 -2356 ((-419 (-576)) $ (-783))) (-15 -2356 ((-419 (-576)) $ (-783) (-783))) (-15 -3330 ($)) (-15 -2485 ($)) (-15 -1897 ($)) (-15 -3510 ($ $ $)) (-15 -3330 ($ $)) (-15 -2485 ($ $)) (-15 -2414 ((-1293))) (-15 -2414 ((-1293) (-783))) (-15 -2424 ((-1293))) (-15 -2424 ((-1293) (-783))) (-15 -2399 ((-1293))) (-15 -2399 ((-1293) (-783))) (-15 -4256 ((-1293) (-783))) (-6 -4455) (-6 -4447)))) (T -390)) -((** (*1 *1 *1 *1) (-5 *1 (-390))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2874 (*1 *1 *1) (-5 *1 (-390))) (-3432 (*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3385 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2356 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-2356 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-3330 (*1 *1) (-5 *1 (-390))) (-2485 (*1 *1) (-5 *1 (-390))) (-1897 (*1 *1) (-5 *1 (-390))) (-3510 (*1 *1 *1 *1) (-5 *1 (-390))) (-3330 (*1 *1 *1) (-5 *1 (-390))) (-2485 (*1 *1 *1) (-5 *1 (-390))) (-2414 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) (-2424 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) (-2399 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390))))) -(-13 (-416) (-238) (-626 (-1179)) (-840) (-625 (-227)) (-1223) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -4047 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2874 ($ $)) (-15 -3432 ((-576) $ $)) (-15 -3385 ($ $ (-576))) (-15 -2356 ((-419 (-576)) $ (-783))) (-15 -2356 ((-419 (-576)) $ (-783) (-783))) (-15 -3330 ($)) (-15 -2485 ($)) (-15 -1897 ($)) (-15 -3510 ($ $ $)) (-15 -3330 ($ $)) (-15 -2485 ($ $)) (-15 -2414 ((-1293))) (-15 -2414 ((-1293) (-783))) (-15 -2424 ((-1293))) (-15 -2424 ((-1293) (-783))) (-15 -2399 ((-1293))) (-15 -2399 ((-1293) (-783))) (-15 -4256 ((-1293) (-783))) (-6 -4455) (-6 -4447))) -((-4138 (((-656 (-304 (-971 |#1|))) (-304 (-419 (-971 (-576)))) |#1|) 46) (((-656 (-304 (-971 |#1|))) (-419 (-971 (-576))) |#1|) 45) (((-656 (-656 (-304 (-971 |#1|)))) (-656 (-304 (-419 (-971 (-576))))) |#1|) 42) (((-656 (-656 (-304 (-971 |#1|)))) (-656 (-419 (-971 (-576)))) |#1|) 36)) (-2426 (((-656 |#1|) (-419 (-971 (-576))) |#1|) 20) (((-656 (-656 |#1|)) (-656 (-419 (-971 (-576)))) (-656 (-1197)) |#1|) 30))) -(((-391 |#1|) (-10 -7 (-15 -4138 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-419 (-971 (-576)))) |#1|)) (-15 -4138 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-304 (-419 (-971 (-576))))) |#1|)) (-15 -4138 ((-656 (-304 (-971 |#1|))) (-419 (-971 (-576))) |#1|)) (-15 -4138 ((-656 (-304 (-971 |#1|))) (-304 (-419 (-971 (-576)))) |#1|)) (-15 -2426 ((-656 (-656 |#1|)) (-656 (-419 (-971 (-576)))) (-656 (-1197)) |#1|)) (-15 -2426 ((-656 |#1|) (-419 (-971 (-576))) |#1|))) (-13 (-860) (-374))) (T -391)) -((-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-971 (-576))))) (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-860) (-374))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 (-576))))) (-5 *2 (-656 (-304 (-971 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 (-304 (-971 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-971 (-576)))))) (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 (-576))))) (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374)))))) -(-10 -7 (-15 -4138 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-419 (-971 (-576)))) |#1|)) (-15 -4138 ((-656 (-656 (-304 (-971 |#1|)))) (-656 (-304 (-419 (-971 (-576))))) |#1|)) (-15 -4138 ((-656 (-304 (-971 |#1|))) (-419 (-971 (-576))) |#1|)) (-15 -4138 ((-656 (-304 (-971 |#1|))) (-304 (-419 (-971 (-576)))) |#1|)) (-15 -2426 ((-656 (-656 |#1|)) (-656 (-419 (-971 (-576)))) (-656 (-1197)) |#1|)) (-15 -2426 ((-656 |#1|) (-419 (-971 (-576))) |#1|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#2| "failed") $) 30)) (-2317 ((|#2| $) 32)) (-3310 (($ $) NIL)) (-2018 (((-783) $) 11)) (-2683 (((-656 $) $) 23)) (-4101 (((-112) $) NIL)) (-1619 (($ |#2| |#1|) 21)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-3988 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1700 ((|#2| $) 18)) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 51) (($ |#2|) 31)) (-3244 (((-656 |#1|) $) 20)) (-2707 ((|#1| $ |#2|) 55)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 33 T CONST)) (-2618 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) -(((-392 |#1| |#2|) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1070) (-861)) (T -392)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861))))) +((-2148 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-784)))) (-3146 (*1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-379)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-941)))) (-1876 (*1 *1) (-4 *1 (-379)))) +(-13 (-1122) (-10 -8 (-15 -2148 ((-784))) (-15 -3146 ($ (-941))) (-15 -2327 ((-941) $)) (-15 -1876 ($)))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3011 (((-702 |#2|) (-1289 $)) 45)) (-4093 (($ (-1289 |#2|) (-1289 $)) 39)) (-1584 (((-702 |#2|) $ (-1289 $)) 47)) (-1465 ((|#2| (-1289 $)) 13)) (-3806 (((-1289 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) (-1289 $) (-1289 $)) 27))) +(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -3011 ((-702 |#2|) (-1289 |#1|))) (-15 -1465 (|#2| (-1289 |#1|))) (-15 -4093 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -1584 ((-702 |#2|) |#1| (-1289 |#1|)))) (-381 |#2| |#3|) (-174) (-1265 |#2|)) (T -380)) +NIL +(-10 -8 (-15 -3011 ((-702 |#2|) (-1289 |#1|))) (-15 -1465 (|#2| (-1289 |#1|))) (-15 -4093 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -1584 ((-702 |#2|) |#1| (-1289 |#1|)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3011 (((-702 |#1|) (-1289 $)) 53)) (-2256 ((|#1| $) 59)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-4093 (($ (-1289 |#1|) (-1289 $)) 55)) (-1584 (((-702 |#1|) $ (-1289 $)) 60)) (-3969 (((-3 $ "failed") $) 37)) (-4343 (((-941)) 61)) (-3994 (((-112) $) 35)) (-3869 ((|#1| $) 58)) (-3604 ((|#2| $) 51 (|has| |#1| (-374)))) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1465 ((|#1| (-1289 $)) 54)) (-3806 (((-1289 |#1|) $ (-1289 $)) 57) (((-702 |#1|) (-1289 $) (-1289 $)) 56)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3414 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2948 ((|#2| $) 52)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-381 |#1| |#2|) (-141) (-174) (-1265 |t#1|)) (T -381)) +((-4343 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-941)))) (-1584 (*1 *2 *1 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1265 *2)) (-4 *2 (-174)))) (-3869 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1265 *2)) (-4 *2 (-174)))) (-3806 (*1 *2 *1 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-1289 *4)))) (-3806 (*1 *2 *3 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) (-4093 (*1 *1 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-1289 *1)) (-4 *4 (-174)) (-4 *1 (-381 *4 *5)) (-4 *5 (-1265 *4)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1265 *2)) (-4 *2 (-174)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1265 *3)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) (-4 *2 (-1265 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -4343 ((-941))) (-15 -1584 ((-702 |t#1|) $ (-1289 $))) (-15 -2256 (|t#1| $)) (-15 -3869 (|t#1| $)) (-15 -3806 ((-1289 |t#1|) $ (-1289 $))) (-15 -3806 ((-702 |t#1|) (-1289 $) (-1289 $))) (-15 -4093 ($ (-1289 |t#1|) (-1289 $))) (-15 -1465 (|t#1| (-1289 $))) (-15 -3011 ((-702 |t#1|) (-1289 $))) (-15 -2948 (|t#2| $)) (IF (|has| |t#1| (-374)) (-15 -3604 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-739) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3899 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3662 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4071 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3662 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3899 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1239) (-384 |#1|) (-1239) (-384 |#3|)) (T -382)) +((-3899 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1239)) (-4 *5 (-1239)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) (-3662 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1239)) (-4 *2 (-1239)) (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5))))) +(-10 -7 (-15 -4071 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3662 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3899 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3925 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1698 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1832 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3796 (($ $) 25)) (-3619 (((-576) (-1 (-112) |#2|) $) NIL) (((-576) |#2| $) 11) (((-576) |#2| $ (-576)) NIL)) (-1661 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-383 |#1| |#2|) (-10 -8 (-15 -1698 (|#1| |#1|)) (-15 -1698 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3925 ((-112) |#1|)) (-15 -1832 (|#1| |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -3619 ((-576) |#2| |#1| (-576))) (-15 -3619 ((-576) |#2| |#1|)) (-15 -3619 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3925 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1832 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -1661 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-384 |#2|) (-1239)) (T -383)) +NIL +(-10 -8 (-15 -1698 (|#1| |#1|)) (-15 -1698 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3925 ((-112) |#1|)) (-15 -1832 (|#1| |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -3619 ((-576) |#2| |#1| (-576))) (-15 -3619 ((-576) |#2| |#1|)) (-15 -3619 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3925 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1832 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -1661 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3590 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-1698 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4467))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4467))))) (-1832 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-4284 (((-112) $ (-784)) 8)) (-3719 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 60 (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-4072 (($ $) 93 (|has| $ (-6 -4467)))) (-3796 (($ $) 103)) (-1620 (($ $) 80 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#1| $) 79 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) 52)) (-3619 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1122)))) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-4096 (($ (-784) |#1|) 70)) (-1786 (((-112) $ (-784)) 9)) (-3363 (((-576) $) 44 (|has| (-576) (-862)))) (-3740 (($ $ $) 85 (|has| |#1| (-862)))) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1833 (((-576) $) 45 (|has| (-576) (-862)))) (-2249 (($ $ $) 86 (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-2225 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3309 (((-657 (-576)) $) 47)) (-4324 (((-112) (-576) $) 48)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3528 ((|#1| $) 43 (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1495 (($ $ |#1|) 42 (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) 49)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1256 (-576))) 71)) (-3395 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1818 (($ $ $ (-576)) 94 (|has| $ (-6 -4467)))) (-1899 (($ $) 13)) (-4136 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 72)) (-1637 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) 87 (|has| |#1| (-862)))) (-2913 (((-112) $ $) 89 (|has| |#1| (-862)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2925 (((-112) $ $) 88 (|has| |#1| (-862)))) (-2901 (((-112) $ $) 90 (|has| |#1| (-862)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-384 |#1|) (-141) (-1239)) (T -384)) +((-1661 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1239)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1239)))) (-1832 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1239)))) (-3925 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1239)) (-5 *2 (-112)))) (-3619 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1239)) (-5 *2 (-576)))) (-3619 (*1 *2 *3 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-576)))) (-3619 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)))) (-1661 (*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1239)) (-4 *2 (-862)))) (-1832 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1239)) (-4 *2 (-862)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1239)) (-4 *3 (-862)) (-5 *2 (-112)))) (-1818 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4467)) (-4 *1 (-384 *3)) (-4 *3 (-1239)))) (-4072 (*1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-384 *2)) (-4 *2 (-1239)))) (-1698 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4467)) (-4 *1 (-384 *3)) (-4 *3 (-1239)))) (-1698 (*1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-384 *2)) (-4 *2 (-1239)) (-4 *2 (-862))))) +(-13 (-664 |t#1|) (-10 -8 (-6 -4466) (-15 -1661 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3796 ($ $)) (-15 -1832 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3925 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3619 ((-576) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -3619 ((-576) |t#1| $)) (-15 -3619 ((-576) |t#1| $ (-576)))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-6 (-862)) (-15 -1661 ($ $ $)) (-15 -1832 ($ $)) (-15 -3925 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4467)) (PROGN (-15 -1818 ($ $ $ (-576))) (-15 -4072 ($ $)) (-15 -1698 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-15 -1698 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1122) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862))) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3375 (((-657 |#1|) $) 37)) (-2843 (($ $ (-784)) 38)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-2186 (((-1313 |#1| |#2|) (-1313 |#1| |#2|) $) 41)) (-2774 (($ $) 39)) (-3532 (((-1313 |#1| |#2|) (-1313 |#1| |#2|) $) 42)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3205 (($ $ |#1| $) 36) (($ $ (-657 |#1|) (-657 $)) 35)) (-4265 (((-784) $) 43)) (-3529 (($ $ $) 34)) (-3515 (((-877) $) 12) (($ |#1|) 46) (((-1304 |#1| |#2|) $) 45) (((-1313 |#1| |#2|) $) 44)) (-1735 ((|#2| (-1313 |#1| |#2|) $) 47)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-4050 (($ (-685 |#1|)) 40)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#2|) 33 (|has| |#2| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +(((-385 |#1| |#2|) (-141) (-862) (-174)) (T -385)) +((-1735 (*1 *2 *3 *1) (-12 (-5 *3 (-1313 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862)) (-4 *2 (-174)))) (-3515 (*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1304 *3 *4)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1313 *3 *4)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-784)))) (-3532 (*1 *2 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2186 (*1 *2 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-4050 (*1 *1 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4)) (-4 *4 (-174)))) (-2774 (*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-657 *3)))) (-3205 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3205 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-862)) (-4 *5 (-174))))) +(-13 (-646 |t#2|) (-10 -8 (-15 -1735 (|t#2| (-1313 |t#1| |t#2|) $)) (-15 -3515 ($ |t#1|)) (-15 -3515 ((-1304 |t#1| |t#2|) $)) (-15 -3515 ((-1313 |t#1| |t#2|) $)) (-15 -4265 ((-784) $)) (-15 -3532 ((-1313 |t#1| |t#2|) (-1313 |t#1| |t#2|) $)) (-15 -2186 ((-1313 |t#1| |t#2|) (-1313 |t#1| |t#2|) $)) (-15 -4050 ($ (-685 |t#1|))) (-15 -2774 ($ $)) (-15 -2843 ($ $ (-784))) (-15 -3375 ((-657 |t#1|) $)) (-15 -3205 ($ $ |t#1| $)) (-15 -3205 ($ $ (-657 |t#1|) (-657 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#2|) . T) ((-661 |#2|) . T) ((-646 |#2|) . T) ((-653 |#2|) . T) ((-730 |#2|) . T) ((-1073 |#2|) . T) ((-1078 |#2|) . T) ((-1122) . T) ((-1239) . T)) +((-2939 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-3366 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3323 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) +(((-386 |#1| |#2|) (-10 -7 (-15 -3366 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3323 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2939 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1239) (-13 (-384 |#1|) (-10 -7 (-6 -4467)))) (T -386)) +((-2939 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467)))))) (-3323 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467)))))) (-3366 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467))))))) +(-10 -7 (-15 -3366 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3323 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2939 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-3439 (((-702 |#2|) (-702 $)) NIL) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 22) (((-702 (-576)) (-702 $)) 14))) +(((-387 |#1| |#2|) (-10 -8 (-15 -3439 ((-702 (-576)) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-702 |#2|) (-702 |#1|)))) (-388 |#2|) (-1071)) (T -387)) +NIL +(-10 -8 (-15 -3439 ((-702 (-576)) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-702 |#2|) (-702 |#1|)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3439 (((-702 |#1|) (-702 $)) 30) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 29) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 41 (|has| |#1| (-652 (-576)))) (((-702 (-576)) (-702 $)) 40 (|has| |#1| (-652 (-576))))) (-1993 (((-702 |#1|) (-1289 $)) 32) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 31) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 39 (|has| |#1| (-652 (-576)))) (((-702 (-576)) (-1289 $)) 38 (|has| |#1| (-652 (-576))))) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) +(((-388 |#1|) (-141) (-1071)) (T -388)) +NIL +(-13 (-652 |t#1|) (-10 -7 (IF (|has| |t#1| (-652 (-576))) (-6 (-652 (-576))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 #0=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-652 #0#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-4413 (((-657 (-304 (-972 (-171 |#1|)))) (-304 (-419 (-972 (-171 (-576))))) |#1|) 51) (((-657 (-304 (-972 (-171 |#1|)))) (-419 (-972 (-171 (-576)))) |#1|) 50) (((-657 (-657 (-304 (-972 (-171 |#1|))))) (-657 (-304 (-419 (-972 (-171 (-576)))))) |#1|) 47) (((-657 (-657 (-304 (-972 (-171 |#1|))))) (-657 (-419 (-972 (-171 (-576))))) |#1|) 41)) (-1980 (((-657 (-657 (-171 |#1|))) (-657 (-419 (-972 (-171 (-576))))) (-657 (-1198)) |#1|) 30) (((-657 (-171 |#1|)) (-419 (-972 (-171 (-576)))) |#1|) 18))) +(((-389 |#1|) (-10 -7 (-15 -4413 ((-657 (-657 (-304 (-972 (-171 |#1|))))) (-657 (-419 (-972 (-171 (-576))))) |#1|)) (-15 -4413 ((-657 (-657 (-304 (-972 (-171 |#1|))))) (-657 (-304 (-419 (-972 (-171 (-576)))))) |#1|)) (-15 -4413 ((-657 (-304 (-972 (-171 |#1|)))) (-419 (-972 (-171 (-576)))) |#1|)) (-15 -4413 ((-657 (-304 (-972 (-171 |#1|)))) (-304 (-419 (-972 (-171 (-576))))) |#1|)) (-15 -1980 ((-657 (-171 |#1|)) (-419 (-972 (-171 (-576)))) |#1|)) (-15 -1980 ((-657 (-657 (-171 |#1|))) (-657 (-419 (-972 (-171 (-576))))) (-657 (-1198)) |#1|))) (-13 (-374) (-861))) (T -389)) +((-1980 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-419 (-972 (-171 (-576)))))) (-5 *4 (-657 (-1198))) (-5 *2 (-657 (-657 (-171 *5)))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-861))))) (-1980 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 (-171 (-576))))) (-5 *2 (-657 (-171 *4))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-861))))) (-4413 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-972 (-171 (-576)))))) (-5 *2 (-657 (-304 (-972 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-861))))) (-4413 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 (-171 (-576))))) (-5 *2 (-657 (-304 (-972 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-861))))) (-4413 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-304 (-419 (-972 (-171 (-576))))))) (-5 *2 (-657 (-657 (-304 (-972 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-861))))) (-4413 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-419 (-972 (-171 (-576)))))) (-5 *2 (-657 (-657 (-304 (-972 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-861)))))) +(-10 -7 (-15 -4413 ((-657 (-657 (-304 (-972 (-171 |#1|))))) (-657 (-419 (-972 (-171 (-576))))) |#1|)) (-15 -4413 ((-657 (-657 (-304 (-972 (-171 |#1|))))) (-657 (-304 (-419 (-972 (-171 (-576)))))) |#1|)) (-15 -4413 ((-657 (-304 (-972 (-171 |#1|)))) (-419 (-972 (-171 (-576)))) |#1|)) (-15 -4413 ((-657 (-304 (-972 (-171 |#1|)))) (-304 (-419 (-972 (-171 (-576))))) |#1|)) (-15 -1980 ((-657 (-171 |#1|)) (-419 (-972 (-171 (-576)))) |#1|)) (-15 -1980 ((-657 (-657 (-171 |#1|))) (-657 (-419 (-972 (-171 (-576))))) (-657 (-1198)) |#1|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 35)) (-2923 (((-576) $) 62)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2212 (($ $) 136)) (-2143 (($ $) 98)) (-2012 (($ $) 90)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-1866 (($ $) 47)) (-3210 (((-112) $ $) NIL)) (-2120 (($ $) 96)) (-1989 (($ $) 85)) (-3922 (((-576) $) 78)) (-2736 (($ $ (-576)) 73)) (-2166 (($ $) NIL)) (-2033 (($ $) NIL)) (-2515 (($) NIL T CONST)) (-1794 (($ $) 138)) (-1593 (((-3 (-576) "failed") $) 231) (((-3 (-419 (-576)) "failed") $) 227)) (-2830 (((-576) $) 229) (((-419 (-576)) $) 225)) (-3355 (($ $ $) NIL)) (-2126 (((-576) $ $) 125)) (-3969 (((-3 $ "failed") $) 141)) (-3201 (((-419 (-576)) $ (-784)) 232) (((-419 (-576)) $ (-784) (-784)) 224)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3955 (((-941)) 121) (((-941) (-941)) 122 (|has| $ (-6 -4457)))) (-3810 (((-112) $) 130)) (-1622 (($) 41)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL)) (-1389 (((-1294) (-784)) 191)) (-2455 (((-1294)) 196) (((-1294) (-784)) 197)) (-2575 (((-1294)) 198) (((-1294) (-784)) 199)) (-1493 (((-1294)) 194) (((-1294) (-784)) 195)) (-2650 (((-576) $) 68)) (-3994 (((-112) $) 40)) (-3856 (($ $ (-576)) NIL)) (-3435 (($ $) 51)) (-3869 (($ $) NIL)) (-3517 (((-112) $) 37)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3740 (($ $ $) NIL) (($) NIL (-12 (-2665 (|has| $ (-6 -4449))) (-2665 (|has| $ (-6 -4457)))))) (-2249 (($ $ $) NIL) (($) NIL (-12 (-2665 (|has| $ (-6 -4449))) (-2665 (|has| $ (-6 -4457)))))) (-1504 (((-576) $) 17)) (-3595 (($) 106) (($ $) 113)) (-2365 (($) 112) (($ $) 114)) (-3707 (($ $) 101)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 143)) (-2909 (((-941) (-576)) 46 (|has| $ (-6 -4457)))) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2440 (($ $) 60)) (-2681 (($ $) 135)) (-2983 (($ (-576) (-576)) 131) (($ (-576) (-576) (-941)) 132)) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2128 (((-576) $) 19)) (-1330 (($) 115)) (-4056 (($ $) 95)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-1409 (((-941)) 123) (((-941) (-941)) 124 (|has| $ (-6 -4457)))) (-2209 (($ $) 142) (($ $ (-784)) NIL)) (-3626 (((-941) (-576)) 50 (|has| $ (-6 -4457)))) (-2177 (($ $) NIL)) (-2042 (($ $) NIL)) (-2155 (($ $) NIL)) (-2023 (($ $) NIL)) (-2131 (($ $) 97)) (-2002 (($ $) 89)) (-4136 (((-390) $) 216) (((-227) $) 218) (((-908 (-390)) $) NIL) (((-1180) $) 202) (((-548) $) 214) (($ (-227)) 223)) (-3515 (((-877) $) 206) (($ (-576)) 228) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 228) (($ (-419 (-576))) NIL) (((-227) $) 219)) (-3845 (((-784)) NIL T CONST)) (-2140 (($ $) 137)) (-1344 (((-941)) 61) (((-941) (-941)) 80 (|has| $ (-6 -4457)))) (-4166 (((-112) $ $) NIL)) (-4129 (((-941)) 126)) (-4110 (($ $) 104)) (-2082 (($ $) 49) (($ $ $) 59)) (-2607 (((-112) $ $) NIL)) (-2188 (($ $) 102)) (-2055 (($ $) 39)) (-4137 (($ $) NIL)) (-2100 (($ $) NIL)) (-1864 (($ $) NIL)) (-2110 (($ $) NIL)) (-4123 (($ $) NIL)) (-2090 (($ $) NIL)) (-4097 (($ $) 103)) (-2070 (($ $) 52)) (-2127 (($ $) 58)) (-2716 (($) 36 T CONST)) (-2725 (($) 43 T CONST)) (-4019 (((-1180) $) 27) (((-1180) $ (-112)) 29) (((-1294) (-835) $) 30) (((-1294) (-835) $ (-112)) 31)) (-2066 (($ $) NIL) (($ $ (-784)) NIL)) (-2938 (((-112) $ $) 203)) (-2913 (((-112) $ $) 45)) (-2881 (((-112) $ $) 56)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 57)) (-2995 (($ $ $) 48) (($ $ (-576)) 42)) (-2982 (($ $) 38) (($ $ $) 53)) (-2971 (($ $ $) 72)) (** (($ $ (-941)) 83) (($ $ (-784)) NIL) (($ $ (-576)) 107) (($ $ (-419 (-576))) 154) (($ $ $) 145)) (* (($ (-941) $) 79) (($ (-784) $) NIL) (($ (-576) $) 84) (($ $ $) 71) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-390) (-13 (-416) (-238) (-626 (-1180)) (-841) (-625 (-227)) (-1224) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -2995 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3435 ($ $)) (-15 -2126 ((-576) $ $)) (-15 -2736 ($ $ (-576))) (-15 -3201 ((-419 (-576)) $ (-784))) (-15 -3201 ((-419 (-576)) $ (-784) (-784))) (-15 -3595 ($)) (-15 -2365 ($)) (-15 -1330 ($)) (-15 -2082 ($ $ $)) (-15 -3595 ($ $)) (-15 -2365 ($ $)) (-15 -2575 ((-1294))) (-15 -2575 ((-1294) (-784))) (-15 -1493 ((-1294))) (-15 -1493 ((-1294) (-784))) (-15 -2455 ((-1294))) (-15 -2455 ((-1294) (-784))) (-15 -1389 ((-1294) (-784))) (-6 -4457) (-6 -4449)))) (T -390)) +((** (*1 *1 *1 *1) (-5 *1 (-390))) (-2995 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3435 (*1 *1 *1) (-5 *1 (-390))) (-2126 (*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2736 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3201 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-3201 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-3595 (*1 *1) (-5 *1 (-390))) (-2365 (*1 *1) (-5 *1 (-390))) (-1330 (*1 *1) (-5 *1 (-390))) (-2082 (*1 *1 *1 *1) (-5 *1 (-390))) (-3595 (*1 *1 *1) (-5 *1 (-390))) (-2365 (*1 *1 *1) (-5 *1 (-390))) (-2575 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-390)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390)))) (-1493 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-390)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390)))) (-2455 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-390)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390))))) +(-13 (-416) (-238) (-626 (-1180)) (-841) (-625 (-227)) (-1224) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -2995 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3435 ($ $)) (-15 -2126 ((-576) $ $)) (-15 -2736 ($ $ (-576))) (-15 -3201 ((-419 (-576)) $ (-784))) (-15 -3201 ((-419 (-576)) $ (-784) (-784))) (-15 -3595 ($)) (-15 -2365 ($)) (-15 -1330 ($)) (-15 -2082 ($ $ $)) (-15 -3595 ($ $)) (-15 -2365 ($ $)) (-15 -2575 ((-1294))) (-15 -2575 ((-1294) (-784))) (-15 -1493 ((-1294))) (-15 -1493 ((-1294) (-784))) (-15 -2455 ((-1294))) (-15 -2455 ((-1294) (-784))) (-15 -1389 ((-1294) (-784))) (-6 -4457) (-6 -4449))) +((-2632 (((-657 (-304 (-972 |#1|))) (-304 (-419 (-972 (-576)))) |#1|) 46) (((-657 (-304 (-972 |#1|))) (-419 (-972 (-576))) |#1|) 45) (((-657 (-657 (-304 (-972 |#1|)))) (-657 (-304 (-419 (-972 (-576))))) |#1|) 42) (((-657 (-657 (-304 (-972 |#1|)))) (-657 (-419 (-972 (-576)))) |#1|) 36)) (-1513 (((-657 |#1|) (-419 (-972 (-576))) |#1|) 20) (((-657 (-657 |#1|)) (-657 (-419 (-972 (-576)))) (-657 (-1198)) |#1|) 30))) +(((-391 |#1|) (-10 -7 (-15 -2632 ((-657 (-657 (-304 (-972 |#1|)))) (-657 (-419 (-972 (-576)))) |#1|)) (-15 -2632 ((-657 (-657 (-304 (-972 |#1|)))) (-657 (-304 (-419 (-972 (-576))))) |#1|)) (-15 -2632 ((-657 (-304 (-972 |#1|))) (-419 (-972 (-576))) |#1|)) (-15 -2632 ((-657 (-304 (-972 |#1|))) (-304 (-419 (-972 (-576)))) |#1|)) (-15 -1513 ((-657 (-657 |#1|)) (-657 (-419 (-972 (-576)))) (-657 (-1198)) |#1|)) (-15 -1513 ((-657 |#1|) (-419 (-972 (-576))) |#1|))) (-13 (-861) (-374))) (T -391)) +((-1513 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 (-576)))) (-5 *2 (-657 *4)) (-5 *1 (-391 *4)) (-4 *4 (-13 (-861) (-374))))) (-1513 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-419 (-972 (-576))))) (-5 *4 (-657 (-1198))) (-5 *2 (-657 (-657 *5))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-861) (-374))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-972 (-576))))) (-5 *2 (-657 (-304 (-972 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-861) (-374))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 (-576)))) (-5 *2 (-657 (-304 (-972 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-861) (-374))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-304 (-419 (-972 (-576)))))) (-5 *2 (-657 (-657 (-304 (-972 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-861) (-374))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-419 (-972 (-576))))) (-5 *2 (-657 (-657 (-304 (-972 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-861) (-374)))))) +(-10 -7 (-15 -2632 ((-657 (-657 (-304 (-972 |#1|)))) (-657 (-419 (-972 (-576)))) |#1|)) (-15 -2632 ((-657 (-657 (-304 (-972 |#1|)))) (-657 (-304 (-419 (-972 (-576))))) |#1|)) (-15 -2632 ((-657 (-304 (-972 |#1|))) (-419 (-972 (-576))) |#1|)) (-15 -2632 ((-657 (-304 (-972 |#1|))) (-304 (-419 (-972 (-576)))) |#1|)) (-15 -1513 ((-657 (-657 |#1|)) (-657 (-419 (-972 (-576)))) (-657 (-1198)) |#1|)) (-15 -1513 ((-657 |#1|) (-419 (-972 (-576))) |#1|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#2| "failed") $) 30)) (-2830 ((|#2| $) 32)) (-2165 (($ $) NIL)) (-2977 (((-784) $) 11)) (-2278 (((-657 $) $) 23)) (-2343 (((-112) $) NIL)) (-3646 (($ |#2| |#1|) 21)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3688 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2129 ((|#2| $) 18)) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 51) (($ |#2|) 31)) (-3987 (((-657 |#1|) $) 20)) (-2498 ((|#1| $ |#2|) 55)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 33 T CONST)) (-2818 (((-657 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +(((-392 |#1| |#2|) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1071) (-862)) (T -392)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-862))))) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2982 (((-3 |#2| "failed") $) 49)) (-2317 ((|#2| $) 50)) (-3310 (($ $) 35)) (-2018 (((-783) $) 39)) (-2683 (((-656 $) $) 40)) (-4101 (((-112) $) 43)) (-1619 (($ |#2| |#1|) 44)) (-2423 (($ (-1 |#1| |#1|) $) 45)) (-3988 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1700 ((|#2| $) 38)) (-1711 ((|#1| $) 37)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ |#2|) 48)) (-3244 (((-656 |#1|) $) 41)) (-2707 ((|#1| $ |#2|) 46)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-2618 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) -(((-393 |#1| |#2|) (-141) (-1070) (-1121)) (T -393)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) (-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)))) (-1619 (*1 *1 *2 *3) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-112)))) (-2618 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 *3)))) (-2683 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-393 *3 *4)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-783)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3310 (*1 *1 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121))))) -(-13 (-111 |t#1| |t#1|) (-1059 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2707 (|t#1| $ |t#2|)) (-15 -2423 ($ (-1 |t#1| |t#1|) $)) (-15 -1619 ($ |t#2| |t#1|)) (-15 -4101 ((-112) $)) (-15 -2618 ((-656 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3244 ((-656 |t#1|) $)) (-15 -2683 ((-656 $) $)) (-15 -2018 ((-783) $)) (-15 -1700 (|t#2| $)) (-15 -1711 (|t#1| $)) (-15 -3988 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3310 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1059 |#2|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-3973 (((-1293) $) 7)) (-4113 (((-876) $) 8) (($ (-701 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 11))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1593 (((-3 |#2| "failed") $) 49)) (-2830 ((|#2| $) 50)) (-2165 (($ $) 35)) (-2977 (((-784) $) 39)) (-2278 (((-657 $) $) 40)) (-2343 (((-112) $) 43)) (-3646 (($ |#2| |#1|) 44)) (-4071 (($ (-1 |#1| |#1|) $) 45)) (-3688 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2129 ((|#2| $) 38)) (-2141 ((|#1| $) 37)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ |#2|) 48)) (-3987 (((-657 |#1|) $) 41)) (-2498 ((|#1| $ |#2|) 46)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2818 (((-657 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +(((-393 |#1| |#2|) (-141) (-1071) (-1122)) (T -393)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-1122)))) (-2498 (*1 *2 *1 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1071)))) (-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)))) (-3646 (*1 *1 *2 *3) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1122)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-112)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-657 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-657 *3)))) (-2278 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-657 *1)) (-4 *1 (-393 *3 *4)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-784)))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1122)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1071)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2165 (*1 *1 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-1122))))) +(-13 (-111 |t#1| |t#1|) (-1060 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2498 (|t#1| $ |t#2|)) (-15 -4071 ($ (-1 |t#1| |t#1|) $)) (-15 -3646 ($ |t#2| |t#1|)) (-15 -2343 ((-112) $)) (-15 -2818 ((-657 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3987 ((-657 |t#1|) $)) (-15 -2278 ((-657 $) $)) (-15 -2977 ((-784) $)) (-15 -2129 (|t#2| $)) (-15 -2141 (|t#1| $)) (-15 -3688 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2165 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-730 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 |#2|) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-1060 |#2|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-2063 (((-1294) $) 7)) (-3515 (((-877) $) 8) (($ (-702 (-712))) 14) (($ (-657 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 11))) (((-394) (-141)) (T -394)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) (-4 *1 (-394))))) -(-13 (-407) (-10 -8 (-15 -4113 ($ (-701 (-711)))) (-15 -4113 ($ (-656 (-340)))) (-15 -4113 ($ (-340))) (-15 -4113 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340)))))))) -(((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) -((-2982 (((-3 $ "failed") (-701 (-326 (-390)))) 21) (((-3 $ "failed") (-701 (-326 (-576)))) 19) (((-3 $ "failed") (-701 (-971 (-390)))) 17) (((-3 $ "failed") (-701 (-971 (-576)))) 15) (((-3 $ "failed") (-701 (-419 (-971 (-390))))) 13) (((-3 $ "failed") (-701 (-419 (-971 (-576))))) 11)) (-2317 (($ (-701 (-326 (-390)))) 22) (($ (-701 (-326 (-576)))) 20) (($ (-701 (-971 (-390)))) 18) (($ (-701 (-971 (-576)))) 16) (($ (-701 (-419 (-971 (-390))))) 14) (($ (-701 (-419 (-971 (-576))))) 12)) (-3973 (((-1293) $) 7)) (-4113 (((-876) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 23))) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-702 (-712))) (-4 *1 (-394)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-394)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) (-4 *1 (-394))))) +(-13 (-407) (-10 -8 (-15 -3515 ($ (-702 (-712)))) (-15 -3515 ($ (-657 (-340)))) (-15 -3515 ($ (-340))) (-15 -3515 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340)))))))) +(((-625 (-877)) . T) ((-407) . T) ((-1239) . T)) +((-1593 (((-3 $ "failed") (-702 (-326 (-390)))) 21) (((-3 $ "failed") (-702 (-326 (-576)))) 19) (((-3 $ "failed") (-702 (-972 (-390)))) 17) (((-3 $ "failed") (-702 (-972 (-576)))) 15) (((-3 $ "failed") (-702 (-419 (-972 (-390))))) 13) (((-3 $ "failed") (-702 (-419 (-972 (-576))))) 11)) (-2830 (($ (-702 (-326 (-390)))) 22) (($ (-702 (-326 (-576)))) 20) (($ (-702 (-972 (-390)))) 18) (($ (-702 (-972 (-576)))) 16) (($ (-702 (-419 (-972 (-390))))) 14) (($ (-702 (-419 (-972 (-576))))) 12)) (-2063 (((-1294) $) 7)) (-3515 (((-877) $) 8) (($ (-657 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 23))) (((-395) (-141)) (T -395)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) (-4 *1 (-395)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-701 (-971 (-390)))) (-4 *1 (-395)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-971 (-390)))) (-4 *1 (-395)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-701 (-971 (-576)))) (-4 *1 (-395)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-971 (-576)))) (-4 *1 (-395)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-971 (-390))))) (-4 *1 (-395)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-971 (-390))))) (-4 *1 (-395)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-971 (-576))))) (-4 *1 (-395)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-971 (-576))))) (-4 *1 (-395))))) -(-13 (-407) (-10 -8 (-15 -4113 ($ (-656 (-340)))) (-15 -4113 ($ (-340))) (-15 -4113 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340)))))) (-15 -2317 ($ (-701 (-326 (-390))))) (-15 -2982 ((-3 $ "failed") (-701 (-326 (-390))))) (-15 -2317 ($ (-701 (-326 (-576))))) (-15 -2982 ((-3 $ "failed") (-701 (-326 (-576))))) (-15 -2317 ($ (-701 (-971 (-390))))) (-15 -2982 ((-3 $ "failed") (-701 (-971 (-390))))) (-15 -2317 ($ (-701 (-971 (-576))))) (-15 -2982 ((-3 $ "failed") (-701 (-971 (-576))))) (-15 -2317 ($ (-701 (-419 (-971 (-390)))))) (-15 -2982 ((-3 $ "failed") (-701 (-419 (-971 (-390)))))) (-15 -2317 ($ (-701 (-419 (-971 (-576)))))) (-15 -2982 ((-3 $ "failed") (-701 (-419 (-971 (-576)))))))) -(((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-4073 (((-656 (-887 |#2| |#1|)) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-3310 (($ $) NIL)) (-1564 (($ |#1| |#2|) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-4348 ((|#2| $) NIL)) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 33)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 12 T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-396 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) (-1070) (-864)) (T -396)) -NIL -(-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) -((-1957 (((-112) $ $) 7)) (-2201 (((-783) $) 35)) (-3170 (($) 19 T CONST)) (-4085 (((-3 $ "failed") $ $) 38)) (-2982 (((-3 |#1| "failed") $) 46)) (-2317 ((|#1| $) 47)) (-1851 (((-3 $ "failed") $) 16)) (-1322 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36)) (-2486 (((-112) $) 18)) (-4158 ((|#1| $ (-576)) 32)) (-1450 (((-783) $ (-576)) 33)) (-2907 (($ $ $) 24 (|has| |#1| (-861)))) (-3777 (($ $ $) 25 (|has| |#1| (-861)))) (-2912 (($ (-1 |#1| |#1|) $) 30)) (-1477 (($ (-1 (-783) (-783)) $) 31)) (-3324 (((-3 $ "failed") $ $) 39)) (-2447 (((-1179) $) 10)) (-3295 (($ $ $) 40)) (-3191 (($ $ $) 41)) (-3116 (((-1141) $) 11)) (-3497 (((-656 (-2 (|:| |gen| |#1|) (|:| -2156 (-783)))) $) 34)) (-3889 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37)) (-4113 (((-876) $) 12) (($ |#1|) 45)) (-2950 (((-112) $ $) 6)) (-4322 (($) 20 T CONST)) (-3995 (((-112) $ $) 26 (|has| |#1| (-861)))) (-3975 (((-112) $ $) 28 (|has| |#1| (-861)))) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 27 (|has| |#1| (-861)))) (-3963 (((-112) $ $) 29 (|has| |#1| (-861)))) (** (($ $ (-940)) 14) (($ $ (-783)) 17) (($ |#1| (-783)) 42)) (* (($ $ $) 15) (($ |#1| $) 44) (($ $ |#1|) 43))) -(((-397 |#1|) (-141) (-1121)) (T -397)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-3191 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-3295 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-3324 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-4085 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-3889 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1121)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-1322 (*1 *2 *1 *1) (-12 (-4 *3 (-1121)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) (-5 *2 (-783)))) (-3497 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2156 (-783))))))) (-1450 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1121)) (-5 *2 (-783)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1121)))) (-2912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1121))))) -(-13 (-738) (-1059 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-783))) (-15 -3191 ($ $ $)) (-15 -3295 ($ $ $)) (-15 -3324 ((-3 $ "failed") $ $)) (-15 -4085 ((-3 $ "failed") $ $)) (-15 -3889 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1322 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2201 ((-783) $)) (-15 -3497 ((-656 (-2 (|:| |gen| |t#1|) (|:| -2156 (-783)))) $)) (-15 -1450 ((-783) $ (-576))) (-15 -4158 (|t#1| $ (-576))) (-15 -1477 ($ (-1 (-783) (-783)) $)) (-15 -2912 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1059 |#1|) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783) $) 74)) (-3170 (($) NIL T CONST)) (-4085 (((-3 $ "failed") $ $) 77)) (-2982 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1322 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2486 (((-112) $) 17)) (-4158 ((|#1| $ (-576)) NIL)) (-1450 (((-783) $ (-576)) NIL)) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-2912 (($ (-1 |#1| |#1|) $) 40)) (-1477 (($ (-1 (-783) (-783)) $) 37)) (-3324 (((-3 $ "failed") $ $) 60)) (-2447 (((-1179) $) NIL)) (-3295 (($ $ $) 28)) (-3191 (($ $ $) 26)) (-3116 (((-1141) $) NIL)) (-3497 (((-656 (-2 (|:| |gen| |#1|) (|:| -2156 (-783)))) $) 34)) (-3889 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-4113 (((-876) $) 24) (($ |#1|) NIL)) (-2950 (((-112) $ $) NIL)) (-4322 (($) 11 T CONST)) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) 84 (|has| |#1| (-861)))) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-398 |#1|) (-397 |#1|) (-1121)) (T -398)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-395)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) (-4 *1 (-395)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-702 (-326 (-390)))) (-4 *1 (-395)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-702 (-326 (-390)))) (-4 *1 (-395)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-702 (-326 (-576)))) (-4 *1 (-395)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-702 (-326 (-576)))) (-4 *1 (-395)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-702 (-972 (-390)))) (-4 *1 (-395)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-702 (-972 (-390)))) (-4 *1 (-395)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-702 (-972 (-576)))) (-4 *1 (-395)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-702 (-972 (-576)))) (-4 *1 (-395)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-702 (-419 (-972 (-390))))) (-4 *1 (-395)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-702 (-419 (-972 (-390))))) (-4 *1 (-395)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-702 (-419 (-972 (-576))))) (-4 *1 (-395)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-702 (-419 (-972 (-576))))) (-4 *1 (-395))))) +(-13 (-407) (-10 -8 (-15 -3515 ($ (-657 (-340)))) (-15 -3515 ($ (-340))) (-15 -3515 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340)))))) (-15 -2830 ($ (-702 (-326 (-390))))) (-15 -1593 ((-3 $ "failed") (-702 (-326 (-390))))) (-15 -2830 ($ (-702 (-326 (-576))))) (-15 -1593 ((-3 $ "failed") (-702 (-326 (-576))))) (-15 -2830 ($ (-702 (-972 (-390))))) (-15 -1593 ((-3 $ "failed") (-702 (-972 (-390))))) (-15 -2830 ($ (-702 (-972 (-576))))) (-15 -1593 ((-3 $ "failed") (-702 (-972 (-576))))) (-15 -2830 ($ (-702 (-419 (-972 (-390)))))) (-15 -1593 ((-3 $ "failed") (-702 (-419 (-972 (-390)))))) (-15 -2830 ($ (-702 (-419 (-972 (-576)))))) (-15 -1593 ((-3 $ "failed") (-702 (-419 (-972 (-576)))))))) +(((-625 (-877)) . T) ((-407) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3212 (((-657 (-888 |#2| |#1|)) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-2165 (($ $) NIL)) (-1974 (($ |#1| |#2|) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-2848 ((|#2| $) NIL)) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 33)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 12 T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-396 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-730 |#1|)) |%noBranch|))) (-1071) (-865)) (T -396)) +NIL +(-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-730 |#1|)) |%noBranch|))) +((-3423 (((-112) $ $) 7)) (-2148 (((-784) $) 35)) (-2515 (($) 19 T CONST)) (-2186 (((-3 $ "failed") $ $) 38)) (-1593 (((-3 |#1| "failed") $) 46)) (-2830 ((|#1| $) 47)) (-3969 (((-3 $ "failed") $) 16)) (-3394 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36)) (-3994 (((-112) $) 18)) (-1656 ((|#1| $ (-576)) 32)) (-3640 (((-784) $ (-576)) 33)) (-3740 (($ $ $) 24 (|has| |#1| (-862)))) (-2249 (($ $ $) 25 (|has| |#1| (-862)))) (-3865 (($ (-1 |#1| |#1|) $) 30)) (-1555 (($ (-1 (-784) (-784)) $) 31)) (-3532 (((-3 $ "failed") $ $) 39)) (-1708 (((-1180) $) 10)) (-3221 (($ $ $) 40)) (-1536 (($ $ $) 41)) (-1460 (((-1142) $) 11)) (-1502 (((-657 (-2 (|:| |gen| |#1|) (|:| -4056 (-784)))) $) 34)) (-3977 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37)) (-3515 (((-877) $) 12) (($ |#1|) 45)) (-4166 (((-112) $ $) 6)) (-2725 (($) 20 T CONST)) (-2938 (((-112) $ $) 26 (|has| |#1| (-862)))) (-2913 (((-112) $ $) 28 (|has| |#1| (-862)))) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 27 (|has| |#1| (-862)))) (-2901 (((-112) $ $) 29 (|has| |#1| (-862)))) (** (($ $ (-941)) 14) (($ $ (-784)) 17) (($ |#1| (-784)) 42)) (* (($ $ $) 15) (($ |#1| $) 44) (($ $ |#1|) 43))) +(((-397 |#1|) (-141) (-1122)) (T -397)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (-1536 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (-3221 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (-3532 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (-2186 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (-3977 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1122)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-3394 (*1 *2 *1 *1) (-12 (-4 *3 (-1122)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1122)) (-5 *2 (-784)))) (-1502 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1122)) (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4056 (-784))))))) (-3640 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1122)) (-5 *2 (-784)))) (-1656 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (-1555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-784) (-784))) (-4 *1 (-397 *3)) (-4 *3 (-1122)))) (-3865 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1122))))) +(-13 (-739) (-1060 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-784))) (-15 -1536 ($ $ $)) (-15 -3221 ($ $ $)) (-15 -3532 ((-3 $ "failed") $ $)) (-15 -2186 ((-3 $ "failed") $ $)) (-15 -3977 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3394 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2148 ((-784) $)) (-15 -1502 ((-657 (-2 (|:| |gen| |t#1|) (|:| -4056 (-784)))) $)) (-15 -3640 ((-784) $ (-576))) (-15 -1656 (|t#1| $ (-576))) (-15 -1555 ($ (-1 (-784) (-784)) $)) (-15 -3865 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|))) +(((-102) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-739) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1060 |#1|) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784) $) 74)) (-2515 (($) NIL T CONST)) (-2186 (((-3 $ "failed") $ $) 77)) (-1593 (((-3 |#1| "failed") $) NIL)) (-2830 ((|#1| $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3394 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-3994 (((-112) $) 17)) (-1656 ((|#1| $ (-576)) NIL)) (-3640 (((-784) $ (-576)) NIL)) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-3865 (($ (-1 |#1| |#1|) $) 40)) (-1555 (($ (-1 (-784) (-784)) $) 37)) (-3532 (((-3 $ "failed") $ $) 60)) (-1708 (((-1180) $) NIL)) (-3221 (($ $ $) 28)) (-1536 (($ $ $) 26)) (-1460 (((-1142) $) NIL)) (-1502 (((-657 (-2 (|:| |gen| |#1|) (|:| -4056 (-784)))) $) 34)) (-3977 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3515 (((-877) $) 24) (($ |#1|) NIL)) (-4166 (((-112) $ $) NIL)) (-2725 (($) 11 T CONST)) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) 84 (|has| |#1| (-862)))) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ |#1| (-784)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-398 |#1|) (-397 |#1|) (-1122)) (T -398)) NIL (-397 |#1|) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2982 (((-3 (-576) "failed") $) 54)) (-2317 (((-576) $) 55)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2907 (($ $ $) 56)) (-3777 (($ $ $) 57)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1946 (((-3 $ "failed") $ $) 48)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 53)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3995 (((-112) $ $) 58)) (-3975 (((-112) $ $) 60)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 59)) (-3963 (((-112) $ $) 61)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1593 (((-3 (-576) "failed") $) 54)) (-2830 (((-576) $) 55)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-3740 (($ $ $) 56)) (-2249 (($ $ $) 57)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3409 (((-3 $ "failed") $ $) 48)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 53)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2938 (((-112) $ $) 58)) (-2913 (((-112) $ $) 60)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 59)) (-2901 (((-112) $ $) 61)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-399) (-141)) (T -399)) NIL -(-13 (-568) (-861) (-1059 (-576))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-861) . T) ((-864) . T) ((-1059 (-576)) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3074 (((-112) $) 25)) (-2671 (((-112) $) 22)) (-1991 (($ (-1179) (-1179) (-1179)) 26)) (-4149 (((-1179) $) 16)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2263 (($ (-1179) (-1179) (-1179)) 14)) (-2234 (((-1179) $) 17)) (-4120 (((-112) $) 18)) (-2963 (((-1179) $) 15)) (-4113 (((-876) $) 12) (($ (-1179)) 13) (((-1179) $) 9)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 7))) +(-13 (-568) (-862) (-1060 (-576))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-862) . T) ((-865) . T) ((-1060 (-576)) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2844 (((-112) $) 25)) (-2146 (((-112) $) 22)) (-4096 (($ (-1180) (-1180) (-1180)) 26)) (-2634 (((-1180) $) 16)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-4307 (($ (-1180) (-1180) (-1180)) 14)) (-3327 (((-1180) $) 17)) (-2494 (((-112) $) 18)) (-1746 (((-1180) $) 15)) (-3515 (((-877) $) 12) (($ (-1180)) 13) (((-1180) $) 9)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 7))) (((-400) (-401)) (T -400)) NIL (-401) -((-1957 (((-112) $ $) 7)) (-3074 (((-112) $) 17)) (-2671 (((-112) $) 18)) (-1991 (($ (-1179) (-1179) (-1179)) 16)) (-4149 (((-1179) $) 21)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2263 (($ (-1179) (-1179) (-1179)) 23)) (-2234 (((-1179) $) 20)) (-4120 (((-112) $) 19)) (-2963 (((-1179) $) 22)) (-4113 (((-876) $) 12) (($ (-1179)) 25) (((-1179) $) 24)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) +((-3423 (((-112) $ $) 7)) (-2844 (((-112) $) 17)) (-2146 (((-112) $) 18)) (-4096 (($ (-1180) (-1180) (-1180)) 16)) (-2634 (((-1180) $) 21)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-4307 (($ (-1180) (-1180) (-1180)) 23)) (-3327 (((-1180) $) 20)) (-2494 (((-112) $) 19)) (-1746 (((-1180) $) 22)) (-3515 (((-877) $) 12) (($ (-1180)) 25) (((-1180) $) 24)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) (((-401) (-141)) (T -401)) -((-2263 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) (-4149 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-1991 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401))))) -(-13 (-1121) (-502 (-1179)) (-10 -8 (-15 -2263 ($ (-1179) (-1179) (-1179))) (-15 -2963 ((-1179) $)) (-15 -4149 ((-1179) $)) (-15 -2234 ((-1179) $)) (-15 -4120 ((-112) $)) (-15 -2671 ((-112) $)) (-15 -3074 ((-112) $)) (-15 -1991 ($ (-1179) (-1179) (-1179))))) -(((-102) . T) ((-628 #0=(-1179)) . T) ((-625 (-876)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2605 (((-876) $) 63)) (-3170 (($) NIL T CONST)) (-1578 (($ $ (-940)) NIL)) (-3107 (($ $ (-940)) NIL)) (-3303 (($ $ (-940)) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2549 (($ (-783)) 38)) (-3181 (((-783)) 18)) (-3741 (((-876) $) 65)) (-3871 (($ $ $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3628 (($ $ $ $) NIL)) (-3485 (($ $ $) NIL)) (-4313 (($) 24 T CONST)) (-3939 (((-112) $ $) 41)) (-4037 (($ $) 48) (($ $ $) 50)) (-4026 (($ $ $) 51)) (** (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-402 |#1| |#2| |#3|) (-13 (-756 |#3|) (-10 -8 (-15 -3181 ((-783))) (-15 -3741 ((-876) $)) (-15 -2605 ((-876) $)) (-15 -2549 ($ (-783))))) (-783) (-783) (-174)) (T -402)) -((-3181 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2549 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) -(-13 (-756 |#3|) (-10 -8 (-15 -3181 ((-783))) (-15 -3741 ((-876) $)) (-15 -2605 ((-876) $)) (-15 -2549 ($ (-783))))) -((-2420 (((-1179)) 12)) (-3661 (((-1168 (-1179))) 30)) (-3949 (((-1293) (-1179)) 27) (((-1293) (-400)) 26)) (-3960 (((-1293)) 28)) (-4360 (((-1168 (-1179))) 29))) -(((-403) (-10 -7 (-15 -4360 ((-1168 (-1179)))) (-15 -3661 ((-1168 (-1179)))) (-15 -3960 ((-1293))) (-15 -3949 ((-1293) (-400))) (-15 -3949 ((-1293) (-1179))) (-15 -2420 ((-1179))))) (T -403)) -((-2420 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-403)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-403)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-403)))) (-3960 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-403)))) (-3661 (*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403)))) (-4360 (*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403))))) -(-10 -7 (-15 -4360 ((-1168 (-1179)))) (-15 -3661 ((-1168 (-1179)))) (-15 -3960 ((-1293))) (-15 -3949 ((-1293) (-400))) (-15 -3949 ((-1293) (-1179))) (-15 -2420 ((-1179)))) -((-3359 (((-783) (-347 |#1| |#2| |#3| |#4|)) 16))) -(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3359 ((-783) (-347 |#1| |#2| |#3| |#4|)))) (-13 (-379) (-374)) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -404)) -((-3359 (*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7))))) -(-10 -7 (-15 -3359 ((-783) (-347 |#1| |#2| |#3| |#4|)))) -((-4113 (((-406) |#1|) 11))) -(((-405 |#1|) (-10 -7 (-15 -4113 ((-406) |#1|))) (-1121)) (T -405)) -((-4113 (*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1121))))) -(-10 -7 (-15 -4113 ((-406) |#1|))) -((-1957 (((-112) $ $) NIL)) (-3277 (((-656 (-1179)) $ (-656 (-1179))) 42)) (-3229 (((-656 (-1179)) $ (-656 (-1179))) 43)) (-1868 (((-656 (-1179)) $ (-656 (-1179))) 44)) (-1554 (((-656 (-1179)) $) 39)) (-1991 (($) 30)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2708 (((-656 (-1179)) $) 40)) (-1521 (((-656 (-1179)) $) 41)) (-1614 (((-1293) $ (-576)) 37) (((-1293) $) 38)) (-1556 (($ (-876) (-576)) 35)) (-4113 (((-876) $) 49) (($ (-876)) 32)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-406) (-13 (-1121) (-628 (-876)) (-10 -8 (-15 -1556 ($ (-876) (-576))) (-15 -1614 ((-1293) $ (-576))) (-15 -1614 ((-1293) $)) (-15 -1521 ((-656 (-1179)) $)) (-15 -2708 ((-656 (-1179)) $)) (-15 -1991 ($)) (-15 -1554 ((-656 (-1179)) $)) (-15 -1868 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3229 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3277 ((-656 (-1179)) $ (-656 (-1179))))))) (T -406)) -((-1556 (*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-406)))) (-1614 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-406)))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-406)))) (-1521 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-1991 (*1 *1) (-5 *1 (-406))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-1868 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-3229 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) (-3277 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406))))) -(-13 (-1121) (-628 (-876)) (-10 -8 (-15 -1556 ($ (-876) (-576))) (-15 -1614 ((-1293) $ (-576))) (-15 -1614 ((-1293) $)) (-15 -1521 ((-656 (-1179)) $)) (-15 -2708 ((-656 (-1179)) $)) (-15 -1991 ($)) (-15 -1554 ((-656 (-1179)) $)) (-15 -1868 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3229 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3277 ((-656 (-1179)) $ (-656 (-1179)))))) -((-3973 (((-1293) $) 7)) (-4113 (((-876) $) 8))) +((-4307 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-401)))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1180)))) (-2634 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1180)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1180)))) (-2494 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2844 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-4096 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-401))))) +(-13 (-1122) (-502 (-1180)) (-10 -8 (-15 -4307 ($ (-1180) (-1180) (-1180))) (-15 -1746 ((-1180) $)) (-15 -2634 ((-1180) $)) (-15 -3327 ((-1180) $)) (-15 -2494 ((-112) $)) (-15 -2146 ((-112) $)) (-15 -2844 ((-112) $)) (-15 -4096 ($ (-1180) (-1180) (-1180))))) +(((-102) . T) ((-628 #0=(-1180)) . T) ((-625 (-877)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2698 (((-877) $) 63)) (-2515 (($) NIL T CONST)) (-4408 (($ $ (-941)) NIL)) (-3152 (($ $ (-941)) NIL)) (-3296 (($ $ (-941)) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-4083 (($ (-784)) 38)) (-1451 (((-784)) 18)) (-3096 (((-877) $) 65)) (-1911 (($ $ $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-3280 (($ $ $ $) NIL)) (-2566 (($ $ $) NIL)) (-2716 (($) 24 T CONST)) (-2881 (((-112) $ $) 41)) (-2982 (($ $) 48) (($ $ $) 50)) (-2971 (($ $ $) 51)) (** (($ $ (-941)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-402 |#1| |#2| |#3|) (-13 (-757 |#3|) (-10 -8 (-15 -1451 ((-784))) (-15 -3096 ((-877) $)) (-15 -2698 ((-877) $)) (-15 -4083 ($ (-784))))) (-784) (-784) (-174)) (T -402)) +((-1451 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-784)) (-14 *4 (-784)) (-4 *5 (-174)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-784)) (-14 *4 (-784)) (-4 *5 (-174)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) +(-13 (-757 |#3|) (-10 -8 (-15 -1451 ((-784))) (-15 -3096 ((-877) $)) (-15 -2698 ((-877) $)) (-15 -4083 ($ (-784))))) +((-1466 (((-1180)) 12)) (-3639 (((-1169 (-1180))) 30)) (-2040 (((-1294) (-1180)) 27) (((-1294) (-400)) 26)) (-2048 (((-1294)) 28)) (-2969 (((-1169 (-1180))) 29))) +(((-403) (-10 -7 (-15 -2969 ((-1169 (-1180)))) (-15 -3639 ((-1169 (-1180)))) (-15 -2048 ((-1294))) (-15 -2040 ((-1294) (-400))) (-15 -2040 ((-1294) (-1180))) (-15 -1466 ((-1180))))) (T -403)) +((-1466 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-403)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-403)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1294)) (-5 *1 (-403)))) (-2048 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-403)))) (-3639 (*1 *2) (-12 (-5 *2 (-1169 (-1180))) (-5 *1 (-403)))) (-2969 (*1 *2) (-12 (-5 *2 (-1169 (-1180))) (-5 *1 (-403))))) +(-10 -7 (-15 -2969 ((-1169 (-1180)))) (-15 -3639 ((-1169 (-1180)))) (-15 -2048 ((-1294))) (-15 -2040 ((-1294) (-400))) (-15 -2040 ((-1294) (-1180))) (-15 -1466 ((-1180)))) +((-2650 (((-784) (-347 |#1| |#2| |#3| |#4|)) 16))) +(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2650 ((-784) (-347 |#1| |#2| |#3| |#4|)))) (-13 (-379) (-374)) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -404)) +((-2650 (*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) (-5 *2 (-784)) (-5 *1 (-404 *4 *5 *6 *7))))) +(-10 -7 (-15 -2650 ((-784) (-347 |#1| |#2| |#3| |#4|)))) +((-3515 (((-406) |#1|) 11))) +(((-405 |#1|) (-10 -7 (-15 -3515 ((-406) |#1|))) (-1122)) (T -405)) +((-3515 (*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1122))))) +(-10 -7 (-15 -3515 ((-406) |#1|))) +((-3423 (((-112) $ $) NIL)) (-4333 (((-657 (-1180)) $ (-657 (-1180))) 42)) (-1927 (((-657 (-1180)) $ (-657 (-1180))) 43)) (-4155 (((-657 (-1180)) $ (-657 (-1180))) 44)) (-4195 (((-657 (-1180)) $) 39)) (-4096 (($) 30)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2295 (((-657 (-1180)) $) 40)) (-3871 (((-657 (-1180)) $) 41)) (-2011 (((-1294) $ (-576)) 37) (((-1294) $) 38)) (-4136 (($ (-877) (-576)) 35)) (-3515 (((-877) $) 49) (($ (-877)) 32)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-406) (-13 (-1122) (-628 (-877)) (-10 -8 (-15 -4136 ($ (-877) (-576))) (-15 -2011 ((-1294) $ (-576))) (-15 -2011 ((-1294) $)) (-15 -3871 ((-657 (-1180)) $)) (-15 -2295 ((-657 (-1180)) $)) (-15 -4096 ($)) (-15 -4195 ((-657 (-1180)) $)) (-15 -4155 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -1927 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -4333 ((-657 (-1180)) $ (-657 (-1180))))))) (T -406)) +((-4136 (*1 *1 *2 *3) (-12 (-5 *2 (-877)) (-5 *3 (-576)) (-5 *1 (-406)))) (-2011 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-406)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-406)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) (-4096 (*1 *1) (-5 *1 (-406))) (-4195 (*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) (-4155 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) (-1927 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) (-4333 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406))))) +(-13 (-1122) (-628 (-877)) (-10 -8 (-15 -4136 ($ (-877) (-576))) (-15 -2011 ((-1294) $ (-576))) (-15 -2011 ((-1294) $)) (-15 -3871 ((-657 (-1180)) $)) (-15 -2295 ((-657 (-1180)) $)) (-15 -4096 ($)) (-15 -4195 ((-657 (-1180)) $)) (-15 -4155 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -1927 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -4333 ((-657 (-1180)) $ (-657 (-1180)))))) +((-2063 (((-1294) $) 7)) (-3515 (((-877) $) 8))) (((-407) (-141)) (T -407)) -((-3973 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1293))))) -(-13 (-1238) (-625 (-876)) (-10 -8 (-15 -3973 ((-1293) $)))) -(((-625 (-876)) . T) ((-1238) . T)) -((-2982 (((-3 $ "failed") (-326 (-390))) 21) (((-3 $ "failed") (-326 (-576))) 19) (((-3 $ "failed") (-971 (-390))) 17) (((-3 $ "failed") (-971 (-576))) 15) (((-3 $ "failed") (-419 (-971 (-390)))) 13) (((-3 $ "failed") (-419 (-971 (-576)))) 11)) (-2317 (($ (-326 (-390))) 22) (($ (-326 (-576))) 20) (($ (-971 (-390))) 18) (($ (-971 (-576))) 16) (($ (-419 (-971 (-390)))) 14) (($ (-419 (-971 (-576)))) 12)) (-3973 (((-1293) $) 7)) (-4113 (((-876) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 23))) +((-2063 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1294))))) +(-13 (-1239) (-625 (-877)) (-10 -8 (-15 -2063 ((-1294) $)))) +(((-625 (-877)) . T) ((-1239) . T)) +((-1593 (((-3 $ "failed") (-326 (-390))) 21) (((-3 $ "failed") (-326 (-576))) 19) (((-3 $ "failed") (-972 (-390))) 17) (((-3 $ "failed") (-972 (-576))) 15) (((-3 $ "failed") (-419 (-972 (-390)))) 13) (((-3 $ "failed") (-419 (-972 (-576)))) 11)) (-2830 (($ (-326 (-390))) 22) (($ (-326 (-576))) 20) (($ (-972 (-390))) 18) (($ (-972 (-576))) 16) (($ (-419 (-972 (-390)))) 14) (($ (-419 (-972 (-576)))) 12)) (-2063 (((-1294) $) 7)) (-3515 (((-877) $) 8) (($ (-657 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 23))) (((-408) (-141)) (T -408)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) (-4 *1 (-408)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-971 (-390))) (-4 *1 (-408)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-390))) (-4 *1 (-408)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-408)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-576))) (-4 *1 (-408)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-390)))) (-4 *1 (-408)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-390)))) (-4 *1 (-408)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-576)))) (-4 *1 (-408)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-971 (-576)))) (-4 *1 (-408))))) -(-13 (-407) (-10 -8 (-15 -4113 ($ (-656 (-340)))) (-15 -4113 ($ (-340))) (-15 -4113 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340)))))) (-15 -2317 ($ (-326 (-390)))) (-15 -2982 ((-3 $ "failed") (-326 (-390)))) (-15 -2317 ($ (-326 (-576)))) (-15 -2982 ((-3 $ "failed") (-326 (-576)))) (-15 -2317 ($ (-971 (-390)))) (-15 -2982 ((-3 $ "failed") (-971 (-390)))) (-15 -2317 ($ (-971 (-576)))) (-15 -2982 ((-3 $ "failed") (-971 (-576)))) (-15 -2317 ($ (-419 (-971 (-390))))) (-15 -2982 ((-3 $ "failed") (-419 (-971 (-390))))) (-15 -2317 ($ (-419 (-971 (-576))))) (-15 -2982 ((-3 $ "failed") (-419 (-971 (-576))))))) -(((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) -((-1514 (((-656 (-1179)) (-656 (-1179))) 9)) (-3973 (((-1293) (-400)) 26)) (-1379 (((-1125) (-1197) (-656 (-1197)) (-1200) (-656 (-1197))) 59) (((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)) (-1197)) 34) (((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197))) 33))) -(((-409) (-10 -7 (-15 -1379 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)))) (-15 -1379 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)) (-1197))) (-15 -1379 ((-1125) (-1197) (-656 (-1197)) (-1200) (-656 (-1197)))) (-15 -3973 ((-1293) (-400))) (-15 -1514 ((-656 (-1179)) (-656 (-1179)))))) (T -409)) -((-1514 (*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-409)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-409)))) (-1379 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *5 (-1200)) (-5 *3 (-1197)) (-5 *2 (-1125)) (-5 *1 (-409)))) (-1379 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) (-5 *1 (-409)))) (-1379 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) (-5 *1 (-409))))) -(-10 -7 (-15 -1379 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)))) (-15 -1379 ((-1125) (-1197) (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197)))) (-656 (-656 (-3 (|:| |array| (-656 (-1197))) (|:| |scalar| (-1197))))) (-656 (-1197)) (-1197))) (-15 -1379 ((-1125) (-1197) (-656 (-1197)) (-1200) (-656 (-1197)))) (-15 -3973 ((-1293) (-400))) (-15 -1514 ((-656 (-1179)) (-656 (-1179))))) -((-3973 (((-1293) $) 35)) (-4113 (((-876) $) 97) (($ (-340)) 99) (($ (-656 (-340))) 98) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 96) (($ (-326 (-713))) 52) (($ (-326 (-711))) 72) (($ (-326 (-706))) 85) (($ (-304 (-326 (-713)))) 67) (($ (-304 (-326 (-711)))) 80) (($ (-304 (-326 (-706)))) 93) (($ (-326 (-576))) 104) (($ (-326 (-390))) 117) (($ (-326 (-171 (-390)))) 130) (($ (-304 (-326 (-576)))) 112) (($ (-304 (-326 (-390)))) 125) (($ (-304 (-326 (-171 (-390))))) 138))) -(((-410 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -4113 ($ (-340))) (-15 -4113 ($ (-656 (-340)))) (-15 -4113 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340)))))) (-15 -4113 ($ (-326 (-713)))) (-15 -4113 ($ (-326 (-711)))) (-15 -4113 ($ (-326 (-706)))) (-15 -4113 ($ (-304 (-326 (-713))))) (-15 -4113 ($ (-304 (-326 (-711))))) (-15 -4113 ($ (-304 (-326 (-706))))) (-15 -4113 ($ (-326 (-576)))) (-15 -4113 ($ (-326 (-390)))) (-15 -4113 ($ (-326 (-171 (-390))))) (-15 -4113 ($ (-304 (-326 (-576))))) (-15 -4113 ($ (-304 (-326 (-390))))) (-15 -4113 ($ (-304 (-326 (-171 (-390)))))))) (-1197) (-3 (|:| |fst| (-446)) (|:| -2435 "void")) (-656 (-1197)) (-1201)) (T -410)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-14 *5 (-656 (-1197))) (-14 *6 (-1201))))) -(-13 (-407) (-10 -8 (-15 -4113 ($ (-340))) (-15 -4113 ($ (-656 (-340)))) (-15 -4113 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340)))))) (-15 -4113 ($ (-326 (-713)))) (-15 -4113 ($ (-326 (-711)))) (-15 -4113 ($ (-326 (-706)))) (-15 -4113 ($ (-304 (-326 (-713))))) (-15 -4113 ($ (-304 (-326 (-711))))) (-15 -4113 ($ (-304 (-326 (-706))))) (-15 -4113 ($ (-326 (-576)))) (-15 -4113 ($ (-326 (-390)))) (-15 -4113 ($ (-326 (-171 (-390))))) (-15 -4113 ($ (-304 (-326 (-576))))) (-15 -4113 ($ (-304 (-326 (-390))))) (-15 -4113 ($ (-304 (-326 (-171 (-390)))))))) -((-1957 (((-112) $ $) NIL)) (-3335 ((|#2| $) 38)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1928 (($ (-419 |#2|)) 93)) (-3723 (((-656 (-2 (|:| -4080 (-783)) (|:| -3188 |#2|) (|:| |num| |#2|))) $) 39)) (-4107 (($ $ (-783)) 36) (($ $) 34)) (-1556 (((-419 |#2|) $) 49)) (-4125 (($ (-656 (-2 (|:| -4080 (-783)) (|:| -3188 |#2|) (|:| |num| |#2|)))) 33)) (-4113 (((-876) $) 131)) (-2950 (((-112) $ $) NIL)) (-3157 (($ $ (-783)) 37) (($ $) 35)) (-3939 (((-112) $ $) NIL)) (-4026 (($ |#2| $) 41))) -(((-411 |#1| |#2|) (-13 (-1121) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -4026 ($ |#2| $)) (-15 -1928 ($ (-419 |#2|))) (-15 -3335 (|#2| $)) (-15 -3723 ((-656 (-2 (|:| -4080 (-783)) (|:| -3188 |#2|) (|:| |num| |#2|))) $)) (-15 -4125 ($ (-656 (-2 (|:| -4080 (-783)) (|:| -3188 |#2|) (|:| |num| |#2|))))))) (-13 (-374) (-148)) (-1264 |#1|)) (T -411)) -((-4026 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1264 *3)))) (-1928 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-3335 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-374) (-148))))) (-3723 (*1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *2 (-656 (-2 (|:| -4080 (-783)) (|:| -3188 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1264 *3)))) (-4125 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4080 (-783)) (|:| -3188 *4) (|:| |num| *4)))) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))))) -(-13 (-1121) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -4026 ($ |#2| $)) (-15 -1928 ($ (-419 |#2|))) (-15 -3335 (|#2| $)) (-15 -3723 ((-656 (-2 (|:| -4080 (-783)) (|:| -3188 |#2|) (|:| |num| |#2|))) $)) (-15 -4125 ($ (-656 (-2 (|:| -4080 (-783)) (|:| -3188 |#2|) (|:| |num| |#2|))))))) -((-1957 (((-112) $ $) 10 (-3795 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 16 (|has| |#1| (-901 (-390)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 15 (|has| |#1| (-901 (-576))))) (-2447 (((-1179) $) 14 (-3795 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-3116 (((-1141) $) 13 (-3795 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-4113 (((-876) $) 12 (-3795 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-2950 (((-112) $ $) 11 (-3795 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))))) (-3939 (((-112) $ $) 9 (-3795 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390))))))) -(((-412 |#1|) (-141) (-1238)) (T -412)) -NIL -(-13 (-1238) (-10 -7 (IF (|has| |t#1| (-901 (-576))) (-6 (-901 (-576))) |%noBranch|) (IF (|has| |t#1| (-901 (-390))) (-6 (-901 (-390))) |%noBranch|))) -(((-102) -3795 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))) ((-625 (-876)) -3795 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-1121) -3795 (|has| |#1| (-901 (-576))) (|has| |#1| (-901 (-390)))) ((-1238) . T)) -((-2824 (($ $) 10) (($ $ (-783)) 12))) -(((-413 |#1|) (-10 -8 (-15 -2824 (|#1| |#1| (-783))) (-15 -2824 (|#1| |#1|))) (-414)) (T -413)) -NIL -(-10 -8 (-15 -2824 (|#1| |#1| (-783))) (-15 -2824 (|#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 81)) (-3589 (((-430 $) $) 80)) (-4386 (((-112) $ $) 65)) (-3170 (($) 18 T CONST)) (-1895 (($ $ $) 61)) (-1851 (((-3 $ "failed") $) 37)) (-1908 (($ $ $) 62)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-2824 (($ $) 87) (($ $ (-783)) 86)) (-2171 (((-112) $) 79)) (-3359 (((-845 (-940)) $) 89)) (-2486 (((-112) $) 35)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 78)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-1452 (((-430 $) $) 82)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2812 (((-783) $) 64)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63)) (-3168 (((-3 (-783) "failed") $ $) 88)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-4276 (((-3 $ "failed") $) 90)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ $) 73)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-408)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) (-4 *1 (-408)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-972 (-390))) (-4 *1 (-408)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-390))) (-4 *1 (-408)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-972 (-576))) (-4 *1 (-408)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-576))) (-4 *1 (-408)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-390)))) (-4 *1 (-408)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-972 (-390)))) (-4 *1 (-408)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-576)))) (-4 *1 (-408)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-972 (-576)))) (-4 *1 (-408))))) +(-13 (-407) (-10 -8 (-15 -3515 ($ (-657 (-340)))) (-15 -3515 ($ (-340))) (-15 -3515 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340)))))) (-15 -2830 ($ (-326 (-390)))) (-15 -1593 ((-3 $ "failed") (-326 (-390)))) (-15 -2830 ($ (-326 (-576)))) (-15 -1593 ((-3 $ "failed") (-326 (-576)))) (-15 -2830 ($ (-972 (-390)))) (-15 -1593 ((-3 $ "failed") (-972 (-390)))) (-15 -2830 ($ (-972 (-576)))) (-15 -1593 ((-3 $ "failed") (-972 (-576)))) (-15 -2830 ($ (-419 (-972 (-390))))) (-15 -1593 ((-3 $ "failed") (-419 (-972 (-390))))) (-15 -2830 ($ (-419 (-972 (-576))))) (-15 -1593 ((-3 $ "failed") (-419 (-972 (-576))))))) +(((-625 (-877)) . T) ((-407) . T) ((-1239) . T)) +((-1907 (((-657 (-1180)) (-657 (-1180))) 9)) (-2063 (((-1294) (-400)) 26)) (-2932 (((-1126) (-1198) (-657 (-1198)) (-1201) (-657 (-1198))) 59) (((-1126) (-1198) (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198)))) (-657 (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198))))) (-657 (-1198)) (-1198)) 34) (((-1126) (-1198) (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198)))) (-657 (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198))))) (-657 (-1198))) 33))) +(((-409) (-10 -7 (-15 -2932 ((-1126) (-1198) (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198)))) (-657 (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198))))) (-657 (-1198)))) (-15 -2932 ((-1126) (-1198) (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198)))) (-657 (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198))))) (-657 (-1198)) (-1198))) (-15 -2932 ((-1126) (-1198) (-657 (-1198)) (-1201) (-657 (-1198)))) (-15 -2063 ((-1294) (-400))) (-15 -1907 ((-657 (-1180)) (-657 (-1180)))))) (T -409)) +((-1907 (*1 *2 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-409)))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1294)) (-5 *1 (-409)))) (-2932 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-657 (-1198))) (-5 *5 (-1201)) (-5 *3 (-1198)) (-5 *2 (-1126)) (-5 *1 (-409)))) (-2932 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-657 (-657 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-657 (-3 (|:| |array| (-657 *3)) (|:| |scalar| (-1198))))) (-5 *6 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1126)) (-5 *1 (-409)))) (-2932 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-657 (-657 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-657 (-3 (|:| |array| (-657 *3)) (|:| |scalar| (-1198))))) (-5 *6 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1126)) (-5 *1 (-409))))) +(-10 -7 (-15 -2932 ((-1126) (-1198) (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198)))) (-657 (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198))))) (-657 (-1198)))) (-15 -2932 ((-1126) (-1198) (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198)))) (-657 (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198))))) (-657 (-1198)) (-1198))) (-15 -2932 ((-1126) (-1198) (-657 (-1198)) (-1201) (-657 (-1198)))) (-15 -2063 ((-1294) (-400))) (-15 -1907 ((-657 (-1180)) (-657 (-1180))))) +((-2063 (((-1294) $) 35)) (-3515 (((-877) $) 97) (($ (-340)) 99) (($ (-657 (-340))) 98) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 96) (($ (-326 (-714))) 52) (($ (-326 (-712))) 72) (($ (-326 (-707))) 85) (($ (-304 (-326 (-714)))) 67) (($ (-304 (-326 (-712)))) 80) (($ (-304 (-326 (-707)))) 93) (($ (-326 (-576))) 104) (($ (-326 (-390))) 117) (($ (-326 (-171 (-390)))) 130) (($ (-304 (-326 (-576)))) 112) (($ (-304 (-326 (-390)))) 125) (($ (-304 (-326 (-171 (-390))))) 138))) +(((-410 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -3515 ($ (-340))) (-15 -3515 ($ (-657 (-340)))) (-15 -3515 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340)))))) (-15 -3515 ($ (-326 (-714)))) (-15 -3515 ($ (-326 (-712)))) (-15 -3515 ($ (-326 (-707)))) (-15 -3515 ($ (-304 (-326 (-714))))) (-15 -3515 ($ (-304 (-326 (-712))))) (-15 -3515 ($ (-304 (-326 (-707))))) (-15 -3515 ($ (-326 (-576)))) (-15 -3515 ($ (-326 (-390)))) (-15 -3515 ($ (-326 (-171 (-390))))) (-15 -3515 ($ (-304 (-326 (-576))))) (-15 -3515 ($ (-304 (-326 (-390))))) (-15 -3515 ($ (-304 (-326 (-171 (-390)))))))) (-1198) (-3 (|:| |fst| (-446)) (|:| -2875 "void")) (-657 (-1198)) (-1202)) (T -410)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-326 (-714))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-326 (-712))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-326 (-707))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-714)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-712)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-707)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202))))) +(-13 (-407) (-10 -8 (-15 -3515 ($ (-340))) (-15 -3515 ($ (-657 (-340)))) (-15 -3515 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340)))))) (-15 -3515 ($ (-326 (-714)))) (-15 -3515 ($ (-326 (-712)))) (-15 -3515 ($ (-326 (-707)))) (-15 -3515 ($ (-304 (-326 (-714))))) (-15 -3515 ($ (-304 (-326 (-712))))) (-15 -3515 ($ (-304 (-326 (-707))))) (-15 -3515 ($ (-326 (-576)))) (-15 -3515 ($ (-326 (-390)))) (-15 -3515 ($ (-326 (-171 (-390))))) (-15 -3515 ($ (-304 (-326 (-576))))) (-15 -3515 ($ (-304 (-326 (-390))))) (-15 -3515 ($ (-304 (-326 (-171 (-390)))))))) +((-3423 (((-112) $ $) NIL)) (-3665 ((|#2| $) 38)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3408 (($ (-419 |#2|)) 93)) (-2934 (((-657 (-2 (|:| -2128 (-784)) (|:| -3713 |#2|) (|:| |num| |#2|))) $) 39)) (-2209 (($ $ (-784)) 36) (($ $) 34)) (-4136 (((-419 |#2|) $) 49)) (-3529 (($ (-657 (-2 (|:| -2128 (-784)) (|:| -3713 |#2|) (|:| |num| |#2|)))) 33)) (-3515 (((-877) $) 131)) (-4166 (((-112) $ $) NIL)) (-2066 (($ $ (-784)) 37) (($ $) 35)) (-2881 (((-112) $ $) NIL)) (-2971 (($ |#2| $) 41))) +(((-411 |#1| |#2|) (-13 (-1122) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -2971 ($ |#2| $)) (-15 -3408 ($ (-419 |#2|))) (-15 -3665 (|#2| $)) (-15 -2934 ((-657 (-2 (|:| -2128 (-784)) (|:| -3713 |#2|) (|:| |num| |#2|))) $)) (-15 -3529 ($ (-657 (-2 (|:| -2128 (-784)) (|:| -3713 |#2|) (|:| |num| |#2|))))))) (-13 (-374) (-148)) (-1265 |#1|)) (T -411)) +((-2971 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1265 *3)))) (-3408 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-3665 (*1 *2 *1) (-12 (-4 *2 (-1265 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-374) (-148))))) (-2934 (*1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *2 (-657 (-2 (|:| -2128 (-784)) (|:| -3713 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1265 *3)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -2128 (-784)) (|:| -3713 *4) (|:| |num| *4)))) (-4 *4 (-1265 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))))) +(-13 (-1122) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -2971 ($ |#2| $)) (-15 -3408 ($ (-419 |#2|))) (-15 -3665 (|#2| $)) (-15 -2934 ((-657 (-2 (|:| -2128 (-784)) (|:| -3713 |#2|) (|:| |num| |#2|))) $)) (-15 -3529 ($ (-657 (-2 (|:| -2128 (-784)) (|:| -3713 |#2|) (|:| |num| |#2|))))))) +((-3423 (((-112) $ $) 10 (-2748 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))))) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 16 (|has| |#1| (-902 (-390)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 15 (|has| |#1| (-902 (-576))))) (-1708 (((-1180) $) 14 (-2748 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))))) (-1460 (((-1142) $) 13 (-2748 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))))) (-3515 (((-877) $) 12 (-2748 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))))) (-4166 (((-112) $ $) 11 (-2748 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))))) (-2881 (((-112) $ $) 9 (-2748 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390))))))) +(((-412 |#1|) (-141) (-1239)) (T -412)) +NIL +(-13 (-1239) (-10 -7 (IF (|has| |t#1| (-902 (-576))) (-6 (-902 (-576))) |%noBranch|) (IF (|has| |t#1| (-902 (-390))) (-6 (-902 (-390))) |%noBranch|))) +(((-102) -2748 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))) ((-625 (-877)) -2748 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))) ((-902 (-390)) |has| |#1| (-902 (-390))) ((-902 (-576)) |has| |#1| (-902 (-576))) ((-1122) -2748 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))) ((-1239) . T)) +((-4266 (($ $) 10) (($ $ (-784)) 12))) +(((-413 |#1|) (-10 -8 (-15 -4266 (|#1| |#1| (-784))) (-15 -4266 (|#1| |#1|))) (-414)) (T -413)) +NIL +(-10 -8 (-15 -4266 (|#1| |#1| (-784))) (-15 -4266 (|#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 81)) (-4215 (((-430 $) $) 80)) (-3210 (((-112) $ $) 65)) (-2515 (($) 18 T CONST)) (-3355 (($ $ $) 61)) (-3969 (((-3 $ "failed") $) 37)) (-3369 (($ $ $) 62)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-4266 (($ $) 87) (($ $ (-784)) 86)) (-4009 (((-112) $) 79)) (-2650 (((-846 (-941)) $) 89)) (-3994 (((-112) $) 35)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 78)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-1856 (((-430 $) $) 82)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-4164 (((-784) $) 64)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63)) (-2495 (((-3 (-784) "failed") $ $) 88)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3414 (((-3 $ "failed") $) 90)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ $) 73)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-414) (-141)) (T -414)) -((-3359 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-940))))) (-3168 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783)))) (-2824 (*1 *1 *1) (-4 *1 (-414))) (-2824 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783))))) -(-13 (-374) (-146) (-10 -8 (-15 -3359 ((-845 (-940)) $)) (-15 -3168 ((-3 (-783) "failed") $ $)) (-15 -2824 ($ $)) (-15 -2824 ($ $ (-783))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-2633 (($ (-576) (-576)) 11) (($ (-576) (-576) (-940)) NIL)) (-2539 (((-940)) 19) (((-940) (-940)) NIL))) -(((-415 |#1|) (-10 -8 (-15 -2539 ((-940) (-940))) (-15 -2539 ((-940))) (-15 -2633 (|#1| (-576) (-576) (-940))) (-15 -2633 (|#1| (-576) (-576)))) (-416)) (T -415)) -((-2539 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) -(-10 -8 (-15 -2539 ((-940) (-940))) (-15 -2539 ((-940))) (-15 -2633 (|#1| (-576) (-576) (-940))) (-15 -2633 (|#1| (-576) (-576)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-2628 (((-576) $) 98)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-4087 (($ $) 96)) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 81)) (-3589 (((-430 $) $) 80)) (-1462 (($ $) 106)) (-4386 (((-112) $ $) 65)) (-1527 (((-576) $) 123)) (-3170 (($) 18 T CONST)) (-4174 (($ $) 95)) (-2982 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2317 (((-576) $) 112) (((-419 (-576)) $) 109)) (-1895 (($ $ $) 61)) (-1851 (((-3 $ "failed") $) 37)) (-1908 (($ $ $) 62)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-2171 (((-112) $) 79)) (-2758 (((-940)) 139) (((-940) (-940)) 136 (|has| $ (-6 -4455)))) (-2279 (((-112) $) 121)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 102)) (-3359 (((-576) $) 145)) (-2486 (((-112) $) 35)) (-4005 (($ $ (-576)) 105)) (-2595 (($ $) 101)) (-3323 (((-112) $) 122)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2907 (($ $ $) 115) (($) 133 (-12 (-2299 (|has| $ (-6 -4455))) (-2299 (|has| $ (-6 -4447)))))) (-3777 (($ $ $) 116) (($) 132 (-12 (-2299 (|has| $ (-6 -4455))) (-2299 (|has| $ (-6 -4447)))))) (-1361 (((-576) $) 142)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 78)) (-2627 (((-940) (-576)) 135 (|has| $ (-6 -4455)))) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-2701 (($ $) 97)) (-3058 (($ $) 99)) (-2633 (($ (-576) (-576)) 147) (($ (-576) (-576) (-940)) 146)) (-1452 (((-430 $) $) 82)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-4080 (((-576) $) 143)) (-2812 (((-783) $) 64)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63)) (-2539 (((-940)) 140) (((-940) (-940)) 137 (|has| $ (-6 -4455)))) (-1449 (((-940) (-576)) 134 (|has| $ (-6 -4455)))) (-1556 (((-390) $) 114) (((-227) $) 113) (((-907 (-390)) $) 103)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-2910 (((-783)) 32 T CONST)) (-4081 (($ $) 100)) (-4252 (((-940)) 141) (((-940) (-940)) 138 (|has| $ (-6 -4455)))) (-2950 (((-112) $ $) 6)) (-1869 (((-940)) 144)) (-4134 (((-112) $ $) 45)) (-2366 (($ $) 124)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3995 (((-112) $ $) 117)) (-3975 (((-112) $ $) 119)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 118)) (-3963 (((-112) $ $) 120)) (-4047 (($ $ $) 73)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-2650 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-846 (-941))))) (-2495 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-784)))) (-4266 (*1 *1 *1) (-4 *1 (-414))) (-4266 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-784))))) +(-13 (-374) (-146) (-10 -8 (-15 -2650 ((-846 (-941)) $)) (-15 -2495 ((-3 (-784) "failed") $ $)) (-15 -4266 ($ $)) (-15 -4266 ($ $ (-784))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) +((-2983 (($ (-576) (-576)) 11) (($ (-576) (-576) (-941)) NIL)) (-1409 (((-941)) 19) (((-941) (-941)) NIL))) +(((-415 |#1|) (-10 -8 (-15 -1409 ((-941) (-941))) (-15 -1409 ((-941))) (-15 -2983 (|#1| (-576) (-576) (-941))) (-15 -2983 (|#1| (-576) (-576)))) (-416)) (T -415)) +((-1409 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) +(-10 -8 (-15 -1409 ((-941) (-941))) (-15 -1409 ((-941))) (-15 -2983 (|#1| (-576) (-576) (-941))) (-15 -2983 (|#1| (-576) (-576)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2923 (((-576) $) 98)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2212 (($ $) 96)) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 81)) (-4215 (((-430 $) $) 80)) (-1866 (($ $) 106)) (-3210 (((-112) $ $) 65)) (-3922 (((-576) $) 123)) (-2515 (($) 18 T CONST)) (-1794 (($ $) 95)) (-1593 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2830 (((-576) $) 112) (((-419 (-576)) $) 109)) (-3355 (($ $ $) 61)) (-3969 (((-3 $ "failed") $) 37)) (-3369 (($ $ $) 62)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-4009 (((-112) $) 79)) (-3955 (((-941)) 139) (((-941) (-941)) 136 (|has| $ (-6 -4457)))) (-3810 (((-112) $) 121)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 102)) (-2650 (((-576) $) 145)) (-3994 (((-112) $) 35)) (-3856 (($ $ (-576)) 105)) (-3869 (($ $) 101)) (-3517 (((-112) $) 122)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3740 (($ $ $) 115) (($) 133 (-12 (-2665 (|has| $ (-6 -4457))) (-2665 (|has| $ (-6 -4449)))))) (-2249 (($ $ $) 116) (($) 132 (-12 (-2665 (|has| $ (-6 -4457))) (-2665 (|has| $ (-6 -4449)))))) (-1504 (((-576) $) 142)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 78)) (-2909 (((-941) (-576)) 135 (|has| $ (-6 -4457)))) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-2440 (($ $) 97)) (-2681 (($ $) 99)) (-2983 (($ (-576) (-576)) 147) (($ (-576) (-576) (-941)) 146)) (-1856 (((-430 $) $) 82)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-2128 (((-576) $) 143)) (-4164 (((-784) $) 64)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63)) (-1409 (((-941)) 140) (((-941) (-941)) 137 (|has| $ (-6 -4457)))) (-3626 (((-941) (-576)) 134 (|has| $ (-6 -4457)))) (-4136 (((-390) $) 114) (((-227) $) 113) (((-908 (-390)) $) 103)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-3845 (((-784)) 32 T CONST)) (-2140 (($ $) 100)) (-1344 (((-941)) 141) (((-941) (-941)) 138 (|has| $ (-6 -4457)))) (-4166 (((-112) $ $) 6)) (-4129 (((-941)) 144)) (-2607 (((-112) $ $) 45)) (-2127 (($ $) 124)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2938 (((-112) $ $) 117)) (-2913 (((-112) $ $) 119)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 118)) (-2901 (((-112) $ $) 120)) (-2995 (($ $ $) 73)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-416) (-141)) (T -416)) -((-2633 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) (-2633 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-4 *1 (-416)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1869 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-4080 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1361 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-4252 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-2539 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-2758 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) (-2627 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4455)) (-4 *1 (-416)) (-5 *2 (-940)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4455)) (-4 *1 (-416)) (-5 *2 (-940)))) (-2907 (*1 *1) (-12 (-4 *1 (-416)) (-2299 (|has| *1 (-6 -4455))) (-2299 (|has| *1 (-6 -4447))))) (-3777 (*1 *1) (-12 (-4 *1 (-416)) (-2299 (|has| *1 (-6 -4455))) (-2299 (|has| *1 (-6 -4447)))))) -(-13 (-1081) (-10 -8 (-6 -2642) (-15 -2633 ($ (-576) (-576))) (-15 -2633 ($ (-576) (-576) (-940))) (-15 -3359 ((-576) $)) (-15 -1869 ((-940))) (-15 -4080 ((-576) $)) (-15 -1361 ((-576) $)) (-15 -4252 ((-940))) (-15 -2539 ((-940))) (-15 -2758 ((-940))) (IF (|has| $ (-6 -4455)) (PROGN (-15 -4252 ((-940) (-940))) (-15 -2539 ((-940) (-940))) (-15 -2758 ((-940) (-940))) (-15 -2627 ((-940) (-576))) (-15 -1449 ((-940) (-576)))) |%noBranch|) (IF (|has| $ (-6 -4447)) |%noBranch| (IF (|has| $ (-6 -4455)) |%noBranch| (PROGN (-15 -2907 ($)) (-15 -3777 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-907 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-901 (-390)) . T) ((-939) . T) ((-1023) . T) ((-1043) . T) ((-1081) . T) ((-1059 (-419 (-576))) . T) ((-1059 (-576)) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-2423 (((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)) 20))) -(((-417 |#1| |#2|) (-10 -7 (-15 -2423 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) (-568) (-568)) (T -417)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6))))) -(-10 -7 (-15 -2423 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) -((-2423 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13))) -(((-418 |#1| |#2|) (-10 -7 (-15 -2423 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -418)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6))))) -(-10 -7 (-15 -2423 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 13)) (-2628 ((|#1| $) 21 (|has| |#1| (-317)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL (|has| |#1| (-832)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) 17) (((-3 (-1197) "failed") $) NIL (|has| |#1| (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576))))) (-2317 ((|#1| $) 15) (((-1197) $) NIL (|has| |#1| (-1059 (-1197)))) (((-419 (-576)) $) 69 (|has| |#1| (-1059 (-576)))) (((-576) $) NIL (|has| |#1| (-1059 (-576))))) (-1895 (($ $ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) 51)) (-4370 (($) NIL (|has| |#1| (-557)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2279 (((-112) $) NIL (|has| |#1| (-832)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| |#1| (-901 (-390))))) (-2486 (((-112) $) 57)) (-2252 (($ $) NIL)) (-2687 ((|#1| $) 73)) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-3323 (((-112) $) NIL (|has| |#1| (-832)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| |#1| (-1173)) CONST)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 100)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2701 (($ $) NIL (|has| |#1| (-317)))) (-3058 ((|#1| $) 28 (|has| |#1| (-557)))) (-4112 (((-430 (-1193 $)) (-1193 $)) 145 (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) 138 (|has| |#1| (-928)))) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2145 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-2812 (((-783) $) NIL)) (-4369 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4107 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3591 (($ $) NIL)) (-2697 ((|#1| $) 75)) (-1556 (((-907 (-576)) $) NIL (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#1| (-626 (-907 (-390))))) (((-548) $) NIL (|has| |#1| (-626 (-548)))) (((-390) $) NIL (|has| |#1| (-1043))) (((-227) $) NIL (|has| |#1| (-1043)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 10) (($ (-1197)) NIL (|has| |#1| (-1059 (-1197))))) (-4276 (((-3 $ "failed") $) 102 (-3795 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) 103 T CONST)) (-4081 ((|#1| $) 26 (|has| |#1| (-557)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| |#1| (-832)))) (-4313 (($) 22 T CONST)) (-4322 (($) 8 T CONST)) (-2172 (((-1179) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1179) $ (-112)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1293) (-834) $) 46 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1293) (-834) $ (-112)) 47 (-12 (|has| |#1| (-557)) (|has| |#1| (-840))))) (-3157 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) 66)) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) 24 (|has| |#1| (-861)))) (-4047 (($ $ $) 133) (($ |#1| |#1|) 53)) (-4037 (($ $) 25) (($ $ $) 56)) (-4026 (($ $ $) 54)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 132)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 58) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-419 |#1|) (-13 (-1013 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4462)) (-6 -4451) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419)) -NIL -(-13 (-1013 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4462)) (-6 -4451) |%noBranch|) |%noBranch|) |%noBranch|))) -((-2637 (((-701 |#2|) (-1288 $)) NIL) (((-701 |#2|)) 18)) (-2496 (($ (-1288 |#2|) (-1288 $)) NIL) (($ (-1288 |#2|)) 24)) (-1481 (((-701 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) $) 40)) (-4293 ((|#3| $) 69)) (-1790 ((|#2| (-1288 $)) NIL) ((|#2|) 20)) (-4314 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $) 22) (((-701 |#2|) (-1288 $)) 38)) (-1556 (((-1288 |#2|) $) 11) (($ (-1288 |#2|)) 13)) (-4358 ((|#3| $) 55))) -(((-420 |#1| |#2| |#3|) (-10 -8 (-15 -1481 ((-701 |#2|) |#1|)) (-15 -1790 (|#2|)) (-15 -2637 ((-701 |#2|))) (-15 -1556 (|#1| (-1288 |#2|))) (-15 -1556 ((-1288 |#2|) |#1|)) (-15 -2496 (|#1| (-1288 |#2|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1|)) (-15 -4293 (|#3| |#1|)) (-15 -4358 (|#3| |#1|)) (-15 -2637 ((-701 |#2|) (-1288 |#1|))) (-15 -1790 (|#2| (-1288 |#1|))) (-15 -2496 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1481 ((-701 |#2|) |#1| (-1288 |#1|)))) (-421 |#2| |#3|) (-174) (-1264 |#2|)) (T -420)) -((-2637 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)) (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) (-1790 (*1 *2) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) (-4 *3 (-421 *2 *4))))) -(-10 -8 (-15 -1481 ((-701 |#2|) |#1|)) (-15 -1790 (|#2|)) (-15 -2637 ((-701 |#2|))) (-15 -1556 (|#1| (-1288 |#2|))) (-15 -1556 ((-1288 |#2|) |#1|)) (-15 -2496 (|#1| (-1288 |#2|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1|)) (-15 -4293 (|#3| |#1|)) (-15 -4358 (|#3| |#1|)) (-15 -2637 ((-701 |#2|) (-1288 |#1|))) (-15 -1790 (|#2| (-1288 |#1|))) (-15 -2496 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1481 ((-701 |#2|) |#1| (-1288 |#1|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-2637 (((-701 |#1|) (-1288 $)) 53) (((-701 |#1|)) 68)) (-3832 ((|#1| $) 59)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2496 (($ (-1288 |#1|) (-1288 $)) 55) (($ (-1288 |#1|)) 71)) (-1481 (((-701 |#1|) $ (-1288 $)) 60) (((-701 |#1|) $) 66)) (-1851 (((-3 $ "failed") $) 37)) (-4135 (((-940)) 61)) (-2486 (((-112) $) 35)) (-2595 ((|#1| $) 58)) (-4293 ((|#2| $) 51 (|has| |#1| (-374)))) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1790 ((|#1| (-1288 $)) 54) ((|#1|) 67)) (-4314 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56) (((-1288 |#1|) $) 73) (((-701 |#1|) (-1288 $)) 72)) (-1556 (((-1288 |#1|) $) 70) (($ (-1288 |#1|)) 69)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-4276 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4358 ((|#2| $) 52)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-2704 (((-1288 $)) 74)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-421 |#1| |#2|) (-141) (-174) (-1264 |t#1|)) (T -421)) -((-2704 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *1)) (-4 *1 (-421 *3 *4)))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *3)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1264 *3)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *3)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1264 *3)))) (-2637 (*1 *2) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-701 *3)))) (-1790 (*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) (-1481 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-701 *3))))) -(-13 (-381 |t#1| |t#2|) (-10 -8 (-15 -2704 ((-1288 $))) (-15 -4314 ((-1288 |t#1|) $)) (-15 -4314 ((-701 |t#1|) (-1288 $))) (-15 -2496 ($ (-1288 |t#1|))) (-15 -1556 ((-1288 |t#1|) $)) (-15 -1556 ($ (-1288 |t#1|))) (-15 -2637 ((-701 |t#1|))) (-15 -1790 (|t#1|)) (-15 -1481 ((-701 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-381 |#1| |#2|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2982 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) 27) (((-3 (-576) "failed") $) 19)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) 24) (((-576) $) 14)) (-4113 (($ |#2|) NIL) (($ (-419 (-576))) 22) (($ (-576)) 11))) -(((-422 |#1| |#2|) (-10 -8 (-15 -4113 (|#1| (-576))) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -4113 (|#1| |#2|))) (-423 |#2|) (-1238)) (T -422)) -NIL -(-10 -8 (-15 -4113 (|#1| (-576))) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -4113 (|#1| |#2|))) -((-2982 (((-3 |#1| "failed") $) 9) (((-3 (-419 (-576)) "failed") $) 16 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 13 (|has| |#1| (-1059 (-576))))) (-2317 ((|#1| $) 8) (((-419 (-576)) $) 17 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 14 (|has| |#1| (-1059 (-576))))) (-4113 (($ |#1|) 6) (($ (-419 (-576))) 15 (|has| |#1| (-1059 (-419 (-576))))) (($ (-576)) 12 (|has| |#1| (-1059 (-576)))))) -(((-423 |#1|) (-141) (-1238)) (T -423)) -NIL -(-13 (-1059 |t#1|) (-10 -7 (IF (|has| |t#1| (-1059 (-576))) (-6 (-1059 (-576))) |%noBranch|) (IF (|has| |t#1| (-1059 (-419 (-576)))) (-6 (-1059 (-419 (-576)))) |%noBranch|))) -(((-628 #0=(-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-628 #1=(-576)) |has| |#1| (-1059 (-576))) ((-628 |#1|) . T) ((-1059 #0#) |has| |#1| (-1059 (-419 (-576)))) ((-1059 #1#) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T)) -((-2423 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35))) -(((-424 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2423 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-317) (-1013 |#1|) (-1264 |#2|) (-13 (-421 |#2| |#3|) (-1059 |#2|)) (-317) (-1013 |#5|) (-1264 |#6|) (-13 (-421 |#6| |#7|) (-1059 |#6|))) (T -424)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) (-4 *6 (-1013 *5)) (-4 *7 (-1264 *6)) (-4 *8 (-13 (-421 *6 *7) (-1059 *6))) (-4 *9 (-317)) (-4 *10 (-1013 *9)) (-4 *11 (-1264 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1059 *10)))))) -(-10 -7 (-15 -2423 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) -((-1957 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) NIL)) (-4374 ((|#4| (-783) (-1288 |#4|)) 55)) (-2486 (((-112) $) NIL)) (-2687 (((-1288 |#4|) $) 15)) (-2595 ((|#2| $) 53)) (-4015 (($ $) 157)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 103)) (-3208 (($ (-1288 |#4|)) 102)) (-3116 (((-1141) $) NIL)) (-2697 ((|#1| $) 16)) (-2117 (($ $ $) NIL)) (-3871 (($ $ $) NIL)) (-4113 (((-876) $) 148)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 |#4|) $) 141)) (-4322 (($) 11 T CONST)) (-3939 (((-112) $ $) 39)) (-4047 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 134)) (* (($ $ $) 130))) -(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -3208 ($ (-1288 |#4|))) (-15 -2704 ((-1288 |#4|) $)) (-15 -2595 (|#2| $)) (-15 -2687 ((-1288 |#4|) $)) (-15 -2697 (|#1| $)) (-15 -4015 ($ $)) (-15 -4374 (|#4| (-783) (-1288 |#4|))))) (-317) (-1013 |#1|) (-1264 |#2|) (-13 (-421 |#2| |#3|) (-1059 |#2|))) (T -425)) -((-3208 (*1 *1 *2) (-12 (-5 *2 (-1288 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-317)) (-5 *1 (-425 *3 *4 *5 *6)))) (-2704 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) (-2595 (*1 *2 *1) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1059 *2))))) (-2687 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) (-2697 (*1 *2 *1) (-12 (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) (-4 *2 (-317)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3))))) (-4015 (*1 *1 *1) (-12 (-4 *2 (-317)) (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3))))) (-4374 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1288 *2)) (-4 *5 (-317)) (-4 *6 (-1013 *5)) (-4 *2 (-13 (-421 *6 *7) (-1059 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1264 *6))))) -(-13 (-485) (-10 -8 (-15 -3208 ($ (-1288 |#4|))) (-15 -2704 ((-1288 |#4|) $)) (-15 -2595 (|#2| $)) (-15 -2687 ((-1288 |#4|) $)) (-15 -2697 (|#1| $)) (-15 -4015 ($ $)) (-15 -4374 (|#4| (-783) (-1288 |#4|))))) -((-1957 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) NIL)) (-2486 (((-112) $) NIL)) (-2595 ((|#2| $) 71)) (-4188 (($ (-1288 |#4|)) 27) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1059 |#2|)))) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 37)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 |#4|) $) 28)) (-4322 (($) 25 T CONST)) (-3939 (((-112) $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ $ $) 82))) -(((-426 |#1| |#2| |#3| |#4| |#5|) (-13 (-738) (-10 -8 (-15 -2704 ((-1288 |#4|) $)) (-15 -2595 (|#2| $)) (-15 -4188 ($ (-1288 |#4|))) (IF (|has| |#4| (-1059 |#2|)) (-15 -4188 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-317) (-1013 |#1|) (-1264 |#2|) (-421 |#2| |#3|) (-1288 |#4|)) (T -426)) -((-2704 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) (-2595 (*1 *2 *1) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) (-14 *6 (-1288 *5)))) (-4188 (*1 *1 *2) (-12 (-5 *2 (-1288 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-4188 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1059 *4)) (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *6 (-421 *4 *5)) (-14 *7 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))))) -(-13 (-738) (-10 -8 (-15 -2704 ((-1288 |#4|) $)) (-15 -2595 (|#2| $)) (-15 -4188 ($ (-1288 |#4|))) (IF (|has| |#4| (-1059 |#2|)) (-15 -4188 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-2423 ((|#3| (-1 |#4| |#2|) |#1|) 29))) -(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2423 (|#3| (-1 |#4| |#2|) |#1|))) (-429 |#2|) (-174) (-429 |#4|) (-174)) (T -427)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5))))) -(-10 -7 (-15 -2423 (|#3| (-1 |#4| |#2|) |#1|))) -((-2946 (((-3 $ "failed")) 98)) (-2272 (((-1288 (-701 |#2|)) (-1288 $)) NIL) (((-1288 (-701 |#2|))) 103)) (-3235 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) 96)) (-2991 (((-3 $ "failed")) 95)) (-3778 (((-701 |#2|) (-1288 $)) NIL) (((-701 |#2|)) 114)) (-3140 (((-701 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) $) 122)) (-2078 (((-1193 (-971 |#2|))) 63)) (-1339 ((|#2| (-1288 $)) NIL) ((|#2|) 118)) (-2496 (($ (-1288 |#2|) (-1288 $)) NIL) (($ (-1288 |#2|)) 124)) (-1386 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) 94)) (-2338 (((-3 $ "failed")) 86)) (-2112 (((-701 |#2|) (-1288 $)) NIL) (((-701 |#2|)) 112)) (-3417 (((-701 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) $) 120)) (-1827 (((-1193 (-971 |#2|))) 62)) (-3223 ((|#2| (-1288 $)) NIL) ((|#2|) 116)) (-4314 (((-1288 |#2|) $ (-1288 $)) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $) 123) (((-701 |#2|) (-1288 $)) 132)) (-1556 (((-1288 |#2|) $) 108) (($ (-1288 |#2|)) 110)) (-1937 (((-656 (-971 |#2|)) (-1288 $)) NIL) (((-656 (-971 |#2|))) 106)) (-2653 (($ (-701 |#2|) $) 102))) -(((-428 |#1| |#2|) (-10 -8 (-15 -2653 (|#1| (-701 |#2|) |#1|)) (-15 -2078 ((-1193 (-971 |#2|)))) (-15 -1827 ((-1193 (-971 |#2|)))) (-15 -3140 ((-701 |#2|) |#1|)) (-15 -3417 ((-701 |#2|) |#1|)) (-15 -3778 ((-701 |#2|))) (-15 -2112 ((-701 |#2|))) (-15 -1339 (|#2|)) (-15 -3223 (|#2|)) (-15 -1556 (|#1| (-1288 |#2|))) (-15 -1556 ((-1288 |#2|) |#1|)) (-15 -2496 (|#1| (-1288 |#2|))) (-15 -1937 ((-656 (-971 |#2|)))) (-15 -2272 ((-1288 (-701 |#2|)))) (-15 -4314 ((-701 |#2|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1|)) (-15 -2946 ((-3 |#1| "failed"))) (-15 -2991 ((-3 |#1| "failed"))) (-15 -2338 ((-3 |#1| "failed"))) (-15 -3235 ((-3 (-2 (|:| |particular| |#1|) (|:| -2704 (-656 |#1|))) "failed"))) (-15 -1386 ((-3 (-2 (|:| |particular| |#1|) (|:| -2704 (-656 |#1|))) "failed"))) (-15 -3778 ((-701 |#2|) (-1288 |#1|))) (-15 -2112 ((-701 |#2|) (-1288 |#1|))) (-15 -1339 (|#2| (-1288 |#1|))) (-15 -3223 (|#2| (-1288 |#1|))) (-15 -2496 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3140 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -3417 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -2272 ((-1288 (-701 |#2|)) (-1288 |#1|))) (-15 -1937 ((-656 (-971 |#2|)) (-1288 |#1|)))) (-429 |#2|) (-174)) (T -428)) -((-2272 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-1937 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-971 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3223 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-1339 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-2112 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3778 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-1827 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2078 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) -(-10 -8 (-15 -2653 (|#1| (-701 |#2|) |#1|)) (-15 -2078 ((-1193 (-971 |#2|)))) (-15 -1827 ((-1193 (-971 |#2|)))) (-15 -3140 ((-701 |#2|) |#1|)) (-15 -3417 ((-701 |#2|) |#1|)) (-15 -3778 ((-701 |#2|))) (-15 -2112 ((-701 |#2|))) (-15 -1339 (|#2|)) (-15 -3223 (|#2|)) (-15 -1556 (|#1| (-1288 |#2|))) (-15 -1556 ((-1288 |#2|) |#1|)) (-15 -2496 (|#1| (-1288 |#2|))) (-15 -1937 ((-656 (-971 |#2|)))) (-15 -2272 ((-1288 (-701 |#2|)))) (-15 -4314 ((-701 |#2|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1|)) (-15 -2946 ((-3 |#1| "failed"))) (-15 -2991 ((-3 |#1| "failed"))) (-15 -2338 ((-3 |#1| "failed"))) (-15 -3235 ((-3 (-2 (|:| |particular| |#1|) (|:| -2704 (-656 |#1|))) "failed"))) (-15 -1386 ((-3 (-2 (|:| |particular| |#1|) (|:| -2704 (-656 |#1|))) "failed"))) (-15 -3778 ((-701 |#2|) (-1288 |#1|))) (-15 -2112 ((-701 |#2|) (-1288 |#1|))) (-15 -1339 (|#2| (-1288 |#1|))) (-15 -3223 (|#2| (-1288 |#1|))) (-15 -2496 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -4314 ((-701 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -4314 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3140 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -3417 ((-701 |#2|) |#1| (-1288 |#1|))) (-15 -2272 ((-1288 (-701 |#2|)) (-1288 |#1|))) (-15 -1937 ((-656 (-971 |#2|)) (-1288 |#1|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-2946 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-1765 (((-3 $ "failed") $ $) 20)) (-2272 (((-1288 (-701 |#1|)) (-1288 $)) 83) (((-1288 (-701 |#1|))) 106)) (-3057 (((-1288 $)) 86)) (-3170 (($) 18 T CONST)) (-3235 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-2991 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-3778 (((-701 |#1|) (-1288 $)) 70) (((-701 |#1|)) 98)) (-4038 ((|#1| $) 79)) (-3140 (((-701 |#1|) $ (-1288 $)) 81) (((-701 |#1|) $) 96)) (-3592 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-2078 (((-1193 (-971 |#1|))) 94 (|has| |#1| (-374)))) (-1578 (($ $ (-940)) 31)) (-3789 ((|#1| $) 77)) (-2962 (((-1193 |#1|) $) 47 (|has| |#1| (-568)))) (-1339 ((|#1| (-1288 $)) 72) ((|#1|) 100)) (-1581 (((-1193 |#1|) $) 68)) (-4393 (((-112)) 62)) (-2496 (($ (-1288 |#1|) (-1288 $)) 74) (($ (-1288 |#1|)) 104)) (-1851 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-4135 (((-940)) 85)) (-3163 (((-112)) 59)) (-3107 (($ $ (-940)) 38)) (-3524 (((-112)) 55)) (-2344 (((-112)) 53)) (-1824 (((-112)) 57)) (-1386 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-2338 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-2112 (((-701 |#1|) (-1288 $)) 71) (((-701 |#1|)) 99)) (-2636 ((|#1| $) 80)) (-3417 (((-701 |#1|) $ (-1288 $)) 82) (((-701 |#1|) $) 97)) (-1584 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-1827 (((-1193 (-971 |#1|))) 95 (|has| |#1| (-374)))) (-3303 (($ $ (-940)) 32)) (-1734 ((|#1| $) 78)) (-2631 (((-1193 |#1|) $) 48 (|has| |#1| (-568)))) (-3223 ((|#1| (-1288 $)) 73) ((|#1|) 101)) (-1496 (((-1193 |#1|) $) 69)) (-2110 (((-112)) 63)) (-2447 (((-1179) $) 10)) (-2598 (((-112)) 54)) (-1717 (((-112)) 56)) (-2826 (((-112)) 58)) (-3116 (((-1141) $) 11)) (-2013 (((-112)) 61)) (-4369 ((|#1| $ (-576)) 110)) (-4314 (((-1288 |#1|) $ (-1288 $)) 76) (((-701 |#1|) (-1288 $) (-1288 $)) 75) (((-1288 |#1|) $) 108) (((-701 |#1|) (-1288 $)) 107)) (-1556 (((-1288 |#1|) $) 103) (($ (-1288 |#1|)) 102)) (-1937 (((-656 (-971 |#1|)) (-1288 $)) 84) (((-656 (-971 |#1|))) 105)) (-3871 (($ $ $) 28)) (-3472 (((-112)) 67)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-2704 (((-1288 $)) 109)) (-2638 (((-656 (-1288 |#1|))) 49 (|has| |#1| (-568)))) (-3628 (($ $ $ $) 29)) (-3944 (((-112)) 65)) (-2653 (($ (-701 |#1|) $) 93)) (-3485 (($ $ $) 27)) (-3666 (((-112)) 66)) (-2883 (((-112)) 64)) (-2283 (((-112)) 60)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-2983 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) (-2983 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-941)) (-4 *1 (-416)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-4129 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) (-2128 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1344 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) (-1409 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) (-3955 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) (-1344 (*1 *2 *2) (-12 (-5 *2 (-941)) (|has| *1 (-6 -4457)) (-4 *1 (-416)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-941)) (|has| *1 (-6 -4457)) (-4 *1 (-416)))) (-3955 (*1 *2 *2) (-12 (-5 *2 (-941)) (|has| *1 (-6 -4457)) (-4 *1 (-416)))) (-2909 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4457)) (-4 *1 (-416)) (-5 *2 (-941)))) (-3626 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4457)) (-4 *1 (-416)) (-5 *2 (-941)))) (-3740 (*1 *1) (-12 (-4 *1 (-416)) (-2665 (|has| *1 (-6 -4457))) (-2665 (|has| *1 (-6 -4449))))) (-2249 (*1 *1) (-12 (-4 *1 (-416)) (-2665 (|has| *1 (-6 -4457))) (-2665 (|has| *1 (-6 -4449)))))) +(-13 (-1082) (-10 -8 (-6 -4130) (-15 -2983 ($ (-576) (-576))) (-15 -2983 ($ (-576) (-576) (-941))) (-15 -2650 ((-576) $)) (-15 -4129 ((-941))) (-15 -2128 ((-576) $)) (-15 -1504 ((-576) $)) (-15 -1344 ((-941))) (-15 -1409 ((-941))) (-15 -3955 ((-941))) (IF (|has| $ (-6 -4457)) (PROGN (-15 -1344 ((-941) (-941))) (-15 -1409 ((-941) (-941))) (-15 -3955 ((-941) (-941))) (-15 -2909 ((-941) (-576))) (-15 -3626 ((-941) (-576)))) |%noBranch|) (IF (|has| $ (-6 -4449)) |%noBranch| (IF (|has| $ (-6 -4457)) |%noBranch| (PROGN (-15 -3740 ($)) (-15 -2249 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-908 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 $) . T) ((-739) . T) ((-804) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-861) . T) ((-862) . T) ((-865) . T) ((-902 (-390)) . T) ((-940) . T) ((-1024) . T) ((-1044) . T) ((-1082) . T) ((-1060 (-419 (-576))) . T) ((-1060 (-576)) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) +((-4071 (((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)) 20))) +(((-417 |#1| |#2|) (-10 -7 (-15 -4071 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) (-568) (-568)) (T -417)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6))))) +(-10 -7 (-15 -4071 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) +((-4071 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13))) +(((-418 |#1| |#2|) (-10 -7 (-15 -4071 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -418)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6))))) +(-10 -7 (-15 -4071 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 13)) (-2923 ((|#1| $) 21 (|has| |#1| (-317)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL (|has| |#1| (-833)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) 17) (((-3 (-1198) "failed") $) NIL (|has| |#1| (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576))))) (-2830 ((|#1| $) 15) (((-1198) $) NIL (|has| |#1| (-1060 (-1198)))) (((-419 (-576)) $) 69 (|has| |#1| (-1060 (-576)))) (((-576) $) NIL (|has| |#1| (-1060 (-576))))) (-3355 (($ $ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) 51)) (-1876 (($) NIL (|has| |#1| (-557)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3810 (((-112) $) NIL (|has| |#1| (-833)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| |#1| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| |#1| (-902 (-390))))) (-3994 (((-112) $) 57)) (-3502 (($ $) NIL)) (-1590 ((|#1| $) 73)) (-1955 (((-3 $ "failed") $) NIL (|has| |#1| (-1174)))) (-3517 (((-112) $) NIL (|has| |#1| (-833)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| |#1| (-1174)) CONST)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 100)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2440 (($ $) NIL (|has| |#1| (-317)))) (-2681 ((|#1| $) 28 (|has| |#1| (-557)))) (-2436 (((-430 (-1194 $)) (-1194 $)) 145 (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) 138 (|has| |#1| (-929)))) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3205 (($ $ (-657 |#1|) (-657 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) NIL (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)))) (-4164 (((-784) $) NIL)) (-2780 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2209 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-4226 (($ $) NIL)) (-1602 ((|#1| $) 75)) (-4136 (((-908 (-576)) $) NIL (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| |#1| (-626 (-908 (-390))))) (((-548) $) NIL (|has| |#1| (-626 (-548)))) (((-390) $) NIL (|has| |#1| (-1044))) (((-227) $) NIL (|has| |#1| (-1044)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 10) (($ (-1198)) NIL (|has| |#1| (-1060 (-1198))))) (-3414 (((-3 $ "failed") $) 102 (-2748 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) 103 T CONST)) (-2140 ((|#1| $) 26 (|has| |#1| (-557)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2127 (($ $) NIL (|has| |#1| (-833)))) (-2716 (($) 22 T CONST)) (-2725 (($) 8 T CONST)) (-4019 (((-1180) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-841)))) (((-1180) $ (-112)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-841)))) (((-1294) (-835) $) 46 (-12 (|has| |#1| (-557)) (|has| |#1| (-841)))) (((-1294) (-835) $ (-112)) 47 (-12 (|has| |#1| (-557)) (|has| |#1| (-841))))) (-2066 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) 66)) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) 24 (|has| |#1| (-862)))) (-2995 (($ $ $) 133) (($ |#1| |#1|) 53)) (-2982 (($ $) 25) (($ $ $) 56)) (-2971 (($ $ $) 54)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 132)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 61) (($ $ $) 58) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-419 |#1|) (-13 (-1014 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4464)) (-6 -4453) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419)) +NIL +(-13 (-1014 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4464)) (-6 -4453) |%noBranch|) |%noBranch|) |%noBranch|))) +((-3011 (((-702 |#2|) (-1289 $)) NIL) (((-702 |#2|)) 18)) (-4093 (($ (-1289 |#2|) (-1289 $)) NIL) (($ (-1289 |#2|)) 24)) (-1584 (((-702 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) $) 40)) (-3604 ((|#3| $) 69)) (-1465 ((|#2| (-1289 $)) NIL) ((|#2|) 20)) (-3806 (((-1289 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) (-1289 $) (-1289 $)) NIL) (((-1289 |#2|) $) 22) (((-702 |#2|) (-1289 $)) 38)) (-4136 (((-1289 |#2|) $) 11) (($ (-1289 |#2|)) 13)) (-2948 ((|#3| $) 55))) +(((-420 |#1| |#2| |#3|) (-10 -8 (-15 -1584 ((-702 |#2|) |#1|)) (-15 -1465 (|#2|)) (-15 -3011 ((-702 |#2|))) (-15 -4136 (|#1| (-1289 |#2|))) (-15 -4136 ((-1289 |#2|) |#1|)) (-15 -4093 (|#1| (-1289 |#2|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1|)) (-15 -3604 (|#3| |#1|)) (-15 -2948 (|#3| |#1|)) (-15 -3011 ((-702 |#2|) (-1289 |#1|))) (-15 -1465 (|#2| (-1289 |#1|))) (-15 -4093 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -1584 ((-702 |#2|) |#1| (-1289 |#1|)))) (-421 |#2| |#3|) (-174) (-1265 |#2|)) (T -420)) +((-3011 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)) (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) (-1465 (*1 *2) (-12 (-4 *4 (-1265 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) (-4 *3 (-421 *2 *4))))) +(-10 -8 (-15 -1584 ((-702 |#2|) |#1|)) (-15 -1465 (|#2|)) (-15 -3011 ((-702 |#2|))) (-15 -4136 (|#1| (-1289 |#2|))) (-15 -4136 ((-1289 |#2|) |#1|)) (-15 -4093 (|#1| (-1289 |#2|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1|)) (-15 -3604 (|#3| |#1|)) (-15 -2948 (|#3| |#1|)) (-15 -3011 ((-702 |#2|) (-1289 |#1|))) (-15 -1465 (|#2| (-1289 |#1|))) (-15 -4093 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -1584 ((-702 |#2|) |#1| (-1289 |#1|)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3011 (((-702 |#1|) (-1289 $)) 53) (((-702 |#1|)) 68)) (-2256 ((|#1| $) 59)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-4093 (($ (-1289 |#1|) (-1289 $)) 55) (($ (-1289 |#1|)) 71)) (-1584 (((-702 |#1|) $ (-1289 $)) 60) (((-702 |#1|) $) 66)) (-3969 (((-3 $ "failed") $) 37)) (-4343 (((-941)) 61)) (-3994 (((-112) $) 35)) (-3869 ((|#1| $) 58)) (-3604 ((|#2| $) 51 (|has| |#1| (-374)))) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1465 ((|#1| (-1289 $)) 54) ((|#1|) 67)) (-3806 (((-1289 |#1|) $ (-1289 $)) 57) (((-702 |#1|) (-1289 $) (-1289 $)) 56) (((-1289 |#1|) $) 73) (((-702 |#1|) (-1289 $)) 72)) (-4136 (((-1289 |#1|) $) 70) (($ (-1289 |#1|)) 69)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3414 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2948 ((|#2| $) 52)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2469 (((-1289 $)) 74)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-421 |#1| |#2|) (-141) (-174) (-1265 |t#1|)) (T -421)) +((-2469 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-1289 *1)) (-4 *1 (-421 *3 *4)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-1289 *3)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) (-4093 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1265 *3)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-1289 *3)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1265 *3)))) (-3011 (*1 *2) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-702 *3)))) (-1465 (*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1265 *2)) (-4 *2 (-174)))) (-1584 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-702 *3))))) +(-13 (-381 |t#1| |t#2|) (-10 -8 (-15 -2469 ((-1289 $))) (-15 -3806 ((-1289 |t#1|) $)) (-15 -3806 ((-702 |t#1|) (-1289 $))) (-15 -4093 ($ (-1289 |t#1|))) (-15 -4136 ((-1289 |t#1|) $)) (-15 -4136 ($ (-1289 |t#1|))) (-15 -3011 ((-702 |t#1|))) (-15 -1465 (|t#1|)) (-15 -1584 ((-702 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-381 |#1| |#2|) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-739) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-1593 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) 27) (((-3 (-576) "failed") $) 19)) (-2830 ((|#2| $) NIL) (((-419 (-576)) $) 24) (((-576) $) 14)) (-3515 (($ |#2|) NIL) (($ (-419 (-576))) 22) (($ (-576)) 11))) +(((-422 |#1| |#2|) (-10 -8 (-15 -3515 (|#1| (-576))) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -3515 (|#1| |#2|))) (-423 |#2|) (-1239)) (T -422)) +NIL +(-10 -8 (-15 -3515 (|#1| (-576))) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -3515 (|#1| |#2|))) +((-1593 (((-3 |#1| "failed") $) 9) (((-3 (-419 (-576)) "failed") $) 16 (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) 13 (|has| |#1| (-1060 (-576))))) (-2830 ((|#1| $) 8) (((-419 (-576)) $) 17 (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) 14 (|has| |#1| (-1060 (-576))))) (-3515 (($ |#1|) 6) (($ (-419 (-576))) 15 (|has| |#1| (-1060 (-419 (-576))))) (($ (-576)) 12 (|has| |#1| (-1060 (-576)))))) +(((-423 |#1|) (-141) (-1239)) (T -423)) +NIL +(-13 (-1060 |t#1|) (-10 -7 (IF (|has| |t#1| (-1060 (-576))) (-6 (-1060 (-576))) |%noBranch|) (IF (|has| |t#1| (-1060 (-419 (-576)))) (-6 (-1060 (-419 (-576)))) |%noBranch|))) +(((-628 #0=(-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-628 #1=(-576)) |has| |#1| (-1060 (-576))) ((-628 |#1|) . T) ((-1060 #0#) |has| |#1| (-1060 (-419 (-576)))) ((-1060 #1#) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T)) +((-4071 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35))) +(((-424 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4071 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-317) (-1014 |#1|) (-1265 |#2|) (-13 (-421 |#2| |#3|) (-1060 |#2|)) (-317) (-1014 |#5|) (-1265 |#6|) (-13 (-421 |#6| |#7|) (-1060 |#6|))) (T -424)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) (-4 *6 (-1014 *5)) (-4 *7 (-1265 *6)) (-4 *8 (-13 (-421 *6 *7) (-1060 *6))) (-4 *9 (-317)) (-4 *10 (-1014 *9)) (-4 *11 (-1265 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1060 *10)))))) +(-10 -7 (-15 -4071 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) +((-3423 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL)) (-3088 ((|#4| (-784) (-1289 |#4|)) 55)) (-3994 (((-112) $) NIL)) (-1590 (((-1289 |#4|) $) 15)) (-3869 ((|#2| $) 53)) (-3957 (($ $) 157)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 103)) (-1712 (($ (-1289 |#4|)) 102)) (-1460 (((-1142) $) NIL)) (-1602 ((|#1| $) 16)) (-1587 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-3515 (((-877) $) 148)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 |#4|) $) 141)) (-2725 (($) 11 T CONST)) (-2881 (((-112) $ $) 39)) (-2995 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 134)) (* (($ $ $) 130))) +(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -1712 ($ (-1289 |#4|))) (-15 -2469 ((-1289 |#4|) $)) (-15 -3869 (|#2| $)) (-15 -1590 ((-1289 |#4|) $)) (-15 -1602 (|#1| $)) (-15 -3957 ($ $)) (-15 -3088 (|#4| (-784) (-1289 |#4|))))) (-317) (-1014 |#1|) (-1265 |#2|) (-13 (-421 |#2| |#3|) (-1060 |#2|))) (T -425)) +((-1712 (*1 *1 *2) (-12 (-5 *2 (-1289 *6)) (-4 *6 (-13 (-421 *4 *5) (-1060 *4))) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-4 *3 (-317)) (-5 *1 (-425 *3 *4 *5 *6)))) (-2469 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-5 *2 (-1289 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1060 *4))))) (-3869 (*1 *2 *1) (-12 (-4 *4 (-1265 *2)) (-4 *2 (-1014 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1060 *2))))) (-1590 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-5 *2 (-1289 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1060 *4))))) (-1602 (*1 *2 *1) (-12 (-4 *3 (-1014 *2)) (-4 *4 (-1265 *3)) (-4 *2 (-317)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1060 *3))))) (-3957 (*1 *1 *1) (-12 (-4 *2 (-317)) (-4 *3 (-1014 *2)) (-4 *4 (-1265 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1060 *3))))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-1289 *2)) (-4 *5 (-317)) (-4 *6 (-1014 *5)) (-4 *2 (-13 (-421 *6 *7) (-1060 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1265 *6))))) +(-13 (-485) (-10 -8 (-15 -1712 ($ (-1289 |#4|))) (-15 -2469 ((-1289 |#4|) $)) (-15 -3869 (|#2| $)) (-15 -1590 ((-1289 |#4|) $)) (-15 -1602 (|#1| $)) (-15 -3957 ($ $)) (-15 -3088 (|#4| (-784) (-1289 |#4|))))) +((-3423 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-3869 ((|#2| $) 71)) (-1925 (($ (-1289 |#4|)) 27) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1060 |#2|)))) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 37)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 |#4|) $) 28)) (-2725 (($) 25 T CONST)) (-2881 (((-112) $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ $ $) 82))) +(((-426 |#1| |#2| |#3| |#4| |#5|) (-13 (-739) (-10 -8 (-15 -2469 ((-1289 |#4|) $)) (-15 -3869 (|#2| $)) (-15 -1925 ($ (-1289 |#4|))) (IF (|has| |#4| (-1060 |#2|)) (-15 -1925 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-317) (-1014 |#1|) (-1265 |#2|) (-421 |#2| |#3|) (-1289 |#4|)) (T -426)) +((-2469 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-5 *2 (-1289 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) (-3869 (*1 *2 *1) (-12 (-4 *4 (-1265 *2)) (-4 *2 (-1014 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) (-14 *6 (-1289 *5)))) (-1925 (*1 *1 *2) (-12 (-5 *2 (-1289 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1925 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1060 *4)) (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-4 *6 (-421 *4 *5)) (-14 *7 (-1289 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))))) +(-13 (-739) (-10 -8 (-15 -2469 ((-1289 |#4|) $)) (-15 -3869 (|#2| $)) (-15 -1925 ($ (-1289 |#4|))) (IF (|has| |#4| (-1060 |#2|)) (-15 -1925 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-4071 ((|#3| (-1 |#4| |#2|) |#1|) 29))) +(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 (|#3| (-1 |#4| |#2|) |#1|))) (-429 |#2|) (-174) (-429 |#4|) (-174)) (T -427)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5))))) +(-10 -7 (-15 -4071 (|#3| (-1 |#4| |#2|) |#1|))) +((-4119 (((-3 $ "failed")) 98)) (-3731 (((-1289 (-702 |#2|)) (-1289 $)) NIL) (((-1289 (-702 |#2|))) 103)) (-1992 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) 96)) (-3247 (((-3 $ "failed")) 95)) (-2259 (((-702 |#2|) (-1289 $)) NIL) (((-702 |#2|)) 114)) (-2246 (((-702 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) $) 122)) (-2408 (((-1194 (-972 |#2|))) 63)) (-3612 ((|#2| (-1289 $)) NIL) ((|#2|) 118)) (-4093 (($ (-1289 |#2|) (-1289 $)) NIL) (($ (-1289 |#2|)) 124)) (-2427 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) 94)) (-3047 (((-3 $ "failed")) 86)) (-1546 (((-702 |#2|) (-1289 $)) NIL) (((-702 |#2|)) 112)) (-3138 (((-702 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) $) 120)) (-1822 (((-1194 (-972 |#2|))) 62)) (-1861 ((|#2| (-1289 $)) NIL) ((|#2|) 116)) (-3806 (((-1289 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) (-1289 $) (-1289 $)) NIL) (((-1289 |#2|) $) 123) (((-702 |#2|) (-1289 $)) 132)) (-4136 (((-1289 |#2|) $) 108) (($ (-1289 |#2|)) 110)) (-3522 (((-657 (-972 |#2|)) (-1289 $)) NIL) (((-657 (-972 |#2|))) 106)) (-3514 (($ (-702 |#2|) $) 102))) +(((-428 |#1| |#2|) (-10 -8 (-15 -3514 (|#1| (-702 |#2|) |#1|)) (-15 -2408 ((-1194 (-972 |#2|)))) (-15 -1822 ((-1194 (-972 |#2|)))) (-15 -2246 ((-702 |#2|) |#1|)) (-15 -3138 ((-702 |#2|) |#1|)) (-15 -2259 ((-702 |#2|))) (-15 -1546 ((-702 |#2|))) (-15 -3612 (|#2|)) (-15 -1861 (|#2|)) (-15 -4136 (|#1| (-1289 |#2|))) (-15 -4136 ((-1289 |#2|) |#1|)) (-15 -4093 (|#1| (-1289 |#2|))) (-15 -3522 ((-657 (-972 |#2|)))) (-15 -3731 ((-1289 (-702 |#2|)))) (-15 -3806 ((-702 |#2|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1|)) (-15 -4119 ((-3 |#1| "failed"))) (-15 -3247 ((-3 |#1| "failed"))) (-15 -3047 ((-3 |#1| "failed"))) (-15 -1992 ((-3 (-2 (|:| |particular| |#1|) (|:| -2469 (-657 |#1|))) "failed"))) (-15 -2427 ((-3 (-2 (|:| |particular| |#1|) (|:| -2469 (-657 |#1|))) "failed"))) (-15 -2259 ((-702 |#2|) (-1289 |#1|))) (-15 -1546 ((-702 |#2|) (-1289 |#1|))) (-15 -3612 (|#2| (-1289 |#1|))) (-15 -1861 (|#2| (-1289 |#1|))) (-15 -4093 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -2246 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3138 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3731 ((-1289 (-702 |#2|)) (-1289 |#1|))) (-15 -3522 ((-657 (-972 |#2|)) (-1289 |#1|)))) (-429 |#2|) (-174)) (T -428)) +((-3731 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1289 (-702 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3522 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-657 (-972 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-1861 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-3612 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-1546 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-702 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2259 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-702 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-1822 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1194 (-972 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2408 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1194 (-972 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) +(-10 -8 (-15 -3514 (|#1| (-702 |#2|) |#1|)) (-15 -2408 ((-1194 (-972 |#2|)))) (-15 -1822 ((-1194 (-972 |#2|)))) (-15 -2246 ((-702 |#2|) |#1|)) (-15 -3138 ((-702 |#2|) |#1|)) (-15 -2259 ((-702 |#2|))) (-15 -1546 ((-702 |#2|))) (-15 -3612 (|#2|)) (-15 -1861 (|#2|)) (-15 -4136 (|#1| (-1289 |#2|))) (-15 -4136 ((-1289 |#2|) |#1|)) (-15 -4093 (|#1| (-1289 |#2|))) (-15 -3522 ((-657 (-972 |#2|)))) (-15 -3731 ((-1289 (-702 |#2|)))) (-15 -3806 ((-702 |#2|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1|)) (-15 -4119 ((-3 |#1| "failed"))) (-15 -3247 ((-3 |#1| "failed"))) (-15 -3047 ((-3 |#1| "failed"))) (-15 -1992 ((-3 (-2 (|:| |particular| |#1|) (|:| -2469 (-657 |#1|))) "failed"))) (-15 -2427 ((-3 (-2 (|:| |particular| |#1|) (|:| -2469 (-657 |#1|))) "failed"))) (-15 -2259 ((-702 |#2|) (-1289 |#1|))) (-15 -1546 ((-702 |#2|) (-1289 |#1|))) (-15 -3612 (|#2| (-1289 |#1|))) (-15 -1861 (|#2| (-1289 |#1|))) (-15 -4093 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -3806 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -3806 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -2246 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3138 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3731 ((-1289 (-702 |#2|)) (-1289 |#1|))) (-15 -3522 ((-657 (-972 |#2|)) (-1289 |#1|)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-4119 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-2423 (((-3 $ "failed") $ $) 20)) (-3731 (((-1289 (-702 |#1|)) (-1289 $)) 83) (((-1289 (-702 |#1|))) 106)) (-2672 (((-1289 $)) 86)) (-2515 (($) 18 T CONST)) (-1992 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) 45 (|has| |#1| (-568)))) (-3247 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-2259 (((-702 |#1|) (-1289 $)) 70) (((-702 |#1|)) 98)) (-2873 ((|#1| $) 79)) (-2246 (((-702 |#1|) $ (-1289 $)) 81) (((-702 |#1|) $) 96)) (-4236 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-2408 (((-1194 (-972 |#1|))) 94 (|has| |#1| (-374)))) (-4408 (($ $ (-941)) 31)) (-2348 ((|#1| $) 77)) (-4270 (((-1194 |#1|) $) 47 (|has| |#1| (-568)))) (-3612 ((|#1| (-1289 $)) 72) ((|#1|) 100)) (-4446 (((-1194 |#1|) $) 68)) (-3282 (((-112)) 62)) (-4093 (($ (-1289 |#1|) (-1289 $)) 74) (($ (-1289 |#1|)) 104)) (-3969 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-4343 (((-941)) 85)) (-2449 (((-112)) 59)) (-3152 (($ $ (-941)) 38)) (-1738 (((-112)) 55)) (-3111 (((-112)) 53)) (-1790 (((-112)) 57)) (-2427 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) 46 (|has| |#1| (-568)))) (-3047 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-1546 (((-702 |#1|) (-1289 $)) 71) (((-702 |#1|)) 99)) (-3001 ((|#1| $) 80)) (-3138 (((-702 |#1|) $ (-1289 $)) 82) (((-702 |#1|) $) 97)) (-3157 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-1822 (((-1194 (-972 |#1|))) 95 (|has| |#1| (-374)))) (-3296 (($ $ (-941)) 32)) (-2115 ((|#1| $) 78)) (-2954 (((-1194 |#1|) $) 48 (|has| |#1| (-568)))) (-1861 ((|#1| (-1289 $)) 73) ((|#1|) 101)) (-1720 (((-1194 |#1|) $) 69)) (-1525 (((-112)) 63)) (-1708 (((-1180) $) 10)) (-3897 (((-112)) 54)) (-3110 (((-112)) 56)) (-4278 (((-112)) 58)) (-1460 (((-1142) $) 11)) (-2931 (((-112)) 61)) (-2780 ((|#1| $ (-576)) 110)) (-3806 (((-1289 |#1|) $ (-1289 $)) 76) (((-702 |#1|) (-1289 $) (-1289 $)) 75) (((-1289 |#1|) $) 108) (((-702 |#1|) (-1289 $)) 107)) (-4136 (((-1289 |#1|) $) 103) (($ (-1289 |#1|)) 102)) (-3522 (((-657 (-972 |#1|)) (-1289 $)) 84) (((-657 (-972 |#1|))) 105)) (-1911 (($ $ $) 28)) (-2473 (((-112)) 67)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2469 (((-1289 $)) 109)) (-3020 (((-657 (-1289 |#1|))) 49 (|has| |#1| (-568)))) (-3280 (($ $ $ $) 29)) (-1433 (((-112)) 65)) (-3514 (($ (-702 |#1|) $) 93)) (-2566 (($ $ $) 27)) (-3692 (((-112)) 66)) (-3560 (((-112)) 64)) (-3844 (((-112)) 60)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 33)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-429 |#1|) (-141) (-174)) (T -429)) -((-2704 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-429 *3)))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2272 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 (-701 *3))))) (-1937 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-971 *3))))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-3223 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-1339 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-2112 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3778 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-1827 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1193 (-971 *3))))) (-2078 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1193 (-971 *3))))) (-2653 (*1 *1 *2 *1) (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174))))) -(-13 (-378 |t#1|) (-296 (-576) |t#1|) (-10 -8 (-15 -2704 ((-1288 $))) (-15 -4314 ((-1288 |t#1|) $)) (-15 -4314 ((-701 |t#1|) (-1288 $))) (-15 -2272 ((-1288 (-701 |t#1|)))) (-15 -1937 ((-656 (-971 |t#1|)))) (-15 -2496 ($ (-1288 |t#1|))) (-15 -1556 ((-1288 |t#1|) $)) (-15 -1556 ($ (-1288 |t#1|))) (-15 -3223 (|t#1|)) (-15 -1339 (|t#1|)) (-15 -2112 ((-701 |t#1|))) (-15 -3778 ((-701 |t#1|))) (-15 -3417 ((-701 |t#1|) $)) (-15 -3140 ((-701 |t#1|) $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -1827 ((-1193 (-971 |t#1|)))) (-15 -2078 ((-1193 (-971 |t#1|))))) |%noBranch|) (-15 -2653 ($ (-701 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-296 (-576) |#1|) . T) ((-378 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 60)) (-4341 (($ $) 78)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 192)) (-2390 (($ $) NIL)) (-3302 (((-112) $) 48)) (-2946 ((|#1| $) 16)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL (|has| |#1| (-1242)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-1242)))) (-3748 (($ |#1| (-576)) 42)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 149)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 74)) (-1851 (((-3 $ "failed") $) 165)) (-3526 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-4063 (((-112) $) 81 (|has| |#1| (-557)))) (-1400 (((-419 (-576)) $) 92 (|has| |#1| (-557)))) (-4290 (($ |#1| (-576)) 44)) (-2171 (((-112) $) 212 (|has| |#1| (-1242)))) (-2486 (((-112) $) 62)) (-2888 (((-783) $) 51)) (-3718 (((-3 "nil" "sqfr" "irred" "prime") $ (-576)) 176)) (-4158 ((|#1| $ (-576)) 175)) (-3413 (((-576) $ (-576)) 174)) (-2438 (($ |#1| (-576)) 41)) (-2423 (($ (-1 |#1| |#1|) $) 184)) (-4036 (($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576))))) 79)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2447 (((-1179) $) NIL)) (-3611 (($ |#1| (-576)) 43)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 193 (|has| |#1| (-464)))) (-2152 (($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-3497 (((-656 (-2 (|:| -1452 |#1|) (|:| -4080 (-576)))) $) 73)) (-4116 (((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $) 12)) (-1452 (((-430 $) $) NIL (|has| |#1| (-1242)))) (-1946 (((-3 $ "failed") $ $) 177)) (-4080 (((-576) $) 168)) (-3568 ((|#1| $) 75)) (-2145 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 101 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 107 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) $) NIL (|has| |#1| (-526 (-1197) $))) (($ $ (-656 (-1197)) (-656 $)) 108 (|has| |#1| (-526 (-1197) $))) (($ $ (-656 (-304 $))) 104 (|has| |#1| (-319 $))) (($ $ (-304 $)) NIL (|has| |#1| (-319 $))) (($ $ $ $) NIL (|has| |#1| (-319 $))) (($ $ (-656 $) (-656 $)) NIL (|has| |#1| (-319 $)))) (-4369 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-296 $ $)))) (-4107 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-1556 (((-548) $) 39 (|has| |#1| (-626 (-548)))) (((-390) $) 114 (|has| |#1| (-1043))) (((-227) $) 120 (|has| |#1| (-1043)))) (-4113 (((-876) $) 147) (($ (-576)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576)))))) (-2910 (((-783)) 67 T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-4313 (($) 53 T CONST)) (-4322 (($) 52 T CONST)) (-3157 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-3939 (((-112) $ $) 160)) (-4037 (($ $) 162) (($ $ $) NIL)) (-4026 (($ $ $) 181)) (** (($ $ (-940)) NIL) (($ $ (-783)) 126)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-430 |#1|) (-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -3568 (|#1| $)) (-15 -4080 ((-576) $)) (-15 -4036 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -4116 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -2438 ($ |#1| (-576))) (-15 -3497 ((-656 (-2 (|:| -1452 |#1|) (|:| -4080 (-576)))) $)) (-15 -3611 ($ |#1| (-576))) (-15 -3413 ((-576) $ (-576))) (-15 -4158 (|#1| $ (-576))) (-15 -3718 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -2888 ((-783) $)) (-15 -4290 ($ |#1| (-576))) (-15 -3748 ($ |#1| (-576))) (-15 -2152 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2946 (|#1| $)) (-15 -4341 ($ $)) (-15 -2423 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1043)) (-6 (-1043)) |%noBranch|) (IF (|has| |#1| (-1242)) (-6 (-1242)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -4063 ((-112) $)) (-15 -1400 ((-419 (-576)) $)) (-15 -3526 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1197) $)) (-6 (-526 (-1197) $)) |%noBranch|))) (-568)) (T -430)) -((-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) (-3568 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-4036 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-576))))) (-4 *2 (-568)) (-5 *1 (-430 *2)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2438 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1452 *3) (|:| -4080 (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3611 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3413 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3718 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *4)) (-4 *4 (-568)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-4290 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3748 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2152 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2946 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4341 (*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-3526 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568))))) -(-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -3568 (|#1| $)) (-15 -4080 ((-576) $)) (-15 -4036 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -4116 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -2438 ($ |#1| (-576))) (-15 -3497 ((-656 (-2 (|:| -1452 |#1|) (|:| -4080 (-576)))) $)) (-15 -3611 ($ |#1| (-576))) (-15 -3413 ((-576) $ (-576))) (-15 -4158 (|#1| $ (-576))) (-15 -3718 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -2888 ((-783) $)) (-15 -4290 ($ |#1| (-576))) (-15 -3748 ($ |#1| (-576))) (-15 -2152 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2946 (|#1| $)) (-15 -4341 ($ $)) (-15 -2423 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1043)) (-6 (-1043)) |%noBranch|) (IF (|has| |#1| (-1242)) (-6 (-1242)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -4063 ((-112) $)) (-15 -1400 ((-419 (-576)) $)) (-15 -3526 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1197) $)) (-6 (-526 (-1197) $)) |%noBranch|))) -((-1927 (((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|)) 28)) (-2528 (((-430 |#1|) (-430 |#1|) (-430 |#1|)) 17))) -(((-431 |#1|) (-10 -7 (-15 -1927 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2528 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) (-568)) (T -431)) -((-2528 (*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-1927 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) (-5 *1 (-431 *4))))) -(-10 -7 (-15 -1927 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2528 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) -((-3288 ((|#2| |#2|) 183)) (-3914 (((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112)) 60))) -(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3914 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112))) (-15 -3288 (|#2| |#2|))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|)) (-1197) |#2|) (T -432)) -((-3288 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1223) (-442 *3))) (-14 *4 (-1197)) (-14 *5 *2))) (-3914 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-14 *6 (-1197)) (-14 *7 *3)))) -(-10 -7 (-15 -3914 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112))) (-15 -3288 (|#2| |#2|))) -((-2423 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2423 (|#4| (-1 |#3| |#1|) |#2|))) (-1070) (-442 |#1|) (-1070) (-442 |#3|)) (T -433)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5))))) -(-10 -7 (-15 -2423 (|#4| (-1 |#3| |#1|) |#2|))) -((-3288 ((|#2| |#2|) 106)) (-3956 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179)) 52)) (-2284 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179)) 170))) -(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3956 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -2284 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -3288 (|#2| |#2|))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|) (-10 -8 (-15 -4113 ($ |#3|)))) (-860) (-13 (-1266 |#2| |#3|) (-374) (-1223) (-10 -8 (-15 -4107 ($ $)) (-15 -4412 ($ $)))) (-1004 |#4|) (-1197)) (T -434)) -((-3288 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *2 (-13 (-27) (-1223) (-442 *3) (-10 -8 (-15 -4113 ($ *4))))) (-4 *4 (-860)) (-4 *5 (-13 (-1266 *2 *4) (-374) (-1223) (-10 -8 (-15 -4107 ($ $)) (-15 -4412 ($ $))))) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1004 *5)) (-14 *7 (-1197)))) (-2284 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -4113 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1266 *3 *7) (-374) (-1223) (-10 -8 (-15 -4107 ($ $)) (-15 -4412 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) (-14 *10 (-1197)))) (-3956 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -4113 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1266 *3 *7) (-374) (-1223) (-10 -8 (-15 -4107 ($ $)) (-15 -4412 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) (-14 *10 (-1197))))) -(-10 -7 (-15 -3956 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -2284 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-112) (-1179))) (-15 -3288 (|#2| |#2|))) -((-4324 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2721 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2423 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2423 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2721 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4324 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1121) (-437 |#1|) (-1121) (-437 |#3|)) (T -435)) -((-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1121)) (-4 *5 (-1121)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1121)) (-4 *2 (-1121)) (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5))))) -(-10 -7 (-15 -2423 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2721 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4324 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3504 (($) 51)) (-4025 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-1831 (($ $ $) 46)) (-4084 (((-112) $ $) 35)) (-2201 (((-783)) 55)) (-3704 (($ (-656 |#2|)) 23) (($) NIL)) (-4370 (($) 66)) (-2779 (((-112) $ $) 15)) (-2907 ((|#2| $) 77)) (-3777 ((|#2| $) 75)) (-3787 (((-940) $) 70)) (-1431 (($ $ $) 42)) (-2411 (($ (-940)) 60)) (-3198 (($ $ |#2|) NIL) (($ $ $) 45)) (-3127 (((-783) (-1 (-112) |#2|) $) NIL) (((-783) |#2| $) 31)) (-4125 (($ (-656 |#2|)) 27)) (-2741 (($ $) 53)) (-4113 (((-876) $) 40)) (-3540 (((-783) $) 24)) (-1515 (($ (-656 |#2|)) 22) (($) NIL)) (-3939 (((-112) $ $) 19))) -(((-436 |#1| |#2|) (-10 -8 (-15 -2201 ((-783))) (-15 -2411 (|#1| (-940))) (-15 -3787 ((-940) |#1|)) (-15 -4370 (|#1|)) (-15 -2907 (|#2| |#1|)) (-15 -3777 (|#2| |#1|)) (-15 -3504 (|#1|)) (-15 -2741 (|#1| |#1|)) (-15 -3540 ((-783) |#1|)) (-15 -3939 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -2779 ((-112) |#1| |#1|)) (-15 -1515 (|#1|)) (-15 -1515 (|#1| (-656 |#2|))) (-15 -3704 (|#1|)) (-15 -3704 (|#1| (-656 |#2|))) (-15 -1431 (|#1| |#1| |#1|)) (-15 -3198 (|#1| |#1| |#1|)) (-15 -3198 (|#1| |#1| |#2|)) (-15 -1831 (|#1| |#1| |#1|)) (-15 -4084 ((-112) |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -4025 (|#1| |#1| |#2|)) (-15 -4025 (|#1| |#2| |#1|)) (-15 -4125 (|#1| (-656 |#2|))) (-15 -3127 ((-783) |#2| |#1|)) (-15 -3127 ((-783) (-1 (-112) |#2|) |#1|))) (-437 |#2|) (-1121)) (T -436)) -((-2201 (*1 *2) (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) (-4 *3 (-437 *4))))) -(-10 -8 (-15 -2201 ((-783))) (-15 -2411 (|#1| (-940))) (-15 -3787 ((-940) |#1|)) (-15 -4370 (|#1|)) (-15 -2907 (|#2| |#1|)) (-15 -3777 (|#2| |#1|)) (-15 -3504 (|#1|)) (-15 -2741 (|#1| |#1|)) (-15 -3540 ((-783) |#1|)) (-15 -3939 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -2779 ((-112) |#1| |#1|)) (-15 -1515 (|#1|)) (-15 -1515 (|#1| (-656 |#2|))) (-15 -3704 (|#1|)) (-15 -3704 (|#1| (-656 |#2|))) (-15 -1431 (|#1| |#1| |#1|)) (-15 -3198 (|#1| |#1| |#1|)) (-15 -3198 (|#1| |#1| |#2|)) (-15 -1831 (|#1| |#1| |#1|)) (-15 -4084 ((-112) |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -4025 (|#1| |#1| |#2|)) (-15 -4025 (|#1| |#2| |#1|)) (-15 -4125 (|#1| (-656 |#2|))) (-15 -3127 ((-783) |#2| |#1|)) (-15 -3127 ((-783) (-1 (-112) |#2|) |#1|))) -((-1957 (((-112) $ $) 20)) (-3504 (($) 68 (|has| |#1| (-379)))) (-4025 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-1831 (($ $ $) 79)) (-4084 (((-112) $ $) 80)) (-4234 (((-112) $ (-783)) 8)) (-2201 (((-783)) 62 (|has| |#1| (-379)))) (-3704 (($ (-656 |#1|)) 75) (($) 74)) (-1954 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-3841 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3872 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-2825 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-4370 (($) 65 (|has| |#1| (-379)))) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2779 (((-112) $ $) 71)) (-3215 (((-112) $ (-783)) 9)) (-2907 ((|#1| $) 66 (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3777 ((|#1| $) 67 (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-3787 (((-940) $) 64 (|has| |#1| (-379)))) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23)) (-1431 (($ $ $) 76)) (-3743 ((|#1| $) 40)) (-3695 (($ |#1| $) 41)) (-2411 (($ (-940)) 63 (|has| |#1| (-379)))) (-3116 (((-1141) $) 22)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2372 ((|#1| $) 42)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-3198 (($ $ |#1|) 78) (($ $ $) 77)) (-3091 (($) 50) (($ (-656 |#1|)) 49)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-1556 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 51)) (-2741 (($ $) 69 (|has| |#1| (-379)))) (-4113 (((-876) $) 18)) (-3540 (((-783) $) 70)) (-1515 (($ (-656 |#1|)) 73) (($) 72)) (-2950 (((-112) $ $) 21)) (-4156 (($ (-656 |#1|)) 43)) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19)) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-437 |#1|) (-141) (-1121)) (T -437)) -((-3540 (*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1121)) (-5 *2 (-783)))) (-2741 (*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-379)))) (-3504 (*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1121)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861))))) -(-13 (-231 |t#1|) (-1119 |t#1|) (-10 -8 (-6 -4464) (-15 -3540 ((-783) $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-379)) (-15 -2741 ($ $)) (-15 -3504 ($))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -3777 (|t#1| $)) (-15 -2907 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-876)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-379) |has| |#1| (-379)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1119 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-2569 (((-598 |#2|) |#2| (-1197)) 36)) (-1919 (((-598 |#2|) |#2| (-1197)) 21)) (-3724 ((|#2| |#2| (-1197)) 26))) -(((-438 |#1| |#2|) (-10 -7 (-15 -1919 ((-598 |#2|) |#2| (-1197))) (-15 -2569 ((-598 |#2|) |#2| (-1197))) (-15 -3724 (|#2| |#2| (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-29 |#1|))) (T -438)) -((-3724 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1223) (-29 *4))))) (-2569 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1223) (-29 *5))))) (-1919 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1223) (-29 *5)))))) -(-10 -7 (-15 -1919 ((-598 |#2|) |#2| (-1197))) (-15 -2569 ((-598 |#2|) |#2| (-1197))) (-15 -3724 (|#2| |#2| (-1197)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) NIL)) (-2486 (((-112) $) NIL)) (-3049 (($ |#2| |#1|) 37)) (-1731 (($ |#2| |#1|) 35)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-341 |#2|)) 25)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 10 T CONST)) (-4322 (($) 16 T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 36)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-439 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4451)) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) |%noBranch|) (-15 -4113 ($ |#1|)) (-15 -4113 ($ (-341 |#2|))) (-15 -3049 ($ |#2| |#1|)) (-15 -1731 ($ |#2| |#1|)))) (-13 (-174) (-38 (-419 (-576)))) (-13 (-861) (-21))) (T -439)) -((-4113 (*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) (-4 *3 (-13 (-861) (-21))))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-861) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) (-3049 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-861) (-21))))) (-1731 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-861) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4451)) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) |%noBranch|) (-15 -4113 ($ |#1|)) (-15 -4113 ($ (-341 |#2|))) (-15 -3049 ($ |#2| |#1|)) (-15 -1731 ($ |#2| |#1|)))) -((-4412 (((-3 |#2| (-656 |#2|)) |#2| (-1197)) 115))) -(((-440 |#1| |#2|) (-10 -7 (-15 -4412 ((-3 |#2| (-656 |#2|)) |#2| (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-29 |#1|))) (T -440)) -((-4412 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1223) (-978) (-29 *5)))))) -(-10 -7 (-15 -4412 ((-3 |#2| (-656 |#2|)) |#2| (-1197)))) -((-1585 (((-656 (-1197)) $) 81)) (-1421 (((-419 (-1193 $)) $ (-624 $)) 313)) (-1791 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) 277)) (-2982 (((-3 (-624 $) "failed") $) NIL) (((-3 (-1197) "failed") $) 84) (((-3 (-576) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-419 (-971 |#2|)) "failed") $) 363) (((-3 (-971 |#2|) "failed") $) 275) (((-3 (-419 (-576)) "failed") $) NIL)) (-2317 (((-624 $) $) NIL) (((-1197) $) 28) (((-576) $) NIL) ((|#2| $) 271) (((-419 (-971 |#2|)) $) 345) (((-971 |#2|) $) 272) (((-419 (-576)) $) NIL)) (-1401 (((-115) (-115)) 47)) (-2252 (($ $) 99)) (-2875 (((-3 (-624 $) "failed") $) 268)) (-1388 (((-656 (-624 $)) $) 269)) (-4050 (((-3 (-656 $) "failed") $) 287)) (-3838 (((-3 (-2 (|:| |val| $) (|:| -4080 (-576))) "failed") $) 294)) (-2646 (((-3 (-656 $) "failed") $) 285)) (-3453 (((-3 (-2 (|:| -2862 (-576)) (|:| |var| (-624 $))) "failed") $) 304)) (-1608 (((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $) 291) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $ (-1197)) 257)) (-1678 (((-112) $) 17)) (-1686 ((|#2| $) 19)) (-2145 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 276) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 109) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1197)) 62) (($ $ (-656 (-1197))) 280) (($ $) 281) (($ $ (-115) $ (-1197)) 65) (($ $ (-656 (-115)) (-656 $) (-1197)) 72) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) 120) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 282) (($ $ (-1197) (-783) (-1 $ (-656 $))) 105) (($ $ (-1197) (-783) (-1 $ $)) 104)) (-4369 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) 119)) (-4107 (($ $ (-1197)) 278) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-3591 (($ $) 324)) (-1556 (((-907 (-576)) $) 297) (((-907 (-390)) $) 301) (($ (-430 $)) 359) (((-548) $) NIL)) (-4113 (((-876) $) 279) (($ (-624 $)) 93) (($ (-1197)) 24) (($ |#2|) NIL) (($ (-1146 |#2| (-624 $))) NIL) (($ (-419 |#2|)) 329) (($ (-971 (-419 |#2|))) 368) (($ (-419 (-971 (-419 |#2|)))) 341) (($ (-419 (-971 |#2|))) 335) (($ $) NIL) (($ (-971 |#2|)) 216) (($ (-576)) NIL) (($ (-419 (-576))) 373)) (-2910 (((-783)) 88)) (-1380 (((-112) (-115)) 42)) (-3699 (($ (-1197) $) 31) (($ (-1197) $ $) 32) (($ (-1197) $ $ $) 33) (($ (-1197) $ $ $ $) 34) (($ (-1197) (-656 $)) 39)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) -(((-441 |#1| |#2|) (-10 -8 (-15 * (|#1| (-940) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4113 (|#1| (-576))) (-15 -2910 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -4113 (|#1| (-971 |#2|))) (-15 -2982 ((-3 (-971 |#2|) "failed") |#1|)) (-15 -2317 ((-971 |#2|) |#1|)) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197))) (-15 * (|#1| |#1| |#2|)) (-15 -4113 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4113 (|#1| (-419 (-971 |#2|)))) (-15 -2982 ((-3 (-419 (-971 |#2|)) "failed") |#1|)) (-15 -2317 ((-419 (-971 |#2|)) |#1|)) (-15 -1421 ((-419 (-1193 |#1|)) |#1| (-624 |#1|))) (-15 -4113 (|#1| (-419 (-971 (-419 |#2|))))) (-15 -4113 (|#1| (-971 (-419 |#2|)))) (-15 -4113 (|#1| (-419 |#2|))) (-15 -3591 (|#1| |#1|)) (-15 -1556 (|#1| (-430 |#1|))) (-15 -2145 (|#1| |#1| (-1197) (-783) (-1 |#1| |#1|))) (-15 -2145 (|#1| |#1| (-1197) (-783) (-1 |#1| (-656 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -3838 ((-3 (-2 (|:| |val| |#1|) (|:| -4080 (-576))) "failed") |#1|)) (-15 -1608 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4080 (-576))) "failed") |#1| (-1197))) (-15 -1608 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4080 (-576))) "failed") |#1| (-115))) (-15 -2252 (|#1| |#1|)) (-15 -4113 (|#1| (-1146 |#2| (-624 |#1|)))) (-15 -3453 ((-3 (-2 (|:| -2862 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -2646 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1608 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4080 (-576))) "failed") |#1|)) (-15 -4050 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2145 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1197))) (-15 -2145 (|#1| |#1| (-115) |#1| (-1197))) (-15 -2145 (|#1| |#1|)) (-15 -2145 (|#1| |#1| (-656 (-1197)))) (-15 -2145 (|#1| |#1| (-1197))) (-15 -3699 (|#1| (-1197) (-656 |#1|))) (-15 -3699 (|#1| (-1197) |#1| |#1| |#1| |#1|)) (-15 -3699 (|#1| (-1197) |#1| |#1| |#1|)) (-15 -3699 (|#1| (-1197) |#1| |#1|)) (-15 -3699 (|#1| (-1197) |#1|)) (-15 -1585 ((-656 (-1197)) |#1|)) (-15 -1686 (|#2| |#1|)) (-15 -1678 ((-112) |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -1556 ((-907 (-390)) |#1|)) (-15 -1556 ((-907 (-576)) |#1|)) (-15 -4113 (|#1| (-1197))) (-15 -2982 ((-3 (-1197) "failed") |#1|)) (-15 -2317 ((-1197) |#1|)) (-15 -2145 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2145 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2145 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2145 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -2145 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -1380 ((-112) (-115))) (-15 -1401 ((-115) (-115))) (-15 -1388 ((-656 (-624 |#1|)) |#1|)) (-15 -2875 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -1791 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1791 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1791 (|#1| |#1| (-304 |#1|))) (-15 -4369 (|#1| (-115) (-656 |#1|))) (-15 -4369 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4369 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4369 (|#1| (-115) |#1| |#1|)) (-15 -4369 (|#1| (-115) |#1|)) (-15 -2145 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#1| |#1|)) (-15 -2145 (|#1| |#1| (-304 |#1|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2145 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -4113 (|#1| (-624 |#1|))) (-15 -2982 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2317 ((-624 |#1|) |#1|)) (-15 -4113 ((-876) |#1|))) (-442 |#2|) (-1121)) (T -441)) -((-1401 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1121)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) (-2910 (*1 *2) (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4))))) -(-10 -8 (-15 * (|#1| (-940) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4113 (|#1| (-576))) (-15 -2910 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -4113 (|#1| (-971 |#2|))) (-15 -2982 ((-3 (-971 |#2|) "failed") |#1|)) (-15 -2317 ((-971 |#2|) |#1|)) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197))) (-15 * (|#1| |#1| |#2|)) (-15 -4113 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4113 (|#1| (-419 (-971 |#2|)))) (-15 -2982 ((-3 (-419 (-971 |#2|)) "failed") |#1|)) (-15 -2317 ((-419 (-971 |#2|)) |#1|)) (-15 -1421 ((-419 (-1193 |#1|)) |#1| (-624 |#1|))) (-15 -4113 (|#1| (-419 (-971 (-419 |#2|))))) (-15 -4113 (|#1| (-971 (-419 |#2|)))) (-15 -4113 (|#1| (-419 |#2|))) (-15 -3591 (|#1| |#1|)) (-15 -1556 (|#1| (-430 |#1|))) (-15 -2145 (|#1| |#1| (-1197) (-783) (-1 |#1| |#1|))) (-15 -2145 (|#1| |#1| (-1197) (-783) (-1 |#1| (-656 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -3838 ((-3 (-2 (|:| |val| |#1|) (|:| -4080 (-576))) "failed") |#1|)) (-15 -1608 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4080 (-576))) "failed") |#1| (-1197))) (-15 -1608 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4080 (-576))) "failed") |#1| (-115))) (-15 -2252 (|#1| |#1|)) (-15 -4113 (|#1| (-1146 |#2| (-624 |#1|)))) (-15 -3453 ((-3 (-2 (|:| -2862 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -2646 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1608 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4080 (-576))) "failed") |#1|)) (-15 -4050 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2145 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1197))) (-15 -2145 (|#1| |#1| (-115) |#1| (-1197))) (-15 -2145 (|#1| |#1|)) (-15 -2145 (|#1| |#1| (-656 (-1197)))) (-15 -2145 (|#1| |#1| (-1197))) (-15 -3699 (|#1| (-1197) (-656 |#1|))) (-15 -3699 (|#1| (-1197) |#1| |#1| |#1| |#1|)) (-15 -3699 (|#1| (-1197) |#1| |#1| |#1|)) (-15 -3699 (|#1| (-1197) |#1| |#1|)) (-15 -3699 (|#1| (-1197) |#1|)) (-15 -1585 ((-656 (-1197)) |#1|)) (-15 -1686 (|#2| |#1|)) (-15 -1678 ((-112) |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -1556 ((-907 (-390)) |#1|)) (-15 -1556 ((-907 (-576)) |#1|)) (-15 -4113 (|#1| (-1197))) (-15 -2982 ((-3 (-1197) "failed") |#1|)) (-15 -2317 ((-1197) |#1|)) (-15 -2145 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2145 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2145 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2145 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -2145 (|#1| |#1| (-1197) (-1 |#1| (-656 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2145 (|#1| |#1| (-656 (-1197)) (-656 (-1 |#1| |#1|)))) (-15 -1380 ((-112) (-115))) (-15 -1401 ((-115) (-115))) (-15 -1388 ((-656 (-624 |#1|)) |#1|)) (-15 -2875 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -1791 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1791 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1791 (|#1| |#1| (-304 |#1|))) (-15 -4369 (|#1| (-115) (-656 |#1|))) (-15 -4369 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4369 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4369 (|#1| (-115) |#1| |#1|)) (-15 -4369 (|#1| (-115) |#1|)) (-15 -2145 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#1| |#1|)) (-15 -2145 (|#1| |#1| (-304 |#1|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2145 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2145 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -4113 (|#1| (-624 |#1|))) (-15 -2982 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2317 ((-624 |#1|) |#1|)) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 117 (|has| |#1| (-25)))) (-1585 (((-656 (-1197)) $) 208)) (-1421 (((-419 (-1193 $)) $ (-624 $)) 176 (|has| |#1| (-568)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 148 (|has| |#1| (-568)))) (-2390 (($ $) 149 (|has| |#1| (-568)))) (-3302 (((-112) $) 151 (|has| |#1| (-568)))) (-4442 (((-656 (-624 $)) $) 39)) (-1765 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-1791 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-2658 (($ $) 168 (|has| |#1| (-568)))) (-3589 (((-430 $) $) 169 (|has| |#1| (-568)))) (-4386 (((-112) $ $) 159 (|has| |#1| (-568)))) (-3170 (($) 105 (-3795 (|has| |#1| (-1133)) (|has| |#1| (-25))) CONST)) (-2982 (((-3 (-624 $) "failed") $) 64) (((-3 (-1197) "failed") $) 221) (((-3 (-576) "failed") $) 215 (|has| |#1| (-1059 (-576)))) (((-3 |#1| "failed") $) 212) (((-3 (-419 (-971 |#1|)) "failed") $) 174 (|has| |#1| (-568))) (((-3 (-971 |#1|) "failed") $) 124 (|has| |#1| (-1070))) (((-3 (-419 (-576)) "failed") $) 99 (-3795 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-2317 (((-624 $) $) 65) (((-1197) $) 222) (((-576) $) 214 (|has| |#1| (-1059 (-576)))) ((|#1| $) 213) (((-419 (-971 |#1|)) $) 175 (|has| |#1| (-568))) (((-971 |#1|) $) 125 (|has| |#1| (-1070))) (((-419 (-576)) $) 100 (-3795 (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576))))))) (-1895 (($ $ $) 163 (|has| |#1| (-568)))) (-1930 (((-701 (-576)) (-701 $)) 141 (-2311 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 140 (-2311 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 139 (|has| |#1| (-1070))) (((-701 |#1|) (-701 $)) 138 (|has| |#1| (-1070)))) (-1851 (((-3 $ "failed") $) 107 (|has| |#1| (-1133)))) (-1908 (($ $ $) 162 (|has| |#1| (-568)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 157 (|has| |#1| (-568)))) (-2171 (((-112) $) 170 (|has| |#1| (-568)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 217 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 216 (|has| |#1| (-901 (-390))))) (-3043 (($ $) 46) (($ (-656 $)) 45)) (-1849 (((-656 (-115)) $) 38)) (-1401 (((-115) (-115)) 37)) (-2486 (((-112) $) 106 (|has| |#1| (-1133)))) (-3616 (((-112) $) 17 (|has| $ (-1059 (-576))))) (-2252 (($ $) 191 (|has| |#1| (-1070)))) (-2687 (((-1146 |#1| (-624 $)) $) 192 (|has| |#1| (-1070)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 166 (|has| |#1| (-568)))) (-1634 (((-1193 $) (-624 $)) 20 (|has| $ (-1070)))) (-2423 (($ (-1 $ $) (-624 $)) 31)) (-2875 (((-3 (-624 $) "failed") $) 41)) (-2160 (((-701 (-576)) (-1288 $)) 143 (-2311 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 142 (-2311 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 137 (|has| |#1| (-1070))) (((-701 |#1|) (-1288 $)) 136 (|has| |#1| (-1070)))) (-3076 (($ (-656 $)) 155 (|has| |#1| (-568))) (($ $ $) 154 (|has| |#1| (-568)))) (-2447 (((-1179) $) 10)) (-1388 (((-656 (-624 $)) $) 40)) (-2772 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-4050 (((-3 (-656 $) "failed") $) 197 (|has| |#1| (-1133)))) (-3838 (((-3 (-2 (|:| |val| $) (|:| -4080 (-576))) "failed") $) 188 (|has| |#1| (-1070)))) (-2646 (((-3 (-656 $) "failed") $) 195 (|has| |#1| (-25)))) (-3453 (((-3 (-2 (|:| -2862 (-576)) (|:| |var| (-624 $))) "failed") $) 194 (|has| |#1| (-25)))) (-1608 (((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $) 196 (|has| |#1| (-1133))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $ (-115)) 190 (|has| |#1| (-1070))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $ (-1197)) 189 (|has| |#1| (-1070)))) (-4227 (((-112) $ (-115)) 35) (((-112) $ (-1197)) 34)) (-1669 (($ $) 109 (-3795 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2955 (((-783) $) 42)) (-3116 (((-1141) $) 11)) (-1678 (((-112) $) 210)) (-1686 ((|#1| $) 209)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 156 (|has| |#1| (-568)))) (-3115 (($ (-656 $)) 153 (|has| |#1| (-568))) (($ $ $) 152 (|has| |#1| (-568)))) (-2197 (((-112) $ $) 30) (((-112) $ (-1197)) 29)) (-1452 (((-430 $) $) 167 (|has| |#1| (-568)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 164 (|has| |#1| (-568)))) (-1946 (((-3 $ "failed") $ $) 147 (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 158 (|has| |#1| (-568)))) (-3955 (((-112) $) 18 (|has| $ (-1059 (-576))))) (-2145 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1197)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1197) (-1 $ (-656 $))) 26) (($ $ (-1197) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1197)) 202 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197))) 201 (|has| |#1| (-626 (-548)))) (($ $) 200 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1197)) 199 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1197)) 198 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $))) 187 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 186 (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ (-656 $))) 185 (|has| |#1| (-1070))) (($ $ (-1197) (-783) (-1 $ $)) 184 (|has| |#1| (-1070)))) (-2812 (((-783) $) 160 (|has| |#1| (-568)))) (-4369 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 161 (|has| |#1| (-568)))) (-1328 (($ $) 44) (($ $ $) 43)) (-4107 (($ $ (-1197)) 134 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 132 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 131 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) 130 (|has| |#1| (-1070)))) (-3591 (($ $) 181 (|has| |#1| (-568)))) (-2697 (((-1146 |#1| (-624 $)) $) 182 (|has| |#1| (-568)))) (-3881 (($ $) 19 (|has| $ (-1070)))) (-1556 (((-907 (-576)) $) 219 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 218 (|has| |#1| (-626 (-907 (-390))))) (($ (-430 $)) 183 (|has| |#1| (-568))) (((-548) $) 101 (|has| |#1| (-626 (-548))))) (-2117 (($ $ $) 112 (|has| |#1| (-485)))) (-3871 (($ $ $) 113 (|has| |#1| (-485)))) (-4113 (((-876) $) 12) (($ (-624 $)) 63) (($ (-1197)) 220) (($ |#1|) 211) (($ (-1146 |#1| (-624 $))) 193 (|has| |#1| (-1070))) (($ (-419 |#1|)) 179 (|has| |#1| (-568))) (($ (-971 (-419 |#1|))) 178 (|has| |#1| (-568))) (($ (-419 (-971 (-419 |#1|)))) 177 (|has| |#1| (-568))) (($ (-419 (-971 |#1|))) 173 (|has| |#1| (-568))) (($ $) 146 (|has| |#1| (-568))) (($ (-971 |#1|)) 123 (|has| |#1| (-1070))) (($ (-419 (-576))) 98 (-3795 (|has| |#1| (-568)) (-12 (|has| |#1| (-1059 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1059 (-419 (-576)))))) (($ (-576)) 97 (-3795 (|has| |#1| (-1070)) (|has| |#1| (-1059 (-576)))))) (-4276 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-2910 (((-783)) 126 (|has| |#1| (-1070)) CONST)) (-2345 (($ $) 48) (($ (-656 $)) 47)) (-1380 (((-112) (-115)) 36)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 150 (|has| |#1| (-568)))) (-3699 (($ (-1197) $) 207) (($ (-1197) $ $) 206) (($ (-1197) $ $ $) 205) (($ (-1197) $ $ $ $) 204) (($ (-1197) (-656 $)) 203)) (-4313 (($) 116 (|has| |#1| (-25)) CONST)) (-4322 (($) 104 (|has| |#1| (-1133)) CONST)) (-3157 (($ $ (-1197)) 133 (|has| |#1| (-1070))) (($ $ (-656 (-1197))) 129 (|has| |#1| (-1070))) (($ $ (-1197) (-783)) 128 (|has| |#1| (-1070))) (($ $ (-656 (-1197)) (-656 (-783))) 127 (|has| |#1| (-1070)))) (-3939 (((-112) $ $) 8)) (-4047 (($ (-1146 |#1| (-624 $)) (-1146 |#1| (-624 $))) 180 (|has| |#1| (-568))) (($ $ $) 110 (-3795 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4037 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-4026 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-576)) 111 (-3795 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 108 (|has| |#1| (-1133))) (($ $ (-940)) 103 (|has| |#1| (-1133)))) (* (($ (-419 (-576)) $) 172 (|has| |#1| (-568))) (($ $ (-419 (-576))) 171 (|has| |#1| (-568))) (($ $ |#1|) 145 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1070))) (($ (-576) $) 120 (|has| |#1| (-21))) (($ (-783) $) 118 (|has| |#1| (-25))) (($ (-940) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1133))))) -(((-442 |#1|) (-141) (-1121)) (T -442)) -((-1678 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-1686 (*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)))) (-1585 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-1197))))) (-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-3699 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-3699 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-3699 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) (-3699 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1121)))) (-2145 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-4 *3 (-626 (-548))))) (-2145 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1197))) (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-4 *3 (-626 (-548))))) (-2145 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-626 (-548))))) (-2145 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1197)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) (-4 *4 (-626 (-548))))) (-2145 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1197)) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-626 (-548))))) (-4050 (*1 *2 *1) (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-1608 (*1 *2 *1) (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4080 (-576)))) (-4 *1 (-442 *3)))) (-2646 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-3453 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| -2862 (-576)) (|:| |var| (-624 *1)))) (-4 *1 (-442 *3)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-1146 *3 (-624 *1))) (-4 *3 (-1070)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-2687 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *3 (-1121)) (-5 *2 (-1146 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-2252 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-1070)))) (-1608 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1070)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4080 (-576)))) (-4 *1 (-442 *4)))) (-1608 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-1070)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4080 (-576)))) (-4 *1 (-442 *4)))) (-3838 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |val| *1) (|:| -4080 (-576)))) (-4 *1 (-442 *3)))) (-2145 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-2145 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-2145 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-2145 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) (-4 *3 (-1121)))) (-2697 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1121)) (-5 *2 (-1146 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-568)))) (-4047 (*1 *1 *2 *2) (-12 (-5 *2 (-1146 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-971 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1121)) (-4 *1 (-442 *3)))) (-1421 (*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) (-4 *4 (-568)) (-5 *2 (-419 (-1193 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-4 *3 (-1133))))) -(-13 (-312) (-1059 (-1197)) (-899 |t#1|) (-412 |t#1|) (-423 |t#1|) (-10 -8 (-15 -1678 ((-112) $)) (-15 -1686 (|t#1| $)) (-15 -1585 ((-656 (-1197)) $)) (-15 -3699 ($ (-1197) $)) (-15 -3699 ($ (-1197) $ $)) (-15 -3699 ($ (-1197) $ $ $)) (-15 -3699 ($ (-1197) $ $ $ $)) (-15 -3699 ($ (-1197) (-656 $))) (IF (|has| |t#1| (-626 (-548))) (PROGN (-6 (-626 (-548))) (-15 -2145 ($ $ (-1197))) (-15 -2145 ($ $ (-656 (-1197)))) (-15 -2145 ($ $)) (-15 -2145 ($ $ (-115) $ (-1197))) (-15 -2145 ($ $ (-656 (-115)) (-656 $) (-1197)))) |%noBranch|) (IF (|has| |t#1| (-1133)) (PROGN (-6 (-738)) (-15 ** ($ $ (-783))) (-15 -4050 ((-3 (-656 $) "failed") $)) (-15 -1608 ((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2646 ((-3 (-656 $) "failed") $)) (-15 -3453 ((-3 (-2 (|:| -2862 (-576)) (|:| |var| (-624 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-1059 (-971 |t#1|))) (-6 (-917 (-1197))) (-6 (-388 |t#1|)) (-15 -4113 ($ (-1146 |t#1| (-624 $)))) (-15 -2687 ((-1146 |t#1| (-624 $)) $)) (-15 -2252 ($ $)) (-15 -1608 ((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $ (-115))) (-15 -1608 ((-3 (-2 (|:| |var| (-624 $)) (|:| -4080 (-576))) "failed") $ (-1197))) (-15 -3838 ((-3 (-2 (|:| |val| $) (|:| -4080 (-576))) "failed") $)) (-15 -2145 ($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ $)))) (-15 -2145 ($ $ (-656 (-1197)) (-656 (-783)) (-656 (-1 $ (-656 $))))) (-15 -2145 ($ $ (-1197) (-783) (-1 $ (-656 $)))) (-15 -2145 ($ $ (-1197) (-783) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-374)) (-6 (-1059 (-419 (-971 |t#1|)))) (-15 -1556 ($ (-430 $))) (-15 -2697 ((-1146 |t#1| (-624 $)) $)) (-15 -3591 ($ $)) (-15 -4047 ($ (-1146 |t#1| (-624 $)) (-1146 |t#1| (-624 $)))) (-15 -4113 ($ (-419 |t#1|))) (-15 -4113 ($ (-971 (-419 |t#1|)))) (-15 -4113 ($ (-419 (-971 (-419 |t#1|))))) (-15 -1421 ((-419 (-1193 $)) $ (-624 $))) (IF (|has| |t#1| (-1059 (-576))) (-6 (-1059 (-419 (-576)))) |%noBranch|)) |%noBranch|))) -(((-21) -3795 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -3795 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3795 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-419 (-576))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-568)) ((-132) -3795 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-568))) ((-628 #1=(-419 (-971 |#1|))) |has| |#1| (-568)) ((-628 (-576)) -3795 (|has| |#1| (-1070)) (|has| |#1| (-1059 (-576))) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-628 #2=(-624 $)) . T) ((-628 #3=(-971 |#1|)) |has| |#1| (-1070)) ((-628 #4=(-1197)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) |has| |#1| (-568)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-248) |has| |#1| (-568)) ((-300) |has| |#1| (-568)) ((-317) |has| |#1| (-568)) ((-319 $) . T) ((-312) . T) ((-374) |has| |#1| (-568)) ((-388 |#1|) |has| |#1| (-1070)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-568)) ((-658 (-576)) -3795 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-658 |#1|) -3795 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-658 $) -3795 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-660 #0#) |has| |#1| (-568)) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-660 |#1|) -3795 (|has| |#1| (-1070)) (|has| |#1| (-174))) ((-660 $) -3795 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-652 #0#) |has| |#1| (-568)) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1070))) ((-651 |#1|) |has| |#1| (-1070)) ((-729 #0#) |has| |#1| (-568)) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) -3795 (|has| |#1| (-1133)) (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-911 $ #6=(-1197)) |has| |#1| (-1070)) ((-917 #6#) |has| |#1| (-1070)) ((-919 #6#) |has| |#1| (-1070)) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-939) |has| |#1| (-568)) ((-1059 (-419 (-576))) -3795 (|has| |#1| (-1059 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1059 (-576))))) ((-1059 #1#) |has| |#1| (-568)) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #2#) . T) ((-1059 #3#) |has| |#1| (-1070)) ((-1059 #4#) . T) ((-1059 |#1|) . T) ((-1072 #0#) |has| |#1| (-568)) ((-1072 |#1|) |has| |#1| (-174)) ((-1072 $) |has| |#1| (-568)) ((-1077 #0#) |has| |#1| (-568)) ((-1077 |#1|) |has| |#1| (-174)) ((-1077 $) |has| |#1| (-568)) ((-1070) -3795 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1079) -3795 (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1133) -3795 (|has| |#1| (-1133)) (|has| |#1| (-1070)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-568))) -((-3396 ((|#2| |#2| |#2|) 31)) (-1401 (((-115) (-115)) 43)) (-2109 ((|#2| |#2|) 63)) (-1839 ((|#2| |#2|) 66)) (-2621 ((|#2| |#2|) 30)) (-3242 ((|#2| |#2| |#2|) 33)) (-3854 ((|#2| |#2| |#2|) 35)) (-1772 ((|#2| |#2| |#2|) 32)) (-2586 ((|#2| |#2| |#2|) 34)) (-1380 (((-112) (-115)) 41)) (-2347 ((|#2| |#2|) 37)) (-1958 ((|#2| |#2|) 36)) (-2366 ((|#2| |#2|) 25)) (-2257 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2480 ((|#2| |#2| |#2|) 29))) -(((-443 |#1| |#2|) (-10 -7 (-15 -1380 ((-112) (-115))) (-15 -1401 ((-115) (-115))) (-15 -2366 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2257 (|#2| |#2| |#2|)) (-15 -2480 (|#2| |#2| |#2|)) (-15 -2621 (|#2| |#2|)) (-15 -3396 (|#2| |#2| |#2|)) (-15 -1772 (|#2| |#2| |#2|)) (-15 -3242 (|#2| |#2| |#2|)) (-15 -2586 (|#2| |#2| |#2|)) (-15 -3854 (|#2| |#2| |#2|)) (-15 -1958 (|#2| |#2|)) (-15 -2347 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -2109 (|#2| |#2|))) (-568) (-442 |#1|)) (T -443)) -((-2109 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1958 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3854 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2586 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3242 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1772 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3396 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2621 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2480 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2257 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2366 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4))))) -(-10 -7 (-15 -1380 ((-112) (-115))) (-15 -1401 ((-115) (-115))) (-15 -2366 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2257 (|#2| |#2| |#2|)) (-15 -2480 (|#2| |#2| |#2|)) (-15 -2621 (|#2| |#2|)) (-15 -3396 (|#2| |#2| |#2|)) (-15 -1772 (|#2| |#2| |#2|)) (-15 -3242 (|#2| |#2| |#2|)) (-15 -2586 (|#2| |#2| |#2|)) (-15 -3854 (|#2| |#2| |#2|)) (-15 -1958 (|#2| |#2|)) (-15 -2347 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -2109 (|#2| |#2|))) -((-3712 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1193 |#2|)) (|:| |pol2| (-1193 |#2|)) (|:| |prim| (-1193 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1193 |#2|))) (|:| |prim| (-1193 |#2|))) (-656 |#2|)) 65))) -(((-444 |#1| |#2|) (-10 -7 (-15 -3712 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1193 |#2|))) (|:| |prim| (-1193 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -3712 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1193 |#2|)) (|:| |pol2| (-1193 |#2|)) (|:| |prim| (-1193 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-148)) (-442 |#1|)) (T -444)) -((-3712 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1193 *3)) (|:| |pol2| (-1193 *3)) (|:| |prim| (-1193 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1193 *5))) (|:| |prim| (-1193 *5)))) (-5 *1 (-444 *4 *5))))) -(-10 -7 (-15 -3712 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1193 |#2|))) (|:| |prim| (-1193 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -3712 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1193 |#2|)) (|:| |pol2| (-1193 |#2|)) (|:| |prim| (-1193 |#2|))) |#2| |#2|)) |%noBranch|)) -((-3150 (((-1293)) 18)) (-4330 (((-1193 (-419 (-576))) |#2| (-624 |#2|)) 40) (((-419 (-576)) |#2|) 24))) -(((-445 |#1| |#2|) (-10 -7 (-15 -4330 ((-419 (-576)) |#2|)) (-15 -4330 ((-1193 (-419 (-576))) |#2| (-624 |#2|))) (-15 -3150 ((-1293)))) (-13 (-568) (-1059 (-576))) (-442 |#1|)) (T -445)) -((-3150 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1293)) (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))) (-4330 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-445 *5 *3)))) (-4330 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4))))) -(-10 -7 (-15 -4330 ((-419 (-576)) |#2|)) (-15 -4330 ((-1193 (-419 (-576))) |#2| (-624 |#2|))) (-15 -3150 ((-1293)))) -((-2790 (((-112) $) 33)) (-4012 (((-112) $) 35)) (-3936 (((-112) $) 36)) (-4121 (((-112) $) 39)) (-3799 (((-112) $) 34)) (-1939 (((-112) $) 38)) (-4113 (((-876) $) 20) (($ (-1179)) 32) (($ (-1197)) 30) (((-1197) $) 24) (((-1125) $) 23)) (-2804 (((-112) $) 37)) (-3939 (((-112) $ $) 17))) -(((-446) (-13 (-625 (-876)) (-10 -8 (-15 -4113 ($ (-1179))) (-15 -4113 ($ (-1197))) (-15 -4113 ((-1197) $)) (-15 -4113 ((-1125) $)) (-15 -2790 ((-112) $)) (-15 -3799 ((-112) $)) (-15 -3936 ((-112) $)) (-15 -1939 ((-112) $)) (-15 -4121 ((-112) $)) (-15 -2804 ((-112) $)) (-15 -4012 ((-112) $)) (-15 -3939 ((-112) $ $))))) (T -446)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-446)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-446)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1939 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3939 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(-13 (-625 (-876)) (-10 -8 (-15 -4113 ($ (-1179))) (-15 -4113 ($ (-1197))) (-15 -4113 ((-1197) $)) (-15 -4113 ((-1125) $)) (-15 -2790 ((-112) $)) (-15 -3799 ((-112) $)) (-15 -3936 ((-112) $)) (-15 -1939 ((-112) $)) (-15 -4121 ((-112) $)) (-15 -2804 ((-112) $)) (-15 -4012 ((-112) $)) (-15 -3939 ((-112) $ $)))) -((-1781 (((-3 (-430 (-1193 (-419 (-576)))) "failed") |#3|) 72)) (-2613 (((-430 |#3|) |#3|) 34)) (-4259 (((-3 (-430 (-1193 (-48))) "failed") |#3|) 46 (|has| |#2| (-1059 (-48))))) (-3850 (((-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -2532 (-112))) |#3|) 37))) -(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -2613 ((-430 |#3|) |#3|)) (-15 -1781 ((-3 (-430 (-1193 (-419 (-576)))) "failed") |#3|)) (-15 -3850 ((-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -2532 (-112))) |#3|)) (IF (|has| |#2| (-1059 (-48))) (-15 -4259 ((-3 (-430 (-1193 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-568) (-1059 (-576))) (-442 |#1|) (-1264 |#2|)) (T -447)) -((-4259 (*1 *2 *3) (|partial| -12 (-4 *5 (-1059 (-48))) (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1193 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -2532 (-112)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-1781 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1193 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) -(-10 -7 (-15 -2613 ((-430 |#3|) |#3|)) (-15 -1781 ((-3 (-430 (-1193 (-419 (-576)))) "failed") |#3|)) (-15 -3850 ((-3 (|:| |overq| (-1193 (-419 (-576)))) (|:| |overan| (-1193 (-48))) (|:| -2532 (-112))) |#3|)) (IF (|has| |#2| (-1059 (-48))) (-15 -4259 ((-3 (-430 (-1193 (-48))) "failed") |#3|)) |%noBranch|)) -((-1957 (((-112) $ $) NIL)) (-4319 (((-1179) $ (-1179)) NIL)) (-2548 (($ $ (-1179)) NIL)) (-3354 (((-1179) $) NIL)) (-2537 (((-400) (-400) (-400)) 17) (((-400) (-400)) 15)) (-3823 (($ (-400)) NIL) (($ (-400) (-1179)) NIL)) (-4149 (((-400) $) NIL)) (-2447 (((-1179) $) NIL)) (-3709 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3549 (((-1293) (-1179)) 9)) (-1779 (((-1293) (-1179)) 10)) (-1843 (((-1293)) 11)) (-4113 (((-876) $) NIL)) (-2481 (($ $) 39)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-448) (-13 (-375 (-400) (-1179)) (-10 -7 (-15 -2537 ((-400) (-400) (-400))) (-15 -2537 ((-400) (-400))) (-15 -3549 ((-1293) (-1179))) (-15 -1779 ((-1293) (-1179))) (-15 -1843 ((-1293)))))) (T -448)) -((-2537 (*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448)))) (-1843 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-448))))) -(-13 (-375 (-400) (-1179)) (-10 -7 (-15 -2537 ((-400) (-400) (-400))) (-15 -2537 ((-400) (-400))) (-15 -3549 ((-1293) (-1179))) (-15 -1779 ((-1293) (-1179))) (-15 -1843 ((-1293))))) -((-1957 (((-112) $ $) NIL)) (-3575 (((-3 (|:| |fst| (-446)) (|:| -2435 "void")) $) 11)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3669 (($) 35)) (-1917 (($) 41)) (-1506 (($) 37)) (-4161 (($) 39)) (-4078 (($) 36)) (-2060 (($) 38)) (-2082 (($) 40)) (-2041 (((-112) $) 8)) (-2776 (((-656 (-971 (-576))) $) 19)) (-4125 (($ (-3 (|:| |fst| (-446)) (|:| -2435 "void")) (-656 (-1197)) (-112)) 29) (($ (-3 (|:| |fst| (-446)) (|:| -2435 "void")) (-656 (-971 (-576))) (-112)) 30)) (-4113 (((-876) $) 24) (($ (-446)) 32)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-449) (-13 (-1121) (-10 -8 (-15 -4113 ($ (-446))) (-15 -3575 ((-3 (|:| |fst| (-446)) (|:| -2435 "void")) $)) (-15 -2776 ((-656 (-971 (-576))) $)) (-15 -2041 ((-112) $)) (-15 -4125 ($ (-3 (|:| |fst| (-446)) (|:| -2435 "void")) (-656 (-1197)) (-112))) (-15 -4125 ($ (-3 (|:| |fst| (-446)) (|:| -2435 "void")) (-656 (-971 (-576))) (-112))) (-15 -3669 ($)) (-15 -4078 ($)) (-15 -1506 ($)) (-15 -1917 ($)) (-15 -2060 ($)) (-15 -4161 ($)) (-15 -2082 ($))))) (T -449)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-5 *1 (-449)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-656 (-971 (-576)))) (-5 *1 (-449)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))) (-4125 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-5 *3 (-656 (-1197))) (-5 *4 (-112)) (-5 *1 (-449)))) (-4125 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) (-3669 (*1 *1) (-5 *1 (-449))) (-4078 (*1 *1) (-5 *1 (-449))) (-1506 (*1 *1) (-5 *1 (-449))) (-1917 (*1 *1) (-5 *1 (-449))) (-2060 (*1 *1) (-5 *1 (-449))) (-4161 (*1 *1) (-5 *1 (-449))) (-2082 (*1 *1) (-5 *1 (-449)))) -(-13 (-1121) (-10 -8 (-15 -4113 ($ (-446))) (-15 -3575 ((-3 (|:| |fst| (-446)) (|:| -2435 "void")) $)) (-15 -2776 ((-656 (-971 (-576))) $)) (-15 -2041 ((-112) $)) (-15 -4125 ($ (-3 (|:| |fst| (-446)) (|:| -2435 "void")) (-656 (-1197)) (-112))) (-15 -4125 ($ (-3 (|:| |fst| (-446)) (|:| -2435 "void")) (-656 (-971 (-576))) (-112))) (-15 -3669 ($)) (-15 -4078 ($)) (-15 -1506 ($)) (-15 -1917 ($)) (-15 -2060 ($)) (-15 -4161 ($)) (-15 -2082 ($)))) -((-1957 (((-112) $ $) NIL)) (-4149 (((-1197) $) 8)) (-2447 (((-1179) $) 17)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 11)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 14))) -(((-450 |#1|) (-13 (-1121) (-10 -8 (-15 -4149 ((-1197) $)))) (-1197)) (T -450)) -((-4149 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-450 *3)) (-14 *3 *2)))) -(-13 (-1121) (-10 -8 (-15 -4149 ((-1197) $)))) -((-1957 (((-112) $ $) NIL)) (-3514 (((-1139) $) 7)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 13)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 9))) -(((-451) (-13 (-1121) (-10 -8 (-15 -3514 ((-1139) $))))) (T -451)) -((-3514 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-451))))) -(-13 (-1121) (-10 -8 (-15 -3514 ((-1139) $)))) -((-3973 (((-1293) $) 7)) (-4113 (((-876) $) 8) (($ (-1288 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 11))) +((-2469 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1289 *1)) (-4 *1 (-429 *3)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1289 *3)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) (-5 *2 (-702 *4)))) (-3731 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1289 (-702 *3))))) (-3522 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-657 (-972 *3))))) (-4093 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1289 *3)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-1861 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-3612 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-1546 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3)))) (-2259 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3)))) (-2246 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3)))) (-1822 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1194 (-972 *3))))) (-2408 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1194 (-972 *3))))) (-3514 (*1 *1 *2 *1) (-12 (-5 *2 (-702 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174))))) +(-13 (-378 |t#1|) (-296 (-576) |t#1|) (-10 -8 (-15 -2469 ((-1289 $))) (-15 -3806 ((-1289 |t#1|) $)) (-15 -3806 ((-702 |t#1|) (-1289 $))) (-15 -3731 ((-1289 (-702 |t#1|)))) (-15 -3522 ((-657 (-972 |t#1|)))) (-15 -4093 ($ (-1289 |t#1|))) (-15 -4136 ((-1289 |t#1|) $)) (-15 -4136 ($ (-1289 |t#1|))) (-15 -1861 (|t#1|)) (-15 -3612 (|t#1|)) (-15 -1546 ((-702 |t#1|))) (-15 -2259 ((-702 |t#1|))) (-15 -3138 ((-702 |t#1|) $)) (-15 -2246 ((-702 |t#1|) $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -1822 ((-1194 (-972 |t#1|)))) (-15 -2408 ((-1194 (-972 |t#1|))))) |%noBranch|) (-15 -3514 ($ (-702 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-296 (-576) |#1|) . T) ((-378 |#1|) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-733) . T) ((-757 |#1|) . T) ((-774) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 60)) (-2779 (($ $) 78)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 192)) (-2361 (($ $) NIL)) (-3286 (((-112) $) 48)) (-4119 ((|#1| $) 16)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-1243)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-1243)))) (-3151 (($ |#1| (-576)) 42)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 149)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 74)) (-3969 (((-3 $ "failed") $) 165)) (-1758 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-3113 (((-112) $) 81 (|has| |#1| (-557)))) (-1842 (((-419 (-576)) $) 92 (|has| |#1| (-557)))) (-3562 (($ |#1| (-576)) 44)) (-4009 (((-112) $) 212 (|has| |#1| (-1243)))) (-3994 (((-112) $) 62)) (-3623 (((-784) $) 51)) (-2897 (((-3 "nil" "sqfr" "irred" "prime") $ (-576)) 176)) (-1656 ((|#1| $ (-576)) 175)) (-3112 (((-576) $ (-576)) 174)) (-1625 (($ |#1| (-576)) 41)) (-4071 (($ (-1 |#1| |#1|) $) 184)) (-2864 (($ |#1| (-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576))))) 79)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1708 (((-1180) $) NIL)) (-4430 (($ |#1| (-576)) 43)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) 193 (|has| |#1| (-464)))) (-1928 (($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1502 (((-657 (-2 (|:| -1856 |#1|) (|:| -2128 (-576)))) $) 73)) (-2466 (((-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $) 12)) (-1856 (((-430 $) $) NIL (|has| |#1| (-1243)))) (-3409 (((-3 $ "failed") $ $) 177)) (-2128 (((-576) $) 168)) (-1971 ((|#1| $) 75)) (-3205 (($ $ (-657 |#1|) (-657 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) 101 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 107 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) $) NIL (|has| |#1| (-526 (-1198) $))) (($ $ (-657 (-1198)) (-657 $)) 108 (|has| |#1| (-526 (-1198) $))) (($ $ (-657 (-304 $))) 104 (|has| |#1| (-319 $))) (($ $ (-304 $)) NIL (|has| |#1| (-319 $))) (($ $ $ $) NIL (|has| |#1| (-319 $))) (($ $ (-657 $) (-657 $)) NIL (|has| |#1| (-319 $)))) (-2780 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-296 $ $)))) (-2209 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237))) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-4136 (((-548) $) 39 (|has| |#1| (-626 (-548)))) (((-390) $) 114 (|has| |#1| (-1044))) (((-227) $) 120 (|has| |#1| (-1044)))) (-3515 (((-877) $) 147) (($ (-576)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576)))))) (-3845 (((-784)) 67 T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2716 (($) 53 T CONST)) (-2725 (($) 52 T CONST)) (-2066 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237))) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-2881 (((-112) $ $) 160)) (-2982 (($ $) 162) (($ $ $) NIL)) (-2971 (($ $ $) 181)) (** (($ $ (-941)) NIL) (($ $ (-784)) 126)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-430 |#1|) (-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -1971 (|#1| $)) (-15 -2128 ((-576) $)) (-15 -2864 ($ |#1| (-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -2466 ((-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -1625 ($ |#1| (-576))) (-15 -1502 ((-657 (-2 (|:| -1856 |#1|) (|:| -2128 (-576)))) $)) (-15 -4430 ($ |#1| (-576))) (-15 -3112 ((-576) $ (-576))) (-15 -1656 (|#1| $ (-576))) (-15 -2897 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -3623 ((-784) $)) (-15 -3562 ($ |#1| (-576))) (-15 -3151 ($ |#1| (-576))) (-15 -1928 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4119 (|#1| $)) (-15 -2779 ($ $)) (-15 -4071 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1044)) (-6 (-1044)) |%noBranch|) (IF (|has| |#1| (-1243)) (-6 (-1243)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3113 ((-112) $)) (-15 -1842 ((-419 (-576)) $)) (-15 -1758 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1198) $)) (-6 (-526 (-1198) $)) |%noBranch|))) (-568)) (T -430)) +((-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) (-1971 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2864 (*1 *1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-576))))) (-4 *2 (-568)) (-5 *1 (-430 *2)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-1625 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| -1856 *3) (|:| -2128 (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-4430 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3112 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-1656 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2897 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *4)) (-4 *4 (-568)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3562 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3151 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1928 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4119 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2779 (*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-1842 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-1758 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568))))) +(-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -1971 (|#1| $)) (-15 -2128 ((-576) $)) (-15 -2864 ($ |#1| (-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -2466 ((-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -1625 ($ |#1| (-576))) (-15 -1502 ((-657 (-2 (|:| -1856 |#1|) (|:| -2128 (-576)))) $)) (-15 -4430 ($ |#1| (-576))) (-15 -3112 ((-576) $ (-576))) (-15 -1656 (|#1| $ (-576))) (-15 -2897 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -3623 ((-784) $)) (-15 -3562 ($ |#1| (-576))) (-15 -3151 ($ |#1| (-576))) (-15 -1928 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4119 (|#1| $)) (-15 -2779 ($ $)) (-15 -4071 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1044)) (-6 (-1044)) |%noBranch|) (IF (|has| |#1| (-1243)) (-6 (-1243)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3113 ((-112) $)) (-15 -1842 ((-419 (-576)) $)) (-15 -1758 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1198) $)) (-6 (-526 (-1198) $)) |%noBranch|))) +((-3397 (((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|)) 28)) (-4431 (((-430 |#1|) (-430 |#1|) (-430 |#1|)) 17))) +(((-431 |#1|) (-10 -7 (-15 -3397 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -4431 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) (-568)) (T -431)) +((-4431 (*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-3397 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) (-5 *1 (-431 *4))))) +(-10 -7 (-15 -3397 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -4431 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) +((-1335 ((|#2| |#2|) 183)) (-4253 (((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112)) 60))) +(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4253 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112))) (-15 -1335 (|#2| |#2|))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|)) (-1198) |#2|) (T -432)) +((-1335 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1224) (-442 *3))) (-14 *4 (-1198)) (-14 *5 *2))) (-4253 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) (-14 *6 (-1198)) (-14 *7 *3)))) +(-10 -7 (-15 -4253 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112))) (-15 -1335 (|#2| |#2|))) +((-4071 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 (|#4| (-1 |#3| |#1|) |#2|))) (-1071) (-442 |#1|) (-1071) (-442 |#3|)) (T -433)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5))))) +(-10 -7 (-15 -4071 (|#4| (-1 |#3| |#1|) |#2|))) +((-1335 ((|#2| |#2|) 106)) (-3353 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112) (-1180)) 52)) (-3854 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112) (-1180)) 170))) +(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3353 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112) (-1180))) (-15 -3854 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112) (-1180))) (-15 -1335 (|#2| |#2|))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|) (-10 -8 (-15 -3515 ($ |#3|)))) (-861) (-13 (-1267 |#2| |#3|) (-374) (-1224) (-10 -8 (-15 -2209 ($ $)) (-15 -2320 ($ $)))) (-1005 |#4|) (-1198)) (T -434)) +((-1335 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-4 *2 (-13 (-27) (-1224) (-442 *3) (-10 -8 (-15 -3515 ($ *4))))) (-4 *4 (-861)) (-4 *5 (-13 (-1267 *2 *4) (-374) (-1224) (-10 -8 (-15 -2209 ($ $)) (-15 -2320 ($ $))))) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1005 *5)) (-14 *7 (-1198)))) (-3854 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-4 *3 (-13 (-27) (-1224) (-442 *6) (-10 -8 (-15 -3515 ($ *7))))) (-4 *7 (-861)) (-4 *8 (-13 (-1267 *3 *7) (-374) (-1224) (-10 -8 (-15 -2209 ($ $)) (-15 -2320 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1180)) (-4 *9 (-1005 *8)) (-14 *10 (-1198)))) (-3353 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-4 *3 (-13 (-27) (-1224) (-442 *6) (-10 -8 (-15 -3515 ($ *7))))) (-4 *7 (-861)) (-4 *8 (-13 (-1267 *3 *7) (-374) (-1224) (-10 -8 (-15 -2209 ($ $)) (-15 -2320 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1180)) (-4 *9 (-1005 *8)) (-14 *10 (-1198))))) +(-10 -7 (-15 -3353 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112) (-1180))) (-15 -3854 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112) (-1180))) (-15 -1335 (|#2| |#2|))) +((-3899 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3662 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4071 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3662 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3899 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1122) (-437 |#1|) (-1122) (-437 |#3|)) (T -435)) +((-3899 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) (-3662 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5))))) +(-10 -7 (-15 -4071 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3662 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3899 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1561 (($) 51)) (-1849 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-1855 (($ $ $) 46)) (-2176 (((-112) $ $) 35)) (-2148 (((-784)) 55)) (-2119 (($ (-657 |#2|)) 23) (($) NIL)) (-1876 (($) 66)) (-1919 (((-112) $ $) 15)) (-3740 ((|#2| $) 77)) (-2249 ((|#2| $) 75)) (-2327 (((-941) $) 70)) (-3415 (($ $ $) 42)) (-3146 (($ (-941)) 60)) (-1610 (($ $ |#2|) NIL) (($ $ $) 45)) (-1469 (((-784) (-1 (-112) |#2|) $) NIL) (((-784) |#2| $) 31)) (-3529 (($ (-657 |#2|)) 27)) (-1600 (($ $) 53)) (-3515 (((-877) $) 40)) (-1854 (((-784) $) 24)) (-1923 (($ (-657 |#2|)) 22) (($) NIL)) (-2881 (((-112) $ $) 19))) +(((-436 |#1| |#2|) (-10 -8 (-15 -2148 ((-784))) (-15 -3146 (|#1| (-941))) (-15 -2327 ((-941) |#1|)) (-15 -1876 (|#1|)) (-15 -3740 (|#2| |#1|)) (-15 -2249 (|#2| |#1|)) (-15 -1561 (|#1|)) (-15 -1600 (|#1| |#1|)) (-15 -1854 ((-784) |#1|)) (-15 -2881 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -1919 ((-112) |#1| |#1|)) (-15 -1923 (|#1|)) (-15 -1923 (|#1| (-657 |#2|))) (-15 -2119 (|#1|)) (-15 -2119 (|#1| (-657 |#2|))) (-15 -3415 (|#1| |#1| |#1|)) (-15 -1610 (|#1| |#1| |#1|)) (-15 -1610 (|#1| |#1| |#2|)) (-15 -1855 (|#1| |#1| |#1|)) (-15 -2176 ((-112) |#1| |#1|)) (-15 -1849 (|#1| |#1| |#1|)) (-15 -1849 (|#1| |#1| |#2|)) (-15 -1849 (|#1| |#2| |#1|)) (-15 -3529 (|#1| (-657 |#2|))) (-15 -1469 ((-784) |#2| |#1|)) (-15 -1469 ((-784) (-1 (-112) |#2|) |#1|))) (-437 |#2|) (-1122)) (T -436)) +((-2148 (*1 *2) (-12 (-4 *4 (-1122)) (-5 *2 (-784)) (-5 *1 (-436 *3 *4)) (-4 *3 (-437 *4))))) +(-10 -8 (-15 -2148 ((-784))) (-15 -3146 (|#1| (-941))) (-15 -2327 ((-941) |#1|)) (-15 -1876 (|#1|)) (-15 -3740 (|#2| |#1|)) (-15 -2249 (|#2| |#1|)) (-15 -1561 (|#1|)) (-15 -1600 (|#1| |#1|)) (-15 -1854 ((-784) |#1|)) (-15 -2881 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -1919 ((-112) |#1| |#1|)) (-15 -1923 (|#1|)) (-15 -1923 (|#1| (-657 |#2|))) (-15 -2119 (|#1|)) (-15 -2119 (|#1| (-657 |#2|))) (-15 -3415 (|#1| |#1| |#1|)) (-15 -1610 (|#1| |#1| |#1|)) (-15 -1610 (|#1| |#1| |#2|)) (-15 -1855 (|#1| |#1| |#1|)) (-15 -2176 ((-112) |#1| |#1|)) (-15 -1849 (|#1| |#1| |#1|)) (-15 -1849 (|#1| |#1| |#2|)) (-15 -1849 (|#1| |#2| |#1|)) (-15 -3529 (|#1| (-657 |#2|))) (-15 -1469 ((-784) |#2| |#1|)) (-15 -1469 ((-784) (-1 (-112) |#2|) |#1|))) +((-3423 (((-112) $ $) 20)) (-1561 (($) 68 (|has| |#1| (-379)))) (-1849 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-1855 (($ $ $) 79)) (-2176 (((-112) $ $) 80)) (-4284 (((-112) $ (-784)) 8)) (-2148 (((-784)) 62 (|has| |#1| (-379)))) (-2119 (($ (-657 |#1|)) 75) (($) 74)) (-3726 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-1620 (($ $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1920 (($ |#1| $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4466)))) (-3901 (($ |#1| $) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4466)))) (-1876 (($) 65 (|has| |#1| (-379)))) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1919 (((-112) $ $) 71)) (-1786 (((-112) $ (-784)) 9)) (-3740 ((|#1| $) 66 (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2249 ((|#1| $) 67 (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-2327 (((-941) $) 64 (|has| |#1| (-379)))) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23)) (-3415 (($ $ $) 76)) (-3107 ((|#1| $) 40)) (-2701 (($ |#1| $) 41)) (-3146 (($ (-941)) 63 (|has| |#1| (-379)))) (-1460 (((-1142) $) 22)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2184 ((|#1| $) 42)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-1610 (($ $ |#1|) 78) (($ $ $) 77)) (-3009 (($) 50) (($ (-657 |#1|)) 49)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-4136 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 51)) (-1600 (($ $) 69 (|has| |#1| (-379)))) (-3515 (((-877) $) 18)) (-1854 (((-784) $) 70)) (-1923 (($ (-657 |#1|)) 73) (($) 72)) (-4166 (((-112) $ $) 21)) (-1636 (($ (-657 |#1|)) 43)) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19)) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-437 |#1|) (-141) (-1122)) (T -437)) +((-1854 (*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1122)) (-5 *2 (-784)))) (-1600 (*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1122)) (-4 *2 (-379)))) (-1561 (*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1122)))) (-2249 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1122)) (-4 *2 (-862)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1122)) (-4 *2 (-862))))) +(-13 (-231 |t#1|) (-1120 |t#1|) (-10 -8 (-6 -4466) (-15 -1854 ((-784) $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-379)) (-15 -1600 ($ $)) (-15 -1561 ($))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -2249 (|t#1| $)) (-15 -3740 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-877)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-379) |has| |#1| (-379)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1120 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3565 (((-598 |#2|) |#2| (-1198)) 36)) (-3333 (((-598 |#2|) |#2| (-1198)) 21)) (-2943 ((|#2| |#2| (-1198)) 26))) +(((-438 |#1| |#2|) (-10 -7 (-15 -3333 ((-598 |#2|) |#2| (-1198))) (-15 -3565 ((-598 |#2|) |#2| (-1198))) (-15 -2943 (|#2| |#2| (-1198)))) (-13 (-317) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-29 |#1|))) (T -438)) +((-2943 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1224) (-29 *4))))) (-3565 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1224) (-29 *5))))) (-3333 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1224) (-29 *5)))))) +(-10 -7 (-15 -3333 ((-598 |#2|) |#2| (-1198))) (-15 -3565 ((-598 |#2|) |#2| (-1198))) (-15 -2943 (|#2| |#2| (-1198)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-2618 (($ |#2| |#1|) 37)) (-2086 (($ |#2| |#1|) 35)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-341 |#2|)) 25)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 10 T CONST)) (-2725 (($) 16 T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 36)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-439 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4453)) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|) |%noBranch|) (-15 -3515 ($ |#1|)) (-15 -3515 ($ (-341 |#2|))) (-15 -2618 ($ |#2| |#1|)) (-15 -2086 ($ |#2| |#1|)))) (-13 (-174) (-38 (-419 (-576)))) (-13 (-862) (-21))) (T -439)) +((-3515 (*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) (-4 *3 (-13 (-862) (-21))))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) (-2618 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21))))) (-2086 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4453)) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|) |%noBranch|) (-15 -3515 ($ |#1|)) (-15 -3515 ($ (-341 |#2|))) (-15 -2618 ($ |#2| |#1|)) (-15 -2086 ($ |#2| |#1|)))) +((-2320 (((-3 |#2| (-657 |#2|)) |#2| (-1198)) 115))) +(((-440 |#1| |#2|) (-10 -7 (-15 -2320 ((-3 |#2| (-657 |#2|)) |#2| (-1198)))) (-13 (-317) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-979) (-29 |#1|))) (T -440)) +((-2320 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 *3 (-657 *3))) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1224) (-979) (-29 *5)))))) +(-10 -7 (-15 -2320 ((-3 |#2| (-657 |#2|)) |#2| (-1198)))) +((-1998 (((-657 (-1198)) $) 81)) (-1825 (((-419 (-1194 $)) $ (-624 $)) 313)) (-4043 (($ $ (-304 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-657 (-624 $)) (-657 $)) 277)) (-1593 (((-3 (-624 $) "failed") $) NIL) (((-3 (-1198) "failed") $) 84) (((-3 (-576) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-419 (-972 |#2|)) "failed") $) 363) (((-3 (-972 |#2|) "failed") $) 275) (((-3 (-419 (-576)) "failed") $) NIL)) (-2830 (((-624 $) $) NIL) (((-1198) $) 28) (((-576) $) NIL) ((|#2| $) 271) (((-419 (-972 |#2|)) $) 345) (((-972 |#2|) $) 272) (((-419 (-576)) $) NIL)) (-1803 (((-115) (-115)) 47)) (-3502 (($ $) 99)) (-3449 (((-3 (-624 $) "failed") $) 268)) (-1789 (((-657 (-624 $)) $) 269)) (-2998 (((-3 (-657 $) "failed") $) 287)) (-1588 (((-3 (-2 (|:| |val| $) (|:| -2128 (-576))) "failed") $) 294)) (-3097 (((-3 (-657 $) "failed") $) 285)) (-2303 (((-3 (-2 (|:| -1735 (-576)) (|:| |var| (-624 $))) "failed") $) 304)) (-3403 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $) 291) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $ (-1198)) 257)) (-2108 (((-112) $) 17)) (-2118 ((|#2| $) 19)) (-3205 (($ $ (-624 $) $) NIL) (($ $ (-657 (-624 $)) (-657 $)) 276) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) 109) (($ $ (-1198) (-1 $ (-657 $))) NIL) (($ $ (-1198) (-1 $ $)) NIL) (($ $ (-657 (-115)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-115) (-1 $ (-657 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1198)) 62) (($ $ (-657 (-1198))) 280) (($ $) 281) (($ $ (-115) $ (-1198)) 65) (($ $ (-657 (-115)) (-657 $) (-1198)) 72) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ $))) 120) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ (-657 $)))) 282) (($ $ (-1198) (-784) (-1 $ (-657 $))) 105) (($ $ (-1198) (-784) (-1 $ $)) 104)) (-2780 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-657 $)) 119)) (-2209 (($ $ (-1198)) 278) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-4226 (($ $) 324)) (-4136 (((-908 (-576)) $) 297) (((-908 (-390)) $) 301) (($ (-430 $)) 359) (((-548) $) NIL)) (-3515 (((-877) $) 279) (($ (-624 $)) 93) (($ (-1198)) 24) (($ |#2|) NIL) (($ (-1147 |#2| (-624 $))) NIL) (($ (-419 |#2|)) 329) (($ (-972 (-419 |#2|))) 368) (($ (-419 (-972 (-419 |#2|)))) 341) (($ (-419 (-972 |#2|))) 335) (($ $) NIL) (($ (-972 |#2|)) 216) (($ (-576)) NIL) (($ (-419 (-576))) 373)) (-3845 (((-784)) 88)) (-2946 (((-112) (-115)) 42)) (-4171 (($ (-1198) $) 31) (($ (-1198) $ $) 32) (($ (-1198) $ $ $) 33) (($ (-1198) $ $ $ $) 34) (($ (-1198) (-657 $)) 39)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-784) $) NIL) (($ (-941) $) NIL))) +(((-441 |#1| |#2|) (-10 -8 (-15 * (|#1| (-941) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3515 (|#1| (-576))) (-15 -3845 ((-784))) (-15 * (|#1| |#2| |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -3515 (|#1| (-972 |#2|))) (-15 -1593 ((-3 (-972 |#2|) "failed") |#1|)) (-15 -2830 ((-972 |#2|) |#1|)) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198))) (-15 * (|#1| |#1| |#2|)) (-15 -3515 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3515 (|#1| (-419 (-972 |#2|)))) (-15 -1593 ((-3 (-419 (-972 |#2|)) "failed") |#1|)) (-15 -2830 ((-419 (-972 |#2|)) |#1|)) (-15 -1825 ((-419 (-1194 |#1|)) |#1| (-624 |#1|))) (-15 -3515 (|#1| (-419 (-972 (-419 |#2|))))) (-15 -3515 (|#1| (-972 (-419 |#2|)))) (-15 -3515 (|#1| (-419 |#2|))) (-15 -4226 (|#1| |#1|)) (-15 -4136 (|#1| (-430 |#1|))) (-15 -3205 (|#1| |#1| (-1198) (-784) (-1 |#1| |#1|))) (-15 -3205 (|#1| |#1| (-1198) (-784) (-1 |#1| (-657 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 (-784)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 (-784)) (-657 (-1 |#1| |#1|)))) (-15 -1588 ((-3 (-2 (|:| |val| |#1|) (|:| -2128 (-576))) "failed") |#1|)) (-15 -3403 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2128 (-576))) "failed") |#1| (-1198))) (-15 -3403 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2128 (-576))) "failed") |#1| (-115))) (-15 -3502 (|#1| |#1|)) (-15 -3515 (|#1| (-1147 |#2| (-624 |#1|)))) (-15 -2303 ((-3 (-2 (|:| -1735 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -3097 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -3403 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2128 (-576))) "failed") |#1|)) (-15 -2998 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -3205 (|#1| |#1| (-657 (-115)) (-657 |#1|) (-1198))) (-15 -3205 (|#1| |#1| (-115) |#1| (-1198))) (-15 -3205 (|#1| |#1|)) (-15 -3205 (|#1| |#1| (-657 (-1198)))) (-15 -3205 (|#1| |#1| (-1198))) (-15 -4171 (|#1| (-1198) (-657 |#1|))) (-15 -4171 (|#1| (-1198) |#1| |#1| |#1| |#1|)) (-15 -4171 (|#1| (-1198) |#1| |#1| |#1|)) (-15 -4171 (|#1| (-1198) |#1| |#1|)) (-15 -4171 (|#1| (-1198) |#1|)) (-15 -1998 ((-657 (-1198)) |#1|)) (-15 -2118 (|#2| |#1|)) (-15 -2108 ((-112) |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -4136 ((-908 (-390)) |#1|)) (-15 -4136 ((-908 (-576)) |#1|)) (-15 -3515 (|#1| (-1198))) (-15 -1593 ((-3 (-1198) "failed") |#1|)) (-15 -2830 ((-1198) |#1|)) (-15 -3205 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3205 (|#1| |#1| (-115) (-1 |#1| (-657 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3205 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| |#1|)))) (-15 -3205 (|#1| |#1| (-1198) (-1 |#1| |#1|))) (-15 -3205 (|#1| |#1| (-1198) (-1 |#1| (-657 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| |#1|)))) (-15 -2946 ((-112) (-115))) (-15 -1803 ((-115) (-115))) (-15 -1789 ((-657 (-624 |#1|)) |#1|)) (-15 -3449 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4043 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -4043 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -4043 (|#1| |#1| (-304 |#1|))) (-15 -2780 (|#1| (-115) (-657 |#1|))) (-15 -2780 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2780 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2780 (|#1| (-115) |#1| |#1|)) (-15 -2780 (|#1| (-115) |#1|)) (-15 -3205 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#1| |#1|)) (-15 -3205 (|#1| |#1| (-304 |#1|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -3205 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -3515 (|#1| (-624 |#1|))) (-15 -1593 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2830 ((-624 |#1|) |#1|)) (-15 -3515 ((-877) |#1|))) (-442 |#2|) (-1122)) (T -441)) +((-1803 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1122)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1122)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) (-3845 (*1 *2) (-12 (-4 *4 (-1122)) (-5 *2 (-784)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4))))) +(-10 -8 (-15 * (|#1| (-941) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3515 (|#1| (-576))) (-15 -3845 ((-784))) (-15 * (|#1| |#2| |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -3515 (|#1| (-972 |#2|))) (-15 -1593 ((-3 (-972 |#2|) "failed") |#1|)) (-15 -2830 ((-972 |#2|) |#1|)) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198))) (-15 * (|#1| |#1| |#2|)) (-15 -3515 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3515 (|#1| (-419 (-972 |#2|)))) (-15 -1593 ((-3 (-419 (-972 |#2|)) "failed") |#1|)) (-15 -2830 ((-419 (-972 |#2|)) |#1|)) (-15 -1825 ((-419 (-1194 |#1|)) |#1| (-624 |#1|))) (-15 -3515 (|#1| (-419 (-972 (-419 |#2|))))) (-15 -3515 (|#1| (-972 (-419 |#2|)))) (-15 -3515 (|#1| (-419 |#2|))) (-15 -4226 (|#1| |#1|)) (-15 -4136 (|#1| (-430 |#1|))) (-15 -3205 (|#1| |#1| (-1198) (-784) (-1 |#1| |#1|))) (-15 -3205 (|#1| |#1| (-1198) (-784) (-1 |#1| (-657 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 (-784)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 (-784)) (-657 (-1 |#1| |#1|)))) (-15 -1588 ((-3 (-2 (|:| |val| |#1|) (|:| -2128 (-576))) "failed") |#1|)) (-15 -3403 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2128 (-576))) "failed") |#1| (-1198))) (-15 -3403 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2128 (-576))) "failed") |#1| (-115))) (-15 -3502 (|#1| |#1|)) (-15 -3515 (|#1| (-1147 |#2| (-624 |#1|)))) (-15 -2303 ((-3 (-2 (|:| -1735 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -3097 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -3403 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2128 (-576))) "failed") |#1|)) (-15 -2998 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -3205 (|#1| |#1| (-657 (-115)) (-657 |#1|) (-1198))) (-15 -3205 (|#1| |#1| (-115) |#1| (-1198))) (-15 -3205 (|#1| |#1|)) (-15 -3205 (|#1| |#1| (-657 (-1198)))) (-15 -3205 (|#1| |#1| (-1198))) (-15 -4171 (|#1| (-1198) (-657 |#1|))) (-15 -4171 (|#1| (-1198) |#1| |#1| |#1| |#1|)) (-15 -4171 (|#1| (-1198) |#1| |#1| |#1|)) (-15 -4171 (|#1| (-1198) |#1| |#1|)) (-15 -4171 (|#1| (-1198) |#1|)) (-15 -1998 ((-657 (-1198)) |#1|)) (-15 -2118 (|#2| |#1|)) (-15 -2108 ((-112) |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -4136 ((-908 (-390)) |#1|)) (-15 -4136 ((-908 (-576)) |#1|)) (-15 -3515 (|#1| (-1198))) (-15 -1593 ((-3 (-1198) "failed") |#1|)) (-15 -2830 ((-1198) |#1|)) (-15 -3205 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3205 (|#1| |#1| (-115) (-1 |#1| (-657 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3205 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| |#1|)))) (-15 -3205 (|#1| |#1| (-1198) (-1 |#1| |#1|))) (-15 -3205 (|#1| |#1| (-1198) (-1 |#1| (-657 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3205 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| |#1|)))) (-15 -2946 ((-112) (-115))) (-15 -1803 ((-115) (-115))) (-15 -1789 ((-657 (-624 |#1|)) |#1|)) (-15 -3449 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4043 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -4043 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -4043 (|#1| |#1| (-304 |#1|))) (-15 -2780 (|#1| (-115) (-657 |#1|))) (-15 -2780 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2780 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2780 (|#1| (-115) |#1| |#1|)) (-15 -2780 (|#1| (-115) |#1|)) (-15 -3205 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#1| |#1|)) (-15 -3205 (|#1| |#1| (-304 |#1|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -3205 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -3205 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -3515 (|#1| (-624 |#1|))) (-15 -1593 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2830 ((-624 |#1|) |#1|)) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 117 (|has| |#1| (-25)))) (-1998 (((-657 (-1198)) $) 208)) (-1825 (((-419 (-1194 $)) $ (-624 $)) 176 (|has| |#1| (-568)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 148 (|has| |#1| (-568)))) (-2361 (($ $) 149 (|has| |#1| (-568)))) (-3286 (((-112) $) 151 (|has| |#1| (-568)))) (-3941 (((-657 (-624 $)) $) 39)) (-2423 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-4043 (($ $ (-304 $)) 51) (($ $ (-657 (-304 $))) 50) (($ $ (-657 (-624 $)) (-657 $)) 49)) (-3188 (($ $) 168 (|has| |#1| (-568)))) (-4215 (((-430 $) $) 169 (|has| |#1| (-568)))) (-3210 (((-112) $ $) 159 (|has| |#1| (-568)))) (-2515 (($) 105 (-2748 (|has| |#1| (-1134)) (|has| |#1| (-25))) CONST)) (-1593 (((-3 (-624 $) "failed") $) 64) (((-3 (-1198) "failed") $) 221) (((-3 (-576) "failed") $) 215 (|has| |#1| (-1060 (-576)))) (((-3 |#1| "failed") $) 212) (((-3 (-419 (-972 |#1|)) "failed") $) 174 (|has| |#1| (-568))) (((-3 (-972 |#1|) "failed") $) 124 (|has| |#1| (-1071))) (((-3 (-419 (-576)) "failed") $) 99 (-2748 (-12 (|has| |#1| (-1060 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1060 (-419 (-576))))))) (-2830 (((-624 $) $) 65) (((-1198) $) 222) (((-576) $) 214 (|has| |#1| (-1060 (-576)))) ((|#1| $) 213) (((-419 (-972 |#1|)) $) 175 (|has| |#1| (-568))) (((-972 |#1|) $) 125 (|has| |#1| (-1071))) (((-419 (-576)) $) 100 (-2748 (-12 (|has| |#1| (-1060 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1060 (-419 (-576))))))) (-3355 (($ $ $) 163 (|has| |#1| (-568)))) (-3439 (((-702 (-576)) (-702 $)) 141 (-2675 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 140 (-2675 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 139 (|has| |#1| (-1071))) (((-702 |#1|) (-702 $)) 138 (|has| |#1| (-1071)))) (-3969 (((-3 $ "failed") $) 107 (|has| |#1| (-1134)))) (-3369 (($ $ $) 162 (|has| |#1| (-568)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 157 (|has| |#1| (-568)))) (-4009 (((-112) $) 170 (|has| |#1| (-568)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 217 (|has| |#1| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 216 (|has| |#1| (-902 (-390))))) (-3816 (($ $) 46) (($ (-657 $)) 45)) (-3948 (((-657 (-115)) $) 38)) (-1803 (((-115) (-115)) 37)) (-3994 (((-112) $) 106 (|has| |#1| (-1134)))) (-1354 (((-112) $) 17 (|has| $ (-1060 (-576))))) (-3502 (($ $) 191 (|has| |#1| (-1071)))) (-1590 (((-1147 |#1| (-624 $)) $) 192 (|has| |#1| (-1071)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 166 (|has| |#1| (-568)))) (-3695 (((-1194 $) (-624 $)) 20 (|has| $ (-1071)))) (-4071 (($ (-1 $ $) (-624 $)) 31)) (-3449 (((-3 (-624 $) "failed") $) 41)) (-1993 (((-702 (-576)) (-1289 $)) 143 (-2675 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 142 (-2675 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 137 (|has| |#1| (-1071))) (((-702 |#1|) (-1289 $)) 136 (|has| |#1| (-1071)))) (-3388 (($ (-657 $)) 155 (|has| |#1| (-568))) (($ $ $) 154 (|has| |#1| (-568)))) (-1708 (((-1180) $) 10)) (-1789 (((-657 (-624 $)) $) 40)) (-1662 (($ (-115) $) 33) (($ (-115) (-657 $)) 32)) (-2998 (((-3 (-657 $) "failed") $) 197 (|has| |#1| (-1134)))) (-1588 (((-3 (-2 (|:| |val| $) (|:| -2128 (-576))) "failed") $) 188 (|has| |#1| (-1071)))) (-3097 (((-3 (-657 $) "failed") $) 195 (|has| |#1| (-25)))) (-2303 (((-3 (-2 (|:| -1735 (-576)) (|:| |var| (-624 $))) "failed") $) 194 (|has| |#1| (-25)))) (-3403 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $) 196 (|has| |#1| (-1134))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $ (-115)) 190 (|has| |#1| (-1071))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $ (-1198)) 189 (|has| |#1| (-1071)))) (-4216 (((-112) $ (-115)) 35) (((-112) $ (-1198)) 34)) (-2098 (($ $) 109 (-2748 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2363 (((-784) $) 42)) (-1460 (((-1142) $) 11)) (-2108 (((-112) $) 210)) (-2118 ((|#1| $) 209)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 156 (|has| |#1| (-568)))) (-3431 (($ (-657 $)) 153 (|has| |#1| (-568))) (($ $ $) 152 (|has| |#1| (-568)))) (-4275 (((-112) $ $) 30) (((-112) $ (-1198)) 29)) (-1856 (((-430 $) $) 167 (|has| |#1| (-568)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 164 (|has| |#1| (-568)))) (-3409 (((-3 $ "failed") $ $) 147 (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 158 (|has| |#1| (-568)))) (-3341 (((-112) $) 18 (|has| $ (-1060 (-576))))) (-3205 (($ $ (-624 $) $) 62) (($ $ (-657 (-624 $)) (-657 $)) 61) (($ $ (-657 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-657 $) (-657 $)) 57) (($ $ (-657 (-1198)) (-657 (-1 $ $))) 28) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) 27) (($ $ (-1198) (-1 $ (-657 $))) 26) (($ $ (-1198) (-1 $ $)) 25) (($ $ (-657 (-115)) (-657 (-1 $ $))) 24) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) 23) (($ $ (-115) (-1 $ (-657 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1198)) 202 (|has| |#1| (-626 (-548)))) (($ $ (-657 (-1198))) 201 (|has| |#1| (-626 (-548)))) (($ $) 200 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1198)) 199 (|has| |#1| (-626 (-548)))) (($ $ (-657 (-115)) (-657 $) (-1198)) 198 (|has| |#1| (-626 (-548)))) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ $))) 187 (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ (-657 $)))) 186 (|has| |#1| (-1071))) (($ $ (-1198) (-784) (-1 $ (-657 $))) 185 (|has| |#1| (-1071))) (($ $ (-1198) (-784) (-1 $ $)) 184 (|has| |#1| (-1071)))) (-4164 (((-784) $) 160 (|has| |#1| (-568)))) (-2780 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-657 $)) 52)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 161 (|has| |#1| (-568)))) (-3469 (($ $) 44) (($ $ $) 43)) (-2209 (($ $ (-1198)) 134 (|has| |#1| (-1071))) (($ $ (-657 (-1198))) 132 (|has| |#1| (-1071))) (($ $ (-1198) (-784)) 131 (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) 130 (|has| |#1| (-1071)))) (-4226 (($ $) 181 (|has| |#1| (-568)))) (-1602 (((-1147 |#1| (-624 $)) $) 182 (|has| |#1| (-568)))) (-2005 (($ $) 19 (|has| $ (-1071)))) (-4136 (((-908 (-576)) $) 219 (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) 218 (|has| |#1| (-626 (-908 (-390))))) (($ (-430 $)) 183 (|has| |#1| (-568))) (((-548) $) 101 (|has| |#1| (-626 (-548))))) (-1587 (($ $ $) 112 (|has| |#1| (-485)))) (-1911 (($ $ $) 113 (|has| |#1| (-485)))) (-3515 (((-877) $) 12) (($ (-624 $)) 63) (($ (-1198)) 220) (($ |#1|) 211) (($ (-1147 |#1| (-624 $))) 193 (|has| |#1| (-1071))) (($ (-419 |#1|)) 179 (|has| |#1| (-568))) (($ (-972 (-419 |#1|))) 178 (|has| |#1| (-568))) (($ (-419 (-972 (-419 |#1|)))) 177 (|has| |#1| (-568))) (($ (-419 (-972 |#1|))) 173 (|has| |#1| (-568))) (($ $) 146 (|has| |#1| (-568))) (($ (-972 |#1|)) 123 (|has| |#1| (-1071))) (($ (-419 (-576))) 98 (-2748 (|has| |#1| (-568)) (-12 (|has| |#1| (-1060 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1060 (-419 (-576)))))) (($ (-576)) 97 (-2748 (|has| |#1| (-1071)) (|has| |#1| (-1060 (-576)))))) (-3414 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-3845 (((-784)) 126 (|has| |#1| (-1071)) CONST)) (-1791 (($ $) 48) (($ (-657 $)) 47)) (-2946 (((-112) (-115)) 36)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 150 (|has| |#1| (-568)))) (-4171 (($ (-1198) $) 207) (($ (-1198) $ $) 206) (($ (-1198) $ $ $) 205) (($ (-1198) $ $ $ $) 204) (($ (-1198) (-657 $)) 203)) (-2716 (($) 116 (|has| |#1| (-25)) CONST)) (-2725 (($) 104 (|has| |#1| (-1134)) CONST)) (-2066 (($ $ (-1198)) 133 (|has| |#1| (-1071))) (($ $ (-657 (-1198))) 129 (|has| |#1| (-1071))) (($ $ (-1198) (-784)) 128 (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) 127 (|has| |#1| (-1071)))) (-2881 (((-112) $ $) 8)) (-2995 (($ (-1147 |#1| (-624 $)) (-1147 |#1| (-624 $))) 180 (|has| |#1| (-568))) (($ $ $) 110 (-2748 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2982 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-2971 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-576)) 111 (-2748 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-784)) 108 (|has| |#1| (-1134))) (($ $ (-941)) 103 (|has| |#1| (-1134)))) (* (($ (-419 (-576)) $) 172 (|has| |#1| (-568))) (($ $ (-419 (-576))) 171 (|has| |#1| (-568))) (($ $ |#1|) 145 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1071))) (($ (-576) $) 120 (|has| |#1| (-21))) (($ (-784) $) 118 (|has| |#1| (-25))) (($ (-941) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1134))))) +(((-442 |#1|) (-141) (-1122)) (T -442)) +((-2108 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-5 *2 (-112)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-5 *2 (-657 (-1198))))) (-4171 (*1 *1 *2 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) (-4171 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) (-4171 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) (-4171 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) (-4171 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-657 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1122)))) (-3205 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-4 *3 (-626 (-548))))) (-3205 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-1198))) (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-4 *3 (-626 (-548))))) (-3205 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)) (-4 *2 (-626 (-548))))) (-3205 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1198)) (-4 *1 (-442 *4)) (-4 *4 (-1122)) (-4 *4 (-626 (-548))))) (-3205 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-657 (-115))) (-5 *3 (-657 *1)) (-5 *4 (-1198)) (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-626 (-548))))) (-2998 (*1 *2 *1) (|partial| -12 (-4 *3 (-1134)) (-4 *3 (-1122)) (-5 *2 (-657 *1)) (-4 *1 (-442 *3)))) (-3403 (*1 *2 *1) (|partial| -12 (-4 *3 (-1134)) (-4 *3 (-1122)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2128 (-576)))) (-4 *1 (-442 *3)))) (-3097 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1122)) (-5 *2 (-657 *1)) (-4 *1 (-442 *3)))) (-2303 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1122)) (-5 *2 (-2 (|:| -1735 (-576)) (|:| |var| (-624 *1)))) (-4 *1 (-442 *3)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-1147 *3 (-624 *1))) (-4 *3 (-1071)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) (-1590 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *3 (-1122)) (-5 *2 (-1147 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-3502 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)) (-4 *2 (-1071)))) (-3403 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1071)) (-4 *4 (-1122)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2128 (-576)))) (-4 *1 (-442 *4)))) (-3403 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1198)) (-4 *4 (-1071)) (-4 *4 (-1122)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2128 (-576)))) (-4 *1 (-442 *4)))) (-1588 (*1 *2 *1) (|partial| -12 (-4 *3 (-1071)) (-4 *3 (-1122)) (-5 *2 (-2 (|:| |val| *1) (|:| -2128 (-576)))) (-4 *1 (-442 *3)))) (-3205 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-784))) (-5 *4 (-657 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-1071)))) (-3205 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-784))) (-5 *4 (-657 (-1 *1 (-657 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-1071)))) (-3205 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-784)) (-5 *4 (-1 *1 (-657 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-1071)))) (-3205 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-784)) (-5 *4 (-1 *1 *1)) (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-1071)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) (-4 *3 (-1122)))) (-1602 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1122)) (-5 *2 (-1147 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-4226 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)) (-4 *2 (-568)))) (-2995 (*1 *1 *2 *2) (-12 (-5 *2 (-1147 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-972 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) (-1825 (*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1122)) (-4 *4 (-568)) (-5 *2 (-419 (-1194 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-4 *3 (-1134))))) +(-13 (-312) (-1060 (-1198)) (-900 |t#1|) (-412 |t#1|) (-423 |t#1|) (-10 -8 (-15 -2108 ((-112) $)) (-15 -2118 (|t#1| $)) (-15 -1998 ((-657 (-1198)) $)) (-15 -4171 ($ (-1198) $)) (-15 -4171 ($ (-1198) $ $)) (-15 -4171 ($ (-1198) $ $ $)) (-15 -4171 ($ (-1198) $ $ $ $)) (-15 -4171 ($ (-1198) (-657 $))) (IF (|has| |t#1| (-626 (-548))) (PROGN (-6 (-626 (-548))) (-15 -3205 ($ $ (-1198))) (-15 -3205 ($ $ (-657 (-1198)))) (-15 -3205 ($ $)) (-15 -3205 ($ $ (-115) $ (-1198))) (-15 -3205 ($ $ (-657 (-115)) (-657 $) (-1198)))) |%noBranch|) (IF (|has| |t#1| (-1134)) (PROGN (-6 (-739)) (-15 ** ($ $ (-784))) (-15 -2998 ((-3 (-657 $) "failed") $)) (-15 -3403 ((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3097 ((-3 (-657 $) "failed") $)) (-15 -2303 ((-3 (-2 (|:| -1735 (-576)) (|:| |var| (-624 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1071)) (PROGN (-6 (-1071)) (-6 (-1060 (-972 |t#1|))) (-6 (-918 (-1198))) (-6 (-388 |t#1|)) (-15 -3515 ($ (-1147 |t#1| (-624 $)))) (-15 -1590 ((-1147 |t#1| (-624 $)) $)) (-15 -3502 ($ $)) (-15 -3403 ((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $ (-115))) (-15 -3403 ((-3 (-2 (|:| |var| (-624 $)) (|:| -2128 (-576))) "failed") $ (-1198))) (-15 -1588 ((-3 (-2 (|:| |val| $) (|:| -2128 (-576))) "failed") $)) (-15 -3205 ($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ $)))) (-15 -3205 ($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ (-657 $))))) (-15 -3205 ($ $ (-1198) (-784) (-1 $ (-657 $)))) (-15 -3205 ($ $ (-1198) (-784) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-374)) (-6 (-1060 (-419 (-972 |t#1|)))) (-15 -4136 ($ (-430 $))) (-15 -1602 ((-1147 |t#1| (-624 $)) $)) (-15 -4226 ($ $)) (-15 -2995 ($ (-1147 |t#1| (-624 $)) (-1147 |t#1| (-624 $)))) (-15 -3515 ($ (-419 |t#1|))) (-15 -3515 ($ (-972 (-419 |t#1|)))) (-15 -3515 ($ (-419 (-972 (-419 |t#1|))))) (-15 -1825 ((-419 (-1194 $)) $ (-624 $))) (IF (|has| |t#1| (-1060 (-576))) (-6 (-1060 (-419 (-576)))) |%noBranch|)) |%noBranch|))) +(((-21) -2748 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2748 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2748 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-419 (-576))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-568)) ((-132) -2748 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-568))) ((-628 #1=(-419 (-972 |#1|))) |has| |#1| (-568)) ((-628 (-576)) -2748 (|has| |#1| (-1071)) (|has| |#1| (-1060 (-576))) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-628 #2=(-624 $)) . T) ((-628 #3=(-972 |#1|)) |has| |#1| (-1071)) ((-628 #4=(-1198)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) |has| |#1| (-568)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-908 (-390))) |has| |#1| (-626 (-908 (-390)))) ((-626 (-908 (-576))) |has| |#1| (-626 (-908 (-576)))) ((-248) |has| |#1| (-568)) ((-300) |has| |#1| (-568)) ((-317) |has| |#1| (-568)) ((-319 $) . T) ((-312) . T) ((-374) |has| |#1| (-568)) ((-388 |#1|) |has| |#1| (-1071)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-659 #0#) |has| |#1| (-568)) ((-659 (-576)) -2748 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-659 |#1|) -2748 (|has| |#1| (-1071)) (|has| |#1| (-174))) ((-659 $) -2748 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-661 #0#) |has| |#1| (-568)) ((-661 #5=(-576)) -12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))) ((-661 |#1|) -2748 (|has| |#1| (-1071)) (|has| |#1| (-174))) ((-661 $) -2748 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-653 #0#) |has| |#1| (-568)) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-652 #5#) -12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))) ((-652 |#1|) |has| |#1| (-1071)) ((-730 #0#) |has| |#1| (-568)) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) -2748 (|has| |#1| (-1134)) (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-912 $ #6=(-1198)) |has| |#1| (-1071)) ((-918 #6#) |has| |#1| (-1071)) ((-920 #6#) |has| |#1| (-1071)) ((-902 (-390)) |has| |#1| (-902 (-390))) ((-902 (-576)) |has| |#1| (-902 (-576))) ((-900 |#1|) . T) ((-940) |has| |#1| (-568)) ((-1060 (-419 (-576))) -2748 (|has| |#1| (-1060 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576))))) ((-1060 #1#) |has| |#1| (-568)) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 #2#) . T) ((-1060 #3#) |has| |#1| (-1071)) ((-1060 #4#) . T) ((-1060 |#1|) . T) ((-1073 #0#) |has| |#1| (-568)) ((-1073 |#1|) |has| |#1| (-174)) ((-1073 $) |has| |#1| (-568)) ((-1078 #0#) |has| |#1| (-568)) ((-1078 |#1|) |has| |#1| (-174)) ((-1078 $) |has| |#1| (-568)) ((-1071) -2748 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1080) -2748 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1134) -2748 (|has| |#1| (-1134)) (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1122) . T) ((-1239) . T) ((-1243) |has| |#1| (-568))) +((-2985 ((|#2| |#2| |#2|) 31)) (-1803 (((-115) (-115)) 43)) (-1517 ((|#2| |#2|) 63)) (-1941 ((|#2| |#2|) 66)) (-2847 ((|#2| |#2|) 30)) (-3966 ((|#2| |#2| |#2|) 33)) (-1756 ((|#2| |#2| |#2|) 35)) (-2491 ((|#2| |#2| |#2|) 32)) (-3771 ((|#2| |#2| |#2|) 34)) (-2946 (((-112) (-115)) 41)) (-3129 ((|#2| |#2|) 37)) (-3758 ((|#2| |#2|) 36)) (-2127 ((|#2| |#2|) 25)) (-3571 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3939 ((|#2| |#2| |#2|) 29))) +(((-443 |#1| |#2|) (-10 -7 (-15 -2946 ((-112) (-115))) (-15 -1803 ((-115) (-115))) (-15 -2127 (|#2| |#2|)) (-15 -3571 (|#2| |#2|)) (-15 -3571 (|#2| |#2| |#2|)) (-15 -3939 (|#2| |#2| |#2|)) (-15 -2847 (|#2| |#2|)) (-15 -2985 (|#2| |#2| |#2|)) (-15 -2491 (|#2| |#2| |#2|)) (-15 -3966 (|#2| |#2| |#2|)) (-15 -3771 (|#2| |#2| |#2|)) (-15 -1756 (|#2| |#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -3129 (|#2| |#2|)) (-15 -1941 (|#2| |#2|)) (-15 -1517 (|#2| |#2|))) (-568) (-442 |#1|)) (T -443)) +((-1517 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1941 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3129 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1756 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3771 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3966 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2491 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2985 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2847 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3939 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3571 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3571 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2127 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4))))) +(-10 -7 (-15 -2946 ((-112) (-115))) (-15 -1803 ((-115) (-115))) (-15 -2127 (|#2| |#2|)) (-15 -3571 (|#2| |#2|)) (-15 -3571 (|#2| |#2| |#2|)) (-15 -3939 (|#2| |#2| |#2|)) (-15 -2847 (|#2| |#2|)) (-15 -2985 (|#2| |#2| |#2|)) (-15 -2491 (|#2| |#2| |#2|)) (-15 -3966 (|#2| |#2| |#2|)) (-15 -3771 (|#2| |#2| |#2|)) (-15 -1756 (|#2| |#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -3129 (|#2| |#2|)) (-15 -1941 (|#2| |#2|)) (-15 -1517 (|#2| |#2|))) +((-2846 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1194 |#2|)) (|:| |pol2| (-1194 |#2|)) (|:| |prim| (-1194 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-657 (-1194 |#2|))) (|:| |prim| (-1194 |#2|))) (-657 |#2|)) 65))) +(((-444 |#1| |#2|) (-10 -7 (-15 -2846 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-657 (-1194 |#2|))) (|:| |prim| (-1194 |#2|))) (-657 |#2|))) (IF (|has| |#2| (-27)) (-15 -2846 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1194 |#2|)) (|:| |pol2| (-1194 |#2|)) (|:| |prim| (-1194 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-148)) (-442 |#1|)) (T -444)) +((-2846 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1194 *3)) (|:| |pol2| (-1194 *3)) (|:| |prim| (-1194 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-657 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-657 (-1194 *5))) (|:| |prim| (-1194 *5)))) (-5 *1 (-444 *4 *5))))) +(-10 -7 (-15 -2846 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-657 (-1194 |#2|))) (|:| |prim| (-1194 |#2|))) (-657 |#2|))) (IF (|has| |#2| (-27)) (-15 -2846 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1194 |#2|)) (|:| |pol2| (-1194 |#2|)) (|:| |prim| (-1194 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2325 (((-1294)) 18)) (-3942 (((-1194 (-419 (-576))) |#2| (-624 |#2|)) 40) (((-419 (-576)) |#2|) 24))) +(((-445 |#1| |#2|) (-10 -7 (-15 -3942 ((-419 (-576)) |#2|)) (-15 -3942 ((-1194 (-419 (-576))) |#2| (-624 |#2|))) (-15 -2325 ((-1294)))) (-13 (-568) (-1060 (-576))) (-442 |#1|)) (T -445)) +((-2325 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *2 (-1294)) (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-445 *5 *3)))) (-3942 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4))))) +(-10 -7 (-15 -3942 ((-419 (-576)) |#2|)) (-15 -3942 ((-1194 (-419 (-576))) |#2| (-624 |#2|))) (-15 -2325 ((-1294)))) +((-2028 (((-112) $) 33)) (-3926 (((-112) $) 35)) (-1374 (((-112) $) 36)) (-2503 (((-112) $) 39)) (-2437 (((-112) $) 34)) (-3549 (((-112) $) 38)) (-3515 (((-877) $) 20) (($ (-1180)) 32) (($ (-1198)) 30) (((-1198) $) 24) (((-1126) $) 23)) (-4064 (((-112) $) 37)) (-2881 (((-112) $ $) 17))) +(((-446) (-13 (-625 (-877)) (-10 -8 (-15 -3515 ($ (-1180))) (-15 -3515 ($ (-1198))) (-15 -3515 ((-1198) $)) (-15 -3515 ((-1126) $)) (-15 -2028 ((-112) $)) (-15 -2437 ((-112) $)) (-15 -1374 ((-112) $)) (-15 -3549 ((-112) $)) (-15 -2503 ((-112) $)) (-15 -4064 ((-112) $)) (-15 -3926 ((-112) $)) (-15 -2881 ((-112) $ $))))) (T -446)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-446)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-446)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-446)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-446)))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2881 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(-13 (-625 (-877)) (-10 -8 (-15 -3515 ($ (-1180))) (-15 -3515 ($ (-1198))) (-15 -3515 ((-1198) $)) (-15 -3515 ((-1126) $)) (-15 -2028 ((-112) $)) (-15 -2437 ((-112) $)) (-15 -1374 ((-112) $)) (-15 -3549 ((-112) $)) (-15 -2503 ((-112) $)) (-15 -4064 ((-112) $)) (-15 -3926 ((-112) $)) (-15 -2881 ((-112) $ $)))) +((-1397 (((-3 (-430 (-1194 (-419 (-576)))) "failed") |#3|) 72)) (-2767 (((-430 |#3|) |#3|) 34)) (-1418 (((-3 (-430 (-1194 (-48))) "failed") |#3|) 46 (|has| |#2| (-1060 (-48))))) (-1714 (((-3 (|:| |overq| (-1194 (-419 (-576)))) (|:| |overan| (-1194 (-48))) (|:| -4165 (-112))) |#3|) 37))) +(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -2767 ((-430 |#3|) |#3|)) (-15 -1397 ((-3 (-430 (-1194 (-419 (-576)))) "failed") |#3|)) (-15 -1714 ((-3 (|:| |overq| (-1194 (-419 (-576)))) (|:| |overan| (-1194 (-48))) (|:| -4165 (-112))) |#3|)) (IF (|has| |#2| (-1060 (-48))) (-15 -1418 ((-3 (-430 (-1194 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-568) (-1060 (-576))) (-442 |#1|) (-1265 |#2|)) (T -447)) +((-1418 (*1 *2 *3) (|partial| -12 (-4 *5 (-1060 (-48))) (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1194 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1265 *5)))) (-1714 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-3 (|:| |overq| (-1194 (-419 (-576)))) (|:| |overan| (-1194 (-48))) (|:| -4165 (-112)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1265 *5)))) (-1397 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1194 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1265 *5)))) (-2767 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1265 *5))))) +(-10 -7 (-15 -2767 ((-430 |#3|) |#3|)) (-15 -1397 ((-3 (-430 (-1194 (-419 (-576)))) "failed") |#3|)) (-15 -1714 ((-3 (|:| |overq| (-1194 (-419 (-576)))) (|:| |overan| (-1194 (-48))) (|:| -4165 (-112))) |#3|)) (IF (|has| |#2| (-1060 (-48))) (-15 -1418 ((-3 (-430 (-1194 (-48))) "failed") |#3|)) |%noBranch|)) +((-3423 (((-112) $ $) NIL)) (-3859 (((-1180) $ (-1180)) NIL)) (-3312 (($ $ (-1180)) NIL)) (-3862 (((-1180) $) NIL)) (-1399 (((-400) (-400) (-400)) 17) (((-400) (-400)) 15)) (-3179 (($ (-400)) NIL) (($ (-400) (-1180)) NIL)) (-2634 (((-400) $) NIL)) (-1708 (((-1180) $) NIL)) (-2817 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1942 (((-1294) (-1180)) 9)) (-2548 (((-1294) (-1180)) 10)) (-3886 (((-1294)) 11)) (-3515 (((-877) $) NIL)) (-3950 (($ $) 39)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-448) (-13 (-375 (-400) (-1180)) (-10 -7 (-15 -1399 ((-400) (-400) (-400))) (-15 -1399 ((-400) (-400))) (-15 -1942 ((-1294) (-1180))) (-15 -2548 ((-1294) (-1180))) (-15 -3886 ((-1294)))))) (T -448)) +((-1399 (*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-448)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-448)))) (-3886 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-448))))) +(-13 (-375 (-400) (-1180)) (-10 -7 (-15 -1399 ((-400) (-400) (-400))) (-15 -1399 ((-400) (-400))) (-15 -1942 ((-1294) (-1180))) (-15 -2548 ((-1294) (-1180))) (-15 -3886 ((-1294))))) +((-3423 (((-112) $ $) NIL)) (-4068 (((-3 (|:| |fst| (-446)) (|:| -2875 "void")) $) 11)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3716 (($) 35)) (-3310 (($) 41)) (-1817 (($) 37)) (-1677 (($) 39)) (-3266 (($) 36)) (-2237 (($) 38)) (-2450 (($) 40)) (-2034 (((-112) $) 8)) (-1886 (((-657 (-972 (-576))) $) 19)) (-3529 (($ (-3 (|:| |fst| (-446)) (|:| -2875 "void")) (-657 (-1198)) (-112)) 29) (($ (-3 (|:| |fst| (-446)) (|:| -2875 "void")) (-657 (-972 (-576))) (-112)) 30)) (-3515 (((-877) $) 24) (($ (-446)) 32)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-449) (-13 (-1122) (-10 -8 (-15 -3515 ($ (-446))) (-15 -4068 ((-3 (|:| |fst| (-446)) (|:| -2875 "void")) $)) (-15 -1886 ((-657 (-972 (-576))) $)) (-15 -2034 ((-112) $)) (-15 -3529 ($ (-3 (|:| |fst| (-446)) (|:| -2875 "void")) (-657 (-1198)) (-112))) (-15 -3529 ($ (-3 (|:| |fst| (-446)) (|:| -2875 "void")) (-657 (-972 (-576))) (-112))) (-15 -3716 ($)) (-15 -3266 ($)) (-15 -1817 ($)) (-15 -3310 ($)) (-15 -2237 ($)) (-15 -1677 ($)) (-15 -2450 ($))))) (T -449)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) (-4068 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-5 *1 (-449)))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-657 (-972 (-576)))) (-5 *1 (-449)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-5 *3 (-657 (-1198))) (-5 *4 (-112)) (-5 *1 (-449)))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) (-3716 (*1 *1) (-5 *1 (-449))) (-3266 (*1 *1) (-5 *1 (-449))) (-1817 (*1 *1) (-5 *1 (-449))) (-3310 (*1 *1) (-5 *1 (-449))) (-2237 (*1 *1) (-5 *1 (-449))) (-1677 (*1 *1) (-5 *1 (-449))) (-2450 (*1 *1) (-5 *1 (-449)))) +(-13 (-1122) (-10 -8 (-15 -3515 ($ (-446))) (-15 -4068 ((-3 (|:| |fst| (-446)) (|:| -2875 "void")) $)) (-15 -1886 ((-657 (-972 (-576))) $)) (-15 -2034 ((-112) $)) (-15 -3529 ($ (-3 (|:| |fst| (-446)) (|:| -2875 "void")) (-657 (-1198)) (-112))) (-15 -3529 ($ (-3 (|:| |fst| (-446)) (|:| -2875 "void")) (-657 (-972 (-576))) (-112))) (-15 -3716 ($)) (-15 -3266 ($)) (-15 -1817 ($)) (-15 -3310 ($)) (-15 -2237 ($)) (-15 -1677 ($)) (-15 -2450 ($)))) +((-3423 (((-112) $ $) NIL)) (-2634 (((-1198) $) 8)) (-1708 (((-1180) $) 17)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 11)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 14))) +(((-450 |#1|) (-13 (-1122) (-10 -8 (-15 -2634 ((-1198) $)))) (-1198)) (T -450)) +((-2634 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-450 *3)) (-14 *3 *2)))) +(-13 (-1122) (-10 -8 (-15 -2634 ((-1198) $)))) +((-3423 (((-112) $ $) NIL)) (-2702 (((-1140) $) 7)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 13)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 9))) +(((-451) (-13 (-1122) (-10 -8 (-15 -2702 ((-1140) $))))) (T -451)) +((-2702 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-451))))) +(-13 (-1122) (-10 -8 (-15 -2702 ((-1140) $)))) +((-2063 (((-1294) $) 7)) (-3515 (((-877) $) 8) (($ (-1289 (-712))) 14) (($ (-657 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 11))) (((-452) (-141)) (T -452)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-711))) (-4 *1 (-452)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) (-4 *1 (-452))))) -(-13 (-407) (-10 -8 (-15 -4113 ($ (-1288 (-711)))) (-15 -4113 ($ (-656 (-340)))) (-15 -4113 ($ (-340))) (-15 -4113 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340)))))))) -(((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) -((-2982 (((-3 $ "failed") (-1288 (-326 (-390)))) 21) (((-3 $ "failed") (-1288 (-326 (-576)))) 19) (((-3 $ "failed") (-1288 (-971 (-390)))) 17) (((-3 $ "failed") (-1288 (-971 (-576)))) 15) (((-3 $ "failed") (-1288 (-419 (-971 (-390))))) 13) (((-3 $ "failed") (-1288 (-419 (-971 (-576))))) 11)) (-2317 (($ (-1288 (-326 (-390)))) 22) (($ (-1288 (-326 (-576)))) 20) (($ (-1288 (-971 (-390)))) 18) (($ (-1288 (-971 (-576)))) 16) (($ (-1288 (-419 (-971 (-390))))) 14) (($ (-1288 (-419 (-971 (-576))))) 12)) (-3973 (((-1293) $) 7)) (-4113 (((-876) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) 23))) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-712))) (-4 *1 (-452)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-452)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) (-4 *1 (-452))))) +(-13 (-407) (-10 -8 (-15 -3515 ($ (-1289 (-712)))) (-15 -3515 ($ (-657 (-340)))) (-15 -3515 ($ (-340))) (-15 -3515 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340)))))))) +(((-625 (-877)) . T) ((-407) . T) ((-1239) . T)) +((-1593 (((-3 $ "failed") (-1289 (-326 (-390)))) 21) (((-3 $ "failed") (-1289 (-326 (-576)))) 19) (((-3 $ "failed") (-1289 (-972 (-390)))) 17) (((-3 $ "failed") (-1289 (-972 (-576)))) 15) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 13) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 11)) (-2830 (($ (-1289 (-326 (-390)))) 22) (($ (-1289 (-326 (-576)))) 20) (($ (-1289 (-972 (-390)))) 18) (($ (-1289 (-972 (-576)))) 16) (($ (-1289 (-419 (-972 (-390))))) 14) (($ (-1289 (-419 (-972 (-576))))) 12)) (-2063 (((-1294) $) 7)) (-3515 (((-877) $) 8) (($ (-657 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) 23))) (((-453) (-141)) (T -453)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) (-4 *1 (-453)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-390)))) (-4 *1 (-453)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-326 (-390)))) (-4 *1 (-453)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-576)))) (-4 *1 (-453)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-326 (-576)))) (-4 *1 (-453)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1288 (-971 (-390)))) (-4 *1 (-453)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-971 (-390)))) (-4 *1 (-453)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1288 (-971 (-576)))) (-4 *1 (-453)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-971 (-576)))) (-4 *1 (-453)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 (-390))))) (-4 *1 (-453)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-419 (-971 (-390))))) (-4 *1 (-453)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 (-576))))) (-4 *1 (-453)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-419 (-971 (-576))))) (-4 *1 (-453))))) -(-13 (-407) (-10 -8 (-15 -4113 ($ (-656 (-340)))) (-15 -4113 ($ (-340))) (-15 -4113 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340)))))) (-15 -2317 ($ (-1288 (-326 (-390))))) (-15 -2982 ((-3 $ "failed") (-1288 (-326 (-390))))) (-15 -2317 ($ (-1288 (-326 (-576))))) (-15 -2982 ((-3 $ "failed") (-1288 (-326 (-576))))) (-15 -2317 ($ (-1288 (-971 (-390))))) (-15 -2982 ((-3 $ "failed") (-1288 (-971 (-390))))) (-15 -2317 ($ (-1288 (-971 (-576))))) (-15 -2982 ((-3 $ "failed") (-1288 (-971 (-576))))) (-15 -2317 ($ (-1288 (-419 (-971 (-390)))))) (-15 -2982 ((-3 $ "failed") (-1288 (-419 (-971 (-390)))))) (-15 -2317 ($ (-1288 (-419 (-971 (-576)))))) (-15 -2982 ((-3 $ "failed") (-1288 (-419 (-971 (-576)))))))) -(((-625 (-876)) . T) ((-407) . T) ((-1238) . T)) -((-3185 (((-112)) 18)) (-2719 (((-112) (-112)) 19)) (-2889 (((-112)) 14)) (-2939 (((-112) (-112)) 15)) (-3887 (((-112)) 16)) (-3513 (((-112) (-112)) 17)) (-3052 (((-940) (-940)) 22) (((-940)) 21)) (-2888 (((-783) (-656 (-2 (|:| -1452 |#1|) (|:| -2196 (-576))))) 52)) (-1651 (((-940) (-940)) 24) (((-940)) 23)) (-3880 (((-2 (|:| -3972 (-576)) (|:| -3497 (-656 |#1|))) |#1|) 94)) (-4036 (((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| |#1|) (|:| -3172 (-576))))))) 174)) (-3348 (((-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| |#1|) (|:| -3172 (-576)))))) |#1| (-112)) 207)) (-4437 (((-430 |#1|) |#1| (-783) (-783)) 222) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 219) (((-430 |#1|) |#1| (-656 (-783))) 221) (((-430 |#1|) |#1| (-783)) 220) (((-430 |#1|) |#1|) 218)) (-3994 (((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783) (-112)) 224) (((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783)) 225) (((-3 |#1| "failed") (-940) |#1| (-656 (-783))) 227) (((-3 |#1| "failed") (-940) |#1| (-783)) 226) (((-3 |#1| "failed") (-940) |#1|) 228)) (-1452 (((-430 |#1|) |#1| (-783) (-783)) 217) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 213) (((-430 |#1|) |#1| (-656 (-783))) 215) (((-430 |#1|) |#1| (-783)) 214) (((-430 |#1|) |#1|) 212)) (-2797 (((-112) |#1|) 44)) (-2505 (((-749 (-783)) (-656 (-2 (|:| -1452 |#1|) (|:| -2196 (-576))))) 99)) (-3693 (((-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| |#1|) (|:| -3172 (-576)))))) |#1| (-112) (-1123 (-783)) (-783)) 211))) -(((-454 |#1|) (-10 -7 (-15 -4036 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| |#1|) (|:| -3172 (-576)))))))) (-15 -2505 ((-749 (-783)) (-656 (-2 (|:| -1452 |#1|) (|:| -2196 (-576)))))) (-15 -1651 ((-940))) (-15 -1651 ((-940) (-940))) (-15 -3052 ((-940))) (-15 -3052 ((-940) (-940))) (-15 -2888 ((-783) (-656 (-2 (|:| -1452 |#1|) (|:| -2196 (-576)))))) (-15 -3880 ((-2 (|:| -3972 (-576)) (|:| -3497 (-656 |#1|))) |#1|)) (-15 -3185 ((-112))) (-15 -2719 ((-112) (-112))) (-15 -2889 ((-112))) (-15 -2939 ((-112) (-112))) (-15 -2797 ((-112) |#1|)) (-15 -3887 ((-112))) (-15 -3513 ((-112) (-112))) (-15 -1452 ((-430 |#1|) |#1|)) (-15 -1452 ((-430 |#1|) |#1| (-783))) (-15 -1452 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1452 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1452 ((-430 |#1|) |#1| (-783) (-783))) (-15 -4437 ((-430 |#1|) |#1|)) (-15 -4437 ((-430 |#1|) |#1| (-783))) (-15 -4437 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -4437 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -4437 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3994 ((-3 |#1| "failed") (-940) |#1|)) (-15 -3994 ((-3 |#1| "failed") (-940) |#1| (-783))) (-15 -3994 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)))) (-15 -3994 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783))) (-15 -3994 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783) (-112))) (-15 -3348 ((-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| |#1|) (|:| -3172 (-576)))))) |#1| (-112))) (-15 -3693 ((-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| |#1|) (|:| -3172 (-576)))))) |#1| (-112) (-1123 (-783)) (-783)))) (-1264 (-576))) (T -454)) -((-3693 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1123 (-783))) (-5 *6 (-783)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| *3) (|:| -3172 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3348 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| *3) (|:| -3172 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3994 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3994 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3994 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3994 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-940)) (-5 *4 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-3994 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-940)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) (-4437 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-4437 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-4437 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-4437 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-4437 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1452 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1452 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1452 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1452 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1452 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3513 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3887 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2797 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2889 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2719 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3185 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3880 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3972 (-576)) (|:| -3497 (-656 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1452 *4) (|:| -2196 (-576))))) (-4 *4 (-1264 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-3052 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1651 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-1651 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1452 *4) (|:| -2196 (-576))))) (-4 *4 (-1264 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) (-4036 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| *4) (|:| -3172 (-576))))))) (-4 *4 (-1264 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) -(-10 -7 (-15 -4036 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| |#1|) (|:| -3172 (-576)))))))) (-15 -2505 ((-749 (-783)) (-656 (-2 (|:| -1452 |#1|) (|:| -2196 (-576)))))) (-15 -1651 ((-940))) (-15 -1651 ((-940) (-940))) (-15 -3052 ((-940))) (-15 -3052 ((-940) (-940))) (-15 -2888 ((-783) (-656 (-2 (|:| -1452 |#1|) (|:| -2196 (-576)))))) (-15 -3880 ((-2 (|:| -3972 (-576)) (|:| -3497 (-656 |#1|))) |#1|)) (-15 -3185 ((-112))) (-15 -2719 ((-112) (-112))) (-15 -2889 ((-112))) (-15 -2939 ((-112) (-112))) (-15 -2797 ((-112) |#1|)) (-15 -3887 ((-112))) (-15 -3513 ((-112) (-112))) (-15 -1452 ((-430 |#1|) |#1|)) (-15 -1452 ((-430 |#1|) |#1| (-783))) (-15 -1452 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1452 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1452 ((-430 |#1|) |#1| (-783) (-783))) (-15 -4437 ((-430 |#1|) |#1|)) (-15 -4437 ((-430 |#1|) |#1| (-783))) (-15 -4437 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -4437 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -4437 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3994 ((-3 |#1| "failed") (-940) |#1|)) (-15 -3994 ((-3 |#1| "failed") (-940) |#1| (-783))) (-15 -3994 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)))) (-15 -3994 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783))) (-15 -3994 ((-3 |#1| "failed") (-940) |#1| (-656 (-783)) (-783) (-112))) (-15 -3348 ((-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| |#1|) (|:| -3172 (-576)))))) |#1| (-112))) (-15 -3693 ((-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| |#1|) (|:| -3172 (-576)))))) |#1| (-112) (-1123 (-783)) (-783)))) -((-2959 (((-576) |#2|) 52) (((-576) |#2| (-783)) 51)) (-3898 (((-576) |#2|) 64)) (-1877 ((|#3| |#2|) 26)) (-2595 ((|#3| |#2| (-940)) 15)) (-3108 ((|#3| |#2|) 16)) (-2922 ((|#3| |#2|) 9)) (-2955 ((|#3| |#2|) 10)) (-1658 ((|#3| |#2| (-940)) 71) ((|#3| |#2|) 34)) (-3542 (((-576) |#2|) 66))) -(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -3542 ((-576) |#2|)) (-15 -1658 (|#3| |#2|)) (-15 -1658 (|#3| |#2| (-940))) (-15 -3898 ((-576) |#2|)) (-15 -2959 ((-576) |#2| (-783))) (-15 -2959 ((-576) |#2|)) (-15 -2595 (|#3| |#2| (-940))) (-15 -1877 (|#3| |#2|)) (-15 -2922 (|#3| |#2|)) (-15 -2955 (|#3| |#2|)) (-15 -3108 (|#3| |#2|))) (-1070) (-1264 |#1|) (-13 (-416) (-1059 |#1|) (-374) (-1223) (-294))) (T -455)) -((-3108 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-2955 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-2922 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-1877 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-2595 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) (-2959 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))))) (-2959 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1264 *5)) (-4 *6 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))))) (-3898 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))))) (-1658 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) (-1658 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-3542 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) -(-10 -7 (-15 -3542 ((-576) |#2|)) (-15 -1658 (|#3| |#2|)) (-15 -1658 (|#3| |#2| (-940))) (-15 -3898 ((-576) |#2|)) (-15 -2959 ((-576) |#2| (-783))) (-15 -2959 ((-576) |#2|)) (-15 -2595 (|#3| |#2| (-940))) (-15 -1877 (|#3| |#2|)) (-15 -2922 (|#3| |#2|)) (-15 -2955 (|#3| |#2|)) (-15 -3108 (|#3| |#2|))) -((-3694 ((|#2| (-1288 |#1|)) 42)) (-2870 ((|#2| |#2| |#1|) 58)) (-4391 ((|#2| |#2| |#1|) 49)) (-4204 ((|#2| |#2|) 44)) (-3048 (((-112) |#2|) 32)) (-3243 (((-656 |#2|) (-940) (-430 |#2|)) 21)) (-3994 ((|#2| (-940) (-430 |#2|)) 25)) (-2505 (((-749 (-783)) (-430 |#2|)) 29))) -(((-456 |#1| |#2|) (-10 -7 (-15 -3048 ((-112) |#2|)) (-15 -3694 (|#2| (-1288 |#1|))) (-15 -4204 (|#2| |#2|)) (-15 -4391 (|#2| |#2| |#1|)) (-15 -2870 (|#2| |#2| |#1|)) (-15 -2505 ((-749 (-783)) (-430 |#2|))) (-15 -3994 (|#2| (-940) (-430 |#2|))) (-15 -3243 ((-656 |#2|) (-940) (-430 |#2|)))) (-1070) (-1264 |#1|)) (T -456)) -((-3243 (*1 *2 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-430 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-1070)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6)))) (-3994 (*1 *2 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-430 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1070)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-430 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1070)) (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5)))) (-2870 (*1 *2 *2 *3) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-4391 (*1 *2 *2 *3) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-4204 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-1070)) (-4 *2 (-1264 *4)) (-5 *1 (-456 *4 *2)))) (-3048 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -3048 ((-112) |#2|)) (-15 -3694 (|#2| (-1288 |#1|))) (-15 -4204 (|#2| |#2|)) (-15 -4391 (|#2| |#2| |#1|)) (-15 -2870 (|#2| |#2| |#1|)) (-15 -2505 ((-749 (-783)) (-430 |#2|))) (-15 -3994 (|#2| (-940) (-430 |#2|))) (-15 -3243 ((-656 |#2|) (-940) (-430 |#2|)))) -((-2859 (((-783)) 59)) (-1833 (((-783)) 29 (|has| |#1| (-416))) (((-783) (-783)) 28 (|has| |#1| (-416)))) (-2756 (((-576) |#1|) 25 (|has| |#1| (-416)))) (-3726 (((-576) |#1|) 27 (|has| |#1| (-416)))) (-3421 (((-783)) 58) (((-783) (-783)) 57)) (-4108 ((|#1| (-783) (-576)) 37)) (-3736 (((-1293)) 61))) -(((-457 |#1|) (-10 -7 (-15 -4108 (|#1| (-783) (-576))) (-15 -3421 ((-783) (-783))) (-15 -3421 ((-783))) (-15 -2859 ((-783))) (-15 -3736 ((-1293))) (IF (|has| |#1| (-416)) (PROGN (-15 -3726 ((-576) |#1|)) (-15 -2756 ((-576) |#1|)) (-15 -1833 ((-783) (-783))) (-15 -1833 ((-783)))) |%noBranch|)) (-1070)) (T -457)) -((-1833 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-1833 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-2756 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-3736 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-2859 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-3421 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-3421 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1070))))) -(-10 -7 (-15 -4108 (|#1| (-783) (-576))) (-15 -3421 ((-783) (-783))) (-15 -3421 ((-783))) (-15 -2859 ((-783))) (-15 -3736 ((-1293))) (IF (|has| |#1| (-416)) (PROGN (-15 -3726 ((-576) |#1|)) (-15 -2756 ((-576) |#1|)) (-15 -1833 ((-783) (-783))) (-15 -1833 ((-783)))) |%noBranch|)) -((-1618 (((-656 (-576)) (-576)) 76)) (-2171 (((-112) (-171 (-576))) 82)) (-1452 (((-430 (-171 (-576))) (-171 (-576))) 75))) -(((-458) (-10 -7 (-15 -1452 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -1618 ((-656 (-576)) (-576))) (-15 -2171 ((-112) (-171 (-576)))))) (T -458)) -((-2171 (*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) (-1618 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))) (-1452 (*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576)))))) -(-10 -7 (-15 -1452 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -1618 ((-656 (-576)) (-576))) (-15 -2171 ((-112) (-171 (-576))))) -((-2693 ((|#4| |#4| (-656 |#4|)) 82)) (-1708 (((-656 |#4|) (-656 |#4|) (-1179) (-1179)) 22) (((-656 |#4|) (-656 |#4|) (-1179)) 21) (((-656 |#4|) (-656 |#4|)) 13))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2693 (|#4| |#4| (-656 |#4|))) (-15 -1708 ((-656 |#4|) (-656 |#4|))) (-15 -1708 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -1708 ((-656 |#4|) (-656 |#4|) (-1179) (-1179)))) (-317) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -459)) -((-1708 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1708 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-459 *3 *4 *5 *6)))) (-2693 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *2))))) -(-10 -7 (-15 -2693 (|#4| |#4| (-656 |#4|))) (-15 -1708 ((-656 |#4|) (-656 |#4|))) (-15 -1708 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -1708 ((-656 |#4|) (-656 |#4|) (-1179) (-1179)))) -((-3770 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 89) (((-656 (-656 |#4|)) (-656 |#4|)) 88) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112)) 82) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|)) 83)) (-1860 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 55) (((-656 (-656 |#4|)) (-656 |#4|)) 77))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1860 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1860 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -3770 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -3770 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3770 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -3770 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) (-13 (-317) (-148)) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -460)) -((-3770 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-3770 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3770 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-3770 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1860 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-1860 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(-10 -7 (-15 -1860 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1860 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -3770 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -3770 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3770 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -3770 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) -((-1369 (((-783) |#4|) 12)) (-1537 (((-656 (-2 (|:| |totdeg| (-783)) (|:| -2571 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2571 |#4|)))) 39)) (-1873 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2403 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3178 ((|#4| |#4| (-656 |#4|)) 54)) (-2173 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|)) 96)) (-3451 (((-1293) |#4|) 59)) (-3063 (((-1293) (-656 |#4|)) 69)) (-2322 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576)) 66)) (-3797 (((-1293) (-576)) 110)) (-3009 (((-656 |#4|) (-656 |#4|)) 104)) (-4310 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2571 |#4|)) |#4| (-783)) 31)) (-3909 (((-576) |#4|) 109)) (-3370 ((|#4| |#4|) 37)) (-3270 (((-656 |#4|) (-656 |#4|) (-576) (-576)) 74)) (-4382 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576)) 123)) (-3976 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2020 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2920 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-3327 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-2522 (((-112) |#2| |#2|) 75)) (-1667 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2650 (((-112) |#2| |#2| |#2| |#2|) 80)) (-4133 ((|#4| |#4| (-656 |#4|)) 97))) -(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4133 (|#4| |#4| (-656 |#4|))) (-15 -3178 (|#4| |#4| (-656 |#4|))) (-15 -3270 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -2020 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2522 ((-112) |#2| |#2|)) (-15 -2650 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1667 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3327 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2920 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2173 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -3370 (|#4| |#4|)) (-15 -1537 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -2571 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2571 |#4|))))) (-15 -2403 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1873 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3009 ((-656 |#4|) (-656 |#4|))) (-15 -3909 ((-576) |#4|)) (-15 -3451 ((-1293) |#4|)) (-15 -2322 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -4382 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -3063 ((-1293) (-656 |#4|))) (-15 -3797 ((-1293) (-576))) (-15 -3976 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4310 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2571 |#4|)) |#4| (-783))) (-15 -1369 ((-783) |#4|))) (-464) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -461)) -((-1369 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-4310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -2571 *4))) (-5 *5 (-783)) (-4 *4 (-968 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4)))) (-3976 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *7)))) (-4382 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *4)))) (-2322 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *4)))) (-3451 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-3909 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-576)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-3009 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-1873 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-805)) (-4 *2 (-968 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-861)))) (-1537 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -2571 *3)))) (-5 *4 (-783)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *3)))) (-3370 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-2173 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-461 *5 *6 *7 *3)))) (-2920 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-805)) (-4 *6 (-968 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *4 *3 *5 *6)))) (-3327 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) (-1667 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-805)) (-4 *3 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *3)))) (-2650 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5)))) (-2522 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3270 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3178 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2)))) (-4133 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) -(-10 -7 (-15 -4133 (|#4| |#4| (-656 |#4|))) (-15 -3178 (|#4| |#4| (-656 |#4|))) (-15 -3270 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -2020 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2522 ((-112) |#2| |#2|)) (-15 -2650 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1667 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3327 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2920 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2173 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -3370 (|#4| |#4|)) (-15 -1537 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -2571 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2571 |#4|))))) (-15 -2403 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1873 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3009 ((-656 |#4|) (-656 |#4|))) (-15 -3909 ((-576) |#4|)) (-15 -3451 ((-1293) |#4|)) (-15 -2322 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -4382 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -3063 ((-1293) (-656 |#4|))) (-15 -3797 ((-1293) (-576))) (-15 -3976 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4310 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2571 |#4|)) |#4| (-783))) (-15 -1369 ((-783) |#4|))) -((-3217 ((|#4| |#4| (-656 |#4|)) 20 (|has| |#1| (-374)))) (-3790 (((-656 |#4|) (-656 |#4|) (-1179) (-1179)) 46) (((-656 |#4|) (-656 |#4|) (-1179)) 45) (((-656 |#4|) (-656 |#4|)) 34))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3790 ((-656 |#4|) (-656 |#4|))) (-15 -3790 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -3790 ((-656 |#4|) (-656 |#4|) (-1179) (-1179))) (IF (|has| |#1| (-374)) (-15 -3217 (|#4| |#4| (-656 |#4|))) |%noBranch|)) (-464) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -462)) -((-3217 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-374)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *2)))) (-3790 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3790 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3790 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6))))) -(-10 -7 (-15 -3790 ((-656 |#4|) (-656 |#4|))) (-15 -3790 ((-656 |#4|) (-656 |#4|) (-1179))) (-15 -3790 ((-656 |#4|) (-656 |#4|) (-1179) (-1179))) (IF (|has| |#1| (-374)) (-15 -3217 (|#4| |#4| (-656 |#4|))) |%noBranch|)) -((-3076 (($ $ $) 14) (($ (-656 $)) 21)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 46)) (-3115 (($ $ $) NIL) (($ (-656 $)) 22))) -(((-463 |#1|) (-10 -8 (-15 -2142 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3076 (|#1| (-656 |#1|))) (-15 -3076 (|#1| |#1| |#1|)) (-15 -3115 (|#1| (-656 |#1|))) (-15 -3115 (|#1| |#1| |#1|))) (-464)) (T -463)) -NIL -(-10 -8 (-15 -2142 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3076 (|#1| (-656 |#1|))) (-15 -3076 (|#1| |#1| |#1|)) (-15 -3115 (|#1| (-656 |#1|))) (-15 -3115 (|#1| |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-1946 (((-3 $ "failed") $ $) 48)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-453)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) (-4 *1 (-453)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-1289 (-326 (-390)))) (-4 *1 (-453)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-1289 (-326 (-390)))) (-4 *1 (-453)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-1289 (-326 (-576)))) (-4 *1 (-453)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-1289 (-326 (-576)))) (-4 *1 (-453)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-1289 (-972 (-390)))) (-4 *1 (-453)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-1289 (-972 (-390)))) (-4 *1 (-453)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-1289 (-972 (-576)))) (-4 *1 (-453)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-1289 (-972 (-576)))) (-4 *1 (-453)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-1289 (-419 (-972 (-390))))) (-4 *1 (-453)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-1289 (-419 (-972 (-390))))) (-4 *1 (-453)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-1289 (-419 (-972 (-576))))) (-4 *1 (-453)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-1289 (-419 (-972 (-576))))) (-4 *1 (-453))))) +(-13 (-407) (-10 -8 (-15 -3515 ($ (-657 (-340)))) (-15 -3515 ($ (-340))) (-15 -3515 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340)))))) (-15 -2830 ($ (-1289 (-326 (-390))))) (-15 -1593 ((-3 $ "failed") (-1289 (-326 (-390))))) (-15 -2830 ($ (-1289 (-326 (-576))))) (-15 -1593 ((-3 $ "failed") (-1289 (-326 (-576))))) (-15 -2830 ($ (-1289 (-972 (-390))))) (-15 -1593 ((-3 $ "failed") (-1289 (-972 (-390))))) (-15 -2830 ($ (-1289 (-972 (-576))))) (-15 -1593 ((-3 $ "failed") (-1289 (-972 (-576))))) (-15 -2830 ($ (-1289 (-419 (-972 (-390)))))) (-15 -1593 ((-3 $ "failed") (-1289 (-419 (-972 (-390)))))) (-15 -2830 ($ (-1289 (-419 (-972 (-576)))))) (-15 -1593 ((-3 $ "failed") (-1289 (-419 (-972 (-576)))))))) +(((-625 (-877)) . T) ((-407) . T) ((-1239) . T)) +((-1487 (((-112)) 18)) (-2590 (((-112) (-112)) 19)) (-3637 (((-112)) 14)) (-4032 (((-112) (-112)) 15)) (-2061 (((-112)) 16)) (-1645 (((-112) (-112)) 17)) (-2644 (((-941) (-941)) 22) (((-941)) 21)) (-3623 (((-784) (-657 (-2 (|:| -1856 |#1|) (|:| -4265 (-576))))) 52)) (-2593 (((-941) (-941)) 24) (((-941)) 23)) (-1991 (((-2 (|:| -3519 (-576)) (|:| -1502 (-657 |#1|))) |#1|) 94)) (-2864 (((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| |#1|) (|:| -2534 (-576))))))) 174)) (-3811 (((-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| |#1|) (|:| -2534 (-576)))))) |#1| (-112)) 207)) (-2556 (((-430 |#1|) |#1| (-784) (-784)) 222) (((-430 |#1|) |#1| (-657 (-784)) (-784)) 219) (((-430 |#1|) |#1| (-657 (-784))) 221) (((-430 |#1|) |#1| (-784)) 220) (((-430 |#1|) |#1|) 218)) (-3755 (((-3 |#1| "failed") (-941) |#1| (-657 (-784)) (-784) (-112)) 224) (((-3 |#1| "failed") (-941) |#1| (-657 (-784)) (-784)) 225) (((-3 |#1| "failed") (-941) |#1| (-657 (-784))) 227) (((-3 |#1| "failed") (-941) |#1| (-784)) 226) (((-3 |#1| "failed") (-941) |#1|) 228)) (-1856 (((-430 |#1|) |#1| (-784) (-784)) 217) (((-430 |#1|) |#1| (-657 (-784)) (-784)) 213) (((-430 |#1|) |#1| (-657 (-784))) 215) (((-430 |#1|) |#1| (-784)) 214) (((-430 |#1|) |#1|) 212)) (-3988 (((-112) |#1|) 44)) (-4191 (((-750 (-784)) (-657 (-2 (|:| -1856 |#1|) (|:| -4265 (-576))))) 99)) (-2684 (((-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| |#1|) (|:| -2534 (-576)))))) |#1| (-112) (-1124 (-784)) (-784)) 211))) +(((-454 |#1|) (-10 -7 (-15 -2864 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| |#1|) (|:| -2534 (-576)))))))) (-15 -4191 ((-750 (-784)) (-657 (-2 (|:| -1856 |#1|) (|:| -4265 (-576)))))) (-15 -2593 ((-941))) (-15 -2593 ((-941) (-941))) (-15 -2644 ((-941))) (-15 -2644 ((-941) (-941))) (-15 -3623 ((-784) (-657 (-2 (|:| -1856 |#1|) (|:| -4265 (-576)))))) (-15 -1991 ((-2 (|:| -3519 (-576)) (|:| -1502 (-657 |#1|))) |#1|)) (-15 -1487 ((-112))) (-15 -2590 ((-112) (-112))) (-15 -3637 ((-112))) (-15 -4032 ((-112) (-112))) (-15 -3988 ((-112) |#1|)) (-15 -2061 ((-112))) (-15 -1645 ((-112) (-112))) (-15 -1856 ((-430 |#1|) |#1|)) (-15 -1856 ((-430 |#1|) |#1| (-784))) (-15 -1856 ((-430 |#1|) |#1| (-657 (-784)))) (-15 -1856 ((-430 |#1|) |#1| (-657 (-784)) (-784))) (-15 -1856 ((-430 |#1|) |#1| (-784) (-784))) (-15 -2556 ((-430 |#1|) |#1|)) (-15 -2556 ((-430 |#1|) |#1| (-784))) (-15 -2556 ((-430 |#1|) |#1| (-657 (-784)))) (-15 -2556 ((-430 |#1|) |#1| (-657 (-784)) (-784))) (-15 -2556 ((-430 |#1|) |#1| (-784) (-784))) (-15 -3755 ((-3 |#1| "failed") (-941) |#1|)) (-15 -3755 ((-3 |#1| "failed") (-941) |#1| (-784))) (-15 -3755 ((-3 |#1| "failed") (-941) |#1| (-657 (-784)))) (-15 -3755 ((-3 |#1| "failed") (-941) |#1| (-657 (-784)) (-784))) (-15 -3755 ((-3 |#1| "failed") (-941) |#1| (-657 (-784)) (-784) (-112))) (-15 -3811 ((-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| |#1|) (|:| -2534 (-576)))))) |#1| (-112))) (-15 -2684 ((-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| |#1|) (|:| -2534 (-576)))))) |#1| (-112) (-1124 (-784)) (-784)))) (-1265 (-576))) (T -454)) +((-2684 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1124 (-784))) (-5 *6 (-784)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| *3) (|:| -2534 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| *3) (|:| -2534 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-3755 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-941)) (-5 *4 (-657 (-784))) (-5 *5 (-784)) (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) (-3755 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-941)) (-5 *4 (-657 (-784))) (-5 *5 (-784)) (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) (-3755 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-941)) (-5 *4 (-657 (-784))) (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) (-3755 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-941)) (-5 *4 (-784)) (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) (-3755 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-941)) (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) (-2556 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2556 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-657 (-784))) (-5 *5 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2556 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-784))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2556 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2556 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1856 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1856 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-657 (-784))) (-5 *5 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1856 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-784))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1856 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1856 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1645 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2061 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-3988 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-4032 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-3637 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2590 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1487 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1991 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3519 (-576)) (|:| -1502 (-657 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -1856 *4) (|:| -4265 (-576))))) (-4 *4 (-1265 (-576))) (-5 *2 (-784)) (-5 *1 (-454 *4)))) (-2644 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2644 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2593 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2593 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -1856 *4) (|:| -4265 (-576))))) (-4 *4 (-1265 (-576))) (-5 *2 (-750 (-784))) (-5 *1 (-454 *4)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| *4) (|:| -2534 (-576))))))) (-4 *4 (-1265 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) +(-10 -7 (-15 -2864 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| |#1|) (|:| -2534 (-576)))))))) (-15 -4191 ((-750 (-784)) (-657 (-2 (|:| -1856 |#1|) (|:| -4265 (-576)))))) (-15 -2593 ((-941))) (-15 -2593 ((-941) (-941))) (-15 -2644 ((-941))) (-15 -2644 ((-941) (-941))) (-15 -3623 ((-784) (-657 (-2 (|:| -1856 |#1|) (|:| -4265 (-576)))))) (-15 -1991 ((-2 (|:| -3519 (-576)) (|:| -1502 (-657 |#1|))) |#1|)) (-15 -1487 ((-112))) (-15 -2590 ((-112) (-112))) (-15 -3637 ((-112))) (-15 -4032 ((-112) (-112))) (-15 -3988 ((-112) |#1|)) (-15 -2061 ((-112))) (-15 -1645 ((-112) (-112))) (-15 -1856 ((-430 |#1|) |#1|)) (-15 -1856 ((-430 |#1|) |#1| (-784))) (-15 -1856 ((-430 |#1|) |#1| (-657 (-784)))) (-15 -1856 ((-430 |#1|) |#1| (-657 (-784)) (-784))) (-15 -1856 ((-430 |#1|) |#1| (-784) (-784))) (-15 -2556 ((-430 |#1|) |#1|)) (-15 -2556 ((-430 |#1|) |#1| (-784))) (-15 -2556 ((-430 |#1|) |#1| (-657 (-784)))) (-15 -2556 ((-430 |#1|) |#1| (-657 (-784)) (-784))) (-15 -2556 ((-430 |#1|) |#1| (-784) (-784))) (-15 -3755 ((-3 |#1| "failed") (-941) |#1|)) (-15 -3755 ((-3 |#1| "failed") (-941) |#1| (-784))) (-15 -3755 ((-3 |#1| "failed") (-941) |#1| (-657 (-784)))) (-15 -3755 ((-3 |#1| "failed") (-941) |#1| (-657 (-784)) (-784))) (-15 -3755 ((-3 |#1| "failed") (-941) |#1| (-657 (-784)) (-784) (-112))) (-15 -3811 ((-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| |#1|) (|:| -2534 (-576)))))) |#1| (-112))) (-15 -2684 ((-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| |#1|) (|:| -2534 (-576)))))) |#1| (-112) (-1124 (-784)) (-784)))) +((-4235 (((-576) |#2|) 52) (((-576) |#2| (-784)) 51)) (-4075 (((-576) |#2|) 64)) (-4245 ((|#3| |#2|) 26)) (-3869 ((|#3| |#2| (-941)) 15)) (-3041 ((|#3| |#2|) 16)) (-3958 ((|#3| |#2|) 9)) (-2363 ((|#3| |#2|) 10)) (-2648 ((|#3| |#2| (-941)) 71) ((|#3| |#2|) 34)) (-1877 (((-576) |#2|) 66))) +(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -1877 ((-576) |#2|)) (-15 -2648 (|#3| |#2|)) (-15 -2648 (|#3| |#2| (-941))) (-15 -4075 ((-576) |#2|)) (-15 -4235 ((-576) |#2| (-784))) (-15 -4235 ((-576) |#2|)) (-15 -3869 (|#3| |#2| (-941))) (-15 -4245 (|#3| |#2|)) (-15 -3958 (|#3| |#2|)) (-15 -2363 (|#3| |#2|)) (-15 -3041 (|#3| |#2|))) (-1071) (-1265 |#1|) (-13 (-416) (-1060 |#1|) (-374) (-1224) (-294))) (T -455)) +((-3041 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) (-2363 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) (-3958 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) (-4245 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) (-3869 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-4 *5 (-1071)) (-4 *2 (-13 (-416) (-1060 *5) (-374) (-1224) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1265 *5)))) (-4235 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1265 *4)) (-4 *5 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))))) (-4235 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1265 *5)) (-4 *6 (-13 (-416) (-1060 *5) (-374) (-1224) (-294))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1265 *4)) (-4 *5 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))))) (-2648 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-4 *5 (-1071)) (-4 *2 (-13 (-416) (-1060 *5) (-374) (-1224) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1265 *5)))) (-2648 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) (-1877 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1265 *4)) (-4 *5 (-13 (-416) (-1060 *4) (-374) (-1224) (-294)))))) +(-10 -7 (-15 -1877 ((-576) |#2|)) (-15 -2648 (|#3| |#2|)) (-15 -2648 (|#3| |#2| (-941))) (-15 -4075 ((-576) |#2|)) (-15 -4235 ((-576) |#2| (-784))) (-15 -4235 ((-576) |#2|)) (-15 -3869 (|#3| |#2| (-941))) (-15 -4245 (|#3| |#2|)) (-15 -3958 (|#3| |#2|)) (-15 -2363 (|#3| |#2|)) (-15 -3041 (|#3| |#2|))) +((-2692 ((|#2| (-1289 |#1|)) 42)) (-3379 ((|#2| |#2| |#1|) 58)) (-3261 ((|#2| |#2| |#1|) 49)) (-3796 ((|#2| |#2|) 44)) (-2609 (((-112) |#2|) 32)) (-3974 (((-657 |#2|) (-941) (-430 |#2|)) 21)) (-3755 ((|#2| (-941) (-430 |#2|)) 25)) (-4191 (((-750 (-784)) (-430 |#2|)) 29))) +(((-456 |#1| |#2|) (-10 -7 (-15 -2609 ((-112) |#2|)) (-15 -2692 (|#2| (-1289 |#1|))) (-15 -3796 (|#2| |#2|)) (-15 -3261 (|#2| |#2| |#1|)) (-15 -3379 (|#2| |#2| |#1|)) (-15 -4191 ((-750 (-784)) (-430 |#2|))) (-15 -3755 (|#2| (-941) (-430 |#2|))) (-15 -3974 ((-657 |#2|) (-941) (-430 |#2|)))) (-1071) (-1265 |#1|)) (T -456)) +((-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-430 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-1071)) (-5 *2 (-657 *6)) (-5 *1 (-456 *5 *6)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-430 *2)) (-4 *2 (-1265 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1071)))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-430 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-1071)) (-5 *2 (-750 (-784))) (-5 *1 (-456 *4 *5)))) (-3379 (*1 *2 *2 *3) (-12 (-4 *3 (-1071)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1265 *3)))) (-3261 (*1 *2 *2 *3) (-12 (-4 *3 (-1071)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1265 *3)))) (-3796 (*1 *2 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1265 *3)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-1289 *4)) (-4 *4 (-1071)) (-4 *2 (-1265 *4)) (-5 *1 (-456 *4 *2)))) (-2609 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1265 *4))))) +(-10 -7 (-15 -2609 ((-112) |#2|)) (-15 -2692 (|#2| (-1289 |#1|))) (-15 -3796 (|#2| |#2|)) (-15 -3261 (|#2| |#2| |#1|)) (-15 -3379 (|#2| |#2| |#1|)) (-15 -4191 ((-750 (-784)) (-430 |#2|))) (-15 -3755 (|#2| (-941) (-430 |#2|))) (-15 -3974 ((-657 |#2|) (-941) (-430 |#2|)))) +((-1473 (((-784)) 59)) (-1878 (((-784)) 29 (|has| |#1| (-416))) (((-784) (-784)) 28 (|has| |#1| (-416)))) (-1733 (((-576) |#1|) 25 (|has| |#1| (-416)))) (-2967 (((-576) |#1|) 27 (|has| |#1| (-416)))) (-3180 (((-784)) 58) (((-784) (-784)) 57)) (-2396 ((|#1| (-784) (-576)) 37)) (-3038 (((-1294)) 61))) +(((-457 |#1|) (-10 -7 (-15 -2396 (|#1| (-784) (-576))) (-15 -3180 ((-784) (-784))) (-15 -3180 ((-784))) (-15 -1473 ((-784))) (-15 -3038 ((-1294))) (IF (|has| |#1| (-416)) (PROGN (-15 -2967 ((-576) |#1|)) (-15 -1733 ((-576) |#1|)) (-15 -1878 ((-784) (-784))) (-15 -1878 ((-784)))) |%noBranch|)) (-1071)) (T -457)) +((-1878 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071)))) (-1733 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071)))) (-2967 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071)))) (-3038 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-457 *3)) (-4 *3 (-1071)))) (-1473 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-1071)))) (-3180 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-1071)))) (-3180 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-1071)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1071))))) +(-10 -7 (-15 -2396 (|#1| (-784) (-576))) (-15 -3180 ((-784) (-784))) (-15 -3180 ((-784))) (-15 -1473 ((-784))) (-15 -3038 ((-1294))) (IF (|has| |#1| (-416)) (PROGN (-15 -2967 ((-576) |#1|)) (-15 -1733 ((-576) |#1|)) (-15 -1878 ((-784) (-784))) (-15 -1878 ((-784)))) |%noBranch|)) +((-3516 (((-657 (-576)) (-576)) 76)) (-4009 (((-112) (-171 (-576))) 82)) (-1856 (((-430 (-171 (-576))) (-171 (-576))) 75))) +(((-458) (-10 -7 (-15 -1856 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -3516 ((-657 (-576)) (-576))) (-15 -4009 ((-112) (-171 (-576)))))) (T -458)) +((-4009 (*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) (-3516 (*1 *2 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))) (-1856 (*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576)))))) +(-10 -7 (-15 -1856 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -3516 ((-657 (-576)) (-576))) (-15 -4009 ((-112) (-171 (-576))))) +((-2369 ((|#4| |#4| (-657 |#4|)) 82)) (-3023 (((-657 |#4|) (-657 |#4|) (-1180) (-1180)) 22) (((-657 |#4|) (-657 |#4|) (-1180)) 21) (((-657 |#4|) (-657 |#4|)) 13))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2369 (|#4| |#4| (-657 |#4|))) (-15 -3023 ((-657 |#4|) (-657 |#4|))) (-15 -3023 ((-657 |#4|) (-657 |#4|) (-1180))) (-15 -3023 ((-657 |#4|) (-657 |#4|) (-1180) (-1180)))) (-317) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -459)) +((-3023 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3023 (*1 *2 *2 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-317)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6)))) (-2369 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2))))) +(-10 -7 (-15 -2369 (|#4| |#4| (-657 |#4|))) (-15 -3023 ((-657 |#4|) (-657 |#4|))) (-15 -3023 ((-657 |#4|) (-657 |#4|) (-1180))) (-15 -3023 ((-657 |#4|) (-657 |#4|) (-1180) (-1180)))) +((-2169 (((-657 (-657 |#4|)) (-657 |#4|) (-112)) 89) (((-657 (-657 |#4|)) (-657 |#4|)) 88) (((-657 (-657 |#4|)) (-657 |#4|) (-657 |#4|) (-112)) 82) (((-657 (-657 |#4|)) (-657 |#4|) (-657 |#4|)) 83)) (-4054 (((-657 (-657 |#4|)) (-657 |#4|) (-112)) 55) (((-657 (-657 |#4|)) (-657 |#4|)) 77))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4054 ((-657 (-657 |#4|)) (-657 |#4|))) (-15 -4054 ((-657 (-657 |#4|)) (-657 |#4|) (-112))) (-15 -2169 ((-657 (-657 |#4|)) (-657 |#4|) (-657 |#4|))) (-15 -2169 ((-657 (-657 |#4|)) (-657 |#4|) (-657 |#4|) (-112))) (-15 -2169 ((-657 (-657 |#4|)) (-657 |#4|))) (-15 -2169 ((-657 (-657 |#4|)) (-657 |#4|) (-112)))) (-13 (-317) (-148)) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -460)) +((-2169 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-657 (-657 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-657 *8)))) (-2169 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-657 (-657 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-2169 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-657 (-657 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-657 *8)))) (-2169 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-657 (-657 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-4054 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-657 (-657 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-657 *8)))) (-4054 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-657 (-657 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) +(-10 -7 (-15 -4054 ((-657 (-657 |#4|)) (-657 |#4|))) (-15 -4054 ((-657 (-657 |#4|)) (-657 |#4|) (-112))) (-15 -2169 ((-657 (-657 |#4|)) (-657 |#4|) (-657 |#4|))) (-15 -2169 ((-657 (-657 |#4|)) (-657 |#4|) (-657 |#4|) (-112))) (-15 -2169 ((-657 (-657 |#4|)) (-657 |#4|))) (-15 -2169 ((-657 (-657 |#4|)) (-657 |#4|) (-112)))) +((-2773 (((-784) |#4|) 12)) (-4017 (((-657 (-2 (|:| |totdeg| (-784)) (|:| -3587 |#4|))) |#4| (-784) (-657 (-2 (|:| |totdeg| (-784)) (|:| -3587 |#4|)))) 39)) (-4200 (((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2483 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-1421 ((|#4| |#4| (-657 |#4|)) 54)) (-4029 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-657 |#4|)) 96)) (-2282 (((-1294) |#4|) 59)) (-2730 (((-1294) (-657 |#4|)) 69)) (-2903 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576)) 66)) (-2420 (((-1294) (-576)) 110)) (-3453 (((-657 |#4|) (-657 |#4|)) 104)) (-3772 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-784)) (|:| -3587 |#4|)) |#4| (-784)) 31)) (-4198 (((-576) |#4|) 109)) (-2750 ((|#4| |#4|) 37)) (-4264 (((-657 |#4|) (-657 |#4|) (-576) (-576)) 74)) (-3167 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576)) 123)) (-3546 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2999 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-3935 (((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-3558 (((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-4363 (((-112) |#2| |#2|) 75)) (-2694 (((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-3125 (((-112) |#2| |#2| |#2| |#2|) 80)) (-2597 ((|#4| |#4| (-657 |#4|)) 97))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2597 (|#4| |#4| (-657 |#4|))) (-15 -1421 (|#4| |#4| (-657 |#4|))) (-15 -4264 ((-657 |#4|) (-657 |#4|) (-576) (-576))) (-15 -2999 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4363 ((-112) |#2| |#2|)) (-15 -3125 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2694 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3558 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3935 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4029 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-657 |#4|))) (-15 -2750 (|#4| |#4|)) (-15 -4017 ((-657 (-2 (|:| |totdeg| (-784)) (|:| -3587 |#4|))) |#4| (-784) (-657 (-2 (|:| |totdeg| (-784)) (|:| -3587 |#4|))))) (-15 -2483 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4200 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3453 ((-657 |#4|) (-657 |#4|))) (-15 -4198 ((-576) |#4|)) (-15 -2282 ((-1294) |#4|)) (-15 -2903 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -3167 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -2730 ((-1294) (-657 |#4|))) (-15 -2420 ((-1294) (-576))) (-15 -3546 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3772 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-784)) (|:| -3587 |#4|)) |#4| (-784))) (-15 -2773 ((-784) |#4|))) (-464) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -461)) +((-2773 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-784)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-3772 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-784)) (|:| -3587 *4))) (-5 *5 (-784)) (-4 *4 (-969 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4)))) (-3546 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-806)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1294)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1294)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3167 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-784)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-806)) (-4 *4 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-2903 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-784)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-806)) (-4 *4 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-2282 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1294)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-4198 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-576)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-4200 (*1 *2 *2 *2) (-12 (-5 *2 (-657 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-784)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-806)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-806)) (-4 *2 (-969 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-862)))) (-4017 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-657 (-2 (|:| |totdeg| (-784)) (|:| -3587 *3)))) (-5 *4 (-784)) (-4 *3 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3)))) (-2750 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-461 *5 *6 *7 *3)))) (-3935 (*1 *2 *3 *2) (-12 (-5 *2 (-657 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-784)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-806)) (-4 *6 (-969 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *4 *3 *5 *6)))) (-3558 (*1 *2 *2) (-12 (-5 *2 (-657 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-784)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-806)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2694 (*1 *2 *3 *2) (-12 (-5 *2 (-657 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-806)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *3)))) (-3125 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-969 *4 *3 *5)))) (-4363 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-969 *4 *3 *5)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-806)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-4264 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-576)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *7)))) (-1421 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))) (-2597 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) +(-10 -7 (-15 -2597 (|#4| |#4| (-657 |#4|))) (-15 -1421 (|#4| |#4| (-657 |#4|))) (-15 -4264 ((-657 |#4|) (-657 |#4|) (-576) (-576))) (-15 -2999 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4363 ((-112) |#2| |#2|)) (-15 -3125 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2694 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3558 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3935 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4029 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-657 |#4|))) (-15 -2750 (|#4| |#4|)) (-15 -4017 ((-657 (-2 (|:| |totdeg| (-784)) (|:| -3587 |#4|))) |#4| (-784) (-657 (-2 (|:| |totdeg| (-784)) (|:| -3587 |#4|))))) (-15 -2483 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4200 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3453 ((-657 |#4|) (-657 |#4|))) (-15 -4198 ((-576) |#4|)) (-15 -2282 ((-1294) |#4|)) (-15 -2903 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -3167 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -2730 ((-1294) (-657 |#4|))) (-15 -2420 ((-1294) (-576))) (-15 -3546 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3772 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-784)) (|:| -3587 |#4|)) |#4| (-784))) (-15 -2773 ((-784) |#4|))) +((-1809 ((|#4| |#4| (-657 |#4|)) 20 (|has| |#1| (-374)))) (-2356 (((-657 |#4|) (-657 |#4|) (-1180) (-1180)) 46) (((-657 |#4|) (-657 |#4|) (-1180)) 45) (((-657 |#4|) (-657 |#4|)) 34))) +(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2356 ((-657 |#4|) (-657 |#4|))) (-15 -2356 ((-657 |#4|) (-657 |#4|) (-1180))) (-15 -2356 ((-657 |#4|) (-657 |#4|) (-1180) (-1180))) (IF (|has| |#1| (-374)) (-15 -1809 (|#4| |#4| (-657 |#4|))) |%noBranch|)) (-464) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -462)) +((-1809 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-374)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *2)))) (-2356 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2356 (*1 *2 *2 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2356 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6))))) +(-10 -7 (-15 -2356 ((-657 |#4|) (-657 |#4|))) (-15 -2356 ((-657 |#4|) (-657 |#4|) (-1180))) (-15 -2356 ((-657 |#4|) (-657 |#4|) (-1180) (-1180))) (IF (|has| |#1| (-374)) (-15 -1809 (|#4| |#4| (-657 |#4|))) |%noBranch|)) +((-3388 (($ $ $) 14) (($ (-657 $)) 21)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 46)) (-3431 (($ $ $) NIL) (($ (-657 $)) 22))) +(((-463 |#1|) (-10 -8 (-15 -1828 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|))) (-15 -3388 (|#1| (-657 |#1|))) (-15 -3388 (|#1| |#1| |#1|)) (-15 -3431 (|#1| (-657 |#1|))) (-15 -3431 (|#1| |#1| |#1|))) (-464)) (T -463)) +NIL +(-10 -8 (-15 -1828 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|))) (-15 -3388 (|#1| (-657 |#1|))) (-15 -3388 (|#1| |#1| |#1|)) (-15 -3431 (|#1| (-657 |#1|))) (-15 -3431 (|#1| |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-3409 (((-3 $ "failed") $ $) 48)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-464) (-141)) (T -464)) -((-3115 (*1 *1 *1 *1) (-4 *1 (-464))) (-3115 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3076 (*1 *1 *1 *1) (-4 *1 (-464))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-2142 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-464))))) -(-13 (-568) (-10 -8 (-15 -3115 ($ $ $)) (-15 -3115 ($ (-656 $))) (-15 -3076 ($ $ $)) (-15 -3076 ($ (-656 $))) (-15 -2142 ((-1193 $) (-1193 $) (-1193 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2946 (((-3 $ "failed")) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2272 (((-1288 (-701 (-419 (-971 |#1|)))) (-1288 $)) NIL) (((-1288 (-701 (-419 (-971 |#1|))))) NIL)) (-3057 (((-1288 $)) NIL)) (-3170 (($) NIL T CONST)) (-3235 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) NIL)) (-2991 (((-3 $ "failed")) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-3778 (((-701 (-419 (-971 |#1|))) (-1288 $)) NIL) (((-701 (-419 (-971 |#1|)))) NIL)) (-4038 (((-419 (-971 |#1|)) $) NIL)) (-3140 (((-701 (-419 (-971 |#1|))) $ (-1288 $)) NIL) (((-701 (-419 (-971 |#1|))) $) NIL)) (-3592 (((-3 $ "failed") $) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-2078 (((-1193 (-971 (-419 (-971 |#1|))))) NIL (|has| (-419 (-971 |#1|)) (-374))) (((-1193 (-419 (-971 |#1|)))) 90 (|has| |#1| (-568)))) (-1578 (($ $ (-940)) NIL)) (-3789 (((-419 (-971 |#1|)) $) NIL)) (-2962 (((-1193 (-419 (-971 |#1|))) $) 88 (|has| (-419 (-971 |#1|)) (-568)))) (-1339 (((-419 (-971 |#1|)) (-1288 $)) NIL) (((-419 (-971 |#1|))) NIL)) (-1581 (((-1193 (-419 (-971 |#1|))) $) NIL)) (-4393 (((-112)) NIL)) (-2496 (($ (-1288 (-419 (-971 |#1|))) (-1288 $)) 114) (($ (-1288 (-419 (-971 |#1|)))) NIL)) (-1851 (((-3 $ "failed") $) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-4135 (((-940)) NIL)) (-3163 (((-112)) NIL)) (-3107 (($ $ (-940)) NIL)) (-3524 (((-112)) NIL)) (-2344 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-1386 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) NIL)) (-2338 (((-3 $ "failed")) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-2112 (((-701 (-419 (-971 |#1|))) (-1288 $)) NIL) (((-701 (-419 (-971 |#1|)))) NIL)) (-2636 (((-419 (-971 |#1|)) $) NIL)) (-3417 (((-701 (-419 (-971 |#1|))) $ (-1288 $)) NIL) (((-701 (-419 (-971 |#1|))) $) NIL)) (-1584 (((-3 $ "failed") $) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-1827 (((-1193 (-971 (-419 (-971 |#1|))))) NIL (|has| (-419 (-971 |#1|)) (-374))) (((-1193 (-419 (-971 |#1|)))) 89 (|has| |#1| (-568)))) (-3303 (($ $ (-940)) NIL)) (-1734 (((-419 (-971 |#1|)) $) NIL)) (-2631 (((-1193 (-419 (-971 |#1|))) $) 85 (|has| (-419 (-971 |#1|)) (-568)))) (-3223 (((-419 (-971 |#1|)) (-1288 $)) NIL) (((-419 (-971 |#1|))) NIL)) (-1496 (((-1193 (-419 (-971 |#1|))) $) NIL)) (-2110 (((-112)) NIL)) (-2447 (((-1179) $) NIL)) (-2598 (((-112)) NIL)) (-1717 (((-112)) NIL)) (-2826 (((-112)) NIL)) (-3116 (((-1141) $) NIL)) (-4143 (((-419 (-971 |#1|)) $ $) 76 (|has| |#1| (-568)))) (-2492 (((-419 (-971 |#1|)) $) 100 (|has| |#1| (-568)))) (-1751 (((-419 (-971 |#1|)) $) 104 (|has| |#1| (-568)))) (-1760 (((-1193 (-419 (-971 |#1|))) $) 94 (|has| |#1| (-568)))) (-3900 (((-419 (-971 |#1|))) 77 (|has| |#1| (-568)))) (-2088 (((-419 (-971 |#1|)) $ $) 69 (|has| |#1| (-568)))) (-1632 (((-419 (-971 |#1|)) $) 99 (|has| |#1| (-568)))) (-2655 (((-419 (-971 |#1|)) $) 103 (|has| |#1| (-568)))) (-3622 (((-1193 (-419 (-971 |#1|))) $) 93 (|has| |#1| (-568)))) (-3715 (((-419 (-971 |#1|))) 73 (|has| |#1| (-568)))) (-3918 (($) 110) (($ (-1197)) 118) (($ (-1288 (-1197))) 117) (($ (-1288 $)) 105) (($ (-1197) (-1288 $)) 116) (($ (-1288 (-1197)) (-1288 $)) 115)) (-2013 (((-112)) NIL)) (-4369 (((-419 (-971 |#1|)) $ (-576)) NIL)) (-4314 (((-1288 (-419 (-971 |#1|))) $ (-1288 $)) 107) (((-701 (-419 (-971 |#1|))) (-1288 $) (-1288 $)) NIL) (((-1288 (-419 (-971 |#1|))) $) 43) (((-701 (-419 (-971 |#1|))) (-1288 $)) NIL)) (-1556 (((-1288 (-419 (-971 |#1|))) $) NIL) (($ (-1288 (-419 (-971 |#1|)))) 40)) (-1937 (((-656 (-971 (-419 (-971 |#1|)))) (-1288 $)) NIL) (((-656 (-971 (-419 (-971 |#1|))))) NIL) (((-656 (-971 |#1|)) (-1288 $)) 108 (|has| |#1| (-568))) (((-656 (-971 |#1|))) 109 (|has| |#1| (-568)))) (-3871 (($ $ $) NIL)) (-3472 (((-112)) NIL)) (-4113 (((-876) $) NIL) (($ (-1288 (-419 (-971 |#1|)))) NIL)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) 65)) (-2638 (((-656 (-1288 (-419 (-971 |#1|))))) NIL (|has| (-419 (-971 |#1|)) (-568)))) (-3628 (($ $ $ $) NIL)) (-3944 (((-112)) NIL)) (-2653 (($ (-701 (-419 (-971 |#1|))) $) NIL)) (-3485 (($ $ $) NIL)) (-3666 (((-112)) NIL)) (-2883 (((-112)) NIL)) (-2283 (((-112)) NIL)) (-4313 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) 106)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 61) (($ $ (-419 (-971 |#1|))) NIL) (($ (-419 (-971 |#1|)) $) NIL) (($ (-1163 |#2| (-419 (-971 |#1|))) $) NIL))) -(((-465 |#1| |#2| |#3| |#4|) (-13 (-429 (-419 (-971 |#1|))) (-660 (-1163 |#2| (-419 (-971 |#1|)))) (-10 -8 (-15 -4113 ($ (-1288 (-419 (-971 |#1|))))) (-15 -1386 ((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed"))) (-15 -3235 ((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed"))) (-15 -3918 ($)) (-15 -3918 ($ (-1197))) (-15 -3918 ($ (-1288 (-1197)))) (-15 -3918 ($ (-1288 $))) (-15 -3918 ($ (-1197) (-1288 $))) (-15 -3918 ($ (-1288 (-1197)) (-1288 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -1827 ((-1193 (-419 (-971 |#1|))))) (-15 -3622 ((-1193 (-419 (-971 |#1|))) $)) (-15 -1632 ((-419 (-971 |#1|)) $)) (-15 -2655 ((-419 (-971 |#1|)) $)) (-15 -2078 ((-1193 (-419 (-971 |#1|))))) (-15 -1760 ((-1193 (-419 (-971 |#1|))) $)) (-15 -2492 ((-419 (-971 |#1|)) $)) (-15 -1751 ((-419 (-971 |#1|)) $)) (-15 -2088 ((-419 (-971 |#1|)) $ $)) (-15 -3715 ((-419 (-971 |#1|)))) (-15 -4143 ((-419 (-971 |#1|)) $ $)) (-15 -3900 ((-419 (-971 |#1|)))) (-15 -1937 ((-656 (-971 |#1|)) (-1288 $))) (-15 -1937 ((-656 (-971 |#1|))))) |%noBranch|))) (-174) (-940) (-656 (-1197)) (-1288 (-701 |#1|))) (T -465)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 *3)))) (-4 *3 (-174)) (-14 *6 (-1288 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))))) (-1386 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2704 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3235 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2704 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3918 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-940)) (-14 *4 (-656 (-1197))) (-14 *5 (-1288 (-701 *2))))) (-3918 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 *2)) (-14 *6 (-1288 (-701 *3))))) (-3918 (*1 *1 *2) (-12 (-5 *2 (-1288 (-1197))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3918 (*1 *1 *2) (-12 (-5 *2 (-1288 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3918 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) (-14 *6 (-656 *2)) (-14 *7 (-1288 (-701 *4))))) (-3918 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 (-1197))) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4))))) (-1827 (*1 *2) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2078 (*1 *2) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-2088 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3715 (*1 *2) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-4143 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-3900 (*1 *2) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-971 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) (-14 *5 (-940)) (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4))))) (-1937 (*1 *2) (-12 (-5 *2 (-656 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(-13 (-429 (-419 (-971 |#1|))) (-660 (-1163 |#2| (-419 (-971 |#1|)))) (-10 -8 (-15 -4113 ($ (-1288 (-419 (-971 |#1|))))) (-15 -1386 ((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed"))) (-15 -3235 ((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed"))) (-15 -3918 ($)) (-15 -3918 ($ (-1197))) (-15 -3918 ($ (-1288 (-1197)))) (-15 -3918 ($ (-1288 $))) (-15 -3918 ($ (-1197) (-1288 $))) (-15 -3918 ($ (-1288 (-1197)) (-1288 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -1827 ((-1193 (-419 (-971 |#1|))))) (-15 -3622 ((-1193 (-419 (-971 |#1|))) $)) (-15 -1632 ((-419 (-971 |#1|)) $)) (-15 -2655 ((-419 (-971 |#1|)) $)) (-15 -2078 ((-1193 (-419 (-971 |#1|))))) (-15 -1760 ((-1193 (-419 (-971 |#1|))) $)) (-15 -2492 ((-419 (-971 |#1|)) $)) (-15 -1751 ((-419 (-971 |#1|)) $)) (-15 -2088 ((-419 (-971 |#1|)) $ $)) (-15 -3715 ((-419 (-971 |#1|)))) (-15 -4143 ((-419 (-971 |#1|)) $ $)) (-15 -3900 ((-419 (-971 |#1|)))) (-15 -1937 ((-656 (-971 |#1|)) (-1288 $))) (-15 -1937 ((-656 (-971 |#1|))))) |%noBranch|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 18)) (-1585 (((-656 (-878 |#1|)) $) 87)) (-1421 (((-1193 $) $ (-878 |#1|)) 52) (((-1193 |#2|) $) 138)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2390 (($ $) NIL (|has| |#2| (-568)))) (-3302 (((-112) $) NIL (|has| |#2| (-568)))) (-2625 (((-783) $) 27) (((-783) $ (-656 (-878 |#1|))) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2658 (($ $) NIL (|has| |#2| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#2| "failed") $) 50) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2317 ((|#2| $) 48) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-2970 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2208 (($ $ (-656 (-576))) 93)) (-3310 (($ $) 80)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#2| (-928)))) (-1975 (($ $ |#2| |#3| $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) 65)) (-1574 (($ (-1193 |#2|) (-878 |#1|)) 143) (($ (-1193 $) (-878 |#1|)) 58)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) 68)) (-1564 (($ |#2| |#3|) 35) (($ $ (-878 |#1|) (-783)) 37) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ (-878 |#1|)) NIL)) (-2192 ((|#3| $) NIL) (((-783) $ (-878 |#1|)) 56) (((-656 (-783)) $ (-656 (-878 |#1|))) 63)) (-3784 (($ (-1 |#3| |#3|) $) NIL)) (-2423 (($ (-1 |#2| |#2|) $) NIL)) (-3477 (((-3 (-878 |#1|) "failed") $) 45)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#2| $) 47)) (-3076 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2447 (((-1179) $) NIL)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -4080 (-783))) "failed") $) NIL)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) 46)) (-1686 ((|#2| $) 136)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) 149 (|has| |#2| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#2| (-928)))) (-1946 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) 100) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) 106) (($ $ (-878 |#1|) $) 98) (($ $ (-656 (-878 |#1|)) (-656 $)) 124)) (-1790 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-4107 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) 59)) (-2196 ((|#3| $) 79) (((-783) $ (-878 |#1|)) 42) (((-656 (-783)) $ (-656 (-878 |#1|))) 62)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1944 ((|#2| $) 145 (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-4113 (((-876) $) 173) (($ (-576)) NIL) (($ |#2|) 99) (($ (-878 |#1|)) 39) (($ (-419 (-576))) NIL (-3795 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3244 (((-656 |#2|) $) NIL)) (-2707 ((|#2| $ |#3|) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4313 (($) 22 T CONST)) (-4322 (($) 31 T CONST)) (-3157 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#2|) 76 (|has| |#2| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 131)) (** (($ $ (-940)) NIL) (($ $ (-783)) 129)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 36) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) -(((-466 |#1| |#2| |#3|) (-13 (-968 |#2| |#3| (-878 |#1|)) (-10 -8 (-15 -2208 ($ $ (-656 (-576)))))) (-656 (-1197)) (-1070) (-243 (-1970 |#1|) (-783))) (T -466)) -((-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1197))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-243 (-1970 *3) (-783)))))) -(-13 (-968 |#2| |#3| (-878 |#1|)) (-10 -8 (-15 -2208 ($ $ (-656 (-576)))))) -((-2408 (((-112) |#1| (-656 |#2|)) 91)) (-3382 (((-3 (-1288 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|)) 100)) (-1955 (((-3 (-656 |#2|) "failed") |#2| |#1| (-1288 (-656 |#2|))) 102)) (-1767 ((|#2| |#2| |#1|) 35)) (-3534 (((-783) |#2| (-656 |#2|)) 26))) -(((-467 |#1| |#2|) (-10 -7 (-15 -1767 (|#2| |#2| |#1|)) (-15 -3534 ((-783) |#2| (-656 |#2|))) (-15 -3382 ((-3 (-1288 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -1955 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1288 (-656 |#2|)))) (-15 -2408 ((-112) |#1| (-656 |#2|)))) (-317) (-1264 |#1|)) (T -467)) -((-2408 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-1264 *3)) (-4 *3 (-317)) (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))) (-1955 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1288 (-656 *3))) (-4 *4 (-317)) (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1264 *4)))) (-3382 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1264 *4)) (-5 *2 (-1288 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-317)) (-5 *2 (-783)) (-5 *1 (-467 *5 *3)))) (-1767 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1264 *3))))) -(-10 -7 (-15 -1767 (|#2| |#2| |#1|)) (-15 -3534 ((-783) |#2| (-656 |#2|))) (-15 -3382 ((-3 (-1288 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -1955 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1288 (-656 |#2|)))) (-15 -2408 ((-112) |#1| (-656 |#2|)))) -((-1452 (((-430 |#5|) |#5|) 24))) -(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1452 ((-430 |#5|) |#5|))) (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)) (-15 -1654 ((-3 $ "failed") (-1197))))) (-805) (-568) (-568) (-968 |#4| |#2| |#1|)) (T -468)) -((-1452 (*1 *2 *3) (-12 (-4 *4 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)) (-15 -1654 ((-3 $ "failed") (-1197)))))) (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-968 *7 *5 *4))))) -(-10 -7 (-15 -1452 ((-430 |#5|) |#5|))) -((-2367 ((|#3|) 38)) (-2142 (((-1193 |#4|) (-1193 |#4|) (-1193 |#4|)) 34))) -(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2142 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -2367 (|#3|))) (-805) (-861) (-928) (-968 |#3| |#1| |#2|)) (T -469)) -((-2367 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2142 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-928)) (-5 *1 (-469 *3 *4 *5 *6))))) -(-10 -7 (-15 -2142 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -2367 (|#3|))) -((-1452 (((-430 (-1193 |#1|)) (-1193 |#1|)) 43))) -(((-470 |#1|) (-10 -7 (-15 -1452 ((-430 (-1193 |#1|)) (-1193 |#1|)))) (-317)) (T -470)) -((-1452 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1193 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1193 *4))))) -(-10 -7 (-15 -1452 ((-430 (-1193 |#1|)) (-1193 |#1|)))) -((-1630 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-783))) 44) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-783))) 43) (((-52) |#2| (-1197) (-304 |#2|)) 36) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 29)) (-2861 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 88) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 87) (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576))) 86) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576))) 85) (((-52) |#2| (-1197) (-304 |#2|)) 80) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 79)) (-1648 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 74) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))) 72)) (-1639 (((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576))) 51) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576))) 50))) -(((-471 |#1| |#2|) (-10 -7 (-15 -1630 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -1630 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -1630 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-783)))) (-15 -1630 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-783)))) (-15 -1639 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -1639 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -1648 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -1648 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -2861 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2861 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -2861 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -2861 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -2861 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -2861 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))))) (-13 (-568) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -471)) -((-2861 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *8))) (-4 *8 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-2861 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1255 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-2861 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2861 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-576))) (-4 *7 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2861 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-2861 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) (-1648 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *8))) (-4 *8 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-1648 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1255 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-1639 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-1639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-576))) (-4 *7 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-1630 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-783))) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-1630 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-783))) (-4 *7 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-1630 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6))))) -(-10 -7 (-15 -1630 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -1630 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -1630 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-783)))) (-15 -1630 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-783)))) (-15 -1639 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -1639 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -1648 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -1648 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -2861 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2861 ((-52) |#2| (-1197) (-304 |#2|))) (-15 -2861 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1255 (-576)))) (-15 -2861 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-576)))) (-15 -2861 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576)))) (-15 -2861 ((-52) |#2| (-1197) (-304 |#2|) (-1255 (-419 (-576))) (-419 (-576))))) -((-1767 ((|#2| |#2| |#1|) 15)) (-2978 (((-656 |#2|) |#2| (-656 |#2|) |#1| (-940)) 82)) (-1679 (((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-940)) 72))) -(((-472 |#1| |#2|) (-10 -7 (-15 -1679 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-940))) (-15 -2978 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-940))) (-15 -1767 (|#2| |#2| |#1|))) (-317) (-1264 |#1|)) (T -472)) -((-1767 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1264 *3)))) (-2978 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-656 *3)) (-5 *5 (-940)) (-4 *3 (-1264 *4)) (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))) (-1679 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-940)) (-4 *5 (-317)) (-4 *3 (-1264 *5)) (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) -(-10 -7 (-15 -1679 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-940))) (-15 -2978 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-940))) (-15 -1767 (|#2| |#2| |#1|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 28)) (-2846 (($ |#3|) 25)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-3310 (($ $) 32)) (-2507 (($ |#2| |#4| $) 33)) (-1564 (($ |#2| (-725 |#3| |#4| |#5|)) 24)) (-1700 (((-725 |#3| |#4| |#5|) $) 15)) (-4072 ((|#3| $) 19)) (-4202 ((|#4| $) 17)) (-1711 ((|#2| $) 29)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-4262 (($ |#2| |#3| |#4|) 26)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 36 T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 34)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -1711 (|#2| $)) (-15 -1700 ((-725 |#3| |#4| |#5|) $)) (-15 -4202 (|#4| $)) (-15 -4072 (|#3| $)) (-15 -3310 ($ $)) (-15 -1564 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -2846 ($ |#3|)) (-15 -4262 ($ |#2| |#3| |#4|)) (-15 -2507 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-656 (-1197)) (-174) (-861) (-243 (-1970 |#1|) (-783)) (-1 (-112) (-2 (|:| -2411 |#3|) (|:| -4080 |#4|)) (-2 (|:| -2411 |#3|) (|:| -4080 |#4|))) (-968 |#2| |#4| (-878 |#1|))) (T -473)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *6 (-243 (-1970 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -2411 *5) (|:| -4080 *6)) (-2 (|:| -2411 *5) (|:| -4080 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) (-4 *2 (-968 *4 *6 (-878 *3))))) (-1711 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *5 (-243 (-1970 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2411 *4) (|:| -4080 *5)) (-2 (|:| -2411 *4) (|:| -4080 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-968 *2 *5 (-878 *3))))) (-1700 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *6 (-243 (-1970 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -2411 *5) (|:| -4080 *6)) (-2 (|:| -2411 *5) (|:| -4080 *6)))) (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861)) (-4 *8 (-968 *4 *6 (-878 *3))))) (-4202 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2411 *5) (|:| -4080 *2)) (-2 (|:| -2411 *5) (|:| -4080 *2)))) (-4 *2 (-243 (-1970 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-861)) (-4 *7 (-968 *4 *2 (-878 *3))))) (-4072 (*1 *2 *1) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *5 (-243 (-1970 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2411 *2) (|:| -4080 *5)) (-2 (|:| -2411 *2) (|:| -4080 *5)))) (-4 *2 (-861)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-968 *4 *5 (-878 *3))))) (-3310 (*1 *1 *1) (-12 (-14 *2 (-656 (-1197))) (-4 *3 (-174)) (-4 *5 (-243 (-1970 *2) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2411 *4) (|:| -4080 *5)) (-2 (|:| -2411 *4) (|:| -4080 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-968 *3 *5 (-878 *2))))) (-1564 (*1 *1 *2 *3) (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-861)) (-4 *6 (-243 (-1970 *4) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -2411 *5) (|:| -4080 *6)) (-2 (|:| -2411 *5) (|:| -4080 *6)))) (-14 *4 (-656 (-1197))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-968 *2 *6 (-878 *4))))) (-2846 (*1 *1 *2) (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) (-4 *5 (-243 (-1970 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2411 *2) (|:| -4080 *5)) (-2 (|:| -2411 *2) (|:| -4080 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) (-4 *7 (-968 *4 *5 (-878 *3))))) (-4262 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-656 (-1197))) (-4 *2 (-174)) (-4 *4 (-243 (-1970 *5) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2411 *3) (|:| -4080 *4)) (-2 (|:| -2411 *3) (|:| -4080 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) (-4 *7 (-968 *2 *4 (-878 *5))))) (-2507 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-656 (-1197))) (-4 *2 (-174)) (-4 *3 (-243 (-1970 *4) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2411 *5) (|:| -4080 *3)) (-2 (|:| -2411 *5) (|:| -4080 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) (-4 *7 (-968 *2 *3 (-878 *4)))))) -(-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -1711 (|#2| $)) (-15 -1700 ((-725 |#3| |#4| |#5|) $)) (-15 -4202 (|#4| $)) (-15 -4072 (|#3| $)) (-15 -3310 ($ $)) (-15 -1564 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -2846 ($ |#3|)) (-15 -4262 ($ |#2| |#3| |#4|)) (-15 -2507 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-4216 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4216 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-805) (-861) (-568) (-968 |#3| |#1| |#2|) (-13 (-1059 (-419 (-576))) (-374) (-10 -8 (-15 -4113 ($ |#4|)) (-15 -2687 (|#4| $)) (-15 -2697 (|#4| $))))) (T -474)) -((-4216 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-805)) (-4 *6 (-568)) (-4 *7 (-968 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1059 (-419 (-576))) (-374) (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $)))))))) -(-10 -7 (-15 -4216 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-1957 (((-112) $ $) NIL)) (-1585 (((-656 |#3|) $) 41)) (-4404 (((-112) $) NIL)) (-3921 (((-112) $) NIL (|has| |#1| (-568)))) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |#3|) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-3603 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-4016 (((-112) $) NIL (|has| |#1| (-568)))) (-3403 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4357 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2159 (((-112) $) NIL (|has| |#1| (-568)))) (-3496 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-3588 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2982 (((-3 $ "failed") (-656 |#4|)) 49)) (-2317 (($ (-656 |#4|)) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-2825 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3561 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464)))) (-3722 (((-656 |#4|) $) 18 (|has| $ (-6 -4464)))) (-4260 ((|#3| $) 47)) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#4|) $) 14 (|has| $ (-6 -4464)))) (-1602 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-1898 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#4| |#4|) $) 21)) (-3240 (((-656 |#3|) $) NIL)) (-3821 (((-112) |#3| $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-2296 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3116 (((-1141) $) NIL)) (-4220 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1759 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 39)) (-3307 (($) 17)) (-3127 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) 16)) (-1556 (((-548) $) NIL (|has| |#4| (-626 (-548)))) (($ (-656 |#4|)) 51)) (-4125 (($ (-656 |#4|)) 13)) (-4023 (($ $ |#3|) NIL)) (-2715 (($ $ |#3|) NIL)) (-3142 (($ $ |#3|) NIL)) (-4113 (((-876) $) 38) (((-656 |#4|) $) 50)) (-2950 (((-112) $ $) NIL)) (-2543 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 30)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-475 |#1| |#2| |#3| |#4|) (-13 (-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1556 ($ (-656 |#4|))) (-6 -4464) (-6 -4465))) (-1070) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -475)) -((-1556 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-475 *3 *4 *5 *6))))) -(-13 (-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1556 ($ (-656 |#4|))) (-6 -4464) (-6 -4465))) -((-4313 (($) 11)) (-4322 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -4322 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4313 (|#1|))) (-477 |#2| |#3|) (-174) (-23)) (T -476)) -NIL -(-10 -8 (-15 -4322 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4313 (|#1|))) -((-1957 (((-112) $ $) 7)) (-2982 (((-3 |#1| "failed") $) 27)) (-2317 ((|#1| $) 28)) (-4332 (($ $ $) 24)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2196 ((|#2| $) 20)) (-4113 (((-876) $) 12) (($ |#1|) 26)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 25 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 16) (($ $ $) 14)) (-4026 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-3431 (*1 *1 *1 *1) (-4 *1 (-464))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-464)))) (-3388 (*1 *1 *1 *1) (-4 *1 (-464))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-464)))) (-1828 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-464))))) +(-13 (-568) (-10 -8 (-15 -3431 ($ $ $)) (-15 -3431 ($ (-657 $))) (-15 -3388 ($ $ $)) (-15 -3388 ($ (-657 $))) (-15 -1828 ((-1194 $) (-1194 $) (-1194 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-4119 (((-3 $ "failed")) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3731 (((-1289 (-702 (-419 (-972 |#1|)))) (-1289 $)) NIL) (((-1289 (-702 (-419 (-972 |#1|))))) NIL)) (-2672 (((-1289 $)) NIL)) (-2515 (($) NIL T CONST)) (-1992 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) NIL)) (-3247 (((-3 $ "failed")) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-2259 (((-702 (-419 (-972 |#1|))) (-1289 $)) NIL) (((-702 (-419 (-972 |#1|)))) NIL)) (-2873 (((-419 (-972 |#1|)) $) NIL)) (-2246 (((-702 (-419 (-972 |#1|))) $ (-1289 $)) NIL) (((-702 (-419 (-972 |#1|))) $) NIL)) (-4236 (((-3 $ "failed") $) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-2408 (((-1194 (-972 (-419 (-972 |#1|))))) NIL (|has| (-419 (-972 |#1|)) (-374))) (((-1194 (-419 (-972 |#1|)))) 90 (|has| |#1| (-568)))) (-4408 (($ $ (-941)) NIL)) (-2348 (((-419 (-972 |#1|)) $) NIL)) (-4270 (((-1194 (-419 (-972 |#1|))) $) 88 (|has| (-419 (-972 |#1|)) (-568)))) (-3612 (((-419 (-972 |#1|)) (-1289 $)) NIL) (((-419 (-972 |#1|))) NIL)) (-4446 (((-1194 (-419 (-972 |#1|))) $) NIL)) (-3282 (((-112)) NIL)) (-4093 (($ (-1289 (-419 (-972 |#1|))) (-1289 $)) 114) (($ (-1289 (-419 (-972 |#1|)))) NIL)) (-3969 (((-3 $ "failed") $) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-4343 (((-941)) NIL)) (-2449 (((-112)) NIL)) (-3152 (($ $ (-941)) NIL)) (-1738 (((-112)) NIL)) (-3111 (((-112)) NIL)) (-1790 (((-112)) NIL)) (-2427 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) NIL)) (-3047 (((-3 $ "failed")) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-1546 (((-702 (-419 (-972 |#1|))) (-1289 $)) NIL) (((-702 (-419 (-972 |#1|)))) NIL)) (-3001 (((-419 (-972 |#1|)) $) NIL)) (-3138 (((-702 (-419 (-972 |#1|))) $ (-1289 $)) NIL) (((-702 (-419 (-972 |#1|))) $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-1822 (((-1194 (-972 (-419 (-972 |#1|))))) NIL (|has| (-419 (-972 |#1|)) (-374))) (((-1194 (-419 (-972 |#1|)))) 89 (|has| |#1| (-568)))) (-3296 (($ $ (-941)) NIL)) (-2115 (((-419 (-972 |#1|)) $) NIL)) (-2954 (((-1194 (-419 (-972 |#1|))) $) 85 (|has| (-419 (-972 |#1|)) (-568)))) (-1861 (((-419 (-972 |#1|)) (-1289 $)) NIL) (((-419 (-972 |#1|))) NIL)) (-1720 (((-1194 (-419 (-972 |#1|))) $) NIL)) (-1525 (((-112)) NIL)) (-1708 (((-1180) $) NIL)) (-3897 (((-112)) NIL)) (-3110 (((-112)) NIL)) (-4278 (((-112)) NIL)) (-1460 (((-1142) $) NIL)) (-2679 (((-419 (-972 |#1|)) $ $) 76 (|has| |#1| (-568)))) (-4046 (((-419 (-972 |#1|)) $) 100 (|has| |#1| (-568)))) (-2302 (((-419 (-972 |#1|)) $) 104 (|has| |#1| (-568)))) (-2382 (((-1194 (-419 (-972 |#1|))) $) 94 (|has| |#1| (-568)))) (-4102 (((-419 (-972 |#1|))) 77 (|has| |#1| (-568)))) (-2505 (((-419 (-972 |#1|)) $ $) 69 (|has| |#1| (-568)))) (-3675 (((-419 (-972 |#1|)) $) 99 (|has| |#1| (-568)))) (-3161 (((-419 (-972 |#1|)) $) 103 (|has| |#1| (-568)))) (-1416 (((-1194 (-419 (-972 |#1|))) $) 93 (|has| |#1| (-568)))) (-2878 (((-419 (-972 |#1|))) 73 (|has| |#1| (-568)))) (-4300 (($) 110) (($ (-1198)) 118) (($ (-1289 (-1198))) 117) (($ (-1289 $)) 105) (($ (-1198) (-1289 $)) 116) (($ (-1289 (-1198)) (-1289 $)) 115)) (-2931 (((-112)) NIL)) (-2780 (((-419 (-972 |#1|)) $ (-576)) NIL)) (-3806 (((-1289 (-419 (-972 |#1|))) $ (-1289 $)) 107) (((-702 (-419 (-972 |#1|))) (-1289 $) (-1289 $)) NIL) (((-1289 (-419 (-972 |#1|))) $) 43) (((-702 (-419 (-972 |#1|))) (-1289 $)) NIL)) (-4136 (((-1289 (-419 (-972 |#1|))) $) NIL) (($ (-1289 (-419 (-972 |#1|)))) 40)) (-3522 (((-657 (-972 (-419 (-972 |#1|)))) (-1289 $)) NIL) (((-657 (-972 (-419 (-972 |#1|))))) NIL) (((-657 (-972 |#1|)) (-1289 $)) 108 (|has| |#1| (-568))) (((-657 (-972 |#1|))) 109 (|has| |#1| (-568)))) (-1911 (($ $ $) NIL)) (-2473 (((-112)) NIL)) (-3515 (((-877) $) NIL) (($ (-1289 (-419 (-972 |#1|)))) NIL)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) 65)) (-3020 (((-657 (-1289 (-419 (-972 |#1|))))) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-3280 (($ $ $ $) NIL)) (-1433 (((-112)) NIL)) (-3514 (($ (-702 (-419 (-972 |#1|))) $) NIL)) (-2566 (($ $ $) NIL)) (-3692 (((-112)) NIL)) (-3560 (((-112)) NIL)) (-3844 (((-112)) NIL)) (-2716 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) 106)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 61) (($ $ (-419 (-972 |#1|))) NIL) (($ (-419 (-972 |#1|)) $) NIL) (($ (-1164 |#2| (-419 (-972 |#1|))) $) NIL))) +(((-465 |#1| |#2| |#3| |#4|) (-13 (-429 (-419 (-972 |#1|))) (-661 (-1164 |#2| (-419 (-972 |#1|)))) (-10 -8 (-15 -3515 ($ (-1289 (-419 (-972 |#1|))))) (-15 -2427 ((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed"))) (-15 -1992 ((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed"))) (-15 -4300 ($)) (-15 -4300 ($ (-1198))) (-15 -4300 ($ (-1289 (-1198)))) (-15 -4300 ($ (-1289 $))) (-15 -4300 ($ (-1198) (-1289 $))) (-15 -4300 ($ (-1289 (-1198)) (-1289 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -1822 ((-1194 (-419 (-972 |#1|))))) (-15 -1416 ((-1194 (-419 (-972 |#1|))) $)) (-15 -3675 ((-419 (-972 |#1|)) $)) (-15 -3161 ((-419 (-972 |#1|)) $)) (-15 -2408 ((-1194 (-419 (-972 |#1|))))) (-15 -2382 ((-1194 (-419 (-972 |#1|))) $)) (-15 -4046 ((-419 (-972 |#1|)) $)) (-15 -2302 ((-419 (-972 |#1|)) $)) (-15 -2505 ((-419 (-972 |#1|)) $ $)) (-15 -2878 ((-419 (-972 |#1|)))) (-15 -2679 ((-419 (-972 |#1|)) $ $)) (-15 -4102 ((-419 (-972 |#1|)))) (-15 -3522 ((-657 (-972 |#1|)) (-1289 $))) (-15 -3522 ((-657 (-972 |#1|))))) |%noBranch|))) (-174) (-941) (-657 (-1198)) (-1289 (-702 |#1|))) (T -465)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1289 (-419 (-972 *3)))) (-4 *3 (-174)) (-14 *6 (-1289 (-702 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))))) (-2427 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2469 (-657 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-1992 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2469 (-657 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-4300 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-941)) (-14 *4 (-657 (-1198))) (-14 *5 (-1289 (-702 *2))))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 *2)) (-14 *6 (-1289 (-702 *3))))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1289 (-1198))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1289 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-4300 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-941)) (-14 *6 (-657 *2)) (-14 *7 (-1289 (-702 *4))))) (-4300 (*1 *1 *2 *3) (-12 (-5 *2 (-1289 (-1198))) (-5 *3 (-1289 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-941)) (-14 *6 (-657 (-1198))) (-14 *7 (-1289 (-702 *4))))) (-1822 (*1 *2) (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3161 (*1 *2 *1) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-2408 (*1 *2) (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-2382 (*1 *2 *1) (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-2505 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-2878 (*1 *2) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-2679 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-4102 (*1 *2) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-1289 (-465 *4 *5 *6 *7))) (-5 *2 (-657 (-972 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) (-14 *5 (-941)) (-14 *6 (-657 (-1198))) (-14 *7 (-1289 (-702 *4))))) (-3522 (*1 *2) (-12 (-5 *2 (-657 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) +(-13 (-429 (-419 (-972 |#1|))) (-661 (-1164 |#2| (-419 (-972 |#1|)))) (-10 -8 (-15 -3515 ($ (-1289 (-419 (-972 |#1|))))) (-15 -2427 ((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed"))) (-15 -1992 ((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed"))) (-15 -4300 ($)) (-15 -4300 ($ (-1198))) (-15 -4300 ($ (-1289 (-1198)))) (-15 -4300 ($ (-1289 $))) (-15 -4300 ($ (-1198) (-1289 $))) (-15 -4300 ($ (-1289 (-1198)) (-1289 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -1822 ((-1194 (-419 (-972 |#1|))))) (-15 -1416 ((-1194 (-419 (-972 |#1|))) $)) (-15 -3675 ((-419 (-972 |#1|)) $)) (-15 -3161 ((-419 (-972 |#1|)) $)) (-15 -2408 ((-1194 (-419 (-972 |#1|))))) (-15 -2382 ((-1194 (-419 (-972 |#1|))) $)) (-15 -4046 ((-419 (-972 |#1|)) $)) (-15 -2302 ((-419 (-972 |#1|)) $)) (-15 -2505 ((-419 (-972 |#1|)) $ $)) (-15 -2878 ((-419 (-972 |#1|)))) (-15 -2679 ((-419 (-972 |#1|)) $ $)) (-15 -4102 ((-419 (-972 |#1|)))) (-15 -3522 ((-657 (-972 |#1|)) (-1289 $))) (-15 -3522 ((-657 (-972 |#1|))))) |%noBranch|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 18)) (-1998 (((-657 (-879 |#1|)) $) 87)) (-1825 (((-1194 $) $ (-879 |#1|)) 52) (((-1194 |#2|) $) 138)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2361 (($ $) NIL (|has| |#2| (-568)))) (-3286 (((-112) $) NIL (|has| |#2| (-568)))) (-2889 (((-784) $) 27) (((-784) $ (-657 (-879 |#1|))) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3188 (($ $) NIL (|has| |#2| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#2| "failed") $) 50) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-879 |#1|) "failed") $) NIL)) (-2830 ((|#2| $) 48) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-879 |#1|) $) NIL)) (-4351 (($ $ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-4377 (($ $ (-657 (-576))) 93)) (-2165 (($ $) 80)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#2| (-929)))) (-2643 (($ $ |#2| |#3| $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) 65)) (-1986 (($ (-1194 |#2|) (-879 |#1|)) 143) (($ (-1194 $) (-879 |#1|)) 58)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) 68)) (-1974 (($ |#2| |#3|) 35) (($ $ (-879 |#1|) (-784)) 37) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ (-879 |#1|)) NIL)) (-4219 ((|#3| $) NIL) (((-784) $ (-879 |#1|)) 56) (((-657 (-784)) $ (-657 (-879 |#1|))) 63)) (-2308 (($ (-1 |#3| |#3|) $) NIL)) (-4071 (($ (-1 |#2| |#2|) $) NIL)) (-2502 (((-3 (-879 |#1|) "failed") $) 45)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#2| $) 47)) (-3388 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1708 (((-1180) $) NIL)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| (-879 |#1|)) (|:| -2128 (-784))) "failed") $) NIL)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) 46)) (-2118 ((|#2| $) 136)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#2| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) 149 (|has| |#2| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#2| (-929)))) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-879 |#1|) |#2|) 100) (($ $ (-657 (-879 |#1|)) (-657 |#2|)) 106) (($ $ (-879 |#1|) $) 98) (($ $ (-657 (-879 |#1|)) (-657 $)) 124)) (-1465 (($ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-2209 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) 59)) (-4265 ((|#3| $) 79) (((-784) $ (-879 |#1|)) 42) (((-657 (-784)) $ (-657 (-879 |#1|))) 62)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-879 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3614 ((|#2| $) 145 (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929))))) (-3515 (((-877) $) 173) (($ (-576)) NIL) (($ |#2|) 99) (($ (-879 |#1|)) 39) (($ (-419 (-576))) NIL (-2748 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3987 (((-657 |#2|) $) NIL)) (-2498 ((|#2| $ |#3|) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#2| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#2| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2716 (($) 22 T CONST)) (-2725 (($) 31 T CONST)) (-2066 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#2|) 76 (|has| |#2| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 131)) (** (($ $ (-941)) NIL) (($ $ (-784)) 129)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 36) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) +(((-466 |#1| |#2| |#3|) (-13 (-969 |#2| |#3| (-879 |#1|)) (-10 -8 (-15 -4377 ($ $ (-657 (-576)))))) (-657 (-1198)) (-1071) (-243 (-3437 |#1|) (-784))) (T -466)) +((-4377 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-14 *3 (-657 (-1198))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1071)) (-4 *5 (-243 (-3437 *3) (-784)))))) +(-13 (-969 |#2| |#3| (-879 |#1|)) (-10 -8 (-15 -4377 ($ $ (-657 (-576)))))) +((-2530 (((-112) |#1| (-657 |#2|)) 91)) (-2862 (((-3 (-1289 (-657 |#2|)) "failed") (-784) |#1| (-657 |#2|)) 100)) (-3736 (((-3 (-657 |#2|) "failed") |#2| |#1| (-1289 (-657 |#2|))) 102)) (-2444 ((|#2| |#2| |#1|) 35)) (-1823 (((-784) |#2| (-657 |#2|)) 26))) +(((-467 |#1| |#2|) (-10 -7 (-15 -2444 (|#2| |#2| |#1|)) (-15 -1823 ((-784) |#2| (-657 |#2|))) (-15 -2862 ((-3 (-1289 (-657 |#2|)) "failed") (-784) |#1| (-657 |#2|))) (-15 -3736 ((-3 (-657 |#2|) "failed") |#2| |#1| (-1289 (-657 |#2|)))) (-15 -2530 ((-112) |#1| (-657 |#2|)))) (-317) (-1265 |#1|)) (T -467)) +((-2530 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *5)) (-4 *5 (-1265 *3)) (-4 *3 (-317)) (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))) (-3736 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1289 (-657 *3))) (-4 *4 (-317)) (-5 *2 (-657 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1265 *4)))) (-2862 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-784)) (-4 *4 (-317)) (-4 *6 (-1265 *4)) (-5 *2 (-1289 (-657 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-657 *6)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-317)) (-5 *2 (-784)) (-5 *1 (-467 *5 *3)))) (-2444 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1265 *3))))) +(-10 -7 (-15 -2444 (|#2| |#2| |#1|)) (-15 -1823 ((-784) |#2| (-657 |#2|))) (-15 -2862 ((-3 (-1289 (-657 |#2|)) "failed") (-784) |#1| (-657 |#2|))) (-15 -3736 ((-3 (-657 |#2|) "failed") |#2| |#1| (-1289 (-657 |#2|)))) (-15 -2530 ((-112) |#1| (-657 |#2|)))) +((-1856 (((-430 |#5|) |#5|) 24))) +(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1856 ((-430 |#5|) |#5|))) (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)) (-15 -2993 ((-3 $ "failed") (-1198))))) (-806) (-568) (-568) (-969 |#4| |#2| |#1|)) (T -468)) +((-1856 (*1 *2 *3) (-12 (-4 *4 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)) (-15 -2993 ((-3 $ "failed") (-1198)))))) (-4 *5 (-806)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-969 *7 *5 *4))))) +(-10 -7 (-15 -1856 ((-430 |#5|) |#5|))) +((-2139 ((|#3|) 38)) (-1828 (((-1194 |#4|) (-1194 |#4|) (-1194 |#4|)) 34))) +(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-1194 |#4|) (-1194 |#4|) (-1194 |#4|))) (-15 -2139 (|#3|))) (-806) (-862) (-929) (-969 |#3| |#1| |#2|)) (T -469)) +((-2139 (*1 *2) (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-929)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-969 *2 *3 *4)))) (-1828 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-929)) (-5 *1 (-469 *3 *4 *5 *6))))) +(-10 -7 (-15 -1828 ((-1194 |#4|) (-1194 |#4|) (-1194 |#4|))) (-15 -2139 (|#3|))) +((-1856 (((-430 (-1194 |#1|)) (-1194 |#1|)) 43))) +(((-470 |#1|) (-10 -7 (-15 -1856 ((-430 (-1194 |#1|)) (-1194 |#1|)))) (-317)) (T -470)) +((-1856 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1194 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1194 *4))))) +(-10 -7 (-15 -1856 ((-430 (-1194 |#1|)) (-1194 |#1|)))) +((-2053 (((-52) |#2| (-1198) (-304 |#2|) (-1256 (-784))) 44) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-784))) 43) (((-52) |#2| (-1198) (-304 |#2|)) 36) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 29)) (-3696 (((-52) |#2| (-1198) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576))) 88) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576))) 87) (((-52) |#2| (-1198) (-304 |#2|) (-1256 (-576))) 86) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-576))) 85) (((-52) |#2| (-1198) (-304 |#2|)) 80) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 79)) (-2079 (((-52) |#2| (-1198) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576))) 74) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576))) 72)) (-2067 (((-52) |#2| (-1198) (-304 |#2|) (-1256 (-576))) 51) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-576))) 50))) +(((-471 |#1| |#2|) (-10 -7 (-15 -2053 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2053 ((-52) |#2| (-1198) (-304 |#2|))) (-15 -2053 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-784)))) (-15 -2053 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-784)))) (-15 -2067 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-576)))) (-15 -2067 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-576)))) (-15 -2079 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576)))) (-15 -2079 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576)))) (-15 -3696 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3696 ((-52) |#2| (-1198) (-304 |#2|))) (-15 -3696 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-576)))) (-15 -3696 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-576)))) (-15 -3696 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576)))) (-15 -3696 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576))))) (-13 (-568) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -471)) +((-3696 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *8))) (-4 *8 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-3696 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1256 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1224) (-442 *7))) (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-3696 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *7))) (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-3696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1256 (-576))) (-4 *7 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-3696 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-3696 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) (-2079 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *8))) (-4 *8 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-2079 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1256 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1224) (-442 *7))) (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-2067 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *7))) (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2067 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1256 (-576))) (-4 *7 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2053 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-784))) (-4 *3 (-13 (-27) (-1224) (-442 *7))) (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2053 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1256 (-784))) (-4 *7 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2053 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6))))) +(-10 -7 (-15 -2053 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2053 ((-52) |#2| (-1198) (-304 |#2|))) (-15 -2053 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-784)))) (-15 -2053 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-784)))) (-15 -2067 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-576)))) (-15 -2067 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-576)))) (-15 -2079 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576)))) (-15 -2079 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576)))) (-15 -3696 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3696 ((-52) |#2| (-1198) (-304 |#2|))) (-15 -3696 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-576)))) (-15 -3696 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-576)))) (-15 -3696 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576)))) (-15 -3696 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576))))) +((-2444 ((|#2| |#2| |#1|) 15)) (-4438 (((-657 |#2|) |#2| (-657 |#2|) |#1| (-941)) 82)) (-2791 (((-2 (|:| |plist| (-657 |#2|)) (|:| |modulo| |#1|)) |#2| (-657 |#2|) |#1| (-941)) 72))) +(((-472 |#1| |#2|) (-10 -7 (-15 -2791 ((-2 (|:| |plist| (-657 |#2|)) (|:| |modulo| |#1|)) |#2| (-657 |#2|) |#1| (-941))) (-15 -4438 ((-657 |#2|) |#2| (-657 |#2|) |#1| (-941))) (-15 -2444 (|#2| |#2| |#1|))) (-317) (-1265 |#1|)) (T -472)) +((-2444 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1265 *3)))) (-4438 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-657 *3)) (-5 *5 (-941)) (-4 *3 (-1265 *4)) (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))) (-2791 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-941)) (-4 *5 (-317)) (-4 *3 (-1265 *5)) (-5 *2 (-2 (|:| |plist| (-657 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-657 *3))))) +(-10 -7 (-15 -2791 ((-2 (|:| |plist| (-657 |#2|)) (|:| |modulo| |#1|)) |#2| (-657 |#2|) |#1| (-941))) (-15 -4438 ((-657 |#2|) |#2| (-657 |#2|) |#1| (-941))) (-15 -2444 (|#2| |#2| |#1|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 28)) (-1375 (($ |#3|) 25)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-2165 (($ $) 32)) (-4214 (($ |#2| |#4| $) 33)) (-1974 (($ |#2| (-726 |#3| |#4| |#5|)) 24)) (-2129 (((-726 |#3| |#4| |#5|) $) 15)) (-3203 ((|#3| $) 19)) (-2068 ((|#4| $) 17)) (-2141 ((|#2| $) 29)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-1447 (($ |#2| |#3| |#4|) 26)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 36 T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 34)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-730 |#6|) (-730 |#2|) (-10 -8 (-15 -2141 (|#2| $)) (-15 -2129 ((-726 |#3| |#4| |#5|) $)) (-15 -2068 (|#4| $)) (-15 -3203 (|#3| $)) (-15 -2165 ($ $)) (-15 -1974 ($ |#2| (-726 |#3| |#4| |#5|))) (-15 -1375 ($ |#3|)) (-15 -1447 ($ |#2| |#3| |#4|)) (-15 -4214 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-657 (-1198)) (-174) (-862) (-243 (-3437 |#1|) (-784)) (-1 (-112) (-2 (|:| -3146 |#3|) (|:| -2128 |#4|)) (-2 (|:| -3146 |#3|) (|:| -2128 |#4|))) (-969 |#2| |#4| (-879 |#1|))) (T -473)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) (-4 *6 (-243 (-3437 *3) (-784))) (-14 *7 (-1 (-112) (-2 (|:| -3146 *5) (|:| -2128 *6)) (-2 (|:| -3146 *5) (|:| -2128 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862)) (-4 *2 (-969 *4 *6 (-879 *3))))) (-2141 (*1 *2 *1) (-12 (-14 *3 (-657 (-1198))) (-4 *5 (-243 (-3437 *3) (-784))) (-14 *6 (-1 (-112) (-2 (|:| -3146 *4) (|:| -2128 *5)) (-2 (|:| -3146 *4) (|:| -2128 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-969 *2 *5 (-879 *3))))) (-2129 (*1 *2 *1) (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) (-4 *6 (-243 (-3437 *3) (-784))) (-14 *7 (-1 (-112) (-2 (|:| -3146 *5) (|:| -2128 *6)) (-2 (|:| -3146 *5) (|:| -2128 *6)))) (-5 *2 (-726 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862)) (-4 *8 (-969 *4 *6 (-879 *3))))) (-2068 (*1 *2 *1) (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -3146 *5) (|:| -2128 *2)) (-2 (|:| -3146 *5) (|:| -2128 *2)))) (-4 *2 (-243 (-3437 *3) (-784))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-862)) (-4 *7 (-969 *4 *2 (-879 *3))))) (-3203 (*1 *2 *1) (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) (-4 *5 (-243 (-3437 *3) (-784))) (-14 *6 (-1 (-112) (-2 (|:| -3146 *2) (|:| -2128 *5)) (-2 (|:| -3146 *2) (|:| -2128 *5)))) (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-969 *4 *5 (-879 *3))))) (-2165 (*1 *1 *1) (-12 (-14 *2 (-657 (-1198))) (-4 *3 (-174)) (-4 *5 (-243 (-3437 *2) (-784))) (-14 *6 (-1 (-112) (-2 (|:| -3146 *4) (|:| -2128 *5)) (-2 (|:| -3146 *4) (|:| -2128 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-969 *3 *5 (-879 *2))))) (-1974 (*1 *1 *2 *3) (-12 (-5 *3 (-726 *5 *6 *7)) (-4 *5 (-862)) (-4 *6 (-243 (-3437 *4) (-784))) (-14 *7 (-1 (-112) (-2 (|:| -3146 *5) (|:| -2128 *6)) (-2 (|:| -3146 *5) (|:| -2128 *6)))) (-14 *4 (-657 (-1198))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-969 *2 *6 (-879 *4))))) (-1375 (*1 *1 *2) (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) (-4 *5 (-243 (-3437 *3) (-784))) (-14 *6 (-1 (-112) (-2 (|:| -3146 *2) (|:| -2128 *5)) (-2 (|:| -3146 *2) (|:| -2128 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862)) (-4 *7 (-969 *4 *5 (-879 *3))))) (-1447 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-657 (-1198))) (-4 *2 (-174)) (-4 *4 (-243 (-3437 *5) (-784))) (-14 *6 (-1 (-112) (-2 (|:| -3146 *3) (|:| -2128 *4)) (-2 (|:| -3146 *3) (|:| -2128 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862)) (-4 *7 (-969 *2 *4 (-879 *5))))) (-4214 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-657 (-1198))) (-4 *2 (-174)) (-4 *3 (-243 (-3437 *4) (-784))) (-14 *6 (-1 (-112) (-2 (|:| -3146 *5) (|:| -2128 *3)) (-2 (|:| -3146 *5) (|:| -2128 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862)) (-4 *7 (-969 *2 *3 (-879 *4)))))) +(-13 (-730 |#6|) (-730 |#2|) (-10 -8 (-15 -2141 (|#2| $)) (-15 -2129 ((-726 |#3| |#4| |#5|) $)) (-15 -2068 (|#4| $)) (-15 -3203 (|#3| $)) (-15 -2165 ($ $)) (-15 -1974 ($ |#2| (-726 |#3| |#4| |#5|))) (-15 -1375 ($ |#3|)) (-15 -1447 ($ |#2| |#3| |#4|)) (-15 -4214 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-4095 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4095 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-806) (-862) (-568) (-969 |#3| |#1| |#2|) (-13 (-1060 (-419 (-576))) (-374) (-10 -8 (-15 -3515 ($ |#4|)) (-15 -1590 (|#4| $)) (-15 -1602 (|#4| $))))) (T -474)) +((-4095 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-806)) (-4 *6 (-568)) (-4 *7 (-969 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1060 (-419 (-576))) (-374) (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $)))))))) +(-10 -7 (-15 -4095 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3423 (((-112) $ $) NIL)) (-1998 (((-657 |#3|) $) 41)) (-2250 (((-112) $) NIL)) (-4334 (((-112) $) NIL (|has| |#1| (-568)))) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |#3|) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-2007 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-2697 (((-112) $) NIL (|has| |#1| (-568)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1978 (((-112) $) NIL (|has| |#1| (-568)))) (-1494 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-4203 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-1593 (((-3 $ "failed") (-657 |#4|)) 49)) (-2830 (($ (-657 |#4|)) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-3901 (($ |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3951 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3662 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4466)))) (-1448 (((-657 |#4|) $) 18 (|has| $ (-6 -4466)))) (-1428 ((|#3| $) 47)) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#4|) $) 14 (|has| $ (-6 -4466)))) (-3326 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-1799 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#4| |#4|) $) 21)) (-3944 (((-657 |#3|) $) NIL)) (-2611 (((-112) |#3| $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-2678 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1460 (((-1142) $) NIL)) (-4135 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2372 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#4|) (-657 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 39)) (-3340 (($) 17)) (-1469 (((-784) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (((-784) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) 16)) (-4136 (((-548) $) NIL (|has| |#4| (-626 (-548)))) (($ (-657 |#4|)) 51)) (-3529 (($ (-657 |#4|)) 13)) (-2764 (($ $ |#3|) NIL)) (-2555 (($ $ |#3|) NIL)) (-2267 (($ $ |#3|) NIL)) (-3515 (((-877) $) 38) (((-657 |#4|) $) 50)) (-4166 (((-112) $ $) NIL)) (-3258 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 30)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-475 |#1| |#2| |#3| |#4|) (-13 (-998 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4136 ($ (-657 |#4|))) (-6 -4466) (-6 -4467))) (-1071) (-806) (-862) (-1087 |#1| |#2| |#3|)) (T -475)) +((-4136 (*1 *1 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6))))) +(-13 (-998 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4136 ($ (-657 |#4|))) (-6 -4466) (-6 -4467))) +((-2716 (($) 11)) (-2725 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -2725 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2716 (|#1|))) (-477 |#2| |#3|) (-174) (-23)) (T -476)) +NIL +(-10 -8 (-15 -2725 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2716 (|#1|))) +((-3423 (((-112) $ $) 7)) (-1593 (((-3 |#1| "failed") $) 27)) (-2830 ((|#1| $) 28)) (-3964 (($ $ $) 24)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-4265 ((|#2| $) 20)) (-3515 (((-877) $) 12) (($ |#1|) 26)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 25 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 16) (($ $ $) 14)) (-2971 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-477 |#1| |#2|) (-141) (-174) (-23)) (T -477)) -((-4322 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4332 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-482 |t#1| |t#2|) (-1059 |t#1|) (-10 -8 (-15 (-4322) ($) -2666) (-15 -4332 ($ $ $)))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-482 |#1| |#2|) . T) ((-1059 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-2225 (((-1288 (-1288 (-576))) (-1288 (-1288 (-576))) (-940)) 26)) (-3148 (((-1288 (-1288 (-576))) (-940)) 21))) -(((-478) (-10 -7 (-15 -2225 ((-1288 (-1288 (-576))) (-1288 (-1288 (-576))) (-940))) (-15 -3148 ((-1288 (-1288 (-576))) (-940))))) (T -478)) -((-3148 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 (-576)))) (-5 *1 (-478)))) (-2225 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 (-1288 (-576)))) (-5 *3 (-940)) (-5 *1 (-478))))) -(-10 -7 (-15 -2225 ((-1288 (-1288 (-576))) (-1288 (-1288 (-576))) (-940))) (-15 -3148 ((-1288 (-1288 (-576))) (-940)))) -((-4236 (((-576) (-576)) 32) (((-576)) 24)) (-3113 (((-576) (-576)) 28) (((-576)) 20)) (-1864 (((-576) (-576)) 30) (((-576)) 22)) (-2357 (((-112) (-112)) 14) (((-112)) 12)) (-3827 (((-112) (-112)) 13) (((-112)) 11)) (-1687 (((-112) (-112)) 26) (((-112)) 17))) -(((-479) (-10 -7 (-15 -3827 ((-112))) (-15 -2357 ((-112))) (-15 -3827 ((-112) (-112))) (-15 -2357 ((-112) (-112))) (-15 -1687 ((-112))) (-15 -1864 ((-576))) (-15 -3113 ((-576))) (-15 -4236 ((-576))) (-15 -1687 ((-112) (-112))) (-15 -1864 ((-576) (-576))) (-15 -3113 ((-576) (-576))) (-15 -4236 ((-576) (-576))))) (T -479)) -((-4236 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1687 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4236 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3113 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1864 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1687 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2357 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3827 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(-10 -7 (-15 -3827 ((-112))) (-15 -2357 ((-112))) (-15 -3827 ((-112) (-112))) (-15 -2357 ((-112) (-112))) (-15 -1687 ((-112))) (-15 -1864 ((-576))) (-15 -3113 ((-576))) (-15 -4236 ((-576))) (-15 -1687 ((-112) (-112))) (-15 -1864 ((-576) (-576))) (-15 -3113 ((-576) (-576))) (-15 -4236 ((-576) (-576)))) -((-1957 (((-112) $ $) NIL)) (-3479 (((-656 (-390)) $) 34) (((-656 (-390)) $ (-656 (-390))) 146)) (-4427 (((-656 (-1115 (-390))) $) 16) (((-656 (-1115 (-390))) $ (-656 (-1115 (-390)))) 142)) (-2229 (((-656 (-656 (-962 (-227)))) (-656 (-656 (-962 (-227)))) (-656 (-888))) 58)) (-1464 (((-656 (-656 (-962 (-227)))) $) 137)) (-2819 (((-1293) $ (-962 (-227)) (-888)) 163)) (-4109 (($ $) 136) (($ (-656 (-656 (-962 (-227))))) 149) (($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940))) 148) (($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)) (-656 (-270))) 150)) (-2447 (((-1179) $) NIL)) (-2240 (((-576) $) 110)) (-3116 (((-1141) $) NIL)) (-3720 (($) 147)) (-2026 (((-656 (-227)) (-656 (-656 (-962 (-227))))) 89)) (-2334 (((-1293) $ (-656 (-962 (-227))) (-888) (-888) (-940)) 155) (((-1293) $ (-962 (-227))) 157) (((-1293) $ (-962 (-227)) (-888) (-888) (-940)) 156)) (-4113 (((-876) $) 169) (($ (-656 (-656 (-962 (-227))))) 164)) (-2950 (((-112) $ $) NIL)) (-2436 (((-1293) $ (-962 (-227))) 162)) (-3939 (((-112) $ $) NIL))) -(((-480) (-13 (-1121) (-10 -8 (-15 -3720 ($)) (-15 -4109 ($ $)) (-15 -4109 ($ (-656 (-656 (-962 (-227)))))) (-15 -4109 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)))) (-15 -4109 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)) (-656 (-270)))) (-15 -1464 ((-656 (-656 (-962 (-227)))) $)) (-15 -2240 ((-576) $)) (-15 -4427 ((-656 (-1115 (-390))) $)) (-15 -4427 ((-656 (-1115 (-390))) $ (-656 (-1115 (-390))))) (-15 -3479 ((-656 (-390)) $)) (-15 -3479 ((-656 (-390)) $ (-656 (-390)))) (-15 -2334 ((-1293) $ (-656 (-962 (-227))) (-888) (-888) (-940))) (-15 -2334 ((-1293) $ (-962 (-227)))) (-15 -2334 ((-1293) $ (-962 (-227)) (-888) (-888) (-940))) (-15 -2436 ((-1293) $ (-962 (-227)))) (-15 -2819 ((-1293) $ (-962 (-227)) (-888))) (-15 -4113 ($ (-656 (-656 (-962 (-227)))))) (-15 -4113 ((-876) $)) (-15 -2229 ((-656 (-656 (-962 (-227)))) (-656 (-656 (-962 (-227)))) (-656 (-888)))) (-15 -2026 ((-656 (-227)) (-656 (-656 (-962 (-227))))))))) (T -480)) -((-4113 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-480)))) (-3720 (*1 *1) (-5 *1 (-480))) (-4109 (*1 *1 *1) (-5 *1 (-480))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) (-4109 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) (-5 *4 (-656 (-940))) (-5 *1 (-480)))) (-4109 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) (-5 *4 (-656 (-940))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) (-4427 (*1 *2 *1) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480)))) (-4427 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480)))) (-3479 (*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-3479 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-2334 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-2334 (*1 *2 *1 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480)))) (-2334 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-2436 (*1 *2 *1 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480)))) (-2819 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) (-2229 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) (-5 *1 (-480)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-656 (-227))) (-5 *1 (-480))))) -(-13 (-1121) (-10 -8 (-15 -3720 ($)) (-15 -4109 ($ $)) (-15 -4109 ($ (-656 (-656 (-962 (-227)))))) (-15 -4109 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)))) (-15 -4109 ($ (-656 (-656 (-962 (-227)))) (-656 (-888)) (-656 (-888)) (-656 (-940)) (-656 (-270)))) (-15 -1464 ((-656 (-656 (-962 (-227)))) $)) (-15 -2240 ((-576) $)) (-15 -4427 ((-656 (-1115 (-390))) $)) (-15 -4427 ((-656 (-1115 (-390))) $ (-656 (-1115 (-390))))) (-15 -3479 ((-656 (-390)) $)) (-15 -3479 ((-656 (-390)) $ (-656 (-390)))) (-15 -2334 ((-1293) $ (-656 (-962 (-227))) (-888) (-888) (-940))) (-15 -2334 ((-1293) $ (-962 (-227)))) (-15 -2334 ((-1293) $ (-962 (-227)) (-888) (-888) (-940))) (-15 -2436 ((-1293) $ (-962 (-227)))) (-15 -2819 ((-1293) $ (-962 (-227)) (-888))) (-15 -4113 ($ (-656 (-656 (-962 (-227)))))) (-15 -4113 ((-876) $)) (-15 -2229 ((-656 (-656 (-962 (-227)))) (-656 (-656 (-962 (-227)))) (-656 (-888)))) (-15 -2026 ((-656 (-227)) (-656 (-656 (-962 (-227)))))))) -((-4037 (($ $) NIL) (($ $ $) 11))) -(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|))) (-482 |#2| |#3|) (-174) (-23)) (T -481)) -NIL -(-10 -8 (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2196 ((|#2| $) 20)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 16) (($ $ $) 14)) (-4026 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-2725 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3964 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-482 |t#1| |t#2|) (-1060 |t#1|) (-10 -8 (-15 (-2725) ($) -1491) (-15 -3964 ($ $ $)))) +(((-102) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-482 |#1| |#2|) . T) ((-1060 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3244 (((-1289 (-1289 (-576))) (-1289 (-1289 (-576))) (-941)) 26)) (-2306 (((-1289 (-1289 (-576))) (-941)) 21))) +(((-478) (-10 -7 (-15 -3244 ((-1289 (-1289 (-576))) (-1289 (-1289 (-576))) (-941))) (-15 -2306 ((-1289 (-1289 (-576))) (-941))))) (T -478)) +((-2306 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1289 (-1289 (-576)))) (-5 *1 (-478)))) (-3244 (*1 *2 *2 *3) (-12 (-5 *2 (-1289 (-1289 (-576)))) (-5 *3 (-941)) (-5 *1 (-478))))) +(-10 -7 (-15 -3244 ((-1289 (-1289 (-576))) (-1289 (-1289 (-576))) (-941))) (-15 -2306 ((-1289 (-1289 (-576))) (-941)))) +((-4306 (((-576) (-576)) 32) (((-576)) 24)) (-2035 (((-576) (-576)) 28) (((-576)) 20)) (-4106 (((-576) (-576)) 30) (((-576)) 22)) (-2050 (((-112) (-112)) 14) (((-112)) 12)) (-1490 (((-112) (-112)) 13) (((-112)) 11)) (-2851 (((-112) (-112)) 26) (((-112)) 17))) +(((-479) (-10 -7 (-15 -1490 ((-112))) (-15 -2050 ((-112))) (-15 -1490 ((-112) (-112))) (-15 -2050 ((-112) (-112))) (-15 -2851 ((-112))) (-15 -4106 ((-576))) (-15 -2035 ((-576))) (-15 -4306 ((-576))) (-15 -2851 ((-112) (-112))) (-15 -4106 ((-576) (-576))) (-15 -2035 ((-576) (-576))) (-15 -4306 ((-576) (-576))))) (T -479)) +((-4306 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2035 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-4106 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2851 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4306 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2035 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-4106 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2851 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-1490 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2050 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-1490 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(-10 -7 (-15 -1490 ((-112))) (-15 -2050 ((-112))) (-15 -1490 ((-112) (-112))) (-15 -2050 ((-112) (-112))) (-15 -2851 ((-112))) (-15 -4106 ((-576))) (-15 -2035 ((-576))) (-15 -4306 ((-576))) (-15 -2851 ((-112) (-112))) (-15 -4106 ((-576) (-576))) (-15 -2035 ((-576) (-576))) (-15 -4306 ((-576) (-576)))) +((-3423 (((-112) $ $) NIL)) (-2364 (((-657 (-390)) $) 34) (((-657 (-390)) $ (-657 (-390))) 146)) (-2471 (((-657 (-1116 (-390))) $) 16) (((-657 (-1116 (-390))) $ (-657 (-1116 (-390)))) 142)) (-3285 (((-657 (-657 (-963 (-227)))) (-657 (-657 (-963 (-227)))) (-657 (-889))) 58)) (-1449 (((-657 (-657 (-963 (-227)))) $) 137)) (-3664 (((-1294) $ (-963 (-227)) (-889)) 163)) (-2406 (($ $) 136) (($ (-657 (-657 (-963 (-227))))) 149) (($ (-657 (-657 (-963 (-227)))) (-657 (-889)) (-657 (-889)) (-657 (-941))) 148) (($ (-657 (-657 (-963 (-227)))) (-657 (-889)) (-657 (-889)) (-657 (-941)) (-657 (-270))) 150)) (-1708 (((-1180) $) NIL)) (-4286 (((-576) $) 110)) (-1460 (((-1142) $) NIL)) (-2918 (($) 147)) (-3051 (((-657 (-227)) (-657 (-657 (-963 (-227))))) 89)) (-3015 (((-1294) $ (-657 (-963 (-227))) (-889) (-889) (-941)) 155) (((-1294) $ (-963 (-227))) 157) (((-1294) $ (-963 (-227)) (-889) (-889) (-941)) 156)) (-3515 (((-877) $) 169) (($ (-657 (-657 (-963 (-227))))) 164)) (-4166 (((-112) $ $) NIL)) (-1605 (((-1294) $ (-963 (-227))) 162)) (-2881 (((-112) $ $) NIL))) +(((-480) (-13 (-1122) (-10 -8 (-15 -2918 ($)) (-15 -2406 ($ $)) (-15 -2406 ($ (-657 (-657 (-963 (-227)))))) (-15 -2406 ($ (-657 (-657 (-963 (-227)))) (-657 (-889)) (-657 (-889)) (-657 (-941)))) (-15 -2406 ($ (-657 (-657 (-963 (-227)))) (-657 (-889)) (-657 (-889)) (-657 (-941)) (-657 (-270)))) (-15 -1449 ((-657 (-657 (-963 (-227)))) $)) (-15 -4286 ((-576) $)) (-15 -2471 ((-657 (-1116 (-390))) $)) (-15 -2471 ((-657 (-1116 (-390))) $ (-657 (-1116 (-390))))) (-15 -2364 ((-657 (-390)) $)) (-15 -2364 ((-657 (-390)) $ (-657 (-390)))) (-15 -3015 ((-1294) $ (-657 (-963 (-227))) (-889) (-889) (-941))) (-15 -3015 ((-1294) $ (-963 (-227)))) (-15 -3015 ((-1294) $ (-963 (-227)) (-889) (-889) (-941))) (-15 -1605 ((-1294) $ (-963 (-227)))) (-15 -3664 ((-1294) $ (-963 (-227)) (-889))) (-15 -3515 ($ (-657 (-657 (-963 (-227)))))) (-15 -3515 ((-877) $)) (-15 -3285 ((-657 (-657 (-963 (-227)))) (-657 (-657 (-963 (-227)))) (-657 (-889)))) (-15 -3051 ((-657 (-227)) (-657 (-657 (-963 (-227))))))))) (T -480)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-480)))) (-2918 (*1 *1) (-5 *1 (-480))) (-2406 (*1 *1 *1) (-5 *1 (-480))) (-2406 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-480)))) (-2406 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *3 (-657 (-889))) (-5 *4 (-657 (-941))) (-5 *1 (-480)))) (-2406 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *3 (-657 (-889))) (-5 *4 (-657 (-941))) (-5 *5 (-657 (-270))) (-5 *1 (-480)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-480)))) (-4286 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) (-2471 (*1 *2 *1) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-480)))) (-2471 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-480)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-657 (-390))) (-5 *1 (-480)))) (-2364 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-390))) (-5 *1 (-480)))) (-3015 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-657 (-963 (-227)))) (-5 *4 (-889)) (-5 *5 (-941)) (-5 *2 (-1294)) (-5 *1 (-480)))) (-3015 (*1 *2 *1 *3) (-12 (-5 *3 (-963 (-227))) (-5 *2 (-1294)) (-5 *1 (-480)))) (-3015 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-963 (-227))) (-5 *4 (-889)) (-5 *5 (-941)) (-5 *2 (-1294)) (-5 *1 (-480)))) (-1605 (*1 *2 *1 *3) (-12 (-5 *3 (-963 (-227))) (-5 *2 (-1294)) (-5 *1 (-480)))) (-3664 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-963 (-227))) (-5 *4 (-889)) (-5 *2 (-1294)) (-5 *1 (-480)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-480)))) (-3285 (*1 *2 *2 *3) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *3 (-657 (-889))) (-5 *1 (-480)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *2 (-657 (-227))) (-5 *1 (-480))))) +(-13 (-1122) (-10 -8 (-15 -2918 ($)) (-15 -2406 ($ $)) (-15 -2406 ($ (-657 (-657 (-963 (-227)))))) (-15 -2406 ($ (-657 (-657 (-963 (-227)))) (-657 (-889)) (-657 (-889)) (-657 (-941)))) (-15 -2406 ($ (-657 (-657 (-963 (-227)))) (-657 (-889)) (-657 (-889)) (-657 (-941)) (-657 (-270)))) (-15 -1449 ((-657 (-657 (-963 (-227)))) $)) (-15 -4286 ((-576) $)) (-15 -2471 ((-657 (-1116 (-390))) $)) (-15 -2471 ((-657 (-1116 (-390))) $ (-657 (-1116 (-390))))) (-15 -2364 ((-657 (-390)) $)) (-15 -2364 ((-657 (-390)) $ (-657 (-390)))) (-15 -3015 ((-1294) $ (-657 (-963 (-227))) (-889) (-889) (-941))) (-15 -3015 ((-1294) $ (-963 (-227)))) (-15 -3015 ((-1294) $ (-963 (-227)) (-889) (-889) (-941))) (-15 -1605 ((-1294) $ (-963 (-227)))) (-15 -3664 ((-1294) $ (-963 (-227)) (-889))) (-15 -3515 ($ (-657 (-657 (-963 (-227)))))) (-15 -3515 ((-877) $)) (-15 -3285 ((-657 (-657 (-963 (-227)))) (-657 (-657 (-963 (-227)))) (-657 (-889)))) (-15 -3051 ((-657 (-227)) (-657 (-657 (-963 (-227)))))))) +((-2982 (($ $) NIL) (($ $ $) 11))) +(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|))) (-482 |#2| |#3|) (-174) (-23)) (T -481)) +NIL +(-10 -8 (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-4265 ((|#2| $) 20)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 16) (($ $ $) 14)) (-2971 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-482 |#1| |#2|) (-141) (-174) (-23)) (T -482)) -((-2196 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-4313 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4037 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4026 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4037 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-1121) (-10 -8 (-15 -2196 (|t#2| $)) (-15 (-4313) ($) -2666) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4037 ($ $)) (-15 -4026 ($ $ $)) (-15 -4037 ($ $ $)))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-4144 (((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-878 |#1|))) 134)) (-2639 (((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))) 131)) (-1782 (((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))) 86))) -(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -2639 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -4144 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -1782 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))))) (-656 (-1197)) (-464) (-464)) (T -483)) -((-1782 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-656 (-253 *5 *6))) (|:| |coords| (-656 (-576))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))) (-4144 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-878 *4))) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(-10 -7 (-15 -2639 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -4144 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-878 |#1|)))) (-15 -1782 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-878 |#1|))))) -((-1851 (((-3 $ "failed") $) 11)) (-2117 (($ $ $) 23)) (-3871 (($ $ $) 24)) (-4047 (($ $ $) 9)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 22))) -(((-484 |#1|) (-10 -8 (-15 -3871 (|#1| |#1| |#1|)) (-15 -2117 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1851 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) (-485)) (T -484)) -NIL -(-10 -8 (-15 -3871 (|#1| |#1| |#1|)) (-15 -2117 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1851 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) -((-1957 (((-112) $ $) 7)) (-3170 (($) 19 T CONST)) (-1851 (((-3 $ "failed") $) 16)) (-2486 (((-112) $) 18)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 25)) (-3116 (((-1141) $) 11)) (-2117 (($ $ $) 22)) (-3871 (($ $ $) 21)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4322 (($) 20 T CONST)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ $) 24)) (** (($ $ (-940)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) +((-4265 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2716 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-2982 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-2971 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-2982 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-1122) (-10 -8 (-15 -4265 (|t#2| $)) (-15 (-2716) ($) -1491) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2982 ($ $)) (-15 -2971 ($ $ $)) (-15 -2982 ($ $ $)))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-1523 (((-3 (-657 (-493 |#1| |#2|)) "failed") (-657 (-493 |#1| |#2|)) (-657 (-879 |#1|))) 134)) (-3029 (((-657 (-657 (-253 |#1| |#2|))) (-657 (-253 |#1| |#2|)) (-657 (-879 |#1|))) 131)) (-1407 (((-2 (|:| |dpolys| (-657 (-253 |#1| |#2|))) (|:| |coords| (-657 (-576)))) (-657 (-253 |#1| |#2|)) (-657 (-879 |#1|))) 86))) +(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -3029 ((-657 (-657 (-253 |#1| |#2|))) (-657 (-253 |#1| |#2|)) (-657 (-879 |#1|)))) (-15 -1523 ((-3 (-657 (-493 |#1| |#2|)) "failed") (-657 (-493 |#1| |#2|)) (-657 (-879 |#1|)))) (-15 -1407 ((-2 (|:| |dpolys| (-657 (-253 |#1| |#2|))) (|:| |coords| (-657 (-576)))) (-657 (-253 |#1| |#2|)) (-657 (-879 |#1|))))) (-657 (-1198)) (-464) (-464)) (T -483)) +((-1407 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-879 *5))) (-14 *5 (-657 (-1198))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-657 (-253 *5 *6))) (|:| |coords| (-657 (-576))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-657 (-253 *5 *6))) (-4 *7 (-464)))) (-1523 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-493 *4 *5))) (-5 *3 (-657 (-879 *4))) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-3029 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-879 *5))) (-14 *5 (-657 (-1198))) (-4 *6 (-464)) (-5 *2 (-657 (-657 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-657 (-253 *5 *6))) (-4 *7 (-464))))) +(-10 -7 (-15 -3029 ((-657 (-657 (-253 |#1| |#2|))) (-657 (-253 |#1| |#2|)) (-657 (-879 |#1|)))) (-15 -1523 ((-3 (-657 (-493 |#1| |#2|)) "failed") (-657 (-493 |#1| |#2|)) (-657 (-879 |#1|)))) (-15 -1407 ((-2 (|:| |dpolys| (-657 (-253 |#1| |#2|))) (|:| |coords| (-657 (-576)))) (-657 (-253 |#1| |#2|)) (-657 (-879 |#1|))))) +((-3969 (((-3 $ "failed") $) 11)) (-1587 (($ $ $) 23)) (-1911 (($ $ $) 24)) (-2995 (($ $ $) 9)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 22))) +(((-484 |#1|) (-10 -8 (-15 -1911 (|#1| |#1| |#1|)) (-15 -1587 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2995 (|#1| |#1| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941)))) (-485)) (T -484)) +NIL +(-10 -8 (-15 -1911 (|#1| |#1| |#1|)) (-15 -1587 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2995 (|#1| |#1| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941)))) +((-3423 (((-112) $ $) 7)) (-2515 (($) 19 T CONST)) (-3969 (((-3 $ "failed") $) 16)) (-3994 (((-112) $) 18)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 25)) (-1460 (((-1142) $) 11)) (-1587 (($ $ $) 22)) (-1911 (($ $ $) 21)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2725 (($) 20 T CONST)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ $) 24)) (** (($ $ (-941)) 14) (($ $ (-784)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) (((-485) (-141)) (T -485)) -((-1669 (*1 *1 *1) (-4 *1 (-485))) (-4047 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) (-2117 (*1 *1 *1 *1) (-4 *1 (-485))) (-3871 (*1 *1 *1 *1) (-4 *1 (-485)))) -(-13 (-738) (-10 -8 (-15 -1669 ($ $)) (-15 -4047 ($ $ $)) (-15 ** ($ $ (-576))) (-6 -4461) (-15 -2117 ($ $ $)) (-15 -3871 ($ $ $)))) -(((-102) . T) ((-625 (-876)) . T) ((-738) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1585 (((-656 (-1103)) $) NIL)) (-1654 (((-1197) $) 18)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-4087 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-4073 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3586 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL (|has| |#1| (-374)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3562 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2861 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-3612 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) NIL T CONST)) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2171 (((-112) $) NIL (|has| |#1| (-374)))) (-2654 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-2486 (((-112) $) NIL)) (-4005 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4328 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-419 (-576))) NIL) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-2423 (($ (-1 |#1| |#1|) $) 25)) (-2608 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL (|has| |#1| (-374)))) (-4412 (($ $) 29 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 35 (-3795 (-12 (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 30 (|has| |#1| (-38 (-419 (-576)))))) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-2419 (($ $ (-419 (-576))) NIL)) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2156 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2812 (((-783) $) NIL (|has| |#1| (-374)))) (-4369 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-4107 (($ $ (-1197)) 28 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) 16)) (-2196 (((-419 (-576)) $) NIL)) (-3623 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1284 |#2|)) NIL) (($ (-1273 |#1| |#2| |#3|)) 9) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2707 ((|#1| $ (-419 (-576))) NIL)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-3188 ((|#1| $) 21)) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3632 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) 27)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-486 |#1| |#2| |#3|) (-13 (-1269 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -4113 ($ (-1284 |#2|))) (-15 -4113 ($ (-1273 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -486)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-4412 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1269 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -4113 ($ (-1284 |#2|))) (-15 -4113 ($ (-1273 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) -((-1957 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1978 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3657 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#2| $ |#1| |#2|) 18)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2051 (((-3 |#2| "failed") |#1| $) 19)) (-3170 (($) NIL T CONST)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-3872 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 16)) (-2825 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#2| $ |#1|) NIL)) (-3722 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 ((|#1| $) NIL (|has| |#1| (-861)))) (-2911 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1829 ((|#1| $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-2353 (((-656 |#1|) $) NIL)) (-4128 (((-112) |#1| $) NIL)) (-3743 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-3695 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-2863 (((-656 |#1|) $) NIL)) (-1389 (((-112) |#1| $) NIL)) (-3116 (((-1141) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-1755 ((|#2| $) NIL (|has| |#1| (-861)))) (-4220 (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL)) (-4267 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2885 (((-656 |#2|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3091 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-4113 (((-876) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2950 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-487 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2|) (-1121) (-1121) (-1214 |#1| |#2|) |#2|) (T -487)) -NIL -(-1214 |#1| |#2|) -((-1957 (((-112) $ $) NIL)) (-2048 (((-656 (-2 (|:| -1597 $) (|:| -3823 (-656 |#4|)))) (-656 |#4|)) NIL)) (-2739 (((-656 $) (-656 |#4|)) NIL)) (-1585 (((-656 |#3|) $) NIL)) (-4404 (((-112) $) NIL)) (-3921 (((-112) $) NIL (|has| |#1| (-568)))) (-2417 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1916 ((|#4| |#4| $) NIL)) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |#3|) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-3603 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3170 (($) NIL T CONST)) (-4016 (((-112) $) 29 (|has| |#1| (-568)))) (-3403 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4357 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2159 (((-112) $) NIL (|has| |#1| (-568)))) (-2460 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3496 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-3588 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2982 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2317 (($ (-656 |#4|)) NIL)) (-1764 (((-3 $ "failed") $) 45)) (-2458 ((|#4| |#4| $) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-2825 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3561 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2559 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3234 ((|#4| |#4| $) NIL)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1794 (((-2 (|:| -1597 (-656 |#4|)) (|:| -3823 (-656 |#4|))) $) NIL)) (-3722 (((-656 |#4|) $) 18 (|has| $ (-6 -4464)))) (-1938 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4260 ((|#3| $) 38)) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#4|) $) 19 (|has| $ (-6 -4464)))) (-1602 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-1898 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#4| |#4|) $) 23)) (-3240 (((-656 |#3|) $) NIL)) (-3821 (((-112) |#3| $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-2850 (((-3 |#4| "failed") $) 42)) (-4387 (((-656 |#4|) $) NIL)) (-2915 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3648 ((|#4| |#4| $) NIL)) (-2384 (((-112) $ $) NIL)) (-2296 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2200 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2565 ((|#4| |#4| $) NIL)) (-3116 (((-1141) $) NIL)) (-1755 (((-3 |#4| "failed") $) 40)) (-4220 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3238 (((-3 $ "failed") $ |#4|) 58)) (-2419 (($ $ |#4|) NIL)) (-1759 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 17)) (-3307 (($) 14)) (-2196 (((-783) $) NIL)) (-3127 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) 13)) (-1556 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-4125 (($ (-656 |#4|)) 22)) (-4023 (($ $ |#3|) 52)) (-2715 (($ $ |#3|) 54)) (-1357 (($ $) NIL)) (-3142 (($ $ |#3|) NIL)) (-4113 (((-876) $) 35) (((-656 |#4|) $) 46)) (-2524 (((-783) $) NIL (|has| |#3| (-379)))) (-2950 (((-112) $ $) NIL)) (-1671 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1638 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2543 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1754 (((-656 |#3|) $) NIL)) (-1736 (((-112) |#3| $) NIL)) (-3939 (((-112) $ $) NIL)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-488 |#1| |#2| |#3| |#4|) (-1231 |#1| |#2| |#3| |#4|) (-568) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -488)) -NIL -(-1231 |#1| |#2| |#3| |#4|) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2317 (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2722 (($) 17)) (-2486 (((-112) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-1556 (((-390) $) 21) (((-227) $) 24) (((-419 (-1193 (-576))) $) 18) (((-548) $) 53)) (-4113 (((-876) $) 51) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (((-227) $) 23) (((-390) $) 20)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-4313 (($) 37 T CONST)) (-4322 (($) 8 T CONST)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-489) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))) (-1043) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1193 (-576)))) (-626 (-548)) (-10 -8 (-15 -2722 ($))))) (T -489)) -((-2722 (*1 *1) (-5 *1 (-489)))) -(-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))) (-1043) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1193 (-576)))) (-626 (-548)) (-10 -8 (-15 -2722 ($)))) -((-1957 (((-112) $ $) NIL)) (-1784 (((-1156) $) 11)) (-1776 (((-1156) $) 9)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-490) (-13 (-1104) (-10 -8 (-15 -1776 ((-1156) $)) (-15 -1784 ((-1156) $))))) (T -490)) -((-1776 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490))))) -(-13 (-1104) (-10 -8 (-15 -1776 ((-1156) $)) (-15 -1784 ((-1156) $)))) -((-1957 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1978 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3657 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#2| $ |#1| |#2|) 16)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2051 (((-3 |#2| "failed") |#1| $) 20)) (-3170 (($) NIL T CONST)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-3872 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 18)) (-2825 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#2| $ |#1|) NIL)) (-3722 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 ((|#1| $) NIL (|has| |#1| (-861)))) (-2911 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1829 ((|#1| $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-2353 (((-656 |#1|) $) 13)) (-4128 (((-112) |#1| $) NIL)) (-3743 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-3695 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-2863 (((-656 |#1|) $) NIL)) (-1389 (((-112) |#1| $) NIL)) (-3116 (((-1141) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-1755 ((|#2| $) NIL (|has| |#1| (-861)))) (-4220 (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL)) (-4267 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2885 (((-656 |#2|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) 19)) (-4369 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3091 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-4113 (((-876) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2950 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 11 (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1970 (((-783) $) 15 (|has| $ (-6 -4464))))) -(((-491 |#1| |#2| |#3|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) (-1121) (-1121) (-1179)) (T -491)) -NIL -(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) -((-2072 (((-576) (-576) (-576)) 19)) (-3196 (((-112) (-576) (-576) (-576) (-576)) 28)) (-3529 (((-1288 (-656 (-576))) (-783) (-783)) 41))) -(((-492) (-10 -7 (-15 -2072 ((-576) (-576) (-576))) (-15 -3196 ((-112) (-576) (-576) (-576) (-576))) (-15 -3529 ((-1288 (-656 (-576))) (-783) (-783))))) (T -492)) -((-3529 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1288 (-656 (-576)))) (-5 *1 (-492)))) (-3196 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))) (-2072 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) -(-10 -7 (-15 -2072 ((-576) (-576) (-576))) (-15 -3196 ((-112) (-576) (-576) (-576) (-576))) (-15 -3529 ((-1288 (-656 (-576))) (-783) (-783)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1585 (((-656 (-878 |#1|)) $) NIL)) (-1421 (((-1193 $) $ (-878 |#1|)) NIL) (((-1193 |#2|) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2390 (($ $) NIL (|has| |#2| (-568)))) (-3302 (((-112) $) NIL (|has| |#2| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 (-878 |#1|))) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2658 (($ $) NIL (|has| |#2| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-2970 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-2208 (($ $ (-656 (-576))) NIL)) (-3310 (($ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#2| (-928)))) (-1975 (($ $ |#2| (-494 (-1970 |#1|) (-783)) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-1574 (($ (-1193 |#2|) (-878 |#1|)) NIL) (($ (-1193 $) (-878 |#1|)) NIL)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#2| (-494 (-1970 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ (-878 |#1|)) NIL)) (-2192 (((-494 (-1970 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-3784 (($ (-1 (-494 (-1970 |#1|) (-783)) (-494 (-1970 |#1|) (-783))) $) NIL)) (-2423 (($ (-1 |#2| |#2|) $) NIL)) (-3477 (((-3 (-878 |#1|) "failed") $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#2| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2447 (((-1179) $) NIL)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -4080 (-783))) "failed") $) NIL)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) NIL)) (-1686 ((|#2| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#2| (-928)))) (-1946 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) NIL) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) NIL) (($ $ (-878 |#1|) $) NIL) (($ $ (-656 (-878 |#1|)) (-656 $)) NIL)) (-1790 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-4107 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2196 (((-494 (-1970 |#1|) (-783)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1944 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-878 |#1|)) NIL) (($ (-419 (-576))) NIL (-3795 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3244 (((-656 |#2|) $) NIL)) (-2707 ((|#2| $ (-494 (-1970 |#1|) (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-493 |#1| |#2|) (-13 (-968 |#2| (-494 (-1970 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -2208 ($ $ (-656 (-576)))))) (-656 (-1197)) (-1070)) (T -493)) -((-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) (-14 *3 (-656 (-1197))) (-4 *4 (-1070))))) -(-13 (-968 |#2| (-494 (-1970 |#1|) (-783)) (-878 |#1|)) (-10 -8 (-15 -2208 ($ $ (-656 (-576)))))) -((-1957 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3114 (((-112) $) NIL (|has| |#2| (-23)))) (-2846 (($ (-940)) NIL (|has| |#2| (-1070)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2214 (($ $ $) NIL (|has| |#2| (-805)))) (-1765 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-4234 (((-112) $ (-783)) NIL)) (-2201 (((-783)) NIL (|has| |#2| (-379)))) (-4268 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1121)))) (-2317 (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) NIL (|has| |#2| (-1121)))) (-1930 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1070)))) (-1851 (((-3 $ "failed") $) NIL (|has| |#2| (-1070)))) (-4370 (($) NIL (|has| |#2| (-379)))) (-1910 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#2| $ (-576)) 11)) (-3722 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2486 (((-112) $) NIL (|has| |#2| (-1070)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#2| (-861)))) (-2911 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#2| (-861)))) (-1898 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#2| |#2|) $) NIL)) (-3787 (((-940) $) NIL (|has| |#2| (-379)))) (-1884 (((-112) $ (-783)) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)))) (-2447 (((-1179) $) NIL (|has| |#2| (-1121)))) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-2411 (($ (-940)) NIL (|has| |#2| (-379)))) (-3116 (((-1141) $) NIL (|has| |#2| (-1121)))) (-1755 ((|#2| $) NIL (|has| (-576) (-861)))) (-4267 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2885 (((-656 |#2|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-1875 ((|#2| $ $) NIL (|has| |#2| (-1070)))) (-1492 (($ (-1288 |#2|)) NIL)) (-3181 (((-135)) NIL (|has| |#2| (-374)))) (-4107 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-3127 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-1288 |#2|) $) NIL) (($ (-576)) NIL (-3795 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) NIL (|has| |#2| (-1121))) (((-876) $) NIL (|has| |#2| (-625 (-876))))) (-2910 (((-783)) NIL (|has| |#2| (-1070)) CONST)) (-2950 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2543 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-4313 (($) NIL (|has| |#2| (-23)) CONST)) (-4322 (($) NIL (|has| |#2| (-1070)) CONST)) (-3157 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-3995 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3963 (((-112) $ $) 17 (|has| |#2| (-861)))) (-4047 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4037 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4026 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1070))) (($ $ (-940)) NIL (|has| |#2| (-1070)))) (* (($ $ $) NIL (|has| |#2| (-1070))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-940) $) NIL (|has| |#2| (-25)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-494 |#1| |#2|) (-243 |#1| |#2|) (-783) (-805)) (T -494)) +((-2098 (*1 *1 *1) (-4 *1 (-485))) (-2995 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) (-1587 (*1 *1 *1 *1) (-4 *1 (-485))) (-1911 (*1 *1 *1 *1) (-4 *1 (-485)))) +(-13 (-739) (-10 -8 (-15 -2098 ($ $)) (-15 -2995 ($ $ $)) (-15 ** ($ $ (-576))) (-6 -4463) (-15 -1587 ($ $ $)) (-15 -1911 ($ $ $)))) +(((-102) . T) ((-625 (-877)) . T) ((-739) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1998 (((-657 (-1104)) $) NIL)) (-2993 (((-1198) $) 18)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2212 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3212 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-2143 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-374)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1866 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2120 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3696 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2166 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) NIL T CONST)) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4009 (((-112) $) NIL (|has| |#1| (-374)))) (-3155 (((-112) $) NIL)) (-1622 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-3994 (((-112) $) NIL)) (-3856 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $ (-941)) NIL) (($ $ (-419 (-576))) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-419 (-576))) NIL) (($ $ (-1104) (-419 (-576))) NIL) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) NIL)) (-4071 (($ (-1 |#1| |#1|) $) 25)) (-3707 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL (|has| |#1| (-374)))) (-2320 (($ $) 29 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 35 (-2748 (-12 (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 30 (|has| |#1| (-38 (-419 (-576)))))) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-1456 (($ $ (-419 (-576))) NIL)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4056 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-4164 (((-784) $) NIL (|has| |#1| (-374)))) (-2780 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1134)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-2209 (($ $ (-1198)) 28 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1285 |#2|)) 16)) (-4265 (((-419 (-576)) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1285 |#2|)) NIL) (($ (-1274 |#1| |#2| |#3|)) 9) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2498 ((|#1| $ (-419 (-576))) NIL)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-3713 ((|#1| $) 21)) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1285 |#2|)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) 27)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-486 |#1| |#2| |#3|) (-13 (-1270 |#1|) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3515 ($ (-1285 |#2|))) (-15 -3515 ($ (-1274 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -486)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1071)) (-14 *5 *3))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-1274 *3 *4 *5)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-2320 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) +(-13 (-1270 |#1|) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3515 ($ (-1285 |#2|))) (-15 -3515 ($ (-1274 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) +((-3423 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4082 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3590 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#2| $ |#1| |#2|) 18)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2244 (((-3 |#2| "failed") |#1| $) 19)) (-2515 (($) NIL T CONST)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-1920 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) 16)) (-3901 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#2| $ |#1|) NIL)) (-1448 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 ((|#1| $) NIL (|has| |#1| (-862)))) (-3855 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1833 ((|#1| $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3135 (((-657 |#1|) $) NIL)) (-2559 (((-112) |#1| $) NIL)) (-3107 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2701 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3309 (((-657 |#1|) $) NIL)) (-4324 (((-112) |#1| $) NIL)) (-1460 (((-1142) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3528 ((|#2| $) NIL (|has| |#1| (-862)))) (-4135 (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1495 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3585 (((-657 |#2|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3009 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3515 (((-877) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-4166 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-487 |#1| |#2| |#3| |#4|) (-1215 |#1| |#2|) (-1122) (-1122) (-1215 |#1| |#2|) |#2|) (T -487)) +NIL +(-1215 |#1| |#2|) +((-3423 (((-112) $ $) NIL)) (-2112 (((-657 (-2 (|:| -1988 $) (|:| -3179 (-657 |#4|)))) (-657 |#4|)) NIL)) (-1578 (((-657 $) (-657 |#4|)) NIL)) (-1998 (((-657 |#3|) $) NIL)) (-2250 (((-112) $) NIL)) (-4334 (((-112) $) NIL (|has| |#1| (-568)))) (-2605 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3300 ((|#4| |#4| $) NIL)) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |#3|) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-2007 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2515 (($) NIL T CONST)) (-2697 (((-112) $) 29 (|has| |#1| (-568)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1978 (((-112) $) NIL (|has| |#1| (-568)))) (-1835 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1494 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-4203 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-1593 (((-3 $ "failed") (-657 |#4|)) NIL)) (-2830 (($ (-657 |#4|)) NIL)) (-3542 (((-3 $ "failed") $) 45)) (-1815 ((|#4| |#4| $) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-3901 (($ |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3951 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3427 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1979 ((|#4| |#4| $) NIL)) (-3662 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1492 (((-2 (|:| -1988 (-657 |#4|)) (|:| -3179 (-657 |#4|))) $) NIL)) (-1448 (((-657 |#4|) $) 18 (|has| $ (-6 -4466)))) (-3537 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1428 ((|#3| $) 38)) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#4|) $) 19 (|has| $ (-6 -4466)))) (-3326 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-1799 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#4| |#4|) $) 23)) (-3944 (((-657 |#3|) $) NIL)) (-2611 (((-112) |#3| $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-3921 (((-3 |#4| "failed") $) 42)) (-3218 (((-657 |#4|) $) NIL)) (-3893 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3510 ((|#4| |#4| $) NIL)) (-2304 (((-112) $ $) NIL)) (-2678 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-4299 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3511 ((|#4| |#4| $) NIL)) (-1460 (((-1142) $) NIL)) (-3528 (((-3 |#4| "failed") $) 40)) (-4135 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3923 (((-3 $ "failed") $ |#4|) 58)) (-1456 (($ $ |#4|) NIL)) (-2372 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#4|) (-657 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 17)) (-3340 (($) 14)) (-4265 (((-784) $) NIL)) (-1469 (((-784) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (((-784) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) 13)) (-4136 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3529 (($ (-657 |#4|)) 22)) (-2764 (($ $ |#3|) 52)) (-2555 (($ $ |#3|) 54)) (-2038 (($ $) NIL)) (-2267 (($ $ |#3|) NIL)) (-3515 (((-877) $) 35) (((-657 |#4|) $) 46)) (-4384 (((-784) $) NIL (|has| |#3| (-379)))) (-4166 (((-112) $ $) NIL)) (-2726 (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3741 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) NIL)) (-3258 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-2330 (((-657 |#3|) $) NIL)) (-2137 (((-112) |#3| $) NIL)) (-2881 (((-112) $ $) NIL)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-488 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|) (-568) (-806) (-862) (-1087 |#1| |#2| |#3|)) (T -488)) +NIL +(-1232 |#1| |#2| |#3| |#4|) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2830 (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-1622 (($) 17)) (-3994 (((-112) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-4136 (((-390) $) 21) (((-227) $) 24) (((-419 (-1194 (-576))) $) 18) (((-548) $) 53)) (-3515 (((-877) $) 51) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (((-227) $) 23) (((-390) $) 20)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2716 (($) 37 T CONST)) (-2725 (($) 8 T CONST)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-489) (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))) (-1044) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1194 (-576)))) (-626 (-548)) (-10 -8 (-15 -1622 ($))))) (T -489)) +((-1622 (*1 *1) (-5 *1 (-489)))) +(-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))) (-1044) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1194 (-576)))) (-626 (-548)) (-10 -8 (-15 -1622 ($)))) +((-3423 (((-112) $ $) NIL)) (-1691 (((-1157) $) 11)) (-1678 (((-1157) $) 9)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 17) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-490) (-13 (-1105) (-10 -8 (-15 -1678 ((-1157) $)) (-15 -1691 ((-1157) $))))) (T -490)) +((-1678 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-490)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-490))))) +(-13 (-1105) (-10 -8 (-15 -1678 ((-1157) $)) (-15 -1691 ((-1157) $)))) +((-3423 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4082 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3590 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#2| $ |#1| |#2|) 16)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2244 (((-3 |#2| "failed") |#1| $) 20)) (-2515 (($) NIL T CONST)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-1920 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) 18)) (-3901 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#2| $ |#1|) NIL)) (-1448 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 ((|#1| $) NIL (|has| |#1| (-862)))) (-3855 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1833 ((|#1| $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3135 (((-657 |#1|) $) 13)) (-2559 (((-112) |#1| $) NIL)) (-3107 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2701 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3309 (((-657 |#1|) $) NIL)) (-4324 (((-112) |#1| $) NIL)) (-1460 (((-1142) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3528 ((|#2| $) NIL (|has| |#1| (-862)))) (-4135 (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1495 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3585 (((-657 |#2|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) 19)) (-2780 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3009 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3515 (((-877) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-4166 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 11 (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3437 (((-784) $) 15 (|has| $ (-6 -4466))))) +(((-491 |#1| |#2| |#3|) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) (-1122) (-1122) (-1180)) (T -491)) +NIL +(-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) +((-2354 (((-576) (-576) (-576)) 19)) (-1585 (((-112) (-576) (-576) (-576) (-576)) 28)) (-4344 (((-1289 (-657 (-576))) (-784) (-784)) 41))) +(((-492) (-10 -7 (-15 -2354 ((-576) (-576) (-576))) (-15 -1585 ((-112) (-576) (-576) (-576) (-576))) (-15 -4344 ((-1289 (-657 (-576))) (-784) (-784))))) (T -492)) +((-4344 (*1 *2 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1289 (-657 (-576)))) (-5 *1 (-492)))) (-1585 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))) (-2354 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) +(-10 -7 (-15 -2354 ((-576) (-576) (-576))) (-15 -1585 ((-112) (-576) (-576) (-576) (-576))) (-15 -4344 ((-1289 (-657 (-576))) (-784) (-784)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1998 (((-657 (-879 |#1|)) $) NIL)) (-1825 (((-1194 $) $ (-879 |#1|)) NIL) (((-1194 |#2|) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2361 (($ $) NIL (|has| |#2| (-568)))) (-3286 (((-112) $) NIL (|has| |#2| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 (-879 |#1|))) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3188 (($ $) NIL (|has| |#2| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-879 |#1|) "failed") $) NIL)) (-2830 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-879 |#1|) $) NIL)) (-4351 (($ $ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-4377 (($ $ (-657 (-576))) NIL)) (-2165 (($ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#2| (-929)))) (-2643 (($ $ |#2| (-494 (-3437 |#1|) (-784)) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-1986 (($ (-1194 |#2|) (-879 |#1|)) NIL) (($ (-1194 $) (-879 |#1|)) NIL)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#2| (-494 (-3437 |#1|) (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ (-879 |#1|)) NIL)) (-4219 (((-494 (-3437 |#1|) (-784)) $) NIL) (((-784) $ (-879 |#1|)) NIL) (((-657 (-784)) $ (-657 (-879 |#1|))) NIL)) (-2308 (($ (-1 (-494 (-3437 |#1|) (-784)) (-494 (-3437 |#1|) (-784))) $) NIL)) (-4071 (($ (-1 |#2| |#2|) $) NIL)) (-2502 (((-3 (-879 |#1|) "failed") $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#2| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1708 (((-1180) $) NIL)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| (-879 |#1|)) (|:| -2128 (-784))) "failed") $) NIL)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) NIL)) (-2118 ((|#2| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#2| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#2| (-929)))) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-879 |#1|) |#2|) NIL) (($ $ (-657 (-879 |#1|)) (-657 |#2|)) NIL) (($ $ (-879 |#1|) $) NIL) (($ $ (-657 (-879 |#1|)) (-657 $)) NIL)) (-1465 (($ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-2209 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-4265 (((-494 (-3437 |#1|) (-784)) $) NIL) (((-784) $ (-879 |#1|)) NIL) (((-657 (-784)) $ (-657 (-879 |#1|))) NIL)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-879 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3614 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-879 |#1|)) NIL) (($ (-419 (-576))) NIL (-2748 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3987 (((-657 |#2|) $) NIL)) (-2498 ((|#2| $ (-494 (-3437 |#1|) (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#2| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#2| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-493 |#1| |#2|) (-13 (-969 |#2| (-494 (-3437 |#1|) (-784)) (-879 |#1|)) (-10 -8 (-15 -4377 ($ $ (-657 (-576)))))) (-657 (-1198)) (-1071)) (T -493)) +((-4377 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-493 *3 *4)) (-14 *3 (-657 (-1198))) (-4 *4 (-1071))))) +(-13 (-969 |#2| (-494 (-3437 |#1|) (-784)) (-879 |#1|)) (-10 -8 (-15 -4377 ($ $ (-657 (-576)))))) +((-3423 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2044 (((-112) $) NIL (|has| |#2| (-23)))) (-1375 (($ (-941)) NIL (|has| |#2| (-1071)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1323 (($ $ $) NIL (|has| |#2| (-806)))) (-2423 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-4284 (((-112) $ (-784)) NIL)) (-2148 (((-784)) NIL (|has| |#2| (-379)))) (-3719 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1122)))) (-2830 (((-576) $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) ((|#2| $) NIL (|has| |#2| (-1122)))) (-3439 (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL (|has| |#2| (-1071))) (((-702 |#2|) (-702 $)) NIL (|has| |#2| (-1071)))) (-3969 (((-3 $ "failed") $) NIL (|has| |#2| (-1071)))) (-1876 (($) NIL (|has| |#2| (-379)))) (-1810 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#2| $ (-576)) 11)) (-1448 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3994 (((-112) $) NIL (|has| |#2| (-1071)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#2| (-862)))) (-3855 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#2| (-862)))) (-1799 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#2| |#2|) $) NIL)) (-2327 (((-941) $) NIL (|has| |#2| (-379)))) (-4326 (((-112) $ (-784)) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL (|has| |#2| (-1071))) (((-702 |#2|) (-1289 $)) NIL (|has| |#2| (-1071)))) (-1708 (((-1180) $) NIL (|has| |#2| (-1122)))) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-3146 (($ (-941)) NIL (|has| |#2| (-379)))) (-1460 (((-1142) $) NIL (|has| |#2| (-1122)))) (-3528 ((|#2| $) NIL (|has| (-576) (-862)))) (-1495 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3585 (((-657 |#2|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-4224 ((|#2| $ $) NIL (|has| |#2| (-1071)))) (-1902 (($ (-1289 |#2|)) NIL)) (-1451 (((-135)) NIL (|has| |#2| (-374)))) (-2209 (($ $ (-784)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#2| (-1071)))) (-1469 (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-1289 |#2|) $) NIL) (($ (-576)) NIL (-2748 (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (($ |#2|) NIL (|has| |#2| (-1122))) (((-877) $) NIL (|has| |#2| (-625 (-877))))) (-3845 (((-784)) NIL (|has| |#2| (-1071)) CONST)) (-4166 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3258 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2716 (($) NIL (|has| |#2| (-23)) CONST)) (-2725 (($) NIL (|has| |#2| (-1071)) CONST)) (-2066 (($ $ (-784)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#2| (-1071)))) (-2938 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2901 (((-112) $ $) 17 (|has| |#2| (-862)))) (-2995 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-2982 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-2971 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-784)) NIL (|has| |#2| (-1071))) (($ $ (-941)) NIL (|has| |#2| (-1071)))) (* (($ $ $) NIL (|has| |#2| (-1071))) (($ $ |#2|) NIL (|has| |#2| (-739))) (($ |#2| $) NIL (|has| |#2| (-739))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-784) $) NIL (|has| |#2| (-23))) (($ (-941) $) NIL (|has| |#2| (-25)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-494 |#1| |#2|) (-243 |#1| |#2|) (-784) (-806)) (T -494)) NIL (-243 |#1| |#2|) -((-1957 (((-112) $ $) NIL)) (-2474 (((-656 (-890)) $) 15)) (-4149 (((-518) $) 13)) (-2447 (((-1179) $) NIL)) (-2558 (($ (-518) (-656 (-890))) 11)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 22) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-495) (-13 (-1104) (-10 -8 (-15 -2558 ($ (-518) (-656 (-890)))) (-15 -4149 ((-518) $)) (-15 -2474 ((-656 (-890)) $))))) (T -495)) -((-2558 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-890))) (-5 *1 (-495)))) (-4149 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-656 (-890))) (-5 *1 (-495))))) -(-13 (-1104) (-10 -8 (-15 -2558 ($ (-518) (-656 (-890)))) (-15 -4149 ((-518) $)) (-15 -2474 ((-656 (-890)) $)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) NIL)) (-3170 (($) NIL T CONST)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-2745 (($ $ $) 48)) (-2748 (($ $ $) 47)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3777 ((|#1| $) 40)) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3743 ((|#1| $) 41)) (-3695 (($ |#1| $) 18)) (-2644 (($ (-656 |#1|)) 19)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2372 ((|#1| $) 34)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) 11)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) 45)) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1970 (((-783) $) 29 (|has| $ (-6 -4464))))) -(((-496 |#1|) (-13 (-989 |#1|) (-10 -8 (-15 -2644 ($ (-656 |#1|))))) (-861)) (T -496)) -((-2644 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-496 *3))))) -(-13 (-989 |#1|) (-10 -8 (-15 -2644 ($ (-656 |#1|))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2721 (($ $) 71)) (-2004 (((-112) $) NIL)) (-2447 (((-1179) $) NIL)) (-3208 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45)) (-3116 (((-1141) $) NIL)) (-2549 (((-3 |#4| "failed") $) 117)) (-3225 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-576)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3325 (((-2 (|:| -1685 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-4113 (((-876) $) 110)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 32 T CONST)) (-3939 (((-112) $ $) 121)) (-4037 (($ $) 77) (($ $ $) NIL)) (-4026 (($ $ $) 72)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 78))) -(((-497 |#1| |#2| |#3| |#4|) (-346 |#1| |#2| |#3| |#4|) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -497)) +((-3423 (((-112) $ $) NIL)) (-2154 (((-657 (-891)) $) 15)) (-2634 (((-518) $) 13)) (-1708 (((-1180) $) NIL)) (-3410 (($ (-518) (-657 (-891))) 11)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 22) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-495) (-13 (-1105) (-10 -8 (-15 -3410 ($ (-518) (-657 (-891)))) (-15 -2634 ((-518) $)) (-15 -2154 ((-657 (-891)) $))))) (T -495)) +((-3410 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-657 (-891))) (-5 *1 (-495)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2154 (*1 *2 *1) (-12 (-5 *2 (-657 (-891))) (-5 *1 (-495))))) +(-13 (-1105) (-10 -8 (-15 -3410 ($ (-518) (-657 (-891)))) (-15 -2634 ((-518) $)) (-15 -2154 ((-657 (-891)) $)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) NIL)) (-2515 (($) NIL T CONST)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-1631 (($ $ $) 48)) (-1661 (($ $ $) 47)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2249 ((|#1| $) 40)) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3107 ((|#1| $) 41)) (-2701 (($ |#1| $) 18)) (-3077 (($ (-657 |#1|)) 19)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2184 ((|#1| $) 34)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) 11)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) 45)) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3437 (((-784) $) 29 (|has| $ (-6 -4466))))) +(((-496 |#1|) (-13 (-990 |#1|) (-10 -8 (-15 -3077 ($ (-657 |#1|))))) (-862)) (T -496)) +((-3077 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3))))) +(-13 (-990 |#1|) (-10 -8 (-15 -3077 ($ (-657 |#1|))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3662 (($ $) 71)) (-2856 (((-112) $) NIL)) (-1708 (((-1180) $) NIL)) (-1712 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45)) (-1460 (((-1142) $) NIL)) (-4083 (((-3 |#4| "failed") $) 117)) (-1884 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-576)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3545 (((-2 (|:| -3031 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3515 (((-877) $) 110)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 32 T CONST)) (-2881 (((-112) $ $) 121)) (-2982 (($ $) 77) (($ $ $) NIL)) (-2971 (($ $ $) 72)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 78))) +(((-497 |#1| |#2| |#3| |#4|) (-346 |#1| |#2| |#3| |#4|) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -497)) NIL (-346 |#1| |#2| |#3| |#4|) -((-1576 (((-576) (-656 (-576))) 53)) (-1370 ((|#1| (-656 |#1|)) 94)) (-2619 (((-656 |#1|) (-656 |#1|)) 95)) (-3174 (((-656 |#1|) (-656 |#1|)) 97)) (-3115 ((|#1| (-656 |#1|)) 96)) (-1944 (((-656 (-576)) (-656 |#1|)) 56))) -(((-498 |#1|) (-10 -7 (-15 -3115 (|#1| (-656 |#1|))) (-15 -1370 (|#1| (-656 |#1|))) (-15 -3174 ((-656 |#1|) (-656 |#1|))) (-15 -2619 ((-656 |#1|) (-656 |#1|))) (-15 -1944 ((-656 (-576)) (-656 |#1|))) (-15 -1576 ((-576) (-656 (-576))))) (-1264 (-576))) (T -498)) -((-1576 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) (-4 *4 (-1264 *2)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1264 (-576))) (-5 *2 (-656 (-576))) (-5 *1 (-498 *4)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3)))) (-3174 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576))))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576)))))) -(-10 -7 (-15 -3115 (|#1| (-656 |#1|))) (-15 -1370 (|#1| (-656 |#1|))) (-15 -3174 ((-656 |#1|) (-656 |#1|))) (-15 -2619 ((-656 |#1|) (-656 |#1|))) (-15 -1944 ((-656 (-576)) (-656 |#1|))) (-15 -1576 ((-576) (-656 (-576))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2628 (((-576) $) NIL (|has| (-576) (-317)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL (|has| (-576) (-832)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1059 (-576))))) (-2317 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-1895 (($ $ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| (-576) (-557)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2279 (((-112) $) NIL (|has| (-576) (-832)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-2486 (((-112) $) NIL)) (-2252 (($ $) NIL)) (-2687 (((-576) $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-3323 (((-112) $) NIL (|has| (-576) (-832)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2907 (($ $ $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| (-576) (-861)))) (-2423 (($ (-1 (-576) (-576)) $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| (-576) (-1173)) CONST)) (-1636 (($ (-419 (-576))) 9)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2701 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3058 (((-576) $) NIL (|has| (-576) (-557)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2145 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-2812 (((-783) $) NIL)) (-4369 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4107 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3591 (($ $) NIL)) (-2697 (((-576) $) NIL)) (-1556 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL) (((-1025 16) $) 10)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-2910 (((-783)) NIL T CONST)) (-4081 (((-576) $) NIL (|has| (-576) (-557)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| (-576) (-832)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3995 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3975 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3963 (((-112) $ $) NIL (|has| (-576) (-861)))) (-4047 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-499) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 16)) (-10 -8 (-15 -2701 ((-419 (-576)) $)) (-15 -1636 ($ (-419 (-576))))))) (T -499)) -((-2701 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) -(-13 (-1013 (-576)) (-625 (-419 (-576))) (-625 (-1025 16)) (-10 -8 (-15 -2701 ((-419 (-576)) $)) (-15 -1636 ($ (-419 (-576)))))) -((-2911 (((-656 |#2|) $) 31)) (-1602 (((-112) |#2| $) 39)) (-1759 (((-112) (-1 (-112) |#2|) $) 26)) (-2145 (($ $ (-656 (-304 |#2|))) 13) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-3127 (((-783) (-1 (-112) |#2|) $) 30) (((-783) |#2| $) 37)) (-4113 (((-876) $) 45)) (-2543 (((-112) (-1 (-112) |#2|) $) 23)) (-3939 (((-112) $ $) 35)) (-1970 (((-783) $) 18))) -(((-500 |#1| |#2|) (-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -2145 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2145 (|#1| |#1| |#2| |#2|)) (-15 -2145 (|#1| |#1| (-304 |#2|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -1602 ((-112) |#2| |#1|)) (-15 -3127 ((-783) |#2| |#1|)) (-15 -2911 ((-656 |#2|) |#1|)) (-15 -3127 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1759 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1970 ((-783) |#1|))) (-501 |#2|) (-1238)) (T -500)) -NIL -(-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -2145 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2145 (|#1| |#1| |#2| |#2|)) (-15 -2145 (|#1| |#1| (-304 |#2|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -1602 ((-112) |#2| |#1|)) (-15 -3127 ((-783) |#2| |#1|)) (-15 -2911 ((-656 |#2|) |#1|)) (-15 -3127 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1759 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1970 ((-783) |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) 8)) (-3170 (($) 7 T CONST)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-501 |#1|) (-141) (-1238)) (T -501)) -((-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) (-1898 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) (-2543 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-1759 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-3127 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-783)))) (-3722 (*1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) (-2911 (*1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) (-3127 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-783)))) (-1602 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2423 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4465)) (-15 -1898 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4464)) (PROGN (-15 -2543 ((-112) (-1 (-112) |t#1|) $)) (-15 -1759 ((-112) (-1 (-112) |t#1|) $)) (-15 -3127 ((-783) (-1 (-112) |t#1|) $)) (-15 -3722 ((-656 |t#1|) $)) (-15 -2911 ((-656 |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -3127 ((-783) |t#1| $)) (-15 -1602 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-4113 ((|#1| $) 6) (($ |#1|) 9))) -(((-502 |#1|) (-141) (-1238)) (T -502)) +((-4396 (((-576) (-657 (-576))) 53)) (-4407 ((|#1| (-657 |#1|)) 94)) (-2827 (((-657 |#1|) (-657 |#1|)) 95)) (-2553 (((-657 |#1|) (-657 |#1|)) 97)) (-3431 ((|#1| (-657 |#1|)) 96)) (-3614 (((-657 (-576)) (-657 |#1|)) 56))) +(((-498 |#1|) (-10 -7 (-15 -3431 (|#1| (-657 |#1|))) (-15 -4407 (|#1| (-657 |#1|))) (-15 -2553 ((-657 |#1|) (-657 |#1|))) (-15 -2827 ((-657 |#1|) (-657 |#1|))) (-15 -3614 ((-657 (-576)) (-657 |#1|))) (-15 -4396 ((-576) (-657 (-576))))) (-1265 (-576))) (T -498)) +((-4396 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) (-4 *4 (-1265 *2)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-1265 (-576))) (-5 *2 (-657 (-576))) (-5 *1 (-498 *4)))) (-2827 (*1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1265 (-576))) (-5 *1 (-498 *3)))) (-2553 (*1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1265 (-576))) (-5 *1 (-498 *3)))) (-4407 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1265 (-576))))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1265 (-576)))))) +(-10 -7 (-15 -3431 (|#1| (-657 |#1|))) (-15 -4407 (|#1| (-657 |#1|))) (-15 -2553 ((-657 |#1|) (-657 |#1|))) (-15 -2827 ((-657 |#1|) (-657 |#1|))) (-15 -3614 ((-657 (-576)) (-657 |#1|))) (-15 -4396 ((-576) (-657 (-576))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2923 (((-576) $) NIL (|has| (-576) (-317)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL (|has| (-576) (-833)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| (-576) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1060 (-576))))) (-2830 (((-576) $) NIL) (((-1198) $) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-576) (-1060 (-576)))) (((-576) $) NIL (|has| (-576) (-1060 (-576))))) (-3355 (($ $ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| (-576) (-557)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3810 (((-112) $) NIL (|has| (-576) (-833)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-576) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-576) (-902 (-390))))) (-3994 (((-112) $) NIL)) (-3502 (($ $) NIL)) (-1590 (((-576) $) NIL)) (-1955 (((-3 $ "failed") $) NIL (|has| (-576) (-1174)))) (-3517 (((-112) $) NIL (|has| (-576) (-833)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3740 (($ $ $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| (-576) (-862)))) (-4071 (($ (-1 (-576) (-576)) $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| (-576) (-1174)) CONST)) (-3720 (($ (-419 (-576))) 9)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2440 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-2681 (((-576) $) NIL (|has| (-576) (-557)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3205 (($ $ (-657 (-576)) (-657 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-1198)) (-657 (-576))) NIL (|has| (-576) (-526 (-1198) (-576)))) (($ $ (-1198) (-576)) NIL (|has| (-576) (-526 (-1198) (-576))))) (-4164 (((-784) $) NIL)) (-2780 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2209 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-4226 (($ $) NIL)) (-1602 (((-576) $) NIL)) (-4136 (((-908 (-576)) $) NIL (|has| (-576) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-576) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1044))) (((-227) $) NIL (|has| (-576) (-1044)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1198)) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL) (((-1026 16) $) 10)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| (-576) (-929))) (|has| (-576) (-146))))) (-3845 (((-784)) NIL T CONST)) (-2140 (((-576) $) NIL (|has| (-576) (-557)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2127 (($ $) NIL (|has| (-576) (-833)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-2938 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2913 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2901 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2995 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) +(((-499) (-13 (-1014 (-576)) (-625 (-419 (-576))) (-625 (-1026 16)) (-10 -8 (-15 -2440 ((-419 (-576)) $)) (-15 -3720 ($ (-419 (-576))))))) (T -499)) +((-2440 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) (-3720 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) +(-13 (-1014 (-576)) (-625 (-419 (-576))) (-625 (-1026 16)) (-10 -8 (-15 -2440 ((-419 (-576)) $)) (-15 -3720 ($ (-419 (-576)))))) +((-3855 (((-657 |#2|) $) 31)) (-3326 (((-112) |#2| $) 39)) (-2372 (((-112) (-1 (-112) |#2|) $) 26)) (-3205 (($ $ (-657 (-304 |#2|))) 13) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-657 |#2|) (-657 |#2|)) NIL)) (-1469 (((-784) (-1 (-112) |#2|) $) 30) (((-784) |#2| $) 37)) (-3515 (((-877) $) 45)) (-3258 (((-112) (-1 (-112) |#2|) $) 23)) (-2881 (((-112) $ $) 35)) (-3437 (((-784) $) 18))) +(((-500 |#1| |#2|) (-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -3205 (|#1| |#1| (-657 |#2|) (-657 |#2|))) (-15 -3205 (|#1| |#1| |#2| |#2|)) (-15 -3205 (|#1| |#1| (-304 |#2|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#2|)))) (-15 -3326 ((-112) |#2| |#1|)) (-15 -1469 ((-784) |#2| |#1|)) (-15 -3855 ((-657 |#2|) |#1|)) (-15 -1469 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -2372 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3258 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3437 ((-784) |#1|))) (-501 |#2|) (-1239)) (T -500)) +NIL +(-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -3205 (|#1| |#1| (-657 |#2|) (-657 |#2|))) (-15 -3205 (|#1| |#1| |#2| |#2|)) (-15 -3205 (|#1| |#1| (-304 |#2|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#2|)))) (-15 -3326 ((-112) |#2| |#1|)) (-15 -1469 ((-784) |#2| |#1|)) (-15 -3855 ((-657 |#2|) |#1|)) (-15 -1469 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -2372 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3258 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3437 ((-784) |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) 8)) (-2515 (($) 7 T CONST)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-501 |#1|) (-141) (-1239)) (T -501)) +((-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1239)))) (-1799 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4467)) (-4 *1 (-501 *3)) (-4 *3 (-1239)))) (-3258 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *4)) (-4 *4 (-1239)) (-5 *2 (-112)))) (-2372 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *4)) (-4 *4 (-1239)) (-5 *2 (-112)))) (-1469 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *4)) (-4 *4 (-1239)) (-5 *2 (-784)))) (-1448 (*1 *2 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) (-5 *2 (-657 *3)))) (-3855 (*1 *2 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) (-5 *2 (-657 *3)))) (-1469 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-784)))) (-3326 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |t#1| (-1122)) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4071 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4467)) (-15 -1799 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4466)) (PROGN (-15 -3258 ((-112) (-1 (-112) |t#1|) $)) (-15 -2372 ((-112) (-1 (-112) |t#1|) $)) (-15 -1469 ((-784) (-1 (-112) |t#1|) $)) (-15 -1448 ((-657 |t#1|) $)) (-15 -3855 ((-657 |t#1|) $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -1469 ((-784) |t#1| $)) (-15 -3326 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-3515 ((|#1| $) 6) (($ |#1|) 9))) +(((-502 |#1|) (-141) (-1239)) (T -502)) NIL (-13 (-625 |t#1|) (-628 |t#1|)) (((-628 |#1|) . T) ((-625 |#1|) . T)) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-2842 (($ (-1179)) 8)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 15) (((-1179) $) 12)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 11))) -(((-503) (-13 (-1121) (-625 (-1179)) (-10 -8 (-15 -2842 ($ (-1179)))))) (T -503)) -((-2842 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-503))))) -(-13 (-1121) (-625 (-1179)) (-10 -8 (-15 -2842 ($ (-1179))))) -((-3586 (($ $) 15)) (-3562 (($ $) 24)) (-3612 (($ $) 12)) (-3623 (($ $) 10)) (-3599 (($ $) 17)) (-3574 (($ $) 22))) -(((-504 |#1|) (-10 -8 (-15 -3574 (|#1| |#1|)) (-15 -3599 (|#1| |#1|)) (-15 -3623 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3586 (|#1| |#1|))) (-505)) (T -504)) -NIL -(-10 -8 (-15 -3574 (|#1| |#1|)) (-15 -3599 (|#1| |#1|)) (-15 -3623 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3586 (|#1| |#1|))) -((-3586 (($ $) 11)) (-3562 (($ $) 10)) (-3612 (($ $) 9)) (-3623 (($ $) 8)) (-3599 (($ $) 7)) (-3574 (($ $) 6))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1338 (($ (-1180)) 8)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 15) (((-1180) $) 12)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 11))) +(((-503) (-13 (-1122) (-625 (-1180)) (-10 -8 (-15 -1338 ($ (-1180)))))) (T -503)) +((-1338 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-503))))) +(-13 (-1122) (-625 (-1180)) (-10 -8 (-15 -1338 ($ (-1180))))) +((-2143 (($ $) 15)) (-2120 (($ $) 24)) (-2166 (($ $) 12)) (-2177 (($ $) 10)) (-2155 (($ $) 17)) (-2131 (($ $) 22))) +(((-504 |#1|) (-10 -8 (-15 -2131 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2177 (|#1| |#1|)) (-15 -2166 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2143 (|#1| |#1|))) (-505)) (T -504)) +NIL +(-10 -8 (-15 -2131 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2177 (|#1| |#1|)) (-15 -2166 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2143 (|#1| |#1|))) +((-2143 (($ $) 11)) (-2120 (($ $) 10)) (-2166 (($ $) 9)) (-2177 (($ $) 8)) (-2155 (($ $) 7)) (-2131 (($ $) 6))) (((-505) (-141)) (T -505)) -((-3586 (*1 *1 *1) (-4 *1 (-505))) (-3562 (*1 *1 *1) (-4 *1 (-505))) (-3612 (*1 *1 *1) (-4 *1 (-505))) (-3623 (*1 *1 *1) (-4 *1 (-505))) (-3599 (*1 *1 *1) (-4 *1 (-505))) (-3574 (*1 *1 *1) (-4 *1 (-505)))) -(-13 (-10 -8 (-15 -3574 ($ $)) (-15 -3599 ($ $)) (-15 -3623 ($ $)) (-15 -3612 ($ $)) (-15 -3562 ($ $)) (-15 -3586 ($ $)))) -((-1452 (((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)) 54))) -(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1452 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) (-374) (-1264 |#1|) (-13 (-374) (-148) (-736 |#1| |#2|)) (-1264 |#3|)) (T -506)) -((-1452 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1264 *7))))) -(-10 -7 (-15 -1452 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) -((-1957 (((-112) $ $) NIL)) (-2246 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-2811 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-3114 (((-112) $) 39)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-4334 (((-112) $ $) 73)) (-4442 (((-656 (-624 $)) $) 50)) (-1765 (((-3 $ "failed") $ $) NIL)) (-1791 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1462 (($ $) NIL)) (-4386 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-1499 (((-656 $) (-1193 $) (-1197)) NIL) (((-656 $) (-1193 $)) NIL) (((-656 $) (-971 $)) NIL)) (-2467 (($ (-1193 $) (-1197)) NIL) (($ (-1193 $)) NIL) (($ (-971 $)) NIL)) (-2982 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2317 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) 55)) (-1895 (($ $ $) NIL)) (-1930 (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3563 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-701 $) (-1288 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL)) (-2721 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-3043 (($ $) NIL) (($ (-656 $)) NIL)) (-1849 (((-656 (-115)) $) NIL)) (-1401 (((-115) (-115)) NIL)) (-2486 (((-112) $) 42)) (-3616 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-2687 (((-1146 (-576) (-624 $)) $) 37)) (-4005 (($ $ (-576)) NIL)) (-2595 (((-1193 $) (-1193 $) (-624 $)) 87) (((-1193 $) (-1193 $) (-656 (-624 $))) 62) (($ $ (-624 $)) 76) (($ $ (-656 (-624 $))) 77)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1634 (((-1193 $) (-624 $)) 74 (|has| $ (-1070)))) (-2423 (($ (-1 $ $) (-624 $)) NIL)) (-2875 (((-3 (-624 $) "failed") $) NIL)) (-2160 (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL) (((-2 (|:| -3563 (-701 (-419 (-576)))) (|:| |vec| (-1288 (-419 (-576))))) (-1288 $) $) NIL) (((-701 (-419 (-576))) (-1288 $)) NIL)) (-3076 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-1388 (((-656 (-624 $)) $) NIL)) (-2772 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-4227 (((-112) $ (-115)) NIL) (((-112) $ (-1197)) NIL)) (-1669 (($ $) NIL)) (-2955 (((-783) $) NIL)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2197 (((-112) $ $) NIL) (((-112) $ (-1197)) NIL)) (-1452 (((-430 $) $) NIL)) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3955 (((-112) $) NIL (|has| $ (-1059 (-576))))) (-2145 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1197)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1197) (-1 $ (-656 $))) NIL) (($ $ (-1197) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2812 (((-783) $) NIL)) (-4369 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-1328 (($ $) NIL) (($ $ $) NIL)) (-4107 (($ $) 36) (($ $ (-783)) NIL)) (-2697 (((-1146 (-576) (-624 $)) $) 20)) (-3881 (($ $) NIL (|has| $ (-1070)))) (-1556 (((-390) $) 101) (((-227) $) 109) (((-171 (-390)) $) 117)) (-4113 (((-876) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1146 (-576) (-624 $))) 21)) (-2910 (((-783)) NIL T CONST)) (-2345 (($ $) NIL) (($ (-656 $)) NIL)) (-1380 (((-112) (-115)) 93)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-4313 (($) 10 T CONST)) (-4322 (($) 22 T CONST)) (-3157 (($ $) NIL) (($ $ (-783)) NIL)) (-3939 (((-112) $ $) 24)) (-4047 (($ $ $) 44)) (-4037 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) 48) (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) 27) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-940) $) NIL))) -(((-507) (-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -4113 ($ (-1146 (-576) (-624 $)))) (-15 -2687 ((-1146 (-576) (-624 $)) $)) (-15 -2697 ((-1146 (-576) (-624 $)) $)) (-15 -2721 ($ $)) (-15 -4334 ((-112) $ $)) (-15 -2595 ((-1193 $) (-1193 $) (-624 $))) (-15 -2595 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -2595 ($ $ (-624 $))) (-15 -2595 ($ $ (-656 (-624 $))))))) (T -507)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2721 (*1 *1 *1) (-5 *1 (-507))) (-4334 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))) (-2595 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) (-2595 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-656 (-624 (-507)))) (-5 *1 (-507)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507))))) -(-13 (-312) (-27) (-1059 (-576)) (-1059 (-419 (-576))) (-651 (-576)) (-1043) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -4113 ($ (-1146 (-576) (-624 $)))) (-15 -2687 ((-1146 (-576) (-624 $)) $)) (-15 -2697 ((-1146 (-576) (-624 $)) $)) (-15 -2721 ($ $)) (-15 -4334 ((-112) $ $)) (-15 -2595 ((-1193 $) (-1193 $) (-624 $))) (-15 -2595 ((-1193 $) (-1193 $) (-656 (-624 $)))) (-15 -2595 ($ $ (-624 $))) (-15 -2595 ($ $ (-656 (-624 $)))))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-2380 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#1| $ (-576) |#1|) 44 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) 39 (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) 38)) (-3539 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1991 (($ (-783) |#1|) 21)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) 17 (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-2748 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-576) $) 41 (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1755 ((|#1| $) NIL (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4267 (($ $ |#1|) 15 (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) 19)) (-4369 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 43) (($ $ (-1255 (-576))) NIL)) (-2335 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) 13)) (-1556 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 24)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1970 (((-783) $) 11 (|has| $ (-6 -4464))))) -(((-508 |#1| |#2|) (-19 |#1|) (-1238) (-576)) (T -508)) +((-2143 (*1 *1 *1) (-4 *1 (-505))) (-2120 (*1 *1 *1) (-4 *1 (-505))) (-2166 (*1 *1 *1) (-4 *1 (-505))) (-2177 (*1 *1 *1) (-4 *1 (-505))) (-2155 (*1 *1 *1) (-4 *1 (-505))) (-2131 (*1 *1 *1) (-4 *1 (-505)))) +(-13 (-10 -8 (-15 -2131 ($ $)) (-15 -2155 ($ $)) (-15 -2177 ($ $)) (-15 -2166 ($ $)) (-15 -2120 ($ $)) (-15 -2143 ($ $)))) +((-1856 (((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)) 54))) +(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1856 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) (-374) (-1265 |#1|) (-13 (-374) (-148) (-737 |#1| |#2|)) (-1265 |#3|)) (T -506)) +((-1856 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-4 *7 (-13 (-374) (-148) (-737 *5 *6))) (-5 *2 (-430 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1265 *7))))) +(-10 -7 (-15 -1856 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) +((-3423 (((-112) $ $) NIL)) (-3417 (((-657 $) (-1194 $) (-1198)) NIL) (((-657 $) (-1194 $)) NIL) (((-657 $) (-972 $)) NIL)) (-4152 (($ (-1194 $) (-1198)) NIL) (($ (-1194 $)) NIL) (($ (-972 $)) NIL)) (-2044 (((-112) $) 39)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3972 (((-112) $ $) 73)) (-3941 (((-657 (-624 $)) $) 50)) (-2423 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $ (-304 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-1866 (($ $) NIL)) (-3210 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-1751 (((-657 $) (-1194 $) (-1198)) NIL) (((-657 $) (-1194 $)) NIL) (((-657 $) (-972 $)) NIL)) (-1913 (($ (-1194 $) (-1198)) NIL) (($ (-1194 $)) NIL) (($ (-972 $)) NIL)) (-1593 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2830 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) 55)) (-3355 (($ $ $) NIL)) (-3439 (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3962 (-702 (-419 (-576)))) (|:| |vec| (-1289 (-419 (-576))))) (-702 $) (-1289 $)) NIL) (((-702 (-419 (-576))) (-702 $)) NIL)) (-3662 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3816 (($ $) NIL) (($ (-657 $)) NIL)) (-3948 (((-657 (-115)) $) NIL)) (-1803 (((-115) (-115)) NIL)) (-3994 (((-112) $) 42)) (-1354 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-1590 (((-1147 (-576) (-624 $)) $) 37)) (-3856 (($ $ (-576)) NIL)) (-3869 (((-1194 $) (-1194 $) (-624 $)) 87) (((-1194 $) (-1194 $) (-657 (-624 $))) 62) (($ $ (-624 $)) 76) (($ $ (-657 (-624 $))) 77)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3695 (((-1194 $) (-624 $)) 74 (|has| $ (-1071)))) (-4071 (($ (-1 $ $) (-624 $)) NIL)) (-3449 (((-3 (-624 $) "failed") $) NIL)) (-1993 (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL) (((-2 (|:| -3962 (-702 (-419 (-576)))) (|:| |vec| (-1289 (-419 (-576))))) (-1289 $) $) NIL) (((-702 (-419 (-576))) (-1289 $)) NIL)) (-3388 (($ (-657 $)) NIL) (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1789 (((-657 (-624 $)) $) NIL)) (-1662 (($ (-115) $) NIL) (($ (-115) (-657 $)) NIL)) (-4216 (((-112) $ (-115)) NIL) (((-112) $ (-1198)) NIL)) (-2098 (($ $) NIL)) (-2363 (((-784) $) NIL)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ (-657 $)) NIL) (($ $ $) NIL)) (-4275 (((-112) $ $) NIL) (((-112) $ (-1198)) NIL)) (-1856 (((-430 $) $) NIL)) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3341 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-3205 (($ $ (-624 $) $) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-1198) (-1 $ (-657 $))) NIL) (($ $ (-1198) (-1 $ $)) NIL) (($ $ (-657 (-115)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-115) (-1 $ (-657 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-4164 (((-784) $) NIL)) (-2780 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-657 $)) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-3469 (($ $) NIL) (($ $ $) NIL)) (-2209 (($ $) 36) (($ $ (-784)) NIL)) (-1602 (((-1147 (-576) (-624 $)) $) 20)) (-2005 (($ $) NIL (|has| $ (-1071)))) (-4136 (((-390) $) 101) (((-227) $) 109) (((-171 (-390)) $) 117)) (-3515 (((-877) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1147 (-576) (-624 $))) 21)) (-3845 (((-784)) NIL T CONST)) (-1791 (($ $) NIL) (($ (-657 $)) NIL)) (-2946 (((-112) (-115)) 93)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2716 (($) 10 T CONST)) (-2725 (($) 22 T CONST)) (-2066 (($ $) NIL) (($ $ (-784)) NIL)) (-2881 (((-112) $ $) 24)) (-2995 (($ $ $) 44)) (-2982 (($ $ $) NIL) (($ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) 48) (($ $ (-784)) NIL) (($ $ (-941)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) 27) (($ (-576) $) NIL) (($ (-784) $) NIL) (($ (-941) $) NIL))) +(((-507) (-13 (-312) (-27) (-1060 (-576)) (-1060 (-419 (-576))) (-652 (-576)) (-1044) (-652 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3515 ($ (-1147 (-576) (-624 $)))) (-15 -1590 ((-1147 (-576) (-624 $)) $)) (-15 -1602 ((-1147 (-576) (-624 $)) $)) (-15 -3662 ($ $)) (-15 -3972 ((-112) $ $)) (-15 -3869 ((-1194 $) (-1194 $) (-624 $))) (-15 -3869 ((-1194 $) (-1194 $) (-657 (-624 $)))) (-15 -3869 ($ $ (-624 $))) (-15 -3869 ($ $ (-657 (-624 $))))))) (T -507)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1147 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-3662 (*1 *1 *1) (-5 *1 (-507))) (-3972 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))) (-3869 (*1 *2 *2 *3) (-12 (-5 *2 (-1194 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) (-3869 (*1 *2 *2 *3) (-12 (-5 *2 (-1194 (-507))) (-5 *3 (-657 (-624 (-507)))) (-5 *1 (-507)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-624 (-507)))) (-5 *1 (-507))))) +(-13 (-312) (-27) (-1060 (-576)) (-1060 (-419 (-576))) (-652 (-576)) (-1044) (-652 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3515 ($ (-1147 (-576) (-624 $)))) (-15 -1590 ((-1147 (-576) (-624 $)) $)) (-15 -1602 ((-1147 (-576) (-624 $)) $)) (-15 -3662 ($ $)) (-15 -3972 ((-112) $ $)) (-15 -3869 ((-1194 $) (-1194 $) (-624 $))) (-15 -3869 ((-1194 $) (-1194 $) (-657 (-624 $)))) (-15 -3869 ($ $ (-624 $))) (-15 -3869 ($ $ (-657 (-624 $)))))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1698 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1832 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#1| $ (-576) |#1|) 44 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3901 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) 39 (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) 38)) (-3619 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-4096 (($ (-784) |#1|) 21)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) 17 (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-576) $) 41 (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2225 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3528 ((|#1| $) NIL (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1495 (($ $ |#1|) 15 (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) 19)) (-2780 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 43) (($ $ (-1256 (-576))) NIL)) (-3395 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) 13)) (-4136 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 24)) (-1637 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3437 (((-784) $) 11 (|has| $ (-6 -4466))))) +(((-508 |#1| |#2|) (-19 |#1|) (-1239) (-576)) (T -508)) NIL (-19 |#1|) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2979 (($ $ (-576) (-508 |#1| |#3|)) NIL)) (-2932 (($ $ (-576) (-508 |#1| |#2|)) NIL)) (-3170 (($) NIL T CONST)) (-2880 (((-508 |#1| |#3|) $ (-576)) NIL)) (-1910 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3721 ((|#1| $ (-576) (-576)) NIL)) (-3722 (((-656 |#1|) $) NIL)) (-2759 (((-783) $) NIL)) (-1991 (($ (-783) (-783) |#1|) NIL)) (-2773 (((-783) $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-2805 (((-576) $) NIL)) (-2718 (((-576) $) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2626 (((-576) $) NIL)) (-3267 (((-576) $) NIL)) (-1898 (($ (-1 |#1| |#1|) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4267 (($ $ |#1|) NIL)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-3840 (((-508 |#1| |#2|) $ (-576)) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1238) (-576) (-576)) (T -509)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1327 (($ $ (-576) (-508 |#1| |#3|)) NIL)) (-3960 (($ $ (-576) (-508 |#1| |#2|)) NIL)) (-2515 (($) NIL T CONST)) (-3520 (((-508 |#1| |#3|) $ (-576)) NIL)) (-1810 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1741 ((|#1| $ (-576) (-576)) NIL)) (-1448 (((-657 |#1|) $) NIL)) (-2334 (((-784) $) NIL)) (-4096 (($ (-784) (-784) |#1|) NIL)) (-2344 (((-784) $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-4076 (((-576) $) NIL)) (-2581 (((-576) $) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2898 (((-576) $) NIL)) (-4230 (((-576) $) NIL)) (-1799 (($ (-1 |#1| |#1|) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1495 (($ $ |#1|) NIL)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-1612 (((-508 |#1| |#2|) $ (-576)) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1239) (-576) (-576)) (T -509)) NIL (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) -((-1509 (((-656 (-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783)) 32)) (-4116 (((-656 (-1193 |#1|)) |#1| (-783) (-783) (-783)) 43)) (-4045 (((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)) 107))) -(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -4116 ((-656 (-1193 |#1|)) |#1| (-783) (-783) (-783))) (-15 -1509 ((-656 (-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -4045 ((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) (-360) (-1264 |#1|) (-1264 |#2|)) (T -510)) -((-4045 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-2 (|:| -2704 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7))))) (-5 *5 (-783)) (-4 *8 (-1264 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-360)) (-5 *2 (-2 (|:| -2704 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-1509 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2704 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -2704 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6)))) (-4 *7 (-1264 *6)))) (-4116 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1264 *3)) (-5 *2 (-656 (-1193 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1264 *5))))) -(-10 -7 (-15 -4116 ((-656 (-1193 |#1|)) |#1| (-783) (-783) (-783))) (-15 -1509 ((-656 (-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -4045 ((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) -((-1935 (((-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 70)) (-1986 ((|#1| (-701 |#1|) |#1| (-783)) 24)) (-2573 (((-783) (-783) (-783)) 34)) (-2599 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 50)) (-1344 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 58) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 55)) (-3730 ((|#1| (-701 |#1|) (-701 |#1|) |#1| (-576)) 28)) (-4383 ((|#1| (-701 |#1|)) 18))) -(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -4383 (|#1| (-701 |#1|))) (-15 -1986 (|#1| (-701 |#1|) |#1| (-783))) (-15 -3730 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -2573 ((-783) (-783) (-783))) (-15 -1344 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1344 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2599 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1935 ((-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $)))) (-1264 |#1|) (-421 |#1| |#2|)) (T -511)) -((-1935 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2704 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2599 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1344 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1344 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2573 (*1 *2 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3730 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-1986 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-701 *2)) (-4 *4 (-1264 *2)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4))))) -(-10 -7 (-15 -4383 (|#1| (-701 |#1|))) (-15 -1986 (|#1| (-701 |#1|) |#1| (-783))) (-15 -3730 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -2573 ((-783) (-783) (-783))) (-15 -1344 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1344 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2599 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1935 ((-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -2704 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) -((-1957 (((-112) $ $) NIL)) (-1980 (($ $) NIL)) (-4296 (($ $ $) 40)) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3519 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-2380 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-4268 (((-112) $ (-1255 (-576)) (-112)) NIL (|has| $ (-6 -4465))) (((-112) $ (-576) (-112)) 42 (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-2825 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-2721 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-1910 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4465)))) (-3721 (((-112) $ (-576)) NIL)) (-3539 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1121))) (((-576) (-112) $) NIL (|has| (-112) (-1121))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3722 (((-656 (-112)) $) NIL (|has| $ (-6 -4464)))) (-2324 (($ $ $) 38)) (-2299 (($ $) NIL)) (-3964 (($ $ $) NIL)) (-1991 (($ (-783) (-112)) 27)) (-2375 (($ $ $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) 8 (|has| (-576) (-861)))) (-2907 (($ $ $) NIL)) (-2748 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2911 (((-656 (-112)) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL)) (-1898 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-3386 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL)) (-1755 (((-112) $) NIL (|has| (-576) (-861)))) (-4220 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4267 (($ $ (-112)) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121))))) (-2885 (((-656 (-112)) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) 28)) (-4369 (($ $ (-1255 (-576))) NIL) (((-112) $ (-576)) 22) (((-112) $ (-576) (-112)) NIL)) (-2335 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-3127 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-112) (-1121)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) 29)) (-1556 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-4125 (($ (-656 (-112))) NIL)) (-2767 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4113 (((-876) $) 26)) (-2950 (((-112) $ $) NIL)) (-2543 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4464)))) (-2311 (($ $ $) 36)) (-2033 (($ $ $) NIL)) (-2187 (($ $ $) 45)) (-2198 (($ $) 43)) (-2176 (($ $ $) 44)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 30)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 31)) (-2022 (($ $ $) NIL)) (-1970 (((-783) $) 13 (|has| $ (-6 -4464))))) -(((-512 |#1|) (-13 (-124) (-10 -8 (-15 -2198 ($ $)) (-15 -2187 ($ $ $)) (-15 -2176 ($ $ $)))) (-576)) (T -512)) -((-2198 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-2187 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-2176 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))) -(-13 (-124) (-10 -8 (-15 -2198 ($ $)) (-15 -2187 ($ $ $)) (-15 -2176 ($ $ $)))) -((-1728 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1193 |#4|)) 35)) (-3635 (((-1193 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1193 |#4|)) 22)) (-2789 (((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1193 |#4|))) 46)) (-1507 (((-1193 (-1193 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3635 (|#2| (-1 |#1| |#4|) (-1193 |#4|))) (-15 -3635 ((-1193 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1728 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1193 |#4|))) (-15 -2789 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1193 |#4|)))) (-15 -1507 ((-1193 (-1193 |#4|)) (-1 |#4| |#1|) |#3|))) (-1070) (-1264 |#1|) (-1264 |#2|) (-1070)) (T -513)) -((-1507 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *6 (-1264 *5)) (-5 *2 (-1193 (-1193 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1264 *6)))) (-2789 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-701 (-1193 *8))) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-1264 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1264 *6)))) (-1728 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1193 *7)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2)))) (-3635 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *4 (-1264 *5)) (-5 *2 (-1193 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1264 *4)))) (-3635 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1193 *7)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2))))) -(-10 -7 (-15 -3635 (|#2| (-1 |#1| |#4|) (-1193 |#4|))) (-15 -3635 ((-1193 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1728 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1193 |#4|))) (-15 -2789 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1193 |#4|)))) (-15 -1507 ((-1193 (-1193 |#4|)) (-1 |#4| |#1|) |#3|))) -((-1957 (((-112) $ $) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3384 (((-1293) $) 25)) (-4369 (((-1179) $ (-1197)) 30)) (-1614 (((-1293) $) 17)) (-4113 (((-876) $) 27) (($ (-1179)) 26)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 11)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 9))) -(((-514) (-13 (-861) (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 ((-1293) $)) (-15 -3384 ((-1293) $)) (-15 -4113 ($ (-1179)))))) (T -514)) -((-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1179)) (-5 *1 (-514)))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-514))))) -(-13 (-861) (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 ((-1293) $)) (-15 -3384 ((-1293) $)) (-15 -4113 ($ (-1179))))) -((-1706 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2929 ((|#1| |#4|) 10)) (-4091 ((|#3| |#4|) 17))) -(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2929 (|#1| |#4|)) (-15 -4091 (|#3| |#4|)) (-15 -1706 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1013 |#1|) (-384 |#1|) (-384 |#2|)) (T -515)) -((-1706 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) (-4091 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-4 *2 (-384 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-384 *4))))) -(-10 -7 (-15 -2929 (|#1| |#4|)) (-15 -4091 (|#3| |#4|)) (-15 -1706 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-1957 (((-112) $ $) NIL)) (-2376 (((-112) $ (-656 |#3|)) 126) (((-112) $) 127)) (-3114 (((-112) $) 178)) (-3160 (($ $ |#4|) 117) (($ $ |#4| (-656 |#3|)) 121)) (-2461 (((-1186 (-656 (-971 |#1|)) (-656 (-304 (-971 |#1|)))) (-656 |#4|)) 171 (|has| |#3| (-626 (-1197))))) (-2675 (($ $ $) 107) (($ $ |#4|) 105)) (-2486 (((-112) $) 177)) (-2031 (($ $) 131)) (-2447 (((-1179) $) NIL)) (-1431 (($ $ $) 99) (($ (-656 $)) 101)) (-1668 (((-112) |#4| $) 129)) (-2866 (((-112) $ $) 82)) (-3208 (($ (-656 |#4|)) 106)) (-3116 (((-1141) $) NIL)) (-1905 (($ (-656 |#4|)) 175)) (-2133 (((-112) $) 176)) (-3790 (($ $) 85)) (-1934 (((-656 |#4|) $) 73)) (-4040 (((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|)) NIL)) (-3825 (((-112) |#4| $) 89)) (-3181 (((-576) $ (-656 |#3|)) 133) (((-576) $) 134)) (-4113 (((-876) $) 174) (($ (-656 |#4|)) 102)) (-2950 (((-112) $ $) NIL)) (-2509 (($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $))) NIL)) (-3939 (((-112) $ $) 84)) (-4026 (($ $ $) 109)) (** (($ $ (-783)) 115)) (* (($ $ $) 113))) -(((-516 |#1| |#2| |#3| |#4|) (-13 (-1121) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -4026 ($ $ $)) (-15 -2486 ((-112) $)) (-15 -3114 ((-112) $)) (-15 -3825 ((-112) |#4| $)) (-15 -2866 ((-112) $ $)) (-15 -1668 ((-112) |#4| $)) (-15 -2376 ((-112) $ (-656 |#3|))) (-15 -2376 ((-112) $)) (-15 -1431 ($ $ $)) (-15 -1431 ($ (-656 $))) (-15 -2675 ($ $ $)) (-15 -2675 ($ $ |#4|)) (-15 -3790 ($ $)) (-15 -4040 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -2509 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -3181 ((-576) $ (-656 |#3|))) (-15 -3181 ((-576) $)) (-15 -2031 ($ $)) (-15 -3208 ($ (-656 |#4|))) (-15 -1905 ($ (-656 |#4|))) (-15 -2133 ((-112) $)) (-15 -1934 ((-656 |#4|) $)) (-15 -4113 ($ (-656 |#4|))) (-15 -3160 ($ $ |#4|)) (-15 -3160 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1197))) (-15 -2461 ((-1186 (-656 (-971 |#1|)) (-656 (-304 (-971 |#1|)))) (-656 |#4|))) |%noBranch|))) (-374) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -516)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-4026 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2486 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3114 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3825 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-2866 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-1668 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-2376 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-2376 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-1431 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-2675 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2675 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-3790 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-2509 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3181 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-3181 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-2031 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-1905 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2133 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-1934 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-3160 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-3160 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-968 *4 *5 *6)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *6 (-626 (-1197))) (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1186 (-656 (-971 *4)) (-656 (-304 (-971 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) -(-13 (-1121) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -4026 ($ $ $)) (-15 -2486 ((-112) $)) (-15 -3114 ((-112) $)) (-15 -3825 ((-112) |#4| $)) (-15 -2866 ((-112) $ $)) (-15 -1668 ((-112) |#4| $)) (-15 -2376 ((-112) $ (-656 |#3|))) (-15 -2376 ((-112) $)) (-15 -1431 ($ $ $)) (-15 -1431 ($ (-656 $))) (-15 -2675 ($ $ $)) (-15 -2675 ($ $ |#4|)) (-15 -3790 ($ $)) (-15 -4040 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -2509 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -3181 ((-576) $ (-656 |#3|))) (-15 -3181 ((-576) $)) (-15 -2031 ($ $)) (-15 -3208 ($ (-656 |#4|))) (-15 -1905 ($ (-656 |#4|))) (-15 -2133 ((-112) $)) (-15 -1934 ((-656 |#4|) $)) (-15 -4113 ($ (-656 |#4|))) (-15 -3160 ($ $ |#4|)) (-15 -3160 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1197))) (-15 -2461 ((-1186 (-656 (-971 |#1|)) (-656 (-304 (-971 |#1|)))) (-656 |#4|))) |%noBranch|))) -((-2217 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 176)) (-2806 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 177)) (-3012 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 129)) (-2171 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) NIL)) (-2194 (((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) 179)) (-2064 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-878 |#1|))) 195))) -(((-517 |#1| |#2|) (-10 -7 (-15 -2217 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2806 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2171 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3012 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2194 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2064 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-878 |#1|))))) (-656 (-1197)) (-783)) (T -517)) -((-2064 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-5 *3 (-656 (-878 *4))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *1 (-517 *4 *5)))) (-2194 (*1 *2 *3) (-12 (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-656 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *4 (-783)) (-878 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4)))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5))))) -(-10 -7 (-15 -2217 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2806 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2171 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3012 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2194 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2064 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-878 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-878 |#1|))))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2398 (($) 6)) (-4113 (((-876) $) 12) (((-1197) $) 10)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 8))) -(((-518) (-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -2398 ($))))) (T -518)) -((-2398 (*1 *1) (-5 *1 (-518)))) -(-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -2398 ($)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-4073 (((-656 (-887 |#2| |#1|)) $) 12)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-3310 (($ $) NIL)) (-1564 (($ |#1| |#2|) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-4348 ((|#2| $) NIL)) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 16 T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) 15) (($ $ $) 39)) (-4026 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 26))) -(((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-864)) (T -519)) +((-1848 (((-657 (-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) (-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) (-784) (-784)) 32)) (-2466 (((-657 (-1194 |#1|)) |#1| (-784) (-784) (-784)) 43)) (-2953 (((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) (-657 |#3|) (-657 (-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) (-784)) 107))) +(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -2466 ((-657 (-1194 |#1|)) |#1| (-784) (-784) (-784))) (-15 -1848 ((-657 (-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) (-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) (-784) (-784))) (-15 -2953 ((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) (-657 |#3|) (-657 (-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) (-784)))) (-360) (-1265 |#1|) (-1265 |#2|)) (T -510)) +((-2953 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 (-2 (|:| -2469 (-702 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-702 *7))))) (-5 *5 (-784)) (-4 *8 (-1265 *7)) (-4 *7 (-1265 *6)) (-4 *6 (-360)) (-5 *2 (-2 (|:| -2469 (-702 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-702 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-1848 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-784)) (-4 *5 (-360)) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-2 (|:| -2469 (-702 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-702 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -2469 (-702 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-702 *6)))) (-4 *7 (-1265 *6)))) (-2466 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-784)) (-4 *3 (-360)) (-4 *5 (-1265 *3)) (-5 *2 (-657 (-1194 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1265 *5))))) +(-10 -7 (-15 -2466 ((-657 (-1194 |#1|)) |#1| (-784) (-784) (-784))) (-15 -1848 ((-657 (-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) (-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) (-784) (-784))) (-15 -2953 ((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) (-657 |#3|) (-657 (-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) (-784)))) +((-3492 (((-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) (-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) (-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|)))) 70)) (-2731 ((|#1| (-702 |#1|) |#1| (-784)) 24)) (-3613 (((-784) (-784) (-784)) 34)) (-3908 (((-702 |#1|) (-702 |#1|) (-702 |#1|)) 50)) (-3761 (((-702 |#1|) (-702 |#1|) (-702 |#1|) |#1|) 58) (((-702 |#1|) (-702 |#1|) (-702 |#1|)) 55)) (-3002 ((|#1| (-702 |#1|) (-702 |#1|) |#1| (-576)) 28)) (-3176 ((|#1| (-702 |#1|)) 18))) +(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -3176 (|#1| (-702 |#1|))) (-15 -2731 (|#1| (-702 |#1|) |#1| (-784))) (-15 -3002 (|#1| (-702 |#1|) (-702 |#1|) |#1| (-576))) (-15 -3613 ((-784) (-784) (-784))) (-15 -3761 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3761 ((-702 |#1|) (-702 |#1|) (-702 |#1|) |#1|)) (-15 -3908 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3492 ((-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) (-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) (-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|)))))) (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $)))) (-1265 |#1|) (-421 |#1| |#2|)) (T -511)) +((-3492 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2469 (-702 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-702 *3)))) (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3908 (*1 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3761 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-702 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3761 (*1 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3613 (*1 *2 *2 *2) (-12 (-5 *2 (-784)) (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3002 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-702 *2)) (-5 *4 (-576)) (-4 *2 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) (-4 *5 (-1265 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-2731 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-702 *2)) (-5 *4 (-784)) (-4 *2 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) (-4 *5 (-1265 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-702 *2)) (-4 *4 (-1265 *2)) (-4 *2 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4))))) +(-10 -7 (-15 -3176 (|#1| (-702 |#1|))) (-15 -2731 (|#1| (-702 |#1|) |#1| (-784))) (-15 -3002 (|#1| (-702 |#1|) (-702 |#1|) |#1| (-576))) (-15 -3613 ((-784) (-784) (-784))) (-15 -3761 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3761 ((-702 |#1|) (-702 |#1|) (-702 |#1|) |#1|)) (-15 -3908 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3492 ((-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) (-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) (-2 (|:| -2469 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|)))))) +((-3423 (((-112) $ $) NIL)) (-3452 (($ $) NIL)) (-2693 (($ $ $) 40)) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1698 (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4467)))) (-1832 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-3719 (((-112) $ (-1256 (-576)) (-112)) NIL (|has| $ (-6 -4467))) (((-112) $ (-576) (-112)) 42 (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-3901 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-3662 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-1810 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4467)))) (-1741 (((-112) $ (-576)) NIL)) (-3619 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1122))) (((-576) (-112) $) NIL (|has| (-112) (-1122))) (((-576) (-1 (-112) (-112)) $) NIL)) (-1448 (((-657 (-112)) $) NIL (|has| $ (-6 -4466)))) (-2685 (($ $ $) 38)) (-2665 (($ $) NIL)) (-3420 (($ $ $) NIL)) (-4096 (($ (-784) (-112)) 27)) (-2222 (($ $ $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) 8 (|has| (-576) (-862)))) (-3740 (($ $ $) NIL)) (-1661 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3855 (((-657 (-112)) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL)) (-1799 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-2225 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL)) (-3528 (((-112) $) NIL (|has| (-576) (-862)))) (-4135 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1495 (($ $ (-112)) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-112)) (-657 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-657 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-3585 (((-657 (-112)) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) 28)) (-2780 (($ $ (-1256 (-576))) NIL) (((-112) $ (-576)) 22) (((-112) $ (-576) (-112)) NIL)) (-3395 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-1469 (((-784) (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122)))) (((-784) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) 29)) (-4136 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-3529 (($ (-657 (-112))) NIL)) (-1637 (($ (-657 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3515 (((-877) $) 26)) (-4166 (((-112) $ $) NIL)) (-3258 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-2675 (($ $ $) 36)) (-3505 (($ $ $) NIL)) (-3829 (($ $ $) 45)) (-3840 (($ $) 43)) (-3818 (($ $ $) 44)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 30)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 31)) (-3493 (($ $ $) NIL)) (-3437 (((-784) $) 13 (|has| $ (-6 -4466))))) +(((-512 |#1|) (-13 (-124) (-10 -8 (-15 -3840 ($ $)) (-15 -3829 ($ $ $)) (-15 -3818 ($ $ $)))) (-576)) (T -512)) +((-3840 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-3829 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-3818 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))) +(-13 (-124) (-10 -8 (-15 -3840 ($ $)) (-15 -3829 ($ $ $)) (-15 -3818 ($ $ $)))) +((-2049 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1194 |#4|)) 35)) (-3346 (((-1194 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1194 |#4|)) 22)) (-2015 (((-3 (-702 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-702 (-1194 |#4|))) 46)) (-1827 (((-1194 (-1194 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3346 (|#2| (-1 |#1| |#4|) (-1194 |#4|))) (-15 -3346 ((-1194 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2049 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1194 |#4|))) (-15 -2015 ((-3 (-702 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-702 (-1194 |#4|)))) (-15 -1827 ((-1194 (-1194 |#4|)) (-1 |#4| |#1|) |#3|))) (-1071) (-1265 |#1|) (-1265 |#2|) (-1071)) (T -513)) +((-1827 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1071)) (-4 *7 (-1071)) (-4 *6 (-1265 *5)) (-5 *2 (-1194 (-1194 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1265 *6)))) (-2015 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-702 (-1194 *8))) (-4 *5 (-1071)) (-4 *8 (-1071)) (-4 *6 (-1265 *5)) (-5 *2 (-702 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1265 *6)))) (-2049 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1194 *7)) (-4 *5 (-1071)) (-4 *7 (-1071)) (-4 *2 (-1265 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1265 *2)))) (-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1071)) (-4 *7 (-1071)) (-4 *4 (-1265 *5)) (-5 *2 (-1194 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1265 *4)))) (-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1194 *7)) (-4 *5 (-1071)) (-4 *7 (-1071)) (-4 *2 (-1265 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1265 *2))))) +(-10 -7 (-15 -3346 (|#2| (-1 |#1| |#4|) (-1194 |#4|))) (-15 -3346 ((-1194 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2049 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1194 |#4|))) (-15 -2015 ((-3 (-702 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-702 (-1194 |#4|)))) (-15 -1827 ((-1194 (-1194 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3423 (((-112) $ $) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2884 (((-1294) $) 25)) (-2780 (((-1180) $ (-1198)) 30)) (-2011 (((-1294) $) 17)) (-3515 (((-877) $) 27) (($ (-1180)) 26)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 11)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 9))) +(((-514) (-13 (-862) (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 ((-1294) $)) (-15 -2884 ((-1294) $)) (-15 -3515 ($ (-1180)))))) (T -514)) +((-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1180)) (-5 *1 (-514)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-514)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-514)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-514))))) +(-13 (-862) (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 ((-1294) $)) (-15 -2884 ((-1294) $)) (-15 -3515 ($ (-1180))))) +((-3005 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3927 ((|#1| |#4|) 10)) (-2255 ((|#3| |#4|) 17))) +(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3927 (|#1| |#4|)) (-15 -2255 (|#3| |#4|)) (-15 -3005 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1014 |#1|) (-384 |#1|) (-384 |#2|)) (T -515)) +((-3005 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) (-2255 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) (-4 *2 (-384 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) (-3927 (*1 *2 *3) (-12 (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-384 *4))))) +(-10 -7 (-15 -3927 (|#1| |#4|)) (-15 -2255 (|#3| |#4|)) (-15 -3005 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3423 (((-112) $ $) NIL)) (-2232 (((-112) $ (-657 |#3|)) 126) (((-112) $) 127)) (-2044 (((-112) $) 178)) (-2418 (($ $ |#4|) 117) (($ $ |#4| (-657 |#3|)) 121)) (-1845 (((-1187 (-657 (-972 |#1|)) (-657 (-304 (-972 |#1|)))) (-657 |#4|)) 171 (|has| |#3| (-626 (-1198))))) (-2192 (($ $ $) 107) (($ $ |#4|) 105)) (-3994 (((-112) $) 177)) (-3104 (($ $) 131)) (-1708 (((-1180) $) NIL)) (-3415 (($ $ $) 99) (($ (-657 $)) 101)) (-2705 (((-112) |#4| $) 129)) (-3329 (((-112) $ $) 82)) (-1712 (($ (-657 |#4|)) 106)) (-1460 (((-1142) $) NIL)) (-3213 (($ (-657 |#4|)) 175)) (-1731 (((-112) $) 176)) (-2356 (($ $) 85)) (-3480 (((-657 |#4|) $) 73)) (-2894 (((-2 (|:| |mval| (-702 |#1|)) (|:| |invmval| (-702 |#1|)) (|:| |genIdeal| $)) $ (-657 |#3|)) NIL)) (-2636 (((-112) |#4| $) 89)) (-1451 (((-576) $ (-657 |#3|)) 133) (((-576) $) 134)) (-3515 (((-877) $) 174) (($ (-657 |#4|)) 102)) (-4166 (((-112) $ $) NIL)) (-4225 (($ (-2 (|:| |mval| (-702 |#1|)) (|:| |invmval| (-702 |#1|)) (|:| |genIdeal| $))) NIL)) (-2881 (((-112) $ $) 84)) (-2971 (($ $ $) 109)) (** (($ $ (-784)) 115)) (* (($ $ $) 113))) +(((-516 |#1| |#2| |#3| |#4|) (-13 (-1122) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-784))) (-15 -2971 ($ $ $)) (-15 -3994 ((-112) $)) (-15 -2044 ((-112) $)) (-15 -2636 ((-112) |#4| $)) (-15 -3329 ((-112) $ $)) (-15 -2705 ((-112) |#4| $)) (-15 -2232 ((-112) $ (-657 |#3|))) (-15 -2232 ((-112) $)) (-15 -3415 ($ $ $)) (-15 -3415 ($ (-657 $))) (-15 -2192 ($ $ $)) (-15 -2192 ($ $ |#4|)) (-15 -2356 ($ $)) (-15 -2894 ((-2 (|:| |mval| (-702 |#1|)) (|:| |invmval| (-702 |#1|)) (|:| |genIdeal| $)) $ (-657 |#3|))) (-15 -4225 ($ (-2 (|:| |mval| (-702 |#1|)) (|:| |invmval| (-702 |#1|)) (|:| |genIdeal| $)))) (-15 -1451 ((-576) $ (-657 |#3|))) (-15 -1451 ((-576) $)) (-15 -3104 ($ $)) (-15 -1712 ($ (-657 |#4|))) (-15 -3213 ($ (-657 |#4|))) (-15 -1731 ((-112) $)) (-15 -3480 ((-657 |#4|) $)) (-15 -3515 ($ (-657 |#4|))) (-15 -2418 ($ $ |#4|)) (-15 -2418 ($ $ |#4| (-657 |#3|))) (IF (|has| |#3| (-626 (-1198))) (-15 -1845 ((-1187 (-657 (-972 |#1|)) (-657 (-304 (-972 |#1|)))) (-657 |#4|))) |%noBranch|))) (-374) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -516)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2971 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-3994 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2044 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2636 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-3329 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2705 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2232 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) (-2232 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3415 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-3415 (*1 *1 *2) (-12 (-5 *2 (-657 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2192 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-2192 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5)))) (-2356 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-2894 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) (-5 *2 (-2 (|:| |mval| (-702 *4)) (|:| |invmval| (-702 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-702 *3)) (|:| |invmval| (-702 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-1451 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) (-1451 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3104 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-1712 (*1 *1 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-1731 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3480 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2418 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5)))) (-2418 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-969 *4 *5 *6)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *6 (-626 (-1198))) (-4 *4 (-374)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1187 (-657 (-972 *4)) (-657 (-304 (-972 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) +(-13 (-1122) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-784))) (-15 -2971 ($ $ $)) (-15 -3994 ((-112) $)) (-15 -2044 ((-112) $)) (-15 -2636 ((-112) |#4| $)) (-15 -3329 ((-112) $ $)) (-15 -2705 ((-112) |#4| $)) (-15 -2232 ((-112) $ (-657 |#3|))) (-15 -2232 ((-112) $)) (-15 -3415 ($ $ $)) (-15 -3415 ($ (-657 $))) (-15 -2192 ($ $ $)) (-15 -2192 ($ $ |#4|)) (-15 -2356 ($ $)) (-15 -2894 ((-2 (|:| |mval| (-702 |#1|)) (|:| |invmval| (-702 |#1|)) (|:| |genIdeal| $)) $ (-657 |#3|))) (-15 -4225 ($ (-2 (|:| |mval| (-702 |#1|)) (|:| |invmval| (-702 |#1|)) (|:| |genIdeal| $)))) (-15 -1451 ((-576) $ (-657 |#3|))) (-15 -1451 ((-576) $)) (-15 -3104 ($ $)) (-15 -1712 ($ (-657 |#4|))) (-15 -3213 ($ (-657 |#4|))) (-15 -1731 ((-112) $)) (-15 -3480 ((-657 |#4|) $)) (-15 -3515 ($ (-657 |#4|))) (-15 -2418 ($ $ |#4|)) (-15 -2418 ($ $ |#4| (-657 |#3|))) (IF (|has| |#3| (-626 (-1198))) (-15 -1845 ((-1187 (-657 (-972 |#1|)) (-657 (-304 (-972 |#1|)))) (-657 |#4|))) |%noBranch|))) +((-1359 (((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) 176)) (-4088 (((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) 177)) (-3162 (((-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) 129)) (-4009 (((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) NIL)) (-4241 (((-657 (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) 179)) (-2276 (((-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-657 (-879 |#1|))) 195))) +(((-517 |#1| |#2|) (-10 -7 (-15 -1359 ((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4088 ((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4009 ((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3162 ((-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4241 ((-657 (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2276 ((-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-657 (-879 |#1|))))) (-657 (-1198)) (-784)) (T -517)) +((-2276 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576))))) (-5 *3 (-657 (-879 *4))) (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *1 (-517 *4 *5)))) (-4241 (*1 *2 *3) (-12 (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-657 (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576))))))) (-3162 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *4 (-784)) (-879 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-657 (-1198))) (-14 *4 (-784)) (-5 *1 (-517 *3 *4)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5))))) +(-10 -7 (-15 -1359 ((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4088 ((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4009 ((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3162 ((-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4241 ((-657 (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2276 ((-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-657 (-879 |#1|))))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2445 (($) 6)) (-3515 (((-877) $) 12) (((-1198) $) 10)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 8))) +(((-518) (-13 (-1122) (-625 (-1198)) (-10 -8 (-15 -2445 ($))))) (T -518)) +((-2445 (*1 *1) (-5 *1 (-518)))) +(-13 (-1122) (-625 (-1198)) (-10 -8 (-15 -2445 ($)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3212 (((-657 (-888 |#2| |#1|)) $) 12)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-2165 (($ $) NIL)) (-1974 (($ |#1| |#2|) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-2848 ((|#2| $) NIL)) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 16 T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) 15) (($ $ $) 39)) (-2971 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 26))) +(((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-865)) (T -519)) NIL (-13 (-21) (-521 |#1| |#2|)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 17)) (-4073 (((-656 (-887 |#2| |#1|)) $) 14)) (-3170 (($) NIL T CONST)) (-3310 (($ $) 44)) (-1564 (($ |#1| |#2|) 41)) (-2423 (($ (-1 |#1| |#1|) $) 43)) (-4348 ((|#2| $) NIL)) (-1711 ((|#1| $) 45)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 13 T CONST)) (-3939 (((-112) $ $) NIL)) (-4026 (($ $ $) 31)) (* (($ (-940) $) NIL) (($ (-783) $) 40))) -(((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-864)) (T -520)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 17)) (-3212 (((-657 (-888 |#2| |#1|)) $) 14)) (-2515 (($) NIL T CONST)) (-2165 (($ $) 44)) (-1974 (($ |#1| |#2|) 41)) (-4071 (($ (-1 |#1| |#1|) $) 43)) (-2848 ((|#2| $) NIL)) (-2141 ((|#1| $) 45)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 13 T CONST)) (-2881 (((-112) $ $) NIL)) (-2971 (($ $ $) 31)) (* (($ (-941) $) NIL) (($ (-784) $) 40))) +(((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-865)) (T -520)) NIL (-13 (-23) (-521 |#1| |#2|)) -((-1957 (((-112) $ $) 7)) (-4073 (((-656 (-887 |#2| |#1|)) $) 14)) (-3310 (($ $) 15)) (-1564 (($ |#1| |#2|) 18)) (-2423 (($ (-1 |#1| |#1|) $) 19)) (-4348 ((|#2| $) 16)) (-1711 ((|#1| $) 17)) (-2447 (((-1179) $) 13 (-12 (|has| |#2| (-1121)) (|has| |#1| (-1121))))) (-3116 (((-1141) $) 12 (-12 (|has| |#2| (-1121)) (|has| |#1| (-1121))))) (-4113 (((-876) $) 11 (-12 (|has| |#2| (-1121)) (|has| |#1| (-1121))))) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) -(((-521 |#1| |#2|) (-141) (-102) (-864)) (T -521)) -((-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-864)))) (-1564 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-864)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-864)) (-4 *2 (-102)))) (-4348 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-864)))) (-3310 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-864)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-864)) (-5 *2 (-656 (-887 *4 *3)))))) -(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1121)) (IF (|has| |t#2| (-1121)) (-6 (-1121)) |%noBranch|) |%noBranch|) (-15 -2423 ($ (-1 |t#1| |t#1|) $)) (-15 -1564 ($ |t#1| |t#2|)) (-15 -1711 (|t#1| $)) (-15 -4348 (|t#2| $)) (-15 -3310 ($ $)) (-15 -4073 ((-656 (-887 |t#2| |t#1|)) $)))) -(((-102) . T) ((-625 (-876)) -12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ((-1121) -12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-4073 (((-656 (-887 |#2| |#1|)) $) NIL)) (-3170 (($) NIL T CONST)) (-3310 (($ $) NIL)) (-1564 (($ |#1| |#2|) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-4348 ((|#2| $) NIL)) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-4313 (($) NIL T CONST)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 22)) (-4026 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL))) -(((-522 |#1| |#2|) (-13 (-804) (-521 |#1| |#2|)) (-804) (-864)) (T -522)) -NIL -(-13 (-804) (-521 |#1| |#2|)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-4073 (((-656 (-887 |#2| |#1|)) $) NIL)) (-2214 (($ $ $) 23)) (-1765 (((-3 $ "failed") $ $) 19)) (-3170 (($) NIL T CONST)) (-3310 (($ $) NIL)) (-1564 (($ |#1| |#2|) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-4348 ((|#2| $) NIL)) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-4313 (($) NIL T CONST)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL)) (-4026 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL))) -(((-523 |#1| |#2|) (-13 (-805) (-521 |#1| |#2|)) (-805) (-861)) (T -523)) +((-3423 (((-112) $ $) 7)) (-3212 (((-657 (-888 |#2| |#1|)) $) 14)) (-2165 (($ $) 15)) (-1974 (($ |#1| |#2|) 18)) (-4071 (($ (-1 |#1| |#1|) $) 19)) (-2848 ((|#2| $) 16)) (-2141 ((|#1| $) 17)) (-1708 (((-1180) $) 13 (-12 (|has| |#2| (-1122)) (|has| |#1| (-1122))))) (-1460 (((-1142) $) 12 (-12 (|has| |#2| (-1122)) (|has| |#1| (-1122))))) (-3515 (((-877) $) 11 (-12 (|has| |#2| (-1122)) (|has| |#1| (-1122))))) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) +(((-521 |#1| |#2|) (-141) (-102) (-865)) (T -521)) +((-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-865)))) (-1974 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-865)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-865)) (-4 *2 (-102)))) (-2848 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-865)))) (-2165 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-865)))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-865)) (-5 *2 (-657 (-888 *4 *3)))))) +(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1122)) (IF (|has| |t#2| (-1122)) (-6 (-1122)) |%noBranch|) |%noBranch|) (-15 -4071 ($ (-1 |t#1| |t#1|) $)) (-15 -1974 ($ |t#1| |t#2|)) (-15 -2141 (|t#1| $)) (-15 -2848 (|t#2| $)) (-15 -2165 ($ $)) (-15 -3212 ((-657 (-888 |t#2| |t#1|)) $)))) +(((-102) . T) ((-625 (-877)) -12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ((-1122) -12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3212 (((-657 (-888 |#2| |#1|)) $) NIL)) (-2515 (($) NIL T CONST)) (-2165 (($ $) NIL)) (-1974 (($ |#1| |#2|) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-2848 ((|#2| $) NIL)) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2716 (($) NIL T CONST)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 22)) (-2971 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL))) +(((-522 |#1| |#2|) (-13 (-805) (-521 |#1| |#2|)) (-805) (-865)) (T -522)) NIL (-13 (-805) (-521 |#1| |#2|)) -((-1957 (((-112) $ $) NIL)) (-4073 (((-656 (-887 |#2| |#1|)) $) 39)) (-3310 (($ $) 34)) (-1564 (($ |#1| |#2|) 30)) (-2423 (($ (-1 |#1| |#1|) $) 32)) (-4348 ((|#2| $) 38)) (-1711 ((|#1| $) 37)) (-2447 (((-1179) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-3116 (((-1141) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-4113 (((-876) $) 28 (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 21))) -(((-524 |#1| |#2|) (-521 |#1| |#2|) (-102) (-864)) (T -524)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3212 (((-657 (-888 |#2| |#1|)) $) NIL)) (-1323 (($ $ $) 23)) (-2423 (((-3 $ "failed") $ $) 19)) (-2515 (($) NIL T CONST)) (-2165 (($ $) NIL)) (-1974 (($ |#1| |#2|) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-2848 ((|#2| $) NIL)) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2716 (($) NIL T CONST)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL)) (-2971 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL))) +(((-523 |#1| |#2|) (-13 (-806) (-521 |#1| |#2|)) (-806) (-862)) (T -523)) +NIL +(-13 (-806) (-521 |#1| |#2|)) +((-3423 (((-112) $ $) NIL)) (-3212 (((-657 (-888 |#2| |#1|)) $) 39)) (-2165 (($ $) 34)) (-1974 (($ |#1| |#2|) 30)) (-4071 (($ (-1 |#1| |#1|) $) 32)) (-2848 ((|#2| $) 38)) (-2141 ((|#1| $) 37)) (-1708 (((-1180) $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-1460 (((-1142) $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-3515 (((-877) $) 28 (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 21))) +(((-524 |#1| |#2|) (-521 |#1| |#2|) (-102) (-865)) (T -524)) NIL (-521 |#1| |#2|) -((-2145 (($ $ (-656 |#2|) (-656 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -2145 (|#1| |#1| |#2| |#3|)) (-15 -2145 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) (-526 |#2| |#3|) (-1121) (-1238)) (T -525)) +((-3205 (($ $ (-657 |#2|) (-657 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -3205 (|#1| |#1| |#2| |#3|)) (-15 -3205 (|#1| |#1| (-657 |#2|) (-657 |#3|)))) (-526 |#2| |#3|) (-1122) (-1239)) (T -525)) NIL -(-10 -8 (-15 -2145 (|#1| |#1| |#2| |#3|)) (-15 -2145 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) -((-2145 (($ $ (-656 |#1|) (-656 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-526 |#1| |#2|) (-141) (-1121) (-1238)) (T -526)) -((-2145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1238)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1238))))) -(-13 (-10 -8 (-15 -2145 ($ $ |t#1| |t#2|)) (-15 -2145 ($ $ (-656 |t#1|) (-656 |t#2|))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 17)) (-4073 (((-656 (-2 (|:| |gen| |#1|) (|:| -2156 |#2|))) $) 19)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2201 (((-783) $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-4158 ((|#1| $ (-576)) 24)) (-4060 ((|#2| $ (-576)) 22)) (-2912 (($ (-1 |#1| |#1|) $) 48)) (-1904 (($ (-1 |#2| |#2|) $) 45)) (-2447 (((-1179) $) NIL)) (-1799 (($ $ $) 55 (|has| |#2| (-804)))) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 44) (($ |#1|) NIL)) (-2707 ((|#2| |#1| $) 51)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 11 T CONST)) (-3939 (((-112) $ $) 30)) (-4026 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-940) $) NIL) (($ (-783) $) 37) (($ |#2| |#1|) 32))) -(((-527 |#1| |#2| |#3|) (-333 |#1| |#2|) (-1121) (-132) |#2|) (T -527)) +(-10 -8 (-15 -3205 (|#1| |#1| |#2| |#3|)) (-15 -3205 (|#1| |#1| (-657 |#2|) (-657 |#3|)))) +((-3205 (($ $ (-657 |#1|) (-657 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-526 |#1| |#2|) (-141) (-1122) (-1239)) (T -526)) +((-3205 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1239)))) (-3205 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1239))))) +(-13 (-10 -8 (-15 -3205 ($ $ |t#1| |t#2|)) (-15 -3205 ($ $ (-657 |t#1|) (-657 |t#2|))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 17)) (-3212 (((-657 (-2 (|:| |gen| |#1|) (|:| -4056 |#2|))) $) 19)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2148 (((-784) $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL)) (-2830 ((|#1| $) NIL)) (-1656 ((|#1| $ (-576)) 24)) (-3083 ((|#2| $ (-576)) 22)) (-3865 (($ (-1 |#1| |#1|) $) 48)) (-3204 (($ (-1 |#2| |#2|) $) 45)) (-1708 (((-1180) $) NIL)) (-1540 (($ $ $) 55 (|has| |#2| (-805)))) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 44) (($ |#1|) NIL)) (-2498 ((|#2| |#1| $) 51)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 11 T CONST)) (-2881 (((-112) $ $) 30)) (-2971 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-941) $) NIL) (($ (-784) $) 37) (($ |#2| |#1|) 32))) +(((-527 |#1| |#2| |#3|) (-333 |#1| |#2|) (-1122) (-132) |#2|) (T -527)) NIL (-333 |#1| |#2|) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-2380 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4234 (((-112) $ (-783)) NIL)) (-1594 (((-112) (-112)) 32)) (-4268 ((|#1| $ (-576) |#1|) 42 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-1954 (($ (-1 (-112) |#1|) $) 77)) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-1942 (($ $) 81 (|has| |#1| (-1121)))) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3872 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) 64)) (-2825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) NIL)) (-3539 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3682 (($ $ (-576)) 19)) (-3350 (((-783) $) 13)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1991 (($ (-783) |#1|) 31)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) 29 (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-2745 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-2748 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-576) $) 28 (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3695 (($ $ $ (-576)) 73) (($ |#1| $ (-576)) 57)) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3059 (($ (-656 |#1|)) 43)) (-1755 ((|#1| $) NIL (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4267 (($ $ |#1|) 24 (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 60)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) 21)) (-4369 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 53) (($ $ (-1255 (-576))) NIL)) (-2603 (($ $ (-1255 (-576))) 71) (($ $ (-576)) 65)) (-2335 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3218 (($ $ $ (-576)) 61 (|has| $ (-6 -4465)))) (-4287 (($ $) 51)) (-1556 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) NIL)) (-4022 (($ $ $) 62) (($ $ |#1|) 59)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1970 (((-783) $) 22 (|has| $ (-6 -4464))))) -(((-528 |#1| |#2|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3059 ($ (-656 |#1|))) (-15 -3350 ((-783) $)) (-15 -3682 ($ $ (-576))) (-15 -1594 ((-112) (-112))))) (-1238) (-576)) (T -528)) -((-3059 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-528 *3 *4)) (-14 *4 (-576)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 (-576)))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 *2))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 (-576))))) -(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3059 ($ (-656 |#1|))) (-15 -3350 ((-783) $)) (-15 -3682 ($ $ (-576))) (-15 -1594 ((-112) (-112))))) -((-1957 (((-112) $ $) NIL)) (-1660 (((-1156) $) 11)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3928 (((-1156) $) 13)) (-3271 (((-1156) $) 9)) (-4113 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-529) (-13 (-1104) (-10 -8 (-15 -3271 ((-1156) $)) (-15 -1660 ((-1156) $)) (-15 -3928 ((-1156) $))))) (T -529)) -((-3271 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) -(-13 (-1104) (-10 -8 (-15 -3271 ((-1156) $)) (-15 -1660 ((-1156) $)) (-15 -3928 ((-1156) $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2536 (((-112) $) NIL)) (-3570 (((-783)) NIL)) (-3832 (((-593 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-2063 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-593 |#1|) (-379)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) NIL (|has| (-593 |#1|) (-379)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-593 |#1|) "failed") $) NIL)) (-2317 (((-593 |#1|) $) NIL)) (-2496 (($ (-1288 (-593 |#1|))) NIL)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-379)))) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| (-593 |#1|) (-379)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3712 (($) NIL (|has| (-593 |#1|) (-379)))) (-2616 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-2824 (($ $ (-783)) NIL (-3795 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379)))) (($ $) NIL (-3795 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2171 (((-112) $) NIL)) (-3359 (((-940) $) NIL (|has| (-593 |#1|) (-379))) (((-845 (-940)) $) NIL (-3795 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2486 (((-112) $) NIL)) (-3121 (($) NIL (|has| (-593 |#1|) (-379)))) (-2882 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-2595 (((-593 |#1|) $) NIL) (($ $ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-3552 (((-3 $ "failed") $) NIL (|has| (-593 |#1|) (-379)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4293 (((-1193 (-593 |#1|)) $) NIL) (((-1193 $) $ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-3787 (((-940) $) NIL (|has| (-593 |#1|) (-379)))) (-2089 (((-1193 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379)))) (-3922 (((-1193 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-1193 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-379)))) (-4010 (($ $ (-1193 (-593 |#1|))) NIL (|has| (-593 |#1|) (-379)))) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| (-593 |#1|) (-379)) CONST)) (-2411 (($ (-940)) NIL (|has| (-593 |#1|) (-379)))) (-3464 (((-112) $) NIL)) (-3116 (((-1141) $) NIL)) (-2549 (($) NIL (|has| (-593 |#1|) (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL (|has| (-593 |#1|) (-379)))) (-1452 (((-430 $) $) NIL)) (-3835 (((-845 (-940))) NIL) (((-940)) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-3168 (((-783) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3795 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-3181 (((-135)) NIL)) (-4107 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-2196 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-3881 (((-1193 (-593 |#1|))) NIL)) (-4223 (($) NIL (|has| (-593 |#1|) (-379)))) (-2174 (($) NIL (|has| (-593 |#1|) (-379)))) (-4314 (((-1288 (-593 |#1|)) $) NIL) (((-701 (-593 |#1|)) (-1288 $)) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-593 |#1|) (-379)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-593 |#1|)) NIL)) (-4276 (($ $) NIL (|has| (-593 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3795 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL) (((-1288 $) (-940)) NIL)) (-4134 (((-112) $ $) NIL)) (-1736 (((-112) $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| (-593 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-593 |#1|) (-379)))) (-3157 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ (-593 |#1|)) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-593 |#1|)) NIL) (($ (-593 |#1|) $) NIL))) -(((-530 |#1| |#2|) (-339 (-593 |#1|)) (-940) (-940)) (T -530)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1698 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1832 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-4284 (((-112) $ (-784)) NIL)) (-3251 (((-112) (-112)) 32)) (-3719 ((|#1| $ (-576) |#1|) 42 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-3726 (($ (-1 (-112) |#1|) $) 77)) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-3588 (($ $) 81 (|has| |#1| (-1122)))) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1920 (($ |#1| $) NIL (|has| |#1| (-1122))) (($ (-1 (-112) |#1|) $) 64)) (-3901 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) NIL)) (-3619 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-3850 (($ $ (-576)) 19)) (-3832 (((-784) $) 13)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-4096 (($ (-784) |#1|) 31)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) 29 (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-1631 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-576) $) 28 (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2701 (($ $ $ (-576)) 73) (($ |#1| $ (-576)) 57)) (-2225 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2689 (($ (-657 |#1|)) 43)) (-3528 ((|#1| $) NIL (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1495 (($ $ |#1|) 24 (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 60)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) 21)) (-2780 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 53) (($ $ (-1256 (-576))) NIL)) (-2683 (($ $ (-1256 (-576))) 71) (($ $ (-576)) 65)) (-3395 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1818 (($ $ $ (-576)) 61 (|has| $ (-6 -4467)))) (-1899 (($ $) 51)) (-4136 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) NIL)) (-2752 (($ $ $) 62) (($ $ |#1|) 59)) (-1637 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3437 (((-784) $) 22 (|has| $ (-6 -4466))))) +(((-528 |#1| |#2|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -2689 ($ (-657 |#1|))) (-15 -3832 ((-784) $)) (-15 -3850 ($ $ (-576))) (-15 -3251 ((-112) (-112))))) (-1239) (-576)) (T -528)) +((-2689 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-528 *3 *4)) (-14 *4 (-576)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1239)) (-14 *4 (-576)))) (-3850 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1239)) (-14 *4 *2))) (-3251 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1239)) (-14 *4 (-576))))) +(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -2689 ($ (-657 |#1|))) (-15 -3832 ((-784) $)) (-15 -3850 ($ $ (-576))) (-15 -3251 ((-112) (-112))))) +((-3423 (((-112) $ $) NIL)) (-2656 (((-1157) $) 11)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-4401 (((-1157) $) 13)) (-3940 (((-1157) $) 9)) (-3515 (((-877) $) 19) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-529) (-13 (-1105) (-10 -8 (-15 -3940 ((-1157) $)) (-15 -2656 ((-1157) $)) (-15 -4401 ((-1157) $))))) (T -529)) +((-3940 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-529)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-529)))) (-4401 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-529))))) +(-13 (-1105) (-10 -8 (-15 -3940 ((-1157) $)) (-15 -2656 ((-1157) $)) (-15 -4401 ((-1157) $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1388 (((-112) $) NIL)) (-4025 (((-784)) NIL)) (-2256 (((-593 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-593 |#1|) (-379)))) (-2266 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-593 |#1|) (-379)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) NIL (|has| (-593 |#1|) (-379)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-593 |#1|) "failed") $) NIL)) (-2830 (((-593 |#1|) $) NIL)) (-4093 (($ (-1289 (-593 |#1|))) NIL)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-379)))) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| (-593 |#1|) (-379)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2846 (($) NIL (|has| (-593 |#1|) (-379)))) (-2798 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-4266 (($ $ (-784)) NIL (-2748 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379)))) (($ $) NIL (-2748 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-4009 (((-112) $) NIL)) (-2650 (((-941) $) NIL (|has| (-593 |#1|) (-379))) (((-846 (-941)) $) NIL (-2748 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-3994 (((-112) $) NIL)) (-2084 (($) NIL (|has| (-593 |#1|) (-379)))) (-3547 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-3869 (((-593 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-593 |#1|) (-379)))) (-1955 (((-3 $ "failed") $) NIL (|has| (-593 |#1|) (-379)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3604 (((-1194 (-593 |#1|)) $) NIL) (((-1194 $) $ (-941)) NIL (|has| (-593 |#1|) (-379)))) (-2327 (((-941) $) NIL (|has| (-593 |#1|) (-379)))) (-2514 (((-1194 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379)))) (-4348 (((-1194 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-1194 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-379)))) (-3905 (($ $ (-1194 (-593 |#1|))) NIL (|has| (-593 |#1|) (-379)))) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| (-593 |#1|) (-379)) CONST)) (-3146 (($ (-941)) NIL (|has| (-593 |#1|) (-379)))) (-2395 (((-112) $) NIL)) (-1460 (((-1142) $) NIL)) (-4083 (($) NIL (|has| (-593 |#1|) (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL (|has| (-593 |#1|) (-379)))) (-1856 (((-430 $) $) NIL)) (-1559 (((-846 (-941))) NIL) (((-941)) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2495 (((-784) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-784) "failed") $ $) NIL (-2748 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1451 (((-135)) NIL)) (-2209 (($ $ (-784)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-4265 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-2005 (((-1194 (-593 |#1|))) NIL)) (-4170 (($) NIL (|has| (-593 |#1|) (-379)))) (-4039 (($) NIL (|has| (-593 |#1|) (-379)))) (-3806 (((-1289 (-593 |#1|)) $) NIL) (((-702 (-593 |#1|)) (-1289 $)) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| (-593 |#1|) (-379)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-593 |#1|)) NIL)) (-3414 (($ $) NIL (|has| (-593 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2748 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-2607 (((-112) $ $) NIL)) (-2137 (((-112) $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| (-593 |#1|) (-379))) (($ $ (-784)) NIL (|has| (-593 |#1|) (-379)))) (-2066 (($ $ (-784)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL) (($ $ (-593 |#1|)) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-593 |#1|)) NIL) (($ (-593 |#1|) $) NIL))) +(((-530 |#1| |#2|) (-339 (-593 |#1|)) (-941) (-941)) (T -530)) NIL (-339 (-593 |#1|)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#1| $ (-576) (-576) |#1|) 51)) (-2979 (($ $ (-576) |#4|) NIL)) (-2932 (($ $ (-576) |#5|) NIL)) (-3170 (($) NIL T CONST)) (-2880 ((|#4| $ (-576)) NIL)) (-1910 ((|#1| $ (-576) (-576) |#1|) 50)) (-3721 ((|#1| $ (-576) (-576)) 45)) (-3722 (((-656 |#1|) $) NIL)) (-2759 (((-783) $) 33)) (-1991 (($ (-783) (-783) |#1|) 30)) (-2773 (((-783) $) 38)) (-3215 (((-112) $ (-783)) NIL)) (-2805 (((-576) $) 31)) (-2718 (((-576) $) 32)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2626 (((-576) $) 37)) (-3267 (((-576) $) 39)) (-1898 (($ (-1 |#1| |#1|) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) 55 (|has| |#1| (-1121)))) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4267 (($ $ |#1|) NIL)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 14)) (-3307 (($) 16)) (-4369 ((|#1| $ (-576) (-576)) 48) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-3840 ((|#5| $ (-576)) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1238) (-576) (-576) (-384 |#1|) (-384 |#1|)) (T -531)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#1| $ (-576) (-576) |#1|) 51)) (-1327 (($ $ (-576) |#4|) NIL)) (-3960 (($ $ (-576) |#5|) NIL)) (-2515 (($) NIL T CONST)) (-3520 ((|#4| $ (-576)) NIL)) (-1810 ((|#1| $ (-576) (-576) |#1|) 50)) (-1741 ((|#1| $ (-576) (-576)) 45)) (-1448 (((-657 |#1|) $) NIL)) (-2334 (((-784) $) 33)) (-4096 (($ (-784) (-784) |#1|) 30)) (-2344 (((-784) $) 38)) (-1786 (((-112) $ (-784)) NIL)) (-4076 (((-576) $) 31)) (-2581 (((-576) $) 32)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2898 (((-576) $) 37)) (-4230 (((-576) $) 39)) (-1799 (($ (-1 |#1| |#1|) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) 55 (|has| |#1| (-1122)))) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1495 (($ $ |#1|) NIL)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 14)) (-3340 (($) 16)) (-2780 ((|#1| $ (-576) (-576)) 48) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-1612 ((|#5| $ (-576)) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1239) (-576) (-576) (-384 |#1|) (-384 |#1|)) (T -531)) NIL (-57 |#1| |#4| |#5|) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1690 ((|#1| $) NIL)) (-3457 ((|#1| $) NIL)) (-3095 (($ $) NIL)) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2867 (($ $ (-576)) 70 (|has| $ (-6 -4465)))) (-2919 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3519 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4465)))) (-2380 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-4261 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1331 (($ $ $) 23 (|has| $ (-6 -4465)))) (-3652 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-2122 ((|#1| $ |#1|) 21 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4465))) (($ $ "rest" $) 24 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-1954 (($ (-1 (-112) |#1|) $) NIL)) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3443 ((|#1| $) NIL)) (-3170 (($) NIL T CONST)) (-1542 (($ $) 28 (|has| $ (-6 -4465)))) (-4204 (($ $) 29)) (-1764 (($ $) 18) (($ $ (-783)) 32)) (-1942 (($ $) 62 (|has| |#1| (-1121)))) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3872 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-2825 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1910 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) NIL)) (-2319 (((-112) $) NIL)) (-3539 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121))) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3722 (((-656 |#1|) $) 27 (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) NIL)) (-1878 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1991 (($ (-783) |#1|) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) 31 (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-2745 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-2748 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2786 (($ |#1|) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-4186 (((-656 |#1|) $) NIL)) (-3211 (((-112) $) NIL)) (-2447 (((-1179) $) 58 (|has| |#1| (-1121)))) (-2850 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-3695 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3386 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1755 ((|#1| $) 13) (($ $ (-783)) NIL)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4267 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3501 (((-112) $) NIL)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 12)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) 17)) (-3307 (($) 16)) (-4369 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL)) (-2027 (((-576) $ $) NIL)) (-2603 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-2335 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-2974 (((-112) $) 35)) (-4297 (($ $) NIL)) (-1769 (($ $) NIL (|has| $ (-6 -4465)))) (-3083 (((-783) $) NIL)) (-2783 (($ $) 40)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) 36)) (-1556 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 26)) (-4022 (($ $ $) 61) (($ $ |#1|) NIL)) (-2767 (($ $ $) NIL) (($ |#1| $) 10) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-4113 (((-876) $) 50 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) NIL)) (-4295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) 54 (|has| |#1| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1970 (((-783) $) 9 (|has| $ (-6 -4464))))) -(((-532 |#1| |#2|) (-678 |#1|) (-1238) (-576)) (T -532)) -NIL -(-678 |#1|) -((-2836 ((|#4| |#4|) 38)) (-4135 (((-783) |#4|) 44)) (-3985 (((-783) |#4|) 45)) (-4362 (((-656 |#3|) |#4|) 55 (|has| |#3| (-6 -4465)))) (-3492 (((-3 |#4| "failed") |#4|) 67)) (-2641 ((|#4| |#4|) 59)) (-1846 ((|#1| |#4|) 58))) -(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2836 (|#4| |#4|)) (-15 -4135 ((-783) |#4|)) (-15 -3985 ((-783) |#4|)) (IF (|has| |#3| (-6 -4465)) (-15 -4362 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -1846 (|#1| |#4|)) (-15 -2641 (|#4| |#4|)) (-15 -3492 ((-3 |#4| "failed") |#4|))) (-374) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -533)) -((-3492 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2641 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-4362 (*1 *2 *3) (-12 (|has| *6 (-6 -4465)) (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3985 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4135 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2836 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -2836 (|#4| |#4|)) (-15 -4135 ((-783) |#4|)) (-15 -3985 ((-783) |#4|)) (IF (|has| |#3| (-6 -4465)) (-15 -4362 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -1846 (|#1| |#4|)) (-15 -2641 (|#4| |#4|)) (-15 -3492 ((-3 |#4| "failed") |#4|))) -((-2836 ((|#8| |#4|) 20)) (-4362 (((-656 |#3|) |#4|) 29 (|has| |#7| (-6 -4465)))) (-3492 (((-3 |#8| "failed") |#4|) 23))) -(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2836 (|#8| |#4|)) (-15 -3492 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4465)) (-15 -4362 ((-656 |#3|) |#4|)) |%noBranch|)) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1013 |#1|) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -534)) -((-4362 (*1 *2 *3) (-12 (|has| *9 (-6 -4465)) (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) (-4 *10 (-699 *7 *8 *9)))) (-3492 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) (-2836 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))) -(-10 -7 (-15 -2836 (|#8| |#4|)) (-15 -3492 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4465)) (-15 -4362 ((-656 |#3|) |#4|)) |%noBranch|)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2155 (($ (-783) (-783)) NIL)) (-3422 (($ $ $) NIL)) (-3019 (($ (-614 |#1| |#3|)) NIL) (($ $) NIL)) (-4154 (((-112) $) NIL)) (-2410 (($ $ (-576) (-576)) 21)) (-4433 (($ $ (-576) (-576)) NIL)) (-4164 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-1627 (($ $) NIL)) (-1929 (((-112) $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-4079 (($ $ (-576) (-576) $) NIL)) (-4268 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-2979 (($ $ (-576) (-614 |#1| |#3|)) NIL)) (-2932 (($ $ (-576) (-614 |#1| |#2|)) NIL)) (-3541 (($ (-783) |#1|) NIL)) (-3170 (($) NIL T CONST)) (-2836 (($ $) 30 (|has| |#1| (-317)))) (-2880 (((-614 |#1| |#3|) $ (-576)) NIL)) (-4135 (((-783) $) 33 (|has| |#1| (-568)))) (-1910 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3721 ((|#1| $ (-576) (-576)) NIL)) (-3722 (((-656 |#1|) $) NIL)) (-3985 (((-783) $) 35 (|has| |#1| (-568)))) (-4362 (((-656 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-568)))) (-2759 (((-783) $) NIL)) (-1991 (($ (-783) (-783) |#1|) NIL)) (-2773 (((-783) $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-4389 ((|#1| $) 28 (|has| |#1| (-6 (-4466 "*"))))) (-2805 (((-576) $) 10)) (-2718 (((-576) $) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2626 (((-576) $) 13)) (-3267 (((-576) $) NIL)) (-3410 (($ (-656 (-656 |#1|))) NIL) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-1898 (($ (-1 |#1| |#1|) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4345 (((-656 (-656 |#1|)) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3492 (((-3 $ "failed") $) 42 (|has| |#1| (-374)))) (-3659 (($ $ $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4267 (($ $ |#1|) NIL)) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-4359 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-1414 (((-112) $) NIL)) (-1846 ((|#1| $) 26 (|has| |#1| (-6 (-4466 "*"))))) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-3840 (((-614 |#1| |#2|) $ (-576)) NIL)) (-4113 (($ (-614 |#1| |#2|)) NIL) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2057 (((-112) $) NIL)) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-535 |#1| |#2| |#3|) (-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) (-1070) (-576) (-576)) (T -535)) -NIL -(-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-2682 (((-656 (-1237)) $) 13)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL) (($ (-656 (-1237))) 11)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-536) (-13 (-1104) (-10 -8 (-15 -4113 ($ (-656 (-1237)))) (-15 -2682 ((-656 (-1237)) $))))) (T -536)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536))))) -(-13 (-1104) (-10 -8 (-15 -4113 ($ (-656 (-1237)))) (-15 -2682 ((-656 (-1237)) $)))) -((-1957 (((-112) $ $) NIL)) (-1539 (((-1156) $) 14)) (-2447 (((-1179) $) NIL)) (-2476 (((-518) $) 11)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 21) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-537) (-13 (-1104) (-10 -8 (-15 -2476 ((-518) $)) (-15 -1539 ((-1156) $))))) (T -537)) -((-2476 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-537))))) -(-13 (-1104) (-10 -8 (-15 -2476 ((-518) $)) (-15 -1539 ((-1156) $)))) -((-2464 (((-703 (-1246)) $) 15)) (-3101 (((-703 (-1244)) $) 38)) (-3061 (((-703 (-1243)) $) 29)) (-1992 (((-703 (-561)) $) 12)) (-1797 (((-703 (-559)) $) 42)) (-1816 (((-703 (-558)) $) 33)) (-2393 (((-783) $ (-129)) 54))) -(((-538 |#1|) (-10 -8 (-15 -2393 ((-783) |#1| (-129))) (-15 -3101 ((-703 (-1244)) |#1|)) (-15 -1797 ((-703 (-559)) |#1|)) (-15 -3061 ((-703 (-1243)) |#1|)) (-15 -1816 ((-703 (-558)) |#1|)) (-15 -2464 ((-703 (-1246)) |#1|)) (-15 -1992 ((-703 (-561)) |#1|))) (-539)) (T -538)) -NIL -(-10 -8 (-15 -2393 ((-783) |#1| (-129))) (-15 -3101 ((-703 (-1244)) |#1|)) (-15 -1797 ((-703 (-559)) |#1|)) (-15 -3061 ((-703 (-1243)) |#1|)) (-15 -1816 ((-703 (-558)) |#1|)) (-15 -2464 ((-703 (-1246)) |#1|)) (-15 -1992 ((-703 (-561)) |#1|))) -((-2464 (((-703 (-1246)) $) 12)) (-3101 (((-703 (-1244)) $) 8)) (-3061 (((-703 (-1243)) $) 10)) (-1992 (((-703 (-561)) $) 13)) (-1797 (((-703 (-559)) $) 9)) (-1816 (((-703 (-558)) $) 11)) (-2393 (((-783) $ (-129)) 7)) (-3531 (((-703 (-130)) $) 14)) (-2481 (($ $) 6))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3037 ((|#1| $) NIL)) (-2860 ((|#1| $) NIL)) (-4425 (($ $) NIL)) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3342 (($ $ (-576)) 70 (|has| $ (-6 -4467)))) (-3925 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1698 (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4467)))) (-1832 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-1439 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-3509 (($ $ $) 23 (|has| $ (-6 -4467)))) (-3554 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-1629 ((|#1| $ |#1|) 21 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4467))) (($ $ "rest" $) 24 (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-3726 (($ (-1 (-112) |#1|) $) NIL)) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2849 ((|#1| $) NIL)) (-2515 (($) NIL T CONST)) (-4072 (($ $) 28 (|has| $ (-6 -4467)))) (-3796 (($ $) 29)) (-3542 (($ $) 18) (($ $ (-784)) 32)) (-3588 (($ $) 62 (|has| |#1| (-1122)))) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1920 (($ |#1| $) NIL (|has| |#1| (-1122))) (($ (-1 (-112) |#1|) $) NIL)) (-3901 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1810 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) NIL)) (-2872 (((-112) $) NIL)) (-3619 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122))) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) (-1 (-112) |#1|) $) NIL)) (-1448 (((-657 |#1|) $) 27 (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) NIL)) (-4257 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4096 (($ (-784) |#1|) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) 31 (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-1631 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-1661 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1672 (($ |#1|) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-2397 (((-657 |#1|) $) NIL)) (-1743 (((-112) $) NIL)) (-1708 (((-1180) $) 58 (|has| |#1| (-1122)))) (-3921 ((|#1| $) NIL) (($ $ (-784)) NIL)) (-2701 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2225 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3528 ((|#1| $) 13) (($ $ (-784)) NIL)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1495 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-1533 (((-112) $) NIL)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 12)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) 17)) (-3340 (($) 16)) (-2780 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1256 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL)) (-3064 (((-576) $ $) NIL)) (-2683 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-3395 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-4392 (((-112) $) 35)) (-3645 (($ $) NIL)) (-2463 (($ $) NIL (|has| $ (-6 -4467)))) (-2933 (((-784) $) NIL)) (-1961 (($ $) 40)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) 36)) (-4136 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 26)) (-2752 (($ $ $) 61) (($ $ |#1|) NIL)) (-1637 (($ $ $) NIL) (($ |#1| $) 10) (($ (-657 $)) NIL) (($ $ |#1|) NIL)) (-3515 (((-877) $) 50 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) NIL)) (-3631 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) 54 (|has| |#1| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3437 (((-784) $) 9 (|has| $ (-6 -4466))))) +(((-532 |#1| |#2|) (-679 |#1|) (-1239) (-576)) (T -532)) +NIL +(-679 |#1|) +((-4389 ((|#4| |#4|) 38)) (-4343 (((-784) |#4|) 44)) (-3652 (((-784) |#4|) 45)) (-2992 (((-657 |#3|) |#4|) 55 (|has| |#3| (-6 -4467)))) (-1455 (((-3 |#4| "failed") |#4|) 67)) (-3052 ((|#4| |#4|) 59)) (-3917 ((|#1| |#4|) 58))) +(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4389 (|#4| |#4|)) (-15 -4343 ((-784) |#4|)) (-15 -3652 ((-784) |#4|)) (IF (|has| |#3| (-6 -4467)) (-15 -2992 ((-657 |#3|) |#4|)) |%noBranch|) (-15 -3917 (|#1| |#4|)) (-15 -3052 (|#4| |#4|)) (-15 -1455 ((-3 |#4| "failed") |#4|))) (-374) (-384 |#1|) (-384 |#1|) (-700 |#1| |#2| |#3|)) (T -533)) +((-1455 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-3052 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-3917 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-700 *2 *4 *5)))) (-2992 (*1 *2 *3) (-12 (|has| *6 (-6 -4467)) (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-657 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-3652 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-784)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-4343 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-784)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-4389 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) +(-10 -7 (-15 -4389 (|#4| |#4|)) (-15 -4343 ((-784) |#4|)) (-15 -3652 ((-784) |#4|)) (IF (|has| |#3| (-6 -4467)) (-15 -2992 ((-657 |#3|) |#4|)) |%noBranch|) (-15 -3917 (|#1| |#4|)) (-15 -3052 (|#4| |#4|)) (-15 -1455 ((-3 |#4| "failed") |#4|))) +((-4389 ((|#8| |#4|) 20)) (-2992 (((-657 |#3|) |#4|) 29 (|has| |#7| (-6 -4467)))) (-1455 (((-3 |#8| "failed") |#4|) 23))) +(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4389 (|#8| |#4|)) (-15 -1455 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4467)) (-15 -2992 ((-657 |#3|) |#4|)) |%noBranch|)) (-568) (-384 |#1|) (-384 |#1|) (-700 |#1| |#2| |#3|) (-1014 |#1|) (-384 |#5|) (-384 |#5|) (-700 |#5| |#6| |#7|)) (T -534)) +((-2992 (*1 *2 *3) (-12 (|has| *9 (-6 -4467)) (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1014 *4)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)) (-5 *2 (-657 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-700 *4 *5 *6)) (-4 *10 (-700 *7 *8 *9)))) (-1455 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1014 *4)) (-4 *2 (-700 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-700 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) (-4389 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1014 *4)) (-4 *2 (-700 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-700 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))) +(-10 -7 (-15 -4389 (|#8| |#4|)) (-15 -1455 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4467)) (-15 -2992 ((-657 |#3|) |#4|)) |%noBranch|)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3793 (($ (-784) (-784)) NIL)) (-3191 (($ $ $) NIL)) (-3564 (($ (-614 |#1| |#3|)) NIL) (($ $) NIL)) (-1616 (((-112) $) NIL)) (-2550 (($ $ (-576) (-576)) 21)) (-2528 (($ $ (-576) (-576)) NIL)) (-1709 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-3620 (($ $) NIL)) (-3425 (((-112) $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-3276 (($ $ (-576) (-576) $) NIL)) (-3719 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-657 (-576)) (-657 (-576)) $) NIL)) (-1327 (($ $ (-576) (-614 |#1| |#3|)) NIL)) (-3960 (($ $ (-576) (-614 |#1| |#2|)) NIL)) (-1868 (($ (-784) |#1|) NIL)) (-2515 (($) NIL T CONST)) (-4389 (($ $) 30 (|has| |#1| (-317)))) (-3520 (((-614 |#1| |#3|) $ (-576)) NIL)) (-4343 (((-784) $) 33 (|has| |#1| (-568)))) (-1810 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1741 ((|#1| $ (-576) (-576)) NIL)) (-1448 (((-657 |#1|) $) NIL)) (-3652 (((-784) $) 35 (|has| |#1| (-568)))) (-2992 (((-657 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-568)))) (-2334 (((-784) $) NIL)) (-4096 (($ (-784) (-784) |#1|) NIL)) (-2344 (((-784) $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3242 ((|#1| $) 28 (|has| |#1| (-6 (-4468 "*"))))) (-4076 (((-576) $) 10)) (-2581 (((-576) $) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2898 (((-576) $) 13)) (-4230 (((-576) $) NIL)) (-2484 (($ (-657 (-657 |#1|))) NIL) (($ (-784) (-784) (-1 |#1| (-576) (-576))) NIL)) (-1799 (($ (-1 |#1| |#1|) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2819 (((-657 (-657 |#1|)) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1455 (((-3 $ "failed") $) 42 (|has| |#1| (-374)))) (-3616 (($ $ $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1495 (($ $ |#1|) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-657 (-576)) (-657 (-576))) NIL)) (-2959 (($ (-657 |#1|)) NIL) (($ (-657 $)) NIL)) (-3249 (((-112) $) NIL)) (-3917 ((|#1| $) 26 (|has| |#1| (-6 (-4468 "*"))))) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-1612 (((-614 |#1| |#2|) $ (-576)) NIL)) (-3515 (($ (-614 |#1| |#2|)) NIL) (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2203 (((-112) $) NIL)) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $ $) NIL) (($ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-535 |#1| |#2| |#3|) (-700 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) (-1071) (-576) (-576)) (T -535)) +NIL +(-700 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-2268 (((-657 (-1238)) $) 13)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 19) (($ (-1203)) NIL) (((-1203) $) NIL) (($ (-657 (-1238))) 11)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-536) (-13 (-1105) (-10 -8 (-15 -3515 ($ (-657 (-1238)))) (-15 -2268 ((-657 (-1238)) $))))) (T -536)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-536)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-536))))) +(-13 (-1105) (-10 -8 (-15 -3515 ($ (-657 (-1238)))) (-15 -2268 ((-657 (-1238)) $)))) +((-3423 (((-112) $ $) NIL)) (-4038 (((-1157) $) 14)) (-1708 (((-1180) $) NIL)) (-2000 (((-518) $) 11)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 21) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-537) (-13 (-1105) (-10 -8 (-15 -2000 ((-518) $)) (-15 -4038 ((-1157) $))))) (T -537)) +((-2000 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-537))))) +(-13 (-1105) (-10 -8 (-15 -2000 ((-518) $)) (-15 -4038 ((-1157) $)))) +((-1879 (((-704 (-1247)) $) 15)) (-3095 (((-704 (-1245)) $) 38)) (-2711 (((-704 (-1244)) $) 29)) (-2776 (((-704 (-561)) $) 12)) (-1520 (((-704 (-559)) $) 42)) (-1706 (((-704 (-558)) $) 33)) (-2394 (((-784) $ (-129)) 54))) +(((-538 |#1|) (-10 -8 (-15 -2394 ((-784) |#1| (-129))) (-15 -3095 ((-704 (-1245)) |#1|)) (-15 -1520 ((-704 (-559)) |#1|)) (-15 -2711 ((-704 (-1244)) |#1|)) (-15 -1706 ((-704 (-558)) |#1|)) (-15 -1879 ((-704 (-1247)) |#1|)) (-15 -2776 ((-704 (-561)) |#1|))) (-539)) (T -538)) +NIL +(-10 -8 (-15 -2394 ((-784) |#1| (-129))) (-15 -3095 ((-704 (-1245)) |#1|)) (-15 -1520 ((-704 (-559)) |#1|)) (-15 -2711 ((-704 (-1244)) |#1|)) (-15 -1706 ((-704 (-558)) |#1|)) (-15 -1879 ((-704 (-1247)) |#1|)) (-15 -2776 ((-704 (-561)) |#1|))) +((-1879 (((-704 (-1247)) $) 12)) (-3095 (((-704 (-1245)) $) 8)) (-2711 (((-704 (-1244)) $) 10)) (-2776 (((-704 (-561)) $) 13)) (-1520 (((-704 (-559)) $) 9)) (-1706 (((-704 (-558)) $) 11)) (-2394 (((-784) $ (-129)) 7)) (-1792 (((-704 (-130)) $) 14)) (-3950 (($ $) 6))) (((-539) (-141)) (T -539)) -((-3531 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130))))) (-1992 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561))))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1246))))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558))))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243))))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559))))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244))))) (-2393 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) -(-13 (-175) (-10 -8 (-15 -3531 ((-703 (-130)) $)) (-15 -1992 ((-703 (-561)) $)) (-15 -2464 ((-703 (-1246)) $)) (-15 -1816 ((-703 (-558)) $)) (-15 -3061 ((-703 (-1243)) $)) (-15 -1797 ((-703 (-559)) $)) (-15 -3101 ((-703 (-1244)) $)) (-15 -2393 ((-783) $ (-129))))) +((-1792 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-130))))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-561))))) (-1879 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-1247))))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-558))))) (-2711 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-1244))))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-559))))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-1245))))) (-2394 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-784))))) +(-13 (-175) (-10 -8 (-15 -1792 ((-704 (-130)) $)) (-15 -2776 ((-704 (-561)) $)) (-15 -1879 ((-704 (-1247)) $)) (-15 -1706 ((-704 (-558)) $)) (-15 -2711 ((-704 (-1244)) $)) (-15 -1520 ((-704 (-559)) $)) (-15 -3095 ((-704 (-1245)) $)) (-15 -2394 ((-784) $ (-129))))) (((-175) . T)) -((-1611 (((-1193 |#1|) (-783)) 115)) (-3832 (((-1288 |#1|) (-1288 |#1|) (-940)) 108)) (-4343 (((-1293) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))) |#1|) 123)) (-1722 (((-1288 |#1|) (-1288 |#1|) (-783)) 53)) (-4370 (((-1288 |#1|) (-940)) 110)) (-3864 (((-1288 |#1|) (-1288 |#1|) (-576)) 30)) (-2571 (((-1193 |#1|) (-1288 |#1|)) 116)) (-3121 (((-1288 |#1|) (-940)) 137)) (-2882 (((-112) (-1288 |#1|)) 120)) (-2595 (((-1288 |#1|) (-1288 |#1|) (-940)) 100)) (-4293 (((-1193 |#1|) (-1288 |#1|)) 131)) (-3787 (((-940) (-1288 |#1|)) 96)) (-1669 (((-1288 |#1|) (-1288 |#1|)) 38)) (-2411 (((-1288 |#1|) (-940) (-940)) 140)) (-3816 (((-1288 |#1|) (-1288 |#1|) (-1141) (-1141)) 29)) (-2168 (((-1288 |#1|) (-1288 |#1|) (-783) (-1141)) 54)) (-2704 (((-1288 (-1288 |#1|)) (-940)) 136)) (-4047 (((-1288 |#1|) (-1288 |#1|) (-1288 |#1|)) 121)) (** (((-1288 |#1|) (-1288 |#1|) (-576)) 67)) (* (((-1288 |#1|) (-1288 |#1|) (-1288 |#1|)) 31))) -(((-540 |#1|) (-10 -7 (-15 -4343 ((-1293) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))) |#1|)) (-15 -4370 ((-1288 |#1|) (-940))) (-15 -2411 ((-1288 |#1|) (-940) (-940))) (-15 -2571 ((-1193 |#1|) (-1288 |#1|))) (-15 -1611 ((-1193 |#1|) (-783))) (-15 -2168 ((-1288 |#1|) (-1288 |#1|) (-783) (-1141))) (-15 -1722 ((-1288 |#1|) (-1288 |#1|) (-783))) (-15 -3816 ((-1288 |#1|) (-1288 |#1|) (-1141) (-1141))) (-15 -3864 ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 ** ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 * ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -4047 ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -2595 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -3832 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -1669 ((-1288 |#1|) (-1288 |#1|))) (-15 -3787 ((-940) (-1288 |#1|))) (-15 -2882 ((-112) (-1288 |#1|))) (-15 -2704 ((-1288 (-1288 |#1|)) (-940))) (-15 -3121 ((-1288 |#1|) (-940))) (-15 -4293 ((-1193 |#1|) (-1288 |#1|)))) (-360)) (T -540)) -((-4293 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-540 *4)))) (-3787 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-940)) (-5 *1 (-540 *4)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (-3832 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2595 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4047 (*1 *2 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3864 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3816 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1141)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1722 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2168 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1288 *5)) (-5 *3 (-783)) (-5 *4 (-1141)) (-4 *5 (-360)) (-5 *1 (-540 *5)))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2571 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)))) (-2411 (*1 *2 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-4343 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 (-656 (-2 (|:| -1690 *4) (|:| -2411 (-1141)))))) (-4 *4 (-360)) (-5 *2 (-1293)) (-5 *1 (-540 *4))))) -(-10 -7 (-15 -4343 ((-1293) (-1288 (-656 (-2 (|:| -1690 |#1|) (|:| -2411 (-1141))))) |#1|)) (-15 -4370 ((-1288 |#1|) (-940))) (-15 -2411 ((-1288 |#1|) (-940) (-940))) (-15 -2571 ((-1193 |#1|) (-1288 |#1|))) (-15 -1611 ((-1193 |#1|) (-783))) (-15 -2168 ((-1288 |#1|) (-1288 |#1|) (-783) (-1141))) (-15 -1722 ((-1288 |#1|) (-1288 |#1|) (-783))) (-15 -3816 ((-1288 |#1|) (-1288 |#1|) (-1141) (-1141))) (-15 -3864 ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 ** ((-1288 |#1|) (-1288 |#1|) (-576))) (-15 * ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -4047 ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -2595 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -3832 ((-1288 |#1|) (-1288 |#1|) (-940))) (-15 -1669 ((-1288 |#1|) (-1288 |#1|))) (-15 -3787 ((-940) (-1288 |#1|))) (-15 -2882 ((-112) (-1288 |#1|))) (-15 -2704 ((-1288 (-1288 |#1|)) (-940))) (-15 -3121 ((-1288 |#1|) (-940))) (-15 -4293 ((-1193 |#1|) (-1288 |#1|)))) -((-2464 (((-703 (-1246)) $) NIL)) (-3101 (((-703 (-1244)) $) NIL)) (-3061 (((-703 (-1243)) $) NIL)) (-1992 (((-703 (-561)) $) NIL)) (-1797 (((-703 (-559)) $) NIL)) (-1816 (((-703 (-558)) $) NIL)) (-2393 (((-783) $ (-129)) NIL)) (-3531 (((-703 (-130)) $) 26)) (-1949 (((-1141) $ (-1141)) 31)) (-3539 (((-1141) $) 30)) (-2044 (((-112) $) 20)) (-1974 (($ (-400)) 14) (($ (-1179)) 16)) (-2039 (((-112) $) 27)) (-4113 (((-876) $) 34)) (-2481 (($ $) 28))) -(((-541) (-13 (-539) (-625 (-876)) (-10 -8 (-15 -1974 ($ (-400))) (-15 -1974 ($ (-1179))) (-15 -2039 ((-112) $)) (-15 -2044 ((-112) $)) (-15 -3539 ((-1141) $)) (-15 -1949 ((-1141) $ (-1141)))))) (T -541)) -((-1974 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))) (-1974 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-541)))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-541)))) (-1949 (*1 *2 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-541))))) -(-13 (-539) (-625 (-876)) (-10 -8 (-15 -1974 ($ (-400))) (-15 -1974 ($ (-1179))) (-15 -2039 ((-112) $)) (-15 -2044 ((-112) $)) (-15 -3539 ((-1141) $)) (-15 -1949 ((-1141) $ (-1141))))) -((-3551 (((-1 |#1| |#1|) |#1|) 11)) (-2871 (((-1 |#1| |#1|)) 10))) -(((-542 |#1|) (-10 -7 (-15 -2871 ((-1 |#1| |#1|))) (-15 -3551 ((-1 |#1| |#1|) |#1|))) (-13 (-738) (-25))) (T -542)) -((-3551 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))) (-2871 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) -(-10 -7 (-15 -2871 ((-1 |#1| |#1|))) (-15 -3551 ((-1 |#1| |#1|) |#1|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-4073 (((-656 (-887 |#1| (-783))) $) NIL)) (-2214 (($ $ $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-3310 (($ $) NIL)) (-1564 (($ (-783) |#1|) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2423 (($ (-1 (-783) (-783)) $) NIL)) (-4348 ((|#1| $) NIL)) (-1711 (((-783) $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 27)) (-2950 (((-112) $ $) NIL)) (-4313 (($) NIL T CONST)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL)) (-4026 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL))) -(((-543 |#1|) (-13 (-805) (-521 (-783) |#1|)) (-861)) (T -543)) -NIL -(-13 (-805) (-521 (-783) |#1|)) -((-3429 (((-656 |#2|) (-1193 |#1|) |#3|) 98)) (-2839 (((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1193 |#1|)) (-1193 |#1|))) 114)) (-4399 (((-1193 |#1|) (-701 |#1|)) 110))) -(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -4399 ((-1193 |#1|) (-701 |#1|))) (-15 -3429 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -2839 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1193 |#1|)) (-1193 |#1|))))) (-374) (-374) (-13 (-374) (-860))) (T -544)) -((-2839 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1193 *6)) (-1193 *6))) (-4 *6 (-374)) (-5 *2 (-656 (-2 (|:| |outval| *7) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860))))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1193 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) -(-10 -7 (-15 -4399 ((-1193 |#1|) (-701 |#1|))) (-15 -3429 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -2839 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1193 |#1|)) (-1193 |#1|))))) -((-1968 (((-703 (-1246)) $ (-1246)) NIL)) (-1495 (((-703 (-561)) $ (-561)) NIL)) (-3434 (((-783) $ (-129)) 39)) (-2750 (((-703 (-130)) $ (-130)) 40)) (-2464 (((-703 (-1246)) $) NIL)) (-3101 (((-703 (-1244)) $) NIL)) (-3061 (((-703 (-1243)) $) NIL)) (-1992 (((-703 (-561)) $) NIL)) (-1797 (((-703 (-559)) $) NIL)) (-1816 (((-703 (-558)) $) NIL)) (-2393 (((-783) $ (-129)) 35)) (-3531 (((-703 (-130)) $) 37)) (-1562 (((-112) $) 27)) (-2111 (((-703 $) (-591) (-973)) 18) (((-703 $) (-503) (-973)) 24)) (-4113 (((-876) $) 48)) (-2481 (($ $) 42))) -(((-545) (-13 (-779 (-591)) (-625 (-876)) (-10 -8 (-15 -2111 ((-703 $) (-503) (-973)))))) (T -545)) -((-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-973)) (-5 *2 (-703 (-545))) (-5 *1 (-545))))) -(-13 (-779 (-591)) (-625 (-876)) (-10 -8 (-15 -2111 ((-703 $) (-503) (-973))))) -((-4356 (((-855 (-576))) 12)) (-4365 (((-855 (-576))) 14)) (-2737 (((-845 (-576))) 9))) -(((-546) (-10 -7 (-15 -2737 ((-845 (-576)))) (-15 -4356 ((-855 (-576)))) (-15 -4365 ((-855 (-576)))))) (T -546)) -((-4365 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-4356 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-2737 (*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546))))) -(-10 -7 (-15 -2737 ((-845 (-576)))) (-15 -4356 ((-855 (-576)))) (-15 -4365 ((-855 (-576))))) -((-1451 (((-548) (-1197)) 15)) (-3938 ((|#1| (-548)) 20))) -(((-547 |#1|) (-10 -7 (-15 -1451 ((-548) (-1197))) (-15 -3938 (|#1| (-548)))) (-1238)) (T -547)) -((-3938 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1238)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-548)) (-5 *1 (-547 *4)) (-4 *4 (-1238))))) -(-10 -7 (-15 -1451 ((-548) (-1197))) (-15 -3938 (|#1| (-548)))) -((-1957 (((-112) $ $) NIL)) (-2266 (((-1179) $) 55)) (-3283 (((-112) $) 51)) (-2219 (((-1197) $) 52)) (-1901 (((-112) $) 49)) (-1533 (((-1179) $) 50)) (-4410 (($ (-1179)) 56)) (-1730 (((-112) $) NIL)) (-2925 (((-112) $) NIL)) (-2896 (((-112) $) NIL)) (-2447 (((-1179) $) NIL)) (-2073 (($ $ (-656 (-1197))) 21)) (-3938 (((-52) $) 23)) (-3936 (((-112) $) NIL)) (-2244 (((-576) $) NIL)) (-3116 (((-1141) $) NIL)) (-2952 (($ $ (-656 (-1197)) (-1197)) 73)) (-2207 (((-112) $) NIL)) (-2633 (((-227) $) NIL)) (-1577 (($ $) 44)) (-1617 (((-876) $) NIL)) (-3379 (((-112) $ $) NIL)) (-4369 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1525 (((-656 $) $) 30)) (-3119 (((-1197) (-656 $)) 57)) (-1556 (($ (-1179)) NIL) (($ (-1197)) 19) (($ (-576)) 8) (($ (-227)) 28) (($ (-876)) NIL) (($ (-656 $)) 65) (((-1125) $) 12) (($ (-1125)) 13)) (-3449 (((-1197) (-1197) (-656 $)) 60)) (-4113 (((-876) $) 54)) (-4051 (($ $) 59)) (-1716 (($ $) 58)) (-2401 (($ $ (-656 $)) 66)) (-2950 (((-112) $ $) NIL)) (-2181 (((-112) $) 29)) (-4313 (($) 9 T CONST)) (-4322 (($) 11 T CONST)) (-3939 (((-112) $ $) 74)) (-4047 (($ $ $) 82)) (-4026 (($ $ $) 75)) (** (($ $ (-783)) 81) (($ $ (-576)) 80)) (* (($ $ $) 76)) (-1970 (((-576) $) NIL))) -(((-548) (-13 (-1124 (-1179) (-1197) (-576) (-227) (-876)) (-626 (-1125)) (-10 -8 (-15 -3938 ((-52) $)) (-15 -1556 ($ (-1125))) (-15 -2401 ($ $ (-656 $))) (-15 -2952 ($ $ (-656 (-1197)) (-1197))) (-15 -2073 ($ $ (-656 (-1197)))) (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 -4047 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 0 ($) -2666) (-15 1 ($) -2666) (-15 -1577 ($ $)) (-15 -2266 ((-1179) $)) (-15 -4410 ($ (-1179))) (-15 -3119 ((-1197) (-656 $))) (-15 -3449 ((-1197) (-1197) (-656 $)))))) (T -548)) -((-3938 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-548)))) (-2401 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548)))) (-2952 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1197)) (-5 *1 (-548)))) (-2073 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-548)))) (-4026 (*1 *1 *1 *1) (-5 *1 (-548))) (* (*1 *1 *1 *1) (-5 *1 (-548))) (-4047 (*1 *1 *1 *1) (-5 *1 (-548))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) (-4313 (*1 *1) (-5 *1 (-548))) (-4322 (*1 *1) (-5 *1 (-548))) (-1577 (*1 *1 *1) (-5 *1 (-548))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-548)))) (-4410 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-548)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1197)) (-5 *1 (-548)))) (-3449 (*1 *2 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) -(-13 (-1124 (-1179) (-1197) (-576) (-227) (-876)) (-626 (-1125)) (-10 -8 (-15 -3938 ((-52) $)) (-15 -1556 ($ (-1125))) (-15 -2401 ($ $ (-656 $))) (-15 -2952 ($ $ (-656 (-1197)) (-1197))) (-15 -2073 ($ $ (-656 (-1197)))) (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 -4047 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 (-4313) ($) -2666) (-15 (-4322) ($) -2666) (-15 -1577 ($ $)) (-15 -2266 ((-1179) $)) (-15 -4410 ($ (-1179))) (-15 -3119 ((-1197) (-656 $))) (-15 -3449 ((-1197) (-1197) (-656 $))))) -((-1479 ((|#2| |#2|) 17)) (-1821 ((|#2| |#2|) 13)) (-1382 ((|#2| |#2| (-576) (-576)) 20)) (-3411 ((|#2| |#2|) 15))) -(((-549 |#1| |#2|) (-10 -7 (-15 -1821 (|#2| |#2|)) (-15 -3411 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1382 (|#2| |#2| (-576) (-576)))) (-13 (-568) (-148)) (-1279 |#1|)) (T -549)) -((-1382 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1279 *4)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1279 *3)))) (-3411 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1279 *3)))) (-1821 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1279 *3))))) -(-10 -7 (-15 -1821 (|#2| |#2|)) (-15 -3411 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1382 (|#2| |#2| (-576) (-576)))) -((-2346 (((-656 (-304 (-971 |#2|))) (-656 |#2|) (-656 (-1197))) 32)) (-1541 (((-656 |#2|) (-971 |#1|) |#3|) 54) (((-656 |#2|) (-1193 |#1|) |#3|) 53)) (-3097 (((-656 (-656 |#2|)) (-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)) |#3|) 106))) -(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -1541 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -1541 ((-656 |#2|) (-971 |#1|) |#3|)) (-15 -3097 ((-656 (-656 |#2|)) (-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)) |#3|)) (-15 -2346 ((-656 (-304 (-971 |#2|))) (-656 |#2|) (-656 (-1197))))) (-464) (-374) (-13 (-374) (-860))) (T -550)) -((-2346 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1197))) (-4 *6 (-374)) (-5 *2 (-656 (-304 (-971 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860))))) (-3097 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) (-4 *5 (-13 (-374) (-860))))) (-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-971 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -1541 ((-656 |#2|) (-1193 |#1|) |#3|)) (-15 -1541 ((-656 |#2|) (-971 |#1|) |#3|)) (-15 -3097 ((-656 (-656 |#2|)) (-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)) |#3|)) (-15 -2346 ((-656 (-304 (-971 |#2|))) (-656 |#2|) (-656 (-1197))))) -((-1767 ((|#2| |#2| |#1|) 17)) (-1783 ((|#2| (-656 |#2|)) 31)) (-2634 ((|#2| (-656 |#2|)) 52))) -(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1783 (|#2| (-656 |#2|))) (-15 -2634 (|#2| (-656 |#2|))) (-15 -1767 (|#2| |#2| |#1|))) (-317) (-1264 |#1|) |#1| (-1 |#1| |#1| (-783))) (T -551)) -((-1767 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1264 *3)))) (-2634 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(-10 -7 (-15 -1783 (|#2| (-656 |#2|))) (-15 -2634 (|#2| (-656 |#2|))) (-15 -1767 (|#2| |#2| |#1|))) -((-1452 (((-430 (-1193 |#4|)) (-1193 |#4|) (-1 (-430 (-1193 |#3|)) (-1193 |#3|))) 89) (((-430 |#4|) |#4| (-1 (-430 (-1193 |#3|)) (-1193 |#3|))) 210))) -(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1452 ((-430 |#4|) |#4| (-1 (-430 (-1193 |#3|)) (-1193 |#3|)))) (-15 -1452 ((-430 (-1193 |#4|)) (-1193 |#4|) (-1 (-430 (-1193 |#3|)) (-1193 |#3|))))) (-861) (-805) (-13 (-317) (-148)) (-968 |#3| |#2| |#1|)) (T -552)) -((-1452 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1193 *7)) (-1193 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *8 (-968 *7 *6 *5)) (-5 *2 (-430 (-1193 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1193 *8)))) (-1452 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1193 *7)) (-1193 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-968 *7 *6 *5))))) -(-10 -7 (-15 -1452 ((-430 |#4|) |#4| (-1 (-430 (-1193 |#3|)) (-1193 |#3|)))) (-15 -1452 ((-430 (-1193 |#4|)) (-1193 |#4|) (-1 (-430 (-1193 |#3|)) (-1193 |#3|))))) -((-1479 ((|#4| |#4|) 74)) (-1821 ((|#4| |#4|) 70)) (-1382 ((|#4| |#4| (-576) (-576)) 76)) (-3411 ((|#4| |#4|) 72))) -(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1821 (|#4| |#4|)) (-15 -3411 (|#4| |#4|)) (-15 -1479 (|#4| |#4|)) (-15 -1382 (|#4| |#4| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1264 |#1|) (-736 |#1| |#2|) (-1279 |#3|)) (T -553)) -((-1382 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-4 *5 (-1264 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1279 *6)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) (-3411 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) (-1821 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5))))) -(-10 -7 (-15 -1821 (|#4| |#4|)) (-15 -3411 (|#4| |#4|)) (-15 -1479 (|#4| |#4|)) (-15 -1382 (|#4| |#4| (-576) (-576)))) -((-1479 ((|#2| |#2|) 27)) (-1821 ((|#2| |#2|) 23)) (-1382 ((|#2| |#2| (-576) (-576)) 29)) (-3411 ((|#2| |#2|) 25))) -(((-554 |#1| |#2|) (-10 -7 (-15 -1821 (|#2| |#2|)) (-15 -3411 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1382 (|#2| |#2| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1279 |#1|)) (T -554)) -((-1382 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1279 *4)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1279 *3)))) (-3411 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1279 *3)))) (-1821 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1279 *3))))) -(-10 -7 (-15 -1821 (|#2| |#2|)) (-15 -3411 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1382 (|#2| |#2| (-576) (-576)))) -((-4402 (((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)) 18) (((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|)) 14) (((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|)) 32))) -(((-555 |#1| |#2|) (-10 -7 (-15 -4402 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -4402 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -4402 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) (-1070) (-1264 |#1|)) (T -555)) -((-4402 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) (-4402 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) (-4402 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1070)) (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1264 *5))))) -(-10 -7 (-15 -4402 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -4402 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -4402 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) -((-3374 (($ $ $) 84)) (-3589 (((-430 $) $) 52)) (-2982 (((-3 (-576) "failed") $) 64)) (-2317 (((-576) $) 42)) (-3526 (((-3 (-419 (-576)) "failed") $) 79)) (-4063 (((-112) $) 26)) (-1400 (((-419 (-576)) $) 77)) (-2171 (((-112) $) 55)) (-4170 (($ $ $ $) 92)) (-2279 (((-112) $) 17)) (-1595 (($ $ $) 62)) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 74)) (-3552 (((-3 $ "failed") $) 69)) (-2362 (($ $) 24)) (-2617 (($ $ $) 90)) (-3650 (($) 65)) (-4372 (($ $) 58)) (-1452 (((-430 $) $) 50)) (-3955 (((-112) $) 15)) (-2812 (((-783) $) 32)) (-4107 (($ $) 11) (($ $ (-783)) NIL)) (-4287 (($ $) 18)) (-1556 (((-576) $) NIL) (((-548) $) 41) (((-907 (-576)) $) 45) (((-390) $) 35) (((-227) $) 38)) (-2910 (((-783)) 9)) (-2291 (((-112) $ $) 21)) (-1348 (($ $ $) 60))) -(((-556 |#1|) (-10 -8 (-15 -2617 (|#1| |#1| |#1|)) (-15 -4170 (|#1| |#1| |#1| |#1|)) (-15 -2362 (|#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -3526 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1400 ((-419 (-576)) |#1|)) (-15 -4063 ((-112) |#1|)) (-15 -3374 (|#1| |#1| |#1|)) (-15 -2291 ((-112) |#1| |#1|)) (-15 -3955 ((-112) |#1|)) (-15 -3650 (|#1|)) (-15 -3552 ((-3 |#1| "failed") |#1|)) (-15 -1556 ((-227) |#1|)) (-15 -1556 ((-390) |#1|)) (-15 -1595 (|#1| |#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -1348 (|#1| |#1| |#1|)) (-15 -2477 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -1556 ((-907 (-576)) |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -1556 ((-576) |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 -2279 ((-112) |#1|)) (-15 -2812 ((-783) |#1|)) (-15 -1452 ((-430 |#1|) |#1|)) (-15 -3589 ((-430 |#1|) |#1|)) (-15 -2171 ((-112) |#1|)) (-15 -2910 ((-783)))) (-557)) (T -556)) -((-2910 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) -(-10 -8 (-15 -2617 (|#1| |#1| |#1|)) (-15 -4170 (|#1| |#1| |#1| |#1|)) (-15 -2362 (|#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -3526 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1400 ((-419 (-576)) |#1|)) (-15 -4063 ((-112) |#1|)) (-15 -3374 (|#1| |#1| |#1|)) (-15 -2291 ((-112) |#1| |#1|)) (-15 -3955 ((-112) |#1|)) (-15 -3650 (|#1|)) (-15 -3552 ((-3 |#1| "failed") |#1|)) (-15 -1556 ((-227) |#1|)) (-15 -1556 ((-390) |#1|)) (-15 -1595 (|#1| |#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -1348 (|#1| |#1| |#1|)) (-15 -2477 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -1556 ((-907 (-576)) |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -1556 ((-576) |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 -2279 ((-112) |#1|)) (-15 -2812 ((-783) |#1|)) (-15 -1452 ((-430 |#1|) |#1|)) (-15 -3589 ((-430 |#1|) |#1|)) (-15 -2171 ((-112) |#1|)) (-15 -2910 ((-783)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-3374 (($ $ $) 93)) (-1765 (((-3 $ "failed") $ $) 20)) (-3282 (($ $ $ $) 82)) (-2658 (($ $) 57)) (-3589 (((-430 $) $) 58)) (-4386 (((-112) $ $) 136)) (-1527 (((-576) $) 125)) (-3385 (($ $ $) 96)) (-3170 (($) 18 T CONST)) (-2982 (((-3 (-576) "failed") $) 117)) (-2317 (((-576) $) 118)) (-1895 (($ $ $) 140)) (-1930 (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 115) (((-701 (-576)) (-701 $)) 114)) (-1851 (((-3 $ "failed") $) 37)) (-3526 (((-3 (-419 (-576)) "failed") $) 90)) (-4063 (((-112) $) 92)) (-1400 (((-419 (-576)) $) 91)) (-4370 (($) 89) (($ $) 88)) (-1908 (($ $ $) 139)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 134)) (-2171 (((-112) $) 59)) (-4170 (($ $ $ $) 80)) (-3104 (($ $ $) 94)) (-2279 (((-112) $) 127)) (-1595 (($ $ $) 105)) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 108)) (-2486 (((-112) $) 35)) (-3616 (((-112) $) 100)) (-3552 (((-3 $ "failed") $) 102)) (-3323 (((-112) $) 126)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 143)) (-3547 (($ $ $ $) 81)) (-2907 (($ $ $) 133)) (-3777 (($ $ $) 132)) (-2362 (($ $) 84)) (-3108 (($ $) 97)) (-2160 (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 113) (((-701 (-576)) (-1288 $)) 112)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-2617 (($ $ $) 79)) (-3650 (($) 101 T CONST)) (-1921 (($ $) 86)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-4372 (($ $) 106)) (-1452 (((-430 $) $) 56)) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 141)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 135)) (-3955 (((-112) $) 99)) (-2812 (((-783) $) 137)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 138)) (-4107 (($ $) 123) (($ $ (-783)) 121)) (-3756 (($ $) 85)) (-4287 (($ $) 87)) (-1556 (((-576) $) 119) (((-548) $) 110) (((-907 (-576)) $) 109) (((-390) $) 104) (((-227) $) 103)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 116)) (-2910 (((-783)) 32 T CONST)) (-2291 (((-112) $ $) 95)) (-1348 (($ $ $) 107)) (-2950 (((-112) $ $) 6)) (-1869 (($) 98)) (-4134 (((-112) $ $) 45)) (-1555 (($ $ $ $) 83)) (-2366 (($ $) 124)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $) 122) (($ $ (-783)) 120)) (-3995 (((-112) $ $) 131)) (-3975 (((-112) $ $) 129)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 130)) (-3963 (((-112) $ $) 128)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-576) $) 111))) +((-3445 (((-1194 |#1|) (-784)) 115)) (-2256 (((-1289 |#1|) (-1289 |#1|) (-941)) 108)) (-2800 (((-1294) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))) |#1|) 123)) (-1982 (((-1289 |#1|) (-1289 |#1|) (-784)) 53)) (-1876 (((-1289 |#1|) (-941)) 110)) (-1841 (((-1289 |#1|) (-1289 |#1|) (-576)) 30)) (-3587 (((-1194 |#1|) (-1289 |#1|)) 116)) (-2084 (((-1289 |#1|) (-941)) 137)) (-3547 (((-112) (-1289 |#1|)) 120)) (-3869 (((-1289 |#1|) (-1289 |#1|) (-941)) 100)) (-3604 (((-1194 |#1|) (-1289 |#1|)) 131)) (-2327 (((-941) (-1289 |#1|)) 96)) (-2098 (((-1289 |#1|) (-1289 |#1|)) 38)) (-3146 (((-1289 |#1|) (-941) (-941)) 140)) (-2572 (((-1289 |#1|) (-1289 |#1|) (-1142) (-1142)) 29)) (-3975 (((-1289 |#1|) (-1289 |#1|) (-784) (-1142)) 54)) (-2469 (((-1289 (-1289 |#1|)) (-941)) 136)) (-2995 (((-1289 |#1|) (-1289 |#1|) (-1289 |#1|)) 121)) (** (((-1289 |#1|) (-1289 |#1|) (-576)) 67)) (* (((-1289 |#1|) (-1289 |#1|) (-1289 |#1|)) 31))) +(((-540 |#1|) (-10 -7 (-15 -2800 ((-1294) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))) |#1|)) (-15 -1876 ((-1289 |#1|) (-941))) (-15 -3146 ((-1289 |#1|) (-941) (-941))) (-15 -3587 ((-1194 |#1|) (-1289 |#1|))) (-15 -3445 ((-1194 |#1|) (-784))) (-15 -3975 ((-1289 |#1|) (-1289 |#1|) (-784) (-1142))) (-15 -1982 ((-1289 |#1|) (-1289 |#1|) (-784))) (-15 -2572 ((-1289 |#1|) (-1289 |#1|) (-1142) (-1142))) (-15 -1841 ((-1289 |#1|) (-1289 |#1|) (-576))) (-15 ** ((-1289 |#1|) (-1289 |#1|) (-576))) (-15 * ((-1289 |#1|) (-1289 |#1|) (-1289 |#1|))) (-15 -2995 ((-1289 |#1|) (-1289 |#1|) (-1289 |#1|))) (-15 -3869 ((-1289 |#1|) (-1289 |#1|) (-941))) (-15 -2256 ((-1289 |#1|) (-1289 |#1|) (-941))) (-15 -2098 ((-1289 |#1|) (-1289 |#1|))) (-15 -2327 ((-941) (-1289 |#1|))) (-15 -3547 ((-112) (-1289 |#1|))) (-15 -2469 ((-1289 (-1289 |#1|)) (-941))) (-15 -2084 ((-1289 |#1|) (-941))) (-15 -3604 ((-1194 |#1|) (-1289 |#1|)))) (-360)) (T -540)) +((-3604 (*1 *2 *3) (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-1194 *4)) (-5 *1 (-540 *4)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1289 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1289 (-1289 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-540 *4)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-941)) (-5 *1 (-540 *4)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-941)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3869 (*1 *2 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-941)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2995 (*1 *2 *2 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1841 (*1 *2 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2572 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-1142)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1982 (*1 *2 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3975 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1289 *5)) (-5 *3 (-784)) (-5 *4 (-1142)) (-4 *5 (-360)) (-5 *1 (-540 *5)))) (-3445 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1194 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-1194 *4)) (-5 *1 (-540 *4)))) (-3146 (*1 *2 *3 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1289 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1876 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1289 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-1289 (-657 (-2 (|:| -3037 *4) (|:| -3146 (-1142)))))) (-4 *4 (-360)) (-5 *2 (-1294)) (-5 *1 (-540 *4))))) +(-10 -7 (-15 -2800 ((-1294) (-1289 (-657 (-2 (|:| -3037 |#1|) (|:| -3146 (-1142))))) |#1|)) (-15 -1876 ((-1289 |#1|) (-941))) (-15 -3146 ((-1289 |#1|) (-941) (-941))) (-15 -3587 ((-1194 |#1|) (-1289 |#1|))) (-15 -3445 ((-1194 |#1|) (-784))) (-15 -3975 ((-1289 |#1|) (-1289 |#1|) (-784) (-1142))) (-15 -1982 ((-1289 |#1|) (-1289 |#1|) (-784))) (-15 -2572 ((-1289 |#1|) (-1289 |#1|) (-1142) (-1142))) (-15 -1841 ((-1289 |#1|) (-1289 |#1|) (-576))) (-15 ** ((-1289 |#1|) (-1289 |#1|) (-576))) (-15 * ((-1289 |#1|) (-1289 |#1|) (-1289 |#1|))) (-15 -2995 ((-1289 |#1|) (-1289 |#1|) (-1289 |#1|))) (-15 -3869 ((-1289 |#1|) (-1289 |#1|) (-941))) (-15 -2256 ((-1289 |#1|) (-1289 |#1|) (-941))) (-15 -2098 ((-1289 |#1|) (-1289 |#1|))) (-15 -2327 ((-941) (-1289 |#1|))) (-15 -3547 ((-112) (-1289 |#1|))) (-15 -2469 ((-1289 (-1289 |#1|)) (-941))) (-15 -2084 ((-1289 |#1|) (-941))) (-15 -3604 ((-1194 |#1|) (-1289 |#1|)))) +((-1879 (((-704 (-1247)) $) NIL)) (-3095 (((-704 (-1245)) $) NIL)) (-2711 (((-704 (-1244)) $) NIL)) (-2776 (((-704 (-561)) $) NIL)) (-1520 (((-704 (-559)) $) NIL)) (-1706 (((-704 (-558)) $) NIL)) (-2394 (((-784) $ (-129)) NIL)) (-1792 (((-704 (-130)) $) 26)) (-3669 (((-1142) $ (-1142)) 31)) (-3619 (((-1142) $) 30)) (-2072 (((-112) $) 20)) (-2633 (($ (-400)) 14) (($ (-1180)) 16)) (-2013 (((-112) $) 27)) (-3515 (((-877) $) 34)) (-3950 (($ $) 28))) +(((-541) (-13 (-539) (-625 (-877)) (-10 -8 (-15 -2633 ($ (-400))) (-15 -2633 ($ (-1180))) (-15 -2013 ((-112) $)) (-15 -2072 ((-112) $)) (-15 -3619 ((-1142) $)) (-15 -3669 ((-1142) $ (-1142)))))) (T -541)) +((-2633 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))) (-2633 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-541)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-541)))) (-3669 (*1 *2 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-541))))) +(-13 (-539) (-625 (-877)) (-10 -8 (-15 -2633 ($ (-400))) (-15 -2633 ($ (-1180))) (-15 -2013 ((-112) $)) (-15 -2072 ((-112) $)) (-15 -3619 ((-1142) $)) (-15 -3669 ((-1142) $ (-1142))))) +((-4365 (((-1 |#1| |#1|) |#1|) 11)) (-3393 (((-1 |#1| |#1|)) 10))) +(((-542 |#1|) (-10 -7 (-15 -3393 ((-1 |#1| |#1|))) (-15 -4365 ((-1 |#1| |#1|) |#1|))) (-13 (-739) (-25))) (T -542)) +((-4365 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-739) (-25))))) (-3393 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-739) (-25)))))) +(-10 -7 (-15 -3393 ((-1 |#1| |#1|))) (-15 -4365 ((-1 |#1| |#1|) |#1|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3212 (((-657 (-888 |#1| (-784))) $) NIL)) (-1323 (($ $ $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-2165 (($ $) NIL)) (-1974 (($ (-784) |#1|) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-4071 (($ (-1 (-784) (-784)) $) NIL)) (-2848 ((|#1| $) NIL)) (-2141 (((-784) $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 27)) (-4166 (((-112) $ $) NIL)) (-2716 (($) NIL T CONST)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL)) (-2971 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL))) +(((-543 |#1|) (-13 (-806) (-521 (-784) |#1|)) (-862)) (T -543)) +NIL +(-13 (-806) (-521 (-784) |#1|)) +((-2096 (((-657 |#2|) (-1194 |#1|) |#3|) 98)) (-4423 (((-657 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 |#2|))))) (-702 |#1|) |#3| (-1 (-430 (-1194 |#1|)) (-1194 |#1|))) 114)) (-2194 (((-1194 |#1|) (-702 |#1|)) 110))) +(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -2194 ((-1194 |#1|) (-702 |#1|))) (-15 -2096 ((-657 |#2|) (-1194 |#1|) |#3|)) (-15 -4423 ((-657 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 |#2|))))) (-702 |#1|) |#3| (-1 (-430 (-1194 |#1|)) (-1194 |#1|))))) (-374) (-374) (-13 (-374) (-861))) (T -544)) +((-4423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *6)) (-5 *5 (-1 (-430 (-1194 *6)) (-1194 *6))) (-4 *6 (-374)) (-5 *2 (-657 (-2 (|:| |outval| *7) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-861))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *5)) (-4 *5 (-374)) (-5 *2 (-657 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-861))))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-702 *4)) (-4 *4 (-374)) (-5 *2 (-1194 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-861)))))) +(-10 -7 (-15 -2194 ((-1194 |#1|) (-702 |#1|))) (-15 -2096 ((-657 |#2|) (-1194 |#1|) |#3|)) (-15 -4423 ((-657 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 |#2|))))) (-702 |#1|) |#3| (-1 (-430 (-1194 |#1|)) (-1194 |#1|))))) +((-2599 (((-704 (-1247)) $ (-1247)) NIL)) (-1711 (((-704 (-561)) $ (-561)) NIL)) (-2151 (((-784) $ (-129)) 39)) (-1683 (((-704 (-130)) $ (-130)) 40)) (-1879 (((-704 (-1247)) $) NIL)) (-3095 (((-704 (-1245)) $) NIL)) (-2711 (((-704 (-1244)) $) NIL)) (-2776 (((-704 (-561)) $) NIL)) (-1520 (((-704 (-559)) $) NIL)) (-1706 (((-704 (-558)) $) NIL)) (-2394 (((-784) $ (-129)) 35)) (-1792 (((-704 (-130)) $) 37)) (-4274 (((-112) $) 27)) (-1537 (((-704 $) (-591) (-974)) 18) (((-704 $) (-503) (-974)) 24)) (-3515 (((-877) $) 48)) (-3950 (($ $) 42))) +(((-545) (-13 (-780 (-591)) (-625 (-877)) (-10 -8 (-15 -1537 ((-704 $) (-503) (-974)))))) (T -545)) +((-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-974)) (-5 *2 (-704 (-545))) (-5 *1 (-545))))) +(-13 (-780 (-591)) (-625 (-877)) (-10 -8 (-15 -1537 ((-704 $) (-503) (-974))))) +((-2906 (((-856 (-576))) 12)) (-2919 (((-856 (-576))) 14)) (-1632 (((-846 (-576))) 9))) +(((-546) (-10 -7 (-15 -1632 ((-846 (-576)))) (-15 -2906 ((-856 (-576)))) (-15 -2919 ((-856 (-576)))))) (T -546)) +((-2919 (*1 *2) (-12 (-5 *2 (-856 (-576))) (-5 *1 (-546)))) (-2906 (*1 *2) (-12 (-5 *2 (-856 (-576))) (-5 *1 (-546)))) (-1632 (*1 *2) (-12 (-5 *2 (-846 (-576))) (-5 *1 (-546))))) +(-10 -7 (-15 -1632 ((-846 (-576)))) (-15 -2906 ((-856 (-576)))) (-15 -2919 ((-856 (-576))))) +((-1346 (((-548) (-1198)) 15)) (-3233 ((|#1| (-548)) 20))) +(((-547 |#1|) (-10 -7 (-15 -1346 ((-548) (-1198))) (-15 -3233 (|#1| (-548)))) (-1239)) (T -547)) +((-3233 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1239)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-548)) (-5 *1 (-547 *4)) (-4 *4 (-1239))))) +(-10 -7 (-15 -1346 ((-548) (-1198))) (-15 -3233 (|#1| (-548)))) +((-3423 (((-112) $ $) NIL)) (-3666 (((-1180) $) 55)) (-4397 (((-112) $) 51)) (-3042 (((-1198) $) 52)) (-1367 (((-112) $) 49)) (-1331 (((-1180) $) 50)) (-2301 (($ (-1180)) 56)) (-2076 (((-112) $) NIL)) (-3887 (((-112) $) NIL)) (-3724 (((-112) $) NIL)) (-1708 (((-1180) $) NIL)) (-4337 (($ $ (-657 (-1198))) 21)) (-3233 (((-52) $) 23)) (-1374 (((-112) $) NIL)) (-3065 (((-576) $) NIL)) (-1460 (((-1142) $) NIL)) (-3265 (($ $ (-657 (-1198)) (-1198)) 73)) (-4368 (((-112) $) NIL)) (-2983 (((-227) $) NIL)) (-2296 (($ $) 44)) (-2949 (((-877) $) NIL)) (-3981 (((-112) $ $) NIL)) (-2780 (($ $ (-576)) NIL) (($ $ (-657 (-576))) NIL)) (-1933 (((-657 $) $) 30)) (-2443 (((-1198) (-657 $)) 57)) (-4136 (($ (-1180)) NIL) (($ (-1198)) 19) (($ (-576)) 8) (($ (-227)) 28) (($ (-877)) NIL) (($ (-657 $)) 65) (((-1126) $) 12) (($ (-1126)) 13)) (-4107 (((-1198) (-1198) (-657 $)) 60)) (-3515 (((-877) $) 54)) (-3008 (($ $) 59)) (-3099 (($ $) 58)) (-2474 (($ $ (-657 $)) 66)) (-4166 (((-112) $ $) NIL)) (-4101 (((-112) $) 29)) (-2716 (($) 9 T CONST)) (-2725 (($) 11 T CONST)) (-2881 (((-112) $ $) 74)) (-2995 (($ $ $) 82)) (-2971 (($ $ $) 75)) (** (($ $ (-784)) 81) (($ $ (-576)) 80)) (* (($ $ $) 76)) (-3437 (((-576) $) NIL))) +(((-548) (-13 (-1125 (-1180) (-1198) (-576) (-227) (-877)) (-626 (-1126)) (-10 -8 (-15 -3233 ((-52) $)) (-15 -4136 ($ (-1126))) (-15 -2474 ($ $ (-657 $))) (-15 -3265 ($ $ (-657 (-1198)) (-1198))) (-15 -4337 ($ $ (-657 (-1198)))) (-15 -2971 ($ $ $)) (-15 * ($ $ $)) (-15 -2995 ($ $ $)) (-15 ** ($ $ (-784))) (-15 ** ($ $ (-576))) (-15 0 ($) -1491) (-15 1 ($) -1491) (-15 -2296 ($ $)) (-15 -3666 ((-1180) $)) (-15 -2301 ($ (-1180))) (-15 -2443 ((-1198) (-657 $))) (-15 -4107 ((-1198) (-1198) (-657 $)))))) (T -548)) +((-3233 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-548)))) (-2474 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-548))) (-5 *1 (-548)))) (-3265 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-1198)) (-5 *1 (-548)))) (-4337 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-548)))) (-2971 (*1 *1 *1 *1) (-5 *1 (-548))) (* (*1 *1 *1 *1) (-5 *1 (-548))) (-2995 (*1 *1 *1 *1) (-5 *1 (-548))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-548)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) (-2716 (*1 *1) (-5 *1 (-548))) (-2725 (*1 *1) (-5 *1 (-548))) (-2296 (*1 *1 *1) (-5 *1 (-548))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-548)))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-548)))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-657 (-548))) (-5 *2 (-1198)) (-5 *1 (-548)))) (-4107 (*1 *2 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-548))) (-5 *1 (-548))))) +(-13 (-1125 (-1180) (-1198) (-576) (-227) (-877)) (-626 (-1126)) (-10 -8 (-15 -3233 ((-52) $)) (-15 -4136 ($ (-1126))) (-15 -2474 ($ $ (-657 $))) (-15 -3265 ($ $ (-657 (-1198)) (-1198))) (-15 -4337 ($ $ (-657 (-1198)))) (-15 -2971 ($ $ $)) (-15 * ($ $ $)) (-15 -2995 ($ $ $)) (-15 ** ($ $ (-784))) (-15 ** ($ $ (-576))) (-15 (-2716) ($) -1491) (-15 (-2725) ($) -1491) (-15 -2296 ($ $)) (-15 -3666 ((-1180) $)) (-15 -2301 ($ (-1180))) (-15 -2443 ((-1198) (-657 $))) (-15 -4107 ((-1198) (-1198) (-657 $))))) +((-1574 ((|#2| |#2|) 17)) (-1757 ((|#2| |#2|) 13)) (-2142 ((|#2| |#2| (-576) (-576)) 20)) (-3102 ((|#2| |#2|) 15))) +(((-549 |#1| |#2|) (-10 -7 (-15 -1757 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -2142 (|#2| |#2| (-576) (-576)))) (-13 (-568) (-148)) (-1280 |#1|)) (T -549)) +((-2142 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1280 *4)))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1280 *3)))) (-3102 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1280 *3)))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1280 *3))))) +(-10 -7 (-15 -1757 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -2142 (|#2| |#2| (-576) (-576)))) +((-3120 (((-657 (-304 (-972 |#2|))) (-657 |#2|) (-657 (-1198))) 32)) (-4060 (((-657 |#2|) (-972 |#1|) |#3|) 54) (((-657 |#2|) (-1194 |#1|) |#3|) 53)) (-3063 (((-657 (-657 |#2|)) (-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198)) |#3|) 106))) +(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -4060 ((-657 |#2|) (-1194 |#1|) |#3|)) (-15 -4060 ((-657 |#2|) (-972 |#1|) |#3|)) (-15 -3063 ((-657 (-657 |#2|)) (-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198)) |#3|)) (-15 -3120 ((-657 (-304 (-972 |#2|))) (-657 |#2|) (-657 (-1198))))) (-464) (-374) (-13 (-374) (-861))) (T -550)) +((-3120 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 (-1198))) (-4 *6 (-374)) (-5 *2 (-657 (-304 (-972 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-374) (-861))))) (-3063 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-657 (-972 *6))) (-5 *4 (-657 (-1198))) (-4 *6 (-464)) (-5 *2 (-657 (-657 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) (-4 *5 (-13 (-374) (-861))))) (-4060 (*1 *2 *3 *4) (-12 (-5 *3 (-972 *5)) (-4 *5 (-464)) (-5 *2 (-657 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-861))))) (-4060 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *5)) (-4 *5 (-464)) (-5 *2 (-657 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-861)))))) +(-10 -7 (-15 -4060 ((-657 |#2|) (-1194 |#1|) |#3|)) (-15 -4060 ((-657 |#2|) (-972 |#1|) |#3|)) (-15 -3063 ((-657 (-657 |#2|)) (-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198)) |#3|)) (-15 -3120 ((-657 (-304 (-972 |#2|))) (-657 |#2|) (-657 (-1198))))) +((-2444 ((|#2| |#2| |#1|) 17)) (-1415 ((|#2| (-657 |#2|)) 31)) (-2978 ((|#2| (-657 |#2|)) 52))) +(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1415 (|#2| (-657 |#2|))) (-15 -2978 (|#2| (-657 |#2|))) (-15 -2444 (|#2| |#2| |#1|))) (-317) (-1265 |#1|) |#1| (-1 |#1| |#1| (-784))) (T -551)) +((-2444 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-784))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1265 *3)))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-784))))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-784)))))) +(-10 -7 (-15 -1415 (|#2| (-657 |#2|))) (-15 -2978 (|#2| (-657 |#2|))) (-15 -2444 (|#2| |#2| |#1|))) +((-1856 (((-430 (-1194 |#4|)) (-1194 |#4|) (-1 (-430 (-1194 |#3|)) (-1194 |#3|))) 89) (((-430 |#4|) |#4| (-1 (-430 (-1194 |#3|)) (-1194 |#3|))) 210))) +(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1856 ((-430 |#4|) |#4| (-1 (-430 (-1194 |#3|)) (-1194 |#3|)))) (-15 -1856 ((-430 (-1194 |#4|)) (-1194 |#4|) (-1 (-430 (-1194 |#3|)) (-1194 |#3|))))) (-862) (-806) (-13 (-317) (-148)) (-969 |#3| |#2| |#1|)) (T -552)) +((-1856 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1194 *7)) (-1194 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-806)) (-4 *8 (-969 *7 *6 *5)) (-5 *2 (-430 (-1194 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1194 *8)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1194 *7)) (-1194 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-806)) (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-969 *7 *6 *5))))) +(-10 -7 (-15 -1856 ((-430 |#4|) |#4| (-1 (-430 (-1194 |#3|)) (-1194 |#3|)))) (-15 -1856 ((-430 (-1194 |#4|)) (-1194 |#4|) (-1 (-430 (-1194 |#3|)) (-1194 |#3|))))) +((-1574 ((|#4| |#4|) 74)) (-1757 ((|#4| |#4|) 70)) (-2142 ((|#4| |#4| (-576) (-576)) 76)) (-3102 ((|#4| |#4|) 72))) +(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1757 (|#4| |#4|)) (-15 -3102 (|#4| |#4|)) (-15 -1574 (|#4| |#4|)) (-15 -2142 (|#4| |#4| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1265 |#1|) (-737 |#1| |#2|) (-1280 |#3|)) (T -553)) +((-2142 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-4 *5 (-1265 *4)) (-4 *6 (-737 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1280 *6)))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1265 *3)) (-4 *5 (-737 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) (-3102 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1265 *3)) (-4 *5 (-737 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1265 *3)) (-4 *5 (-737 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5))))) +(-10 -7 (-15 -1757 (|#4| |#4|)) (-15 -3102 (|#4| |#4|)) (-15 -1574 (|#4| |#4|)) (-15 -2142 (|#4| |#4| (-576) (-576)))) +((-1574 ((|#2| |#2|) 27)) (-1757 ((|#2| |#2|) 23)) (-2142 ((|#2| |#2| (-576) (-576)) 29)) (-3102 ((|#2| |#2|) 25))) +(((-554 |#1| |#2|) (-10 -7 (-15 -1757 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -2142 (|#2| |#2| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1280 |#1|)) (T -554)) +((-2142 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1280 *4)))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1280 *3)))) (-3102 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1280 *3)))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1280 *3))))) +(-10 -7 (-15 -1757 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -2142 (|#2| |#2| (-576) (-576)))) +((-2230 (((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)) 18) (((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|)) 14) (((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|)) 32))) +(((-555 |#1| |#2|) (-10 -7 (-15 -2230 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2230 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2230 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) (-1071) (-1265 |#1|)) (T -555)) +((-2230 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1265 *4)))) (-2230 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1265 *4)))) (-2230 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1071)) (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1265 *5))))) +(-10 -7 (-15 -2230 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2230 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2230 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) +((-2793 (($ $ $) 84)) (-4215 (((-430 $) $) 52)) (-1593 (((-3 (-576) "failed") $) 64)) (-2830 (((-576) $) 42)) (-1758 (((-3 (-419 (-576)) "failed") $) 79)) (-3113 (((-112) $) 26)) (-1842 (((-419 (-576)) $) 77)) (-4009 (((-112) $) 55)) (-1760 (($ $ $ $) 92)) (-3810 (((-112) $) 17)) (-3262 (($ $ $) 62)) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 74)) (-1955 (((-3 $ "failed") $) 69)) (-4194 (($ $) 24)) (-2808 (($ $ $) 90)) (-1679 (($) 65)) (-3067 (($ $) 58)) (-1856 (((-430 $) $) 50)) (-3341 (((-112) $) 15)) (-4164 (((-784) $) 32)) (-2209 (($ $) 11) (($ $ (-784)) NIL)) (-1899 (($ $) 18)) (-4136 (((-576) $) NIL) (((-548) $) 41) (((-908 (-576)) $) 45) (((-390) $) 35) (((-227) $) 38)) (-3845 (((-784)) 9)) (-2639 (((-112) $ $) 21)) (-1940 (($ $ $) 60))) +(((-556 |#1|) (-10 -8 (-15 -2808 (|#1| |#1| |#1|)) (-15 -1760 (|#1| |#1| |#1| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -1899 (|#1| |#1|)) (-15 -1758 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1842 ((-419 (-576)) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -2793 (|#1| |#1| |#1|)) (-15 -2639 ((-112) |#1| |#1|)) (-15 -3341 ((-112) |#1|)) (-15 -1679 (|#1|)) (-15 -1955 ((-3 |#1| "failed") |#1|)) (-15 -4136 ((-227) |#1|)) (-15 -4136 ((-390) |#1|)) (-15 -3262 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -1940 (|#1| |#1| |#1|)) (-15 -2008 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -4136 ((-908 (-576)) |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -4136 ((-576) |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 -3810 ((-112) |#1|)) (-15 -4164 ((-784) |#1|)) (-15 -1856 ((-430 |#1|) |#1|)) (-15 -4215 ((-430 |#1|) |#1|)) (-15 -4009 ((-112) |#1|)) (-15 -3845 ((-784)))) (-557)) (T -556)) +((-3845 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) +(-10 -8 (-15 -2808 (|#1| |#1| |#1|)) (-15 -1760 (|#1| |#1| |#1| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -1899 (|#1| |#1|)) (-15 -1758 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1842 ((-419 (-576)) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -2793 (|#1| |#1| |#1|)) (-15 -2639 ((-112) |#1| |#1|)) (-15 -3341 ((-112) |#1|)) (-15 -1679 (|#1|)) (-15 -1955 ((-3 |#1| "failed") |#1|)) (-15 -4136 ((-227) |#1|)) (-15 -4136 ((-390) |#1|)) (-15 -3262 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -1940 (|#1| |#1| |#1|)) (-15 -2008 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -4136 ((-908 (-576)) |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -4136 ((-576) |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 -3810 ((-112) |#1|)) (-15 -4164 ((-784) |#1|)) (-15 -1856 ((-430 |#1|) |#1|)) (-15 -4215 ((-430 |#1|) |#1|)) (-15 -4009 ((-112) |#1|)) (-15 -3845 ((-784)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2793 (($ $ $) 93)) (-2423 (((-3 $ "failed") $ $) 20)) (-4388 (($ $ $ $) 82)) (-3188 (($ $) 57)) (-4215 (((-430 $) $) 58)) (-3210 (((-112) $ $) 136)) (-3922 (((-576) $) 125)) (-2736 (($ $ $) 96)) (-2515 (($) 18 T CONST)) (-1593 (((-3 (-576) "failed") $) 117)) (-2830 (((-576) $) 118)) (-3355 (($ $ $) 140)) (-3439 (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 115) (((-702 (-576)) (-702 $)) 114)) (-3969 (((-3 $ "failed") $) 37)) (-1758 (((-3 (-419 (-576)) "failed") $) 90)) (-3113 (((-112) $) 92)) (-1842 (((-419 (-576)) $) 91)) (-1876 (($) 89) (($ $) 88)) (-3369 (($ $ $) 139)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 134)) (-4009 (((-112) $) 59)) (-1760 (($ $ $ $) 80)) (-3123 (($ $ $) 94)) (-3810 (((-112) $) 127)) (-3262 (($ $ $) 105)) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 108)) (-3994 (((-112) $) 35)) (-1354 (((-112) $) 100)) (-1955 (((-3 $ "failed") $) 102)) (-3517 (((-112) $) 126)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 143)) (-1931 (($ $ $ $) 81)) (-3740 (($ $ $) 133)) (-2249 (($ $ $) 132)) (-4194 (($ $) 84)) (-3041 (($ $) 97)) (-1993 (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 113) (((-702 (-576)) (-1289 $)) 112)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-2808 (($ $ $) 79)) (-1679 (($) 101 T CONST)) (-1390 (($ $) 86)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-3067 (($ $) 106)) (-1856 (((-430 $) $) 56)) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 141)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 135)) (-3341 (((-112) $) 99)) (-4164 (((-784) $) 137)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 138)) (-2209 (($ $) 123) (($ $ (-784)) 121)) (-1843 (($ $) 85)) (-1899 (($ $) 87)) (-4136 (((-576) $) 119) (((-548) $) 110) (((-908 (-576)) $) 109) (((-390) $) 104) (((-227) $) 103)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 116)) (-3845 (((-784)) 32 T CONST)) (-2639 (((-112) $ $) 95)) (-1940 (($ $ $) 107)) (-4166 (((-112) $ $) 6)) (-4129 (($) 98)) (-2607 (((-112) $ $) 45)) (-4207 (($ $ $ $) 83)) (-2127 (($ $) 124)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $) 122) (($ $ (-784)) 120)) (-2938 (((-112) $ $) 131)) (-2913 (((-112) $ $) 129)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 130)) (-2901 (((-112) $ $) 128)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-576) $) 111))) (((-557) (-141)) (T -557)) -((-3616 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-1869 (*1 *1) (-4 *1 (-557))) (-3108 (*1 *1 *1) (-4 *1 (-557))) (-3385 (*1 *1 *1 *1) (-4 *1 (-557))) (-2291 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3104 (*1 *1 *1 *1) (-4 *1 (-557))) (-3374 (*1 *1 *1 *1) (-4 *1 (-557))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-3526 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-4370 (*1 *1) (-4 *1 (-557))) (-4370 (*1 *1 *1) (-4 *1 (-557))) (-4287 (*1 *1 *1) (-4 *1 (-557))) (-1921 (*1 *1 *1) (-4 *1 (-557))) (-3756 (*1 *1 *1) (-4 *1 (-557))) (-2362 (*1 *1 *1) (-4 *1 (-557))) (-1555 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3282 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3547 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-4170 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2617 (*1 *1 *1 *1) (-4 *1 (-557)))) -(-13 (-1242) (-317) (-832) (-238) (-626 (-576)) (-1059 (-576)) (-651 (-576)) (-626 (-548)) (-626 (-907 (-576))) (-901 (-576)) (-144) (-1043) (-148) (-1173) (-10 -8 (-15 -3616 ((-112) $)) (-15 -3955 ((-112) $)) (-6 -4463) (-15 -1869 ($)) (-15 -3108 ($ $)) (-15 -3385 ($ $ $)) (-15 -2291 ((-112) $ $)) (-15 -3104 ($ $ $)) (-15 -3374 ($ $ $)) (-15 -4063 ((-112) $)) (-15 -1400 ((-419 (-576)) $)) (-15 -3526 ((-3 (-419 (-576)) "failed") $)) (-15 -4370 ($)) (-15 -4370 ($ $)) (-15 -4287 ($ $)) (-15 -1921 ($ $)) (-15 -3756 ($ $)) (-15 -2362 ($ $)) (-15 -1555 ($ $ $ $)) (-15 -3282 ($ $ $ $)) (-15 -3547 ($ $ $ $)) (-15 -4170 ($ $ $ $)) (-15 -2617 ($ $ $)) (-6 -4462))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-144) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-548)) . T) ((-626 (-576)) . T) ((-626 (-907 (-576))) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0=(-576)) . T) ((-660 $) . T) ((-652 $) . T) ((-651 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-832) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-901 (-576)) . T) ((-939) . T) ((-1043) . T) ((-1059 (-576)) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) . T) ((-1238) . T) ((-1242) . T)) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783)) NIL)) (-3170 (($) NIL T CONST)) (-4370 (($) NIL)) (-2907 (($ $ $) NIL) (($) NIL T CONST)) (-3777 (($ $ $) NIL) (($) NIL T CONST)) (-3787 (((-940) $) NIL)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL))) -(((-558) (-13 (-856) (-10 -8 (-15 -3170 ($) -2666)))) (T -558)) -((-3170 (*1 *1) (-5 *1 (-558)))) -(-13 (-856) (-10 -8 (-15 -3170 ($) -2666))) +((-1354 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-4129 (*1 *1) (-4 *1 (-557))) (-3041 (*1 *1 *1) (-4 *1 (-557))) (-2736 (*1 *1 *1 *1) (-4 *1 (-557))) (-2639 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3123 (*1 *1 *1 *1) (-4 *1 (-557))) (-2793 (*1 *1 *1 *1) (-4 *1 (-557))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-1758 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-1876 (*1 *1) (-4 *1 (-557))) (-1876 (*1 *1 *1) (-4 *1 (-557))) (-1899 (*1 *1 *1) (-4 *1 (-557))) (-1390 (*1 *1 *1) (-4 *1 (-557))) (-1843 (*1 *1 *1) (-4 *1 (-557))) (-4194 (*1 *1 *1) (-4 *1 (-557))) (-4207 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-4388 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-1931 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-1760 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2808 (*1 *1 *1 *1) (-4 *1 (-557)))) +(-13 (-1243) (-317) (-833) (-238) (-626 (-576)) (-1060 (-576)) (-652 (-576)) (-626 (-548)) (-626 (-908 (-576))) (-902 (-576)) (-144) (-1044) (-148) (-1174) (-10 -8 (-15 -1354 ((-112) $)) (-15 -3341 ((-112) $)) (-6 -4465) (-15 -4129 ($)) (-15 -3041 ($ $)) (-15 -2736 ($ $ $)) (-15 -2639 ((-112) $ $)) (-15 -3123 ($ $ $)) (-15 -2793 ($ $ $)) (-15 -3113 ((-112) $)) (-15 -1842 ((-419 (-576)) $)) (-15 -1758 ((-3 (-419 (-576)) "failed") $)) (-15 -1876 ($)) (-15 -1876 ($ $)) (-15 -1899 ($ $)) (-15 -1390 ($ $)) (-15 -1843 ($ $)) (-15 -4194 ($ $)) (-15 -4207 ($ $ $ $)) (-15 -4388 ($ $ $ $)) (-15 -1931 ($ $ $ $)) (-15 -1760 ($ $ $ $)) (-15 -2808 ($ $ $)) (-6 -4464))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-144) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-548)) . T) ((-626 (-576)) . T) ((-626 (-908 (-576))) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0=(-576)) . T) ((-661 $) . T) ((-653 $) . T) ((-652 #0#) . T) ((-730 $) . T) ((-739) . T) ((-804) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-833) . T) ((-861) . T) ((-862) . T) ((-865) . T) ((-902 (-576)) . T) ((-940) . T) ((-1044) . T) ((-1060 (-576)) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) . T) ((-1239) . T) ((-1243) . T)) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784)) NIL)) (-2515 (($) NIL T CONST)) (-1876 (($) NIL)) (-3740 (($ $ $) NIL) (($) NIL T CONST)) (-2249 (($ $ $) NIL) (($) NIL T CONST)) (-2327 (((-941) $) NIL)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL))) +(((-558) (-13 (-857) (-10 -8 (-15 -2515 ($) -1491)))) (T -558)) +((-2515 (*1 *1) (-5 *1 (-558)))) +(-13 (-857) (-10 -8 (-15 -2515 ($) -1491))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783)) NIL)) (-3170 (($) NIL T CONST)) (-4370 (($) NIL)) (-2907 (($ $ $) NIL) (($) NIL T CONST)) (-3777 (($ $ $) NIL) (($) NIL T CONST)) (-3787 (((-940) $) NIL)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL))) -(((-559) (-13 (-856) (-10 -8 (-15 -3170 ($) -2666)))) (T -559)) -((-3170 (*1 *1) (-5 *1 (-559)))) -(-13 (-856) (-10 -8 (-15 -3170 ($) -2666))) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784)) NIL)) (-2515 (($) NIL T CONST)) (-1876 (($) NIL)) (-3740 (($ $ $) NIL) (($) NIL T CONST)) (-2249 (($ $ $) NIL) (($) NIL T CONST)) (-2327 (((-941) $) NIL)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL))) +(((-559) (-13 (-857) (-10 -8 (-15 -2515 ($) -1491)))) (T -559)) +((-2515 (*1 *1) (-5 *1 (-559)))) +(-13 (-857) (-10 -8 (-15 -2515 ($) -1491))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783)) NIL)) (-3170 (($) NIL T CONST)) (-4370 (($) NIL)) (-2907 (($ $ $) NIL) (($) NIL T CONST)) (-3777 (($ $ $) NIL) (($) NIL T CONST)) (-3787 (((-940) $) NIL)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL))) -(((-560) (-13 (-856) (-10 -8 (-15 -3170 ($) -2666)))) (T -560)) -((-3170 (*1 *1) (-5 *1 (-560)))) -(-13 (-856) (-10 -8 (-15 -3170 ($) -2666))) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784)) NIL)) (-2515 (($) NIL T CONST)) (-1876 (($) NIL)) (-3740 (($ $ $) NIL) (($) NIL T CONST)) (-2249 (($ $ $) NIL) (($) NIL T CONST)) (-2327 (((-941) $) NIL)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL))) +(((-560) (-13 (-857) (-10 -8 (-15 -2515 ($) -1491)))) (T -560)) +((-2515 (*1 *1) (-5 *1 (-560)))) +(-13 (-857) (-10 -8 (-15 -2515 ($) -1491))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783)) NIL)) (-3170 (($) NIL T CONST)) (-4370 (($) NIL)) (-2907 (($ $ $) NIL) (($) NIL T CONST)) (-3777 (($ $ $) NIL) (($) NIL T CONST)) (-3787 (((-940) $) NIL)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL))) -(((-561) (-13 (-856) (-10 -8 (-15 -3170 ($) -2666)))) (T -561)) -((-3170 (*1 *1) (-5 *1 (-561)))) -(-13 (-856) (-10 -8 (-15 -3170 ($) -2666))) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784)) NIL)) (-2515 (($) NIL T CONST)) (-1876 (($) NIL)) (-3740 (($ $ $) NIL) (($) NIL T CONST)) (-2249 (($ $ $) NIL) (($) NIL T CONST)) (-2327 (((-941) $) NIL)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL))) +(((-561) (-13 (-857) (-10 -8 (-15 -2515 ($) -1491)))) (T -561)) +((-2515 (*1 *1) (-5 *1 (-561)))) +(-13 (-857) (-10 -8 (-15 -2515 ($) -1491))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-1957 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1978 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3657 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#2| $ |#1| |#2|) NIL)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2051 (((-3 |#2| "failed") |#1| $) NIL)) (-3170 (($) NIL T CONST)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-3872 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) NIL)) (-2825 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#2| $ |#1|) NIL)) (-3722 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 ((|#1| $) NIL (|has| |#1| (-861)))) (-2911 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1829 ((|#1| $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-2353 (((-656 |#1|) $) NIL)) (-4128 (((-112) |#1| $) NIL)) (-3743 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-3695 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-2863 (((-656 |#1|) $) NIL)) (-1389 (((-112) |#1| $) NIL)) (-3116 (((-1141) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-1755 ((|#2| $) NIL (|has| |#1| (-861)))) (-4220 (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL)) (-4267 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2885 (((-656 |#2|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3091 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-4113 (((-876) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2950 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-562 |#1| |#2| |#3|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) (-1121) (-1121) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464)))) (T -562)) -NIL -(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) -((-2006 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1193 |#2|) (-1193 |#2|))) 50))) -(((-563 |#1| |#2|) (-10 -7 (-15 -2006 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1193 |#2|) (-1193 |#2|))))) (-568) (-13 (-27) (-442 |#1|))) (T -563)) -((-2006 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1193 *3) (-1193 *3))) (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) (-5 *1 (-563 *6 *3))))) -(-10 -7 (-15 -2006 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1193 |#2|) (-1193 |#2|))))) -((-1988 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-3812 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-2368 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 220))) -(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2368 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1988 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3812 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1059 (-576))) (-13 (-27) (-442 |#1|)) (-1264 |#2|) (-1264 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -564)) -((-3812 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *7 (-1264 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-353 *5 *6 *7)))) (-1988 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))) (-2368 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(-10 -7 (-15 -2368 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1988 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3812 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-3340 (((-112) (-576) (-576)) 12)) (-2079 (((-576) (-576)) 7)) (-2315 (((-576) (-576) (-576)) 10))) -(((-565) (-10 -7 (-15 -2079 ((-576) (-576))) (-15 -2315 ((-576) (-576) (-576))) (-15 -3340 ((-112) (-576) (-576))))) (T -565)) -((-3340 (*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))) (-2315 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(-10 -7 (-15 -2079 ((-576) (-576))) (-15 -2315 ((-576) (-576) (-576))) (-15 -3340 ((-112) (-576) (-576)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1924 ((|#1| $) 68)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-3586 (($ $) 98)) (-3435 (($ $) 81)) (-2214 ((|#1| $) 69)) (-1765 (((-3 $ "failed") $ $) 20)) (-1462 (($ $) 80)) (-3562 (($ $) 97)) (-3412 (($ $) 82)) (-3612 (($ $) 96)) (-3461 (($ $) 83)) (-3170 (($) 18 T CONST)) (-2982 (((-3 (-576) "failed") $) 76)) (-2317 (((-576) $) 77)) (-1851 (((-3 $ "failed") $) 37)) (-1430 (($ |#1| |#1|) 73)) (-2279 (((-112) $) 67)) (-2722 (($) 108)) (-2486 (((-112) $) 35)) (-4005 (($ $ (-576)) 79)) (-3323 (((-112) $) 66)) (-2907 (($ $ $) 109)) (-3777 (($ $ $) 110)) (-2608 (($ $) 105)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-1881 (($ |#1| |#1|) 74) (($ |#1|) 72) (($ (-419 (-576))) 71)) (-2130 ((|#1| $) 70)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-1946 (((-3 $ "failed") $ $) 48)) (-2156 (($ $) 106)) (-3623 (($ $) 95)) (-3474 (($ $) 84)) (-3599 (($ $) 94)) (-3448 (($ $) 85)) (-3574 (($ $) 93)) (-3424 (($ $) 86)) (-1353 (((-112) $ |#1|) 65)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 75)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-3653 (($ $) 104)) (-3510 (($ $) 92)) (-4134 (((-112) $ $) 45)) (-3632 (($ $) 103)) (-3487 (($ $) 91)) (-3673 (($ $) 102)) (-3537 (($ $) 90)) (-1972 (($ $) 101)) (-3550 (($ $) 89)) (-3664 (($ $) 100)) (-3523 (($ $) 88)) (-3642 (($ $) 99)) (-3498 (($ $) 87)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3995 (((-112) $ $) 111)) (-3975 (((-112) $ $) 113)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 112)) (-3963 (((-112) $ $) 114)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ $) 107) (($ $ (-419 (-576))) 78)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-566 |#1|) (-141) (-13 (-416) (-1223))) (T -566)) -((-1881 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-1430 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-1881 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-1881 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))))) (-2130 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-2214 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) (-1353 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112))))) -(-13 (-464) (-861) (-1223) (-1023) (-1059 (-576)) (-10 -8 (-6 -2642) (-15 -1881 ($ |t#1| |t#1|)) (-15 -1430 ($ |t#1| |t#1|)) (-15 -1881 ($ |t#1|)) (-15 -1881 ($ (-419 (-576)))) (-15 -2130 (|t#1| $)) (-15 -2214 (|t#1| $)) (-15 -1924 (|t#1| $)) (-15 -2279 ((-112) $)) (-15 -3323 ((-112) $)) (-15 -1353 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-294) . T) ((-300) . T) ((-464) . T) ((-505) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-861) . T) ((-864) . T) ((-1023) . T) ((-1059 (-576)) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) . T) ((-1226) . T) ((-1238) . T)) -((-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 9)) (-2390 (($ $) 11)) (-3302 (((-112) $) 20)) (-1851 (((-3 $ "failed") $) 16)) (-4134 (((-112) $ $) 22))) -(((-567 |#1|) (-10 -8 (-15 -3302 ((-112) |#1|)) (-15 -4134 ((-112) |#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -1432 ((-2 (|:| -2946 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1851 ((-3 |#1| "failed") |#1|))) (-568)) (T -567)) -NIL -(-10 -8 (-15 -3302 ((-112) |#1|)) (-15 -4134 ((-112) |#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -1432 ((-2 (|:| -2946 |#1|) (|:| -4451 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1851 ((-3 |#1| "failed") |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1946 (((-3 $ "failed") $ $) 48)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3423 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4082 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3590 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#2| $ |#1| |#2|) NIL)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2244 (((-3 |#2| "failed") |#1| $) NIL)) (-2515 (($) NIL T CONST)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-1920 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) NIL)) (-3901 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#2| $ |#1|) NIL)) (-1448 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 ((|#1| $) NIL (|has| |#1| (-862)))) (-3855 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1833 ((|#1| $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3135 (((-657 |#1|) $) NIL)) (-2559 (((-112) |#1| $) NIL)) (-3107 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2701 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3309 (((-657 |#1|) $) NIL)) (-4324 (((-112) |#1| $) NIL)) (-1460 (((-1142) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3528 ((|#2| $) NIL (|has| |#1| (-862)))) (-4135 (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1495 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3585 (((-657 |#2|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3009 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3515 (((-877) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-4166 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-562 |#1| |#2| |#3|) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) (-1122) (-1122) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466)))) (T -562)) +NIL +(-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) +((-2876 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1194 |#2|) (-1194 |#2|))) 50))) +(((-563 |#1| |#2|) (-10 -7 (-15 -2876 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1194 |#2|) (-1194 |#2|))))) (-568) (-13 (-27) (-442 |#1|))) (T -563)) +((-2876 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1194 *3) (-1194 *3))) (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) (-5 *1 (-563 *6 *3))))) +(-10 -7 (-15 -2876 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1194 |#2|) (-1194 |#2|))))) +((-2753 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-2535 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-2150 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 220))) +(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2150 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2753 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2535 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1060 (-576))) (-13 (-27) (-442 |#1|)) (-1265 |#2|) (-1265 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -564)) +((-2535 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *7 (-1265 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-353 *5 *6 *7)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1265 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)))) (-4 *8 (-1265 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))) (-2150 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1265 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)))) (-4 *8 (-1265 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) +(-10 -7 (-15 -2150 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2753 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2535 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-3721 (((-112) (-576) (-576)) 12)) (-2419 (((-576) (-576)) 7)) (-2841 (((-576) (-576) (-576)) 10))) +(((-565) (-10 -7 (-15 -2419 ((-576) (-576))) (-15 -2841 ((-576) (-576) (-576))) (-15 -3721 ((-112) (-576) (-576))))) (T -565)) +((-3721 (*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))) (-2841 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))) (-2419 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) +(-10 -7 (-15 -2419 ((-576) (-576))) (-15 -2841 ((-576) (-576) (-576))) (-15 -3721 ((-112) (-576) (-576)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3283 ((|#1| $) 68)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2143 (($ $) 98)) (-2012 (($ $) 81)) (-1323 ((|#1| $) 69)) (-2423 (((-3 $ "failed") $ $) 20)) (-1866 (($ $) 80)) (-2120 (($ $) 97)) (-1989 (($ $) 82)) (-2166 (($ $) 96)) (-2033 (($ $) 83)) (-2515 (($) 18 T CONST)) (-1593 (((-3 (-576) "failed") $) 76)) (-2830 (((-576) $) 77)) (-3969 (((-3 $ "failed") $) 37)) (-3401 (($ |#1| |#1|) 73)) (-3810 (((-112) $) 67)) (-1622 (($) 108)) (-3994 (((-112) $) 35)) (-3856 (($ $ (-576)) 79)) (-3517 (((-112) $) 66)) (-3740 (($ $ $) 109)) (-2249 (($ $ $) 110)) (-3707 (($ $) 105)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-4293 (($ |#1| |#1|) 74) (($ |#1|) 72) (($ (-419 (-576))) 71)) (-1702 ((|#1| $) 70)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-3409 (((-3 $ "failed") $ $) 48)) (-4056 (($ $) 106)) (-2177 (($ $) 95)) (-2042 (($ $) 84)) (-2155 (($ $) 94)) (-2023 (($ $) 85)) (-2131 (($ $) 93)) (-2002 (($ $) 86)) (-1994 (((-112) $ |#1|) 65)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 75)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-4110 (($ $) 104)) (-2082 (($ $) 92)) (-2607 (((-112) $ $) 45)) (-2188 (($ $) 103)) (-2055 (($ $) 91)) (-4137 (($ $) 102)) (-2100 (($ $) 90)) (-1864 (($ $) 101)) (-2110 (($ $) 89)) (-4123 (($ $) 100)) (-2090 (($ $) 88)) (-4097 (($ $) 99)) (-2070 (($ $) 87)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2938 (((-112) $ $) 111)) (-2913 (((-112) $ $) 113)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 112)) (-2901 (((-112) $ $) 114)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ $) 107) (($ $ (-419 (-576))) 78)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-566 |#1|) (-141) (-13 (-416) (-1224))) (T -566)) +((-4293 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) (-3401 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) (-4293 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) (-4293 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-112)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-112)))) (-1994 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-112))))) +(-13 (-464) (-862) (-1224) (-1024) (-1060 (-576)) (-10 -8 (-6 -4130) (-15 -4293 ($ |t#1| |t#1|)) (-15 -3401 ($ |t#1| |t#1|)) (-15 -4293 ($ |t#1|)) (-15 -4293 ($ (-419 (-576)))) (-15 -1702 (|t#1| $)) (-15 -1323 (|t#1| $)) (-15 -3283 (|t#1| $)) (-15 -3810 ((-112) $)) (-15 -3517 ((-112) $)) (-15 -1994 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-294) . T) ((-300) . T) ((-464) . T) ((-505) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-862) . T) ((-865) . T) ((-1024) . T) ((-1060 (-576)) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1224) . T) ((-1227) . T) ((-1239) . T)) +((-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 9)) (-2361 (($ $) 11)) (-3286 (((-112) $) 20)) (-3969 (((-3 $ "failed") $) 16)) (-2607 (((-112) $ $) 22))) +(((-567 |#1|) (-10 -8 (-15 -3286 ((-112) |#1|)) (-15 -2607 ((-112) |#1| |#1|)) (-15 -2361 (|#1| |#1|)) (-15 -3422 ((-2 (|:| -4119 |#1|) (|:| -4453 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|))) (-568)) (T -567)) +NIL +(-10 -8 (-15 -3286 ((-112) |#1|)) (-15 -2607 ((-112) |#1| |#1|)) (-15 -2361 (|#1| |#1|)) (-15 -3422 ((-2 (|:| -4119 |#1|) (|:| -4453 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3409 (((-3 $ "failed") $ $) 48)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-568) (-141)) (T -568)) -((-1946 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2946 *1) (|:| -4451 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-2390 (*1 *1 *1) (-4 *1 (-568))) (-4134 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))) (-3302 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(-13 (-174) (-38 $) (-300) (-10 -8 (-15 -1946 ((-3 $ "failed") $ $)) (-15 -1432 ((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $)) (-15 -2390 ($ $)) (-15 -4134 ((-112) $ $)) (-15 -3302 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2651 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1197) (-656 |#2|)) 38)) (-3259 (((-598 |#2|) |#2| (-1197)) 63)) (-4300 (((-3 |#2| "failed") |#2| (-1197)) 156)) (-3362 (((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) (-624 |#2|) (-656 (-624 |#2|))) 159)) (-2853 (((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) |#2|) 41))) -(((-569 |#1| |#2|) (-10 -7 (-15 -2853 ((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) |#2|)) (-15 -2651 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1197) (-656 |#2|))) (-15 -4300 ((-3 |#2| "failed") |#2| (-1197))) (-15 -3259 ((-598 |#2|) |#2| (-1197))) (-15 -3362 ((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) (-624 |#2|) (-656 (-624 |#2|))))) (-13 (-464) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -569)) -((-3362 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1197)) (-5 *6 (-656 (-624 *3))) (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *7))) (-4 *7 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -4291 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-3259 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-4300 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-2651 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-2853 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -4291 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) -(-10 -7 (-15 -2853 ((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) |#2|)) (-15 -2651 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1197) (-656 |#2|))) (-15 -4300 ((-3 |#2| "failed") |#2| (-1197))) (-15 -3259 ((-598 |#2|) |#2| (-1197))) (-15 -3362 ((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1197) (-624 |#2|) (-656 (-624 |#2|))))) -((-3589 (((-430 |#1|) |#1|) 19)) (-1452 (((-430 |#1|) |#1|) 34)) (-3794 (((-3 |#1| "failed") |#1|) 49)) (-3966 (((-430 |#1|) |#1|) 60))) -(((-570 |#1|) (-10 -7 (-15 -1452 ((-430 |#1|) |#1|)) (-15 -3589 ((-430 |#1|) |#1|)) (-15 -3966 ((-430 |#1|) |#1|)) (-15 -3794 ((-3 |#1| "failed") |#1|))) (-557)) (T -570)) -((-3794 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))) (-3966 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-3589 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-1452 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -1452 ((-430 |#1|) |#1|)) (-15 -3589 ((-430 |#1|) |#1|)) (-15 -3966 ((-430 |#1|) |#1|)) (-15 -3794 ((-3 |#1| "failed") |#1|))) -((-3910 (($) 9)) (-1705 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-2353 (((-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-3695 (($ (-2 (|:| -2240 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2256 (($ (-656 (-2 (|:| -2240 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-2905 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-2885 (((-656 (-2 (|:| -2240 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-1640 (((-1293)) 11))) -(((-571) (-10 -8 (-15 -3910 ($)) (-15 -1640 ((-1293))) (-15 -2353 ((-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2256 ($ (-656 (-2 (|:| -2240 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3695 ($ (-2 (|:| -2240 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1705 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2885 ((-656 (-2 (|:| -2240 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2905 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -571)) -((-2905 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -2240 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-1705 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-3695 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2240 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2240 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2353 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) (-1640 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-571)))) (-3910 (*1 *1) (-5 *1 (-571)))) -(-10 -8 (-15 -3910 ($)) (-15 -1640 ((-1293))) (-15 -2353 ((-656 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2256 ($ (-656 (-2 (|:| -2240 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3695 ($ (-2 (|:| -2240 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1705 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2885 ((-656 (-2 (|:| -2240 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2905 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1178 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1848 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-1421 (((-1193 (-419 (-1193 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1193 |#2|)) 35)) (-1894 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1193 |#2|)) 115)) (-3367 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 85) (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|)) 55)) (-2622 (((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1193 |#2|))) 92) (((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1193 |#2|)) 114)) (-4182 (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) |#2| (-1193 |#2|)) 116)) (-3553 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2704 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))) 133 (|has| |#3| (-668 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2704 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|)) 132 (|has| |#3| (-668 |#2|)))) (-1574 ((|#2| (-1193 (-419 (-1193 |#2|))) (-624 |#2|) |#2|) 53)) (-2709 (((-1193 (-419 (-1193 |#2|))) (-1193 |#2|) (-624 |#2|)) 34))) -(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -3367 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -3367 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -2622 ((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1193 |#2|))) (-15 -2622 ((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1894 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1193 |#2|))) (-15 -1894 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -4182 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) |#2| (-1193 |#2|))) (-15 -4182 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1421 ((-1193 (-419 (-1193 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1193 |#2|))) (-15 -1574 (|#2| (-1193 (-419 (-1193 |#2|))) (-624 |#2|) |#2|)) (-15 -2709 ((-1193 (-419 (-1193 |#2|))) (-1193 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -3553 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2704 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -3553 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2704 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))))) |%noBranch|)) (-13 (-464) (-1059 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1223)) (-1121)) (T -572)) -((-3553 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1193 *4))) (-4 *4 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) (-3553 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1193 *4)) (-4 *4 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1193 (-419 (-1193 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1193 *6)) (-4 *7 (-1121)))) (-1574 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1193 (-419 (-1193 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1121)))) (-1421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1193 (-419 (-1193 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1193 *3)) (-4 *7 (-1121)))) (-4182 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-5 *5 (-419 (-1193 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121)))) (-4182 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-5 *5 (-1193 *2)) (-4 *2 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121)))) (-1894 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121)))) (-1894 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1193 *3)) (-4 *3 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121)))) (-2622 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4291 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) (-2622 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4291 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) (-3367 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) (-3367 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121))))) -(-10 -7 (-15 -3367 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -3367 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -2622 ((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1193 |#2|))) (-15 -2622 ((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1894 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1193 |#2|))) (-15 -1894 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -4182 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) |#2| (-1193 |#2|))) (-15 -4182 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)) (-624 |#2|) |#2| (-419 (-1193 |#2|)))) (-15 -1421 ((-1193 (-419 (-1193 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1193 |#2|))) (-15 -1574 (|#2| (-1193 (-419 (-1193 |#2|))) (-624 |#2|) |#2|)) (-15 -2709 ((-1193 (-419 (-1193 |#2|))) (-1193 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -3553 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2704 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1193 |#2|))) (-15 -3553 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2704 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1193 |#2|))))) |%noBranch|)) -((-1795 (((-576) (-576) (-783)) 85)) (-4100 (((-576) (-576)) 83)) (-1785 (((-576) (-576)) 81)) (-2042 (((-576) (-576)) 87)) (-1803 (((-576) (-576) (-576)) 65)) (-4254 (((-576) (-576) (-576)) 62)) (-4352 (((-419 (-576)) (-576)) 30)) (-3261 (((-576) (-576)) 34)) (-1811 (((-576) (-576)) 74)) (-2450 (((-576) (-576)) 46)) (-3555 (((-656 (-576)) (-576)) 80)) (-4045 (((-576) (-576) (-576) (-576) (-576)) 58)) (-3346 (((-419 (-576)) (-576)) 55))) -(((-573) (-10 -7 (-15 -3346 ((-419 (-576)) (-576))) (-15 -4045 ((-576) (-576) (-576) (-576) (-576))) (-15 -3555 ((-656 (-576)) (-576))) (-15 -2450 ((-576) (-576))) (-15 -1811 ((-576) (-576))) (-15 -3261 ((-576) (-576))) (-15 -4352 ((-419 (-576)) (-576))) (-15 -4254 ((-576) (-576) (-576))) (-15 -1803 ((-576) (-576) (-576))) (-15 -2042 ((-576) (-576))) (-15 -1785 ((-576) (-576))) (-15 -4100 ((-576) (-576))) (-15 -1795 ((-576) (-576) (-783))))) (T -573)) -((-1795 (*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573)))) (-4100 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1785 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1803 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-4254 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-4352 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1811 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2450 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3555 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-4045 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3346 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(-10 -7 (-15 -3346 ((-419 (-576)) (-576))) (-15 -4045 ((-576) (-576) (-576) (-576) (-576))) (-15 -3555 ((-656 (-576)) (-576))) (-15 -2450 ((-576) (-576))) (-15 -1811 ((-576) (-576))) (-15 -3261 ((-576) (-576))) (-15 -4352 ((-419 (-576)) (-576))) (-15 -4254 ((-576) (-576) (-576))) (-15 -1803 ((-576) (-576) (-576))) (-15 -2042 ((-576) (-576))) (-15 -1785 ((-576) (-576))) (-15 -4100 ((-576) (-576))) (-15 -1795 ((-576) (-576) (-783)))) -((-4420 (((-2 (|:| |answer| |#4|) (|:| -3036 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4420 ((-2 (|:| |answer| |#4|) (|:| -3036 |#4|)) |#4| (-1 |#2| |#2|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -574)) -((-4420 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3036 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7))))) -(-10 -7 (-15 -4420 ((-2 (|:| |answer| |#4|) (|:| -3036 |#4|)) |#4| (-1 |#2| |#2|)))) -((-4420 (((-2 (|:| |answer| (-419 |#2|)) (|:| -3036 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18))) -(((-575 |#1| |#2|) (-10 -7 (-15 -4420 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3036 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1264 |#1|)) (T -575)) -((-4420 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -3036 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -4420 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3036 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 30)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 96)) (-2390 (($ $) 97)) (-3302 (((-112) $) NIL)) (-3374 (($ $ $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3282 (($ $ $ $) 52)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL)) (-3385 (($ $ $) 91)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL)) (-2317 (((-576) $) NIL)) (-1895 (($ $ $) 53)) (-1930 (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 76) (((-701 (-576)) (-701 $)) 72)) (-1851 (((-3 $ "failed") $) 93)) (-3526 (((-3 (-419 (-576)) "failed") $) NIL)) (-4063 (((-112) $) NIL)) (-1400 (((-419 (-576)) $) NIL)) (-4370 (($) 78) (($ $) 79)) (-1908 (($ $ $) 90)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-4170 (($ $ $ $) NIL)) (-3104 (($ $ $) 69)) (-2279 (((-112) $) NIL)) (-1595 (($ $ $) NIL)) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-2486 (((-112) $) 34)) (-3616 (((-112) $) 85)) (-3552 (((-3 $ "failed") $) NIL)) (-3323 (((-112) $) 43)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3547 (($ $ $ $) 54)) (-2907 (($ $ $) 87)) (-3777 (($ $ $) 86)) (-2362 (($ $) NIL)) (-3108 (($ $) 49)) (-2160 (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) 68)) (-2617 (($ $ $) NIL)) (-3650 (($) NIL T CONST)) (-1921 (($ $) 38)) (-3116 (((-1141) $) 42)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 128)) (-3115 (($ $ $) 94) (($ (-656 $)) NIL)) (-4372 (($ $) NIL)) (-1452 (((-430 $) $) 114)) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL)) (-1946 (((-3 $ "failed") $ $) 112)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3955 (((-112) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 89)) (-4107 (($ $) NIL) (($ $ (-783)) NIL)) (-3756 (($ $) 40)) (-4287 (($ $) 36)) (-1556 (((-576) $) 48) (((-548) $) 63) (((-907 (-576)) $) NIL) (((-390) $) 57) (((-227) $) 60) (((-1179) $) 65)) (-4113 (((-876) $) 46) (($ (-576)) 47) (($ $) NIL) (($ (-576)) 47)) (-2910 (((-783)) NIL T CONST)) (-2291 (((-112) $ $) NIL)) (-1348 (($ $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-1869 (($) 35)) (-4134 (((-112) $ $) NIL)) (-1555 (($ $ $ $) 51)) (-2366 (($ $) 77)) (-4313 (($) 6 T CONST)) (-4322 (($) 31 T CONST)) (-2172 (((-1179) $) 26) (((-1179) $ (-112)) 27) (((-1293) (-834) $) 28) (((-1293) (-834) $ (-112)) 29)) (-3157 (($ $) NIL) (($ $ (-783)) NIL)) (-3995 (((-112) $ $) 50)) (-3975 (((-112) $ $) 80)) (-3939 (((-112) $ $) 33)) (-3984 (((-112) $ $) 81)) (-3963 (((-112) $ $) 10)) (-4037 (($ $) 16) (($ $ $) 39)) (-4026 (($ $ $) 37)) (** (($ $ (-940)) NIL) (($ $ (-783)) 84)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 83) (($ $ $) 82) (($ (-576) $) 83))) -(((-576) (-13 (-557) (-626 (-1179)) (-840) (-10 -7 (-6 -4451) (-6 -4456) (-6 -4452) (-6 -4446)))) (T -576)) -NIL -(-13 (-557) (-626 (-1179)) (-840) (-10 -7 (-6 -4451) (-6 -4456) (-6 -4452) (-6 -4446))) -((-1952 (((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781) (-1084)) 116) (((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781)) 118)) (-4412 (((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1197)) 195) (((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1179)) 194) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390) (-1084)) 199) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390)) 200) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390)) 201) (((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390))))) 202) (((-1056) (-326 (-390)) (-1115 (-855 (-390)))) 190) (((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390)) 189) (((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390)) 185) (((-1056) (-781)) 177) (((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390) (-1084)) 184))) -(((-577) (-10 -7 (-15 -4412 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390) (-1084))) (-15 -4412 ((-1056) (-781))) (-15 -4412 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390))) (-15 -4412 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390))) (-15 -4412 ((-1056) (-326 (-390)) (-1115 (-855 (-390))))) (-15 -4412 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))))) (-15 -4412 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390))) (-15 -4412 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390))) (-15 -4412 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390) (-1084))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781) (-1084))) (-15 -4412 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1179))) (-15 -4412 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1197))))) (T -577)) -((-4412 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-1197)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4412 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-1179)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) (-5 *1 (-577)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) (-5 *1 (-577)))) (-4412 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4412 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4412 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4412 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4412 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4412 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4412 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577))))) -(-10 -7 (-15 -4412 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390) (-1084))) (-15 -4412 ((-1056) (-781))) (-15 -4412 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390) (-390))) (-15 -4412 ((-1056) (-326 (-390)) (-1115 (-855 (-390))) (-390))) (-15 -4412 ((-1056) (-326 (-390)) (-1115 (-855 (-390))))) (-15 -4412 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))))) (-15 -4412 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390))) (-15 -4412 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390))) (-15 -4412 ((-1056) (-326 (-390)) (-656 (-1115 (-855 (-390)))) (-390) (-390) (-1084))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056))) (-781) (-1084))) (-15 -4412 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1179))) (-15 -4412 ((-3 (-1056) "failed") (-326 (-390)) (-1113 (-855 (-390))) (-1197)))) -((-2298 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|)) 195)) (-3989 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|)) 97)) (-2545 (((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|) 191)) (-1466 (((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197))) 200)) (-3272 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2704 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1197)) 209 (|has| |#3| (-668 |#2|))))) -(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -3989 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -2545 ((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -2298 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -1466 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)))) (IF (|has| |#3| (-668 |#2|)) (-15 -3272 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2704 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1197))) |%noBranch|)) (-13 (-464) (-1059 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1223)) (-1121)) (T -578)) -((-3272 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1197)) (-4 *4 (-13 (-442 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) (-1466 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-4 *2 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1121)))) (-2298 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1121)))) (-2545 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4291 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121)))) (-3989 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) -(-10 -7 (-15 -3989 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -2545 ((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -2298 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -1466 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1197)))) (IF (|has| |#3| (-668 |#2|)) (-15 -3272 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2704 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1197))) |%noBranch|)) -((-2058 (((-2 (|:| -3030 |#2|) (|:| |nconst| |#2|)) |#2| (-1197)) 64)) (-4124 (((-3 |#2| "failed") |#2| (-1197) (-855 |#2|) (-855 |#2|)) 175 (-12 (|has| |#2| (-1160)) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-901 (-576))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)) 154 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-901 (-576)))))) (-4046 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)) 156 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-901 (-576))))))) -(((-579 |#1| |#2|) (-10 -7 (-15 -2058 ((-2 (|:| -3030 |#2|) (|:| |nconst| |#2|)) |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -4046 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) (-15 -4124 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) (IF (|has| |#2| (-1160)) (-15 -4124 ((-3 |#2| "failed") |#2| (-1197) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1059 (-576)) (-464) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -579)) -((-4124 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1197)) (-5 *4 (-855 *2)) (-4 *2 (-1160)) (-4 *2 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *1 (-579 *5 *2)))) (-4124 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-4046 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-2058 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| -3030 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) -(-10 -7 (-15 -2058 ((-2 (|:| -3030 |#2|) (|:| |nconst| |#2|)) |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -4046 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) (-15 -4124 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) (IF (|has| |#2| (-1160)) (-15 -4124 ((-3 |#2| "failed") |#2| (-1197) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2931 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))) 41)) (-4412 (((-598 (-419 |#2|)) (-419 |#2|)) 28)) (-2166 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17)) (-3609 (((-3 (-2 (|:| -4291 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48))) -(((-580 |#1| |#2|) (-10 -7 (-15 -4412 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -2166 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -3609 ((-3 (-2 (|:| -4291 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2931 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1059 (-576))) (-1264 |#1|)) (T -580)) -((-2931 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-3609 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -4291 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-2166 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148) (-1059 (-576)))) (-5 *1 (-580 *3 *4)))) (-4412 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) -(-10 -7 (-15 -4412 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -2166 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -3609 ((-3 (-2 (|:| -4291 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2931 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) -((-3430 (((-3 (-576) "failed") |#1|) 14)) (-3936 (((-112) |#1|) 13)) (-2244 (((-576) |#1|) 9))) -(((-581 |#1|) (-10 -7 (-15 -2244 ((-576) |#1|)) (-15 -3936 ((-112) |#1|)) (-15 -3430 ((-3 (-576) "failed") |#1|))) (-1059 (-576))) (T -581)) -((-3430 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2)))) (-3936 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1059 (-576))))) (-2244 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2))))) -(-10 -7 (-15 -2244 ((-576) |#1|)) (-15 -3936 ((-112) |#1|)) (-15 -3430 ((-3 (-576) "failed") |#1|))) -((-4320 (((-3 (-2 (|:| |mainpart| (-419 (-971 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-971 |#1|))) (|:| |logand| (-419 (-971 |#1|))))))) "failed") (-419 (-971 |#1|)) (-1197) (-656 (-419 (-971 |#1|)))) 48)) (-1919 (((-598 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-1197)) 28)) (-4308 (((-3 (-419 (-971 |#1|)) "failed") (-419 (-971 |#1|)) (-1197)) 23)) (-3210 (((-3 (-2 (|:| -4291 (-419 (-971 |#1|))) (|:| |coeff| (-419 (-971 |#1|)))) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))) 35))) -(((-582 |#1|) (-10 -7 (-15 -1919 ((-598 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -4308 ((-3 (-419 (-971 |#1|)) "failed") (-419 (-971 |#1|)) (-1197))) (-15 -4320 ((-3 (-2 (|:| |mainpart| (-419 (-971 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-971 |#1|))) (|:| |logand| (-419 (-971 |#1|))))))) "failed") (-419 (-971 |#1|)) (-1197) (-656 (-419 (-971 |#1|))))) (-15 -3210 ((-3 (-2 (|:| -4291 (-419 (-971 |#1|))) (|:| |coeff| (-419 (-971 |#1|)))) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))))) (-13 (-568) (-1059 (-576)) (-148))) (T -582)) -((-3210 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) (-5 *2 (-2 (|:| -4291 (-419 (-971 *5))) (|:| |coeff| (-419 (-971 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-971 *5))))) (-4320 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 (-419 (-971 *6)))) (-5 *3 (-419 (-971 *6))) (-4 *6 (-13 (-568) (-1059 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-4308 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-148))) (-5 *1 (-582 *4)))) (-1919 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) (-5 *2 (-598 (-419 (-971 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-971 *5)))))) -(-10 -7 (-15 -1919 ((-598 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -4308 ((-3 (-419 (-971 |#1|)) "failed") (-419 (-971 |#1|)) (-1197))) (-15 -4320 ((-3 (-2 (|:| |mainpart| (-419 (-971 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-971 |#1|))) (|:| |logand| (-419 (-971 |#1|))))))) "failed") (-419 (-971 |#1|)) (-1197) (-656 (-419 (-971 |#1|))))) (-15 -3210 ((-3 (-2 (|:| -4291 (-419 (-971 |#1|))) (|:| |coeff| (-419 (-971 |#1|)))) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))))) -((-1957 (((-112) $ $) 75)) (-3114 (((-112) $) 48)) (-1924 ((|#1| $) 39)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) 79)) (-3586 (($ $) 139)) (-3435 (($ $) 118)) (-2214 ((|#1| $) 37)) (-1765 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $) NIL)) (-3562 (($ $) 141)) (-3412 (($ $) 114)) (-3612 (($ $) 143)) (-3461 (($ $) 122)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) 93)) (-2317 (((-576) $) 95)) (-1851 (((-3 $ "failed") $) 78)) (-1430 (($ |#1| |#1|) 35)) (-2279 (((-112) $) 44)) (-2722 (($) 104)) (-2486 (((-112) $) 55)) (-4005 (($ $ (-576)) NIL)) (-3323 (((-112) $) 45)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2608 (($ $) 106)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1881 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-419 (-576))) 92)) (-2130 ((|#1| $) 36)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) 81) (($ (-656 $)) NIL)) (-1946 (((-3 $ "failed") $ $) 80)) (-2156 (($ $) 108)) (-3623 (($ $) 147)) (-3474 (($ $) 120)) (-3599 (($ $) 149)) (-3448 (($ $) 124)) (-3574 (($ $) 145)) (-3424 (($ $) 116)) (-1353 (((-112) $ |#1|) 42)) (-4113 (((-876) $) 100) (($ (-576)) 83) (($ $) NIL) (($ (-576)) 83)) (-2910 (((-783)) 102 T CONST)) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) 161)) (-3510 (($ $) 130)) (-4134 (((-112) $ $) NIL)) (-3632 (($ $) 159)) (-3487 (($ $) 126)) (-3673 (($ $) 157)) (-3537 (($ $) 137)) (-1972 (($ $) 155)) (-3550 (($ $) 135)) (-3664 (($ $) 153)) (-3523 (($ $) 132)) (-3642 (($ $) 151)) (-3498 (($ $) 128)) (-4313 (($) 30 T CONST)) (-4322 (($) 10 T CONST)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 49)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 47)) (-4037 (($ $) 53) (($ $ $) 54)) (-4026 (($ $ $) 52)) (** (($ $ (-940)) 71) (($ $ (-783)) NIL) (($ $ $) 110) (($ $ (-419 (-576))) 163)) (* (($ (-940) $) 66) (($ (-783) $) NIL) (($ (-576) $) 65) (($ $ $) 61))) -(((-583 |#1|) (-566 |#1|) (-13 (-416) (-1223))) (T -583)) +((-3409 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4119 *1) (|:| -4453 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-2361 (*1 *1 *1) (-4 *1 (-568))) (-2607 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) +(-13 (-174) (-38 $) (-300) (-10 -8 (-15 -3409 ((-3 $ "failed") $ $)) (-15 -3422 ((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $)) (-15 -2361 ($ $)) (-15 -2607 ((-112) $ $)) (-15 -3286 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3132 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1198) (-657 |#2|)) 38)) (-4150 (((-598 |#2|) |#2| (-1198)) 63)) (-3684 (((-3 |#2| "failed") |#2| (-1198)) 156)) (-2677 (((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1198) (-624 |#2|) (-657 (-624 |#2|))) 159)) (-1422 (((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1198) |#2|) 41))) +(((-569 |#1| |#2|) (-10 -7 (-15 -1422 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1198) |#2|)) (-15 -3132 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1198) (-657 |#2|))) (-15 -3684 ((-3 |#2| "failed") |#2| (-1198))) (-15 -4150 ((-598 |#2|) |#2| (-1198))) (-15 -2677 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1198) (-624 |#2|) (-657 (-624 |#2|))))) (-13 (-464) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -569)) +((-2677 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1198)) (-5 *6 (-657 (-624 *3))) (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *7))) (-4 *7 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-4150 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-3684 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) (-3132 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-657 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-1422 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) +(-10 -7 (-15 -1422 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1198) |#2|)) (-15 -3132 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1198) (-657 |#2|))) (-15 -3684 ((-3 |#2| "failed") |#2| (-1198))) (-15 -4150 ((-598 |#2|) |#2| (-1198))) (-15 -2677 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1198) (-624 |#2|) (-657 (-624 |#2|))))) +((-4215 (((-430 |#1|) |#1|) 19)) (-1856 (((-430 |#1|) |#1|) 34)) (-2400 (((-3 |#1| "failed") |#1|) 49)) (-3450 (((-430 |#1|) |#1|) 60))) +(((-570 |#1|) (-10 -7 (-15 -1856 ((-430 |#1|) |#1|)) (-15 -4215 ((-430 |#1|) |#1|)) (-15 -3450 ((-430 |#1|) |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1|))) (-557)) (T -570)) +((-2400 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))) (-3450 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-4215 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-1856 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -1856 ((-430 |#1|) |#1|)) (-15 -4215 ((-430 |#1|) |#1|)) (-15 -3450 ((-430 |#1|) |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1|))) +((-4210 (($) 9)) (-2614 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-3135 (((-657 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2701 (($ (-2 (|:| -4286 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-3559 (($ (-657 (-2 (|:| -4286 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-4440 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-3585 (((-657 (-2 (|:| -4286 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3752 (((-1294)) 11))) +(((-571) (-10 -8 (-15 -4210 ($)) (-15 -3752 ((-1294))) (-15 -3135 ((-657 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3559 ($ (-657 (-2 (|:| -4286 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2701 ($ (-2 (|:| -4286 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2614 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3585 ((-657 (-2 (|:| -4286 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4440 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -571)) +((-4440 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| -4286 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2614 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-2701 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4286 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) (-3559 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -4286 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) (-3752 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-571)))) (-4210 (*1 *1) (-5 *1 (-571)))) +(-10 -8 (-15 -4210 ($)) (-15 -3752 ((-1294))) (-15 -3135 ((-657 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3559 ($ (-657 (-2 (|:| -4286 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2701 ($ (-2 (|:| -4286 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2614 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3585 ((-657 (-2 (|:| -4286 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4440 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-1825 (((-1194 (-419 (-1194 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1194 |#2|)) 35)) (-4429 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|) |#2| (-1194 |#2|)) 115)) (-2719 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|))) 85) (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1194 |#2|)) 55)) (-2857 (((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1194 |#2|))) 92) (((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1194 |#2|)) 114)) (-1869 (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)) (-624 |#2|) |#2| (-419 (-1194 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)) |#2| (-1194 |#2|)) 116)) (-1962 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2469 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|))) 133 (|has| |#3| (-669 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2469 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1194 |#2|)) 132 (|has| |#3| (-669 |#2|)))) (-1986 ((|#2| (-1194 (-419 (-1194 |#2|))) (-624 |#2|) |#2|) 53)) (-3647 (((-1194 (-419 (-1194 |#2|))) (-1194 |#2|) (-624 |#2|)) 34))) +(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -2719 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1194 |#2|))) (-15 -2719 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -2857 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1194 |#2|))) (-15 -2857 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -4429 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|) |#2| (-1194 |#2|))) (-15 -4429 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -1869 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)) |#2| (-1194 |#2|))) (-15 -1869 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)) (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -1825 ((-1194 (-419 (-1194 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1194 |#2|))) (-15 -1986 (|#2| (-1194 (-419 (-1194 |#2|))) (-624 |#2|) |#2|)) (-15 -3647 ((-1194 (-419 (-1194 |#2|))) (-1194 |#2|) (-624 |#2|))) (IF (|has| |#3| (-669 |#2|)) (PROGN (-15 -1962 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2469 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1194 |#2|))) (-15 -1962 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2469 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|))))) |%noBranch|)) (-13 (-464) (-1060 (-576)) (-148) (-652 (-576))) (-13 (-442 |#1|) (-27) (-1224)) (-1122)) (T -572)) +((-1962 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1194 *4))) (-4 *4 (-13 (-442 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-669 *4)) (-4 *3 (-1122)))) (-1962 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1194 *4)) (-4 *4 (-13 (-442 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-669 *4)) (-4 *3 (-1122)))) (-3647 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-1194 (-419 (-1194 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1194 *6)) (-4 *7 (-1122)))) (-1986 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1194 (-419 (-1194 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1122)))) (-1825 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-1194 (-419 (-1194 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1194 *3)) (-4 *7 (-1122)))) (-1869 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) (-5 *5 (-419 (-1194 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1122)))) (-1869 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) (-5 *5 (-1194 *2)) (-4 *2 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1122)))) (-4429 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-657 *3)) (-5 *6 (-419 (-1194 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1122)))) (-4429 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-657 *3)) (-5 *6 (-1194 *3)) (-4 *3 (-13 (-442 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1122)))) (-2857 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1194 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122)))) (-2857 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1194 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122)))) (-2719 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1194 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122)))) (-2719 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1194 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122))))) +(-10 -7 (-15 -2719 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1194 |#2|))) (-15 -2719 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -2857 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1194 |#2|))) (-15 -2857 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -4429 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|) |#2| (-1194 |#2|))) (-15 -4429 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -1869 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)) |#2| (-1194 |#2|))) (-15 -1869 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)) (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -1825 ((-1194 (-419 (-1194 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1194 |#2|))) (-15 -1986 (|#2| (-1194 (-419 (-1194 |#2|))) (-624 |#2|) |#2|)) (-15 -3647 ((-1194 (-419 (-1194 |#2|))) (-1194 |#2|) (-624 |#2|))) (IF (|has| |#3| (-669 |#2|)) (PROGN (-15 -1962 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2469 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1194 |#2|))) (-15 -1962 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2469 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|))))) |%noBranch|)) +((-1501 (((-576) (-576) (-784)) 85)) (-2333 (((-576) (-576)) 83)) (-1424 (((-576) (-576)) 81)) (-2043 (((-576) (-576)) 87)) (-1570 (((-576) (-576) (-576)) 65)) (-1370 (((-576) (-576) (-576)) 62)) (-2890 (((-419 (-576)) (-576)) 30)) (-4173 (((-576) (-576)) 34)) (-1653 (((-576) (-576)) 74)) (-1727 (((-576) (-576)) 46)) (-1984 (((-657 (-576)) (-576)) 80)) (-2953 (((-576) (-576) (-576) (-576) (-576)) 58)) (-3786 (((-419 (-576)) (-576)) 55))) +(((-573) (-10 -7 (-15 -3786 ((-419 (-576)) (-576))) (-15 -2953 ((-576) (-576) (-576) (-576) (-576))) (-15 -1984 ((-657 (-576)) (-576))) (-15 -1727 ((-576) (-576))) (-15 -1653 ((-576) (-576))) (-15 -4173 ((-576) (-576))) (-15 -2890 ((-419 (-576)) (-576))) (-15 -1370 ((-576) (-576) (-576))) (-15 -1570 ((-576) (-576) (-576))) (-15 -2043 ((-576) (-576))) (-15 -1424 ((-576) (-576))) (-15 -2333 ((-576) (-576))) (-15 -1501 ((-576) (-576) (-784))))) (T -573)) +((-1501 (*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-784)) (-5 *1 (-573)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1424 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2043 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1570 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2890 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1727 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1984 (*1 *2 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-2953 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3786 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(-10 -7 (-15 -3786 ((-419 (-576)) (-576))) (-15 -2953 ((-576) (-576) (-576) (-576) (-576))) (-15 -1984 ((-657 (-576)) (-576))) (-15 -1727 ((-576) (-576))) (-15 -1653 ((-576) (-576))) (-15 -4173 ((-576) (-576))) (-15 -2890 ((-419 (-576)) (-576))) (-15 -1370 ((-576) (-576) (-576))) (-15 -1570 ((-576) (-576) (-576))) (-15 -2043 ((-576) (-576))) (-15 -1424 ((-576) (-576))) (-15 -2333 ((-576) (-576))) (-15 -1501 ((-576) (-576) (-784)))) +((-2402 (((-2 (|:| |answer| |#4|) (|:| -3746 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2402 ((-2 (|:| |answer| |#4|) (|:| -3746 |#4|)) |#4| (-1 |#2| |#2|)))) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -574)) +((-2402 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-4 *7 (-1265 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3746 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7))))) +(-10 -7 (-15 -2402 ((-2 (|:| |answer| |#4|) (|:| -3746 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2402 (((-2 (|:| |answer| (-419 |#2|)) (|:| -3746 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18))) +(((-575 |#1| |#2|) (-10 -7 (-15 -2402 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3746 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1265 |#1|)) (T -575)) +((-2402 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -3746 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -2402 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3746 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 30)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 96)) (-2361 (($ $) 97)) (-3286 (((-112) $) NIL)) (-2793 (($ $ $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-4388 (($ $ $ $) 52)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL)) (-2736 (($ $ $) 91)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL)) (-2830 (((-576) $) NIL)) (-3355 (($ $ $) 53)) (-3439 (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 76) (((-702 (-576)) (-702 $)) 72)) (-3969 (((-3 $ "failed") $) 93)) (-1758 (((-3 (-419 (-576)) "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-1842 (((-419 (-576)) $) NIL)) (-1876 (($) 78) (($ $) 79)) (-3369 (($ $ $) 90)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-1760 (($ $ $ $) NIL)) (-3123 (($ $ $) 69)) (-3810 (((-112) $) NIL)) (-3262 (($ $ $) NIL)) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL)) (-3994 (((-112) $) 34)) (-1354 (((-112) $) 85)) (-1955 (((-3 $ "failed") $) NIL)) (-3517 (((-112) $) 43)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1931 (($ $ $ $) 54)) (-3740 (($ $ $) 87)) (-2249 (($ $ $) 86)) (-4194 (($ $) NIL)) (-3041 (($ $) 49)) (-1993 (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) 68)) (-2808 (($ $ $) NIL)) (-1679 (($) NIL T CONST)) (-1390 (($ $) 38)) (-1460 (((-1142) $) 42)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 128)) (-3431 (($ $ $) 94) (($ (-657 $)) NIL)) (-3067 (($ $) NIL)) (-1856 (((-430 $) $) 114)) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL)) (-3409 (((-3 $ "failed") $ $) 112)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3341 (((-112) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 89)) (-2209 (($ $) NIL) (($ $ (-784)) NIL)) (-1843 (($ $) 40)) (-1899 (($ $) 36)) (-4136 (((-576) $) 48) (((-548) $) 63) (((-908 (-576)) $) NIL) (((-390) $) 57) (((-227) $) 60) (((-1180) $) 65)) (-3515 (((-877) $) 46) (($ (-576)) 47) (($ $) NIL) (($ (-576)) 47)) (-3845 (((-784)) NIL T CONST)) (-2639 (((-112) $ $) NIL)) (-1940 (($ $ $) NIL)) (-4166 (((-112) $ $) NIL)) (-4129 (($) 35)) (-2607 (((-112) $ $) NIL)) (-4207 (($ $ $ $) 51)) (-2127 (($ $) 77)) (-2716 (($) 6 T CONST)) (-2725 (($) 31 T CONST)) (-4019 (((-1180) $) 26) (((-1180) $ (-112)) 27) (((-1294) (-835) $) 28) (((-1294) (-835) $ (-112)) 29)) (-2066 (($ $) NIL) (($ $ (-784)) NIL)) (-2938 (((-112) $ $) 50)) (-2913 (((-112) $ $) 80)) (-2881 (((-112) $ $) 33)) (-2925 (((-112) $ $) 81)) (-2901 (((-112) $ $) 10)) (-2982 (($ $) 16) (($ $ $) 39)) (-2971 (($ $ $) 37)) (** (($ $ (-941)) NIL) (($ $ (-784)) 84)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 83) (($ $ $) 82) (($ (-576) $) 83))) +(((-576) (-13 (-557) (-626 (-1180)) (-841) (-10 -7 (-6 -4453) (-6 -4458) (-6 -4454) (-6 -4448)))) (T -576)) +NIL +(-13 (-557) (-626 (-1180)) (-841) (-10 -7 (-6 -4453) (-6 -4458) (-6 -4454) (-6 -4448))) +((-3701 (((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))) (-782) (-1085)) 116) (((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))) (-782)) 118)) (-2320 (((-3 (-1057) "failed") (-326 (-390)) (-1114 (-856 (-390))) (-1198)) 195) (((-3 (-1057) "failed") (-326 (-390)) (-1114 (-856 (-390))) (-1180)) 194) (((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390) (-390) (-1085)) 199) (((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390) (-390)) 200) (((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390)) 201) (((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390))))) 202) (((-1057) (-326 (-390)) (-1116 (-856 (-390)))) 190) (((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390)) 189) (((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390) (-390)) 185) (((-1057) (-782)) 177) (((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390) (-390) (-1085)) 184))) +(((-577) (-10 -7 (-15 -2320 ((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390) (-390) (-1085))) (-15 -2320 ((-1057) (-782))) (-15 -2320 ((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390) (-390))) (-15 -2320 ((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390))) (-15 -2320 ((-1057) (-326 (-390)) (-1116 (-856 (-390))))) (-15 -2320 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))))) (-15 -2320 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390))) (-15 -2320 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390) (-390))) (-15 -2320 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390) (-390) (-1085))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))) (-782))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))) (-782) (-1085))) (-15 -2320 ((-3 (-1057) "failed") (-326 (-390)) (-1114 (-856 (-390))) (-1180))) (-15 -2320 ((-3 (-1057) "failed") (-326 (-390)) (-1114 (-856 (-390))) (-1198))))) (T -577)) +((-2320 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-856 (-390)))) (-5 *5 (-1198)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-2320 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-856 (-390)))) (-5 *5 (-1180)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1085)) (-5 *2 (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) (-5 *1 (-577)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) (-5 *1 (-577)))) (-2320 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) (-5 *5 (-390)) (-5 *6 (-1085)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-2320 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-2320 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) (-5 *2 (-1057)) (-5 *1 (-577)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) (-5 *2 (-1057)) (-5 *1 (-577)))) (-2320 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-2320 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-2320 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-2320 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) (-5 *5 (-390)) (-5 *6 (-1085)) (-5 *2 (-1057)) (-5 *1 (-577))))) +(-10 -7 (-15 -2320 ((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390) (-390) (-1085))) (-15 -2320 ((-1057) (-782))) (-15 -2320 ((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390) (-390))) (-15 -2320 ((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390))) (-15 -2320 ((-1057) (-326 (-390)) (-1116 (-856 (-390))))) (-15 -2320 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))))) (-15 -2320 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390))) (-15 -2320 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390) (-390))) (-15 -2320 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390) (-390) (-1085))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))) (-782))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))) (-782) (-1085))) (-15 -2320 ((-3 (-1057) "failed") (-326 (-390)) (-1114 (-856 (-390))) (-1180))) (-15 -2320 ((-3 (-1057) "failed") (-326 (-390)) (-1114 (-856 (-390))) (-1198)))) +((-2695 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|)) 195)) (-3699 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|)) 97)) (-3279 (((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|) 191)) (-1459 (((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198))) 200)) (-4276 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2469 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1198)) 209 (|has| |#3| (-669 |#2|))))) +(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -3699 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -3279 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -2695 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|))) (-15 -1459 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)))) (IF (|has| |#3| (-669 |#2|)) (-15 -4276 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2469 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1198))) |%noBranch|)) (-13 (-464) (-1060 (-576)) (-148) (-652 (-576))) (-13 (-442 |#1|) (-27) (-1224)) (-1122)) (T -578)) +((-4276 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1198)) (-4 *4 (-13 (-442 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-669 *4)) (-4 *3 (-1122)))) (-1459 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) (-4 *2 (-13 (-442 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1122)))) (-2695 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-657 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1122)))) (-3279 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1122)))) (-3699 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1122))))) +(-10 -7 (-15 -3699 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -3279 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -2695 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|))) (-15 -1459 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)))) (IF (|has| |#3| (-669 |#2|)) (-15 -4276 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2469 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1198))) |%noBranch|)) +((-2215 (((-2 (|:| -3680 |#2|) (|:| |nconst| |#2|)) |#2| (-1198)) 64)) (-2532 (((-3 |#2| "failed") |#2| (-1198) (-856 |#2|) (-856 |#2|)) 175 (-12 (|has| |#2| (-1161)) (|has| |#1| (-626 (-908 (-576)))) (|has| |#1| (-902 (-576))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)) 154 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-908 (-576)))) (|has| |#1| (-902 (-576)))))) (-2963 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)) 156 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-908 (-576)))) (|has| |#1| (-902 (-576))))))) +(((-579 |#1| |#2|) (-10 -7 (-15 -2215 ((-2 (|:| -3680 |#2|) (|:| |nconst| |#2|)) |#2| (-1198))) (IF (|has| |#1| (-626 (-908 (-576)))) (IF (|has| |#1| (-902 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -2963 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198))) (-15 -2532 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)))) |%noBranch|) (IF (|has| |#2| (-1161)) (-15 -2532 ((-3 |#2| "failed") |#2| (-1198) (-856 |#2|) (-856 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1060 (-576)) (-464) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -579)) +((-2532 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1198)) (-5 *4 (-856 *2)) (-4 *2 (-1161)) (-4 *2 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-626 (-908 (-576)))) (-4 *5 (-902 (-576))) (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) (-5 *1 (-579 *5 *2)))) (-2532 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-626 (-908 (-576)))) (-4 *5 (-902 (-576))) (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-2963 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-626 (-908 (-576)))) (-4 *5 (-902 (-576))) (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-2215 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) (-5 *2 (-2 (|:| -3680 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) +(-10 -7 (-15 -2215 ((-2 (|:| -3680 |#2|) (|:| |nconst| |#2|)) |#2| (-1198))) (IF (|has| |#1| (-626 (-908 (-576)))) (IF (|has| |#1| (-902 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -2963 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198))) (-15 -2532 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)))) |%noBranch|) (IF (|has| |#2| (-1161)) (-15 -2532 ((-3 |#2| "failed") |#2| (-1198) (-856 |#2|) (-856 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3949 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-657 (-419 |#2|))) 41)) (-2320 (((-598 (-419 |#2|)) (-419 |#2|)) 28)) (-3953 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17)) (-4405 (((-3 (-2 (|:| -3579 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48))) +(((-580 |#1| |#2|) (-10 -7 (-15 -2320 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -3953 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -4405 ((-3 (-2 (|:| -3579 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -3949 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-657 (-419 |#2|))))) (-13 (-374) (-148) (-1060 (-576))) (-1265 |#1|)) (T -580)) +((-3949 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-657 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-4405 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| -3579 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-3953 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-13 (-374) (-148) (-1060 (-576)))) (-5 *1 (-580 *3 *4)))) (-2320 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) (-4 *5 (-1265 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) +(-10 -7 (-15 -2320 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -3953 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -4405 ((-3 (-2 (|:| -3579 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -3949 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-657 (-419 |#2|))))) +((-2106 (((-3 (-576) "failed") |#1|) 14)) (-1374 (((-112) |#1|) 13)) (-3065 (((-576) |#1|) 9))) +(((-581 |#1|) (-10 -7 (-15 -3065 ((-576) |#1|)) (-15 -1374 ((-112) |#1|)) (-15 -2106 ((-3 (-576) "failed") |#1|))) (-1060 (-576))) (T -581)) +((-2106 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1060 *2)))) (-1374 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1060 (-576))))) (-3065 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1060 *2))))) +(-10 -7 (-15 -3065 ((-576) |#1|)) (-15 -1374 ((-112) |#1|)) (-15 -2106 ((-3 (-576) "failed") |#1|))) +((-3870 (((-3 (-2 (|:| |mainpart| (-419 (-972 |#1|))) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 (-972 |#1|))) (|:| |logand| (-419 (-972 |#1|))))))) "failed") (-419 (-972 |#1|)) (-1198) (-657 (-419 (-972 |#1|)))) 48)) (-3333 (((-598 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-1198)) 28)) (-3750 (((-3 (-419 (-972 |#1|)) "failed") (-419 (-972 |#1|)) (-1198)) 23)) (-1732 (((-3 (-2 (|:| -3579 (-419 (-972 |#1|))) (|:| |coeff| (-419 (-972 |#1|)))) "failed") (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|))) 35))) +(((-582 |#1|) (-10 -7 (-15 -3333 ((-598 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-1198))) (-15 -3750 ((-3 (-419 (-972 |#1|)) "failed") (-419 (-972 |#1|)) (-1198))) (-15 -3870 ((-3 (-2 (|:| |mainpart| (-419 (-972 |#1|))) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 (-972 |#1|))) (|:| |logand| (-419 (-972 |#1|))))))) "failed") (-419 (-972 |#1|)) (-1198) (-657 (-419 (-972 |#1|))))) (-15 -1732 ((-3 (-2 (|:| -3579 (-419 (-972 |#1|))) (|:| |coeff| (-419 (-972 |#1|)))) "failed") (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|))))) (-13 (-568) (-1060 (-576)) (-148))) (T -582)) +((-1732 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)) (-148))) (-5 *2 (-2 (|:| -3579 (-419 (-972 *5))) (|:| |coeff| (-419 (-972 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-972 *5))))) (-3870 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-657 (-419 (-972 *6)))) (-5 *3 (-419 (-972 *6))) (-4 *6 (-13 (-568) (-1060 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-3750 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-972 *4))) (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)) (-148))) (-5 *1 (-582 *4)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)) (-148))) (-5 *2 (-598 (-419 (-972 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-972 *5)))))) +(-10 -7 (-15 -3333 ((-598 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-1198))) (-15 -3750 ((-3 (-419 (-972 |#1|)) "failed") (-419 (-972 |#1|)) (-1198))) (-15 -3870 ((-3 (-2 (|:| |mainpart| (-419 (-972 |#1|))) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 (-972 |#1|))) (|:| |logand| (-419 (-972 |#1|))))))) "failed") (-419 (-972 |#1|)) (-1198) (-657 (-419 (-972 |#1|))))) (-15 -1732 ((-3 (-2 (|:| -3579 (-419 (-972 |#1|))) (|:| |coeff| (-419 (-972 |#1|)))) "failed") (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|))))) +((-3423 (((-112) $ $) 75)) (-2044 (((-112) $) 48)) (-3283 ((|#1| $) 39)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) 79)) (-2143 (($ $) 139)) (-2012 (($ $) 118)) (-1323 ((|#1| $) 37)) (-2423 (((-3 $ "failed") $ $) NIL)) (-1866 (($ $) NIL)) (-2120 (($ $) 141)) (-1989 (($ $) 114)) (-2166 (($ $) 143)) (-2033 (($ $) 122)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) 93)) (-2830 (((-576) $) 95)) (-3969 (((-3 $ "failed") $) 78)) (-3401 (($ |#1| |#1|) 35)) (-3810 (((-112) $) 44)) (-1622 (($) 104)) (-3994 (((-112) $) 55)) (-3856 (($ $ (-576)) NIL)) (-3517 (((-112) $) 45)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-3707 (($ $) 106)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-4293 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-419 (-576))) 92)) (-1702 ((|#1| $) 36)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) 81) (($ (-657 $)) NIL)) (-3409 (((-3 $ "failed") $ $) 80)) (-4056 (($ $) 108)) (-2177 (($ $) 147)) (-2042 (($ $) 120)) (-2155 (($ $) 149)) (-2023 (($ $) 124)) (-2131 (($ $) 145)) (-2002 (($ $) 116)) (-1994 (((-112) $ |#1|) 42)) (-3515 (((-877) $) 100) (($ (-576)) 83) (($ $) NIL) (($ (-576)) 83)) (-3845 (((-784)) 102 T CONST)) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) 161)) (-2082 (($ $) 130)) (-2607 (((-112) $ $) NIL)) (-2188 (($ $) 159)) (-2055 (($ $) 126)) (-4137 (($ $) 157)) (-2100 (($ $) 137)) (-1864 (($ $) 155)) (-2110 (($ $) 135)) (-4123 (($ $) 153)) (-2090 (($ $) 132)) (-4097 (($ $) 151)) (-2070 (($ $) 128)) (-2716 (($) 30 T CONST)) (-2725 (($) 10 T CONST)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 49)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 47)) (-2982 (($ $) 53) (($ $ $) 54)) (-2971 (($ $ $) 52)) (** (($ $ (-941)) 71) (($ $ (-784)) NIL) (($ $ $) 110) (($ $ (-419 (-576))) 163)) (* (($ (-941) $) 66) (($ (-784) $) NIL) (($ (-576) $) 65) (($ $ $) 61))) +(((-583 |#1|) (-566 |#1|) (-13 (-416) (-1224))) (T -583)) NIL (-566 |#1|) -((-1626 (((-3 (-656 (-1193 (-576))) "failed") (-656 (-1193 (-576))) (-1193 (-576))) 27))) -(((-584) (-10 -7 (-15 -1626 ((-3 (-656 (-1193 (-576))) "failed") (-656 (-1193 (-576))) (-1193 (-576)))))) (T -584)) -((-1626 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 (-576)))) (-5 *3 (-1193 (-576))) (-5 *1 (-584))))) -(-10 -7 (-15 -1626 ((-3 (-656 (-1193 (-576))) "failed") (-656 (-1193 (-576))) (-1193 (-576))))) -((-4054 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1197)) 19)) (-4070 (((-656 (-624 |#2|)) (-656 |#2|) (-1197)) 23)) (-4025 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|))) 11)) (-3634 ((|#2| |#2| (-1197)) 59 (|has| |#1| (-568)))) (-2069 ((|#2| |#2| (-1197)) 87 (-12 (|has| |#2| (-294)) (|has| |#1| (-464))))) (-4235 (((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1197)) 25)) (-1491 (((-624 |#2|) (-656 (-624 |#2|))) 24)) (-3300 (((-598 |#2|) |#2| (-1197) (-1 (-598 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) 115 (-12 (|has| |#2| (-294)) (|has| |#2| (-641)) (|has| |#2| (-1059 (-1197))) (|has| |#1| (-626 (-907 (-576)))) (|has| |#1| (-464)) (|has| |#1| (-901 (-576))))))) -(((-585 |#1| |#2|) (-10 -7 (-15 -4054 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1197))) (-15 -1491 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -4235 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1197))) (-15 -4025 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -4070 ((-656 (-624 |#2|)) (-656 |#2|) (-1197))) (IF (|has| |#1| (-568)) (-15 -3634 (|#2| |#2| (-1197))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -2069 (|#2| |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1059 (-1197))) (-15 -3300 ((-598 |#2|) |#2| (-1197) (-1 (-598 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1121) (-442 |#1|)) (T -585)) -((-3300 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-598 *3) *3 (-1197))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1197))) (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1059 *4)) (-4 *3 (-442 *7)) (-5 *4 (-1197)) (-4 *7 (-626 (-907 (-576)))) (-4 *7 (-464)) (-4 *7 (-901 (-576))) (-4 *7 (-1121)) (-5 *2 (-598 *3)) (-5 *1 (-585 *7 *3)))) (-2069 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-464)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))) (-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-1197)) (-4 *6 (-442 *5)) (-4 *5 (-1121)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6)))) (-4025 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1121)) (-5 *1 (-585 *3 *4)))) (-4235 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1197)) (-5 *2 (-624 *6)) (-4 *6 (-442 *5)) (-4 *5 (-1121)) (-5 *1 (-585 *5 *6)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1121)) (-5 *2 (-624 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))) (-4054 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1197)) (-4 *5 (-442 *4)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *5))))) -(-10 -7 (-15 -4054 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1197))) (-15 -1491 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -4235 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1197))) (-15 -4025 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -4070 ((-656 (-624 |#2|)) (-656 |#2|) (-1197))) (IF (|has| |#1| (-568)) (-15 -3634 (|#2| |#2| (-1197))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -2069 (|#2| |#2| (-1197))) (IF (|has| |#1| (-626 (-907 (-576)))) (IF (|has| |#1| (-901 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1059 (-1197))) (-15 -3300 ((-598 |#2|) |#2| (-1197) (-1 (-598 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2405 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|)) 199)) (-1538 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|))) 174)) (-4148 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|))) 171)) (-2555 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2040 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-1545 (((-3 (-2 (|:| -4291 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202)) (-3439 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4291 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|)) 205)) (-3200 (((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88)) (-3136 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-3749 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2113 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|))) 178)) (-2455 (((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2113 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 166)) (-4102 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2113 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 189)) (-2459 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4291 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2113 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|)) 210))) -(((-586 |#1| |#2|) (-10 -7 (-15 -2040 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4102 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2113 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2405 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -3439 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4291 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -2459 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4291 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2113 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -1538 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -3749 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2113 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -1545 ((-3 (-2 (|:| -4291 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -4148 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -2555 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2455 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2113 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3200 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3136 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-374) (-1264 |#1|)) (T -586)) -((-3136 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-3200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2455 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2113 *4) (|:| |sol?| (-112))) (-576) *4)) (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *1 (-586 *4 *5)))) (-2555 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -4291 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1264 *4)))) (-4148 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) (-4 *7 (-1264 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-1545 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4291 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-3749 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2113 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-1538 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -4291 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2459 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2113 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -4291 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3439 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4291 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -4291 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2405 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-4102 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2113 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2040 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4291 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(-10 -7 (-15 -2040 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4102 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2113 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2405 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -3439 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4291 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -2459 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4291 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2113 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -1538 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -3749 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2113 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -1545 ((-3 (-2 (|:| -4291 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -4148 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -2555 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2455 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2113 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3200 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3136 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-1641 (((-3 |#2| "failed") |#2| (-1197) (-1197)) 10))) -(((-587 |#1| |#2|) (-10 -7 (-15 -1641 ((-3 |#2| "failed") |#2| (-1197) (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-1160) (-29 |#1|))) (T -587)) -((-1641 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-1160) (-29 *4)))))) -(-10 -7 (-15 -1641 ((-3 |#2| "failed") |#2| (-1197) (-1197)))) -((-1968 (((-703 (-1246)) $ (-1246)) 26)) (-1495 (((-703 (-561)) $ (-561)) 25)) (-3434 (((-783) $ (-129)) 27)) (-2750 (((-703 (-130)) $ (-130)) 24)) (-2464 (((-703 (-1246)) $) 12)) (-3101 (((-703 (-1244)) $) 8)) (-3061 (((-703 (-1243)) $) 10)) (-1992 (((-703 (-561)) $) 13)) (-1797 (((-703 (-559)) $) 9)) (-1816 (((-703 (-558)) $) 11)) (-2393 (((-783) $ (-129)) 7)) (-3531 (((-703 (-130)) $) 14)) (-2481 (($ $) 6))) +((-3606 (((-3 (-657 (-1194 (-576))) "failed") (-657 (-1194 (-576))) (-1194 (-576))) 27))) +(((-584) (-10 -7 (-15 -3606 ((-3 (-657 (-1194 (-576))) "failed") (-657 (-1194 (-576))) (-1194 (-576)))))) (T -584)) +((-3606 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-1194 (-576)))) (-5 *3 (-1194 (-576))) (-5 *1 (-584))))) +(-10 -7 (-15 -3606 ((-3 (-657 (-1194 (-576))) "failed") (-657 (-1194 (-576))) (-1194 (-576))))) +((-3026 (((-657 (-624 |#2|)) (-657 (-624 |#2|)) (-1198)) 19)) (-3182 (((-657 (-624 |#2|)) (-657 |#2|) (-1198)) 23)) (-1849 (((-657 (-624 |#2|)) (-657 (-624 |#2|)) (-657 (-624 |#2|))) 11)) (-3335 ((|#2| |#2| (-1198)) 59 (|has| |#1| (-568)))) (-2326 ((|#2| |#2| (-1198)) 87 (-12 (|has| |#2| (-294)) (|has| |#1| (-464))))) (-4296 (((-624 |#2|) (-624 |#2|) (-657 (-624 |#2|)) (-1198)) 25)) (-1680 (((-624 |#2|) (-657 (-624 |#2|))) 24)) (-3264 (((-598 |#2|) |#2| (-1198) (-1 (-598 |#2|) |#2| (-1198)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198))) 115 (-12 (|has| |#2| (-294)) (|has| |#2| (-641)) (|has| |#2| (-1060 (-1198))) (|has| |#1| (-626 (-908 (-576)))) (|has| |#1| (-464)) (|has| |#1| (-902 (-576))))))) +(((-585 |#1| |#2|) (-10 -7 (-15 -3026 ((-657 (-624 |#2|)) (-657 (-624 |#2|)) (-1198))) (-15 -1680 ((-624 |#2|) (-657 (-624 |#2|)))) (-15 -4296 ((-624 |#2|) (-624 |#2|) (-657 (-624 |#2|)) (-1198))) (-15 -1849 ((-657 (-624 |#2|)) (-657 (-624 |#2|)) (-657 (-624 |#2|)))) (-15 -3182 ((-657 (-624 |#2|)) (-657 |#2|) (-1198))) (IF (|has| |#1| (-568)) (-15 -3335 (|#2| |#2| (-1198))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -2326 (|#2| |#2| (-1198))) (IF (|has| |#1| (-626 (-908 (-576)))) (IF (|has| |#1| (-902 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1060 (-1198))) (-15 -3264 ((-598 |#2|) |#2| (-1198) (-1 (-598 |#2|) |#2| (-1198)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1122) (-442 |#1|)) (T -585)) +((-3264 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-598 *3) *3 (-1198))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1198))) (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1060 *4)) (-4 *3 (-442 *7)) (-5 *4 (-1198)) (-4 *7 (-626 (-908 (-576)))) (-4 *7 (-464)) (-4 *7 (-902 (-576))) (-4 *7 (-1122)) (-5 *2 (-598 *3)) (-5 *1 (-585 *7 *3)))) (-2326 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-464)) (-4 *4 (-1122)) (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))) (-3335 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-4 *4 (-1122)) (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *6)) (-5 *4 (-1198)) (-4 *6 (-442 *5)) (-4 *5 (-1122)) (-5 *2 (-657 (-624 *6))) (-5 *1 (-585 *5 *6)))) (-1849 (*1 *2 *2 *2) (-12 (-5 *2 (-657 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1122)) (-5 *1 (-585 *3 *4)))) (-4296 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-657 (-624 *6))) (-5 *4 (-1198)) (-5 *2 (-624 *6)) (-4 *6 (-442 *5)) (-4 *5 (-1122)) (-5 *1 (-585 *5 *6)))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-657 (-624 *5))) (-4 *4 (-1122)) (-5 *2 (-624 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))) (-3026 (*1 *2 *2 *3) (-12 (-5 *2 (-657 (-624 *5))) (-5 *3 (-1198)) (-4 *5 (-442 *4)) (-4 *4 (-1122)) (-5 *1 (-585 *4 *5))))) +(-10 -7 (-15 -3026 ((-657 (-624 |#2|)) (-657 (-624 |#2|)) (-1198))) (-15 -1680 ((-624 |#2|) (-657 (-624 |#2|)))) (-15 -4296 ((-624 |#2|) (-624 |#2|) (-657 (-624 |#2|)) (-1198))) (-15 -1849 ((-657 (-624 |#2|)) (-657 (-624 |#2|)) (-657 (-624 |#2|)))) (-15 -3182 ((-657 (-624 |#2|)) (-657 |#2|) (-1198))) (IF (|has| |#1| (-568)) (-15 -3335 (|#2| |#2| (-1198))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -2326 (|#2| |#2| (-1198))) (IF (|has| |#1| (-626 (-908 (-576)))) (IF (|has| |#1| (-902 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1060 (-1198))) (-15 -3264 ((-598 |#2|) |#2| (-1198) (-1 (-598 |#2|) |#2| (-1198)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2501 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-657 |#1|) "failed") (-576) |#1| |#1|)) 199)) (-4027 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-657 (-419 |#2|))) 174)) (-1563 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-657 (-419 |#2|))) 171)) (-3372 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2024 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-4111 (((-3 (-2 (|:| -3579 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202)) (-2197 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3579 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|)) 205)) (-1628 (((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88)) (-2202 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-3165 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4228 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-657 (-419 |#2|))) 178)) (-1779 (((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4228 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 166)) (-2353 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4228 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 189)) (-1824 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3579 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4228 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|)) 210))) +(((-586 |#1| |#2|) (-10 -7 (-15 -2024 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2353 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4228 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2501 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-657 |#1|) "failed") (-576) |#1| |#1|))) (-15 -2197 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3579 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -1824 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3579 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4228 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -4027 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-657 (-419 |#2|)))) (-15 -3165 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4228 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-657 (-419 |#2|)))) (-15 -4111 ((-3 (-2 (|:| -3579 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -1563 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-657 (-419 |#2|)))) (-15 -3372 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1779 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4228 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -1628 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2202 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-374) (-1265 |#1|)) (T -586)) +((-2202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-1628 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-1779 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4228 *4) (|:| |sol?| (-112))) (-576) *4)) (-4 *4 (-374)) (-4 *5 (-1265 *4)) (-5 *1 (-586 *4 *5)))) (-3372 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3579 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1265 *4)))) (-1563 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-657 (-419 *7))) (-4 *7 (-1265 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-4111 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -3579 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-3165 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4228 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-657 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1265 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-4027 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3579 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-657 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1265 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-1824 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4228 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1265 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -3579 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2197 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3579 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1265 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -3579 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2501 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-657 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) (-4 *7 (-1265 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2353 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4228 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1265 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2024 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3579 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1265 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(-10 -7 (-15 -2024 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2353 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4228 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2501 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-657 |#1|) "failed") (-576) |#1| |#1|))) (-15 -2197 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3579 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -1824 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3579 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4228 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -4027 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-657 (-419 |#2|)))) (-15 -3165 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4228 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-657 (-419 |#2|)))) (-15 -4111 ((-3 (-2 (|:| -3579 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -1563 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-657 (-419 |#2|)))) (-15 -3372 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1779 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4228 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -1628 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2202 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3763 (((-3 |#2| "failed") |#2| (-1198) (-1198)) 10))) +(((-587 |#1| |#2|) (-10 -7 (-15 -3763 ((-3 |#2| "failed") |#2| (-1198) (-1198)))) (-13 (-317) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-979) (-1161) (-29 |#1|))) (T -587)) +((-3763 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1198)) (-4 *4 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1224) (-979) (-1161) (-29 *4)))))) +(-10 -7 (-15 -3763 ((-3 |#2| "failed") |#2| (-1198) (-1198)))) +((-2599 (((-704 (-1247)) $ (-1247)) 26)) (-1711 (((-704 (-561)) $ (-561)) 25)) (-2151 (((-784) $ (-129)) 27)) (-1683 (((-704 (-130)) $ (-130)) 24)) (-1879 (((-704 (-1247)) $) 12)) (-3095 (((-704 (-1245)) $) 8)) (-2711 (((-704 (-1244)) $) 10)) (-2776 (((-704 (-561)) $) 13)) (-1520 (((-704 (-559)) $) 9)) (-1706 (((-704 (-558)) $) 11)) (-2394 (((-784) $ (-129)) 7)) (-1792 (((-704 (-130)) $) 14)) (-3950 (($ $) 6))) (((-588) (-141)) (T -588)) NIL -(-13 (-539) (-874)) -(((-175) . T) ((-539) . T) ((-874) . T)) -((-1968 (((-703 (-1246)) $ (-1246)) NIL)) (-1495 (((-703 (-561)) $ (-561)) NIL)) (-3434 (((-783) $ (-129)) NIL)) (-2750 (((-703 (-130)) $ (-130)) NIL)) (-2464 (((-703 (-1246)) $) NIL)) (-3101 (((-703 (-1244)) $) NIL)) (-3061 (((-703 (-1243)) $) NIL)) (-1992 (((-703 (-561)) $) NIL)) (-1797 (((-703 (-559)) $) NIL)) (-1816 (((-703 (-558)) $) NIL)) (-2393 (((-783) $ (-129)) NIL)) (-3531 (((-703 (-130)) $) NIL)) (-2044 (((-112) $) NIL)) (-3105 (($ (-400)) 14) (($ (-1179)) 16)) (-4113 (((-876) $) NIL)) (-2481 (($ $) NIL))) -(((-589) (-13 (-588) (-625 (-876)) (-10 -8 (-15 -3105 ($ (-400))) (-15 -3105 ($ (-1179))) (-15 -2044 ((-112) $))))) (T -589)) -((-3105 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-589)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589))))) -(-13 (-588) (-625 (-876)) (-10 -8 (-15 -3105 ($ (-400))) (-15 -3105 ($ (-1179))) (-15 -2044 ((-112) $)))) -((-1957 (((-112) $ $) NIL)) (-3401 (($) 7 T CONST)) (-2447 (((-1179) $) NIL)) (-1661 (($) 6 T CONST)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 15)) (-1612 (($) 9 T CONST)) (-3278 (($) 8 T CONST)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 11))) -(((-590) (-13 (-1121) (-10 -8 (-15 -1661 ($) -2666) (-15 -3401 ($) -2666) (-15 -3278 ($) -2666) (-15 -1612 ($) -2666)))) (T -590)) -((-1661 (*1 *1) (-5 *1 (-590))) (-3401 (*1 *1) (-5 *1 (-590))) (-3278 (*1 *1) (-5 *1 (-590))) (-1612 (*1 *1) (-5 *1 (-590)))) -(-13 (-1121) (-10 -8 (-15 -1661 ($) -2666) (-15 -3401 ($) -2666) (-15 -3278 ($) -2666) (-15 -1612 ($) -2666))) -((-1957 (((-112) $ $) NIL)) (-3262 (((-703 $) (-503)) 21)) (-2447 (((-1179) $) NIL)) (-2148 (($ (-1179)) 14)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 33)) (-2942 (((-215 4 (-130)) $) 24)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 26))) -(((-591) (-13 (-1121) (-10 -8 (-15 -2148 ($ (-1179))) (-15 -2942 ((-215 4 (-130)) $)) (-15 -3262 ((-703 $) (-503)))))) (T -591)) -((-2148 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-591)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) -(-13 (-1121) (-10 -8 (-15 -2148 ($ (-1179))) (-15 -2942 ((-215 4 (-130)) $)) (-15 -3262 ((-703 $) (-503))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $ (-576)) 75)) (-4386 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-4076 (($ (-1193 (-576)) (-576)) 81)) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) 66)) (-1407 (($ $) 43)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3359 (((-783) $) 16)) (-2486 (((-112) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1488 (((-576)) 37)) (-4130 (((-576) $) 41)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2419 (($ $ (-576)) 24)) (-1946 (((-3 $ "failed") $ $) 71)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) 17)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 72)) (-2539 (((-1178 (-576)) $) 19)) (-3193 (($ $) 26)) (-4113 (((-876) $) 102) (($ (-576)) 61) (($ $) NIL)) (-2910 (((-783)) 15 T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2642 (((-576) $ (-576)) 46)) (-4313 (($) 44 T CONST)) (-4322 (($) 21 T CONST)) (-3939 (((-112) $ $) 52)) (-4037 (($ $) 60) (($ $ $) 48)) (-4026 (($ $ $) 59)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 62) (($ $ $) 63))) -(((-592 |#1| |#2|) (-883 |#1|) (-576) (-112)) (T -592)) -NIL -(-883 |#1|) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 30)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2536 (((-112) $) NIL)) (-3570 (((-783)) NIL)) (-3832 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-2063 (((-1210 (-940) (-783)) (-576)) 59)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) 95)) (-2317 (($ $) 94)) (-2496 (($ (-1288 $)) 93)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) 44)) (-4370 (($) NIL)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3712 (($) 61)) (-2616 (((-112) $) NIL)) (-2824 (($ $) NIL) (($ $ (-783)) NIL)) (-2171 (((-112) $) NIL)) (-3359 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-2486 (((-112) $) NIL)) (-3121 (($) 49 (|has| $ (-379)))) (-2882 (((-112) $) NIL (|has| $ (-379)))) (-2595 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-3552 (((-3 $ "failed") $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4293 (((-1193 $) $ (-940)) NIL (|has| $ (-379))) (((-1193 $) $) 104)) (-3787 (((-940) $) 67)) (-2089 (((-1193 $) $) NIL (|has| $ (-379)))) (-3922 (((-3 (-1193 $) "failed") $ $) NIL (|has| $ (-379))) (((-1193 $) $) NIL (|has| $ (-379)))) (-4010 (($ $ (-1193 $)) NIL (|has| $ (-379)))) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL T CONST)) (-2411 (($ (-940)) 60)) (-3464 (((-112) $) 87)) (-3116 (((-1141) $) NIL)) (-2549 (($) 28 (|has| $ (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) 54)) (-1452 (((-430 $) $) NIL)) (-3835 (((-940)) 86) (((-845 (-940))) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-3168 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-3181 (((-135)) NIL)) (-4107 (($ $) NIL) (($ $ (-783)) NIL)) (-2196 (((-940) $) 85) (((-845 (-940)) $) NIL)) (-3881 (((-1193 $)) 102)) (-4223 (($) 66)) (-2174 (($) 50 (|has| $ (-379)))) (-4314 (((-701 $) (-1288 $)) NIL) (((-1288 $) $) 91)) (-1556 (((-576) $) 40)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) 42) (($ $) NIL) (($ (-419 (-576))) NIL)) (-4276 (((-3 $ "failed") $) NIL) (($ $) 105)) (-2910 (((-783)) 51 T CONST)) (-2950 (((-112) $ $) 107)) (-2704 (((-1288 $) (-940)) 97) (((-1288 $)) 96)) (-4134 (((-112) $ $) NIL)) (-1736 (((-112) $) NIL)) (-4313 (($) 31 T CONST)) (-4322 (($) 27 T CONST)) (-2510 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-3157 (($ $) NIL) (($ $ (-783)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 34)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 81) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-593 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-940)) (T -593)) +(-13 (-539) (-875)) +(((-175) . T) ((-539) . T) ((-875) . T)) +((-2599 (((-704 (-1247)) $ (-1247)) NIL)) (-1711 (((-704 (-561)) $ (-561)) NIL)) (-2151 (((-784) $ (-129)) NIL)) (-1683 (((-704 (-130)) $ (-130)) NIL)) (-1879 (((-704 (-1247)) $) NIL)) (-3095 (((-704 (-1245)) $) NIL)) (-2711 (((-704 (-1244)) $) NIL)) (-2776 (((-704 (-561)) $) NIL)) (-1520 (((-704 (-559)) $) NIL)) (-1706 (((-704 (-558)) $) NIL)) (-2394 (((-784) $ (-129)) NIL)) (-1792 (((-704 (-130)) $) NIL)) (-2072 (((-112) $) NIL)) (-3133 (($ (-400)) 14) (($ (-1180)) 16)) (-3515 (((-877) $) NIL)) (-3950 (($ $) NIL))) +(((-589) (-13 (-588) (-625 (-877)) (-10 -8 (-15 -3133 ($ (-400))) (-15 -3133 ($ (-1180))) (-15 -2072 ((-112) $))))) (T -589)) +((-3133 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-589)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589))))) +(-13 (-588) (-625 (-877)) (-10 -8 (-15 -3133 ($ (-400))) (-15 -3133 ($ (-1180))) (-15 -2072 ((-112) $)))) +((-3423 (((-112) $ $) NIL)) (-2741 (($) 7 T CONST)) (-1708 (((-1180) $) NIL)) (-2069 (($) 6 T CONST)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 15)) (-3460 (($) 9 T CONST)) (-4347 (($) 8 T CONST)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 11))) +(((-590) (-13 (-1122) (-10 -8 (-15 -2069 ($) -1491) (-15 -2741 ($) -1491) (-15 -4347 ($) -1491) (-15 -3460 ($) -1491)))) (T -590)) +((-2069 (*1 *1) (-5 *1 (-590))) (-2741 (*1 *1) (-5 *1 (-590))) (-4347 (*1 *1) (-5 *1 (-590))) (-3460 (*1 *1) (-5 *1 (-590)))) +(-13 (-1122) (-10 -8 (-15 -2069 ($) -1491) (-15 -2741 ($) -1491) (-15 -4347 ($) -1491) (-15 -3460 ($) -1491))) +((-3423 (((-112) $ $) NIL)) (-2175 (((-704 $) (-503)) 21)) (-1708 (((-1180) $) NIL)) (-1885 (($ (-1180)) 14)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 33)) (-4066 (((-215 4 (-130)) $) 24)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 26))) +(((-591) (-13 (-1122) (-10 -8 (-15 -1885 ($ (-1180))) (-15 -4066 ((-215 4 (-130)) $)) (-15 -2175 ((-704 $) (-503)))))) (T -591)) +((-1885 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-591)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-704 (-591))) (-5 *1 (-591))))) +(-13 (-1122) (-10 -8 (-15 -1885 ($ (-1180))) (-15 -4066 ((-215 4 (-130)) $)) (-15 -2175 ((-704 $) (-503))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-1866 (($ $ (-576)) 75)) (-3210 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-3246 (($ (-1194 (-576)) (-576)) 81)) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) 66)) (-3173 (($ $) 43)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2650 (((-784) $) 16)) (-3994 (((-112) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1648 (((-576)) 37)) (-2578 (((-576) $) 41)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1456 (($ $ (-576)) 24)) (-3409 (((-3 $ "failed") $ $) 71)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) 17)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 72)) (-1409 (((-1179 (-576)) $) 19)) (-1557 (($ $) 26)) (-3515 (((-877) $) 102) (($ (-576)) 61) (($ $) NIL)) (-3845 (((-784)) 15 T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-4130 (((-576) $ (-576)) 46)) (-2716 (($) 44 T CONST)) (-2725 (($) 21 T CONST)) (-2881 (((-112) $ $) 52)) (-2982 (($ $) 60) (($ $ $) 48)) (-2971 (($ $ $) 59)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 62) (($ $ $) 63))) +(((-592 |#1| |#2|) (-884 |#1|) (-576) (-112)) (T -592)) +NIL +(-884 |#1|) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 30)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1388 (((-112) $) NIL)) (-4025 (((-784)) NIL)) (-2256 (($ $ (-941)) NIL (|has| $ (-379))) (($ $) NIL)) (-2266 (((-1211 (-941) (-784)) (-576)) 59)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 $ "failed") $) 95)) (-2830 (($ $) 94)) (-4093 (($ (-1289 $)) 93)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) 44)) (-1876 (($) NIL)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2846 (($) 61)) (-2798 (((-112) $) NIL)) (-4266 (($ $) NIL) (($ $ (-784)) NIL)) (-4009 (((-112) $) NIL)) (-2650 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-3994 (((-112) $) NIL)) (-2084 (($) 49 (|has| $ (-379)))) (-3547 (((-112) $) NIL (|has| $ (-379)))) (-3869 (($ $ (-941)) NIL (|has| $ (-379))) (($ $) NIL)) (-1955 (((-3 $ "failed") $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3604 (((-1194 $) $ (-941)) NIL (|has| $ (-379))) (((-1194 $) $) 104)) (-2327 (((-941) $) 67)) (-2514 (((-1194 $) $) NIL (|has| $ (-379)))) (-4348 (((-3 (-1194 $) "failed") $ $) NIL (|has| $ (-379))) (((-1194 $) $) NIL (|has| $ (-379)))) (-3905 (($ $ (-1194 $)) NIL (|has| $ (-379)))) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL T CONST)) (-3146 (($ (-941)) 60)) (-2395 (((-112) $) 87)) (-1460 (((-1142) $) NIL)) (-4083 (($) 28 (|has| $ (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) 54)) (-1856 (((-430 $) $) NIL)) (-1559 (((-941)) 86) (((-846 (-941))) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2495 (((-3 (-784) "failed") $ $) NIL) (((-784) $) NIL)) (-1451 (((-135)) NIL)) (-2209 (($ $) NIL) (($ $ (-784)) NIL)) (-4265 (((-941) $) 85) (((-846 (-941)) $) NIL)) (-2005 (((-1194 $)) 102)) (-4170 (($) 66)) (-4039 (($) 50 (|has| $ (-379)))) (-3806 (((-702 $) (-1289 $)) NIL) (((-1289 $) $) 91)) (-4136 (((-576) $) 40)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) 42) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3414 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3845 (((-784)) 51 T CONST)) (-4166 (((-112) $ $) 107)) (-2469 (((-1289 $) (-941)) 97) (((-1289 $)) 96)) (-2607 (((-112) $ $) NIL)) (-2137 (((-112) $) NIL)) (-2716 (($) 31 T CONST)) (-2725 (($) 27 T CONST)) (-4237 (($ $ (-784)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-2066 (($ $) NIL) (($ $ (-784)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 34)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 81) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-593 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-941)) (T -593)) NIL (-13 (-360) (-339 $) (-626 (-576))) -((-3164 (((-1293) (-1179)) 10))) -(((-594) (-10 -7 (-15 -3164 ((-1293) (-1179))))) (T -594)) -((-3164 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-594))))) -(-10 -7 (-15 -3164 ((-1293) (-1179)))) -((-2887 (((-598 |#2|) (-598 |#2|)) 42)) (-3568 (((-656 |#2|) (-598 |#2|)) 44)) (-3965 ((|#2| (-598 |#2|)) 50))) -(((-595 |#1| |#2|) (-10 -7 (-15 -2887 ((-598 |#2|) (-598 |#2|))) (-15 -3568 ((-656 |#2|) (-598 |#2|))) (-15 -3965 (|#2| (-598 |#2|)))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-29 |#1|) (-1223))) (T -595)) -((-3965 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1223))) (-5 *1 (-595 *4 *2)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))))) (-3568 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1223))) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) (-5 *1 (-595 *4 *5)))) (-2887 (*1 *2 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1223))) (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-595 *3 *4))))) -(-10 -7 (-15 -2887 ((-598 |#2|) (-598 |#2|))) (-15 -3568 ((-656 |#2|) (-598 |#2|))) (-15 -3965 (|#2| (-598 |#2|)))) -((-2423 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 30))) -(((-596 |#1| |#2|) (-10 -7 (-15 -2423 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -2423 ((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2423 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2423 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-374) (-374)) (T -596)) -((-2423 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-2423 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) (-2423 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -4291 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| -4291 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))) -(-10 -7 (-15 -2423 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -2423 ((-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4291 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2423 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2423 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-1582 (($ (-518) (-609)) 14)) (-3683 (($ (-518) (-609) $) 16)) (-2778 (($ (-518) (-609)) 15)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL) (($ (-1202)) 7) (((-1202) $) 6)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-597) (-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -1582 ($ (-518) (-609))) (-15 -2778 ($ (-518) (-609))) (-15 -3683 ($ (-518) (-609) $))))) (T -597)) -((-1582 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-2778 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-3683 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -1582 ($ (-518) (-609))) (-15 -2778 ($ (-518) (-609))) (-15 -3683 ($ (-518) (-609) $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) 76)) (-2317 ((|#1| $) NIL)) (-4291 ((|#1| $) 30)) (-3289 (((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1460 (($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3036 (((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) $) 31)) (-2447 (((-1179) $) NIL)) (-3930 (($ |#1| |#1|) 38) (($ |#1| (-1197)) 49 (|has| |#1| (-1059 (-1197))))) (-3116 (((-1141) $) NIL)) (-3626 (((-112) $) 35)) (-4107 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1197)) 89 (|has| |#1| (-917 (-1197))))) (-4113 (((-876) $) 110) (($ |#1|) 29)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 18 T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) 17) (($ $ $) NIL)) (-4026 (($ $ $) 85)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 16) (($ (-419 (-576)) $) 41) (($ $ (-419 (-576))) NIL))) -(((-598 |#1|) (-13 (-729 (-419 (-576))) (-1059 |#1|) (-10 -8 (-15 -1460 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4291 (|#1| $)) (-15 -3036 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) $)) (-15 -3289 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3626 ((-112) $)) (-15 -3930 ($ |#1| |#1|)) (-15 -4107 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-917 (-1197))) (-15 -4107 (|#1| $ (-1197))) |%noBranch|) (IF (|has| |#1| (-1059 (-1197))) (-15 -3930 ($ |#1| (-1197))) |%noBranch|))) (-374)) (T -598)) -((-1460 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *2)) (|:| |logand| (-1193 *2))))) (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-374)) (-5 *1 (-598 *2)))) (-4291 (*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *3)) (|:| |logand| (-1193 *3))))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3930 (*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-4107 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-4107 (*1 *2 *1 *3) (-12 (-4 *2 (-374)) (-4 *2 (-917 *3)) (-5 *1 (-598 *2)) (-5 *3 (-1197)))) (-3930 (*1 *1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *1 (-598 *2)) (-4 *2 (-1059 *3)) (-4 *2 (-374))))) -(-13 (-729 (-419 (-576))) (-1059 |#1|) (-10 -8 (-15 -1460 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4291 (|#1| $)) (-15 -3036 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 |#1|)) (|:| |logand| (-1193 |#1|)))) $)) (-15 -3289 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3626 ((-112) $)) (-15 -3930 ($ |#1| |#1|)) (-15 -4107 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-917 (-1197))) (-15 -4107 (|#1| $ (-1197))) |%noBranch|) (IF (|has| |#1| (-1059 (-1197))) (-15 -3930 ($ |#1| (-1197))) |%noBranch|))) -((-2349 (((-112) |#1|) 16)) (-2502 (((-3 |#1| "failed") |#1|) 14)) (-2169 (((-2 (|:| -1869 |#1|) (|:| -4080 (-783))) |#1|) 38) (((-3 |#1| "failed") |#1| (-783)) 18)) (-4177 (((-112) |#1| (-783)) 19)) (-2153 ((|#1| |#1|) 42)) (-3395 ((|#1| |#1| (-783)) 45))) -(((-599 |#1|) (-10 -7 (-15 -4177 ((-112) |#1| (-783))) (-15 -2169 ((-3 |#1| "failed") |#1| (-783))) (-15 -2169 ((-2 (|:| -1869 |#1|) (|:| -4080 (-783))) |#1|)) (-15 -3395 (|#1| |#1| (-783))) (-15 -2349 ((-112) |#1|)) (-15 -2502 ((-3 |#1| "failed") |#1|)) (-15 -2153 (|#1| |#1|))) (-557)) (T -599)) -((-2153 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2502 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2349 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-3395 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2169 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1869 *3) (|:| -4080 (-783)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-2169 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-4177 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -4177 ((-112) |#1| (-783))) (-15 -2169 ((-3 |#1| "failed") |#1| (-783))) (-15 -2169 ((-2 (|:| -1869 |#1|) (|:| -4080 (-783))) |#1|)) (-15 -3395 (|#1| |#1| (-783))) (-15 -2349 ((-112) |#1|)) (-15 -2502 ((-3 |#1| "failed") |#1|)) (-15 -2153 (|#1| |#1|))) -((-1323 (((-1193 |#1|) (-940)) 44))) -(((-600 |#1|) (-10 -7 (-15 -1323 ((-1193 |#1|) (-940)))) (-360)) (T -600)) -((-1323 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360))))) -(-10 -7 (-15 -1323 ((-1193 |#1|) (-940)))) -((-2887 (((-598 (-419 (-971 |#1|))) (-598 (-419 (-971 |#1|)))) 27)) (-4412 (((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-971 |#1|)) (-1197)) 34 (|has| |#1| (-148)))) (-3568 (((-656 (-326 |#1|)) (-598 (-419 (-971 |#1|)))) 19)) (-3724 (((-326 |#1|) (-419 (-971 |#1|)) (-1197)) 32 (|has| |#1| (-148)))) (-3965 (((-326 |#1|) (-598 (-419 (-971 |#1|)))) 21))) -(((-601 |#1|) (-10 -7 (-15 -2887 ((-598 (-419 (-971 |#1|))) (-598 (-419 (-971 |#1|))))) (-15 -3568 ((-656 (-326 |#1|)) (-598 (-419 (-971 |#1|))))) (-15 -3965 ((-326 |#1|) (-598 (-419 (-971 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4412 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -3724 ((-326 |#1|) (-419 (-971 |#1|)) (-1197)))) |%noBranch|)) (-13 (-464) (-1059 (-576)) (-651 (-576)))) (T -601)) -((-3724 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-971 *4)))) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-3568 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-971 *4)))) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) (-2887 (*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-971 *3)))) (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-601 *3))))) -(-10 -7 (-15 -2887 ((-598 (-419 (-971 |#1|))) (-598 (-419 (-971 |#1|))))) (-15 -3568 ((-656 (-326 |#1|)) (-598 (-419 (-971 |#1|))))) (-15 -3965 ((-326 |#1|) (-598 (-419 (-971 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4412 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -3724 ((-326 |#1|) (-419 (-971 |#1|)) (-1197)))) |%noBranch|)) -((-2584 (((-656 (-701 (-576))) (-656 (-940)) (-656 (-924 (-576)))) 78) (((-656 (-701 (-576))) (-656 (-940))) 79) (((-701 (-576)) (-656 (-940)) (-924 (-576))) 72)) (-2269 (((-783) (-656 (-940))) 69))) -(((-602) (-10 -7 (-15 -2269 ((-783) (-656 (-940)))) (-15 -2584 ((-701 (-576)) (-656 (-940)) (-924 (-576)))) (-15 -2584 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -2584 ((-656 (-701 (-576))) (-656 (-940)) (-656 (-924 (-576))))))) (T -602)) -((-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-924 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-940))) (-5 *4 (-924 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-602)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-783)) (-5 *1 (-602))))) -(-10 -7 (-15 -2269 ((-783) (-656 (-940)))) (-15 -2584 ((-701 (-576)) (-656 (-940)) (-924 (-576)))) (-15 -2584 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -2584 ((-656 (-701 (-576))) (-656 (-940)) (-656 (-924 (-576)))))) -((-2105 (((-656 |#5|) |#5| (-112)) 100)) (-2260 (((-112) |#5| (-656 |#5|)) 34))) -(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2105 ((-656 |#5|) |#5| (-112))) (-15 -2260 ((-112) |#5| (-656 |#5|)))) (-13 (-317) (-148)) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1130 |#1| |#2| |#3| |#4|)) (T -603)) -((-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1130 *5 *6 *7 *8)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-2105 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-656 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1130 *5 *6 *7 *8))))) -(-10 -7 (-15 -2105 ((-656 |#5|) |#5| (-112))) (-15 -2260 ((-112) |#5| (-656 |#5|)))) -((-1957 (((-112) $ $) NIL)) (-1784 (((-1156) $) 11)) (-1776 (((-1156) $) 9)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-604) (-13 (-1104) (-10 -8 (-15 -1776 ((-1156) $)) (-15 -1784 ((-1156) $))))) (T -604)) -((-1776 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604))))) -(-13 (-1104) (-10 -8 (-15 -1776 ((-1156) $)) (-15 -1784 ((-1156) $)))) -((-1957 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2635 (($ $) 38)) (-3532 (($ $) NIL)) (-2592 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2259 (((-112) $ $) 67)) (-2235 (((-112) $ $ (-576)) 62)) (-2887 (((-656 $) $ (-145)) 75) (((-656 $) $ (-142)) 76)) (-2919 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-3519 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-861))))) (-2380 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 (((-145) $ (-576) (-145)) 59 (|has| $ (-6 -4465))) (((-145) $ (-1255 (-576)) (-145)) NIL (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-4435 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-3124 (($ $ (-1255 (-576)) $) 57)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-2825 (($ (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4464)))) (-1910 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4465)))) (-3721 (((-145) $ (-576)) NIL)) (-2281 (((-112) $ $) 88)) (-3539 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1121))) (((-576) (-145) $ (-576)) 64 (|has| (-145) (-1121))) (((-576) $ $ (-576)) 63) (((-576) (-142) $ (-576)) 66)) (-3722 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-1991 (($ (-783) (-145)) 9)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) 32 (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| (-145) (-861)))) (-2748 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-2911 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-1829 (((-576) $) 47 (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| (-145) (-861)))) (-4327 (((-112) $ $ (-145)) 89)) (-1465 (((-783) $ $ (-145)) 86)) (-1898 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3809 (($ $) 41)) (-4181 (($ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-1325 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-2447 (((-1179) $) 43 (|has| (-145) (-1121)))) (-3386 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) 27)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) 85 (|has| (-145) (-1121)))) (-1755 (((-145) $) NIL (|has| (-576) (-861)))) (-4220 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4267 (($ $ (-145)) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-2885 (((-656 (-145)) $) NIL)) (-3617 (((-112) $) 15)) (-3307 (($) 10)) (-4369 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) 68) (($ $ (-1255 (-576))) 25) (($ $ $) NIL)) (-2335 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3127 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3218 (($ $ $ (-576)) 81 (|has| $ (-6 -4465)))) (-4287 (($ $) 20)) (-1556 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-4125 (($ (-656 (-145))) NIL)) (-2767 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-656 $)) 82)) (-4113 (($ (-145)) NIL) (((-876) $) 31 (|has| (-145) (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2543 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3975 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3939 (((-112) $ $) 17 (|has| (-145) (-102)))) (-3984 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3963 (((-112) $ $) 18 (|has| (-145) (-861)))) (-1970 (((-783) $) 16 (|has| $ (-6 -4464))))) -(((-605 |#1|) (-1165) (-576)) (T -605)) -NIL -(-1165) -((-3352 (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1115 |#4|)) 32))) -(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3352 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1115 |#4|))) (-15 -3352 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) (-805) (-861) (-568) (-968 |#3| |#1| |#2|)) (T -606)) -((-3352 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) (-3352 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1115 *3)) (-4 *3 (-968 *7 *6 *4)) (-4 *6 (-805)) (-4 *4 (-861)) (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *6 *4 *7 *3))))) -(-10 -7 (-15 -3352 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1115 |#4|))) (-15 -3352 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 71)) (-1585 (((-656 (-1103)) $) NIL)) (-1654 (((-1197) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-4087 (($ $ (-576)) 58) (($ $ (-576) (-576)) 59)) (-4073 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 65)) (-2597 (($ $) 109)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2139 (((-876) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1047 (-855 (-576))) (-1197) |#1| (-419 (-576))) 241)) (-2861 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 36)) (-3170 (($) NIL T CONST)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-2654 (((-112) $) NIL)) (-3359 (((-576) $) 63) (((-576) $ (-576)) 64)) (-2486 (((-112) $) NIL)) (-4328 (($ $ (-940)) 83)) (-3260 (($ (-1 |#1| (-576)) $) 80)) (-4101 (((-112) $) 26)) (-1564 (($ |#1| (-576)) 22) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-2423 (($ (-1 |#1| |#1|) $) 75)) (-1444 (($ (-1047 (-855 (-576))) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 13)) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-4412 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-3 $ "failed") $ $ (-112)) 108)) (-3554 (($ $ $) 116)) (-3116 (((-1141) $) NIL)) (-4250 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 15)) (-3360 (((-1047 (-855 (-576))) $) 14)) (-2419 (($ $ (-576)) 47)) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2145 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-4369 ((|#1| $ (-576)) 62) (($ $ $) NIL (|has| (-576) (-1133)))) (-4107 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2196 (((-576) $) NIL)) (-3193 (($ $) 48)) (-4113 (((-876) $) NIL) (($ (-576)) 29) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 28 (|has| |#1| (-174)))) (-2707 ((|#1| $ (-576)) 61)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) 39 T CONST)) (-3188 ((|#1| $) NIL)) (-2570 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3970 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3902 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3819 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3684 (($ $) 201 (|has| |#1| (-38 (-419 (-576)))))) (-3796 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-4231 (($ $ (-419 (-576))) 177 (|has| |#1| (-38 (-419 (-576)))))) (-4350 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2043 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-1426 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-1775 (($ $) 203 (|has| |#1| (-38 (-419 (-576)))))) (-4340 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-4140 (($ $) 199 (|has| |#1| (-38 (-419 (-576)))))) (-4142 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3582 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-1540 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-4337 (($ $) 209 (|has| |#1| (-38 (-419 (-576)))))) (-1471 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-1383 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-1438 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-1412 (($ $) 213 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-4162 (($ $) 215 (|has| |#1| (-38 (-419 (-576)))))) (-2813 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-1673 (($ $) 211 (|has| |#1| (-38 (-419 (-576)))))) (-3786 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-1899 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-2731 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2642 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-4313 (($) 30 T CONST)) (-4322 (($) 40 T CONST)) (-3157 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3939 (((-112) $ $) 73)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $) 91) (($ $ $) 72)) (-4026 (($ $ $) 88)) (** (($ $ (-940)) NIL) (($ $ (-783)) 111)) (* (($ (-940) $) 98) (($ (-783) $) 96) (($ (-576) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-607 |#1|) (-13 (-1266 |#1| (-576)) (-10 -8 (-15 -1444 ($ (-1047 (-855 (-576))) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3360 ((-1047 (-855 (-576))) $)) (-15 -4250 ((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -2861 ($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -4101 ((-112) $)) (-15 -3260 ($ (-1 |#1| (-576)) $)) (-15 -3236 ((-3 $ "failed") $ $ (-112))) (-15 -2597 ($ $)) (-15 -3554 ($ $ $)) (-15 -2139 ((-876) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1047 (-855 (-576))) (-1197) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4412 ($ $)) (-15 -4350 ($ $ |#1|)) (-15 -4231 ($ $ (-419 (-576)))) (-15 -1426 ($ $)) (-15 -2043 ($ $)) (-15 -3819 ($ $)) (-15 -1540 ($ $)) (-15 -3970 ($ $)) (-15 -4142 ($ $)) (-15 -3796 ($ $)) (-15 -4340 ($ $)) (-15 -1438 ($ $)) (-15 -2731 ($ $)) (-15 -1471 ($ $)) (-15 -3786 ($ $)) (-15 -3886 ($ $)) (-15 -2813 ($ $)) (-15 -3902 ($ $)) (-15 -3582 ($ $)) (-15 -2570 ($ $)) (-15 -4140 ($ $)) (-15 -3684 ($ $)) (-15 -1775 ($ $)) (-15 -1383 ($ $)) (-15 -1899 ($ $)) (-15 -4337 ($ $)) (-15 -1673 ($ $)) (-15 -1412 ($ $)) (-15 -4162 ($ $))) |%noBranch|))) (-1070)) (T -607)) -((-4101 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-1444 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-855 (-576)))) (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1070)) (-5 *1 (-607 *4)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-1047 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-2861 (*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) (-3260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) (-3236 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-2597 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070)))) (-3554 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070)))) (-2139 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *6)))) (-5 *4 (-1047 (-855 (-576)))) (-5 *5 (-1197)) (-5 *7 (-419 (-576))) (-4 *6 (-1070)) (-5 *2 (-876)) (-5 *1 (-607 *6)))) (-4412 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4350 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1070)))) (-1426 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2043 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3819 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3970 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4142 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3796 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4340 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1438 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2731 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1471 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3786 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3886 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2813 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3902 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3582 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-2570 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4140 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-3684 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1775 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1383 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1899 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4337 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1673 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-1412 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(-13 (-1266 |#1| (-576)) (-10 -8 (-15 -1444 ($ (-1047 (-855 (-576))) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3360 ((-1047 (-855 (-576))) $)) (-15 -4250 ((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -2861 ($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -4101 ((-112) $)) (-15 -3260 ($ (-1 |#1| (-576)) $)) (-15 -3236 ((-3 $ "failed") $ $ (-112))) (-15 -2597 ($ $)) (-15 -3554 ($ $ $)) (-15 -2139 ((-876) (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1047 (-855 (-576))) (-1197) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4412 ($ $)) (-15 -4350 ($ $ |#1|)) (-15 -4231 ($ $ (-419 (-576)))) (-15 -1426 ($ $)) (-15 -2043 ($ $)) (-15 -3819 ($ $)) (-15 -1540 ($ $)) (-15 -3970 ($ $)) (-15 -4142 ($ $)) (-15 -3796 ($ $)) (-15 -4340 ($ $)) (-15 -1438 ($ $)) (-15 -2731 ($ $)) (-15 -1471 ($ $)) (-15 -3786 ($ $)) (-15 -3886 ($ $)) (-15 -2813 ($ $)) (-15 -3902 ($ $)) (-15 -3582 ($ $)) (-15 -2570 ($ $)) (-15 -4140 ($ $)) (-15 -3684 ($ $)) (-15 -1775 ($ $)) (-15 -1383 ($ $)) (-15 -1899 ($ $)) (-15 -4337 ($ $)) (-15 -1673 ($ $)) (-15 -1412 ($ $)) (-15 -4162 ($ $))) |%noBranch|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 63)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2861 (($ (-1178 |#1|)) 9)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) 44)) (-2654 (((-112) $) 56)) (-3359 (((-783) $) 61) (((-783) $ (-783)) 60)) (-2486 (((-112) $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1946 (((-3 $ "failed") $ $) 46 (|has| |#1| (-568)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568)))) (-3244 (((-1178 |#1|) $) 25)) (-2910 (((-783)) 55 T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4313 (($) 10 T CONST)) (-4322 (($) 14 T CONST)) (-3939 (((-112) $ $) 24)) (-4037 (($ $) 32) (($ $ $) 16)) (-4026 (($ $ $) 27)) (** (($ $ (-940)) NIL) (($ $ (-783)) 53)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-576)) 38))) -(((-608 |#1|) (-13 (-1070) (-111 |#1| |#1|) (-10 -8 (-15 -3244 ((-1178 |#1|) $)) (-15 -2861 ($ (-1178 |#1|))) (-15 -2654 ((-112) $)) (-15 -3359 ((-783) $)) (-15 -3359 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1070)) (T -608)) -((-3244 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-2861 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-608 *3)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-3359 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1070))))) -(-13 (-1070) (-111 |#1| |#1|) (-10 -8 (-15 -3244 ((-1178 |#1|) $)) (-15 -2861 ($ (-1178 |#1|))) (-15 -2654 ((-112) $)) (-15 -3359 ((-783) $)) (-15 -3359 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) -((-1957 (((-112) $ $) NIL)) (-3685 (($) 8 T CONST)) (-3583 (($) 7 T CONST)) (-2566 (($ $ (-656 $)) 16)) (-2447 (((-1179) $) NIL)) (-2141 (($) 6 T CONST)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL) (($ (-1202)) 15) (((-1202) $) 10)) (-1643 (($) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-609) (-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -2141 ($) -2666) (-15 -3583 ($) -2666) (-15 -3685 ($) -2666) (-15 -1643 ($) -2666) (-15 -2566 ($ $ (-656 $)))))) (T -609)) -((-2141 (*1 *1) (-5 *1 (-609))) (-3583 (*1 *1) (-5 *1 (-609))) (-3685 (*1 *1) (-5 *1 (-609))) (-1643 (*1 *1) (-5 *1 (-609))) (-2566 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) -(-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -2141 ($) -2666) (-15 -3583 ($) -2666) (-15 -3685 ($) -2666) (-15 -1643 ($) -2666) (-15 -2566 ($ $ (-656 $))))) -((-2423 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15))) -(((-610 |#1| |#2|) (-10 -7 (-15 -2423 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) (-1238) (-1238)) (T -610)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))) -(-10 -7 (-15 -2423 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) -((-2423 (((-1178 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1178 |#2|)) 20) (((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-613 |#2|)) 19) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18))) -(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -2423 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -2423 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-613 |#2|))) (-15 -2423 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1178 |#2|)))) (-1238) (-1238) (-1238)) (T -611)) -((-2423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1178 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) (-5 *1 (-611 *6 *7 *8)))) (-2423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1178 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) (-5 *1 (-611 *6 *7 *8)))) (-2423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8))))) -(-10 -7 (-15 -2423 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -2423 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-613 |#2|))) (-15 -2423 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1178 |#2|)))) -((-2164 ((|#3| |#3| (-656 (-624 |#3|)) (-656 (-1197))) 57)) (-4061 (((-171 |#2|) |#3|) 122)) (-2849 ((|#3| (-171 |#2|)) 46)) (-2437 ((|#2| |#3|) 21)) (-4184 ((|#3| |#2|) 35))) -(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -2849 (|#3| (-171 |#2|))) (-15 -2437 (|#2| |#3|)) (-15 -4184 (|#3| |#2|)) (-15 -4061 ((-171 |#2|) |#3|)) (-15 -2164 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1197))))) (-568) (-13 (-442 |#1|) (-1023) (-1223)) (-13 (-442 (-171 |#1|)) (-1023) (-1223))) (T -612)) -((-2164 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1197))) (-4 *2 (-13 (-442 (-171 *5)) (-1023) (-1223))) (-4 *5 (-568)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1023) (-1223))))) (-4061 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-442 *4) (-1023) (-1223))) (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223))))) (-4184 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1023) (-1223))))) (-2437 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223))))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223))) (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) (-5 *1 (-612 *4 *5 *2))))) -(-10 -7 (-15 -2849 (|#3| (-171 |#2|))) (-15 -2437 (|#2| |#3|)) (-15 -4184 (|#3| |#2|)) (-15 -4061 ((-171 |#2|) |#3|)) (-15 -2164 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1197))))) -((-3603 (($ (-1 (-112) |#1|) $) 17)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-3529 (($ (-1 |#1| |#1|) |#1|) 9)) (-3579 (($ (-1 (-112) |#1|) $) 13)) (-3590 (($ (-1 (-112) |#1|) $) 15)) (-4125 (((-1178 |#1|) $) 18)) (-4113 (((-876) $) NIL))) -(((-613 |#1|) (-13 (-625 (-876)) (-10 -8 (-15 -2423 ($ (-1 |#1| |#1|) $)) (-15 -3579 ($ (-1 (-112) |#1|) $)) (-15 -3590 ($ (-1 (-112) |#1|) $)) (-15 -3603 ($ (-1 (-112) |#1|) $)) (-15 -3529 ($ (-1 |#1| |#1|) |#1|)) (-15 -4125 ((-1178 |#1|) $)))) (-1238)) (T -613)) -((-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-3579 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-3590 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-3603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-3529 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1238))))) -(-13 (-625 (-876)) (-10 -8 (-15 -2423 ($ (-1 |#1| |#1|) $)) (-15 -3579 ($ (-1 (-112) |#1|) $)) (-15 -3590 ($ (-1 (-112) |#1|) $)) (-15 -3603 ($ (-1 (-112) |#1|) $)) (-15 -3529 ($ (-1 |#1| |#1|) |#1|)) (-15 -4125 ((-1178 |#1|) $)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2155 (($ (-783)) NIL (|has| |#1| (-23)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-2380 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) NIL)) (-3539 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1665 (((-701 |#1|) $ $) NIL (|has| |#1| (-1070)))) (-1991 (($ (-783) |#1|) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-2748 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2396 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-1884 (((-112) $ (-783)) NIL)) (-3108 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1755 ((|#1| $) NIL (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4267 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1875 ((|#1| $ $) NIL (|has| |#1| (-1070)))) (-2335 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2900 (($ $ $) NIL (|has| |#1| (-1070)))) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4037 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4026 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-614 |#1| |#2|) (-1286 |#1|) (-1238) (-576)) (T -614)) -NIL -(-1286 |#1|) -((-3657 (((-1293) $ |#2| |#2|) 35)) (-1605 ((|#2| $) 23)) (-1829 ((|#2| $) 21)) (-1898 (($ (-1 |#3| |#3|) $) 32)) (-2423 (($ (-1 |#3| |#3|) $) 30)) (-1755 ((|#3| $) 26)) (-4267 (($ $ |#3|) 33)) (-2021 (((-112) |#3| $) 17)) (-2885 (((-656 |#3|) $) 15)) (-4369 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -3657 ((-1293) |#1| |#2| |#2|)) (-15 -4267 (|#1| |#1| |#3|)) (-15 -1755 (|#3| |#1|)) (-15 -1605 (|#2| |#1|)) (-15 -1829 (|#2| |#1|)) (-15 -2021 ((-112) |#3| |#1|)) (-15 -2885 ((-656 |#3|) |#1|)) (-15 -4369 (|#3| |#1| |#2|)) (-15 -4369 (|#3| |#1| |#2| |#3|)) (-15 -1898 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2423 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1121) (-1238)) (T -615)) -NIL -(-10 -8 (-15 -3657 ((-1293) |#1| |#2| |#2|)) (-15 -4267 (|#1| |#1| |#3|)) (-15 -1755 (|#3| |#1|)) (-15 -1605 (|#2| |#1|)) (-15 -1829 (|#2| |#1|)) (-15 -2021 ((-112) |#3| |#1|)) (-15 -2885 ((-656 |#3|) |#1|)) (-15 -4369 (|#3| |#1| |#2|)) (-15 -4369 (|#3| |#1| |#2| |#3|)) (-15 -1898 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2423 (|#1| (-1 |#3| |#3|) |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#2| (-102)))) (-3657 (((-1293) $ |#1| |#1|) 41 (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) 8)) (-4268 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4465)))) (-3170 (($) 7 T CONST)) (-1910 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4465)))) (-3721 ((|#2| $ |#1|) 52)) (-3722 (((-656 |#2|) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-1605 ((|#1| $) 44 (|has| |#1| (-861)))) (-2911 (((-656 |#2|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-1829 ((|#1| $) 45 (|has| |#1| (-861)))) (-1898 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#2| |#2|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#2| (-1121)))) (-2863 (((-656 |#1|) $) 47)) (-1389 (((-112) |#1| $) 48)) (-3116 (((-1141) $) 22 (|has| |#2| (-1121)))) (-1755 ((|#2| $) 43 (|has| |#1| (-861)))) (-4267 (($ $ |#2|) 42 (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2885 (((-656 |#2|) $) 49)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3127 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4464))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4113 (((-876) $) 18 (|has| |#2| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#2| (-102)))) (-2543 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#2| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-616 |#1| |#2|) (-141) (-1121) (-1238)) (T -616)) -((-2885 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-656 *4)))) (-1389 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-112)))) (-2863 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-656 *3)))) (-2021 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1121)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-1829 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) (-4 *2 (-861)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) (-4 *2 (-861)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) (-4 *3 (-861)) (-4 *2 (-1238)))) (-4267 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) (-3657 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) (-5 *2 (-1293))))) -(-13 (-501 |t#2|) (-298 |t#1| |t#2|) (-10 -8 (-15 -2885 ((-656 |t#2|) $)) (-15 -1389 ((-112) |t#1| $)) (-15 -2863 ((-656 |t#1|) $)) (IF (|has| |t#2| (-1121)) (IF (|has| $ (-6 -4464)) (-15 -2021 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -1829 (|t#1| $)) (-15 -1605 (|t#1| $)) (-15 -1755 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4465)) (PROGN (-15 -4267 ($ $ |t#2|)) (-15 -3657 ((-1293) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -3795 (|has| |#2| (-1121)) (|has| |#2| (-102))) ((-625 (-876)) -3795 (|has| |#2| (-1121)) (|has| |#2| (-625 (-876)))) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-1121) |has| |#2| (-1121)) ((-1238) . T)) -((-4113 (((-876) $) 19) (($ (-130)) 13) (((-130) $) 14))) -(((-617) (-13 (-625 (-876)) (-502 (-130)))) (T -617)) -NIL -(-13 (-625 (-876)) (-502 (-130))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL) (($ (-1202)) NIL) (((-1202) $) NIL) (((-1237) $) 14) (($ (-656 (-1237))) 13)) (-4024 (((-656 (-1237)) $) 10)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-618) (-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -4113 ($ (-656 (-1237)))) (-15 -4024 ((-656 (-1237)) $))))) (T -618)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618))))) -(-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -4113 ($ (-656 (-1237)))) (-15 -4024 ((-656 (-1237)) $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2946 (((-3 $ "failed")) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2272 (((-1288 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1288 (-701 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3057 (((-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3170 (($) NIL T CONST)) (-3235 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2991 (((-3 $ "failed")) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3778 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4038 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3140 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3592 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2078 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1578 (($ $ (-940)) NIL)) (-3789 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2962 (((-1193 |#1|) $) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1339 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1581 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-4393 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2496 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1288 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1851 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4135 (((-940)) NIL (|has| |#2| (-378 |#1|)))) (-3163 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3107 (($ $ (-940)) NIL)) (-3524 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2344 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1386 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2338 (((-3 $ "failed")) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2112 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2636 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3417 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1584 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1827 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-3303 (($ $ (-940)) NIL)) (-1734 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2631 (((-1193 |#1|) $) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3223 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1496 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2110 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2447 (((-1179) $) NIL)) (-2598 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1717 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2826 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3116 (((-1141) $) NIL)) (-2013 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4369 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-4314 (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $) (-1288 $)) NIL (|has| |#2| (-378 |#1|))) (((-1288 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1556 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-1937 (((-656 (-971 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-971 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3871 (($ $ $) NIL)) (-3472 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4113 (((-876) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL (|has| |#2| (-429 |#1|)))) (-2638 (((-656 (-1288 |#1|))) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3628 (($ $ $ $) NIL)) (-3944 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2653 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3485 (($ $ $) NIL)) (-3666 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2883 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2283 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4313 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) 24)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-619 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -4113 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -619)) -((-4113 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3))))) -(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -4113 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) -((-1957 (((-112) $ $) NIL)) (-4319 (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) 39)) (-1978 (($ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) NIL) (($) NIL)) (-3657 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#1| $ (-1179) |#1|) 49)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-2051 (((-3 |#1| "failed") (-1179) $) 52)) (-3170 (($) NIL T CONST)) (-2548 (($ $ (-1179)) 25)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121))))) (-3872 (((-3 |#1| "failed") (-1179) $) 53) (($ (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464))) (($ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL (|has| $ (-6 -4464)))) (-2825 (($ (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464))) (($ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121))))) (-2721 (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121))))) (-3354 (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) 38)) (-1910 ((|#1| $ (-1179) |#1|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-1179)) NIL)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464))) (((-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-4075 (($ $) 54)) (-3823 (($ (-400)) 23) (($ (-400) (-1179)) 22)) (-4149 (((-400) $) 40)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-1179) $) NIL (|has| (-1179) (-861)))) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464))) (((-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (((-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121))))) (-1829 (((-1179) $) NIL (|has| (-1179) (-861)))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-2353 (((-656 (-1179)) $) 45)) (-4128 (((-112) (-1179) $) NIL)) (-3709 (((-1179) $) 41)) (-3743 (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL)) (-3695 (($ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL)) (-2863 (((-656 (-1179)) $) NIL)) (-1389 (((-112) (-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1755 ((|#1| $) NIL (|has| (-1179) (-861)))) (-4220 (((-3 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) "failed") (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL)) (-4267 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) NIL (-12 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)))) (($ $ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) NIL (-12 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) NIL (-12 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)))) (($ $ (-656 (-304 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))))) NIL (-12 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) 43)) (-4369 ((|#1| $ (-1179) |#1|) NIL) ((|#1| $ (-1179)) 48)) (-3091 (($ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) NIL) (($) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (((-783) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)))) (((-783) (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) NIL)) (-4113 (((-876) $) 21)) (-2481 (($ $) 26)) (-2950 (((-112) $ $) NIL)) (-4156 (($ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) NIL)) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 20)) (-1970 (((-783) $) 47 (|has| $ (-6 -4464))))) -(((-620 |#1|) (-13 (-375 (-400) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) (-1214 (-1179) |#1|) (-10 -8 (-6 -4464) (-15 -4075 ($ $)))) (-1121)) (T -620)) -((-4075 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1121))))) -(-13 (-375 (-400) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) (-1214 (-1179) |#1|) (-10 -8 (-6 -4464) (-15 -4075 ($ $)))) -((-1602 (((-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) $) 16)) (-2353 (((-656 |#2|) $) 20)) (-4128 (((-112) |#2| $) 12))) -(((-621 |#1| |#2| |#3|) (-10 -8 (-15 -2353 ((-656 |#2|) |#1|)) (-15 -4128 ((-112) |#2| |#1|)) (-15 -1602 ((-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) |#1|))) (-622 |#2| |#3|) (-1121) (-1121)) (T -621)) -NIL -(-10 -8 (-15 -2353 ((-656 |#2|) |#1|)) (-15 -4128 ((-112) |#2| |#1|)) (-15 -1602 ((-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) |#1|))) -((-1957 (((-112) $ $) 20 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)))) (-4234 (((-112) $ (-783)) 8)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 46 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 56 (|has| $ (-6 -4464)))) (-2051 (((-3 |#2| "failed") |#1| $) 62)) (-3170 (($) 7 T CONST)) (-3841 (($ $) 59 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-3872 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 47 (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 63)) (-2825 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 55 (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 57 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 54 (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 53 (|has| $ (-6 -4464)))) (-3722 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (-2353 (((-656 |#1|) $) 64)) (-4128 (((-112) |#1| $) 65)) (-3743 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 40)) (-3695 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 41)) (-3116 (((-1141) $) 22 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (-4220 (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 52)) (-2372 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 42)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) 27 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 26 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 25 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 24 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-3091 (($) 50) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 49)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 32 (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-1556 (((-548) $) 60 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 51)) (-4113 (((-876) $) 18 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)))) (-4156 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 43)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-622 |#1| |#2|) (-141) (-1121) (-1121)) (T -622)) -((-4128 (*1 *2 *3 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-112)))) (-2353 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-656 *3)))) (-3872 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-2051 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) -(-13 (-231 (-2 (|:| -2240 |t#1|) (|:| -2905 |t#2|))) (-10 -8 (-15 -4128 ((-112) |t#1| $)) (-15 -2353 ((-656 |t#1|) $)) (-15 -3872 ((-3 |t#2| "failed") |t#1| $)) (-15 -2051 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T) ((-102) -3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102))) ((-625 (-876)) -3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-319 #0#) -12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))) ((-501 #0#) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))) ((-1121) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) ((-1238) . T)) -((-4232 (((-624 |#2|) |#1|) 17)) (-3245 (((-3 |#1| "failed") (-624 |#2|)) 21))) -(((-623 |#1| |#2|) (-10 -7 (-15 -4232 ((-624 |#2|) |#1|)) (-15 -3245 ((-3 |#1| "failed") (-624 |#2|)))) (-1121) (-1121)) (T -623)) -((-3245 (*1 *2 *3) (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) (-5 *1 (-623 *2 *4)))) (-4232 (*1 *2 *3) (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) -(-10 -7 (-15 -4232 ((-624 |#2|) |#1|)) (-15 -3245 ((-3 |#1| "failed") (-624 |#2|)))) -((-1957 (((-112) $ $) NIL)) (-1887 (((-3 (-1197) "failed") $) 46)) (-3220 (((-1293) $ (-783)) 22)) (-3539 (((-783) $) 20)) (-1401 (((-115) $) 9)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-2772 (($ (-115) (-656 |#1|) (-783)) 32) (($ (-1197)) 33)) (-4227 (((-112) $ (-115)) 15) (((-112) $ (-1197)) 13)) (-2955 (((-783) $) 17)) (-3116 (((-1141) $) NIL)) (-1556 (((-907 (-576)) $) 95 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 102 (|has| |#1| (-626 (-907 (-390))))) (((-548) $) 88 (|has| |#1| (-626 (-548))))) (-4113 (((-876) $) 72)) (-2950 (((-112) $ $) NIL)) (-1997 (((-656 |#1|) $) 19)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 51)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 53))) -(((-624 |#1|) (-13 (-133) (-861) (-899 |#1|) (-10 -8 (-15 -1401 ((-115) $)) (-15 -1997 ((-656 |#1|) $)) (-15 -2955 ((-783) $)) (-15 -2772 ($ (-115) (-656 |#1|) (-783))) (-15 -2772 ($ (-1197))) (-15 -1887 ((-3 (-1197) "failed") $)) (-15 -4227 ((-112) $ (-115))) (-15 -4227 ((-112) $ (-1197))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-1121)) (T -624)) -((-1401 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-2772 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1121)) (-5 *1 (-624 *5)))) (-2772 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-1887 (*1 *2 *1) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) (-4227 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1121)))) (-4227 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1121))))) -(-13 (-133) (-861) (-899 |#1|) (-10 -8 (-15 -1401 ((-115) $)) (-15 -1997 ((-656 |#1|) $)) (-15 -2955 ((-783) $)) (-15 -2772 ($ (-115) (-656 |#1|) (-783))) (-15 -2772 ($ (-1197))) (-15 -1887 ((-3 (-1197) "failed") $)) (-15 -4227 ((-112) $ (-115))) (-15 -4227 ((-112) $ (-1197))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -((-4113 ((|#1| $) 6))) -(((-625 |#1|) (-141) (-1238)) (T -625)) -((-4113 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1238))))) -(-13 (-10 -8 (-15 -4113 (|t#1| $)))) -((-1556 ((|#1| $) 6))) -(((-626 |#1|) (-141) (-1238)) (T -626)) -((-1556 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1238))))) -(-13 (-10 -8 (-15 -1556 (|t#1| $)))) -((-2010 (((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)) 15) (((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16))) -(((-627 |#1| |#2|) (-10 -7 (-15 -2010 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2010 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -627)) -((-2010 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-1193 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))) (-2010 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-1193 (-419 *5))) (-5 *1 (-627 *4 *5)) (-5 *3 (-419 *5))))) -(-10 -7 (-15 -2010 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2010 ((-3 (-1193 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) -((-4113 (($ |#1|) 6))) -(((-628 |#1|) (-141) (-1238)) (T -628)) -((-4113 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1238))))) -(-13 (-10 -8 (-15 -4113 ($ |t#1|)))) -((-1957 (((-112) $ $) NIL)) (-3053 (($) 14 T CONST)) (-4326 (($) 15 T CONST)) (-2324 (($ $ $) 29)) (-2299 (($ $) 27)) (-2447 (((-1179) $) NIL)) (-3982 (($ $ $) 30)) (-3116 (((-1141) $) NIL)) (-3130 (($) 11 T CONST)) (-3866 (($ $ $) 31)) (-4113 (((-876) $) 35)) (-4305 (((-112) $ (|[\|\|]| -3130)) 24) (((-112) $ (|[\|\|]| -3053)) 26) (((-112) $ (|[\|\|]| -4326)) 21)) (-2950 (((-112) $ $) NIL)) (-2311 (($ $ $) 28)) (-3939 (((-112) $ $) 18))) -(((-629) (-13 (-988) (-10 -8 (-15 -3053 ($) -2666) (-15 -4305 ((-112) $ (|[\|\|]| -3130))) (-15 -4305 ((-112) $ (|[\|\|]| -3053))) (-15 -4305 ((-112) $ (|[\|\|]| -4326)))))) (T -629)) -((-3053 (*1 *1) (-5 *1 (-629))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3130)) (-5 *2 (-112)) (-5 *1 (-629)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3053)) (-5 *2 (-112)) (-5 *1 (-629)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4326)) (-5 *2 (-112)) (-5 *1 (-629))))) -(-13 (-988) (-10 -8 (-15 -3053 ($) -2666) (-15 -4305 ((-112) $ (|[\|\|]| -3130))) (-15 -4305 ((-112) $ (|[\|\|]| -3053))) (-15 -4305 ((-112) $ (|[\|\|]| -4326))))) -((-1556 (($ |#1|) 6))) -(((-630 |#1|) (-141) (-1238)) (T -630)) -((-1556 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1238))))) -(-13 (-10 -8 (-15 -1556 ($ |t#1|)))) -((-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) -(((-631 |#1| |#2|) (-10 -8 (-15 -4113 (|#1| |#2|)) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) (-632 |#2|) (-1070)) (T -631)) -NIL -(-10 -8 (-15 -4113 (|#1| |#2|)) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 41)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#1| $) 42))) -(((-632 |#1|) (-141) (-1070)) (T -632)) -((-4113 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1070))))) -(-13 (-1070) (-660 |t#1|) (-10 -8 (-15 -4113 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-738) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-1527 (((-576) $) NIL (|has| |#1| (-860)))) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) NIL)) (-2279 (((-112) $) NIL (|has| |#1| (-860)))) (-2486 (((-112) $) NIL)) (-2687 ((|#1| $) 13)) (-3323 (((-112) $) NIL (|has| |#1| (-860)))) (-2907 (($ $ $) NIL (|has| |#1| (-860)))) (-3777 (($ $ $) NIL (|has| |#1| (-860)))) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2697 ((|#3| $) 15)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL)) (-2910 (((-783)) 20 T CONST)) (-2950 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| |#1| (-860)))) (-4313 (($) NIL T CONST)) (-4322 (($) 12 T CONST)) (-3995 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-860)))) (-4047 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-633 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -4047 ($ $ |#3|)) (-15 -4047 ($ |#1| |#3|)) (-15 -2687 (|#1| $)) (-15 -2697 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -633)) -((-4047 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-4047 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-2687 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-2697 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -4047 ($ $ |#3|)) (-15 -4047 ($ |#1| |#3|)) (-15 -2687 (|#1| $)) (-15 -2697 (|#3| $)))) -((-2116 ((|#2| |#2| (-1197) (-1197)) 16))) -(((-634 |#1| |#2|) (-10 -7 (-15 -2116 (|#2| |#2| (-1197) (-1197)))) (-13 (-317) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-978) (-29 |#1|))) (T -634)) -((-2116 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-29 *4)))))) -(-10 -7 (-15 -2116 (|#2| |#2| (-1197) (-1197)))) -((-1957 (((-112) $ $) 64)) (-3114 (((-112) $) 58)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2091 ((|#1| $) 55)) (-1765 (((-3 $ "failed") $ $) NIL)) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2096 (((-2 (|:| -3335 $) (|:| -3723 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-374)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-3310 (($ $) 27)) (-1851 (((-3 $ "failed") $) 88)) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3359 (((-576) $) 22)) (-2486 (((-112) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4101 (((-112) $) 40)) (-1564 (($ |#1| (-576)) 24)) (-1711 ((|#1| $) 57)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) 101 (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-1946 (((-3 $ "failed") $ $) 93)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2812 (((-783) $) 115 (|has| |#1| (-374)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 114 (|has| |#1| (-374)))) (-4107 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2196 (((-576) $) 38)) (-1556 (((-419 |#2|) $) 47)) (-4113 (((-876) $) 69) (($ (-576)) 35) (($ $) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 34) (($ |#2|) 25)) (-2707 ((|#1| $ (-576)) 72)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-4313 (($) 9 T CONST)) (-4322 (($) 14 T CONST)) (-3157 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-3939 (((-112) $ $) 21)) (-4037 (($ $) 51) (($ $ $) NIL)) (-4026 (($ $ $) 90)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 29) (($ $ $) 49))) -(((-635 |#1| |#2|) (-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1059 |#2|) (-10 -8 (-15 -4101 ((-112) $)) (-15 -2196 ((-576) $)) (-15 -3359 ((-576) $)) (-15 -3310 ($ $)) (-15 -1711 (|#1| $)) (-15 -2091 (|#1| $)) (-15 -2707 (|#1| $ (-576))) (-15 -1564 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -2096 ((-2 (|:| -3335 $) (|:| -3723 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1264 |#1|)) (T -635)) -((-4101 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1264 *3)))) (-2196 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1264 *3)))) (-3359 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1264 *3)))) (-3310 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) (-1711 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) (-2091 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1264 *2)))) (-1564 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1264 *2)))) (-2096 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -3335 (-635 *4 *5)) (|:| -3723 (-419 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5))))) -(-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1059 |#2|) (-10 -8 (-15 -4101 ((-112) $)) (-15 -2196 ((-576) $)) (-15 -3359 ((-576) $)) (-15 -3310 ($ $)) (-15 -1711 (|#1| $)) (-15 -2091 (|#1| $)) (-15 -2707 (|#1| $ (-576))) (-15 -1564 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -2096 ((-2 (|:| -3335 $) (|:| -3723 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) -((-2739 (((-656 |#6|) (-656 |#4|) (-112)) 54)) (-1926 ((|#6| |#6|) 48))) -(((-636 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1926 (|#6| |#6|)) (-15 -2739 ((-656 |#6|) (-656 |#4|) (-112)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|) (-1130 |#1| |#2| |#3| |#4|)) (T -636)) -((-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *10)) (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *10 (-1130 *5 *6 *7 *8)))) (-1926 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *2 (-1130 *3 *4 *5 *6))))) -(-10 -7 (-15 -1926 (|#6| |#6|)) (-15 -2739 ((-656 |#6|) (-656 |#4|) (-112)))) -((-2025 (((-112) |#3| (-783) (-656 |#3|)) 29)) (-4239 (((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1193 |#3|)))) "failed") |#3| (-656 (-1193 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3497 (-656 (-2 (|:| |irr| |#4|) (|:| -3172 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)) 69))) -(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2025 ((-112) |#3| (-783) (-656 |#3|))) (-15 -4239 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1193 |#3|)))) "failed") |#3| (-656 (-1193 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3497 (-656 (-2 (|:| |irr| |#4|) (|:| -3172 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) (-861) (-805) (-317) (-968 |#3| |#2| |#1|)) (T -637)) -((-4239 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3497 (-656 (-2 (|:| |irr| *10) (|:| -3172 (-576))))))) (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-861)) (-4 *3 (-317)) (-4 *10 (-968 *3 *9 *8)) (-4 *9 (-805)) (-5 *2 (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) (|:| |corrfact| (-656 (-1193 *3))))) (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1193 *3))))) (-2025 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-861)) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) (-4 *8 (-968 *3 *7 *6))))) -(-10 -7 (-15 -2025 ((-112) |#3| (-783) (-656 |#3|))) (-15 -4239 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1193 |#3|)))) "failed") |#3| (-656 (-1193 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3497 (-656 (-2 (|:| |irr| |#4|) (|:| -3172 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) -((-1957 (((-112) $ $) NIL)) (-1784 (((-1156) $) 11)) (-1776 (((-1156) $) 9)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-638) (-13 (-1104) (-10 -8 (-15 -1776 ((-1156) $)) (-15 -1784 ((-1156) $))))) (T -638)) -((-1776 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-638)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-638))))) -(-13 (-1104) (-10 -8 (-15 -1776 ((-1156) $)) (-15 -1784 ((-1156) $)))) -((-1957 (((-112) $ $) NIL)) (-1418 (((-656 |#1|) $) NIL)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) NIL)) (-2486 (((-112) $) NIL)) (-4027 (($ $) 77)) (-2608 (((-676 |#1| |#2|) $) 60)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 81)) (-1987 (((-656 (-304 |#2|)) $ $) 42)) (-3116 (((-1141) $) NIL)) (-2156 (($ (-676 |#1| |#2|)) 56)) (-2117 (($ $ $) NIL)) (-3871 (($ $ $) NIL)) (-4113 (((-876) $) 66) (((-1303 |#1| |#2|) $) NIL) (((-1308 |#1| |#2|) $) 74)) (-2950 (((-112) $ $) NIL)) (-4322 (($) 61 T CONST)) (-4218 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) 41)) (-3491 (((-656 (-676 |#1| |#2|)) (-656 |#1|)) 73)) (-2618 (((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $) 46)) (-3939 (((-112) $ $) 62)) (-4047 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 52))) -(((-639 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -2156 ($ (-676 |#1| |#2|))) (-15 -2608 ((-676 |#1| |#2|) $)) (-15 -2618 ((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $)) (-15 -4113 ((-1303 |#1| |#2|) $)) (-15 -4113 ((-1308 |#1| |#2|) $)) (-15 -4027 ($ $)) (-15 -1418 ((-656 |#1|) $)) (-15 -3491 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -4218 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -1987 ((-656 (-304 |#2|)) $ $)))) (-861) (-13 (-174) (-729 (-419 (-576)))) (-940)) (T -639)) -((-2156 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) (-14 *5 (-940)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-908 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1308 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-4027 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-940)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-676 *4 *5))) (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) (-14 *6 (-940)))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) (-1987 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940))))) -(-13 (-485) (-10 -8 (-15 -2156 ($ (-676 |#1| |#2|))) (-15 -2608 ((-676 |#1| |#2|) $)) (-15 -2618 ((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $)) (-15 -4113 ((-1303 |#1| |#2|) $)) (-15 -4113 ((-1308 |#1| |#2|) $)) (-15 -4027 ($ $)) (-15 -1418 ((-656 |#1|) $)) (-15 -3491 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -4218 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -1987 ((-656 (-304 |#2|)) $ $)))) -((-2739 (((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)) 103) (((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112)) 77)) (-3071 (((-112) (-656 (-792 |#1| (-878 |#2|)))) 26)) (-3631 (((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)) 102)) (-1725 (((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112)) 76)) (-3790 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|)))) 30)) (-3328 (((-3 (-656 (-792 |#1| (-878 |#2|))) "failed") (-656 (-792 |#1| (-878 |#2|)))) 29))) -(((-640 |#1| |#2|) (-10 -7 (-15 -3071 ((-112) (-656 (-792 |#1| (-878 |#2|))))) (-15 -3328 ((-3 (-656 (-792 |#1| (-878 |#2|))) "failed") (-656 (-792 |#1| (-878 |#2|))))) (-15 -3790 ((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))))) (-15 -1725 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3631 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -2739 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -2739 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)))) (-464) (-656 (-1197))) (T -640)) -((-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) (-5 *1 (-640 *5 *6)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-640 *5 *6)))) (-3631 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) (-5 *1 (-640 *5 *6)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-640 *5 *6)))) (-3790 (*1 *2 *2) (-12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4)))) (-3328 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-656 (-792 *4 (-878 *5)))) (-4 *4 (-464)) (-14 *5 (-656 (-1197))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) -(-10 -7 (-15 -3071 ((-112) (-656 (-792 |#1| (-878 |#2|))))) (-15 -3328 ((-3 (-656 (-792 |#1| (-878 |#2|))) "failed") (-656 (-792 |#1| (-878 |#2|))))) (-15 -3790 ((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))))) (-15 -1725 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -3631 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -2739 ((-656 (-1067 |#1| |#2|)) (-656 (-792 |#1| (-878 |#2|))) (-112))) (-15 -2739 ((-656 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|)))) (-656 (-792 |#1| (-878 |#2|))) (-112)))) -((-3586 (($ $) 38)) (-3435 (($ $) 21)) (-3562 (($ $) 37)) (-3412 (($ $) 22)) (-3612 (($ $) 36)) (-3461 (($ $) 23)) (-2722 (($) 48)) (-2608 (($ $) 45)) (-1828 (($ $) 17)) (-3930 (($ $ (-1113 $)) 7) (($ $ (-1197)) 6)) (-2156 (($ $) 46)) (-3363 (($ $) 15)) (-3399 (($ $) 16)) (-3623 (($ $) 35)) (-3474 (($ $) 24)) (-3599 (($ $) 34)) (-3448 (($ $) 25)) (-3574 (($ $) 33)) (-3424 (($ $) 26)) (-3653 (($ $) 44)) (-3510 (($ $) 32)) (-3632 (($ $) 43)) (-3487 (($ $) 31)) (-3673 (($ $) 42)) (-3537 (($ $) 30)) (-1972 (($ $) 41)) (-3550 (($ $) 29)) (-3664 (($ $) 40)) (-3523 (($ $) 28)) (-3642 (($ $) 39)) (-3498 (($ $) 27)) (-3576 (($ $) 19)) (-4335 (($ $) 20)) (-2191 (($ $) 18)) (** (($ $ $) 47))) +((-2459 (((-1294) (-1180)) 10))) +(((-594) (-10 -7 (-15 -2459 ((-1294) (-1180))))) (T -594)) +((-2459 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-594))))) +(-10 -7 (-15 -2459 ((-1294) (-1180)))) +((-3610 (((-598 |#2|) (-598 |#2|)) 42)) (-1971 (((-657 |#2|) (-598 |#2|)) 44)) (-3434 ((|#2| (-598 |#2|)) 50))) +(((-595 |#1| |#2|) (-10 -7 (-15 -3610 ((-598 |#2|) (-598 |#2|))) (-15 -1971 ((-657 |#2|) (-598 |#2|))) (-15 -3434 (|#2| (-598 |#2|)))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-29 |#1|) (-1224))) (T -595)) +((-3434 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1224))) (-5 *1 (-595 *4 *2)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))))) (-1971 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1224))) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-657 *5)) (-5 *1 (-595 *4 *5)))) (-3610 (*1 *2 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1224))) (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-595 *3 *4))))) +(-10 -7 (-15 -3610 ((-598 |#2|) (-598 |#2|))) (-15 -1971 ((-657 |#2|) (-598 |#2|))) (-15 -3434 (|#2| (-598 |#2|)))) +((-4071 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 30))) +(((-596 |#1| |#2|) (-10 -7 (-15 -4071 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -4071 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4071 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4071 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-374) (-374)) (T -596)) +((-4071 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-4071 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) (-4071 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3579 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| -3579 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))) +(-10 -7 (-15 -4071 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -4071 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4071 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4071 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-3147 (($ (-518) (-609)) 14)) (-3857 (($ (-518) (-609) $) 16)) (-1910 (($ (-518) (-609)) 15)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL) (($ (-1203)) 7) (((-1203) $) 6)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-597) (-13 (-1122) (-502 (-1203)) (-10 -8 (-15 -3147 ($ (-518) (-609))) (-15 -1910 ($ (-518) (-609))) (-15 -3857 ($ (-518) (-609) $))))) (T -597)) +((-3147 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-1910 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-3857 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(-13 (-1122) (-502 (-1203)) (-10 -8 (-15 -3147 ($ (-518) (-609))) (-15 -1910 ($ (-518) (-609))) (-15 -3857 ($ (-518) (-609) $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) 76)) (-2830 ((|#1| $) NIL)) (-3579 ((|#1| $) 30)) (-1348 (((-657 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1419 (($ |#1| (-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 |#1|)) (|:| |logand| (-1194 |#1|)))) (-657 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3746 (((-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 |#1|)) (|:| |logand| (-1194 |#1|)))) $) 31)) (-1708 (((-1180) $) NIL)) (-4426 (($ |#1| |#1|) 38) (($ |#1| (-1198)) 49 (|has| |#1| (-1060 (-1198))))) (-1460 (((-1142) $) NIL)) (-3259 (((-112) $) 35)) (-2209 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1198)) 89 (|has| |#1| (-918 (-1198))))) (-3515 (((-877) $) 110) (($ |#1|) 29)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 18 T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) 17) (($ $ $) NIL)) (-2971 (($ $ $) 85)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 16) (($ (-419 (-576)) $) 41) (($ $ (-419 (-576))) NIL))) +(((-598 |#1|) (-13 (-730 (-419 (-576))) (-1060 |#1|) (-10 -8 (-15 -1419 ($ |#1| (-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 |#1|)) (|:| |logand| (-1194 |#1|)))) (-657 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3579 (|#1| $)) (-15 -3746 ((-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 |#1|)) (|:| |logand| (-1194 |#1|)))) $)) (-15 -1348 ((-657 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3259 ((-112) $)) (-15 -4426 ($ |#1| |#1|)) (-15 -2209 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-918 (-1198))) (-15 -2209 (|#1| $ (-1198))) |%noBranch|) (IF (|has| |#1| (-1060 (-1198))) (-15 -4426 ($ |#1| (-1198))) |%noBranch|))) (-374)) (T -598)) +((-1419 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 *2)) (|:| |logand| (-1194 *2))))) (-5 *4 (-657 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-374)) (-5 *1 (-598 *2)))) (-3579 (*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-3746 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 *3)) (|:| |logand| (-1194 *3))))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-4426 (*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2209 (*1 *2 *1 *3) (-12 (-4 *2 (-374)) (-4 *2 (-918 *3)) (-5 *1 (-598 *2)) (-5 *3 (-1198)))) (-4426 (*1 *1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *1 (-598 *2)) (-4 *2 (-1060 *3)) (-4 *2 (-374))))) +(-13 (-730 (-419 (-576))) (-1060 |#1|) (-10 -8 (-15 -1419 ($ |#1| (-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 |#1|)) (|:| |logand| (-1194 |#1|)))) (-657 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3579 (|#1| $)) (-15 -3746 ((-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 |#1|)) (|:| |logand| (-1194 |#1|)))) $)) (-15 -1348 ((-657 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3259 ((-112) $)) (-15 -4426 ($ |#1| |#1|)) (-15 -2209 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-918 (-1198))) (-15 -2209 (|#1| $ (-1198))) |%noBranch|) (IF (|has| |#1| (-1060 (-1198))) (-15 -4426 ($ |#1| (-1198))) |%noBranch|))) +((-3148 (((-112) |#1|) 16)) (-4156 (((-3 |#1| "failed") |#1|) 14)) (-3986 (((-2 (|:| -4129 |#1|) (|:| -2128 (-784))) |#1|) 38) (((-3 |#1| "failed") |#1| (-784)) 18)) (-1816 (((-112) |#1| (-784)) 19)) (-1936 ((|#1| |#1|) 42)) (-2973 ((|#1| |#1| (-784)) 45))) +(((-599 |#1|) (-10 -7 (-15 -1816 ((-112) |#1| (-784))) (-15 -3986 ((-3 |#1| "failed") |#1| (-784))) (-15 -3986 ((-2 (|:| -4129 |#1|) (|:| -2128 (-784))) |#1|)) (-15 -2973 (|#1| |#1| (-784))) (-15 -3148 ((-112) |#1|)) (-15 -4156 ((-3 |#1| "failed") |#1|)) (-15 -1936 (|#1| |#1|))) (-557)) (T -599)) +((-1936 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-4156 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3148 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-2973 (*1 *2 *2 *3) (-12 (-5 *3 (-784)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3986 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4129 *3) (|:| -2128 (-784)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-3986 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-784)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -1816 ((-112) |#1| (-784))) (-15 -3986 ((-3 |#1| "failed") |#1| (-784))) (-15 -3986 ((-2 (|:| -4129 |#1|) (|:| -2128 (-784))) |#1|)) (-15 -2973 (|#1| |#1| (-784))) (-15 -3148 ((-112) |#1|)) (-15 -4156 ((-3 |#1| "failed") |#1|)) (-15 -1936 (|#1| |#1|))) +((-3412 (((-1194 |#1|) (-941)) 44))) +(((-600 |#1|) (-10 -7 (-15 -3412 ((-1194 |#1|) (-941)))) (-360)) (T -600)) +((-3412 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360))))) +(-10 -7 (-15 -3412 ((-1194 |#1|) (-941)))) +((-3610 (((-598 (-419 (-972 |#1|))) (-598 (-419 (-972 |#1|)))) 27)) (-2320 (((-3 (-326 |#1|) (-657 (-326 |#1|))) (-419 (-972 |#1|)) (-1198)) 34 (|has| |#1| (-148)))) (-1971 (((-657 (-326 |#1|)) (-598 (-419 (-972 |#1|)))) 19)) (-2943 (((-326 |#1|) (-419 (-972 |#1|)) (-1198)) 32 (|has| |#1| (-148)))) (-3434 (((-326 |#1|) (-598 (-419 (-972 |#1|)))) 21))) +(((-601 |#1|) (-10 -7 (-15 -3610 ((-598 (-419 (-972 |#1|))) (-598 (-419 (-972 |#1|))))) (-15 -1971 ((-657 (-326 |#1|)) (-598 (-419 (-972 |#1|))))) (-15 -3434 ((-326 |#1|) (-598 (-419 (-972 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -2320 ((-3 (-326 |#1|) (-657 (-326 |#1|))) (-419 (-972 |#1|)) (-1198))) (-15 -2943 ((-326 |#1|) (-419 (-972 |#1|)) (-1198)))) |%noBranch|)) (-13 (-464) (-1060 (-576)) (-652 (-576)))) (T -601)) +((-2943 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (-326 *5) (-657 (-326 *5)))) (-5 *1 (-601 *5)))) (-3434 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-972 *4)))) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-1971 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-972 *4)))) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-657 (-326 *4))) (-5 *1 (-601 *4)))) (-3610 (*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-972 *3)))) (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-601 *3))))) +(-10 -7 (-15 -3610 ((-598 (-419 (-972 |#1|))) (-598 (-419 (-972 |#1|))))) (-15 -1971 ((-657 (-326 |#1|)) (-598 (-419 (-972 |#1|))))) (-15 -3434 ((-326 |#1|) (-598 (-419 (-972 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -2320 ((-3 (-326 |#1|) (-657 (-326 |#1|))) (-419 (-972 |#1|)) (-1198))) (-15 -2943 ((-326 |#1|) (-419 (-972 |#1|)) (-1198)))) |%noBranch|)) +((-3748 (((-657 (-702 (-576))) (-657 (-941)) (-657 (-925 (-576)))) 78) (((-657 (-702 (-576))) (-657 (-941))) 79) (((-702 (-576)) (-657 (-941)) (-925 (-576))) 72)) (-3697 (((-784) (-657 (-941))) 69))) +(((-602) (-10 -7 (-15 -3697 ((-784) (-657 (-941)))) (-15 -3748 ((-702 (-576)) (-657 (-941)) (-925 (-576)))) (-15 -3748 ((-657 (-702 (-576))) (-657 (-941)))) (-15 -3748 ((-657 (-702 (-576))) (-657 (-941)) (-657 (-925 (-576))))))) (T -602)) +((-3748 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-941))) (-5 *4 (-657 (-925 (-576)))) (-5 *2 (-657 (-702 (-576)))) (-5 *1 (-602)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *2 (-657 (-702 (-576)))) (-5 *1 (-602)))) (-3748 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-941))) (-5 *4 (-925 (-576))) (-5 *2 (-702 (-576))) (-5 *1 (-602)))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *2 (-784)) (-5 *1 (-602))))) +(-10 -7 (-15 -3697 ((-784) (-657 (-941)))) (-15 -3748 ((-702 (-576)) (-657 (-941)) (-925 (-576)))) (-15 -3748 ((-657 (-702 (-576))) (-657 (-941)))) (-15 -3748 ((-657 (-702 (-576))) (-657 (-941)) (-657 (-925 (-576)))))) +((-1488 (((-657 |#5|) |#5| (-112)) 100)) (-3596 (((-112) |#5| (-657 |#5|)) 34))) +(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1488 ((-657 |#5|) |#5| (-112))) (-15 -3596 ((-112) |#5| (-657 |#5|)))) (-13 (-317) (-148)) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1131 |#1| |#2| |#3| |#4|)) (T -603)) +((-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-1131 *5 *6 *7 *8)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-1488 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-657 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1131 *5 *6 *7 *8))))) +(-10 -7 (-15 -1488 ((-657 |#5|) |#5| (-112))) (-15 -3596 ((-112) |#5| (-657 |#5|)))) +((-3423 (((-112) $ $) NIL)) (-1691 (((-1157) $) 11)) (-1678 (((-1157) $) 9)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 17) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-604) (-13 (-1105) (-10 -8 (-15 -1678 ((-1157) $)) (-15 -1691 ((-1157) $))))) (T -604)) +((-1678 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-604)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-604))))) +(-13 (-1105) (-10 -8 (-15 -1678 ((-1157) $)) (-15 -1691 ((-1157) $)))) +((-3423 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2990 (($ $) 38)) (-1804 (($ $) NIL)) (-3839 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-4087 (((-112) $ $) 67)) (-4062 (((-112) $ $ (-576)) 62)) (-3610 (((-657 $) $ (-145)) 75) (((-657 $) $ (-142)) 76)) (-3925 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-1698 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| (-145) (-862))))) (-1832 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 (((-145) $ (-576) (-145)) 59 (|has| $ (-6 -4467))) (((-145) $ (-1256 (-576)) (-145)) NIL (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-2641 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-2111 (($ $ (-1256 (-576)) $) 57)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-3901 (($ (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4466))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4466)))) (-1810 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4467)))) (-1741 (((-145) $ (-576)) NIL)) (-4114 (((-112) $ $) 88)) (-3619 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1122))) (((-576) (-145) $ (-576)) 64 (|has| (-145) (-1122))) (((-576) $ $ (-576)) 63) (((-576) (-142) $ (-576)) 66)) (-1448 (((-657 (-145)) $) NIL (|has| $ (-6 -4466)))) (-4096 (($ (-784) (-145)) 9)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) 32 (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| (-145) (-862)))) (-1661 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-3855 (((-657 (-145)) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-1833 (((-576) $) 47 (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| (-145) (-862)))) (-1945 (((-112) $ $ (-145)) 89)) (-1365 (((-784) $ $ (-145)) 86)) (-1799 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2518 (($ $) 41)) (-1858 (($ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-2652 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-1708 (((-1180) $) 43 (|has| (-145) (-1122)))) (-2225 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) 27)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) 85 (|has| (-145) (-1122)))) (-3528 (((-145) $) NIL (|has| (-576) (-862)))) (-4135 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1495 (($ $ (-145)) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-657 (-145)) (-657 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-3585 (((-657 (-145)) $) NIL)) (-1368 (((-112) $) 15)) (-3340 (($) 10)) (-2780 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) 68) (($ $ (-1256 (-576))) 25) (($ $ $) NIL)) (-3395 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1469 (((-784) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466))) (((-784) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-1818 (($ $ $ (-576)) 81 (|has| $ (-6 -4467)))) (-1899 (($ $) 20)) (-4136 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-3529 (($ (-657 (-145))) NIL)) (-1637 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-657 $)) 82)) (-3515 (($ (-145)) NIL) (((-877) $) 31 (|has| (-145) (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| (-145) (-102)))) (-3258 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2913 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2881 (((-112) $ $) 17 (|has| (-145) (-102)))) (-2925 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2901 (((-112) $ $) 18 (|has| (-145) (-862)))) (-3437 (((-784) $) 16 (|has| $ (-6 -4466))))) +(((-605 |#1|) (-1166) (-576)) (T -605)) +NIL +(-1166) +((-2598 (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1116 |#4|)) 32))) +(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2598 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1116 |#4|))) (-15 -2598 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) (-806) (-862) (-568) (-969 |#3| |#1| |#2|)) (T -606)) +((-2598 (*1 *2 *3 *4) (-12 (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) (-2598 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1116 *3)) (-4 *3 (-969 *7 *6 *4)) (-4 *6 (-806)) (-4 *4 (-862)) (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *6 *4 *7 *3))))) +(-10 -7 (-15 -2598 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1116 |#4|))) (-15 -2598 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 71)) (-1998 (((-657 (-1104)) $) NIL)) (-2993 (((-1198) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2212 (($ $ (-576)) 58) (($ $ (-576) (-576)) 59)) (-3212 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 65)) (-3888 (($ $) 109)) (-2423 (((-3 $ "failed") $ $) NIL)) (-1797 (((-877) (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1048 (-856 (-576))) (-1198) |#1| (-419 (-576))) 241)) (-3696 (($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 36)) (-2515 (($) NIL T CONST)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3155 (((-112) $) NIL)) (-2650 (((-576) $) 63) (((-576) $ (-576)) 64)) (-3994 (((-112) $) NIL)) (-3920 (($ $ (-941)) 83)) (-4162 (($ (-1 |#1| (-576)) $) 80)) (-2343 (((-112) $) 26)) (-1974 (($ |#1| (-576)) 22) (($ $ (-1104) (-576)) NIL) (($ $ (-657 (-1104)) (-657 (-576))) NIL)) (-4071 (($ (-1 |#1| |#1|) $) 75)) (-3567 (($ (-1048 (-856 (-576))) (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 13)) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-2320 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-3902 (((-3 $ "failed") $ $ (-112)) 108)) (-1973 (($ $ $) 116)) (-1460 (((-1142) $) NIL)) (-1333 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 15)) (-2657 (((-1048 (-856 (-576))) $) 14)) (-1456 (($ $ (-576)) 47)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3205 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2780 ((|#1| $ (-576)) 62) (($ $ $) NIL (|has| (-576) (-1134)))) (-2209 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-4265 (((-576) $) NIL)) (-1557 (($ $) 48)) (-3515 (((-877) $) NIL) (($ (-576)) 29) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 28 (|has| |#1| (-174)))) (-2498 ((|#1| $ (-576)) 61)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) 39 T CONST)) (-3713 ((|#1| $) NIL)) (-3577 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3489 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-4127 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-2591 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3868 (($ $) 201 (|has| |#1| (-38 (-419 (-576)))))) (-2409 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-4249 (($ $ (-419 (-576))) 177 (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2057 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3348 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2520 (($ $) 203 (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-2651 (($ $) 199 (|has| |#1| (-38 (-419 (-576)))))) (-2669 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-4146 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-4049 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-2735 (($ $) 209 (|has| |#1| (-38 (-419 (-576)))))) (-1506 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-2200 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3494 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3226 (($ $) 213 (|has| |#1| (-38 (-419 (-576)))))) (-2045 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-1690 (($ $) 215 (|has| |#1| (-38 (-419 (-576)))))) (-4176 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-2749 (($ $) 211 (|has| |#1| (-38 (-419 (-576)))))) (-2318 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-1339 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-1509 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4130 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-2716 (($) 30 T CONST)) (-2725 (($) 40 T CONST)) (-2066 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2881 (((-112) $ $) 73)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $) 91) (($ $ $) 72)) (-2971 (($ $ $) 88)) (** (($ $ (-941)) NIL) (($ $ (-784)) 111)) (* (($ (-941) $) 98) (($ (-784) $) 96) (($ (-576) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-607 |#1|) (-13 (-1267 |#1| (-576)) (-10 -8 (-15 -3567 ($ (-1048 (-856 (-576))) (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2657 ((-1048 (-856 (-576))) $)) (-15 -1333 ((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3696 ($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2343 ((-112) $)) (-15 -4162 ($ (-1 |#1| (-576)) $)) (-15 -3902 ((-3 $ "failed") $ $ (-112))) (-15 -3888 ($ $)) (-15 -1973 ($ $ $)) (-15 -1797 ((-877) (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1048 (-856 (-576))) (-1198) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2320 ($ $)) (-15 -2869 ($ $ |#1|)) (-15 -4249 ($ $ (-419 (-576)))) (-15 -3348 ($ $)) (-15 -2057 ($ $)) (-15 -2591 ($ $)) (-15 -4049 ($ $)) (-15 -3489 ($ $)) (-15 -2669 ($ $)) (-15 -2409 ($ $)) (-15 -2769 ($ $)) (-15 -3494 ($ $)) (-15 -1509 ($ $)) (-15 -1506 ($ $)) (-15 -2318 ($ $)) (-15 -2045 ($ $)) (-15 -4176 ($ $)) (-15 -4127 ($ $)) (-15 -4146 ($ $)) (-15 -3577 ($ $)) (-15 -2651 ($ $)) (-15 -3868 ($ $)) (-15 -2520 ($ $)) (-15 -2200 ($ $)) (-15 -1339 ($ $)) (-15 -2735 ($ $)) (-15 -2749 ($ $)) (-15 -3226 ($ $)) (-15 -1690 ($ $))) |%noBranch|))) (-1071)) (T -607)) +((-2343 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1071)))) (-3567 (*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-856 (-576)))) (-5 *3 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1071)) (-5 *1 (-607 *4)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-1048 (-856 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1071)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1071)))) (-3696 (*1 *1 *2) (-12 (-5 *2 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1071)) (-5 *1 (-607 *3)))) (-4162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1071)) (-5 *1 (-607 *3)))) (-3902 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1071)))) (-3888 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1071)))) (-1973 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1071)))) (-1797 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *6)))) (-5 *4 (-1048 (-856 (-576)))) (-5 *5 (-1198)) (-5 *7 (-419 (-576))) (-4 *6 (-1071)) (-5 *2 (-877)) (-5 *1 (-607 *6)))) (-2320 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2869 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1071)))) (-3348 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2057 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2591 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-4049 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-3489 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2669 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2409 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2769 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-3494 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-1509 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-1506 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2318 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2045 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-4176 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-4127 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-4146 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-3577 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2651 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-3868 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2520 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2200 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-1339 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2735 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2749 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-3226 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-1690 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(-13 (-1267 |#1| (-576)) (-10 -8 (-15 -3567 ($ (-1048 (-856 (-576))) (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2657 ((-1048 (-856 (-576))) $)) (-15 -1333 ((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3696 ($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2343 ((-112) $)) (-15 -4162 ($ (-1 |#1| (-576)) $)) (-15 -3902 ((-3 $ "failed") $ $ (-112))) (-15 -3888 ($ $)) (-15 -1973 ($ $ $)) (-15 -1797 ((-877) (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1048 (-856 (-576))) (-1198) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2320 ($ $)) (-15 -2869 ($ $ |#1|)) (-15 -4249 ($ $ (-419 (-576)))) (-15 -3348 ($ $)) (-15 -2057 ($ $)) (-15 -2591 ($ $)) (-15 -4049 ($ $)) (-15 -3489 ($ $)) (-15 -2669 ($ $)) (-15 -2409 ($ $)) (-15 -2769 ($ $)) (-15 -3494 ($ $)) (-15 -1509 ($ $)) (-15 -1506 ($ $)) (-15 -2318 ($ $)) (-15 -2045 ($ $)) (-15 -4176 ($ $)) (-15 -4127 ($ $)) (-15 -4146 ($ $)) (-15 -3577 ($ $)) (-15 -2651 ($ $)) (-15 -3868 ($ $)) (-15 -2520 ($ $)) (-15 -2200 ($ $)) (-15 -1339 ($ $)) (-15 -2735 ($ $)) (-15 -2749 ($ $)) (-15 -3226 ($ $)) (-15 -1690 ($ $))) |%noBranch|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 63)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3696 (($ (-1179 |#1|)) 9)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) 44)) (-3155 (((-112) $) 56)) (-2650 (((-784) $) 61) (((-784) $ (-784)) 60)) (-3994 (((-112) $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3409 (((-3 $ "failed") $ $) 46 (|has| |#1| (-568)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568)))) (-3987 (((-1179 |#1|) $) 25)) (-3845 (((-784)) 55 T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2716 (($) 10 T CONST)) (-2725 (($) 14 T CONST)) (-2881 (((-112) $ $) 24)) (-2982 (($ $) 32) (($ $ $) 16)) (-2971 (($ $ $) 27)) (** (($ $ (-941)) NIL) (($ $ (-784)) 53)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-576)) 38))) +(((-608 |#1|) (-13 (-1071) (-111 |#1| |#1|) (-10 -8 (-15 -3987 ((-1179 |#1|) $)) (-15 -3696 ($ (-1179 |#1|))) (-15 -3155 ((-112) $)) (-15 -2650 ((-784) $)) (-15 -2650 ((-784) $ (-784))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1071)) (T -608)) +((-3987 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) (-3696 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-608 *3)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) (-2650 (*1 *2 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1071))))) +(-13 (-1071) (-111 |#1| |#1|) (-10 -8 (-15 -3987 ((-1179 |#1|) $)) (-15 -3696 ($ (-1179 |#1|))) (-15 -3155 ((-112) $)) (-15 -2650 ((-784) $)) (-15 -2650 ((-784) $ (-784))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) +((-3423 (((-112) $ $) NIL)) (-3879 (($) 8 T CONST)) (-4157 (($) 7 T CONST)) (-3524 (($ $ (-657 $)) 16)) (-1708 (((-1180) $) NIL)) (-1819 (($) 6 T CONST)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL) (($ (-1203)) 15) (((-1203) $) 10)) (-3784 (($) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-609) (-13 (-1122) (-502 (-1203)) (-10 -8 (-15 -1819 ($) -1491) (-15 -4157 ($) -1491) (-15 -3879 ($) -1491) (-15 -3784 ($) -1491) (-15 -3524 ($ $ (-657 $)))))) (T -609)) +((-1819 (*1 *1) (-5 *1 (-609))) (-4157 (*1 *1) (-5 *1 (-609))) (-3879 (*1 *1) (-5 *1 (-609))) (-3784 (*1 *1) (-5 *1 (-609))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-609))) (-5 *1 (-609))))) +(-13 (-1122) (-502 (-1203)) (-10 -8 (-15 -1819 ($) -1491) (-15 -4157 ($) -1491) (-15 -3879 ($) -1491) (-15 -3784 ($) -1491) (-15 -3524 ($ $ (-657 $))))) +((-4071 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15))) +(((-610 |#1| |#2|) (-10 -7 (-15 -4071 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) (-1239) (-1239)) (T -610)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))) +(-10 -7 (-15 -4071 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) +((-4071 (((-1179 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1179 |#2|)) 20) (((-1179 |#3|) (-1 |#3| |#1| |#2|) (-1179 |#1|) (-613 |#2|)) 19) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18))) +(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -4071 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4071 ((-1179 |#3|) (-1 |#3| |#1| |#2|) (-1179 |#1|) (-613 |#2|))) (-15 -4071 ((-1179 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1179 |#2|)))) (-1239) (-1239) (-1239)) (T -611)) +((-4071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1179 *7)) (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-1179 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1179 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-1179 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8))))) +(-10 -7 (-15 -4071 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4071 ((-1179 |#3|) (-1 |#3| |#1| |#2|) (-1179 |#1|) (-613 |#2|))) (-15 -4071 ((-1179 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1179 |#2|)))) +((-3933 ((|#3| |#3| (-657 (-624 |#3|)) (-657 (-1198))) 57)) (-3093 (((-171 |#2|) |#3|) 122)) (-1405 ((|#3| (-171 |#2|)) 46)) (-1614 ((|#2| |#3|) 21)) (-1892 ((|#3| |#2|) 35))) +(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -1405 (|#3| (-171 |#2|))) (-15 -1614 (|#2| |#3|)) (-15 -1892 (|#3| |#2|)) (-15 -3093 ((-171 |#2|) |#3|)) (-15 -3933 (|#3| |#3| (-657 (-624 |#3|)) (-657 (-1198))))) (-568) (-13 (-442 |#1|) (-1024) (-1224)) (-13 (-442 (-171 |#1|)) (-1024) (-1224))) (T -612)) +((-3933 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-657 (-624 *2))) (-5 *4 (-657 (-1198))) (-4 *2 (-13 (-442 (-171 *5)) (-1024) (-1224))) (-4 *5 (-568)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1024) (-1224))))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-442 *4) (-1024) (-1224))) (-4 *3 (-13 (-442 (-171 *4)) (-1024) (-1224))))) (-1892 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1024) (-1224))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1024) (-1224))))) (-1614 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1024) (-1224))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-442 (-171 *4)) (-1024) (-1224))))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1024) (-1224))) (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1024) (-1224))) (-5 *1 (-612 *4 *5 *2))))) +(-10 -7 (-15 -1405 (|#3| (-171 |#2|))) (-15 -1614 (|#2| |#3|)) (-15 -1892 (|#3| |#2|)) (-15 -3093 ((-171 |#2|) |#3|)) (-15 -3933 (|#3| |#3| (-657 (-624 |#3|)) (-657 (-1198))))) +((-2007 (($ (-1 (-112) |#1|) $) 17)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-4344 (($ (-1 |#1| |#1|) |#1|) 9)) (-1983 (($ (-1 (-112) |#1|) $) 13)) (-1997 (($ (-1 (-112) |#1|) $) 15)) (-3529 (((-1179 |#1|) $) 18)) (-3515 (((-877) $) NIL))) +(((-613 |#1|) (-13 (-625 (-877)) (-10 -8 (-15 -4071 ($ (-1 |#1| |#1|) $)) (-15 -1983 ($ (-1 (-112) |#1|) $)) (-15 -1997 ($ (-1 (-112) |#1|) $)) (-15 -2007 ($ (-1 (-112) |#1|) $)) (-15 -4344 ($ (-1 |#1| |#1|) |#1|)) (-15 -3529 ((-1179 |#1|) $)))) (-1239)) (T -613)) +((-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) (-1983 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) (-1997 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) (-2007 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) (-4344 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1239))))) +(-13 (-625 (-877)) (-10 -8 (-15 -4071 ($ (-1 |#1| |#1|) $)) (-15 -1983 ($ (-1 (-112) |#1|) $)) (-15 -1997 ($ (-1 (-112) |#1|) $)) (-15 -2007 ($ (-1 (-112) |#1|) $)) (-15 -4344 ($ (-1 |#1| |#1|) |#1|)) (-15 -3529 ((-1179 |#1|) $)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3793 (($ (-784)) NIL (|has| |#1| (-23)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1698 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1832 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3901 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) NIL)) (-3619 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2386 (((-702 |#1|) $ $) NIL (|has| |#1| (-1071)))) (-4096 (($ (-784) |#1|) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2425 ((|#1| $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1071))))) (-4326 (((-112) $ (-784)) NIL)) (-3041 ((|#1| $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1071))))) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2225 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3528 ((|#1| $) NIL (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1495 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-4224 ((|#1| $ $) NIL (|has| |#1| (-1071)))) (-3395 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-3756 (($ $ $) NIL (|has| |#1| (-1071)))) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) NIL)) (-1637 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2982 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2971 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-739))) (($ $ |#1|) NIL (|has| |#1| (-739)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-614 |#1| |#2|) (-1287 |#1|) (-1239) (-576)) (T -614)) +NIL +(-1287 |#1|) +((-3590 (((-1294) $ |#2| |#2|) 35)) (-3363 ((|#2| $) 23)) (-1833 ((|#2| $) 21)) (-1799 (($ (-1 |#3| |#3|) $) 32)) (-4071 (($ (-1 |#3| |#3|) $) 30)) (-3528 ((|#3| $) 26)) (-1495 (($ $ |#3|) 33)) (-3010 (((-112) |#3| $) 17)) (-3585 (((-657 |#3|) $) 15)) (-2780 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -3590 ((-1294) |#1| |#2| |#2|)) (-15 -1495 (|#1| |#1| |#3|)) (-15 -3528 (|#3| |#1|)) (-15 -3363 (|#2| |#1|)) (-15 -1833 (|#2| |#1|)) (-15 -3010 ((-112) |#3| |#1|)) (-15 -3585 ((-657 |#3|) |#1|)) (-15 -2780 (|#3| |#1| |#2|)) (-15 -2780 (|#3| |#1| |#2| |#3|)) (-15 -1799 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4071 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1122) (-1239)) (T -615)) +NIL +(-10 -8 (-15 -3590 ((-1294) |#1| |#2| |#2|)) (-15 -1495 (|#1| |#1| |#3|)) (-15 -3528 (|#3| |#1|)) (-15 -3363 (|#2| |#1|)) (-15 -1833 (|#2| |#1|)) (-15 -3010 ((-112) |#3| |#1|)) (-15 -3585 ((-657 |#3|) |#1|)) (-15 -2780 (|#3| |#1| |#2|)) (-15 -2780 (|#3| |#1| |#2| |#3|)) (-15 -1799 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4071 (|#1| (-1 |#3| |#3|) |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#2| (-102)))) (-3590 (((-1294) $ |#1| |#1|) 41 (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) 8)) (-3719 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4467)))) (-2515 (($) 7 T CONST)) (-1810 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4467)))) (-1741 ((|#2| $ |#1|) 52)) (-1448 (((-657 |#2|) $) 31 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-3363 ((|#1| $) 44 (|has| |#1| (-862)))) (-3855 (((-657 |#2|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-1833 ((|#1| $) 45 (|has| |#1| (-862)))) (-1799 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#2| |#2|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#2| (-1122)))) (-3309 (((-657 |#1|) $) 47)) (-4324 (((-112) |#1| $) 48)) (-1460 (((-1142) $) 22 (|has| |#2| (-1122)))) (-3528 ((|#2| $) 43 (|has| |#1| (-862)))) (-1495 (($ $ |#2|) 42 (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3585 (((-657 |#2|) $) 49)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-1469 (((-784) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4466))) (((-784) |#2| $) 29 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-3515 (((-877) $) 18 (|has| |#2| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#2| (-102)))) (-3258 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#2| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-616 |#1| |#2|) (-141) (-1122) (-1239)) (T -616)) +((-3585 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) (-5 *2 (-657 *4)))) (-4324 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) (-5 *2 (-657 *3)))) (-3010 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1122)) (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-112)))) (-1833 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1122)) (-4 *2 (-862)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1122)) (-4 *2 (-862)))) (-3528 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1122)) (-4 *3 (-862)) (-4 *2 (-1239)))) (-1495 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239)))) (-3590 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) (-5 *2 (-1294))))) +(-13 (-501 |t#2|) (-298 |t#1| |t#2|) (-10 -8 (-15 -3585 ((-657 |t#2|) $)) (-15 -4324 ((-112) |t#1| $)) (-15 -3309 ((-657 |t#1|) $)) (IF (|has| |t#2| (-1122)) (IF (|has| $ (-6 -4466)) (-15 -3010 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -1833 (|t#1| $)) (-15 -3363 (|t#1| $)) (-15 -3528 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4467)) (PROGN (-15 -1495 ($ $ |t#2|)) (-15 -3590 ((-1294) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -2748 (|has| |#2| (-1122)) (|has| |#2| (-102))) ((-625 (-877)) -2748 (|has| |#2| (-1122)) (|has| |#2| (-625 (-877)))) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-1122) |has| |#2| (-1122)) ((-1239) . T)) +((-3515 (((-877) $) 19) (($ (-130)) 13) (((-130) $) 14))) +(((-617) (-13 (-625 (-877)) (-502 (-130)))) (T -617)) +NIL +(-13 (-625 (-877)) (-502 (-130))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL) (($ (-1203)) NIL) (((-1203) $) NIL) (((-1238) $) 14) (($ (-657 (-1238))) 13)) (-1586 (((-657 (-1238)) $) 10)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-618) (-13 (-1105) (-625 (-1238)) (-10 -8 (-15 -3515 ($ (-657 (-1238)))) (-15 -1586 ((-657 (-1238)) $))))) (T -618)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-618)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-618))))) +(-13 (-1105) (-625 (-1238)) (-10 -8 (-15 -3515 ($ (-657 (-1238)))) (-15 -1586 ((-657 (-1238)) $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-4119 (((-3 $ "failed")) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3731 (((-1289 (-702 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1289 (-702 |#1|)) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-2672 (((-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-2515 (($) NIL T CONST)) (-1992 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3247 (((-3 $ "failed")) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2259 (((-702 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-2873 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2246 (((-702 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) $ (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-4236 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2408 (((-1194 (-972 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-4408 (($ $ (-941)) NIL)) (-2348 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4270 (((-1194 |#1|) $) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3612 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-4446 (((-1194 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-3282 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4093 (($ (-1289 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1289 |#1|) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-3969 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4343 (((-941)) NIL (|has| |#2| (-378 |#1|)))) (-2449 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3152 (($ $ (-941)) NIL)) (-1738 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3111 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1790 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2427 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3047 (((-3 $ "failed")) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1546 (((-702 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-3001 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3138 (((-702 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) $ (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-3157 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1822 (((-1194 (-972 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-3296 (($ $ (-941)) NIL)) (-2115 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2954 (((-1194 |#1|) $) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1861 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-1720 (((-1194 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-1525 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1708 (((-1180) $) NIL)) (-3897 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3110 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4278 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1460 (((-1142) $) NIL)) (-2931 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2780 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-3806 (((-702 |#1|) (-1289 $)) NIL (|has| |#2| (-429 |#1|))) (((-1289 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) (-1289 $) (-1289 $)) NIL (|has| |#2| (-378 |#1|))) (((-1289 |#1|) $ (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-4136 (($ (-1289 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1289 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3522 (((-657 (-972 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-657 (-972 |#1|)) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-1911 (($ $ $) NIL)) (-2473 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3515 (((-877) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL (|has| |#2| (-429 |#1|)))) (-3020 (((-657 (-1289 |#1|))) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3280 (($ $ $ $) NIL)) (-1433 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3514 (($ (-702 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2566 (($ $ $) NIL)) (-3692 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3560 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3844 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2716 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) 24)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-619 |#1| |#2|) (-13 (-757 |#1|) (-625 |#2|) (-10 -8 (-15 -3515 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-757 |#1|)) (T -619)) +((-3515 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-757 *3))))) +(-13 (-757 |#1|) (-625 |#2|) (-10 -8 (-15 -3515 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) +((-3423 (((-112) $ $) NIL)) (-3859 (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) 39)) (-4082 (($ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) NIL) (($) NIL)) (-3590 (((-1294) $ (-1180) (-1180)) NIL (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#1| $ (-1180) |#1|) 49)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-2244 (((-3 |#1| "failed") (-1180) $) 52)) (-2515 (($) NIL T CONST)) (-3312 (($ $ (-1180)) 25)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122))))) (-1920 (((-3 |#1| "failed") (-1180) $) 53) (($ (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (($ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL (|has| $ (-6 -4466)))) (-3901 (($ (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (($ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122))))) (-3662 (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122))))) (-3862 (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) 38)) (-1810 ((|#1| $ (-1180) |#1|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-1180)) NIL)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466))) (((-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-3234 (($ $) 54)) (-3179 (($ (-400)) 23) (($ (-400) (-1180)) 22)) (-2634 (((-400) $) 40)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-1180) $) NIL (|has| (-1180) (-862)))) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466))) (((-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (((-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122))))) (-1833 (((-1180) $) NIL (|has| (-1180) (-862)))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-3135 (((-657 (-1180)) $) 45)) (-2559 (((-112) (-1180) $) NIL)) (-2817 (((-1180) $) 41)) (-3107 (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL)) (-2701 (($ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL)) (-3309 (((-657 (-1180)) $) NIL)) (-4324 (((-112) (-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3528 ((|#1| $) NIL (|has| (-1180) (-862)))) (-4135 (((-3 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) "failed") (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL)) (-1495 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) NIL (-12 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) NIL (-12 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) NIL (-12 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-657 (-304 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))))) NIL (-12 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) 43)) (-2780 ((|#1| $ (-1180) |#1|) NIL) ((|#1| $ (-1180)) 48)) (-3009 (($ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) NIL) (($) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (((-784) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)))) (((-784) (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) NIL)) (-3515 (((-877) $) 21)) (-3950 (($ $) 26)) (-4166 (((-112) $ $) NIL)) (-1636 (($ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) NIL)) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 20)) (-3437 (((-784) $) 47 (|has| $ (-6 -4466))))) +(((-620 |#1|) (-13 (-375 (-400) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) (-1215 (-1180) |#1|) (-10 -8 (-6 -4466) (-15 -3234 ($ $)))) (-1122)) (T -620)) +((-3234 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1122))))) +(-13 (-375 (-400) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) (-1215 (-1180) |#1|) (-10 -8 (-6 -4466) (-15 -3234 ($ $)))) +((-3326 (((-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) $) 16)) (-3135 (((-657 |#2|) $) 20)) (-2559 (((-112) |#2| $) 12))) +(((-621 |#1| |#2| |#3|) (-10 -8 (-15 -3135 ((-657 |#2|) |#1|)) (-15 -2559 ((-112) |#2| |#1|)) (-15 -3326 ((-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) |#1|))) (-622 |#2| |#3|) (-1122) (-1122)) (T -621)) +NIL +(-10 -8 (-15 -3135 ((-657 |#2|) |#1|)) (-15 -2559 ((-112) |#2| |#1|)) (-15 -3326 ((-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) |#1|))) +((-3423 (((-112) $ $) 20 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)))) (-4284 (((-112) $ (-784)) 8)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 46 (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 56 (|has| $ (-6 -4466)))) (-2244 (((-3 |#2| "failed") |#1| $) 62)) (-2515 (($) 7 T CONST)) (-1620 (($ $) 59 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466))))) (-1920 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 47 (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) 63)) (-3901 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 55 (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 57 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 54 (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 53 (|has| $ (-6 -4466)))) (-1448 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 31 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (-3135 (((-657 |#1|) $) 64)) (-2559 (((-112) |#1| $) 65)) (-3107 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 40)) (-2701 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 41)) (-1460 (((-1142) $) 22 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (-4135 (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 52)) (-2184 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 42)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) 27 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 26 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 25 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 24 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-3009 (($) 50) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 49)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 32 (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-4136 (((-548) $) 60 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 51)) (-3515 (((-877) $) 18 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)))) (-1636 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 43)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-622 |#1| |#2|) (-141) (-1122) (-1122)) (T -622)) +((-2559 (*1 *2 *3 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-657 *3)))) (-1920 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-2244 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) +(-13 (-231 (-2 (|:| -4286 |t#1|) (|:| -4440 |t#2|))) (-10 -8 (-15 -2559 ((-112) |t#1| $)) (-15 -3135 ((-657 |t#1|) $)) (-15 -1920 ((-3 |t#2| "failed") |t#1| $)) (-15 -2244 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T) ((-102) -2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102))) ((-625 (-877)) -2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))) ((-501 #0#) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))) ((-1122) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) ((-1239) . T)) +((-4261 (((-624 |#2|) |#1|) 17)) (-3999 (((-3 |#1| "failed") (-624 |#2|)) 21))) +(((-623 |#1| |#2|) (-10 -7 (-15 -4261 ((-624 |#2|) |#1|)) (-15 -3999 ((-3 |#1| "failed") (-624 |#2|)))) (-1122) (-1122)) (T -623)) +((-3999 (*1 *2 *3) (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1122)) (-4 *2 (-1122)) (-5 *1 (-623 *2 *4)))) (-4261 (*1 *2 *3) (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) +(-10 -7 (-15 -4261 ((-624 |#2|) |#1|)) (-15 -3999 ((-3 |#1| "failed") (-624 |#2|)))) +((-3423 (((-112) $ $) NIL)) (-4361 (((-3 (-1198) "failed") $) 46)) (-1839 (((-1294) $ (-784)) 22)) (-3619 (((-784) $) 20)) (-1803 (((-115) $) 9)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1662 (($ (-115) (-657 |#1|) (-784)) 32) (($ (-1198)) 33)) (-4216 (((-112) $ (-115)) 15) (((-112) $ (-1198)) 13)) (-2363 (((-784) $) 17)) (-1460 (((-1142) $) NIL)) (-4136 (((-908 (-576)) $) 95 (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) 102 (|has| |#1| (-626 (-908 (-390))))) (((-548) $) 88 (|has| |#1| (-626 (-548))))) (-3515 (((-877) $) 72)) (-4166 (((-112) $ $) NIL)) (-2805 (((-657 |#1|) $) 19)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 51)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 53))) +(((-624 |#1|) (-13 (-133) (-862) (-900 |#1|) (-10 -8 (-15 -1803 ((-115) $)) (-15 -2805 ((-657 |#1|) $)) (-15 -2363 ((-784) $)) (-15 -1662 ($ (-115) (-657 |#1|) (-784))) (-15 -1662 ($ (-1198))) (-15 -4361 ((-3 (-1198) "failed") $)) (-15 -4216 ((-112) $ (-115))) (-15 -4216 ((-112) $ (-1198))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-1122)) (T -624)) +((-1803 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) (-2363 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) (-1662 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-657 *5)) (-5 *4 (-784)) (-4 *5 (-1122)) (-5 *1 (-624 *5)))) (-1662 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) (-4361 (*1 *2 *1) (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) (-4216 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1122)))) (-4216 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1122))))) +(-13 (-133) (-862) (-900 |#1|) (-10 -8 (-15 -1803 ((-115) $)) (-15 -2805 ((-657 |#1|) $)) (-15 -2363 ((-784) $)) (-15 -1662 ($ (-115) (-657 |#1|) (-784))) (-15 -1662 ($ (-1198))) (-15 -4361 ((-3 (-1198) "failed") $)) (-15 -4216 ((-112) $ (-115))) (-15 -4216 ((-112) $ (-1198))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) +((-3515 ((|#1| $) 6))) +(((-625 |#1|) (-141) (-1239)) (T -625)) +((-3515 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1239))))) +(-13 (-10 -8 (-15 -3515 (|t#1| $)))) +((-4136 ((|#1| $) 6))) +(((-626 |#1|) (-141) (-1239)) (T -626)) +((-4136 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1239))))) +(-13 (-10 -8 (-15 -4136 (|t#1| $)))) +((-2920 (((-3 (-1194 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)) 15) (((-3 (-1194 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16))) +(((-627 |#1| |#2|) (-10 -7 (-15 -2920 ((-3 (-1194 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2920 ((-3 (-1194 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) (-13 (-148) (-27) (-1060 (-576)) (-1060 (-419 (-576)))) (-1265 |#1|)) (T -627)) +((-2920 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-148) (-27) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-1194 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))) (-2920 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *2 (-1194 (-419 *5))) (-5 *1 (-627 *4 *5)) (-5 *3 (-419 *5))))) +(-10 -7 (-15 -2920 ((-3 (-1194 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2920 ((-3 (-1194 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) +((-3515 (($ |#1|) 6))) +(((-628 |#1|) (-141) (-1239)) (T -628)) +((-3515 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1239))))) +(-13 (-10 -8 (-15 -3515 ($ |t#1|)))) +((-3423 (((-112) $ $) NIL)) (-3824 (($) 14 T CONST)) (-2190 (($) 15 T CONST)) (-2685 (($ $ $) 29)) (-2665 (($ $) 27)) (-1708 (((-1180) $) NIL)) (-3624 (($ $ $) 30)) (-1460 (((-1142) $) NIL)) (-3447 (($) 11 T CONST)) (-1862 (($ $ $) 31)) (-3515 (((-877) $) 35)) (-2704 (((-112) $ (|[\|\|]| -3447)) 24) (((-112) $ (|[\|\|]| -3824)) 26) (((-112) $ (|[\|\|]| -2190)) 21)) (-4166 (((-112) $ $) NIL)) (-2675 (($ $ $) 28)) (-2881 (((-112) $ $) 18))) +(((-629) (-13 (-989) (-10 -8 (-15 -3824 ($) -1491) (-15 -2704 ((-112) $ (|[\|\|]| -3447))) (-15 -2704 ((-112) $ (|[\|\|]| -3824))) (-15 -2704 ((-112) $ (|[\|\|]| -2190)))))) (T -629)) +((-3824 (*1 *1) (-5 *1 (-629))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3447)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3824)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2190)) (-5 *2 (-112)) (-5 *1 (-629))))) +(-13 (-989) (-10 -8 (-15 -3824 ($) -1491) (-15 -2704 ((-112) $ (|[\|\|]| -3447))) (-15 -2704 ((-112) $ (|[\|\|]| -3824))) (-15 -2704 ((-112) $ (|[\|\|]| -2190))))) +((-4136 (($ |#1|) 6))) +(((-630 |#1|) (-141) (-1239)) (T -630)) +((-4136 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1239))))) +(-13 (-10 -8 (-15 -4136 ($ |t#1|)))) +((-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) +(((-631 |#1| |#2|) (-10 -8 (-15 -3515 (|#1| |#2|)) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) (-632 |#2|) (-1071)) (T -631)) +NIL +(-10 -8 (-15 -3515 (|#1| |#2|)) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 41)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(((-632 |#1|) (-141) (-1071)) (T -632)) +((-3515 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1071))))) +(-13 (-1071) (-661 |t#1|) (-10 -8 (-15 -3515 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-739) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3922 (((-576) $) NIL (|has| |#1| (-861)))) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL)) (-3810 (((-112) $) NIL (|has| |#1| (-861)))) (-3994 (((-112) $) NIL)) (-1590 ((|#1| $) 13)) (-3517 (((-112) $) NIL (|has| |#1| (-861)))) (-3740 (($ $ $) NIL (|has| |#1| (-861)))) (-2249 (($ $ $) NIL (|has| |#1| (-861)))) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1602 ((|#3| $) 15)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL)) (-3845 (((-784)) 20 T CONST)) (-4166 (((-112) $ $) NIL)) (-2127 (($ $) NIL (|has| |#1| (-861)))) (-2716 (($) NIL T CONST)) (-2725 (($) 12 T CONST)) (-2938 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2995 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-633 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|) (-15 -2995 ($ $ |#3|)) (-15 -2995 ($ |#1| |#3|)) (-15 -1590 (|#1| $)) (-15 -1602 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-739) |#2|)) (T -633)) +((-2995 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-739) *4)))) (-2995 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-739) *4)))) (-1590 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-739) *3)))) (-1602 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-739) *4)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|) (-15 -2995 ($ $ |#3|)) (-15 -2995 ($ |#1| |#3|)) (-15 -1590 (|#1| $)) (-15 -1602 (|#3| $)))) +((-1575 ((|#2| |#2| (-1198) (-1198)) 16))) +(((-634 |#1| |#2|) (-10 -7 (-15 -1575 (|#2| |#2| (-1198) (-1198)))) (-13 (-317) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-979) (-29 |#1|))) (T -634)) +((-1575 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1224) (-979) (-29 *4)))))) +(-10 -7 (-15 -1575 (|#2| |#2| (-1198) (-1198)))) +((-3423 (((-112) $ $) 64)) (-2044 (((-112) $) 58)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2533 ((|#1| $) 55)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2580 (((-2 (|:| -3665 $) (|:| -2934 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-374)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-2165 (($ $) 27)) (-3969 (((-3 $ "failed") $) 88)) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-2650 (((-576) $) 22)) (-3994 (((-112) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2343 (((-112) $) 40)) (-1974 (($ |#1| (-576)) 24)) (-2141 ((|#1| $) 57)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) 101 (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-3409 (((-3 $ "failed") $ $) 93)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4164 (((-784) $) 115 (|has| |#1| (-374)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 114 (|has| |#1| (-374)))) (-2209 (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237))) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-4265 (((-576) $) 38)) (-4136 (((-419 |#2|) $) 47)) (-3515 (((-877) $) 69) (($ (-576)) 35) (($ $) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) 34) (($ |#2|) 25)) (-2498 ((|#1| $ (-576)) 72)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2716 (($) 9 T CONST)) (-2725 (($) 14 T CONST)) (-2066 (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237))) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-2881 (((-112) $ $) 21)) (-2982 (($ $) 51) (($ $ $) NIL)) (-2971 (($ $ $) 90)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 29) (($ $ $) 49))) +(((-635 |#1| |#2|) (-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1060 |#2|) (-10 -8 (-15 -2343 ((-112) $)) (-15 -4265 ((-576) $)) (-15 -2650 ((-576) $)) (-15 -2165 ($ $)) (-15 -2141 (|#1| $)) (-15 -2533 (|#1| $)) (-15 -2498 (|#1| $ (-576))) (-15 -1974 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -2580 ((-2 (|:| -3665 $) (|:| -2934 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1265 |#1|)) (T -635)) +((-2343 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1265 *3)))) (-4265 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1265 *3)))) (-2650 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1265 *3)))) (-2165 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1265 *2)))) (-2141 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1265 *2)))) (-2533 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1265 *2)))) (-2498 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1265 *2)))) (-1974 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1265 *2)))) (-2580 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| -3665 (-635 *4 *5)) (|:| -2934 (-419 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5))))) +(-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1060 |#2|) (-10 -8 (-15 -2343 ((-112) $)) (-15 -4265 ((-576) $)) (-15 -2650 ((-576) $)) (-15 -2165 ($ $)) (-15 -2141 (|#1| $)) (-15 -2533 (|#1| $)) (-15 -2498 (|#1| $ (-576))) (-15 -1974 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -2580 ((-2 (|:| -3665 $) (|:| -2934 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) +((-1578 (((-657 |#6|) (-657 |#4|) (-112)) 54)) (-3382 ((|#6| |#6|) 48))) +(((-636 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3382 (|#6| |#6|)) (-15 -1578 ((-657 |#6|) (-657 |#4|) (-112)))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|) (-1131 |#1| |#2| |#3| |#4|)) (T -636)) +((-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 *10)) (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *10 (-1131 *5 *6 *7 *8)))) (-3382 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *2 (-1131 *3 *4 *5 *6))))) +(-10 -7 (-15 -3382 (|#6| |#6|)) (-15 -1578 ((-657 |#6|) (-657 |#4|) (-112)))) +((-3039 (((-112) |#3| (-784) (-657 |#3|)) 29)) (-4342 (((-3 (-2 (|:| |polfac| (-657 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-657 (-1194 |#3|)))) "failed") |#3| (-657 (-1194 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1502 (-657 (-2 (|:| |irr| |#4|) (|:| -2534 (-576)))))) (-657 |#3|) (-657 |#1|) (-657 |#3|)) 69))) +(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3039 ((-112) |#3| (-784) (-657 |#3|))) (-15 -4342 ((-3 (-2 (|:| |polfac| (-657 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-657 (-1194 |#3|)))) "failed") |#3| (-657 (-1194 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1502 (-657 (-2 (|:| |irr| |#4|) (|:| -2534 (-576)))))) (-657 |#3|) (-657 |#1|) (-657 |#3|)))) (-862) (-806) (-317) (-969 |#3| |#2| |#1|)) (T -637)) +((-4342 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1502 (-657 (-2 (|:| |irr| *10) (|:| -2534 (-576))))))) (-5 *6 (-657 *3)) (-5 *7 (-657 *8)) (-4 *8 (-862)) (-4 *3 (-317)) (-4 *10 (-969 *3 *9 *8)) (-4 *9 (-806)) (-5 *2 (-2 (|:| |polfac| (-657 *10)) (|:| |correct| *3) (|:| |corrfact| (-657 (-1194 *3))))) (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-657 (-1194 *3))))) (-3039 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-784)) (-5 *5 (-657 *3)) (-4 *3 (-317)) (-4 *6 (-862)) (-4 *7 (-806)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) (-4 *8 (-969 *3 *7 *6))))) +(-10 -7 (-15 -3039 ((-112) |#3| (-784) (-657 |#3|))) (-15 -4342 ((-3 (-2 (|:| |polfac| (-657 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-657 (-1194 |#3|)))) "failed") |#3| (-657 (-1194 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1502 (-657 (-2 (|:| |irr| |#4|) (|:| -2534 (-576)))))) (-657 |#3|) (-657 |#1|) (-657 |#3|)))) +((-3423 (((-112) $ $) NIL)) (-1691 (((-1157) $) 11)) (-1678 (((-1157) $) 9)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 17) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-638) (-13 (-1105) (-10 -8 (-15 -1678 ((-1157) $)) (-15 -1691 ((-1157) $))))) (T -638)) +((-1678 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-638)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-638))))) +(-13 (-1105) (-10 -8 (-15 -1678 ((-1157) $)) (-15 -1691 ((-1157) $)))) +((-3423 (((-112) $ $) NIL)) (-3375 (((-657 |#1|) $) NIL)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-2774 (($ $) 77)) (-3707 (((-677 |#1| |#2|) $) 60)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 81)) (-2743 (((-657 (-304 |#2|)) $ $) 42)) (-1460 (((-1142) $) NIL)) (-4056 (($ (-677 |#1| |#2|)) 56)) (-1587 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-3515 (((-877) $) 66) (((-1304 |#1| |#2|) $) NIL) (((-1309 |#1| |#2|) $) 74)) (-4166 (((-112) $ $) NIL)) (-2725 (($) 61 T CONST)) (-4122 (((-657 (-2 (|:| |k| (-685 |#1|)) (|:| |c| |#2|))) $) 41)) (-2615 (((-657 (-677 |#1| |#2|)) (-657 |#1|)) 73)) (-2818 (((-657 (-2 (|:| |k| (-909 |#1|)) (|:| |c| |#2|))) $) 46)) (-2881 (((-112) $ $) 62)) (-2995 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 52))) +(((-639 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -4056 ($ (-677 |#1| |#2|))) (-15 -3707 ((-677 |#1| |#2|) $)) (-15 -2818 ((-657 (-2 (|:| |k| (-909 |#1|)) (|:| |c| |#2|))) $)) (-15 -3515 ((-1304 |#1| |#2|) $)) (-15 -3515 ((-1309 |#1| |#2|) $)) (-15 -2774 ($ $)) (-15 -3375 ((-657 |#1|) $)) (-15 -2615 ((-657 (-677 |#1| |#2|)) (-657 |#1|))) (-15 -4122 ((-657 (-2 (|:| |k| (-685 |#1|)) (|:| |c| |#2|))) $)) (-15 -2743 ((-657 (-304 |#2|)) $ $)))) (-862) (-13 (-174) (-730 (-419 (-576)))) (-941)) (T -639)) +((-4056 (*1 *1 *2) (-12 (-5 *2 (-677 *3 *4)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) (-14 *5 (-941)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-677 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |k| (-909 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-1309 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) (-2774 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-13 (-174) (-730 (-419 (-576))))) (-14 *4 (-941)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-862)) (-5 *2 (-657 (-677 *4 *5))) (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-730 (-419 (-576))))) (-14 *6 (-941)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |k| (-685 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) (-2743 (*1 *2 *1 *1) (-12 (-5 *2 (-657 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941))))) +(-13 (-485) (-10 -8 (-15 -4056 ($ (-677 |#1| |#2|))) (-15 -3707 ((-677 |#1| |#2|) $)) (-15 -2818 ((-657 (-2 (|:| |k| (-909 |#1|)) (|:| |c| |#2|))) $)) (-15 -3515 ((-1304 |#1| |#2|) $)) (-15 -3515 ((-1309 |#1| |#2|) $)) (-15 -2774 ($ $)) (-15 -3375 ((-657 |#1|) $)) (-15 -2615 ((-657 (-677 |#1| |#2|)) (-657 |#1|))) (-15 -4122 ((-657 (-2 (|:| |k| (-685 |#1|)) (|:| |c| |#2|))) $)) (-15 -2743 ((-657 (-304 |#2|)) $ $)))) +((-1578 (((-657 (-1168 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|)))) (-657 (-793 |#1| (-879 |#2|))) (-112)) 103) (((-657 (-1068 |#1| |#2|)) (-657 (-793 |#1| (-879 |#2|))) (-112)) 77)) (-2816 (((-112) (-657 (-793 |#1| (-879 |#2|)))) 26)) (-3313 (((-657 (-1168 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|)))) (-657 (-793 |#1| (-879 |#2|))) (-112)) 102)) (-2018 (((-657 (-1068 |#1| |#2|)) (-657 (-793 |#1| (-879 |#2|))) (-112)) 76)) (-2356 (((-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|)))) 30)) (-3570 (((-3 (-657 (-793 |#1| (-879 |#2|))) "failed") (-657 (-793 |#1| (-879 |#2|)))) 29))) +(((-640 |#1| |#2|) (-10 -7 (-15 -2816 ((-112) (-657 (-793 |#1| (-879 |#2|))))) (-15 -3570 ((-3 (-657 (-793 |#1| (-879 |#2|))) "failed") (-657 (-793 |#1| (-879 |#2|))))) (-15 -2356 ((-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|))))) (-15 -2018 ((-657 (-1068 |#1| |#2|)) (-657 (-793 |#1| (-879 |#2|))) (-112))) (-15 -3313 ((-657 (-1168 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|)))) (-657 (-793 |#1| (-879 |#2|))) (-112))) (-15 -1578 ((-657 (-1068 |#1| |#2|)) (-657 (-793 |#1| (-879 |#2|))) (-112))) (-15 -1578 ((-657 (-1168 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|)))) (-657 (-793 |#1| (-879 |#2|))) (-112)))) (-464) (-657 (-1198))) (T -640)) +((-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1168 *5 (-543 (-879 *6)) (-879 *6) (-793 *5 (-879 *6))))) (-5 *1 (-640 *5 *6)))) (-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-640 *5 *6)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1168 *5 (-543 (-879 *6)) (-879 *6) (-793 *5 (-879 *6))))) (-5 *1 (-640 *5 *6)))) (-2018 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-640 *5 *6)))) (-2356 (*1 *2 *2) (-12 (-5 *2 (-657 (-793 *3 (-879 *4)))) (-4 *3 (-464)) (-14 *4 (-657 (-1198))) (-5 *1 (-640 *3 *4)))) (-3570 (*1 *2 *2) (|partial| -12 (-5 *2 (-657 (-793 *3 (-879 *4)))) (-4 *3 (-464)) (-14 *4 (-657 (-1198))) (-5 *1 (-640 *3 *4)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-657 (-793 *4 (-879 *5)))) (-4 *4 (-464)) (-14 *5 (-657 (-1198))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) +(-10 -7 (-15 -2816 ((-112) (-657 (-793 |#1| (-879 |#2|))))) (-15 -3570 ((-3 (-657 (-793 |#1| (-879 |#2|))) "failed") (-657 (-793 |#1| (-879 |#2|))))) (-15 -2356 ((-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|))))) (-15 -2018 ((-657 (-1068 |#1| |#2|)) (-657 (-793 |#1| (-879 |#2|))) (-112))) (-15 -3313 ((-657 (-1168 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|)))) (-657 (-793 |#1| (-879 |#2|))) (-112))) (-15 -1578 ((-657 (-1068 |#1| |#2|)) (-657 (-793 |#1| (-879 |#2|))) (-112))) (-15 -1578 ((-657 (-1168 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|)))) (-657 (-793 |#1| (-879 |#2|))) (-112)))) +((-2143 (($ $) 38)) (-2012 (($ $) 21)) (-2120 (($ $) 37)) (-1989 (($ $) 22)) (-2166 (($ $) 36)) (-2033 (($ $) 23)) (-1622 (($) 48)) (-3707 (($ $) 45)) (-3809 (($ $) 17)) (-4426 (($ $ (-1114 $)) 7) (($ $ (-1198)) 6)) (-4056 (($ $) 46)) (-1946 (($ $) 15)) (-1976 (($ $) 16)) (-2177 (($ $) 35)) (-2042 (($ $) 24)) (-2155 (($ $) 34)) (-2023 (($ $) 25)) (-2131 (($ $) 33)) (-2002 (($ $) 26)) (-4110 (($ $) 44)) (-2082 (($ $) 32)) (-2188 (($ $) 43)) (-2055 (($ $) 31)) (-4137 (($ $) 42)) (-2100 (($ $) 30)) (-1864 (($ $) 41)) (-2110 (($ $) 29)) (-4123 (($ $) 40)) (-2090 (($ $) 28)) (-4097 (($ $) 39)) (-2070 (($ $) 27)) (-4080 (($ $) 19)) (-3984 (($ $) 20)) (-4208 (($ $) 18)) (** (($ $ $) 47))) (((-641) (-141)) (T -641)) -((-4335 (*1 *1 *1) (-4 *1 (-641))) (-3576 (*1 *1 *1) (-4 *1 (-641))) (-2191 (*1 *1 *1) (-4 *1 (-641))) (-1828 (*1 *1 *1) (-4 *1 (-641))) (-3399 (*1 *1 *1) (-4 *1 (-641))) (-3363 (*1 *1 *1) (-4 *1 (-641)))) -(-13 (-978) (-1223) (-10 -8 (-15 -4335 ($ $)) (-15 -3576 ($ $)) (-15 -2191 ($ $)) (-15 -1828 ($ $)) (-15 -3399 ($ $)) (-15 -3363 ($ $)))) -(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-978) . T) ((-1223) . T) ((-1226) . T)) -((-1401 (((-115) (-115)) 88)) (-1828 ((|#2| |#2|) 28)) (-3930 ((|#2| |#2| (-1113 |#2|)) 84) ((|#2| |#2| (-1197)) 50)) (-3363 ((|#2| |#2|) 27)) (-3399 ((|#2| |#2|) 29)) (-1380 (((-112) (-115)) 33)) (-3576 ((|#2| |#2|) 24)) (-4335 ((|#2| |#2|) 26)) (-2191 ((|#2| |#2|) 25))) -(((-642 |#1| |#2|) (-10 -7 (-15 -1380 ((-112) (-115))) (-15 -1401 ((-115) (-115))) (-15 -4335 (|#2| |#2|)) (-15 -3576 (|#2| |#2|)) (-15 -2191 (|#2| |#2|)) (-15 -1828 (|#2| |#2|)) (-15 -3363 (|#2| |#2|)) (-15 -3399 (|#2| |#2|)) (-15 -3930 (|#2| |#2| (-1197))) (-15 -3930 (|#2| |#2| (-1113 |#2|)))) (-568) (-13 (-442 |#1|) (-1023) (-1223))) (T -642)) -((-3930 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) (-3930 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))))) (-3399 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-3363 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-1828 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-2191 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-3576 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-4335 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1023) (-1223))))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) (-4 *4 (-13 (-442 *3) (-1023) (-1223))))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223)))))) -(-10 -7 (-15 -1380 ((-112) (-115))) (-15 -1401 ((-115) (-115))) (-15 -4335 (|#2| |#2|)) (-15 -3576 (|#2| |#2|)) (-15 -2191 (|#2| |#2|)) (-15 -1828 (|#2| |#2|)) (-15 -3363 (|#2| |#2|)) (-15 -3399 (|#2| |#2|)) (-15 -3930 (|#2| |#2| (-1197))) (-15 -3930 (|#2| |#2| (-1113 |#2|)))) -((-3455 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-4193 (((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 89)) (-4311 (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-878 |#1|)) 91) (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-878 |#1|)) 90)) (-4422 (((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|))) 134)) (-1494 (((-656 (-493 |#1| |#2|)) (-878 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 104)) (-2055 (((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|))) 145)) (-2840 (((-1288 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|))) 68)) (-3717 (((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 47)) (-3773 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 60)) (-3265 (((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 112))) -(((-643 |#1| |#2|) (-10 -7 (-15 -4422 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -2055 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -4193 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -4311 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -4311 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -3717 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2840 ((-1288 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -3265 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -1494 ((-656 (-493 |#1| |#2|)) (-878 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3773 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -3455 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) (-656 (-1197)) (-464)) (T -643)) -((-3455 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))) (-3773 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-1494 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-878 *4)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-3265 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1197))) (-5 *1 (-643 *5 *6)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-1288 *6)) (-5 *1 (-643 *5 *6)))) (-3717 (*1 *2 *2) (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1197))) (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))) (-4311 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-4311 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-4193 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))) (-2055 (*1 *2 *3) (-12 (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5))))) (-4422 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-656 (-253 *4 *5))) (|:| |gvlist| (-656 (-576))))) (-5 *1 (-643 *4 *5))))) -(-10 -7 (-15 -4422 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -2055 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -4193 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -4311 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -4311 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -3717 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2840 ((-1288 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -3265 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -1494 ((-656 (-493 |#1| |#2|)) (-878 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3773 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -3455 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) -((-1957 (((-112) $ $) NIL (-3795 (|has| (-52) (-102)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-102))))) (-1978 (($) NIL) (($ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))))) NIL)) (-3657 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 (((-52) $ (-1179) (-52)) 16) (((-52) $ (-1197) (-52)) 17)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-2051 (((-3 (-52) "failed") (-1179) $) NIL)) (-3170 (($) NIL T CONST)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1121))))) (-3872 (($ (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-3 (-52) "failed") (-1179) $) NIL)) (-2825 (($ (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1121)))) (($ (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $ (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1121)))) (((-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $ (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-1910 (((-52) $ (-1179) (-52)) NIL (|has| $ (-6 -4465)))) (-3721 (((-52) $ (-1179)) NIL)) (-3722 (((-656 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-4075 (($ $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-1179) $) NIL (|has| (-1179) (-861)))) (-2911 (((-656 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1121)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-1829 (((-1179) $) NIL (|has| (-1179) (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1674 (($ (-400)) 9)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (-3795 (|has| (-52) (-1121)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1121))))) (-2353 (((-656 (-1179)) $) NIL)) (-4128 (((-112) (-1179) $) NIL)) (-3743 (((-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) $) NIL)) (-3695 (($ (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) $) NIL)) (-2863 (((-656 (-1179)) $) NIL)) (-1389 (((-112) (-1179) $) NIL)) (-3116 (((-1141) $) NIL (-3795 (|has| (-52) (-1121)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1121))))) (-1755 (((-52) $) NIL (|has| (-1179) (-861)))) (-4220 (((-3 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) "failed") (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL)) (-4267 (($ $ (-52)) NIL (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) $) NIL)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))))) NIL (-12 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1121)))) (($ $ (-304 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))))) NIL (-12 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1121)))) (($ $ (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) NIL (-12 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1121)))) (($ $ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))))) NIL (-12 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1121)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-2885 (((-656 (-52)) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 (((-52) $ (-1179)) 14) (((-52) $ (-1179) (-52)) NIL) (((-52) $ (-1197)) 15)) (-3091 (($) NIL) (($ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))))) NIL)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-1121)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))))) NIL)) (-4113 (((-876) $) NIL (-3795 (|has| (-52) (-625 (-876))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-625 (-876)))))) (-2950 (((-112) $ $) NIL (-3795 (|has| (-52) (-102)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))))) NIL)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (-3795 (|has| (-52) (-102)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (-102))))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-644) (-13 (-1214 (-1179) (-52)) (-296 (-1197) (-52)) (-10 -8 (-15 -1674 ($ (-400))) (-15 -4075 ($ $)) (-15 -4268 ((-52) $ (-1197) (-52)))))) (T -644)) -((-1674 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))) (-4075 (*1 *1 *1) (-5 *1 (-644))) (-4268 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1197)) (-5 *1 (-644))))) -(-13 (-1214 (-1179) (-52)) (-296 (-1197) (-52)) (-10 -8 (-15 -1674 ($ (-400))) (-15 -4075 ($ $)) (-15 -4268 ((-52) $ (-1197) (-52))))) -((-4047 (($ $ |#2|) 10))) -(((-645 |#1| |#2|) (-10 -8 (-15 -4047 (|#1| |#1| |#2|))) (-646 |#2|) (-174)) (T -645)) -NIL -(-10 -8 (-15 -4047 (|#1| |#1| |#2|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4125 (($ $ $) 34)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 33 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-3984 (*1 *1 *1) (-4 *1 (-641))) (-4080 (*1 *1 *1) (-4 *1 (-641))) (-4208 (*1 *1 *1) (-4 *1 (-641))) (-3809 (*1 *1 *1) (-4 *1 (-641))) (-1976 (*1 *1 *1) (-4 *1 (-641))) (-1946 (*1 *1 *1) (-4 *1 (-641)))) +(-13 (-979) (-1224) (-10 -8 (-15 -3984 ($ $)) (-15 -4080 ($ $)) (-15 -4208 ($ $)) (-15 -3809 ($ $)) (-15 -1976 ($ $)) (-15 -1946 ($ $)))) +(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-979) . T) ((-1224) . T) ((-1227) . T)) +((-1803 (((-115) (-115)) 88)) (-3809 ((|#2| |#2|) 28)) (-4426 ((|#2| |#2| (-1114 |#2|)) 84) ((|#2| |#2| (-1198)) 50)) (-1946 ((|#2| |#2|) 27)) (-1976 ((|#2| |#2|) 29)) (-2946 (((-112) (-115)) 33)) (-4080 ((|#2| |#2|) 24)) (-3984 ((|#2| |#2|) 26)) (-4208 ((|#2| |#2|) 25))) +(((-642 |#1| |#2|) (-10 -7 (-15 -2946 ((-112) (-115))) (-15 -1803 ((-115) (-115))) (-15 -3984 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4208 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -1946 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -4426 (|#2| |#2| (-1198))) (-15 -4426 (|#2| |#2| (-1114 |#2|)))) (-568) (-13 (-442 |#1|) (-1024) (-1224))) (T -642)) +((-4426 (*1 *2 *2 *3) (-12 (-5 *3 (-1114 *2)) (-4 *2 (-13 (-442 *4) (-1024) (-1224))) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) (-4426 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) (-4 *2 (-13 (-442 *4) (-1024) (-1224))))) (-1976 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024) (-1224))))) (-1946 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024) (-1224))))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024) (-1224))))) (-4208 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024) (-1224))))) (-4080 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024) (-1224))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024) (-1224))))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) (-4 *4 (-13 (-442 *3) (-1024) (-1224))))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1024) (-1224)))))) +(-10 -7 (-15 -2946 ((-112) (-115))) (-15 -1803 ((-115) (-115))) (-15 -3984 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4208 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -1946 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -4426 (|#2| |#2| (-1198))) (-15 -4426 (|#2| |#2| (-1114 |#2|)))) +((-2322 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-1975 (((-657 (-253 |#1| |#2|)) (-657 (-493 |#1| |#2|))) 89)) (-3782 (((-493 |#1| |#2|) (-657 (-493 |#1| |#2|)) (-879 |#1|)) 91) (((-493 |#1| |#2|) (-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)) (-879 |#1|)) 90)) (-2422 (((-2 (|:| |gblist| (-657 (-253 |#1| |#2|))) (|:| |gvlist| (-657 (-576)))) (-657 (-493 |#1| |#2|))) 134)) (-1701 (((-657 (-493 |#1| |#2|)) (-879 |#1|) (-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|))) 104)) (-2178 (((-2 (|:| |glbase| (-657 (-253 |#1| |#2|))) (|:| |glval| (-657 (-576)))) (-657 (-253 |#1| |#2|))) 145)) (-4436 (((-1289 |#2|) (-493 |#1| |#2|) (-657 (-493 |#1| |#2|))) 68)) (-2888 (((-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|))) 47)) (-2204 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-657 (-253 |#1| |#2|))) 60)) (-4209 (((-253 |#1| |#2|) (-657 |#2|) (-253 |#1| |#2|) (-657 (-253 |#1| |#2|))) 112))) +(((-643 |#1| |#2|) (-10 -7 (-15 -2422 ((-2 (|:| |gblist| (-657 (-253 |#1| |#2|))) (|:| |gvlist| (-657 (-576)))) (-657 (-493 |#1| |#2|)))) (-15 -2178 ((-2 (|:| |glbase| (-657 (-253 |#1| |#2|))) (|:| |glval| (-657 (-576)))) (-657 (-253 |#1| |#2|)))) (-15 -1975 ((-657 (-253 |#1| |#2|)) (-657 (-493 |#1| |#2|)))) (-15 -3782 ((-493 |#1| |#2|) (-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)) (-879 |#1|))) (-15 -3782 ((-493 |#1| |#2|) (-657 (-493 |#1| |#2|)) (-879 |#1|))) (-15 -2888 ((-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)))) (-15 -4436 ((-1289 |#2|) (-493 |#1| |#2|) (-657 (-493 |#1| |#2|)))) (-15 -4209 ((-253 |#1| |#2|) (-657 |#2|) (-253 |#1| |#2|) (-657 (-253 |#1| |#2|)))) (-15 -1701 ((-657 (-493 |#1| |#2|)) (-879 |#1|) (-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)))) (-15 -2204 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-657 (-253 |#1| |#2|)))) (-15 -2322 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) (-657 (-1198)) (-464)) (T -643)) +((-2322 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))) (-2204 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-1701 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-657 (-493 *4 *5))) (-5 *3 (-879 *4)) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-4209 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 (-253 *5 *6))) (-4 *6 (-464)) (-5 *2 (-253 *5 *6)) (-14 *5 (-657 (-1198))) (-5 *1 (-643 *5 *6)))) (-4436 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-657 (-1198))) (-4 *6 (-464)) (-5 *2 (-1289 *6)) (-5 *1 (-643 *5 *6)))) (-2888 (*1 *2 *2) (-12 (-5 *2 (-657 (-493 *3 *4))) (-14 *3 (-657 (-1198))) (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-493 *5 *6))) (-5 *4 (-879 *5)) (-14 *5 (-657 (-1198))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-3782 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-657 (-493 *5 *6))) (-5 *4 (-879 *5)) (-14 *5 (-657 (-1198))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-657 (-493 *4 *5))) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *2 (-657 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))) (-2178 (*1 *2 *3) (-12 (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-657 (-253 *4 *5))) (|:| |glval| (-657 (-576))))) (-5 *1 (-643 *4 *5)) (-5 *3 (-657 (-253 *4 *5))))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-657 (-493 *4 *5))) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-657 (-253 *4 *5))) (|:| |gvlist| (-657 (-576))))) (-5 *1 (-643 *4 *5))))) +(-10 -7 (-15 -2422 ((-2 (|:| |gblist| (-657 (-253 |#1| |#2|))) (|:| |gvlist| (-657 (-576)))) (-657 (-493 |#1| |#2|)))) (-15 -2178 ((-2 (|:| |glbase| (-657 (-253 |#1| |#2|))) (|:| |glval| (-657 (-576)))) (-657 (-253 |#1| |#2|)))) (-15 -1975 ((-657 (-253 |#1| |#2|)) (-657 (-493 |#1| |#2|)))) (-15 -3782 ((-493 |#1| |#2|) (-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)) (-879 |#1|))) (-15 -3782 ((-493 |#1| |#2|) (-657 (-493 |#1| |#2|)) (-879 |#1|))) (-15 -2888 ((-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)))) (-15 -4436 ((-1289 |#2|) (-493 |#1| |#2|) (-657 (-493 |#1| |#2|)))) (-15 -4209 ((-253 |#1| |#2|) (-657 |#2|) (-253 |#1| |#2|) (-657 (-253 |#1| |#2|)))) (-15 -1701 ((-657 (-493 |#1| |#2|)) (-879 |#1|) (-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)))) (-15 -2204 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-657 (-253 |#1| |#2|)))) (-15 -2322 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) +((-3423 (((-112) $ $) NIL (-2748 (|has| (-52) (-102)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-102))))) (-4082 (($) NIL) (($ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))))) NIL)) (-3590 (((-1294) $ (-1180) (-1180)) NIL (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 (((-52) $ (-1180) (-52)) 16) (((-52) $ (-1198) (-52)) 17)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2244 (((-3 (-52) "failed") (-1180) $) NIL)) (-2515 (($) NIL T CONST)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1122))))) (-1920 (($ (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-3 (-52) "failed") (-1180) $) NIL)) (-3901 (($ (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1122)))) (($ (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $ (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1122)))) (((-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $ (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-1810 (((-52) $ (-1180) (-52)) NIL (|has| $ (-6 -4467)))) (-1741 (((-52) $ (-1180)) NIL)) (-1448 (((-657 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-657 (-52)) $) NIL (|has| $ (-6 -4466)))) (-3234 (($ $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-1180) $) NIL (|has| (-1180) (-862)))) (-3855 (((-657 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-657 (-52)) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1122)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122))))) (-1833 (((-1180) $) NIL (|has| (-1180) (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4467))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2080 (($ (-400)) 9)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (-2748 (|has| (-52) (-1122)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1122))))) (-3135 (((-657 (-1180)) $) NIL)) (-2559 (((-112) (-1180) $) NIL)) (-3107 (((-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) $) NIL)) (-2701 (($ (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) $) NIL)) (-3309 (((-657 (-1180)) $) NIL)) (-4324 (((-112) (-1180) $) NIL)) (-1460 (((-1142) $) NIL (-2748 (|has| (-52) (-1122)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1122))))) (-3528 (((-52) $) NIL (|has| (-1180) (-862)))) (-4135 (((-3 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) "failed") (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL)) (-1495 (($ $ (-52)) NIL (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) $) NIL)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))))) NIL (-12 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1122)))) (($ $ (-304 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1122)))) (($ $ (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) NIL (-12 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1122)))) (($ $ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1122)))) (($ $ (-657 (-52)) (-657 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-657 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122))))) (-3585 (((-657 (-52)) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 (((-52) $ (-1180)) 14) (((-52) $ (-1180) (-52)) NIL) (((-52) $ (-1198)) 15)) (-3009 (($) NIL) (($ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))))) NIL)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-1122)))) (((-784) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122)))) (((-784) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))))) NIL)) (-3515 (((-877) $) NIL (-2748 (|has| (-52) (-625 (-877))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-625 (-877)))))) (-4166 (((-112) $ $) NIL (-2748 (|has| (-52) (-102)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))))) NIL)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (-2748 (|has| (-52) (-102)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 (-52))) (-102))))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-644) (-13 (-1215 (-1180) (-52)) (-296 (-1198) (-52)) (-10 -8 (-15 -2080 ($ (-400))) (-15 -3234 ($ $)) (-15 -3719 ((-52) $ (-1198) (-52)))))) (T -644)) +((-2080 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))) (-3234 (*1 *1 *1) (-5 *1 (-644))) (-3719 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1198)) (-5 *1 (-644))))) +(-13 (-1215 (-1180) (-52)) (-296 (-1198) (-52)) (-10 -8 (-15 -2080 ($ (-400))) (-15 -3234 ($ $)) (-15 -3719 ((-52) $ (-1198) (-52))))) +((-2995 (($ $ |#2|) 10))) +(((-645 |#1| |#2|) (-10 -8 (-15 -2995 (|#1| |#1| |#2|))) (-646 |#2|) (-174)) (T -645)) +NIL +(-10 -8 (-15 -2995 (|#1| |#1| |#2|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3529 (($ $ $) 34)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 33 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-646 |#1|) (-141) (-174)) (T -646)) -((-4125 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) (-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(-13 (-729 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4125 ($ $ $)) (IF (|has| |t#1| (-374)) (-15 -4047 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2946 (((-3 $ "failed")) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2272 (((-1288 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1288 (-701 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3057 (((-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3170 (($) NIL T CONST)) (-3235 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2991 (((-3 $ "failed")) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3778 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-4038 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3140 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3592 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2078 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1578 (($ $ (-940)) NIL)) (-3789 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2962 (((-1193 |#1|) $) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1339 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1581 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-4393 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2496 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1288 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1851 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4135 (((-940)) NIL (|has| |#2| (-378 |#1|)))) (-3163 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3107 (($ $ (-940)) NIL)) (-3524 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2344 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1386 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2338 (((-3 $ "failed")) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2112 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-2636 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3417 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1584 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1827 (((-1193 (-971 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-3303 (($ $ (-940)) NIL)) (-1734 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2631 (((-1193 |#1|) $) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3223 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1496 (((-1193 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2110 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2447 (((-1179) $) NIL)) (-2598 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1717 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2826 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3116 (((-1141) $) NIL)) (-2013 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4369 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-4314 (((-701 |#1|) (-1288 $)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1288 $) (-1288 $)) NIL (|has| |#2| (-378 |#1|))) (((-1288 |#1|) $ (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-1556 (($ (-1288 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1288 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-1937 (((-656 (-971 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-971 |#1|)) (-1288 $)) NIL (|has| |#2| (-378 |#1|)))) (-3871 (($ $ $) NIL)) (-3472 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4113 (((-876) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL (|has| |#2| (-429 |#1|)))) (-2638 (((-656 (-1288 |#1|))) NIL (-3795 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3628 (($ $ $ $) NIL)) (-3944 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2653 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3485 (($ $ $) NIL)) (-3666 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2883 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2283 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) 20)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-647 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -4113 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -647)) -((-4113 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3))))) -(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -4113 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) -((-3390 (((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1179)) 106) (((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|))) 131)) (-2339 (((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|))) 136))) -(((-648 |#1| |#2|) (-10 -7 (-15 -3390 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2339 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -3390 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1179)))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -648)) -((-3390 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1179)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) (-2339 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-304 (-845 *3))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) (-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1223) (-442 *5))) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-648 *5 *3))))) -(-10 -7 (-15 -3390 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2339 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -3390 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1179)))) -((-3390 (((-3 (-855 (-419 (-971 |#1|))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))) (-1179)) 86) (((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|)))) 20) (((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-855 (-971 |#1|)))) 35)) (-2339 (((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|)))) 23) (((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-845 (-971 |#1|)))) 43))) -(((-649 |#1|) (-10 -7 (-15 -3390 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-855 (-971 |#1|))))) (-15 -3390 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -2339 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-845 (-971 |#1|))))) (-15 -2339 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -3390 ((-3 (-855 (-419 (-971 |#1|))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))) (-1179)))) (-464)) (T -649)) -((-3390 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 (-419 (-971 *6)))) (-5 *5 (-1179)) (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) (-5 *1 (-649 *6)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-845 (-971 *5)))) (-4 *5 (-464)) (-5 *2 (-845 (-419 (-971 *5)))) (-5 *1 (-649 *5)) (-5 *3 (-419 (-971 *5))))) (-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-649 *5)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 (-971 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-855 (-419 (-971 *5))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 *5))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 *5))) "failed"))) "failed")) (-5 *1 (-649 *5)) (-5 *3 (-419 (-971 *5)))))) -(-10 -7 (-15 -3390 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-855 (-971 |#1|))))) (-15 -3390 ((-3 (-855 (-419 (-971 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-971 |#1|))) "failed"))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -2339 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-845 (-971 |#1|))))) (-15 -2339 ((-845 (-419 (-971 |#1|))) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -3390 ((-3 (-855 (-419 (-971 |#1|))) "failed") (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))) (-1179)))) -((-1800 (((-3 (-1288 (-419 |#1|)) "failed") (-1288 |#2|) |#2|) 64 (-2299 (|has| |#1| (-374)))) (((-3 (-1288 |#1|) "failed") (-1288 |#2|) |#2|) 49 (|has| |#1| (-374)))) (-1586 (((-112) (-1288 |#2|)) 33)) (-4363 (((-3 (-1288 |#1|) "failed") (-1288 |#2|)) 40))) -(((-650 |#1| |#2|) (-10 -7 (-15 -1586 ((-112) (-1288 |#2|))) (-15 -4363 ((-3 (-1288 |#1|) "failed") (-1288 |#2|))) (IF (|has| |#1| (-374)) (-15 -1800 ((-3 (-1288 |#1|) "failed") (-1288 |#2|) |#2|)) (-15 -1800 ((-3 (-1288 (-419 |#1|)) "failed") (-1288 |#2|) |#2|)))) (-568) (-13 (-1070) (-651 |#1|))) (T -650)) -((-1800 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) (-2299 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1288 (-419 *5))) (-5 *1 (-650 *5 *4)))) (-1800 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1288 *5)) (-5 *1 (-650 *5 *4)))) (-4363 (*1 *2 *3) (|partial| -12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-1288 *4)) (-5 *1 (-650 *4 *5)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) -(-10 -7 (-15 -1586 ((-112) (-1288 |#2|))) (-15 -4363 ((-3 (-1288 |#1|) "failed") (-1288 |#2|))) (IF (|has| |#1| (-374)) (-15 -1800 ((-3 (-1288 |#1|) "failed") (-1288 |#2|) |#2|)) (-15 -1800 ((-3 (-1288 (-419 |#1|)) "failed") (-1288 |#2|) |#2|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1930 (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 29)) (-2160 (((-701 |#1|) (-1288 $)) 32) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 31)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) -(((-651 |#1|) (-141) (-1070)) (T -651)) -((-2160 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) (-5 *2 (-701 *4)))) (-2160 (*1 *2 *3 *1) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| -3563 (-701 *4)) (|:| |vec| (-1288 *4)))))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) (-5 *2 (-701 *4)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *1)) (-5 *4 (-1288 *1)) (-4 *1 (-651 *5)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -3563 (-701 *5)) (|:| |vec| (-1288 *5))))))) -(-13 (-660 |t#1|) (-10 -8 (-15 -2160 ((-701 |t#1|) (-1288 $))) (-15 -2160 ((-2 (|:| -3563 (-701 |t#1|)) (|:| |vec| (-1288 |t#1|))) (-1288 $) $)) (-15 -1930 ((-701 |t#1|) (-701 $))) (-15 -1930 ((-2 (|:| -3563 (-701 |t#1|)) (|:| |vec| (-1288 |t#1|))) (-701 $) (-1288 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8)) (* (($ |#1| $) 14) (($ $ |#1|) 17))) -(((-652 |#1|) (-141) (-1133)) (T -652)) -NIL -(-13 (-658 |t#1|) (-1072 |t#1|)) -(((-102) . T) ((-625 (-876)) . T) ((-658 |#1|) . T) ((-1072 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1465 ((|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|) 17) ((|#2| (-656 |#1|) (-656 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|)) 12))) -(((-653 |#1| |#2|) (-10 -7 (-15 -1465 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1465 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1465 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1465 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1465 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1465 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) (-1121) (-1238)) (T -653)) -((-1465 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1121)) (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) (-1465 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *1 (-653 *5 *6)))) (-1465 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1121)) (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) (-1465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1121)) (-4 *5 (-1238)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) (-1465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1121)) (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) (-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6))))) -(-10 -7 (-15 -1465 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1465 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1465 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1465 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1465 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1465 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) -((-4324 (((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 16)) (-2721 ((|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 18)) (-2423 (((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)) 13))) -(((-654 |#1| |#2|) (-10 -7 (-15 -4324 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2423 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) (-1238) (-1238)) (T -654)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-654 *5 *2)))) (-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5))))) -(-10 -7 (-15 -4324 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2423 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) -((-2423 (((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)) 21))) -(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -2423 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) (-1238) (-1238) (-1238)) (T -655)) -((-2423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-656 *8)) (-5 *1 (-655 *6 *7 *8))))) -(-10 -7 (-15 -2423 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1690 ((|#1| $) NIL)) (-3457 ((|#1| $) NIL)) (-3095 (($ $) NIL)) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2867 (($ $ (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3519 (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2380 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-4261 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1331 (($ $ $) NIL (|has| $ (-6 -4465)))) (-3652 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-2122 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "rest" $) NIL (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3745 (($ $ $) 37 (|has| |#1| (-1121)))) (-2876 (($ $ $) 41 (|has| |#1| (-1121)))) (-3312 (($ $ $) 44 (|has| |#1| (-1121)))) (-1954 (($ (-1 (-112) |#1|) $) NIL)) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3443 ((|#1| $) NIL)) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-1764 (($ $) 23) (($ $ (-783)) NIL)) (-1942 (($ $) NIL (|has| |#1| (-1121)))) (-3841 (($ $) 36 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3872 (($ |#1| $) NIL (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) NIL)) (-2825 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1910 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) NIL)) (-2319 (((-112) $) NIL)) (-3539 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121))) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-2286 (((-112) $) 11)) (-3065 (((-656 $) $) NIL)) (-1878 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2606 (($) 9 T CONST)) (-1991 (($ (-783) |#1|) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-2745 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2748 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2786 (($ |#1|) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-4186 (((-656 |#1|) $) NIL)) (-3211 (((-112) $) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2850 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-3695 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3386 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1755 ((|#1| $) 20) (($ $ (-783)) NIL)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4267 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-3501 (((-112) $) NIL)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) 39)) (-3307 (($) 38)) (-4369 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) 42) ((|#1| $ (-576) |#1|) NIL)) (-2027 (((-576) $ $) NIL)) (-2603 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-2335 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-2974 (((-112) $) NIL)) (-4297 (($ $) NIL)) (-1769 (($ $) NIL (|has| $ (-6 -4465)))) (-3083 (((-783) $) NIL)) (-2783 (($ $) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) 53 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) NIL)) (-4058 (($ |#1| $) 12)) (-4022 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2767 (($ $ $) 35) (($ |#1| $) 43) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) NIL)) (-4295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3099 (($ $ $) 13)) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2172 (((-1179) $) 31 (|has| |#1| (-840))) (((-1179) $ (-112)) 32 (|has| |#1| (-840))) (((-1293) (-834) $) 33 (|has| |#1| (-840))) (((-1293) (-834) $ (-112)) 34 (|has| |#1| (-840)))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-656 |#1|) (-13 (-678 |#1|) (-10 -8 (-15 -2606 ($) -2666) (-15 -2286 ((-112) $)) (-15 -4058 ($ |#1| $)) (-15 -3099 ($ $ $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -3745 ($ $ $)) (-15 -2876 ($ $ $)) (-15 -3312 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-1238)) (T -656)) -((-2606 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1238)))) (-4058 (*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) (-3099 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) (-3745 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)))) (-2876 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)))) (-3312 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) -(-13 (-678 |#1|) (-10 -8 (-15 -2606 ($) -2666) (-15 -2286 ((-112) $)) (-15 -4058 ($ |#1| $)) (-15 -3099 ($ $ $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -3745 ($ $ $)) (-15 -2876 ($ $ $)) (-15 -3312 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 11) (($ (-1202)) NIL) (((-1202) $) NIL) ((|#1| $) 8)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-657 |#1|) (-13 (-1104) (-625 |#1|)) (-1121)) (T -657)) -NIL -(-13 (-1104) (-625 |#1|)) -((-1957 (((-112) $ $) 7)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8)) (* (($ |#1| $) 14))) -(((-658 |#1|) (-141) (-1133)) (T -658)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1133))))) -(-13 (-1121) (-10 -8 (-15 * ($ |t#1| $)))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2609 (($ |#1| |#1| $) 43)) (-4234 (((-112) $ (-783)) NIL)) (-1954 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1942 (($ $) 45)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3872 (($ |#1| $) 56 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4464)))) (-2825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-3722 (((-656 |#1|) $) 9 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1898 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 37)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3743 ((|#1| $) 47)) (-3695 (($ |#1| $) 29) (($ |#1| $ (-783)) 42)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2372 ((|#1| $) 50)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 23)) (-3307 (($) 28)) (-2527 (((-112) $) 54)) (-4071 (((-656 (-2 (|:| -2905 |#1|) (|:| -3127 (-783)))) $) 67)) (-3091 (($) 26) (($ (-656 |#1|)) 19)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) 63 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) 20)) (-1556 (((-548) $) 34 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) NIL)) (-4113 (((-876) $) 14 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) 24)) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 69 (|has| |#1| (-102)))) (-1970 (((-783) $) 17 (|has| $ (-6 -4464))))) -(((-659 |#1|) (-13 (-707 |#1|) (-10 -8 (-6 -4464) (-15 -2527 ((-112) $)) (-15 -2609 ($ |#1| |#1| $)))) (-1121)) (T -659)) -((-2527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1121)))) (-2609 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1121))))) -(-13 (-707 |#1|) (-10 -8 (-6 -4464) (-15 -2527 ((-112) $)) (-15 -2609 ($ |#1| |#1| $)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) -(((-660 |#1|) (-141) (-1079)) (T -660)) -NIL -(-13 (-21) (-658 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783) $) 17)) (-2456 (($ $ |#1|) 69)) (-1542 (($ $) 39)) (-4204 (($ $) 37)) (-2982 (((-3 |#1| "failed") $) 61)) (-2317 ((|#1| $) NIL)) (-1551 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-4353 (((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-576)) 56)) (-4158 ((|#1| $ (-576)) 35)) (-1450 ((|#2| $ (-576)) 34)) (-2912 (($ (-1 |#1| |#1|) $) 41)) (-1477 (($ (-1 |#2| |#2|) $) 47)) (-3342 (($) 11)) (-2431 (($ |#1| |#2|) 24)) (-3256 (($ (-656 (-2 (|:| |gen| |#1|) (|:| -2156 |#2|)))) 25)) (-2354 (((-656 (-2 (|:| |gen| |#1|) (|:| -2156 |#2|))) $) 14)) (-2236 (($ |#1| $) 71)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4126 (((-112) $ $) 76)) (-4113 (((-876) $) 21) (($ |#1|) 18)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 27))) -(((-661 |#1| |#2| |#3|) (-13 (-1121) (-1059 |#1|) (-10 -8 (-15 -4353 ((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-576))) (-15 -2354 ((-656 (-2 (|:| |gen| |#1|) (|:| -2156 |#2|))) $)) (-15 -2431 ($ |#1| |#2|)) (-15 -3256 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -2156 |#2|))))) (-15 -1450 (|#2| $ (-576))) (-15 -4158 (|#1| $ (-576))) (-15 -4204 ($ $)) (-15 -1542 ($ $)) (-15 -2201 ((-783) $)) (-15 -3342 ($)) (-15 -2456 ($ $ |#1|)) (-15 -2236 ($ |#1| $)) (-15 -1551 ($ |#1| |#2| $)) (-15 -1551 ($ $ $)) (-15 -4126 ((-112) $ $)) (-15 -1477 ($ (-1 |#2| |#2|) $)) (-15 -2912 ($ (-1 |#1| |#1|) $)))) (-1121) (-23) |#2|) (T -661)) -((-4353 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-876) (-876) (-876))) (-5 *4 (-576)) (-5 *2 (-876)) (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1121)) (-4 *6 (-23)) (-14 *7 *6))) (-2354 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2156 *4)))) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-2431 (*1 *1 *2 *3) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3256 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2156 *4)))) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)))) (-1450 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) (-4 *4 (-1121)) (-14 *5 *2))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-1121)) (-5 *1 (-661 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4204 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-1542 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-3342 (*1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2456 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2236 (*1 *1 *2 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-1551 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-1551 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-4126 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)))) (-2912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-661 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1121) (-1059 |#1|) (-10 -8 (-15 -4353 ((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-576))) (-15 -2354 ((-656 (-2 (|:| |gen| |#1|) (|:| -2156 |#2|))) $)) (-15 -2431 ($ |#1| |#2|)) (-15 -3256 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -2156 |#2|))))) (-15 -1450 (|#2| $ (-576))) (-15 -4158 (|#1| $ (-576))) (-15 -4204 ($ $)) (-15 -1542 ($ $)) (-15 -2201 ((-783) $)) (-15 -3342 ($)) (-15 -2456 ($ $ |#1|)) (-15 -2236 ($ |#1| $)) (-15 -1551 ($ |#1| |#2| $)) (-15 -1551 ($ $ $)) (-15 -4126 ((-112) $ $)) (-15 -1477 ($ (-1 |#2| |#2|) $)) (-15 -2912 ($ (-1 |#1| |#1|) $)))) -((-1829 (((-576) $) 31)) (-3386 (($ |#2| $ (-576)) 27) (($ $ $ (-576)) NIL)) (-2863 (((-656 (-576)) $) 12)) (-1389 (((-112) (-576) $) 18)) (-2767 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-656 $)) NIL))) -(((-662 |#1| |#2|) (-10 -8 (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -2767 (|#1| (-656 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -1829 ((-576) |#1|)) (-15 -2863 ((-656 (-576)) |#1|)) (-15 -1389 ((-112) (-576) |#1|))) (-663 |#2|) (-1238)) (T -662)) -NIL -(-10 -8 (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -2767 (|#1| (-656 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -1829 ((-576) |#1|)) (-15 -2863 ((-656 (-576)) |#1|)) (-15 -1389 ((-112) (-576) |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3657 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) 8)) (-4268 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-3841 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) 52)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1991 (($ (-783) |#1|) 70)) (-3215 (((-112) $ (-783)) 9)) (-1605 (((-576) $) 44 (|has| (-576) (-861)))) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1829 (((-576) $) 45 (|has| (-576) (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3386 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2863 (((-656 (-576)) $) 47)) (-1389 (((-112) (-576) $) 48)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1755 ((|#1| $) 43 (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4267 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) 49)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-2335 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-1556 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 72)) (-2767 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-663 |#1|) (-141) (-1238)) (T -663)) -((-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-2767 (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-2767 (*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-2767 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-2423 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-2335 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-2335 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-3386 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1238)))) (-3386 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) (-4268 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1255 (-576))) (|has| *1 (-6 -4465)) (-4 *1 (-663 *2)) (-4 *2 (-1238))))) -(-13 (-616 (-576) |t#1|) (-152 |t#1|) (-296 (-1255 (-576)) $) (-10 -8 (-15 -1991 ($ (-783) |t#1|)) (-15 -2767 ($ $ |t#1|)) (-15 -2767 ($ |t#1| $)) (-15 -2767 ($ $ $)) (-15 -2767 ($ (-656 $))) (-15 -2423 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2335 ($ $ (-576))) (-15 -2335 ($ $ (-1255 (-576)))) (-15 -3386 ($ |t#1| $ (-576))) (-15 -3386 ($ $ $ (-576))) (IF (|has| $ (-6 -4465)) (-15 -4268 (|t#1| $ (-1255 (-576)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-4138 (((-3 |#2| "failed") |#3| |#2| (-1197) |#2| (-656 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2704 (-656 |#2|))) "failed") |#3| |#2| (-1197)) 44))) -(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -4138 ((-3 (-2 (|:| |particular| |#2|) (|:| -2704 (-656 |#2|))) "failed") |#3| |#2| (-1197))) (-15 -4138 ((-3 |#2| "failed") |#3| |#2| (-1197) |#2| (-656 |#2|)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978)) (-668 |#2|)) (T -664)) -((-4138 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) (-4138 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1197)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1223) (-978))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2704 (-656 *4)))) (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -4138 ((-3 (-2 (|:| |particular| |#2|) (|:| -2704 (-656 |#2|))) "failed") |#3| |#2| (-1197))) (-15 -4138 ((-3 |#2| "failed") |#3| |#2| (-1197) |#2| (-656 |#2|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2457 (($ $) NIL (|has| |#1| (-374)))) (-4306 (($ $ $) NIL (|has| |#1| (-374)))) (-1368 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-3746 (($ $ $) NIL (|has| |#1| (-374)))) (-2801 (($ $ $) NIL (|has| |#1| (-374)))) (-3004 (($ $ $) NIL (|has| |#1| (-374)))) (-2126 (($ $ $) NIL (|has| |#1| (-374)))) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-4246 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2562 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-464)))) (-2486 (((-112) $) NIL)) (-1564 (($ |#1| (-783)) NIL)) (-2752 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-568)))) (-3578 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-568)))) (-2192 (((-783) $) NIL)) (-3273 (($ $ $) NIL (|has| |#1| (-374)))) (-3538 (($ $ $) NIL (|has| |#1| (-374)))) (-2531 (($ $ $) NIL (|has| |#1| (-374)))) (-3691 (($ $ $) NIL (|has| |#1| (-374)))) (-4155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-2188 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2672 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4369 ((|#1| $ |#1|) NIL)) (-2015 (($ $ $) NIL (|has| |#1| (-374)))) (-2196 (((-783) $) NIL)) (-1944 ((|#1| $) NIL (|has| |#1| (-464)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-783)) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2653 ((|#1| $ |#1| |#1|) NIL)) (-2247 (($ $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($) NIL)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-665 |#1|) (-668 |#1|) (-238)) (T -665)) -NIL -(-668 |#1|) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2457 (($ $) NIL (|has| |#1| (-374)))) (-4306 (($ $ $) NIL (|has| |#1| (-374)))) (-1368 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-3746 (($ $ $) NIL (|has| |#1| (-374)))) (-2801 (($ $ $) NIL (|has| |#1| (-374)))) (-3004 (($ $ $) NIL (|has| |#1| (-374)))) (-2126 (($ $ $) NIL (|has| |#1| (-374)))) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-4246 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2562 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-464)))) (-2486 (((-112) $) NIL)) (-1564 (($ |#1| (-783)) NIL)) (-2752 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-568)))) (-3578 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-568)))) (-2192 (((-783) $) NIL)) (-3273 (($ $ $) NIL (|has| |#1| (-374)))) (-3538 (($ $ $) NIL (|has| |#1| (-374)))) (-2531 (($ $ $) NIL (|has| |#1| (-374)))) (-3691 (($ $ $) NIL (|has| |#1| (-374)))) (-4155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-2188 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2672 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4369 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2015 (($ $ $) NIL (|has| |#1| (-374)))) (-2196 (((-783) $) NIL)) (-1944 ((|#1| $) NIL (|has| |#1| (-464)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-783)) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2653 ((|#1| $ |#1| |#1|) NIL)) (-2247 (($ $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($) NIL)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-666 |#1| |#2|) (-13 (-668 |#1|) (-296 |#2| |#2|)) (-238) (-13 (-660 |#1|) (-10 -8 (-15 -4107 ($ $))))) (T -666)) -NIL -(-13 (-668 |#1|) (-296 |#2| |#2|)) -((-2457 (($ $) 29)) (-2247 (($ $) 27)) (-3157 (($) 13))) -(((-667 |#1| |#2|) (-10 -8 (-15 -2457 (|#1| |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -3157 (|#1|))) (-668 |#2|) (-1070)) (T -667)) -NIL -(-10 -8 (-15 -2457 (|#1| |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -3157 (|#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-2457 (($ $) 87 (|has| |#1| (-374)))) (-4306 (($ $ $) 89 (|has| |#1| (-374)))) (-1368 (($ $ (-783)) 88 (|has| |#1| (-374)))) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-3746 (($ $ $) 50 (|has| |#1| (-374)))) (-2801 (($ $ $) 51 (|has| |#1| (-374)))) (-3004 (($ $ $) 53 (|has| |#1| (-374)))) (-2126 (($ $ $) 48 (|has| |#1| (-374)))) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 47 (|has| |#1| (-374)))) (-4246 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-2562 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 52 (|has| |#1| (-374)))) (-2982 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2317 (((-576) $) 79 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 75)) (-3310 (($ $) 69)) (-1851 (((-3 $ "failed") $) 37)) (-1788 (($ $) 60 (|has| |#1| (-464)))) (-2486 (((-112) $) 35)) (-1564 (($ |#1| (-783)) 67)) (-2752 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 62 (|has| |#1| (-568)))) (-3578 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63 (|has| |#1| (-568)))) (-2192 (((-783) $) 71)) (-3273 (($ $ $) 57 (|has| |#1| (-374)))) (-3538 (($ $ $) 58 (|has| |#1| (-374)))) (-2531 (($ $ $) 46 (|has| |#1| (-374)))) (-3691 (($ $ $) 55 (|has| |#1| (-374)))) (-4155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 54 (|has| |#1| (-374)))) (-2188 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2672 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 59 (|has| |#1| (-374)))) (-1711 ((|#1| $) 70)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1946 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-4369 ((|#1| $ |#1|) 92)) (-2015 (($ $ $) 86 (|has| |#1| (-374)))) (-2196 (((-783) $) 72)) (-1944 ((|#1| $) 61 (|has| |#1| (-464)))) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 73)) (-3244 (((-656 |#1|) $) 66)) (-2707 ((|#1| $ (-783)) 68)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-2653 ((|#1| $ |#1| |#1|) 65)) (-2247 (($ $) 90)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($) 91)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-668 |#1|) (-141) (-1070)) (T -668)) -((-3157 (*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) (-2247 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) (-4306 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1368 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1070)) (-4 *3 (-374)))) (-2457 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-2015 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(-13 (-866 |t#1|) (-296 |t#1| |t#1|) (-10 -8 (-15 -3157 ($)) (-15 -2247 ($ $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -4306 ($ $ $)) (-15 -1368 ($ $ (-783))) (-15 -2457 ($ $)) (-15 -2015 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-296 |#1| |#1|) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1059 #0#) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-866 |#1|) . T)) -((-2926 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 85 (|has| |#1| (-27)))) (-1452 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 84 (|has| |#1| (-27))) (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 19))) -(((-669 |#1| |#2|) (-10 -7 (-15 -1452 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1452 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -2926 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -669)) -((-2926 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1452 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-665 (-419 *6)))) (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6)))))) -(-10 -7 (-15 -1452 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1452 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -2926 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2457 (($ $) NIL (|has| |#1| (-374)))) (-4306 (($ $ $) 28 (|has| |#1| (-374)))) (-1368 (($ $ (-783)) 31 (|has| |#1| (-374)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-3746 (($ $ $) NIL (|has| |#1| (-374)))) (-2801 (($ $ $) NIL (|has| |#1| (-374)))) (-3004 (($ $ $) NIL (|has| |#1| (-374)))) (-2126 (($ $ $) NIL (|has| |#1| (-374)))) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-4246 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2562 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-464)))) (-2486 (((-112) $) NIL)) (-1564 (($ |#1| (-783)) NIL)) (-2752 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-568)))) (-3578 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-568)))) (-2192 (((-783) $) NIL)) (-3273 (($ $ $) NIL (|has| |#1| (-374)))) (-3538 (($ $ $) NIL (|has| |#1| (-374)))) (-2531 (($ $ $) NIL (|has| |#1| (-374)))) (-3691 (($ $ $) NIL (|has| |#1| (-374)))) (-4155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-2188 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2672 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4369 ((|#1| $ |#1|) 24)) (-2015 (($ $ $) 33 (|has| |#1| (-374)))) (-2196 (((-783) $) NIL)) (-1944 ((|#1| $) NIL (|has| |#1| (-464)))) (-4113 (((-876) $) 20) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-783)) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2653 ((|#1| $ |#1| |#1|) 23)) (-2247 (($ $) NIL)) (-4313 (($) 21 T CONST)) (-4322 (($) 8 T CONST)) (-3157 (($) NIL)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-670 |#1| |#2|) (-668 |#1|) (-1070) (-1 |#1| |#1|)) (T -670)) -NIL -(-668 |#1|) -((-4306 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-1368 ((|#2| |#2| (-783) (-1 |#1| |#1|)) 45)) (-2015 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) -(((-671 |#1| |#2|) (-10 -7 (-15 -4306 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1368 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -2015 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -671)) -((-2015 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4)))) (-1368 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5)))) (-4306 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4))))) -(-10 -7 (-15 -4306 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1368 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -2015 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2033 (($ $ $) 9))) -(((-672 |#1|) (-10 -8 (-15 -2033 (|#1| |#1| |#1|))) (-673)) (T -672)) -NIL -(-10 -8 (-15 -2033 (|#1| |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-1980 (($ $) 11)) (-2950 (((-112) $ $) 6)) (-2033 (($ $ $) 9)) (-3939 (((-112) $ $) 8)) (-2022 (($ $ $) 10))) -(((-673) (-141)) (T -673)) -((-1980 (*1 *1 *1) (-4 *1 (-673))) (-2022 (*1 *1 *1 *1) (-4 *1 (-673))) (-2033 (*1 *1 *1 *1) (-4 *1 (-673)))) -(-13 (-102) (-10 -8 (-15 -1980 ($ $)) (-15 -2022 ($ $ $)) (-15 -2033 ($ $ $)))) -(((-102) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 15)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2687 ((|#1| $) 23)) (-2907 (($ $ $) NIL (|has| |#1| (-803)))) (-3777 (($ $ $) NIL (|has| |#1| (-803)))) (-2447 (((-1179) $) 48)) (-3116 (((-1141) $) NIL)) (-2697 ((|#3| $) 24)) (-4113 (((-876) $) 43)) (-2950 (((-112) $ $) 22)) (-4313 (($) 10 T CONST)) (-3995 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3939 (((-112) $ $) 20)) (-3984 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3963 (((-112) $ $) 26 (|has| |#1| (-803)))) (-4047 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4037 (($ $) 17) (($ $ $) NIL)) (-4026 (($ $ $) 29)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-674 |#1| |#2| |#3|) (-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -4047 ($ $ |#3|)) (-15 -4047 ($ |#1| |#3|)) (-15 -2687 (|#1| $)) (-15 -2697 (|#3| $)))) (-729 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -674)) -((-4047 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-4047 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-2687 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-2697 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4))))) -(-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -4047 ($ $ |#3|)) (-15 -4047 ($ |#1| |#3|)) (-15 -2687 (|#1| $)) (-15 -2697 (|#3| $)))) -((-3154 (((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|)) 33))) -(((-675 |#1|) (-10 -7 (-15 -3154 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|)))) (-928)) (T -675)) -((-3154 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *4))) (-5 *3 (-1193 *4)) (-4 *4 (-928)) (-5 *1 (-675 *4))))) -(-10 -7 (-15 -3154 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1418 (((-656 |#1|) $) 84)) (-4034 (($ $ (-783)) 94)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-4085 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 50)) (-2982 (((-3 (-684 |#1|) "failed") $) NIL)) (-2317 (((-684 |#1|) $) NIL)) (-3310 (($ $) 93)) (-2018 (((-783) $) NIL)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1619 (($ (-684 |#1|) |#2|) 70)) (-4027 (($ $) 89)) (-2423 (($ (-1 |#2| |#2|) $) NIL)) (-3324 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 49)) (-3988 (((-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1700 (((-684 |#1|) $) NIL)) (-1711 ((|#2| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2145 (($ $ |#1| $) 32) (($ $ (-656 |#1|) (-656 $)) 34)) (-2196 (((-783) $) 91)) (-4125 (($ $ $) 20) (($ (-684 |#1|) (-684 |#1|)) 79) (($ (-684 |#1|) $) 77) (($ $ (-684 |#1|)) 78)) (-4113 (((-876) $) NIL) (($ |#1|) 76) (((-1303 |#1| |#2|) $) 60) (((-1312 |#1| |#2|) $) 43) (($ (-684 |#1|)) 27)) (-3244 (((-656 |#2|) $) NIL)) (-2707 ((|#2| $ (-684 |#1|)) NIL)) (-2862 ((|#2| (-1312 |#1| |#2|) $) 45)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 23 T CONST)) (-2618 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2067 (((-3 $ "failed") (-1303 |#1| |#2|)) 62)) (-3250 (($ (-684 |#1|)) 14)) (-3939 (((-112) $ $) 46)) (-4047 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4037 (($ $) 68) (($ $ $) NIL)) (-4026 (($ $ $) 31)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-684 |#1|)) NIL))) -(((-676 |#1| |#2|) (-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -2067 ((-3 $ "failed") (-1303 |#1| |#2|))) (-15 -4125 ($ (-684 |#1|) (-684 |#1|))) (-15 -4125 ($ (-684 |#1|) $)) (-15 -4125 ($ $ (-684 |#1|))))) (-861) (-174)) (T -676)) -((-2067 (*1 *1 *2) (|partial| -12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-676 *3 *4)))) (-4125 (*1 *1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-4125 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-4125 (*1 *1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174))))) -(-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -2067 ((-3 $ "failed") (-1303 |#1| |#2|))) (-15 -4125 ($ (-684 |#1|) (-684 |#1|))) (-15 -4125 ($ (-684 |#1|) $)) (-15 -4125 ($ $ (-684 |#1|))))) -((-2919 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-3519 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1954 (($ (-1 (-112) |#2|) $) 29)) (-1542 (($ $) 65)) (-1942 (($ $) 74)) (-3872 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2721 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-3539 (((-576) |#2| $ (-576)) 71) (((-576) |#2| $) NIL) (((-576) (-1 (-112) |#2|) $) 54)) (-1991 (($ (-783) |#2|) 63)) (-2745 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-2748 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2423 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-2786 (($ |#2|) 15)) (-3695 (($ $ $ (-576)) 42) (($ |#2| $ (-576)) 40)) (-4220 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2603 (($ $ (-1255 (-576))) 51) (($ $ (-576)) 44)) (-3218 (($ $ $ (-576)) 70)) (-4287 (($ $) 68)) (-3963 (((-112) $ $) 76))) -(((-677 |#1| |#2|) (-10 -8 (-15 -2786 (|#1| |#2|)) (-15 -2603 (|#1| |#1| (-576))) (-15 -2603 (|#1| |#1| (-1255 (-576)))) (-15 -3872 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3695 (|#1| |#2| |#1| (-576))) (-15 -3695 (|#1| |#1| |#1| (-576))) (-15 -2745 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1954 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3872 (|#1| |#2| |#1|)) (-15 -1942 (|#1| |#1|)) (-15 -2745 (|#1| |#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2919 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3539 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3539 ((-576) |#2| |#1|)) (-15 -3539 ((-576) |#2| |#1| (-576))) (-15 -2748 (|#1| |#1| |#1|)) (-15 -2919 ((-112) |#1|)) (-15 -3218 (|#1| |#1| |#1| (-576))) (-15 -1542 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3963 ((-112) |#1| |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4220 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1991 (|#1| (-783) |#2|)) (-15 -2423 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4287 (|#1| |#1|))) (-678 |#2|) (-1238)) (T -677)) -NIL -(-10 -8 (-15 -2786 (|#1| |#2|)) (-15 -2603 (|#1| |#1| (-576))) (-15 -2603 (|#1| |#1| (-1255 (-576)))) (-15 -3872 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3695 (|#1| |#2| |#1| (-576))) (-15 -3695 (|#1| |#1| |#1| (-576))) (-15 -2745 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1954 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3872 (|#1| |#2| |#1|)) (-15 -1942 (|#1| |#1|)) (-15 -2745 (|#1| |#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2919 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3539 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3539 ((-576) |#2| |#1|)) (-15 -3539 ((-576) |#2| |#1| (-576))) (-15 -2748 (|#1| |#1| |#1|)) (-15 -2919 ((-112) |#1|)) (-15 -3218 (|#1| |#1| |#1| (-576))) (-15 -1542 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3963 ((-112) |#1| |#1|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2721 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4220 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1991 (|#1| (-783) |#2|)) (-15 -2423 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4287 (|#1| |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1690 ((|#1| $) 49)) (-3457 ((|#1| $) 66)) (-3095 (($ $) 68)) (-3657 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4465)))) (-2867 (($ $ (-576)) 53 (|has| $ (-6 -4465)))) (-2919 (((-112) $) 144 (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-3519 (($ $) 148 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4465)))) (-2380 (($ $) 143 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-4234 (((-112) $ (-783)) 8)) (-4261 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-1331 (($ $ $) 57 (|has| $ (-6 -4465)))) (-3652 ((|#1| $ |#1|) 55 (|has| $ (-6 -4465)))) (-2122 ((|#1| $ |#1|) 59 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4465))) (($ $ "rest" $) 56 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 119 (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-1954 (($ (-1 (-112) |#1|) $) 131)) (-3603 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4464)))) (-3443 ((|#1| $) 67)) (-3170 (($) 7 T CONST)) (-1542 (($ $) 146 (|has| $ (-6 -4465)))) (-4204 (($ $) 136)) (-1764 (($ $) 74) (($ $ (-783)) 72)) (-1942 (($ $) 133 (|has| |#1| (-1121)))) (-3841 (($ $) 101 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3872 (($ |#1| $) 132 (|has| |#1| (-1121))) (($ (-1 (-112) |#1|) $) 127)) (-2825 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4464))) (($ |#1| $) 102 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1910 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) 89)) (-2319 (((-112) $) 85)) (-3539 (((-576) |#1| $ (-576)) 141 (|has| |#1| (-1121))) (((-576) |#1| $) 140 (|has| |#1| (-1121))) (((-576) (-1 (-112) |#1|) $) 139)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) 51)) (-1878 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-1991 (($ (-783) |#1|) 111)) (-3215 (((-112) $ (-783)) 9)) (-1605 (((-576) $) 97 (|has| (-576) (-861)))) (-2907 (($ $ $) 154 (|has| |#1| (-861)))) (-2745 (($ $ $) 134 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-2748 (($ $ $) 142 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1829 (((-576) $) 96 (|has| (-576) (-861)))) (-3777 (($ $ $) 153 (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2786 (($ |#1|) 124)) (-1884 (((-112) $ (-783)) 10)) (-4186 (((-656 |#1|) $) 46)) (-3211 (((-112) $) 50)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2850 ((|#1| $) 71) (($ $ (-783)) 69)) (-3695 (($ $ $ (-576)) 129) (($ |#1| $ (-576)) 128)) (-3386 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-2863 (((-656 (-576)) $) 94)) (-1389 (((-112) (-576) $) 93)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1755 ((|#1| $) 77) (($ $ (-783)) 75)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4267 (($ $ |#1|) 98 (|has| $ (-6 -4465)))) (-3501 (((-112) $) 86)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) 92)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1255 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-2027 (((-576) $ $) 45)) (-2603 (($ $ (-1255 (-576))) 126) (($ $ (-576)) 125)) (-2335 (($ $ (-1255 (-576))) 116) (($ $ (-576)) 115)) (-2974 (((-112) $) 47)) (-4297 (($ $) 63)) (-1769 (($ $) 60 (|has| $ (-6 -4465)))) (-3083 (((-783) $) 64)) (-2783 (($ $) 65)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3218 (($ $ $ (-576)) 145 (|has| $ (-6 -4465)))) (-4287 (($ $) 13)) (-1556 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 109)) (-4022 (($ $ $) 62) (($ $ |#1|) 61)) (-2767 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) 52)) (-4295 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) 152 (|has| |#1| (-861)))) (-3975 (((-112) $ $) 150 (|has| |#1| (-861)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3984 (((-112) $ $) 151 (|has| |#1| (-861)))) (-3963 (((-112) $ $) 149 (|has| |#1| (-861)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-678 |#1|) (-141) (-1238)) (T -678)) -((-2786 (*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1238))))) -(-13 (-1170 |t#1|) (-384 |t#1|) (-292 |t#1|) (-10 -8 (-15 -2786 ($ |t#1|)))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-292 |#1|) . T) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1031 |#1|) . T) ((-1121) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1170 |#1|) . T) ((-1238) . T) ((-1276 |#1|) . T)) -((-4138 (((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|))))) (-656 (-656 |#1|)) (-656 (-1288 |#1|))) 22) (((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|))))) (-701 |#1|) (-656 (-1288 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|)))) (-656 (-656 |#1|)) (-1288 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)) 14)) (-4135 (((-783) (-701 |#1|) (-1288 |#1|)) 30)) (-4237 (((-3 (-1288 |#1|) "failed") (-701 |#1|) (-1288 |#1|)) 24)) (-1806 (((-112) (-701 |#1|) (-1288 |#1|)) 27))) -(((-679 |#1|) (-10 -7 (-15 -4138 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|))) (-15 -4138 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|)))) (-656 (-656 |#1|)) (-1288 |#1|))) (-15 -4138 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|))))) (-701 |#1|) (-656 (-1288 |#1|)))) (-15 -4138 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|))))) (-656 (-656 |#1|)) (-656 (-1288 |#1|)))) (-15 -4237 ((-3 (-1288 |#1|) "failed") (-701 |#1|) (-1288 |#1|))) (-15 -1806 ((-112) (-701 |#1|) (-1288 |#1|))) (-15 -4135 ((-783) (-701 |#1|) (-1288 |#1|)))) (-374)) (T -679)) -((-4135 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-679 *5)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-5 *2 (-112)) (-5 *1 (-679 *5)))) (-4237 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1288 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *1 (-679 *4)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -2704 (-656 (-1288 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -2704 (-656 (-1288 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -2704 (-656 (-1288 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1288 *5)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *5) "failed")) (|:| -2704 (-656 (-1288 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1288 *5))))) -(-10 -7 (-15 -4138 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|))) (-15 -4138 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|)))) (-656 (-656 |#1|)) (-1288 |#1|))) (-15 -4138 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|))))) (-701 |#1|) (-656 (-1288 |#1|)))) (-15 -4138 ((-656 (-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|))))) (-656 (-656 |#1|)) (-656 (-1288 |#1|)))) (-15 -4237 ((-3 (-1288 |#1|) "failed") (-701 |#1|) (-1288 |#1|))) (-15 -1806 ((-112) (-701 |#1|) (-1288 |#1|))) (-15 -4135 ((-783) (-701 |#1|) (-1288 |#1|)))) -((-4138 (((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2704 (-656 |#3|)))) |#4| (-656 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2704 (-656 |#3|))) |#4| |#3|) 60)) (-4135 (((-783) |#4| |#3|) 18)) (-4237 (((-3 |#3| "failed") |#4| |#3|) 21)) (-1806 (((-112) |#4| |#3|) 14))) -(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4138 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2704 (-656 |#3|))) |#4| |#3|)) (-15 -4138 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2704 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -4237 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1806 ((-112) |#4| |#3|)) (-15 -4135 ((-783) |#4| |#3|))) (-374) (-13 (-384 |#1|) (-10 -7 (-6 -4465))) (-13 (-384 |#1|) (-10 -7 (-6 -4465))) (-699 |#1| |#2| |#3|)) (T -680)) -((-4135 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-783)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-1806 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-112)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-4237 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-374)) (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4465)))) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465)))) (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) (-4138 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-656 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2704 (-656 *7))))) (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) (-4 *3 (-699 *5 *6 *7)))) (-4138 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(-10 -7 (-15 -4138 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2704 (-656 |#3|))) |#4| |#3|)) (-15 -4138 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2704 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -4237 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1806 ((-112) |#4| |#3|)) (-15 -4135 ((-783) |#4| |#3|))) -((-3060 (((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -2704 (-656 (-1288 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)) 51))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3060 ((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -2704 (-656 (-1288 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) (-568) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -681)) -((-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 (-419 *8)) "failed")) (|:| -2704 (-656 (-1288 (-419 *8)))))) (-5 *1 (-681 *5 *6 *7 *8))))) -(-10 -7 (-15 -3060 ((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -2704 (-656 (-1288 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2946 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-3832 ((|#2| $) NIL)) (-4154 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2272 (((-1288 (-701 |#2|))) NIL) (((-1288 (-701 |#2|)) (-1288 $)) NIL)) (-1929 (((-112) $) NIL)) (-3057 (((-1288 $)) 42)) (-4234 (((-112) $ (-783)) NIL)) (-3541 (($ |#2|) NIL)) (-3170 (($) NIL T CONST)) (-2836 (($ $) NIL (|has| |#2| (-317)))) (-2880 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3235 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-2991 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-3778 (((-701 |#2|)) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-4038 ((|#2| $) NIL)) (-3140 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1288 $)) NIL)) (-3592 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-2078 (((-1193 (-971 |#2|))) NIL (|has| |#2| (-374)))) (-1578 (($ $ (-940)) NIL)) (-3789 ((|#2| $) NIL)) (-2962 (((-1193 |#2|) $) NIL (|has| |#2| (-568)))) (-1339 ((|#2|) NIL) ((|#2| (-1288 $)) NIL)) (-1581 (((-1193 |#2|) $) NIL)) (-4393 (((-112)) NIL)) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) NIL)) (-2496 (($ (-1288 |#2|)) NIL) (($ (-1288 |#2|) (-1288 $)) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4135 (((-783) $) NIL (|has| |#2| (-568))) (((-940)) 43)) (-3721 ((|#2| $ (-576) (-576)) NIL)) (-3163 (((-112)) NIL)) (-3107 (($ $ (-940)) NIL)) (-3722 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2486 (((-112) $) NIL)) (-3985 (((-783) $) NIL (|has| |#2| (-568)))) (-4362 (((-656 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-568)))) (-2759 (((-783) $) NIL)) (-3524 (((-112)) NIL)) (-2773 (((-783) $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-4389 ((|#2| $) NIL (|has| |#2| (-6 (-4466 "*"))))) (-2805 (((-576) $) NIL)) (-2718 (((-576) $) NIL)) (-2911 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2626 (((-576) $) NIL)) (-3267 (((-576) $) NIL)) (-3410 (($ (-656 (-656 |#2|))) NIL)) (-1898 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4345 (((-656 (-656 |#2|)) $) NIL)) (-2344 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-1386 (((-3 (-2 (|:| |particular| $) (|:| -2704 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-2338 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2112 (((-701 |#2|)) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2636 ((|#2| $) NIL)) (-3417 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1288 $)) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-1584 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-1827 (((-1193 (-971 |#2|))) NIL (|has| |#2| (-374)))) (-3303 (($ $ (-940)) NIL)) (-1734 ((|#2| $) NIL)) (-2631 (((-1193 |#2|) $) NIL (|has| |#2| (-568)))) (-3223 ((|#2|) NIL) ((|#2| (-1288 $)) NIL)) (-1496 (((-1193 |#2|) $) NIL)) (-2110 (((-112)) NIL)) (-2447 (((-1179) $) NIL)) (-2598 (((-112)) NIL)) (-1717 (((-112)) NIL)) (-2826 (((-112)) NIL)) (-3492 (((-3 $ "failed") $) NIL (|has| |#2| (-374)))) (-3116 (((-1141) $) NIL)) (-2013 (((-112)) NIL)) (-1946 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-1759 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) 28) ((|#2| $ (-576)) NIL)) (-4107 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-4383 ((|#2| $) NIL)) (-4359 (($ (-656 |#2|)) NIL)) (-1414 (((-112) $) NIL)) (-1616 (((-245 |#1| |#2|) $) NIL)) (-1846 ((|#2| $) NIL (|has| |#2| (-6 (-4466 "*"))))) (-3127 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4287 (($ $) NIL)) (-4314 (((-701 |#2|) (-1288 $)) NIL) (((-1288 |#2|) $) NIL) (((-701 |#2|) (-1288 $) (-1288 $)) NIL) (((-1288 |#2|) $ (-1288 $)) 31)) (-1556 (($ (-1288 |#2|)) NIL) (((-1288 |#2|) $) NIL)) (-1937 (((-656 (-971 |#2|))) NIL) (((-656 (-971 |#2|)) (-1288 $)) NIL)) (-3871 (($ $ $) NIL)) (-3472 (((-112)) NIL)) (-3840 (((-245 |#1| |#2|) $ (-576)) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) 41)) (-2638 (((-656 (-1288 |#2|))) NIL (|has| |#2| (-568)))) (-3628 (($ $ $ $) NIL)) (-3944 (((-112)) NIL)) (-2653 (($ (-701 |#2|) $) NIL)) (-2543 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2057 (((-112) $) NIL)) (-3485 (($ $ $) NIL)) (-3666 (((-112)) NIL)) (-2883 (((-112)) NIL)) (-2283 (((-112)) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#2| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-682 |#1| |#2|) (-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) (-940) (-174)) (T -682)) -NIL -(-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3117 (((-656 (-1156)) $) 10)) (-4113 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-683) (-13 (-1104) (-10 -8 (-15 -3117 ((-656 (-1156)) $))))) (T -683)) -((-3117 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-683))))) -(-13 (-1104) (-10 -8 (-15 -3117 ((-656 (-1156)) $)))) -((-1957 (((-112) $ $) NIL)) (-1418 (((-656 |#1|) $) NIL)) (-2113 (($ $) 62)) (-4275 (((-112) $) NIL)) (-2982 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2292 (((-3 $ "failed") (-831 |#1|)) 27)) (-1752 (((-112) (-831 |#1|)) 17)) (-2815 (($ (-831 |#1|)) 28)) (-2574 (((-112) $ $) 36)) (-3108 (((-940) $) 43)) (-2102 (($ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1452 (((-656 $) (-831 |#1|)) 19)) (-4113 (((-876) $) 51) (($ |#1|) 40) (((-831 |#1|) $) 47) (((-689 |#1|) $) 52)) (-2950 (((-112) $ $) NIL)) (-3701 (((-59 (-656 $)) (-656 |#1|) (-940)) 67)) (-1966 (((-656 $) (-656 |#1|) (-940)) 70)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 63)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 46))) -(((-684 |#1|) (-13 (-861) (-1059 |#1|) (-10 -8 (-15 -4275 ((-112) $)) (-15 -2102 ($ $)) (-15 -2113 ($ $)) (-15 -3108 ((-940) $)) (-15 -2574 ((-112) $ $)) (-15 -4113 ((-831 |#1|) $)) (-15 -4113 ((-689 |#1|) $)) (-15 -1452 ((-656 $) (-831 |#1|))) (-15 -1752 ((-112) (-831 |#1|))) (-15 -2815 ($ (-831 |#1|))) (-15 -2292 ((-3 $ "failed") (-831 |#1|))) (-15 -1418 ((-656 |#1|) $)) (-15 -3701 ((-59 (-656 $)) (-656 |#1|) (-940))) (-15 -1966 ((-656 $) (-656 |#1|) (-940))))) (-861)) (T -684)) -((-4275 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-2102 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) (-2113 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-2574 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-684 *4))) (-5 *1 (-684 *4)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-2815 (*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3)))) (-2292 (*1 *1 *2) (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5)))) (-1966 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) -(-13 (-861) (-1059 |#1|) (-10 -8 (-15 -4275 ((-112) $)) (-15 -2102 ($ $)) (-15 -2113 ($ $)) (-15 -3108 ((-940) $)) (-15 -2574 ((-112) $ $)) (-15 -4113 ((-831 |#1|) $)) (-15 -4113 ((-689 |#1|) $)) (-15 -1452 ((-656 $) (-831 |#1|))) (-15 -1752 ((-112) (-831 |#1|))) (-15 -2815 ($ (-831 |#1|))) (-15 -2292 ((-3 $ "failed") (-831 |#1|))) (-15 -1418 ((-656 |#1|) $)) (-15 -3701 ((-59 (-656 $)) (-656 |#1|) (-940))) (-15 -1966 ((-656 $) (-656 |#1|) (-940))))) -((-1690 ((|#2| $) 100)) (-3095 (($ $) 121)) (-4234 (((-112) $ (-783)) 35)) (-1764 (($ $) 109) (($ $ (-783)) 112)) (-2319 (((-112) $) 122)) (-3065 (((-656 $) $) 96)) (-1878 (((-112) $ $) 92)) (-3215 (((-112) $ (-783)) 33)) (-1605 (((-576) $) 66)) (-1829 (((-576) $) 65)) (-1884 (((-112) $ (-783)) 31)) (-3211 (((-112) $) 98)) (-2850 ((|#2| $) 113) (($ $ (-783)) 117)) (-3386 (($ $ $ (-576)) 83) (($ |#2| $ (-576)) 82)) (-2863 (((-656 (-576)) $) 64)) (-1389 (((-112) (-576) $) 59)) (-1755 ((|#2| $) NIL) (($ $ (-783)) 108)) (-2419 (($ $ (-576)) 125)) (-3501 (((-112) $) 124)) (-1759 (((-112) (-1 (-112) |#2|) $) 42)) (-2885 (((-656 |#2|) $) 46)) (-4369 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1255 (-576))) 79) ((|#2| $ (-576)) 57) ((|#2| $ (-576) |#2|) 58)) (-2027 (((-576) $ $) 91)) (-2335 (($ $ (-1255 (-576))) 78) (($ $ (-576)) 72)) (-2974 (((-112) $) 87)) (-4297 (($ $) 105)) (-3083 (((-783) $) 104)) (-2783 (($ $) 103)) (-4125 (($ (-656 |#2|)) 53)) (-3193 (($ $) 126)) (-1549 (((-656 $) $) 90)) (-4295 (((-112) $ $) 89)) (-2543 (((-112) (-1 (-112) |#2|) $) 41)) (-3939 (((-112) $ $) 20)) (-1970 (((-783) $) 39))) -(((-685 |#1| |#2|) (-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -2419 (|#1| |#1| (-576))) (-15 -2319 ((-112) |#1|)) (-15 -3501 ((-112) |#1|)) (-15 -4369 (|#2| |#1| (-576) |#2|)) (-15 -4369 (|#2| |#1| (-576))) (-15 -2885 ((-656 |#2|) |#1|)) (-15 -1389 ((-112) (-576) |#1|)) (-15 -2863 ((-656 (-576)) |#1|)) (-15 -1829 ((-576) |#1|)) (-15 -1605 ((-576) |#1|)) (-15 -4125 (|#1| (-656 |#2|))) (-15 -4369 (|#1| |#1| (-1255 (-576)))) (-15 -2335 (|#1| |#1| (-576))) (-15 -2335 (|#1| |#1| (-1255 (-576)))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -4297 (|#1| |#1|)) (-15 -3083 ((-783) |#1|)) (-15 -2783 (|#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -2850 (|#1| |#1| (-783))) (-15 -4369 (|#2| |#1| "last")) (-15 -2850 (|#2| |#1|)) (-15 -1764 (|#1| |#1| (-783))) (-15 -4369 (|#1| |#1| "rest")) (-15 -1764 (|#1| |#1|)) (-15 -1755 (|#1| |#1| (-783))) (-15 -4369 (|#2| |#1| "first")) (-15 -1755 (|#2| |#1|)) (-15 -1878 ((-112) |#1| |#1|)) (-15 -4295 ((-112) |#1| |#1|)) (-15 -2027 ((-576) |#1| |#1|)) (-15 -2974 ((-112) |#1|)) (-15 -4369 (|#2| |#1| "value")) (-15 -1690 (|#2| |#1|)) (-15 -3211 ((-112) |#1|)) (-15 -3065 ((-656 |#1|) |#1|)) (-15 -1549 ((-656 |#1|) |#1|)) (-15 -1759 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1970 ((-783) |#1|)) (-15 -4234 ((-112) |#1| (-783))) (-15 -3215 ((-112) |#1| (-783))) (-15 -1884 ((-112) |#1| (-783)))) (-686 |#2|) (-1238)) (T -685)) -NIL -(-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -2419 (|#1| |#1| (-576))) (-15 -2319 ((-112) |#1|)) (-15 -3501 ((-112) |#1|)) (-15 -4369 (|#2| |#1| (-576) |#2|)) (-15 -4369 (|#2| |#1| (-576))) (-15 -2885 ((-656 |#2|) |#1|)) (-15 -1389 ((-112) (-576) |#1|)) (-15 -2863 ((-656 (-576)) |#1|)) (-15 -1829 ((-576) |#1|)) (-15 -1605 ((-576) |#1|)) (-15 -4125 (|#1| (-656 |#2|))) (-15 -4369 (|#1| |#1| (-1255 (-576)))) (-15 -2335 (|#1| |#1| (-576))) (-15 -2335 (|#1| |#1| (-1255 (-576)))) (-15 -3386 (|#1| |#2| |#1| (-576))) (-15 -3386 (|#1| |#1| |#1| (-576))) (-15 -4297 (|#1| |#1|)) (-15 -3083 ((-783) |#1|)) (-15 -2783 (|#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -2850 (|#1| |#1| (-783))) (-15 -4369 (|#2| |#1| "last")) (-15 -2850 (|#2| |#1|)) (-15 -1764 (|#1| |#1| (-783))) (-15 -4369 (|#1| |#1| "rest")) (-15 -1764 (|#1| |#1|)) (-15 -1755 (|#1| |#1| (-783))) (-15 -4369 (|#2| |#1| "first")) (-15 -1755 (|#2| |#1|)) (-15 -1878 ((-112) |#1| |#1|)) (-15 -4295 ((-112) |#1| |#1|)) (-15 -2027 ((-576) |#1| |#1|)) (-15 -2974 ((-112) |#1|)) (-15 -4369 (|#2| |#1| "value")) (-15 -1690 (|#2| |#1|)) (-15 -3211 ((-112) |#1|)) (-15 -3065 ((-656 |#1|) |#1|)) (-15 -1549 ((-656 |#1|) |#1|)) (-15 -1759 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2543 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1970 ((-783) |#1|)) (-15 -4234 ((-112) |#1| (-783))) (-15 -3215 ((-112) |#1| (-783))) (-15 -1884 ((-112) |#1| (-783)))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1690 ((|#1| $) 49)) (-3457 ((|#1| $) 66)) (-3095 (($ $) 68)) (-3657 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4465)))) (-2867 (($ $ (-576)) 53 (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) 8)) (-4261 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-1331 (($ $ $) 57 (|has| $ (-6 -4465)))) (-3652 ((|#1| $ |#1|) 55 (|has| $ (-6 -4465)))) (-2122 ((|#1| $ |#1|) 59 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4465))) (($ $ "rest" $) 56 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 119 (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) 104)) (-3443 ((|#1| $) 67)) (-3170 (($) 7 T CONST)) (-1324 (($ $) 126)) (-1764 (($ $) 74) (($ $ (-783)) 72)) (-3841 (($ $) 101 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#1| $) 102 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 105)) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1910 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) 89)) (-2319 (((-112) $) 85)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3495 (((-783) $) 125)) (-3065 (((-656 $) $) 51)) (-1878 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-1991 (($ (-783) |#1|) 111)) (-3215 (((-112) $ (-783)) 9)) (-1605 (((-576) $) 97 (|has| (-576) (-861)))) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1829 (((-576) $) 96 (|has| (-576) (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1884 (((-112) $ (-783)) 10)) (-4186 (((-656 |#1|) $) 46)) (-3211 (((-112) $) 50)) (-1745 (($ $) 128)) (-3969 (((-112) $) 129)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2850 ((|#1| $) 71) (($ $ (-783)) 69)) (-3386 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-2863 (((-656 (-576)) $) 94)) (-1389 (((-112) (-576) $) 93)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1340 ((|#1| $) 127)) (-1755 ((|#1| $) 77) (($ $ (-783)) 75)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4267 (($ $ |#1|) 98 (|has| $ (-6 -4465)))) (-2419 (($ $ (-576)) 124)) (-3501 (((-112) $) 86)) (-3201 (((-112) $) 130)) (-3206 (((-112) $) 131)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) 92)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1255 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-2027 (((-576) $ $) 45)) (-2335 (($ $ (-1255 (-576))) 116) (($ $ (-576)) 115)) (-2974 (((-112) $) 47)) (-4297 (($ $) 63)) (-1769 (($ $) 60 (|has| $ (-6 -4465)))) (-3083 (((-783) $) 64)) (-2783 (($ $) 65)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-1556 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 109)) (-4022 (($ $ $) 62 (|has| $ (-6 -4465))) (($ $ |#1|) 61 (|has| $ (-6 -4465)))) (-2767 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-3193 (($ $) 123)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) 52)) (-4295 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-686 |#1|) (-141) (-1238)) (T -686)) -((-2825 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) (-3603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-1745 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) (-1340 (*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) (-1324 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) (-3495 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-2419 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) (-3193 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) -(-13 (-1170 |t#1|) (-10 -8 (-15 -2825 ($ (-1 (-112) |t#1|) $)) (-15 -3603 ($ (-1 (-112) |t#1|) $)) (-15 -3206 ((-112) $)) (-15 -3201 ((-112) $)) (-15 -3969 ((-112) $)) (-15 -1745 ($ $)) (-15 -1340 (|t#1| $)) (-15 -1324 ($ $)) (-15 -3495 ((-783) $)) (-15 -2419 ($ $ (-576))) (-15 -3193 ($ $)))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1170 |#1|) . T) ((-1238) . T) ((-1276 |#1|) . T)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4331 (($ (-783) (-783) (-783)) 53 (|has| |#1| (-1070)))) (-4234 (((-112) $ (-783)) NIL)) (-2032 ((|#1| $ (-783) (-783) (-783) |#1|) 47)) (-3170 (($) NIL T CONST)) (-1551 (($ $ $) 57 (|has| |#1| (-1070)))) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1493 (((-1288 (-783)) $) 12)) (-3441 (($ (-1197) $ $) 34)) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2529 (($ (-783)) 55 (|has| |#1| (-1070)))) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ (-783) (-783) (-783)) 44)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-4125 (($ (-656 (-656 (-656 |#1|)))) 67)) (-4113 (($ (-977 (-977 (-977 |#1|)))) 23) (((-977 (-977 (-977 |#1|))) $) 19) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-687 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1070)) (PROGN (-15 -4331 ($ (-783) (-783) (-783))) (-15 -2529 ($ (-783))) (-15 -1551 ($ $ $))) |%noBranch|) (-15 -4125 ($ (-656 (-656 (-656 |#1|))))) (-15 -4369 (|#1| $ (-783) (-783) (-783))) (-15 -2032 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -4113 ($ (-977 (-977 (-977 |#1|))))) (-15 -4113 ((-977 (-977 (-977 |#1|))) $)) (-15 -3441 ($ (-1197) $ $)) (-15 -1493 ((-1288 (-783)) $)))) (-1121)) (T -687)) -((-4331 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) (-4 *3 (-1121)))) (-2529 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) (-4 *3 (-1121)))) (-1551 (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1070)) (-4 *2 (-1121)))) (-4125 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1121)) (-5 *1 (-687 *3)))) (-4369 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121)))) (-2032 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-4 *3 (-1121)) (-5 *1 (-687 *3)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-5 *1 (-687 *3)) (-4 *3 (-1121)))) (-3441 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-687 *3)) (-4 *3 (-1121)))) (-1493 (*1 *2 *1) (-12 (-5 *2 (-1288 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1121))))) -(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1070)) (PROGN (-15 -4331 ($ (-783) (-783) (-783))) (-15 -2529 ($ (-783))) (-15 -1551 ($ $ $))) |%noBranch|) (-15 -4125 ($ (-656 (-656 (-656 |#1|))))) (-15 -4369 (|#1| $ (-783) (-783) (-783))) (-15 -2032 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -4113 ($ (-977 (-977 (-977 |#1|))))) (-15 -4113 ((-977 (-977 (-977 |#1|))) $)) (-15 -3441 ($ (-1197) $ $)) (-15 -1493 ((-1288 (-783)) $)))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3050 (((-495) $) 10)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 19) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4159 (((-1156) $) 12)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-688) (-13 (-1104) (-10 -8 (-15 -3050 ((-495) $)) (-15 -4159 ((-1156) $))))) (T -688)) -((-3050 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-688))))) -(-13 (-1104) (-10 -8 (-15 -3050 ((-495) $)) (-15 -4159 ((-1156) $)))) -((-1957 (((-112) $ $) NIL)) (-1418 (((-656 |#1|) $) 15)) (-2113 (($ $) 19)) (-4275 (((-112) $) 20)) (-2982 (((-3 |#1| "failed") $) 23)) (-2317 ((|#1| $) 21)) (-1764 (($ $) 37)) (-4027 (($ $) 25)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2574 (((-112) $ $) 47)) (-3108 (((-940) $) 40)) (-2102 (($ $) 18)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1755 ((|#1| $) 36)) (-4113 (((-876) $) 32) (($ |#1|) 24) (((-831 |#1|) $) 28)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 13)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-689 |#1|) (-13 (-861) (-1059 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4113 ((-831 |#1|) $)) (-15 -1755 (|#1| $)) (-15 -2102 ($ $)) (-15 -3108 ((-940) $)) (-15 -2574 ((-112) $ $)) (-15 -4027 ($ $)) (-15 -1764 ($ $)) (-15 -4275 ((-112) $)) (-15 -2113 ($ $)) (-15 -1418 ((-656 |#1|) $)))) (-861)) (T -689)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-1755 (*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-2102 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-2574 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-4027 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-1764 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) (-2113 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861))))) -(-13 (-861) (-1059 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4113 ((-831 |#1|) $)) (-15 -1755 (|#1| $)) (-15 -2102 ($ $)) (-15 -3108 ((-940) $)) (-15 -2574 ((-112) $ $)) (-15 -4027 ($ $)) (-15 -1764 ($ $)) (-15 -4275 ((-112) $)) (-15 -2113 ($ $)) (-15 -1418 ((-656 |#1|) $)))) -((-2337 ((|#1| (-1 |#1| (-783) |#1|) (-783) |#1|) 11)) (-3392 ((|#1| (-1 |#1| |#1|) (-783) |#1|) 9))) -(((-690 |#1|) (-10 -7 (-15 -3392 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -2337 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) (-1121)) (T -690)) -((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1121)) (-5 *1 (-690 *2)))) (-3392 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1121)) (-5 *1 (-690 *2))))) -(-10 -7 (-15 -3392 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -2337 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) -((-1433 ((|#2| |#1| |#2|) 9)) (-1422 ((|#1| |#1| |#2|) 8))) -(((-691 |#1| |#2|) (-10 -7 (-15 -1422 (|#1| |#1| |#2|)) (-15 -1433 (|#2| |#1| |#2|))) (-1121) (-1121)) (T -691)) -((-1433 (*1 *2 *3 *2) (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-1422 (*1 *2 *2 *3) (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) -(-10 -7 (-15 -1422 (|#1| |#1| |#2|)) (-15 -1433 (|#2| |#1| |#2|))) -((-4103 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -4103 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1121) (-1121) (-1121)) (T -692)) -((-4103 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)) (-5 *1 (-692 *5 *6 *2))))) -(-10 -7 (-15 -4103 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-1957 (((-112) $ $) NIL)) (-4171 (((-1237) $) 21)) (-4118 (((-656 (-1237)) $) 19)) (-2941 (($ (-656 (-1237)) (-1237)) 14)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 29) (($ (-1202)) NIL) (((-1202) $) NIL) (((-1237) $) 22) (($ (-1139)) 10)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-693) (-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -4113 ($ (-1139))) (-15 -2941 ($ (-656 (-1237)) (-1237))) (-15 -4118 ((-656 (-1237)) $)) (-15 -4171 ((-1237) $))))) (T -693)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-693)))) (-2941 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1237))) (-5 *3 (-1237)) (-5 *1 (-693)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-693)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-693))))) -(-13 (-1104) (-625 (-1237)) (-10 -8 (-15 -4113 ($ (-1139))) (-15 -2941 ($ (-656 (-1237)) (-1237))) (-15 -4118 ((-656 (-1237)) $)) (-15 -4171 ((-1237) $)))) -((-2337 (((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)) 26)) (-3877 (((-1 |#1|) |#1|) 8)) (-1685 ((|#1| |#1|) 19)) (-2370 (((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-4113 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-783)) 23))) -(((-694 |#1|) (-10 -7 (-15 -3877 ((-1 |#1|) |#1|)) (-15 -4113 ((-1 |#1|) |#1|)) (-15 -2370 (|#1| (-1 |#1| |#1|))) (-15 -2370 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -1685 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -2337 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) (-1121)) (T -694)) -((-2337 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1121)) (-5 *1 (-694 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1121)) (-5 *1 (-694 *4)))) (-1685 (*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1121)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1121)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1121)))) (-4113 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121)))) (-3877 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121))))) -(-10 -7 (-15 -3877 ((-1 |#1|) |#1|)) (-15 -4113 ((-1 |#1|) |#1|)) (-15 -2370 (|#1| (-1 |#1| |#1|))) (-15 -2370 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -1685 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -2337 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) -((-4323 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4248 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2666 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3030 (((-1 |#2| |#1|) |#2|) 11))) -(((-695 |#1| |#2|) (-10 -7 (-15 -3030 ((-1 |#2| |#1|) |#2|)) (-15 -4248 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2666 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4323 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1121) (-1121)) (T -695)) -((-4323 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)) (-4 *4 (-1121)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5)))) (-3030 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1121)) (-4 *3 (-1121))))) -(-10 -7 (-15 -3030 ((-1 |#2| |#1|) |#2|)) (-15 -4248 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2666 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4323 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2877 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1366 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1472 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2948 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3711 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -1366 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1472 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2948 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3711 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2877 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1121) (-1121) (-1121)) (T -696)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-1 *7 *5)) (-5 *1 (-696 *5 *6 *7)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1121)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1121)))) (-1472 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)))) (-1366 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1121)) (-4 *4 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) -(-10 -7 (-15 -1366 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1472 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2948 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3711 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2877 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2721 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2423 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-697 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2423 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2423 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2721 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1070) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1070) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -697)) -((-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1070)) (-4 *2 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) (-2423 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))) -(-10 -7 (-15 -2423 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2423 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2721 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2155 (($ (-783) (-783)) 42)) (-3422 (($ $ $) 73)) (-3019 (($ |#3|) 68) (($ $) 69)) (-4154 (((-112) $) 36)) (-2410 (($ $ (-576) (-576)) 84)) (-4433 (($ $ (-576) (-576)) 85)) (-4164 (($ $ (-576) (-576) (-576) (-576)) 90)) (-1627 (($ $) 71)) (-1929 (((-112) $) 15)) (-4079 (($ $ (-576) (-576) $) 91)) (-4268 ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) 89)) (-3541 (($ (-783) |#2|) 55)) (-3410 (($ (-656 (-656 |#2|))) 51) (($ (-783) (-783) (-1 |#2| (-576) (-576))) 53)) (-4345 (((-656 (-656 |#2|)) $) 80)) (-3659 (($ $ $) 72)) (-1946 (((-3 $ "failed") $ |#2|) 122)) (-4369 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576))) 88)) (-4359 (($ (-656 |#2|)) 56) (($ (-656 $)) 58)) (-1414 (((-112) $) 28)) (-4113 (($ |#4|) 63) (((-876) $) NIL)) (-2057 (((-112) $) 38)) (-4047 (($ $ |#2|) 124)) (-4037 (($ $ $) 95) (($ $) 98)) (-4026 (($ $ $) 93)) (** (($ $ (-783)) 111) (($ $ (-576)) 128)) (* (($ $ $) 104) (($ |#2| $) 100) (($ $ |#2|) 101) (($ (-576) $) 103) ((|#4| $ |#4|) 115) ((|#3| |#3| $) 119))) -(((-698 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4113 ((-876) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4047 (|#1| |#1| |#2|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 -4037 (|#1| |#1| |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4079 (|#1| |#1| (-576) (-576) |#1|)) (-15 -4164 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -4433 (|#1| |#1| (-576) (-576))) (-15 -2410 (|#1| |#1| (-576) (-576))) (-15 -4268 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -4369 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -4345 ((-656 (-656 |#2|)) |#1|)) (-15 -3422 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -3019 (|#1| |#1|)) (-15 -3019 (|#1| |#3|)) (-15 -4113 (|#1| |#4|)) (-15 -4359 (|#1| (-656 |#1|))) (-15 -4359 (|#1| (-656 |#2|))) (-15 -3541 (|#1| (-783) |#2|)) (-15 -3410 (|#1| (-783) (-783) (-1 |#2| (-576) (-576)))) (-15 -3410 (|#1| (-656 (-656 |#2|)))) (-15 -2155 (|#1| (-783) (-783))) (-15 -2057 ((-112) |#1|)) (-15 -4154 ((-112) |#1|)) (-15 -1414 ((-112) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -4268 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4369 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4369 (|#2| |#1| (-576) (-576)))) (-699 |#2| |#3| |#4|) (-1070) (-384 |#2|) (-384 |#2|)) (T -698)) -NIL -(-10 -8 (-15 -4113 ((-876) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4047 (|#1| |#1| |#2|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 -4037 (|#1| |#1| |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4079 (|#1| |#1| (-576) (-576) |#1|)) (-15 -4164 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -4433 (|#1| |#1| (-576) (-576))) (-15 -2410 (|#1| |#1| (-576) (-576))) (-15 -4268 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -4369 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -4345 ((-656 (-656 |#2|)) |#1|)) (-15 -3422 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -3019 (|#1| |#1|)) (-15 -3019 (|#1| |#3|)) (-15 -4113 (|#1| |#4|)) (-15 -4359 (|#1| (-656 |#1|))) (-15 -4359 (|#1| (-656 |#2|))) (-15 -3541 (|#1| (-783) |#2|)) (-15 -3410 (|#1| (-783) (-783) (-1 |#2| (-576) (-576)))) (-15 -3410 (|#1| (-656 (-656 |#2|)))) (-15 -2155 (|#1| (-783) (-783))) (-15 -2057 ((-112) |#1|)) (-15 -4154 ((-112) |#1|)) (-15 -1414 ((-112) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -4268 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4369 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4369 (|#2| |#1| (-576) (-576)))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2155 (($ (-783) (-783)) 99)) (-3422 (($ $ $) 88)) (-3019 (($ |#2|) 92) (($ $) 91)) (-4154 (((-112) $) 101)) (-2410 (($ $ (-576) (-576)) 84)) (-4433 (($ $ (-576) (-576)) 83)) (-4164 (($ $ (-576) (-576) (-576) (-576)) 82)) (-1627 (($ $) 90)) (-1929 (((-112) $) 103)) (-4234 (((-112) $ (-783)) 8)) (-4079 (($ $ (-576) (-576) $) 81)) (-4268 ((|#1| $ (-576) (-576) |#1|) 45) (($ $ (-656 (-576)) (-656 (-576)) $) 85)) (-2979 (($ $ (-576) |#2|) 43)) (-2932 (($ $ (-576) |#3|) 42)) (-3541 (($ (-783) |#1|) 96)) (-3170 (($) 7 T CONST)) (-2836 (($ $) 68 (|has| |#1| (-317)))) (-2880 ((|#2| $ (-576)) 47)) (-4135 (((-783) $) 67 (|has| |#1| (-568)))) (-1910 ((|#1| $ (-576) (-576) |#1|) 44)) (-3721 ((|#1| $ (-576) (-576)) 49)) (-3722 (((-656 |#1|) $) 31)) (-3985 (((-783) $) 66 (|has| |#1| (-568)))) (-4362 (((-656 |#3|) $) 65 (|has| |#1| (-568)))) (-2759 (((-783) $) 52)) (-1991 (($ (-783) (-783) |#1|) 58)) (-2773 (((-783) $) 51)) (-3215 (((-112) $ (-783)) 9)) (-4389 ((|#1| $) 63 (|has| |#1| (-6 (-4466 "*"))))) (-2805 (((-576) $) 56)) (-2718 (((-576) $) 54)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2626 (((-576) $) 55)) (-3267 (((-576) $) 53)) (-3410 (($ (-656 (-656 |#1|))) 98) (($ (-783) (-783) (-1 |#1| (-576) (-576))) 97)) (-1898 (($ (-1 |#1| |#1|) $) 35)) (-2423 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4345 (((-656 (-656 |#1|)) $) 87)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3492 (((-3 $ "failed") $) 62 (|has| |#1| (-374)))) (-3659 (($ $ $) 89)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4267 (($ $ |#1|) 57)) (-1946 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-568)))) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-4359 (($ (-656 |#1|)) 95) (($ (-656 $)) 94)) (-1414 (((-112) $) 102)) (-1846 ((|#1| $) 64 (|has| |#1| (-6 (-4466 "*"))))) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-3840 ((|#3| $ (-576)) 46)) (-4113 (($ |#3|) 93) (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-2057 (((-112) $) 100)) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-4047 (($ $ |#1|) 69 (|has| |#1| (-374)))) (-4037 (($ $ $) 79) (($ $) 78)) (-4026 (($ $ $) 80)) (** (($ $ (-783)) 71) (($ $ (-576)) 61 (|has| |#1| (-374)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-576) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-699 |#1| |#2| |#3|) (-141) (-1070) (-384 |t#1|) (-384 |t#1|)) (T -699)) -((-1929 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1414 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2155 (*1 *1 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3410 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3410 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1070)) (-4 *1 (-699 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-3541 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4359 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4359 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4113 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (-3019 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (-3019 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1627 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3659 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3422 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4345 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) (-4369 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4268 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2410 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4433 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4164 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4079 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4026 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4037 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4037 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1070)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1946 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) (-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (-2836 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) (-4389 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) (-3492 (*1 *1 *1) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4465) (-6 -4464) (-15 -1929 ((-112) $)) (-15 -1414 ((-112) $)) (-15 -4154 ((-112) $)) (-15 -2057 ((-112) $)) (-15 -2155 ($ (-783) (-783))) (-15 -3410 ($ (-656 (-656 |t#1|)))) (-15 -3410 ($ (-783) (-783) (-1 |t#1| (-576) (-576)))) (-15 -3541 ($ (-783) |t#1|)) (-15 -4359 ($ (-656 |t#1|))) (-15 -4359 ($ (-656 $))) (-15 -4113 ($ |t#3|)) (-15 -3019 ($ |t#2|)) (-15 -3019 ($ $)) (-15 -1627 ($ $)) (-15 -3659 ($ $ $)) (-15 -3422 ($ $ $)) (-15 -4345 ((-656 (-656 |t#1|)) $)) (-15 -4369 ($ $ (-656 (-576)) (-656 (-576)))) (-15 -4268 ($ $ (-656 (-576)) (-656 (-576)) $)) (-15 -2410 ($ $ (-576) (-576))) (-15 -4433 ($ $ (-576) (-576))) (-15 -4164 ($ $ (-576) (-576) (-576) (-576))) (-15 -4079 ($ $ (-576) (-576) $)) (-15 -4026 ($ $ $)) (-15 -4037 ($ $ $)) (-15 -4037 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-576) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-783))) (IF (|has| |t#1| (-568)) (-15 -1946 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -4047 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -2836 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -4135 ((-783) $)) (-15 -3985 ((-783) $)) (-15 -4362 ((-656 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4466 "*"))) (PROGN (-15 -1846 (|t#1| $)) (-15 -4389 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -3492 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-57 |#1| |#2| |#3|) . T) ((-1238) . T)) -((-2836 ((|#4| |#4|) 92 (|has| |#1| (-317)))) (-4135 (((-783) |#4|) 120 (|has| |#1| (-568)))) (-3985 (((-783) |#4|) 96 (|has| |#1| (-568)))) (-4362 (((-656 |#3|) |#4|) 103 (|has| |#1| (-568)))) (-2623 (((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|) 135 (|has| |#1| (-317)))) (-4389 ((|#1| |#4|) 52)) (-4424 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-568)))) (-3492 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-374)))) (-1994 ((|#4| |#4|) 88 (|has| |#1| (-568)))) (-2696 ((|#4| |#4| |#1| (-576) (-576)) 60)) (-2328 ((|#4| |#4| (-576) (-576)) 55)) (-2331 ((|#4| |#4| |#1| (-576) (-576)) 65)) (-1846 ((|#1| |#4|) 98)) (-2247 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568))))) -(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1846 (|#1| |#4|)) (-15 -4389 (|#1| |#4|)) (-15 -2328 (|#4| |#4| (-576) (-576))) (-15 -2696 (|#4| |#4| |#1| (-576) (-576))) (-15 -2331 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -4135 ((-783) |#4|)) (-15 -3985 ((-783) |#4|)) (-15 -4362 ((-656 |#3|) |#4|)) (-15 -1994 (|#4| |#4|)) (-15 -4424 ((-3 |#4| "failed") |#4|)) (-15 -2247 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -2836 (|#4| |#4|)) (-15 -2623 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3492 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -700)) -((-3492 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2623 (*1 *2 *3 *3) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) (-2836 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2247 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4424 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1994 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-4362 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3985 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4135 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2331 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-2696 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-2328 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) (-4 *2 (-699 *4 *5 *6)))) (-4389 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))) -(-10 -7 (-15 -1846 (|#1| |#4|)) (-15 -4389 (|#1| |#4|)) (-15 -2328 (|#4| |#4| (-576) (-576))) (-15 -2696 (|#4| |#4| |#1| (-576) (-576))) (-15 -2331 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -4135 ((-783) |#4|)) (-15 -3985 ((-783) |#4|)) (-15 -4362 ((-656 |#3|) |#4|)) (-15 -1994 (|#4| |#4|)) (-15 -4424 ((-3 |#4| "failed") |#4|)) (-15 -2247 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -2836 (|#4| |#4|)) (-15 -2623 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3492 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2155 (($ (-783) (-783)) 64)) (-3422 (($ $ $) NIL)) (-3019 (($ (-1288 |#1|)) NIL) (($ $) NIL)) (-4154 (((-112) $) NIL)) (-2410 (($ $ (-576) (-576)) 22)) (-4433 (($ $ (-576) (-576)) NIL)) (-4164 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-1627 (($ $) NIL)) (-1929 (((-112) $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-4079 (($ $ (-576) (-576) $) NIL)) (-4268 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-2979 (($ $ (-576) (-1288 |#1|)) NIL)) (-2932 (($ $ (-576) (-1288 |#1|)) NIL)) (-3541 (($ (-783) |#1|) 37)) (-3170 (($) NIL T CONST)) (-2836 (($ $) 46 (|has| |#1| (-317)))) (-2880 (((-1288 |#1|) $ (-576)) NIL)) (-4135 (((-783) $) 48 (|has| |#1| (-568)))) (-1910 ((|#1| $ (-576) (-576) |#1|) 69)) (-3721 ((|#1| $ (-576) (-576)) NIL)) (-3722 (((-656 |#1|) $) NIL)) (-3985 (((-783) $) 50 (|has| |#1| (-568)))) (-4362 (((-656 (-1288 |#1|)) $) 53 (|has| |#1| (-568)))) (-2759 (((-783) $) 32)) (-1991 (($ (-783) (-783) |#1|) 28)) (-2773 (((-783) $) 33)) (-3215 (((-112) $ (-783)) NIL)) (-4389 ((|#1| $) 44 (|has| |#1| (-6 (-4466 "*"))))) (-2805 (((-576) $) 10)) (-2718 (((-576) $) 11)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2626 (((-576) $) 14)) (-3267 (((-576) $) 65)) (-3410 (($ (-656 (-656 |#1|))) NIL) (($ (-783) (-783) (-1 |#1| (-576) (-576))) NIL)) (-1898 (($ (-1 |#1| |#1|) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4345 (((-656 (-656 |#1|)) $) 76)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3492 (((-3 $ "failed") $) 60 (|has| |#1| (-374)))) (-3659 (($ $ $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4267 (($ $ |#1|) NIL)) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-4359 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL) (($ (-1288 |#1|)) 70)) (-1414 (((-112) $) NIL)) (-1846 ((|#1| $) 42 (|has| |#1| (-6 (-4466 "*"))))) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-1556 (((-548) $) 80 (|has| |#1| (-626 (-548))))) (-3840 (((-1288 |#1|) $ (-576)) NIL)) (-4113 (($ (-1288 |#1|)) NIL) (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2057 (((-112) $) NIL)) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $ $) NIL) (($ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) 38) (($ $ (-576)) 62 (|has| |#1| (-374)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1288 |#1|) $ (-1288 |#1|)) NIL) (((-1288 |#1|) (-1288 |#1|) $) NIL)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-701 |#1|) (-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 -4359 ($ (-1288 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3492 ((-3 $ "failed") $)) |%noBranch|))) (-1070)) (T -701)) -((-3492 (*1 *1 *1) (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1070)))) (-4359 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-701 *3))))) -(-13 (-699 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 -4359 ($ (-1288 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3492 ((-3 $ "failed") $)) |%noBranch|))) -((-4346 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 37)) (-3719 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 32)) (-3942 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783)) 43)) (-3205 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 25)) (-1622 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 29) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 27)) (-3431 (((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|)) 31)) (-2409 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 23)) (** (((-701 |#1|) (-701 |#1|) (-783)) 46))) -(((-702 |#1|) (-10 -7 (-15 -2409 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3205 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1622 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1622 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3431 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -3719 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -4346 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3942 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) (-1070)) (T -702)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-702 *4)))) (-3942 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-702 *4)))) (-4346 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-3719 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-3431 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-1622 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-1622 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-3205 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) (-2409 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(-10 -7 (-15 -2409 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3205 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1622 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1622 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3431 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -3719 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -4346 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3942 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) -((-2982 (((-3 |#1| "failed") $) 18)) (-2317 ((|#1| $) NIL)) (-3727 (($) 7 T CONST)) (-2518 (($ |#1|) 8)) (-4113 (($ |#1|) 16) (((-876) $) 23)) (-4305 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3727)) 11)) (-4333 ((|#1| $) 15))) -(((-703 |#1|) (-13 (-1283) (-1059 |#1|) (-625 (-876)) (-10 -8 (-15 -2518 ($ |#1|)) (-15 -4305 ((-112) $ (|[\|\|]| |#1|))) (-15 -4305 ((-112) $ (|[\|\|]| -3727))) (-15 -4333 (|#1| $)) (-15 -3727 ($) -2666))) (-625 (-876))) (T -703)) -((-2518 (*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876))))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-876))) (-5 *2 (-112)) (-5 *1 (-703 *4)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3727)) (-5 *2 (-112)) (-5 *1 (-703 *4)) (-4 *4 (-625 (-876))))) (-4333 (*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876))))) (-3727 (*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876)))))) -(-13 (-1283) (-1059 |#1|) (-625 (-876)) (-10 -8 (-15 -2518 ($ |#1|)) (-15 -4305 ((-112) $ (|[\|\|]| |#1|))) (-15 -4305 ((-112) $ (|[\|\|]| -3727))) (-15 -4333 (|#1| $)) (-15 -3727 ($) -2666))) -((-2277 ((|#2| |#2| |#4|) 29)) (-3038 (((-701 |#2|) |#3| |#4|) 35)) (-3981 (((-701 |#2|) |#2| |#4|) 34)) (-3917 (((-1288 |#2|) |#2| |#4|) 16)) (-3110 ((|#2| |#3| |#4|) 28)) (-1720 (((-701 |#2|) |#3| |#4| (-783) (-783)) 47)) (-4349 (((-701 |#2|) |#2| |#4| (-783)) 46))) -(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3917 ((-1288 |#2|) |#2| |#4|)) (-15 -3110 (|#2| |#3| |#4|)) (-15 -2277 (|#2| |#2| |#4|)) (-15 -3981 ((-701 |#2|) |#2| |#4|)) (-15 -4349 ((-701 |#2|) |#2| |#4| (-783))) (-15 -3038 ((-701 |#2|) |#3| |#4|)) (-15 -1720 ((-701 |#2|) |#3| |#4| (-783) (-783)))) (-1121) (-917 |#1|) (-384 |#2|) (-13 (-384 |#1|) (-10 -7 (-6 -4464)))) (T -704)) -((-1720 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *7 (-917 *6)) (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4464)))))) (-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *6 (-917 *5)) (-5 *2 (-701 *6)) (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))))) (-4349 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *3 (-917 *6)) (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4464)))))) (-3981 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-701 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))))) (-2277 (*1 *2 *2 *3) (-12 (-4 *4 (-1121)) (-4 *2 (-917 *4)) (-5 *1 (-704 *4 *2 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4464)))))) (-3110 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *2 (-917 *5)) (-5 *1 (-704 *5 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464)))))) (-3917 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-1288 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) -(-10 -7 (-15 -3917 ((-1288 |#2|) |#2| |#4|)) (-15 -3110 (|#2| |#3| |#4|)) (-15 -2277 (|#2| |#2| |#4|)) (-15 -3981 ((-701 |#2|) |#2| |#4|)) (-15 -4349 ((-701 |#2|) |#2| |#4| (-783))) (-15 -3038 ((-701 |#2|) |#3| |#4|)) (-15 -1720 ((-701 |#2|) |#3| |#4| (-783) (-783)))) -((-1706 (((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)) 20)) (-2929 ((|#1| (-701 |#2|)) 9)) (-4091 (((-701 |#1|) (-701 |#2|)) 18))) -(((-705 |#1| |#2|) (-10 -7 (-15 -2929 (|#1| (-701 |#2|))) (-15 -4091 ((-701 |#1|) (-701 |#2|))) (-15 -1706 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) (-568) (-1013 |#1|)) (T -705)) -((-1706 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) (-5 *1 (-705 *4 *5)))) (-4091 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-705 *2 *4))))) -(-10 -7 (-15 -2929 (|#1| (-701 |#2|))) (-15 -4091 ((-701 |#1|) (-701 |#2|))) (-15 -1706 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2637 (((-701 (-711))) NIL) (((-701 (-711)) (-1288 $)) NIL)) (-3832 (((-711) $) NIL)) (-3586 (($ $) NIL (|has| (-711) (-1223)))) (-3435 (($ $) NIL (|has| (-711) (-1223)))) (-2063 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-711) (-360)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-2658 (($ $) NIL (-3795 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-3589 (((-430 $) $) NIL (-3795 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-1462 (($ $) NIL (-12 (|has| (-711) (-1023)) (|has| (-711) (-1223))))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-4386 (((-112) $ $) NIL (|has| (-711) (-317)))) (-2201 (((-783)) NIL (|has| (-711) (-379)))) (-3562 (($ $) NIL (|has| (-711) (-1223)))) (-3412 (($ $) NIL (|has| (-711) (-1223)))) (-3612 (($ $) NIL (|has| (-711) (-1223)))) (-3461 (($ $) NIL (|has| (-711) (-1223)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL) (((-3 (-711) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-1059 (-419 (-576)))))) (-2317 (((-576) $) NIL) (((-711) $) NIL) (((-419 (-576)) $) NIL (|has| (-711) (-1059 (-419 (-576)))))) (-2496 (($ (-1288 (-711))) NIL) (($ (-1288 (-711)) (-1288 $)) NIL)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-711) (-360)))) (-1895 (($ $ $) NIL (|has| (-711) (-317)))) (-1481 (((-701 (-711)) $) NIL) (((-701 (-711)) $ (-1288 $)) NIL)) (-1930 (((-701 (-711)) (-701 $)) NIL) (((-2 (|:| -3563 (-701 (-711))) (|:| |vec| (-1288 (-711)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-711) (-651 (-576))))) (-2721 (((-3 $ "failed") (-419 (-1193 (-711)))) NIL (|has| (-711) (-374))) (($ (-1193 (-711))) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1474 (((-711) $) 29)) (-3526 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-557)))) (-4063 (((-112) $) NIL (|has| (-711) (-557)))) (-1400 (((-419 (-576)) $) NIL (|has| (-711) (-557)))) (-4135 (((-940)) NIL)) (-4370 (($) NIL (|has| (-711) (-379)))) (-1908 (($ $ $) NIL (|has| (-711) (-317)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| (-711) (-317)))) (-3712 (($) NIL (|has| (-711) (-360)))) (-2616 (((-112) $) NIL (|has| (-711) (-360)))) (-2824 (($ $) NIL (|has| (-711) (-360))) (($ $ (-783)) NIL (|has| (-711) (-360)))) (-2171 (((-112) $) NIL (-3795 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-4209 (((-2 (|:| |r| (-711)) (|:| |phi| (-711))) $) NIL (-12 (|has| (-711) (-1081)) (|has| (-711) (-1223))))) (-2722 (($) NIL (|has| (-711) (-1223)))) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-711) (-901 (-390)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-711) (-901 (-576))))) (-3359 (((-845 (-940)) $) NIL (|has| (-711) (-360))) (((-940) $) NIL (|has| (-711) (-360)))) (-2486 (((-112) $) NIL)) (-4005 (($ $ (-576)) NIL (-12 (|has| (-711) (-1023)) (|has| (-711) (-1223))))) (-2595 (((-711) $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| (-711) (-360)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-4293 (((-1193 (-711)) $) NIL (|has| (-711) (-374)))) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2423 (($ (-1 (-711) (-711)) $) NIL)) (-3787 (((-940) $) NIL (|has| (-711) (-379)))) (-2608 (($ $) NIL (|has| (-711) (-1223)))) (-2709 (((-1193 (-711)) $) NIL)) (-2160 (((-701 (-711)) (-1288 $)) NIL) (((-2 (|:| -3563 (-701 (-711))) (|:| |vec| (-1288 (-711)))) (-1288 $) $) NIL) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-1288 $)) NIL (|has| (-711) (-651 (-576))))) (-3076 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL (|has| (-711) (-374)))) (-3650 (($) NIL (|has| (-711) (-360)) CONST)) (-2411 (($ (-940)) NIL (|has| (-711) (-379)))) (-2250 (($) NIL)) (-1485 (((-711) $) 31)) (-3116 (((-1141) $) NIL)) (-2549 (($) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| (-711) (-317)))) (-3115 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL (|has| (-711) (-360)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-928))))) (-1452 (((-430 $) $) NIL (-3795 (-12 (|has| (-711) (-317)) (|has| (-711) (-928))) (|has| (-711) (-374))))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-711) (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| (-711) (-317)))) (-1946 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-711)) NIL (|has| (-711) (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-2156 (($ $) NIL (|has| (-711) (-1223)))) (-2145 (($ $ (-1197) (-711)) NIL (|has| (-711) (-526 (-1197) (-711)))) (($ $ (-656 (-1197)) (-656 (-711))) NIL (|has| (-711) (-526 (-1197) (-711)))) (($ $ (-656 (-304 (-711)))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-304 (-711))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-711) (-711)) NIL (|has| (-711) (-319 (-711)))) (($ $ (-656 (-711)) (-656 (-711))) NIL (|has| (-711) (-319 (-711))))) (-2812 (((-783) $) NIL (|has| (-711) (-317)))) (-4369 (($ $ (-711)) NIL (|has| (-711) (-296 (-711) (-711))))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| (-711) (-317)))) (-1790 (((-711)) NIL) (((-711) (-1288 $)) NIL)) (-3168 (((-3 (-783) "failed") $ $) NIL (|has| (-711) (-360))) (((-783) $) NIL (|has| (-711) (-360)))) (-4107 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-783)) NIL (-3795 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-3795 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-2828 (((-701 (-711)) (-1288 $) (-1 (-711) (-711))) NIL (|has| (-711) (-374)))) (-3881 (((-1193 (-711))) NIL)) (-3623 (($ $) NIL (|has| (-711) (-1223)))) (-3474 (($ $) NIL (|has| (-711) (-1223)))) (-4223 (($) NIL (|has| (-711) (-360)))) (-3599 (($ $) NIL (|has| (-711) (-1223)))) (-3448 (($ $) NIL (|has| (-711) (-1223)))) (-3574 (($ $) NIL (|has| (-711) (-1223)))) (-3424 (($ $) NIL (|has| (-711) (-1223)))) (-4314 (((-701 (-711)) (-1288 $)) NIL) (((-1288 (-711)) $) NIL) (((-701 (-711)) (-1288 $) (-1288 $)) NIL) (((-1288 (-711)) $ (-1288 $)) NIL)) (-1556 (((-548) $) NIL (|has| (-711) (-626 (-548)))) (((-171 (-227)) $) NIL (|has| (-711) (-1043))) (((-171 (-390)) $) NIL (|has| (-711) (-1043))) (((-907 (-390)) $) NIL (|has| (-711) (-626 (-907 (-390))))) (((-907 (-576)) $) NIL (|has| (-711) (-626 (-907 (-576))))) (($ (-1193 (-711))) NIL) (((-1193 (-711)) $) NIL) (($ (-1288 (-711))) NIL) (((-1288 (-711)) $) NIL)) (-2117 (($ $) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-3795 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-928))) (|has| (-711) (-360))))) (-2649 (($ (-711) (-711)) 12)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-711)) NIL) (($ (-171 (-390))) 13) (($ (-171 (-576))) 19) (($ (-171 (-711))) 28) (($ (-171 (-713))) 25) (((-171 (-390)) $) 33) (($ (-419 (-576))) NIL (-3795 (|has| (-711) (-1059 (-419 (-576)))) (|has| (-711) (-374))))) (-4276 (($ $) NIL (|has| (-711) (-360))) (((-3 $ "failed") $) NIL (-3795 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-928))) (|has| (-711) (-146))))) (-4358 (((-1193 (-711)) $) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL)) (-3653 (($ $) NIL (|has| (-711) (-1223)))) (-3510 (($ $) NIL (|has| (-711) (-1223)))) (-4134 (((-112) $ $) NIL)) (-3632 (($ $) NIL (|has| (-711) (-1223)))) (-3487 (($ $) NIL (|has| (-711) (-1223)))) (-3673 (($ $) NIL (|has| (-711) (-1223)))) (-3537 (($ $) NIL (|has| (-711) (-1223)))) (-1997 (((-711) $) NIL (|has| (-711) (-1223)))) (-1972 (($ $) NIL (|has| (-711) (-1223)))) (-3550 (($ $) NIL (|has| (-711) (-1223)))) (-3664 (($ $) NIL (|has| (-711) (-1223)))) (-3523 (($ $) NIL (|has| (-711) (-1223)))) (-3642 (($ $) NIL (|has| (-711) (-1223)))) (-3498 (($ $) NIL (|has| (-711) (-1223)))) (-2366 (($ $) NIL (|has| (-711) (-1081)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| (-711) (-374)) (|has| (-711) (-917 (-1197)))) (|has| (-711) (-919 (-1197))))) (($ $ (-783)) NIL (-3795 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-3795 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL (|has| (-711) (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| (-711) (-1223))) (($ $ (-419 (-576))) NIL (-12 (|has| (-711) (-1023)) (|has| (-711) (-1223)))) (($ $ (-576)) NIL (|has| (-711) (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-711) $) NIL) (($ $ (-711)) NIL) (($ (-419 (-576)) $) NIL (|has| (-711) (-374))) (($ $ (-419 (-576))) NIL (|has| (-711) (-374))))) -(((-706) (-13 (-399) (-167 (-711)) (-10 -8 (-15 -4113 ($ (-171 (-390)))) (-15 -4113 ($ (-171 (-576)))) (-15 -4113 ($ (-171 (-711)))) (-15 -4113 ($ (-171 (-713)))) (-15 -4113 ((-171 (-390)) $))))) (T -706)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706))))) -(-13 (-399) (-167 (-711)) (-10 -8 (-15 -4113 ($ (-171 (-390)))) (-15 -4113 ($ (-171 (-576)))) (-15 -4113 ($ (-171 (-711)))) (-15 -4113 ($ (-171 (-713)))) (-15 -4113 ((-171 (-390)) $)))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) 8)) (-1954 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-1942 (($ $) 63)) (-3841 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3872 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-2825 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3743 ((|#1| $) 40)) (-3695 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2372 ((|#1| $) 42)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4071 (((-656 (-2 (|:| -2905 |#1|) (|:| -3127 (-783)))) $) 62)) (-3091 (($) 50) (($ (-656 |#1|)) 49)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-1556 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 51)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) 43)) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-707 |#1|) (-141) (-1121)) (T -707)) -((-3695 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1121)))) (-1942 (*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1121)))) (-4071 (*1 *2 *1) (-12 (-4 *1 (-707 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-2 (|:| -2905 *3) (|:| -3127 (-783)))))))) -(-13 (-240 |t#1|) (-10 -8 (-15 -3695 ($ |t#1| $ (-783))) (-15 -1942 ($ $)) (-15 -4071 ((-656 (-2 (|:| -2905 |t#1|) (|:| -3127 (-783)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-1392 (((-656 |#1|) (-656 (-2 (|:| -1452 |#1|) (|:| -2196 (-576)))) (-576)) 65)) (-2512 ((|#1| |#1| (-576)) 62)) (-3115 ((|#1| |#1| |#1| (-576)) 46)) (-1452 (((-656 |#1|) |#1| (-576)) 49)) (-2352 ((|#1| |#1| (-576) |#1| (-576)) 40)) (-4229 (((-656 (-2 (|:| -1452 |#1|) (|:| -2196 (-576)))) |#1| (-576)) 61))) -(((-708 |#1|) (-10 -7 (-15 -3115 (|#1| |#1| |#1| (-576))) (-15 -2512 (|#1| |#1| (-576))) (-15 -1452 ((-656 |#1|) |#1| (-576))) (-15 -4229 ((-656 (-2 (|:| -1452 |#1|) (|:| -2196 (-576)))) |#1| (-576))) (-15 -1392 ((-656 |#1|) (-656 (-2 (|:| -1452 |#1|) (|:| -2196 (-576)))) (-576))) (-15 -2352 (|#1| |#1| (-576) |#1| (-576)))) (-1264 (-576))) (T -708)) -((-2352 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3)))) (-1392 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| -1452 *5) (|:| -2196 (-576))))) (-5 *4 (-576)) (-4 *5 (-1264 *4)) (-5 *2 (-656 *5)) (-5 *1 (-708 *5)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1452 *3) (|:| -2196 *4)))) (-5 *1 (-708 *3)) (-4 *3 (-1264 *4)))) (-1452 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) (-4 *3 (-1264 *4)))) (-2512 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3)))) (-3115 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3))))) -(-10 -7 (-15 -3115 (|#1| |#1| |#1| (-576))) (-15 -2512 (|#1| |#1| (-576))) (-15 -1452 ((-656 |#1|) |#1| (-576))) (-15 -4229 ((-656 (-2 (|:| -1452 |#1|) (|:| -2196 (-576)))) |#1| (-576))) (-15 -1392 ((-656 |#1|) (-656 (-2 (|:| -1452 |#1|) (|:| -2196 (-576)))) (-576))) (-15 -2352 (|#1| |#1| (-576) |#1| (-576)))) -((-1395 (((-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-1943 (((-1154 (-227)) (-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 53) (((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 55) (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 57)) (-3344 (((-1154 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-656 (-270))) NIL)) (-1606 (((-1154 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270))) 58))) -(((-709) (-10 -7 (-15 -1943 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -1943 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -1943 ((-1154 (-227)) (-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -1606 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -3344 ((-1154 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -1395 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -709)) -((-1395 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-962 (-227)) (-227) (-227))) (-5 *1 (-709)))) (-3344 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) (-1606 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) (-1943 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709)))) (-1943 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-227))) (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) (-1943 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709))))) -(-10 -7 (-15 -1943 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -1943 ((-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -1943 ((-1154 (-227)) (-1154 (-227)) (-1 (-962 (-227)) (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -1606 ((-1154 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1115 (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -3344 ((-1154 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1115 (-227)) (-656 (-270)))) (-15 -1395 ((-1 (-962 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-1452 (((-430 (-1193 |#4|)) (-1193 |#4|)) 86) (((-430 |#4|) |#4|) 266))) -(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1452 ((-430 |#4|) |#4|)) (-15 -1452 ((-430 (-1193 |#4|)) (-1193 |#4|)))) (-861) (-805) (-360) (-968 |#3| |#2| |#1|)) (T -710)) -((-1452 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) -(-10 -7 (-15 -1452 ((-430 |#4|) |#4|)) (-15 -1452 ((-430 (-1193 |#4|)) (-1193 |#4|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 97)) (-2628 (((-576) $) 34)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-4087 (($ $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1462 (($ $) NIL)) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL)) (-3170 (($) NIL T CONST)) (-4174 (($ $) NIL)) (-2982 (((-3 (-576) "failed") $) 85) (((-3 (-419 (-576)) "failed") $) 28) (((-3 (-390) "failed") $) 82)) (-2317 (((-576) $) 87) (((-419 (-576)) $) 79) (((-390) $) 80)) (-1895 (($ $ $) 109)) (-1851 (((-3 $ "failed") $) 100)) (-1908 (($ $ $) 108)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2758 (((-940)) 89) (((-940) (-940)) 88)) (-2279 (((-112) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL)) (-3359 (((-576) $) NIL)) (-2486 (((-112) $) NIL)) (-4005 (($ $ (-576)) NIL)) (-2595 (($ $) NIL)) (-3323 (((-112) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2677 (((-576) (-576)) 94) (((-576)) 95)) (-2907 (($ $ $) NIL) (($) NIL (-12 (-2299 (|has| $ (-6 -4447))) (-2299 (|has| $ (-6 -4455)))))) (-3503 (((-576) (-576)) 92) (((-576)) 93)) (-3777 (($ $ $) NIL) (($) NIL (-12 (-2299 (|has| $ (-6 -4447))) (-2299 (|has| $ (-6 -4455)))))) (-1361 (((-576) $) 17)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 104)) (-2627 (((-940) (-576)) NIL (|has| $ (-6 -4455)))) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2701 (($ $) NIL)) (-3058 (($ $) NIL)) (-2633 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-940)) NIL)) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) 105)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4080 (((-576) $) 24)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 107)) (-2539 (((-940)) NIL) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-1449 (((-940) (-576)) NIL (|has| $ (-6 -4455)))) (-1556 (((-390) $) NIL) (((-227) $) NIL) (((-907 (-390)) $) NIL)) (-4113 (((-876) $) 63) (($ (-576)) 75) (($ $) NIL) (($ (-419 (-576))) 78) (($ (-576)) 75) (($ (-419 (-576))) 78) (($ (-390)) 72) (((-390) $) 61) (($ (-713)) 66)) (-2910 (((-783)) 119 T CONST)) (-2001 (($ (-576) (-576) (-940)) 54)) (-4081 (($ $) NIL)) (-4252 (((-940)) NIL) (((-940) (-940)) NIL (|has| $ (-6 -4455)))) (-2950 (((-112) $ $) NIL)) (-1869 (((-940)) 91) (((-940) (-940)) 90)) (-4134 (((-112) $ $) NIL)) (-2366 (($ $) NIL)) (-4313 (($) 37 T CONST)) (-4322 (($) 18 T CONST)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 96)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 118)) (-4047 (($ $ $) 77)) (-4037 (($ $) 115) (($ $ $) 116)) (-4026 (($ $ $) 114)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 103)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-711) (-13 (-416) (-399) (-374) (-1059 (-390)) (-1059 (-419 (-576))) (-148) (-10 -8 (-15 -2758 ((-940) (-940))) (-15 -2758 ((-940))) (-15 -1869 ((-940) (-940))) (-15 -3503 ((-576) (-576))) (-15 -3503 ((-576))) (-15 -2677 ((-576) (-576))) (-15 -2677 ((-576))) (-15 -4113 ((-390) $)) (-15 -4113 ($ (-713))) (-15 -1361 ((-576) $)) (-15 -4080 ((-576) $)) (-15 -2001 ($ (-576) (-576) (-940)))))) (T -711)) -((-4080 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2758 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) (-1869 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3503 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2677 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2677 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) (-2001 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-5 *1 (-711))))) -(-13 (-416) (-399) (-374) (-1059 (-390)) (-1059 (-419 (-576))) (-148) (-10 -8 (-15 -2758 ((-940) (-940))) (-15 -2758 ((-940))) (-15 -1869 ((-940) (-940))) (-15 -3503 ((-576) (-576))) (-15 -3503 ((-576))) (-15 -2677 ((-576) (-576))) (-15 -2677 ((-576))) (-15 -4113 ((-390) $)) (-15 -4113 ($ (-713))) (-15 -1361 ((-576) $)) (-15 -4080 ((-576) $)) (-15 -2001 ($ (-576) (-576) (-940))))) -((-3186 (((-701 |#1|) (-701 |#1|) |#1| |#1|) 85)) (-2836 (((-701 |#1|) (-701 |#1|) |#1|) 66)) (-3573 (((-701 |#1|) (-701 |#1|) |#1|) 86)) (-2017 (((-701 |#1|) (-701 |#1|)) 67)) (-2623 (((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|) 84))) -(((-712 |#1|) (-10 -7 (-15 -2017 ((-701 |#1|) (-701 |#1|))) (-15 -2836 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3573 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3186 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -2623 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|))) (-317)) (T -712)) -((-2623 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-712 *3)) (-4 *3 (-317)))) (-3186 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-3573 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-2836 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(-10 -7 (-15 -2017 ((-701 |#1|) (-701 |#1|))) (-15 -2836 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3573 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3186 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -2623 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-3374 (($ $ $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3282 (($ $ $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL)) (-3385 (($ $ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) 31)) (-2317 (((-576) $) 29)) (-1895 (($ $ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-3526 (((-3 (-419 (-576)) "failed") $) NIL)) (-4063 (((-112) $) NIL)) (-1400 (((-419 (-576)) $) NIL)) (-4370 (($ $) NIL) (($) NIL)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-4170 (($ $ $ $) NIL)) (-3104 (($ $ $) NIL)) (-2279 (((-112) $) NIL)) (-1595 (($ $ $) NIL)) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-2486 (((-112) $) NIL)) (-3616 (((-112) $) NIL)) (-3552 (((-3 $ "failed") $) NIL)) (-3323 (((-112) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3547 (($ $ $ $) NIL)) (-2907 (($ $ $) NIL)) (-2475 (((-940) (-940)) 10) (((-940)) 9)) (-3777 (($ $ $) NIL)) (-2362 (($ $) NIL)) (-3108 (($ $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL)) (-3076 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-2617 (($ $ $) NIL)) (-3650 (($) NIL T CONST)) (-1921 (($ $) NIL)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ (-656 $)) NIL) (($ $ $) NIL)) (-4372 (($ $) NIL)) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3955 (((-112) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4107 (($ $ (-783)) NIL) (($ $) NIL)) (-3756 (($ $) NIL)) (-4287 (($ $) NIL)) (-1556 (((-227) $) NIL) (((-390) $) NIL) (((-907 (-576)) $) NIL) (((-548) $) NIL) (((-576) $) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) 28) (($ $) NIL) (($ (-576)) 28) (((-326 $) (-326 (-576))) 18)) (-2910 (((-783)) NIL T CONST)) (-2291 (((-112) $ $) NIL)) (-1348 (($ $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-1869 (($) NIL)) (-4134 (((-112) $ $) NIL)) (-1555 (($ $ $ $) NIL)) (-2366 (($ $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-783)) NIL) (($ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-713) (-13 (-399) (-557) (-10 -8 (-15 -2475 ((-940) (-940))) (-15 -2475 ((-940))) (-15 -4113 ((-326 $) (-326 (-576))))))) (T -713)) -((-2475 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713)))) (-2475 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713)))) (-4113 (*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713))))) -(-13 (-399) (-557) (-10 -8 (-15 -2475 ((-940) (-940))) (-15 -2475 ((-940))) (-15 -4113 ((-326 $) (-326 (-576)))))) -((-1812 (((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)) 19)) (-1909 (((-1 |#4| |#2| |#3|) (-1197)) 12))) -(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1909 ((-1 |#4| |#2| |#3|) (-1197))) (-15 -1812 ((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)))) (-626 (-548)) (-1238) (-1238) (-1238)) (T -714)) -((-1812 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *7 (-1238)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *7 (-1238))))) -(-10 -7 (-15 -1909 ((-1 |#4| |#2| |#3|) (-1197))) (-15 -1812 ((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)))) -((-1610 (((-1 (-227) (-227) (-227)) |#1| (-1197) (-1197)) 43) (((-1 (-227) (-227)) |#1| (-1197)) 48))) -(((-715 |#1|) (-10 -7 (-15 -1610 ((-1 (-227) (-227)) |#1| (-1197))) (-15 -1610 ((-1 (-227) (-227) (-227)) |#1| (-1197) (-1197)))) (-626 (-548))) (T -715)) -((-1610 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))) (-1610 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -1610 ((-1 (-227) (-227)) |#1| (-1197))) (-15 -1610 ((-1 (-227) (-227) (-227)) |#1| (-1197) (-1197)))) -((-2952 (((-1197) |#1| (-1197) (-656 (-1197))) 10) (((-1197) |#1| (-1197) (-1197) (-1197)) 13) (((-1197) |#1| (-1197) (-1197)) 12) (((-1197) |#1| (-1197)) 11))) -(((-716 |#1|) (-10 -7 (-15 -2952 ((-1197) |#1| (-1197))) (-15 -2952 ((-1197) |#1| (-1197) (-1197))) (-15 -2952 ((-1197) |#1| (-1197) (-1197) (-1197))) (-15 -2952 ((-1197) |#1| (-1197) (-656 (-1197))))) (-626 (-548))) (T -716)) -((-2952 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-2952 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-2952 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-2952 (*1 *2 *3 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -2952 ((-1197) |#1| (-1197))) (-15 -2952 ((-1197) |#1| (-1197) (-1197))) (-15 -2952 ((-1197) |#1| (-1197) (-1197) (-1197))) (-15 -2952 ((-1197) |#1| (-1197) (-656 (-1197))))) -((-3667 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-717 |#1| |#2|) (-10 -7 (-15 -3667 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1238) (-1238)) (T -717)) -((-3667 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1238)) (-4 *4 (-1238))))) -(-10 -7 (-15 -3667 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-1455 (((-1 |#3| |#2|) (-1197)) 11)) (-1812 (((-1 |#3| |#2|) |#1| (-1197)) 21))) -(((-718 |#1| |#2| |#3|) (-10 -7 (-15 -1455 ((-1 |#3| |#2|) (-1197))) (-15 -1812 ((-1 |#3| |#2|) |#1| (-1197)))) (-626 (-548)) (-1238) (-1238)) (T -718)) -((-1812 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238))))) -(-10 -7 (-15 -1455 ((-1 |#3| |#2|) (-1197))) (-15 -1812 ((-1 |#3| |#2|) |#1| (-1197)))) -((-1487 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -3299 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1288 (-656 (-1193 |#3|))) |#3|) 92)) (-3705 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|) 110)) (-3088 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1193 |#4|)) (-1288 (-656 (-1193 |#3|))) |#3|) 47))) -(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3088 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1193 |#4|)) (-1288 (-656 (-1193 |#3|))) |#3|)) (-15 -3705 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -1487 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -3299 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1288 (-656 (-1193 |#3|))) |#3|))) (-805) (-861) (-317) (-968 |#3| |#1| |#2|)) (T -719)) -((-1487 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-656 (-1193 *13))) (-5 *3 (-1193 *13)) (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) (-5 *7 (-656 (-656 (-2 (|:| -3299 (-783)) (|:| |pcoef| *13))))) (-5 *8 (-656 (-783))) (-5 *9 (-1288 (-656 (-1193 *10)))) (-4 *12 (-861)) (-4 *10 (-317)) (-4 *13 (-968 *10 *11 *12)) (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13)))) (-3705 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1193 *9))) (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) (-4 *11 (-861)) (-4 *9 (-317)) (-4 *12 (-968 *9 *10 *11)) (-4 *10 (-805)) (-5 *2 (-656 (-1193 *12))) (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1193 *12)))) (-3088 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-656 (-1193 *11))) (-5 *3 (-1193 *11)) (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) (-5 *7 (-1288 (-656 (-1193 *8)))) (-4 *10 (-861)) (-4 *8 (-317)) (-4 *11 (-968 *8 *9 *10)) (-4 *9 (-805)) (-5 *1 (-719 *9 *10 *8 *11))))) -(-10 -7 (-15 -3088 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1193 |#4|)) (-1288 (-656 (-1193 |#3|))) |#3|)) (-15 -3705 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -1487 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-656 |#2|) (-656 (-1193 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -3299 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1288 (-656 (-1193 |#3|))) |#3|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-3310 (($ $) 48)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-1564 (($ |#1| (-783)) 46)) (-2192 (((-783) $) 50)) (-1711 ((|#1| $) 49)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2196 (((-783) $) 51)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-2707 ((|#1| $ (-783)) 47)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) -(((-720 |#1|) (-141) (-1070)) (T -720)) -((-2196 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2192 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1070)))) (-3310 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1070)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070)))) (-1564 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070))))) -(-13 (-1070) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2196 ((-783) $)) (-15 -2192 ((-783) $)) (-15 -1711 (|t#1| $)) (-15 -3310 ($ $)) (-15 -2707 (|t#1| $ (-783))) (-15 -1564 ($ |t#1| (-783))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2423 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-721 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2423 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1264 |#1|) (-1264 (-419 |#2|)) (-568) (-1264 |#4|) (-1264 (-419 |#5|))) (T -721)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1264 *5)) (-4 *2 (-1264 (-419 *8))) (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1264 (-419 *6))) (-4 *8 (-1264 *7))))) -(-10 -7 (-15 -2423 (|#6| (-1 |#4| |#1|) |#3|))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1853 (((-1179) (-876)) 38)) (-1614 (((-1293) (-1179)) 31)) (-4127 (((-1179) (-876)) 28)) (-1840 (((-1179) (-876)) 29)) (-4113 (((-876) $) NIL) (((-1179) (-876)) 27)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-722) (-13 (-1121) (-10 -7 (-15 -4113 ((-1179) (-876))) (-15 -4127 ((-1179) (-876))) (-15 -1840 ((-1179) (-876))) (-15 -1853 ((-1179) (-876))) (-15 -1614 ((-1293) (-1179)))))) (T -722)) -((-4113 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-722))))) -(-13 (-1121) (-10 -7 (-15 -4113 ((-1179) (-876))) (-15 -4127 ((-1179) (-876))) (-15 -1840 ((-1179) (-876))) (-15 -1853 ((-1179) (-876))) (-15 -1614 ((-1293) (-1179))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-1895 (($ $ $) NIL)) (-2721 (($ |#1| |#2|) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2486 (((-112) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1488 ((|#2| $) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1867 (((-3 $ "failed") $ $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) ((|#1| $) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-723 |#1| |#2| |#3| |#4| |#5|) (-13 (-374) (-10 -8 (-15 -1488 (|#2| $)) (-15 -4113 (|#1| $)) (-15 -2721 ($ |#1| |#2|)) (-15 -1867 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -723)) -((-1488 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4113 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2721 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1867 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-374) (-10 -8 (-15 -1488 (|#2| $)) (-15 -4113 (|#1| $)) (-15 -2721 ($ |#1| |#2|)) (-15 -1867 ((-3 $ "failed") $ $)))) -((-1957 (((-112) $ $) 87)) (-3114 (((-112) $) 36)) (-2732 (((-1288 |#1|) $ (-783)) NIL)) (-1585 (((-656 (-1103)) $) NIL)) (-3287 (($ (-1193 |#1|)) NIL)) (-1421 (((-1193 $) $ (-1103)) NIL) (((-1193 |#1|) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2163 (($ $ $) NIL (|has| |#1| (-568)))) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2658 (($ $) NIL (|has| |#1| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2201 (((-783)) 54 (|has| |#1| (-379)))) (-2665 (($ $ (-783)) NIL)) (-2713 (($ $ (-783)) NIL)) (-3893 ((|#2| |#2|) 50)) (-2096 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1103) $) NIL)) (-2970 (($ $ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-3310 (($ $) 40)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-2721 (($ |#2|) 48)) (-1851 (((-3 $ "failed") $) 97)) (-4370 (($) 58 (|has| |#1| (-379)))) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-3895 (($ $ $) NIL)) (-4201 (($ $ $) NIL (|has| |#1| (-568)))) (-2799 (((-2 (|:| -2862 |#1|) (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-568)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1788 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#1| (-928)))) (-3172 (((-977 $)) 89)) (-1975 (($ $ |#1| (-783) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3359 (((-783) $ $) NIL (|has| |#1| (-568)))) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1574 (($ (-1193 |#1|) (-1103)) NIL) (($ (-1193 $) (-1103)) NIL)) (-4328 (($ $ (-783)) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-783)) 85) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ (-1103)) NIL) (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-1488 ((|#2|) 51)) (-2192 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-3784 (($ (-1 (-783) (-783)) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2253 (((-1193 |#1|) $) NIL)) (-3477 (((-3 (-1103) "failed") $) NIL)) (-3787 (((-940) $) NIL (|has| |#1| (-379)))) (-2709 ((|#2| $) 47)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#1| $) 34)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2447 (((-1179) $) NIL)) (-2107 (((-2 (|:| -2675 $) (|:| -3561 $)) $ (-783)) NIL)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| (-1103)) (|:| -4080 (-783))) "failed") $) NIL)) (-4412 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3650 (($) NIL (|has| |#1| (-1173)) CONST)) (-2411 (($ (-940)) NIL (|has| |#1| (-379)))) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) NIL)) (-1686 ((|#1| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3094 (($ $) 88 (|has| |#1| (-360)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-928)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#1|) NIL) (($ $ (-656 (-1103)) (-656 |#1|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-2812 (((-783) $) NIL (|has| |#1| (-374)))) (-4369 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4292 (((-3 $ "failed") $ (-783)) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 98 (|has| |#1| (-374)))) (-1790 (($ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-4107 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2196 (((-783) $) 38) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1944 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-3734 (((-977 $)) 42)) (-4105 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-4113 (((-876) $) 68) (($ (-576)) NIL) (($ |#1|) 65) (($ (-1103)) NIL) (($ |#2|) 75) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-783)) 70) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4313 (($) 25 T CONST)) (-4035 (((-1288 |#1|) $) 83)) (-4117 (($ (-1288 |#1|)) 57)) (-4322 (($) 8 T CONST)) (-3157 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-1367 (((-1288 |#1|) $) NIL)) (-3939 (((-112) $ $) 76)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $) 79) (($ $ $) NIL)) (-4026 (($ $ $) 39)) (** (($ $ (-940)) NIL) (($ $ (-783)) 92)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 64) (($ $ $) 82) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) -(((-724 |#1| |#2|) (-13 (-1264 |#1|) (-628 |#2|) (-10 -8 (-15 -3893 (|#2| |#2|)) (-15 -1488 (|#2|)) (-15 -2721 ($ |#2|)) (-15 -2709 (|#2| $)) (-15 -4035 ((-1288 |#1|) $)) (-15 -4117 ($ (-1288 |#1|))) (-15 -1367 ((-1288 |#1|) $)) (-15 -3172 ((-977 $))) (-15 -3734 ((-977 $))) (IF (|has| |#1| (-360)) (-15 -3094 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) (-1070) (-1264 |#1|)) (T -724)) -((-3893 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3)))) (-1488 (*1 *2) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) (-2721 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3)))) (-2709 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) (-4035 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-4117 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-1367 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-3172 (*1 *2) (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-3734 (*1 *2) (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1264 *3)))) (-3094 (*1 *1 *1) (-12 (-4 *2 (-360)) (-4 *2 (-1070)) (-5 *1 (-724 *2 *3)) (-4 *3 (-1264 *2))))) -(-13 (-1264 |#1|) (-628 |#2|) (-10 -8 (-15 -3893 (|#2| |#2|)) (-15 -1488 (|#2|)) (-15 -2721 ($ |#2|)) (-15 -2709 (|#2| $)) (-15 -4035 ((-1288 |#1|) $)) (-15 -4117 ($ (-1288 |#1|))) (-15 -1367 ((-1288 |#1|) $)) (-15 -3172 ((-977 $))) (-15 -3734 ((-977 $))) (IF (|has| |#1| (-360)) (-15 -3094 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) -((-1957 (((-112) $ $) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-2411 ((|#1| $) 13)) (-3116 (((-1141) $) NIL)) (-4080 ((|#2| $) 12)) (-4125 (($ |#1| |#2|) 16)) (-4113 (((-876) $) NIL) (($ (-2 (|:| -2411 |#1|) (|:| -4080 |#2|))) 15) (((-2 (|:| -2411 |#1|) (|:| -4080 |#2|)) $) 14)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 11))) -(((-725 |#1| |#2| |#3|) (-13 (-861) (-502 (-2 (|:| -2411 |#1|) (|:| -4080 |#2|))) (-10 -8 (-15 -4080 (|#2| $)) (-15 -2411 (|#1| $)) (-15 -4125 ($ |#1| |#2|)))) (-861) (-1121) (-1 (-112) (-2 (|:| -2411 |#1|) (|:| -4080 |#2|)) (-2 (|:| -2411 |#1|) (|:| -4080 |#2|)))) (T -725)) -((-4080 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-861)) (-14 *4 (-1 (-112) (-2 (|:| -2411 *3) (|:| -4080 *2)) (-2 (|:| -2411 *3) (|:| -4080 *2)))))) (-2411 (*1 *2 *1) (-12 (-4 *2 (-861)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1121)) (-14 *4 (-1 (-112) (-2 (|:| -2411 *2) (|:| -4080 *3)) (-2 (|:| -2411 *2) (|:| -4080 *3)))))) (-4125 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1121)) (-14 *4 (-1 (-112) (-2 (|:| -2411 *2) (|:| -4080 *3)) (-2 (|:| -2411 *2) (|:| -4080 *3))))))) -(-13 (-861) (-502 (-2 (|:| -2411 |#1|) (|:| -4080 |#2|))) (-10 -8 (-15 -4080 (|#2| $)) (-15 -2411 (|#1| $)) (-15 -4125 ($ |#1| |#2|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 66)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2317 ((|#1| $) NIL) (((-115) $) 39)) (-1851 (((-3 $ "failed") $) 103)) (-4217 ((|#2| (-115) |#2|) 93)) (-2486 (((-112) $) NIL)) (-3016 (($ |#1| (-372 (-115))) 14)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2706 (($ $ (-1 |#2| |#2|)) 65)) (-3857 (($ $ (-1 |#2| |#2|)) 44)) (-4369 ((|#2| $ |#2|) 33)) (-1882 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-4113 (((-876) $) 73) (($ (-576)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) 37 T CONST)) (-2950 (((-112) $ $) NIL)) (-2247 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-4313 (($) 21 T CONST)) (-4322 (($) 9 T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) 48) (($ $ $) NIL)) (-4026 (($ $ $) 83)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) 64)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) -(((-726 |#1| |#2|) (-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2247 ($ $)) (-15 -2247 ($ $ $)) (-15 -1882 (|#1| |#1|))) |%noBranch|) (-15 -3857 ($ $ (-1 |#2| |#2|))) (-15 -2706 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -4217 (|#2| (-115) |#2|)) (-15 -3016 ($ |#1| (-372 (-115)))))) (-1070) (-660 |#1|)) (T -726)) -((-2247 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-2247 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-1882 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-3857 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)))) (-2706 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)) (-4 *4 (-660 *3)))) (-4217 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1070)) (-5 *1 (-726 *4 *2)) (-4 *2 (-660 *4)))) (-3016 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1070)) (-5 *1 (-726 *2 *4)) (-4 *4 (-660 *2))))) -(-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2247 ($ $)) (-15 -2247 ($ $ $)) (-15 -1882 (|#1| |#1|))) |%noBranch|) (-15 -3857 ($ $ (-1 |#2| |#2|))) (-15 -2706 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -4217 (|#2| (-115) |#2|)) (-15 -3016 ($ |#1| (-372 (-115)))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 33)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2721 (($ |#1| |#2|) 25)) (-1851 (((-3 $ "failed") $) 51)) (-2486 (((-112) $) 35)) (-1488 ((|#2| $) 12)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 52)) (-3116 (((-1141) $) NIL)) (-1867 (((-3 $ "failed") $ $) 50)) (-4113 (((-876) $) 24) (($ (-576)) 19) ((|#1| $) 13)) (-2910 (((-783)) 28 T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 16 T CONST)) (-4322 (($) 30 T CONST)) (-3939 (((-112) $ $) 41)) (-4037 (($ $) 46) (($ $ $) 40)) (-4026 (($ $ $) 43)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21) (($ $ $) 20))) -(((-727 |#1| |#2| |#3| |#4| |#5|) (-13 (-1070) (-10 -8 (-15 -1488 (|#2| $)) (-15 -4113 (|#1| $)) (-15 -2721 ($ |#1| |#2|)) (-15 -1867 ((-3 $ "failed") $ $)) (-15 -1851 ((-3 $ "failed") $)) (-15 -1669 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -727)) -((-1851 (*1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1488 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4113 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2721 (*1 *1 *2 *3) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1867 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1669 (*1 *1 *1) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1070) (-10 -8 (-15 -1488 (|#2| $)) (-15 -4113 (|#1| $)) (-15 -2721 ($ |#1| |#2|)) (-15 -1867 ((-3 $ "failed") $ $)) (-15 -1851 ((-3 $ "failed") $)) (-15 -1669 ($ $)))) -((* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-728 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-729 |#2|) (-174)) (T -728)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-729 |#1|) (-141) (-174)) (T -729)) -NIL -(-13 (-111 |t#1| |t#1|) (-652 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3385 (($ |#1|) 17) (($ $ |#1|) 20)) (-2897 (($ |#1|) 18) (($ $ |#1|) 21)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2486 (((-112) $) NIL)) (-1524 (($ |#1| |#1| |#1| |#1|) 8)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 16)) (-3116 (((-1141) $) NIL)) (-2145 ((|#1| $ |#1|) 24) (((-845 |#1|) $ (-845 |#1|)) 32)) (-2117 (($ $ $) NIL)) (-3871 (($ $ $) NIL)) (-4113 (((-876) $) 39)) (-2950 (((-112) $ $) NIL)) (-4322 (($) 9 T CONST)) (-3939 (((-112) $ $) 48)) (-4047 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 14))) -(((-730 |#1|) (-13 (-485) (-10 -8 (-15 -1524 ($ |#1| |#1| |#1| |#1|)) (-15 -3385 ($ |#1|)) (-15 -2897 ($ |#1|)) (-15 -1851 ($)) (-15 -3385 ($ $ |#1|)) (-15 -2897 ($ $ |#1|)) (-15 -1851 ($ $)) (-15 -2145 (|#1| $ |#1|)) (-15 -2145 ((-845 |#1|) $ (-845 |#1|))))) (-374)) (T -730)) -((-1524 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3385 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2897 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-1851 (*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3385 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-1851 (*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2145 (*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2145 (*1 *2 *1 *2) (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3))))) -(-13 (-485) (-10 -8 (-15 -1524 ($ |#1| |#1| |#1| |#1|)) (-15 -3385 ($ |#1|)) (-15 -2897 ($ |#1|)) (-15 -1851 ($)) (-15 -3385 ($ $ |#1|)) (-15 -2897 ($ $ |#1|)) (-15 -1851 ($ $)) (-15 -2145 (|#1| $ |#1|)) (-15 -2145 ((-845 |#1|) $ (-845 |#1|))))) -((-1578 (($ $ (-940)) 19)) (-3303 (($ $ (-940)) 20)) (** (($ $ (-940)) 10))) -(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-940))) (-15 -3303 (|#1| |#1| (-940))) (-15 -1578 (|#1| |#1| (-940)))) (-732)) (T -731)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-940))) (-15 -3303 (|#1| |#1| (-940))) (-15 -1578 (|#1| |#1| (-940)))) -((-1957 (((-112) $ $) 7)) (-1578 (($ $ (-940)) 16)) (-3303 (($ $ (-940)) 15)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8)) (** (($ $ (-940)) 14)) (* (($ $ $) 17))) -(((-732) (-141)) (T -732)) -((* (*1 *1 *1 *1) (-4 *1 (-732))) (-1578 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) (-3303 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940))))) -(-13 (-1121) (-10 -8 (-15 * ($ $ $)) (-15 -1578 ($ $ (-940))) (-15 -3303 ($ $ (-940))) (-15 ** ($ $ (-940))))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1578 (($ $ (-940)) NIL) (($ $ (-783)) 18)) (-2486 (((-112) $) 10)) (-3303 (($ $ (-940)) NIL) (($ $ (-783)) 19)) (** (($ $ (-940)) NIL) (($ $ (-783)) 16))) -(((-733 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -3303 (|#1| |#1| (-783))) (-15 -1578 (|#1| |#1| (-783))) (-15 -2486 ((-112) |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -3303 (|#1| |#1| (-940))) (-15 -1578 (|#1| |#1| (-940)))) (-734)) (T -733)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -3303 (|#1| |#1| (-783))) (-15 -1578 (|#1| |#1| (-783))) (-15 -2486 ((-112) |#1|)) (-15 ** (|#1| |#1| (-940))) (-15 -3303 (|#1| |#1| (-940))) (-15 -1578 (|#1| |#1| (-940)))) -((-1957 (((-112) $ $) 7)) (-3592 (((-3 $ "failed") $) 18)) (-1578 (($ $ (-940)) 16) (($ $ (-783)) 23)) (-1851 (((-3 $ "failed") $) 20)) (-2486 (((-112) $) 24)) (-1584 (((-3 $ "failed") $) 19)) (-3303 (($ $ (-940)) 15) (($ $ (-783)) 22)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4322 (($) 25 T CONST)) (-3939 (((-112) $ $) 8)) (** (($ $ (-940)) 14) (($ $ (-783)) 21)) (* (($ $ $) 17))) -(((-734) (-141)) (T -734)) -((-4322 (*1 *1) (-4 *1 (-734))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) (-1578 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-3303 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-1851 (*1 *1 *1) (|partial| -4 *1 (-734))) (-1584 (*1 *1 *1) (|partial| -4 *1 (-734))) (-3592 (*1 *1 *1) (|partial| -4 *1 (-734)))) -(-13 (-732) (-10 -8 (-15 (-4322) ($) -2666) (-15 -2486 ((-112) $)) (-15 -1578 ($ $ (-783))) (-15 -3303 ($ $ (-783))) (-15 ** ($ $ (-783))) (-15 -1851 ((-3 $ "failed") $)) (-15 -1584 ((-3 $ "failed") $)) (-15 -3592 ((-3 $ "failed") $)))) -(((-102) . T) ((-625 (-876)) . T) ((-732) . T) ((-1121) . T) ((-1238) . T)) -((-2201 (((-783)) 39)) (-2982 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2317 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 23)) (-2721 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) 49)) (-1851 (((-3 $ "failed") $) 69)) (-4370 (($) 43)) (-2595 ((|#2| $) 21)) (-2549 (($) 18)) (-4107 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-2828 (((-701 |#2|) (-1288 $) (-1 |#2| |#2|)) 64)) (-1556 (((-1288 |#2|) $) NIL) (($ (-1288 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-4358 ((|#3| $) 36)) (-2704 (((-1288 $)) 33))) -(((-735 |#1| |#2| |#3|) (-10 -8 (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4370 (|#1|)) (-15 -2201 ((-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2828 ((-701 |#2|) (-1288 |#1|) (-1 |#2| |#2|))) (-15 -2721 ((-3 |#1| "failed") (-419 |#3|))) (-15 -1556 (|#1| |#3|)) (-15 -2721 (|#1| |#3|)) (-15 -2549 (|#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -1556 (|#3| |#1|)) (-15 -1556 (|#1| (-1288 |#2|))) (-15 -1556 ((-1288 |#2|) |#1|)) (-15 -2704 ((-1288 |#1|))) (-15 -4358 (|#3| |#1|)) (-15 -2595 (|#2| |#1|)) (-15 -1851 ((-3 |#1| "failed") |#1|))) (-736 |#2| |#3|) (-174) (-1264 |#2|)) (T -735)) -((-2201 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-783)) (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5))))) -(-10 -8 (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4370 (|#1|)) (-15 -2201 ((-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2828 ((-701 |#2|) (-1288 |#1|) (-1 |#2| |#2|))) (-15 -2721 ((-3 |#1| "failed") (-419 |#3|))) (-15 -1556 (|#1| |#3|)) (-15 -2721 (|#1| |#3|)) (-15 -2549 (|#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -1556 (|#3| |#1|)) (-15 -1556 (|#1| (-1288 |#2|))) (-15 -1556 ((-1288 |#2|) |#1|)) (-15 -2704 ((-1288 |#1|))) (-15 -4358 (|#3| |#1|)) (-15 -2595 (|#2| |#1|)) (-15 -1851 ((-3 |#1| "failed") |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 105 (|has| |#1| (-374)))) (-2390 (($ $) 106 (|has| |#1| (-374)))) (-3302 (((-112) $) 108 (|has| |#1| (-374)))) (-2637 (((-701 |#1|) (-1288 $)) 53) (((-701 |#1|)) 68)) (-3832 ((|#1| $) 59)) (-2063 (((-1210 (-940) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 125 (|has| |#1| (-374)))) (-3589 (((-430 $) $) 126 (|has| |#1| (-374)))) (-4386 (((-112) $ $) 116 (|has| |#1| (-374)))) (-2201 (((-783)) 99 (|has| |#1| (-379)))) (-3170 (($) 18 T CONST)) (-2982 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2317 (((-576) $) 184 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 181)) (-2496 (($ (-1288 |#1|) (-1288 $)) 55) (($ (-1288 |#1|)) 71)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-1895 (($ $ $) 120 (|has| |#1| (-374)))) (-1481 (((-701 |#1|) $ (-1288 $)) 60) (((-701 |#1|) $) 66)) (-1930 (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 175) (((-701 |#1|) (-701 $)) 174)) (-2721 (($ |#2|) 169) (((-3 $ "failed") (-419 |#2|)) 166 (|has| |#1| (-374)))) (-1851 (((-3 $ "failed") $) 37)) (-4135 (((-940)) 61)) (-4370 (($) 102 (|has| |#1| (-379)))) (-1908 (($ $ $) 119 (|has| |#1| (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 114 (|has| |#1| (-374)))) (-3712 (($) 160 (|has| |#1| (-360)))) (-2616 (((-112) $) 161 (|has| |#1| (-360)))) (-2824 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-2171 (((-112) $) 127 (|has| |#1| (-374)))) (-3359 (((-940) $) 163 (|has| |#1| (-360))) (((-845 (-940)) $) 149 (|has| |#1| (-360)))) (-2486 (((-112) $) 35)) (-2595 ((|#1| $) 58)) (-3552 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-374)))) (-4293 ((|#2| $) 51 (|has| |#1| (-374)))) (-3787 (((-940) $) 101 (|has| |#1| (-379)))) (-2709 ((|#2| $) 167)) (-2160 (((-701 (-576)) (-1288 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 173) (((-701 |#1|) (-1288 $)) 172)) (-3076 (($ (-656 $)) 112 (|has| |#1| (-374))) (($ $ $) 111 (|has| |#1| (-374)))) (-2447 (((-1179) $) 10)) (-1669 (($ $) 128 (|has| |#1| (-374)))) (-3650 (($) 154 (|has| |#1| (-360)) CONST)) (-2411 (($ (-940)) 100 (|has| |#1| (-379)))) (-3116 (((-1141) $) 11)) (-2549 (($) 171)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 113 (|has| |#1| (-374)))) (-3115 (($ (-656 $)) 110 (|has| |#1| (-374))) (($ $ $) 109 (|has| |#1| (-374)))) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) 157 (|has| |#1| (-360)))) (-1452 (((-430 $) $) 124 (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 121 (|has| |#1| (-374)))) (-1946 (((-3 $ "failed") $ $) 104 (|has| |#1| (-374)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-374)))) (-2812 (((-783) $) 117 (|has| |#1| (-374)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 118 (|has| |#1| (-374)))) (-1790 ((|#1| (-1288 $)) 54) ((|#1|) 67)) (-3168 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-4107 (($ $ (-783)) 147 (-3795 (-2311 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 145 (-3795 (-2311 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) 141 (-2311 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197) (-783)) 140 (-2311 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-656 (-1197))) 139 (-2311 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197)) 137 (-2311 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 135 (|has| |#1| (-374)))) (-2828 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-3881 ((|#2|) 170)) (-4223 (($) 159 (|has| |#1| (-360)))) (-4314 (((-1288 |#1|) $ (-1288 $)) 57) (((-701 |#1|) (-1288 $) (-1288 $)) 56) (((-1288 |#1|) $) 73) (((-701 |#1|) (-1288 $)) 72)) (-1556 (((-1288 |#1|) $) 70) (($ (-1288 |#1|)) 69) ((|#2| $) 186) (($ |#2|) 168)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 156 (|has| |#1| (-360)))) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-374))) (($ (-419 (-576))) 98 (-3795 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-4276 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4358 ((|#2| $) 52)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-2704 (((-1288 $)) 74)) (-4134 (((-112) $ $) 107 (|has| |#1| (-374)))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-783)) 148 (-3795 (-2311 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 146 (-3795 (-2311 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) 144 (-2311 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197) (-783)) 143 (-2311 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-656 (-1197))) 142 (-2311 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1197)) 138 (-2311 (|has| |#1| (-919 (-1197))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 133 (|has| |#1| (-374)))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ $) 132 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) -(((-736 |#1| |#2|) (-141) (-174) (-1264 |t#1|)) (T -736)) -((-2549 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1264 *2)))) (-3881 (*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) (-2721 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1264 *3)))) (-1556 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1264 *3)))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) (-2721 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-374)) (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) (-2828 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1264 *5)) (-5 *2 (-701 *5))))) -(-13 (-421 |t#1| |t#2|) (-174) (-626 |t#2|) (-423 |t#1|) (-388 |t#1|) (-10 -8 (-15 -2549 ($)) (-15 -3881 (|t#2|)) (-15 -2721 ($ |t#2|)) (-15 -1556 ($ |t#2|)) (-15 -2709 (|t#2| $)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-374)) (-6 (-232 |t#1|)) (-15 -2721 ((-3 $ "failed") (-419 |t#2|))) (-15 -2828 ((-701 |t#1|) (-1288 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-102) . T) ((-111 #0# #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3795 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) . T) ((-626 |#2|) . T) ((-234 $) -3795 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-232 |#1|) |has| |#1| (-374)) ((-238) -3795 (|has| |#1| (-360)) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-237) -3795 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-272 |#1|) |has| |#1| (-374)) ((-248) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-300) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-317) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-374) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -3795 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| |#2|) . T) ((-421 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-568) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -3795 (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))))) ((-917 (-1197)) -12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -3795 (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1197))))) ((-939) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) -3795 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-360)) ((-1238) . T) ((-1242) -3795 (|has| |#1| (-360)) (|has| |#1| (-374)))) -((-3170 (($) 11)) (-1851 (((-3 $ "failed") $) 14)) (-2486 (((-112) $) 10)) (** (($ $ (-940)) NIL) (($ $ (-783)) 20))) -(((-737 |#1|) (-10 -8 (-15 -1851 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -2486 ((-112) |#1|)) (-15 -3170 (|#1|)) (-15 ** (|#1| |#1| (-940)))) (-738)) (T -737)) -NIL -(-10 -8 (-15 -1851 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -2486 ((-112) |#1|)) (-15 -3170 (|#1|)) (-15 ** (|#1| |#1| (-940)))) -((-1957 (((-112) $ $) 7)) (-3170 (($) 19 T CONST)) (-1851 (((-3 $ "failed") $) 16)) (-2486 (((-112) $) 18)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4322 (($) 20 T CONST)) (-3939 (((-112) $ $) 8)) (** (($ $ (-940)) 14) (($ $ (-783)) 17)) (* (($ $ $) 15))) -(((-738) (-141)) (T -738)) -((-4322 (*1 *1) (-4 *1 (-738))) (-3170 (*1 *1) (-4 *1 (-738))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) (-1851 (*1 *1 *1) (|partial| -4 *1 (-738)))) -(-13 (-1133) (-10 -8 (-15 (-4322) ($) -2666) (-15 -3170 ($) -2666) (-15 -2486 ((-112) $)) (-15 ** ($ $ (-783))) (-15 -1851 ((-3 $ "failed") $)))) -(((-102) . T) ((-625 (-876)) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1613 (((-2 (|:| -4251 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-2887 (((-2 (|:| -4251 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1565 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13)) (-3325 (((-2 (|:| |poly| |#2|) (|:| -4251 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48))) -(((-739 |#1| |#2|) (-10 -7 (-15 -2887 ((-2 (|:| -4251 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1613 ((-2 (|:| -4251 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1565 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3325 ((-2 (|:| |poly| |#2|) (|:| -4251 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1264 |#1|)) (T -739)) -((-3325 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4251 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) (-1565 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-739 *5 *2)) (-4 *5 (-374)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4251 (-430 *3)) (|:| |special| (-430 *3)))) (-5 *1 (-739 *5 *3)))) (-2887 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4251 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3))))) -(-10 -7 (-15 -2887 ((-2 (|:| -4251 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1613 ((-2 (|:| -4251 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1565 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3325 ((-2 (|:| |poly| |#2|) (|:| -4251 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) -((-3414 ((|#7| (-656 |#5|) |#6|) NIL)) (-2423 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-740 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2423 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3414 (|#7| (-656 |#5|) |#6|))) (-861) (-805) (-805) (-1070) (-1070) (-968 |#4| |#2| |#1|) (-968 |#5| |#3| |#1|)) (T -740)) -((-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *9)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *8 (-1070)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-968 *8 *6 *5)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1070)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-968 *8 *6 *5))))) -(-10 -7 (-15 -2423 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3414 (|#7| (-656 |#5|) |#6|))) -((-2423 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-741 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2423 (|#7| (-1 |#2| |#1|) |#6|))) (-861) (-861) (-805) (-805) (-1070) (-968 |#5| |#3| |#1|) (-968 |#5| |#4| |#2|)) (T -741)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-805)) (-4 *9 (-1070)) (-4 *2 (-968 *9 *8 *6)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) (-4 *4 (-968 *9 *7 *5))))) -(-10 -7 (-15 -2423 (|#7| (-1 |#2| |#1|) |#6|))) -((-1452 (((-430 |#4|) |#4|) 42))) -(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1452 ((-430 |#4|) |#4|))) (-805) (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)) (-15 -1654 ((-3 $ "failed") (-1197))))) (-317) (-968 (-971 |#3|) |#1| |#2|)) (T -742)) -((-1452 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)) (-15 -1654 ((-3 $ "failed") (-1197)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-968 (-971 *6) *4 *5))))) -(-10 -7 (-15 -1452 ((-430 |#4|) |#4|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1585 (((-656 (-878 |#1|)) $) NIL)) (-1421 (((-1193 $) $ (-878 |#1|)) NIL) (((-1193 |#2|) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2390 (($ $) NIL (|has| |#2| (-568)))) (-3302 (((-112) $) NIL (|has| |#2| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 (-878 |#1|))) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2658 (($ $) NIL (|has| |#2| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-878 |#1|) "failed") $) NIL)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-878 |#1|) $) NIL)) (-2970 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-3310 (($ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#2| (-928)))) (-1975 (($ $ |#2| (-543 (-878 |#1|)) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-1574 (($ (-1193 |#2|) (-878 |#1|)) NIL) (($ (-1193 $) (-878 |#1|)) NIL)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#2| (-543 (-878 |#1|))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ (-878 |#1|)) NIL)) (-2192 (((-543 (-878 |#1|)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-3784 (($ (-1 (-543 (-878 |#1|)) (-543 (-878 |#1|))) $) NIL)) (-2423 (($ (-1 |#2| |#2|) $) NIL)) (-3477 (((-3 (-878 |#1|) "failed") $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#2| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2447 (((-1179) $) NIL)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -4080 (-783))) "failed") $) NIL)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) NIL)) (-1686 ((|#2| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#2| (-928)))) (-1946 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-878 |#1|) |#2|) NIL) (($ $ (-656 (-878 |#1|)) (-656 |#2|)) NIL) (($ $ (-878 |#1|) $) NIL) (($ $ (-656 (-878 |#1|)) (-656 $)) NIL)) (-1790 (($ $ (-878 |#1|)) NIL (|has| |#2| (-174)))) (-4107 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-2196 (((-543 (-878 |#1|)) $) NIL) (((-783) $ (-878 |#1|)) NIL) (((-656 (-783)) $ (-656 (-878 |#1|))) NIL)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-878 |#1|) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-878 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1944 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-878 |#1|)) NIL) (($ $) NIL (|has| |#2| (-568))) (($ (-419 (-576))) NIL (-3795 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576))))))) (-3244 (((-656 |#2|) $) NIL)) (-2707 ((|#2| $ (-543 (-878 |#1|))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-656 (-878 |#1|)) (-656 (-783))) NIL) (($ $ (-878 |#1|) (-783)) NIL) (($ $ (-656 (-878 |#1|))) NIL) (($ $ (-878 |#1|)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-743 |#1| |#2|) (-968 |#2| (-543 (-878 |#1|)) (-878 |#1|)) (-656 (-1197)) (-1070)) (T -743)) -NIL -(-968 |#2| (-543 (-878 |#1|)) (-878 |#1|)) -((-3508 (((-2 (|:| -2214 (-971 |#3|)) (|:| -2130 (-971 |#3|))) |#4|) 14)) (-1443 ((|#4| |#4| |#2|) 33)) (-1837 ((|#4| (-419 (-971 |#3|)) |#2|) 64)) (-1835 ((|#4| (-1193 (-971 |#3|)) |#2|) 77)) (-1886 ((|#4| (-1193 |#4|) |#2|) 51)) (-2440 ((|#4| |#4| |#2|) 54)) (-1452 (((-430 |#4|) |#4|) 40))) -(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3508 ((-2 (|:| -2214 (-971 |#3|)) (|:| -2130 (-971 |#3|))) |#4|)) (-15 -2440 (|#4| |#4| |#2|)) (-15 -1886 (|#4| (-1193 |#4|) |#2|)) (-15 -1443 (|#4| |#4| |#2|)) (-15 -1835 (|#4| (-1193 (-971 |#3|)) |#2|)) (-15 -1837 (|#4| (-419 (-971 |#3|)) |#2|)) (-15 -1452 ((-430 |#4|) |#4|))) (-805) (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)))) (-568) (-968 (-419 (-971 |#3|)) |#1| |#2|)) (T -744)) -((-1452 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5)))) (-1837 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-971 *6))) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $))))))) (-1835 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 (-971 *6))) (-4 *6 (-568)) (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $))))))) (-1443 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-1193 *2)) (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $))))) (-4 *6 (-568)))) (-2440 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -2214 (-971 *6)) (|:| -2130 (-971 *6)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5))))) -(-10 -7 (-15 -3508 ((-2 (|:| -2214 (-971 |#3|)) (|:| -2130 (-971 |#3|))) |#4|)) (-15 -2440 (|#4| |#4| |#2|)) (-15 -1886 (|#4| (-1193 |#4|) |#2|)) (-15 -1443 (|#4| |#4| |#2|)) (-15 -1835 (|#4| (-1193 (-971 |#3|)) |#2|)) (-15 -1837 (|#4| (-419 (-971 |#3|)) |#2|)) (-15 -1452 ((-430 |#4|) |#4|))) -((-1452 (((-430 |#4|) |#4|) 54))) -(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1452 ((-430 |#4|) |#4|))) (-805) (-861) (-13 (-317) (-148)) (-968 (-419 |#3|) |#1| |#2|)) (T -745)) -((-1452 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-968 (-419 *6) *4 *5))))) -(-10 -7 (-15 -1452 ((-430 |#4|) |#4|))) -((-2423 (((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)) 18))) -(((-746 |#1| |#2| |#3|) (-10 -7 (-15 -2423 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) (-1070) (-1070) (-738)) (T -746)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) (-5 *1 (-746 *5 *6 *7))))) -(-10 -7 (-15 -2423 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 36)) (-4073 (((-656 (-2 (|:| -2862 |#1|) (|:| -1619 |#2|))) $) 37)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2201 (((-783)) 22 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2317 ((|#2| $) NIL) ((|#1| $) NIL)) (-3310 (($ $) 102 (|has| |#2| (-861)))) (-1851 (((-3 $ "failed") $) 85)) (-4370 (($) 48 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) 70)) (-2683 (((-656 $) $) 52)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| |#2|) 17)) (-2423 (($ (-1 |#1| |#1|) $) 68)) (-3787 (((-940) $) 43 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1700 ((|#2| $) 101 (|has| |#2| (-861)))) (-1711 ((|#1| $) 100 (|has| |#2| (-861)))) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) 35 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 99) (($ (-576)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-656 (-2 (|:| -2862 |#1|) (|:| -1619 |#2|)))) 11)) (-3244 (((-656 |#1|) $) 54)) (-2707 ((|#1| $ |#2|) 115)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 12 T CONST)) (-4322 (($) 44 T CONST)) (-3939 (((-112) $ $) 105)) (-4037 (($ $) 61) (($ $ $) NIL)) (-4026 (($ $ $) 33)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-747 |#1| |#2|) (-13 (-1070) (-1059 |#2|) (-1059 |#1|) (-10 -8 (-15 -1564 ($ |#1| |#2|)) (-15 -2707 (|#1| $ |#2|)) (-15 -4113 ($ (-656 (-2 (|:| -2862 |#1|) (|:| -1619 |#2|))))) (-15 -4073 ((-656 (-2 (|:| -2862 |#1|) (|:| -1619 |#2|))) $)) (-15 -2423 ($ (-1 |#1| |#1|) $)) (-15 -4101 ((-112) $)) (-15 -3244 ((-656 |#1|) $)) (-15 -2683 ((-656 $) $)) (-15 -2018 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -1700 (|#2| $)) (-15 -1711 (|#1| $)) (-15 -3310 ($ $))) |%noBranch|))) (-1070) (-738)) (T -747)) -((-1564 (*1 *1 *2 *3) (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-738)))) (-2707 (*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2862 *3) (|:| -1619 *4)))) (-4 *3 (-1070)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -2862 *3) (|:| -1619 *4)))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-747 *3 *4)) (-4 *4 (-738)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) (-1700 (*1 *2 *1) (-12 (-4 *2 (-738)) (-4 *2 (-861)) (-5 *1 (-747 *3 *2)) (-4 *3 (-1070)))) (-1711 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *3 (-738)))) (-3310 (*1 *1 *1) (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1070)) (-4 *3 (-738))))) -(-13 (-1070) (-1059 |#2|) (-1059 |#1|) (-10 -8 (-15 -1564 ($ |#1| |#2|)) (-15 -2707 (|#1| $ |#2|)) (-15 -4113 ($ (-656 (-2 (|:| -2862 |#1|) (|:| -1619 |#2|))))) (-15 -4073 ((-656 (-2 (|:| -2862 |#1|) (|:| -1619 |#2|))) $)) (-15 -2423 ($ (-1 |#1| |#1|) $)) (-15 -4101 ((-112) $)) (-15 -3244 ((-656 |#1|) $)) (-15 -2683 ((-656 $) $)) (-15 -2018 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -1700 (|#2| $)) (-15 -1711 (|#1| $)) (-15 -3310 ($ $))) |%noBranch|))) -((-1957 (((-112) $ $) 20)) (-4025 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-1831 (($ $ $) 73)) (-4084 (((-112) $ $) 74)) (-4234 (((-112) $ (-783)) 8)) (-3704 (($ (-656 |#1|)) 69) (($) 68)) (-1954 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-1942 (($ $) 63)) (-3841 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3872 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-2825 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2779 (((-112) $ $) 65)) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23)) (-1431 (($ $ $) 70)) (-3743 ((|#1| $) 40)) (-3695 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3116 (((-1141) $) 22)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2372 ((|#1| $) 42)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4071 (((-656 (-2 (|:| -2905 |#1|) (|:| -3127 (-783)))) $) 62)) (-3198 (($ $ |#1|) 72) (($ $ $) 71)) (-3091 (($) 50) (($ (-656 |#1|)) 49)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-1556 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 51)) (-4113 (((-876) $) 18)) (-1515 (($ (-656 |#1|)) 67) (($) 66)) (-2950 (((-112) $ $) 21)) (-4156 (($ (-656 |#1|)) 43)) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19)) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-748 |#1|) (-141) (-1121)) (T -748)) -NIL -(-13 (-707 |t#1|) (-1119 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-876)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-707 |#1|) . T) ((-1119 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-4025 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-1831 (($ $ $) 96)) (-4084 (((-112) $ $) 104)) (-4234 (((-112) $ (-783)) NIL)) (-3704 (($ (-656 |#1|)) 26) (($) 17)) (-1954 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1942 (($ $) 85)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3872 (($ |#1| $) 70 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464))) (($ |#1| $ (-576)) 75) (($ (-1 (-112) |#1|) $ (-576)) 78)) (-2825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (($ |#1| $ (-576)) 80) (($ (-1 (-112) |#1|) $ (-576)) 81)) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-3722 (((-656 |#1|) $) 32 (|has| $ (-6 -4464)))) (-2779 (((-112) $ $) 103)) (-4338 (($) 15) (($ |#1|) 28) (($ (-656 |#1|)) 23)) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#1|) $) 38)) (-1602 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1898 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 89)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-1431 (($ $ $) 94)) (-3743 ((|#1| $) 62)) (-3695 (($ |#1| $) 63) (($ |#1| $ (-783)) 86)) (-3116 (((-1141) $) NIL)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2372 ((|#1| $) 61)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 56)) (-3307 (($) 14)) (-4071 (((-656 (-2 (|:| -2905 |#1|) (|:| -3127 (-783)))) $) 55)) (-3198 (($ $ |#1|) NIL) (($ $ $) 95)) (-3091 (($) 16) (($ (-656 |#1|)) 25)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) 68 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) 79)) (-1556 (((-548) $) 36 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 22)) (-4113 (((-876) $) 49)) (-1515 (($ (-656 |#1|)) 27) (($) 18)) (-2950 (((-112) $ $) NIL)) (-4156 (($ (-656 |#1|)) 24)) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 100)) (-1970 (((-783) $) 67 (|has| $ (-6 -4464))))) -(((-749 |#1|) (-13 (-748 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -4338 ($)) (-15 -4338 ($ |#1|)) (-15 -4338 ($ (-656 |#1|))) (-15 -2911 ((-656 |#1|) $)) (-15 -2825 ($ |#1| $ (-576))) (-15 -2825 ($ (-1 (-112) |#1|) $ (-576))) (-15 -3872 ($ |#1| $ (-576))) (-15 -3872 ($ (-1 (-112) |#1|) $ (-576))))) (-1121)) (T -749)) -((-4338 (*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-4338 (*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-4338 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-749 *3)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1121)))) (-2825 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-2825 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) (-5 *1 (-749 *4)))) (-3872 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) (-3872 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) (-5 *1 (-749 *4))))) -(-13 (-748 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -4338 ($)) (-15 -4338 ($ |#1|)) (-15 -4338 ($ (-656 |#1|))) (-15 -2911 ((-656 |#1|) $)) (-15 -2825 ($ |#1| $ (-576))) (-15 -2825 ($ (-1 (-112) |#1|) $ (-576))) (-15 -3872 ($ |#1| $ (-576))) (-15 -3872 ($ (-1 (-112) |#1|) $ (-576))))) -((-2239 (((-1293) (-1179)) 8))) -(((-750) (-10 -7 (-15 -2239 ((-1293) (-1179))))) (T -750)) -((-2239 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-750))))) -(-10 -7 (-15 -2239 ((-1293) (-1179)))) -((-3122 (((-656 |#1|) (-656 |#1|) (-656 |#1|)) 15))) -(((-751 |#1|) (-10 -7 (-15 -3122 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) (-861)) (T -751)) -((-3122 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-751 *3))))) -(-10 -7 (-15 -3122 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1585 (((-656 |#2|) $) 149)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 142 (|has| |#1| (-568)))) (-2390 (($ $) 141 (|has| |#1| (-568)))) (-3302 (((-112) $) 139 (|has| |#1| (-568)))) (-3586 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) 20)) (-1462 (($ $) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3562 (($ $) 97 (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-3612 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) 83 (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) 18 T CONST)) (-3310 (($ $) 133)) (-1851 (((-3 $ "failed") $) 37)) (-2818 (((-971 |#1|) $ (-783)) 111) (((-971 |#1|) $ (-783) (-783)) 110)) (-2654 (((-112) $) 150)) (-2722 (($) 108 (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-783) $ |#2|) 113) (((-783) $ |#2| (-783)) 112)) (-2486 (((-112) $) 35)) (-4005 (($ $ (-576)) 79 (|has| |#1| (-38 (-419 (-576)))))) (-4101 (((-112) $) 131)) (-1564 (($ $ (-656 |#2|) (-656 (-543 |#2|))) 148) (($ $ |#2| (-543 |#2|)) 147) (($ |#1| (-543 |#2|)) 132) (($ $ |#2| (-783)) 115) (($ $ (-656 |#2|) (-656 (-783))) 114)) (-2423 (($ (-1 |#1| |#1|) $) 130)) (-2608 (($ $) 105 (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) 128)) (-1711 ((|#1| $) 127)) (-2447 (((-1179) $) 10)) (-4412 (($ $ |#2|) 109 (|has| |#1| (-38 (-419 (-576)))))) (-3116 (((-1141) $) 11)) (-2419 (($ $ (-783)) 116)) (-1946 (((-3 $ "failed") $ $) 143 (|has| |#1| (-568)))) (-2156 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-2145 (($ $ |#2| $) 124) (($ $ (-656 |#2|) (-656 $)) 123) (($ $ (-656 (-304 $))) 122) (($ $ (-304 $)) 121) (($ $ $ $) 120) (($ $ (-656 $) (-656 $)) 119)) (-4107 (($ $ (-656 |#2|) (-656 (-783))) 44) (($ $ |#2| (-783)) 43) (($ $ (-656 |#2|)) 42) (($ $ |#2|) 40)) (-2196 (((-543 |#2|) $) 129)) (-3623 (($ $) 95 (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) 84 (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) 85 (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) 93 (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) 86 (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) 151)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-568))) (($ (-419 (-576))) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2707 ((|#1| $ (-543 |#2|)) 134) (($ $ |#2| (-783)) 118) (($ $ (-656 |#2|) (-656 (-783))) 117)) (-4276 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-3653 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) 140 (|has| |#1| (-568)))) (-3632 (($ $) 103 (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) 91 (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-1972 (($ $) 101 (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) 89 (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) 99 (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) 87 (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-656 |#2|) (-656 (-783))) 47) (($ $ |#2| (-783)) 46) (($ $ (-656 |#2|)) 45) (($ $ |#2|) 41)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 135 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ $) 107 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 78 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 138 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 137 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 126) (($ $ |#1|) 125))) -(((-752 |#1| |#2|) (-141) (-1070) (-861)) (T -752)) -((-2707 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) (-4 *2 (-861)))) (-2707 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-2419 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-861)))) (-1564 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) (-4 *2 (-861)))) (-1564 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-3359 (*1 *2 *1 *3) (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *2 (-783)))) (-3359 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)))) (-2818 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) (-5 *2 (-971 *4)))) (-2818 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) (-5 *2 (-971 *4)))) (-4412 (*1 *1 *1 *2) (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)) (-4 *3 (-38 (-419 (-576))))))) -(-13 (-917 |t#2|) (-994 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-319 $) (-10 -8 (-15 -2707 ($ $ |t#2| (-783))) (-15 -2707 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -2419 ($ $ (-783))) (-15 -1564 ($ $ |t#2| (-783))) (-15 -1564 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -3359 ((-783) $ |t#2|)) (-15 -3359 ((-783) $ |t#2| (-783))) (-15 -2818 ((-971 |t#1|) $ (-783))) (-15 -2818 ((-971 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -4412 ($ $ |t#2|)) (-6 (-1023)) (-6 (-1223))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-543 |#2|)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-300) |has| |#1| (-568)) ((-319 $) . T) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-911 $ |#2|) . T) ((-917 |#2|) . T) ((-919 |#2|) . T) ((-994 |#1| #0# |#2|) . T) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T)) -((-1452 (((-430 (-1193 |#4|)) (-1193 |#4|)) 30) (((-430 |#4|) |#4|) 26))) -(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1452 ((-430 |#4|) |#4|)) (-15 -1452 ((-430 (-1193 |#4|)) (-1193 |#4|)))) (-861) (-805) (-13 (-317) (-148)) (-968 |#3| |#2| |#1|)) (T -753)) -((-1452 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) -(-10 -7 (-15 -1452 ((-430 |#4|) |#4|)) (-15 -1452 ((-430 (-1193 |#4|)) (-1193 |#4|)))) -((-2158 (((-430 |#4|) |#4| |#2|) 140)) (-3929 (((-430 |#4|) |#4|) NIL)) (-3589 (((-430 (-1193 |#4|)) (-1193 |#4|)) 127) (((-430 |#4|) |#4|) 52)) (-2195 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1452 (-1193 |#4|)) (|:| -4080 (-576)))))) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 81)) (-3257 (((-1193 |#3|) (-1193 |#3|) (-576)) 166)) (-3001 (((-656 (-783)) (-1193 |#4|) (-656 |#2|) (-783)) 75)) (-2709 (((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-1193 |#3|) (-1193 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|)) 79)) (-3021 (((-2 (|:| |upol| (-1193 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1452 (-1193 |#3|)) (|:| -4080 (-576))))) (|:| |ctpol| |#3|)) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 27)) (-3725 (((-2 (|:| -2571 (-1193 |#4|)) (|:| |polval| (-1193 |#3|))) (-1193 |#4|) (-1193 |#3|) (-576)) 72)) (-3940 (((-576) (-656 (-2 (|:| -1452 (-1193 |#3|)) (|:| -4080 (-576))))) 162)) (-2154 ((|#4| (-576) (-430 |#4|)) 73)) (-3836 (((-112) (-656 (-2 (|:| -1452 (-1193 |#3|)) (|:| -4080 (-576)))) (-656 (-2 (|:| -1452 (-1193 |#3|)) (|:| -4080 (-576))))) NIL))) -(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3589 ((-430 |#4|) |#4|)) (-15 -3589 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -3929 ((-430 |#4|) |#4|)) (-15 -3940 ((-576) (-656 (-2 (|:| -1452 (-1193 |#3|)) (|:| -4080 (-576)))))) (-15 -2158 ((-430 |#4|) |#4| |#2|)) (-15 -3725 ((-2 (|:| -2571 (-1193 |#4|)) (|:| |polval| (-1193 |#3|))) (-1193 |#4|) (-1193 |#3|) (-576))) (-15 -2195 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1452 (-1193 |#4|)) (|:| -4080 (-576)))))) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -3021 ((-2 (|:| |upol| (-1193 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1452 (-1193 |#3|)) (|:| -4080 (-576))))) (|:| |ctpol| |#3|)) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -2154 (|#4| (-576) (-430 |#4|))) (-15 -3836 ((-112) (-656 (-2 (|:| -1452 (-1193 |#3|)) (|:| -4080 (-576)))) (-656 (-2 (|:| -1452 (-1193 |#3|)) (|:| -4080 (-576)))))) (-15 -2709 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-1193 |#3|) (-1193 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -3001 ((-656 (-783)) (-1193 |#4|) (-656 |#2|) (-783))) (-15 -3257 ((-1193 |#3|) (-1193 |#3|) (-576)))) (-805) (-861) (-317) (-968 |#3| |#1| |#2|)) (T -754)) -((-3257 (*1 *2 *2 *3) (-12 (-5 *2 (-1193 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-3001 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-4 *7 (-861)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783)))) (-2709 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1193 *11)) (-5 *6 (-656 *10)) (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-861)) (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-968 *11 *9 *10)) (-5 *2 (-656 (-1193 *5))) (-5 *1 (-754 *9 *10 *11 *5)) (-5 *3 (-1193 *5)))) (-3836 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-2 (|:| -1452 (-1193 *6)) (|:| -4080 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-2154 (*1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-968 *7 *5 *6)) (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-317)))) (-3021 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |upol| (-1193 *8)) (|:| |Lval| (-656 *8)) (|:| |Lfact| (-656 (-2 (|:| -1452 (-1193 *8)) (|:| -4080 (-576))))) (|:| |ctpol| *8))) (-5 *1 (-754 *6 *7 *8 *9)))) (-2195 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-968 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-656 (-2 (|:| -1452 (-1193 *9)) (|:| -4080 (-576))))))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9)))) (-3725 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-968 *8 *6 *7)) (-5 *2 (-2 (|:| -2571 (-1193 *9)) (|:| |polval| (-1193 *8)))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9)) (-5 *4 (-1193 *8)))) (-2158 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1452 (-1193 *6)) (|:| -4080 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-3929 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5)))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5))))) -(-10 -7 (-15 -3589 ((-430 |#4|) |#4|)) (-15 -3589 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -3929 ((-430 |#4|) |#4|)) (-15 -3940 ((-576) (-656 (-2 (|:| -1452 (-1193 |#3|)) (|:| -4080 (-576)))))) (-15 -2158 ((-430 |#4|) |#4| |#2|)) (-15 -3725 ((-2 (|:| -2571 (-1193 |#4|)) (|:| |polval| (-1193 |#3|))) (-1193 |#4|) (-1193 |#3|) (-576))) (-15 -2195 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1452 (-1193 |#4|)) (|:| -4080 (-576)))))) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -3021 ((-2 (|:| |upol| (-1193 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1452 (-1193 |#3|)) (|:| -4080 (-576))))) (|:| |ctpol| |#3|)) (-1193 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -2154 (|#4| (-576) (-430 |#4|))) (-15 -3836 ((-112) (-656 (-2 (|:| -1452 (-1193 |#3|)) (|:| -4080 (-576)))) (-656 (-2 (|:| -1452 (-1193 |#3|)) (|:| -4080 (-576)))))) (-15 -2709 ((-3 (-656 (-1193 |#4|)) "failed") (-1193 |#4|) (-1193 |#3|) (-1193 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -3001 ((-656 (-783)) (-1193 |#4|) (-656 |#2|) (-783))) (-15 -3257 ((-1193 |#3|) (-1193 |#3|) (-576)))) -((-3107 (($ $ (-940)) 17))) -(((-755 |#1| |#2|) (-10 -8 (-15 -3107 (|#1| |#1| (-940)))) (-756 |#2|) (-174)) (T -755)) -NIL -(-10 -8 (-15 -3107 (|#1| |#1| (-940)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1578 (($ $ (-940)) 31)) (-3107 (($ $ (-940)) 38)) (-3303 (($ $ (-940)) 32)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-3871 (($ $ $) 28)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3628 (($ $ $ $) 29)) (-3485 (($ $ $) 27)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-756 |#1|) (-141) (-174)) (T -756)) -((-3107 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) -(-13 (-773) (-729 |t#1|) (-10 -8 (-15 -3107 ($ $ (-940))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-773) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1342 (((-1056) (-701 (-227)) (-576) (-112) (-576)) 25)) (-3147 (((-1056) (-701 (-227)) (-576) (-112) (-576)) 24))) -(((-757) (-10 -7 (-15 -3147 ((-1056) (-701 (-227)) (-576) (-112) (-576))) (-15 -1342 ((-1056) (-701 (-227)) (-576) (-112) (-576))))) (T -757)) -((-1342 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-757)))) (-3147 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-757))))) -(-10 -7 (-15 -3147 ((-1056) (-701 (-227)) (-576) (-112) (-576))) (-15 -1342 ((-1056) (-701 (-227)) (-576) (-112) (-576)))) -((-1940 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) 43)) (-3045 (((-1056) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) 39)) (-1468 (((-1056) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) 32))) -(((-758) (-10 -7 (-15 -1468 ((-1056) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119))))) (-15 -3045 ((-1056) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -1940 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))) (T -758)) -((-1940 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1056)) (-5 *1 (-758)))) (-3045 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1056)) (-5 *1 (-758)))) (-1468 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) (-5 *2 (-1056)) (-5 *1 (-758))))) -(-10 -7 (-15 -1468 ((-1056) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119))))) (-15 -3045 ((-1056) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -1940 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))))) -((-2727 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 34)) (-4098 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 33)) (-2377 (((-1056) (-576) (-701 (-227)) (-576)) 32)) (-3336 (((-1056) (-576) (-701 (-227)) (-576)) 31)) (-2913 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 30)) (-3192 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-2954 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3731 (((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-3365 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-3420 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-4048 (((-1056) (-576) (-701 (-227)) (-576)) 22)) (-3567 (((-1056) (-576) (-701 (-227)) (-576)) 21))) -(((-759) (-10 -7 (-15 -3567 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -4048 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -3420 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3365 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3731 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2954 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3192 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2913 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3336 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -2377 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -4098 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2727 ((-1056) (-576) (-576) (-701 (-227)) (-576))))) (T -759)) -((-2727 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-4098 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2377 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3336 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2913 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3192 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-2954 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3731 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3365 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3420 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-4048 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759)))) (-3567 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-759))))) -(-10 -7 (-15 -3567 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -4048 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -3420 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3365 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3731 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2954 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3192 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2913 ((-1056) (-576) (-576) (-1179) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3336 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -2377 ((-1056) (-576) (-701 (-227)) (-576))) (-15 -4098 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2727 ((-1056) (-576) (-576) (-701 (-227)) (-576)))) -((-2170 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 52)) (-4384 (((-1056) (-701 (-227)) (-701 (-227)) (-576) (-576)) 51)) (-3251 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3062 (((-1056) (-227) (-227) (-576) (-576) (-576) (-576)) 46)) (-3013 (((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 45)) (-2918 (((-1056) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 44)) (-2620 (((-1056) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 43)) (-3070 (((-1056) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 42)) (-2556 (((-1056) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) 38)) (-3373 (((-1056) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) 37)) (-3600 (((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) 33)) (-3230 (((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) 32))) -(((-760) (-10 -7 (-15 -3230 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119))))) (-15 -3600 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119))))) (-15 -3373 ((-1056) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119))))) (-15 -2556 ((-1056) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119))))) (-15 -3070 ((-1056) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2620 ((-1056) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2918 ((-1056) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3013 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3062 ((-1056) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -3251 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -4384 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -2170 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))) (T -760)) -((-2170 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-4384 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3251 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3062 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3013 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-2918 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-2620 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3070 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-2556 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3373 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3600 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) (-5 *2 (-1056)) (-5 *1 (-760)))) (-3230 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) (-5 *2 (-1056)) (-5 *1 (-760))))) -(-10 -7 (-15 -3230 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119))))) (-15 -3600 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119))))) (-15 -3373 ((-1056) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119))))) (-15 -2556 ((-1056) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119))))) (-15 -3070 ((-1056) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2620 ((-1056) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2918 ((-1056) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3013 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3062 ((-1056) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -3251 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -4384 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -2170 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))))) -((-3899 (((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2902 (((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400)) 69) (((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3345 (((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) 57)) (-4321 (((-1056) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 50)) (-3010 (((-1056) (-227) (-576) (-576) (-1179) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 49)) (-1579 (((-1056) (-227) (-576) (-576) (-227) (-1179) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3044 (((-1056) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 42)) (-2712 (((-1056) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-761) (-10 -7 (-15 -2712 ((-1056) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3044 ((-1056) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -1579 ((-1056) (-227) (-576) (-576) (-227) (-1179) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3010 ((-1056) (-227) (-576) (-576) (-1179) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -4321 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3345 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -2902 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -2902 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -3899 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -761)) -((-3899 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-2902 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-400)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-2902 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1056)) (-5 *1 (-761)))) (-3345 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-4321 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1056)) (-5 *1 (-761)))) (-3010 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-1579 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-3044 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761)))) (-2712 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) -(-10 -7 (-15 -2712 ((-1056) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3044 ((-1056) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -1579 ((-1056) (-227) (-576) (-576) (-227) (-1179) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3010 ((-1056) (-227) (-576) (-576) (-1179) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -4321 ((-1056) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3345 ((-1056) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -2902 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -2902 ((-1056) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -3899 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-1575 (((-1056) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)) 45)) (-2868 (((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1179) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) 41)) (-3046 (((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 23))) -(((-762) (-10 -7 (-15 -3046 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2868 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1179) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -1575 ((-1056) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576))))) (T -762)) -((-1575 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-762)))) (-2868 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1056)) (-5 *1 (-762)))) (-3046 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-762))))) -(-10 -7 (-15 -3046 ((-1056) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2868 ((-1056) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1179) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -1575 ((-1056) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)))) -((-3237 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)) 35)) (-2101 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576)) 34)) (-1842 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576)) 33)) (-2222 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-3829 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3481 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576)) 27)) (-1446 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 24)) (-4426 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 23)) (-2002 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576)) 22)) (-2471 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 21))) -(((-763) (-10 -7 (-15 -2471 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -2002 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4426 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1446 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3481 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3829 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2222 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1842 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -2101 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -3237 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576))))) (T -763)) -((-3237 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-2101 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-1842 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-2222 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-3829 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-3481 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-763)))) (-1446 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-4426 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-2002 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763)))) (-2471 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-763))))) -(-10 -7 (-15 -2471 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -2002 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4426 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1446 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3481 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3829 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2222 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1842 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -2101 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -3237 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)))) -((-1644 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 45)) (-2271 (((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576)) 44)) (-2084 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 43)) (-3658 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 42)) (-1408 (((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576)) 41)) (-4200 (((-1056) (-1179) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 40)) (-1623 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576)) 39)) (-3098 (((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576))) 38)) (-4150 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576)) 35)) (-2860 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576)) 34)) (-1859 (((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576)) 33)) (-3564 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 32)) (-2736 (((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576)) 31)) (-3138 (((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576)) 30)) (-1888 (((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 29)) (-3281 (((-1056) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576)) 28)) (-4373 (((-1056) (-576) (-701 (-227)) (-227) (-576)) 24)) (-3646 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 21))) -(((-764) (-10 -7 (-15 -3646 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4373 ((-1056) (-576) (-701 (-227)) (-227) (-576))) (-15 -3281 ((-1056) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -1888 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -3138 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -2736 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -3564 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1859 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -2860 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -4150 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3098 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -1623 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -4200 ((-1056) (-1179) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -1408 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3658 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2084 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -2271 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1644 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))))) (T -764)) -((-1644 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2271 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2084 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3658 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-1408 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4200 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-1623 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3098 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4150 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2860 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-1859 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3564 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764)))) (-2736 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3138 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-1888 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3281 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-4373 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1056)) (-5 *1 (-764)))) (-3646 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-764))))) -(-10 -7 (-15 -3646 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4373 ((-1056) (-576) (-701 (-227)) (-227) (-576))) (-15 -3281 ((-1056) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -1888 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -3138 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -2736 ((-1056) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -3564 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1859 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -2860 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -4150 ((-1056) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3098 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -1623 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -4200 ((-1056) (-1179) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -1408 ((-1056) (-1179) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3658 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2084 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -2271 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1644 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)))) -((-2579 (((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)) 63)) (-3090 (((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2980 (((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) 58)) (-1355 (((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576)) 51)) (-4240 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3040 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2278 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) 42)) (-4157 (((-1056) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-765) (-10 -7 (-15 -4157 ((-1056) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2278 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3040 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -4240 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -1355 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -2980 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -3090 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2579 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576))))) (T -765)) -((-2579 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-3090 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-2980 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-1355 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-4240 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1056)) (-5 *1 (-765)))) (-3040 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1056)) (-5 *1 (-765)))) (-2278 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1056)) (-5 *1 (-765)))) (-4157 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765))))) -(-10 -7 (-15 -4157 ((-1056) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2278 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3040 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -4240 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -1355 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -2980 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -3090 ((-1056) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2579 ((-1056) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)))) -((-1501 (((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 47)) (-1558 (((-1056) (-1179) (-1179) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576)) 46)) (-1809 (((-1056) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 45)) (-3393 (((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 40)) (-2061 (((-1056) (-1179) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576)) 39)) (-4160 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-576)) 36)) (-3663 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576)) 35)) (-4153 (((-1056) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576)) 34)) (-2964 (((-1056) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576)) 33)) (-1915 (((-1056) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576)) 32))) -(((-766) (-10 -7 (-15 -1915 ((-1056) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -2964 ((-1056) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -4153 ((-1056) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -3663 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -4160 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -2061 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -3393 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1809 ((-1056) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1558 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1501 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -766)) -((-1501 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-1558 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-1809 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-3393 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-2061 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-4160 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-3663 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-766)))) (-4153 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-766)))) (-2964 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-766)))) (-1915 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1056)) (-5 *1 (-766))))) -(-10 -7 (-15 -1915 ((-1056) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -2964 ((-1056) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -4153 ((-1056) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -3663 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -4160 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -2061 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -3393 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1809 ((-1056) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1558 ((-1056) (-1179) (-1179) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1501 ((-1056) (-1179) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) -((-1552 (((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 79)) (-3247 (((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 68)) (-1615 (((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400)) 56) (((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) 55)) (-2872 (((-1056) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 37)) (-4145 (((-1056) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576)) 33)) (-2488 (((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 30)) (-2381 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-2678 (((-1056) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-4436 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-2161 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576)) 26)) (-1677 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 25)) (-1845 (((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-1436 (((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-2215 (((-1056) (-701 (-227)) (-576) (-576) (-576) (-576)) 22)) (-4183 (((-1056) (-576) (-576) (-701 (-227)) (-576)) 21))) -(((-767) (-10 -7 (-15 -4183 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2215 ((-1056) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -1436 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1845 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1677 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2161 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -4436 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2678 ((-1056) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2381 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2488 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -4145 ((-1056) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -2872 ((-1056) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1615 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -1615 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -3247 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1552 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -767)) -((-1552 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-3247 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1615 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1615 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2872 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-4145 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2488 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2381 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2678 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-4436 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2161 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1677 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1845 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-1436 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2215 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-767)))) (-4183 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-767))))) -(-10 -7 (-15 -4183 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2215 ((-1056) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -1436 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1845 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1677 ((-1056) (-576) (-576) (-701 (-227)) (-576))) (-15 -2161 ((-1056) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -4436 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2678 ((-1056) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2381 ((-1056) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2488 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -4145 ((-1056) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -2872 ((-1056) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1615 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -1615 ((-1056) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -3247 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1552 ((-1056) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) -((-3438 (((-1056) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) 64)) (-3318 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576)) 60)) (-3983 (((-1056) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2700 (((-1056) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 37)) (-1748 (((-1056) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576)) 36)) (-3577 (((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 33)) (-4213 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227))) 32)) (-4294 (((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576)) 28)) (-1457 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 27)) (-2996 (((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 26)) (-1744 (((-1056) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 22))) -(((-768) (-10 -7 (-15 -1744 ((-1056) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2996 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1457 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4294 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -4213 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -3577 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1748 ((-1056) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2700 ((-1056) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3983 ((-1056) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -3318 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -3438 ((-1056) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))) (T -768)) -((-3438 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-3318 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-3983 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2700 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-1748 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-3577 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-4213 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-4294 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-1457 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2996 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-1744 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) (-5 *1 (-768))))) -(-10 -7 (-15 -1744 ((-1056) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2996 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1457 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4294 ((-1056) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -4213 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -3577 ((-1056) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1748 ((-1056) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2700 ((-1056) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3983 ((-1056) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -3318 ((-1056) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -3438 ((-1056) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))))) -((-2268 (((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))) 29)) (-4309 (((-1056) (-1179) (-576) (-576) (-701 (-227))) 28)) (-4344 (((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227))) 27)) (-1709 (((-1056) (-576) (-576) (-576) (-701 (-227))) 21))) -(((-769) (-10 -7 (-15 -1709 ((-1056) (-576) (-576) (-576) (-701 (-227)))) (-15 -4344 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -4309 ((-1056) (-1179) (-576) (-576) (-701 (-227)))) (-15 -2268 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)))))) (T -769)) -((-2268 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-769)))) (-4309 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-769)))) (-4344 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-769)))) (-1709 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) (-5 *1 (-769))))) -(-10 -7 (-15 -1709 ((-1056) (-576) (-576) (-576) (-701 (-227)))) (-15 -4344 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -4309 ((-1056) (-1179) (-576) (-576) (-701 (-227)))) (-15 -2268 ((-1056) (-1179) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))))) -((-3006 (((-1056) (-227) (-227) (-227) (-227) (-576)) 62)) (-1855 (((-1056) (-227) (-227) (-227) (-576)) 61)) (-2218 (((-1056) (-227) (-227) (-227) (-576)) 60)) (-3954 (((-1056) (-227) (-227) (-576)) 59)) (-1852 (((-1056) (-227) (-576)) 58)) (-1335 (((-1056) (-227) (-576)) 57)) (-2686 (((-1056) (-227) (-576)) 56)) (-4110 (((-1056) (-227) (-576)) 55)) (-3347 (((-1056) (-227) (-576)) 54)) (-2443 (((-1056) (-227) (-576)) 53)) (-4187 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 52)) (-4062 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 51)) (-3356 (((-1056) (-227) (-576)) 50)) (-3759 (((-1056) (-227) (-576)) 49)) (-4434 (((-1056) (-227) (-576)) 48)) (-1600 (((-1056) (-227) (-576)) 47)) (-3415 (((-1056) (-576) (-227) (-171 (-227)) (-576) (-1179) (-576)) 46)) (-2984 (((-1056) (-1179) (-171 (-227)) (-1179) (-576)) 45)) (-3802 (((-1056) (-1179) (-171 (-227)) (-1179) (-576)) 44)) (-2386 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 43)) (-2854 (((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576)) 42)) (-2987 (((-1056) (-227) (-576)) 39)) (-2185 (((-1056) (-227) (-576)) 38)) (-2343 (((-1056) (-227) (-576)) 37)) (-4180 (((-1056) (-227) (-576)) 36)) (-1780 (((-1056) (-227) (-576)) 35)) (-2350 (((-1056) (-227) (-576)) 34)) (-3674 (((-1056) (-227) (-576)) 33)) (-3688 (((-1056) (-227) (-576)) 32)) (-3155 (((-1056) (-227) (-576)) 31)) (-4405 (((-1056) (-227) (-576)) 30)) (-3195 (((-1056) (-227) (-227) (-227) (-576)) 29)) (-3031 (((-1056) (-227) (-576)) 28)) (-3920 (((-1056) (-227) (-576)) 27)) (-3971 (((-1056) (-227) (-576)) 26)) (-1936 (((-1056) (-227) (-576)) 25)) (-4111 (((-1056) (-227) (-576)) 24)) (-3679 (((-1056) (-171 (-227)) (-576)) 21))) -(((-770) (-10 -7 (-15 -3679 ((-1056) (-171 (-227)) (-576))) (-15 -4111 ((-1056) (-227) (-576))) (-15 -1936 ((-1056) (-227) (-576))) (-15 -3971 ((-1056) (-227) (-576))) (-15 -3920 ((-1056) (-227) (-576))) (-15 -3031 ((-1056) (-227) (-576))) (-15 -3195 ((-1056) (-227) (-227) (-227) (-576))) (-15 -4405 ((-1056) (-227) (-576))) (-15 -3155 ((-1056) (-227) (-576))) (-15 -3688 ((-1056) (-227) (-576))) (-15 -3674 ((-1056) (-227) (-576))) (-15 -2350 ((-1056) (-227) (-576))) (-15 -1780 ((-1056) (-227) (-576))) (-15 -4180 ((-1056) (-227) (-576))) (-15 -2343 ((-1056) (-227) (-576))) (-15 -2185 ((-1056) (-227) (-576))) (-15 -2987 ((-1056) (-227) (-576))) (-15 -2854 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -2386 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -3802 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -2984 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -3415 ((-1056) (-576) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -1600 ((-1056) (-227) (-576))) (-15 -4434 ((-1056) (-227) (-576))) (-15 -3759 ((-1056) (-227) (-576))) (-15 -3356 ((-1056) (-227) (-576))) (-15 -4062 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -4187 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -2443 ((-1056) (-227) (-576))) (-15 -3347 ((-1056) (-227) (-576))) (-15 -4110 ((-1056) (-227) (-576))) (-15 -2686 ((-1056) (-227) (-576))) (-15 -1335 ((-1056) (-227) (-576))) (-15 -1852 ((-1056) (-227) (-576))) (-15 -3954 ((-1056) (-227) (-227) (-576))) (-15 -2218 ((-1056) (-227) (-227) (-227) (-576))) (-15 -1855 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3006 ((-1056) (-227) (-227) (-227) (-227) (-576))))) (T -770)) -((-3006 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1855 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2218 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3954 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1335 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2686 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4110 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4187 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4062 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4434 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1600 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3415 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1179)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2984 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3802 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2386 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2854 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2185 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1780 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2350 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3155 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4405 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3195 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3031 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3920 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-1936 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(-10 -7 (-15 -3679 ((-1056) (-171 (-227)) (-576))) (-15 -4111 ((-1056) (-227) (-576))) (-15 -1936 ((-1056) (-227) (-576))) (-15 -3971 ((-1056) (-227) (-576))) (-15 -3920 ((-1056) (-227) (-576))) (-15 -3031 ((-1056) (-227) (-576))) (-15 -3195 ((-1056) (-227) (-227) (-227) (-576))) (-15 -4405 ((-1056) (-227) (-576))) (-15 -3155 ((-1056) (-227) (-576))) (-15 -3688 ((-1056) (-227) (-576))) (-15 -3674 ((-1056) (-227) (-576))) (-15 -2350 ((-1056) (-227) (-576))) (-15 -1780 ((-1056) (-227) (-576))) (-15 -4180 ((-1056) (-227) (-576))) (-15 -2343 ((-1056) (-227) (-576))) (-15 -2185 ((-1056) (-227) (-576))) (-15 -2987 ((-1056) (-227) (-576))) (-15 -2854 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -2386 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -3802 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -2984 ((-1056) (-1179) (-171 (-227)) (-1179) (-576))) (-15 -3415 ((-1056) (-576) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -1600 ((-1056) (-227) (-576))) (-15 -4434 ((-1056) (-227) (-576))) (-15 -3759 ((-1056) (-227) (-576))) (-15 -3356 ((-1056) (-227) (-576))) (-15 -4062 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -4187 ((-1056) (-227) (-171 (-227)) (-576) (-1179) (-576))) (-15 -2443 ((-1056) (-227) (-576))) (-15 -3347 ((-1056) (-227) (-576))) (-15 -4110 ((-1056) (-227) (-576))) (-15 -2686 ((-1056) (-227) (-576))) (-15 -1335 ((-1056) (-227) (-576))) (-15 -1852 ((-1056) (-227) (-576))) (-15 -3954 ((-1056) (-227) (-227) (-576))) (-15 -2218 ((-1056) (-227) (-227) (-227) (-576))) (-15 -1855 ((-1056) (-227) (-227) (-227) (-576))) (-15 -3006 ((-1056) (-227) (-227) (-227) (-227) (-576)))) -((-3528 (((-1293)) 20)) (-2992 (((-1179)) 34)) (-4277 (((-1179)) 33)) (-2776 (((-1125) (-1197) (-701 (-576))) 47) (((-1125) (-1197) (-701 (-227))) 43)) (-4219 (((-112)) 19)) (-2802 (((-1179) (-1179)) 37))) -(((-771) (-10 -7 (-15 -4277 ((-1179))) (-15 -2992 ((-1179))) (-15 -2802 ((-1179) (-1179))) (-15 -2776 ((-1125) (-1197) (-701 (-227)))) (-15 -2776 ((-1125) (-1197) (-701 (-576)))) (-15 -4219 ((-112))) (-15 -3528 ((-1293))))) (T -771)) -((-3528 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-771)))) (-4219 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-576))) (-5 *2 (-1125)) (-5 *1 (-771)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-227))) (-5 *2 (-1125)) (-5 *1 (-771)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771)))) (-2992 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771)))) (-4277 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) -(-10 -7 (-15 -4277 ((-1179))) (-15 -2992 ((-1179))) (-15 -2802 ((-1179) (-1179))) (-15 -2776 ((-1125) (-1197) (-701 (-227)))) (-15 -2776 ((-1125) (-1197) (-701 (-576)))) (-15 -4219 ((-112))) (-15 -3528 ((-1293)))) -((-3871 (($ $ $) 10)) (-3628 (($ $ $ $) 9)) (-3485 (($ $ $) 12))) -(((-772 |#1|) (-10 -8 (-15 -3485 (|#1| |#1| |#1|)) (-15 -3871 (|#1| |#1| |#1|)) (-15 -3628 (|#1| |#1| |#1| |#1|))) (-773)) (T -772)) -NIL -(-10 -8 (-15 -3485 (|#1| |#1| |#1|)) (-15 -3871 (|#1| |#1| |#1|)) (-15 -3628 (|#1| |#1| |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1578 (($ $ (-940)) 31)) (-3303 (($ $ (-940)) 32)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-3871 (($ $ $) 28)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3628 (($ $ $ $) 29)) (-3485 (($ $ $) 27)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 33)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) -(((-773) (-141)) (T -773)) -((-3628 (*1 *1 *1 *1 *1) (-4 *1 (-773))) (-3871 (*1 *1 *1 *1) (-4 *1 (-773))) (-3485 (*1 *1 *1 *1) (-4 *1 (-773)))) -(-13 (-21) (-732) (-10 -8 (-15 -3628 ($ $ $ $)) (-15 -3871 ($ $ $)) (-15 -3485 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-732) . T) ((-1121) . T) ((-1238) . T)) -((-4113 (((-876) $) NIL) (($ (-576)) 10))) -(((-774 |#1|) (-10 -8 (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) (-775)) (T -774)) -NIL -(-10 -8 (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-3592 (((-3 $ "failed") $) 43)) (-1578 (($ $ (-940)) 31) (($ $ (-783)) 38)) (-1851 (((-3 $ "failed") $) 41)) (-2486 (((-112) $) 37)) (-1584 (((-3 $ "failed") $) 42)) (-3303 (($ $ (-940)) 32) (($ $ (-783)) 39)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-3871 (($ $ $) 28)) (-4113 (((-876) $) 12) (($ (-576)) 34)) (-2910 (((-783)) 35 T CONST)) (-2950 (((-112) $ $) 6)) (-3628 (($ $ $ $) 29)) (-3485 (($ $ $) 27)) (-4313 (($) 19 T CONST)) (-4322 (($) 36 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 33) (($ $ (-783)) 40)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) -(((-775) (-141)) (T -775)) -((-2910 (*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775))))) -(-13 (-773) (-734) (-10 -8 (-15 -2910 ((-783)) -2666) (-15 -4113 ($ (-576))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-732) . T) ((-734) . T) ((-773) . T) ((-1121) . T) ((-1238) . T)) -((-4067 (((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|) 33)) (-1456 (((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|) 23)) (-4358 (((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1197)) 20) (((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576))))) 19))) -(((-776 |#1|) (-10 -7 (-15 -4358 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -4358 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1197))) (-15 -1456 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -4067 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) (-13 (-374) (-860))) (T -776)) -((-4067 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 *4))))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-1456 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1197)) (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-374) (-860))))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -4358 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -4358 ((-971 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1197))) (-15 -1456 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -4067 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) -((-2264 (((-176 (-576)) |#1|) 27))) -(((-777 |#1|) (-10 -7 (-15 -2264 ((-176 (-576)) |#1|))) (-416)) (T -777)) -((-2264 (*1 *2 *3) (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416))))) -(-10 -7 (-15 -2264 ((-176 (-576)) |#1|))) -((-3273 ((|#1| |#1| |#1|) 28)) (-3538 ((|#1| |#1| |#1|) 27)) (-2531 ((|#1| |#1| |#1|) 38)) (-3691 ((|#1| |#1| |#1|) 34)) (-2188 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2672 (((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|) 26))) -(((-778 |#1| |#2|) (-10 -7 (-15 -2672 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -3538 (|#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| |#1|)) (-15 -2188 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3691 (|#1| |#1| |#1|)) (-15 -2531 (|#1| |#1| |#1|))) (-720 |#2|) (-374)) (T -778)) -((-2531 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-3691 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2188 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-3273 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-3538 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2672 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4))))) -(-10 -7 (-15 -2672 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -3538 (|#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| |#1|)) (-15 -2188 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3691 (|#1| |#1| |#1|)) (-15 -2531 (|#1| |#1| |#1|))) -((-1968 (((-703 (-1246)) $ (-1246)) 26)) (-1495 (((-703 (-561)) $ (-561)) 25)) (-3434 (((-783) $ (-129)) 27)) (-2750 (((-703 (-130)) $ (-130)) 24)) (-2464 (((-703 (-1246)) $) 12)) (-3101 (((-703 (-1244)) $) 8)) (-3061 (((-703 (-1243)) $) 10)) (-1992 (((-703 (-561)) $) 13)) (-1797 (((-703 (-559)) $) 9)) (-1816 (((-703 (-558)) $) 11)) (-2393 (((-783) $ (-129)) 7)) (-3531 (((-703 (-130)) $) 14)) (-1562 (((-112) $) 31)) (-2111 (((-703 $) |#1| (-973)) 32)) (-2481 (($ $) 6))) -(((-779 |#1|) (-141) (-1121)) (T -779)) -((-2111 (*1 *2 *3 *4) (-12 (-5 *4 (-973)) (-4 *3 (-1121)) (-5 *2 (-703 *1)) (-4 *1 (-779 *3)))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(-13 (-588) (-10 -8 (-15 -2111 ((-703 $) |t#1| (-973))) (-15 -1562 ((-112) $)))) -(((-175) . T) ((-539) . T) ((-588) . T) ((-874) . T)) -((-3876 (((-2 (|:| -2704 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)) 71)) (-4329 (((-2 (|:| -2704 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) 69)) (-1790 (((-576)) 85))) -(((-780 |#1| |#2|) (-10 -7 (-15 -1790 ((-576))) (-15 -4329 ((-2 (|:| -2704 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -3876 ((-2 (|:| -2704 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) (-1264 (-576)) (-421 (-576) |#1|)) (T -780)) -((-3876 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -2704 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) (-4329 (*1 *2) (-12 (-4 *3 (-1264 (-576))) (-5 *2 (-2 (|:| -2704 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) (-1790 (*1 *2) (-12 (-4 *3 (-1264 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 *2 *3))))) -(-10 -7 (-15 -1790 ((-576))) (-15 -4329 ((-2 (|:| -2704 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -3876 ((-2 (|:| -2704 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) -((-1957 (((-112) $ $) NIL)) (-2317 (((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 20) (($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-781) (-13 (-1121) (-10 -8 (-15 -4113 ($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4113 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4113 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2317 ((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -781)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781))))) -(-13 (-1121) (-10 -8 (-15 -4113 ($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4113 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4113 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2317 ((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) -((-1534 (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))) 18) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197))) 17)) (-4138 (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))) 20) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197))) 19))) -(((-782 |#1|) (-10 -7 (-15 -1534 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -1534 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -4138 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -4138 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))))) (-568)) (T -782)) -((-4138 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5))))) -(-10 -7 (-15 -1534 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -1534 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -4138 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -4138 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-971 |#1|))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2214 (($ $ $) 10)) (-1765 (((-3 $ "failed") $ $) 15)) (-3385 (($ $ (-576)) 11)) (-3170 (($) NIL T CONST)) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($ $) NIL)) (-1908 (($ $ $) NIL)) (-2486 (((-112) $) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3115 (($ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 6 T CONST)) (-4322 (($) NIL T CONST)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ $ $) NIL))) -(((-783) (-13 (-805) (-738) (-10 -8 (-15 -1908 ($ $ $)) (-15 -1895 ($ $ $)) (-15 -3115 ($ $ $)) (-15 -3889 ((-2 (|:| -2675 $) (|:| -3561 $)) $ $)) (-15 -1946 ((-3 $ "failed") $ $)) (-15 -3385 ($ $ (-576))) (-15 -4370 ($ $)) (-6 (-4466 "*"))))) (T -783)) -((-1908 (*1 *1 *1 *1) (-5 *1 (-783))) (-1895 (*1 *1 *1 *1) (-5 *1 (-783))) (-3115 (*1 *1 *1 *1) (-5 *1 (-783))) (-3889 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2675 (-783)) (|:| -3561 (-783)))) (-5 *1 (-783)))) (-1946 (*1 *1 *1 *1) (|partial| -5 *1 (-783))) (-3385 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783)))) (-4370 (*1 *1 *1) (-5 *1 (-783)))) -(-13 (-805) (-738) (-10 -8 (-15 -1908 ($ $ $)) (-15 -1895 ($ $ $)) (-15 -3115 ($ $ $)) (-15 -3889 ((-2 (|:| -2675 $) (|:| -3561 $)) $ $)) (-15 -1946 ((-3 $ "failed") $ $)) (-15 -3385 ($ $ (-576))) (-15 -4370 ($ $)) (-6 (-4466 "*")))) +((-3529 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) (-2995 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) +(-13 (-730 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3529 ($ $ $)) (IF (|has| |t#1| (-374)) (-15 -2995 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-4119 (((-3 $ "failed")) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3731 (((-1289 (-702 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1289 (-702 |#1|)) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-2672 (((-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-2515 (($) NIL T CONST)) (-1992 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3247 (((-3 $ "failed")) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2259 (((-702 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-2873 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2246 (((-702 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) $ (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-4236 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2408 (((-1194 (-972 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-4408 (($ $ (-941)) NIL)) (-2348 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4270 (((-1194 |#1|) $) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3612 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-4446 (((-1194 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-3282 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4093 (($ (-1289 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1289 |#1|) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-3969 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4343 (((-941)) NIL (|has| |#2| (-378 |#1|)))) (-2449 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3152 (($ $ (-941)) NIL)) (-1738 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3111 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1790 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2427 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3047 (((-3 $ "failed")) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1546 (((-702 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-3001 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3138 (((-702 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) $ (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-3157 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1822 (((-1194 (-972 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-3296 (($ $ (-941)) NIL)) (-2115 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2954 (((-1194 |#1|) $) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1861 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-1720 (((-1194 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-1525 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1708 (((-1180) $) NIL)) (-3897 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3110 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4278 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1460 (((-1142) $) NIL)) (-2931 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2780 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-3806 (((-702 |#1|) (-1289 $)) NIL (|has| |#2| (-429 |#1|))) (((-1289 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) (-1289 $) (-1289 $)) NIL (|has| |#2| (-378 |#1|))) (((-1289 |#1|) $ (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-4136 (($ (-1289 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1289 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3522 (((-657 (-972 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-657 (-972 |#1|)) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-1911 (($ $ $) NIL)) (-2473 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3515 (((-877) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL (|has| |#2| (-429 |#1|)))) (-3020 (((-657 (-1289 |#1|))) NIL (-2748 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3280 (($ $ $ $) NIL)) (-1433 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3514 (($ (-702 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2566 (($ $ $) NIL)) (-3692 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3560 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3844 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) 20)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-647 |#1| |#2|) (-13 (-757 |#1|) (-625 |#2|) (-10 -8 (-15 -3515 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-757 |#1|)) (T -647)) +((-3515 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-757 *3))))) +(-13 (-757 |#1|) (-625 |#2|) (-10 -8 (-15 -3515 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) +((-2927 (((-3 (-856 |#2|) "failed") |#2| (-304 |#2|) (-1180)) 106) (((-3 (-856 |#2|) (-2 (|:| |leftHandLimit| (-3 (-856 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-856 |#2|) "failed"))) "failed") |#2| (-304 (-856 |#2|))) 131)) (-3060 (((-3 (-846 |#2|) "failed") |#2| (-304 (-846 |#2|))) 136))) +(((-648 |#1| |#2|) (-10 -7 (-15 -2927 ((-3 (-856 |#2|) (-2 (|:| |leftHandLimit| (-3 (-856 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-856 |#2|) "failed"))) "failed") |#2| (-304 (-856 |#2|)))) (-15 -3060 ((-3 (-846 |#2|) "failed") |#2| (-304 (-846 |#2|)))) (-15 -2927 ((-3 (-856 |#2|) "failed") |#2| (-304 |#2|) (-1180)))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -648)) +((-2927 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1180)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-856 *3)) (-5 *1 (-648 *6 *3)))) (-3060 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-304 (-846 *3))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-846 *3)) (-5 *1 (-648 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-2927 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-856 *3))) (-4 *3 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (-856 *3) (-2 (|:| |leftHandLimit| (-3 (-856 *3) "failed")) (|:| |rightHandLimit| (-3 (-856 *3) "failed"))) "failed")) (-5 *1 (-648 *5 *3))))) +(-10 -7 (-15 -2927 ((-3 (-856 |#2|) (-2 (|:| |leftHandLimit| (-3 (-856 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-856 |#2|) "failed"))) "failed") |#2| (-304 (-856 |#2|)))) (-15 -3060 ((-3 (-846 |#2|) "failed") |#2| (-304 (-846 |#2|)))) (-15 -2927 ((-3 (-856 |#2|) "failed") |#2| (-304 |#2|) (-1180)))) +((-2927 (((-3 (-856 (-419 (-972 |#1|))) "failed") (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))) (-1180)) 86) (((-3 (-856 (-419 (-972 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed"))) "failed") (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|)))) 20) (((-3 (-856 (-419 (-972 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed"))) "failed") (-419 (-972 |#1|)) (-304 (-856 (-972 |#1|)))) 35)) (-3060 (((-846 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|)))) 23) (((-846 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-304 (-846 (-972 |#1|)))) 43))) +(((-649 |#1|) (-10 -7 (-15 -2927 ((-3 (-856 (-419 (-972 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed"))) "failed") (-419 (-972 |#1|)) (-304 (-856 (-972 |#1|))))) (-15 -2927 ((-3 (-856 (-419 (-972 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed"))) "failed") (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))))) (-15 -3060 ((-846 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-304 (-846 (-972 |#1|))))) (-15 -3060 ((-846 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))))) (-15 -2927 ((-3 (-856 (-419 (-972 |#1|))) "failed") (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))) (-1180)))) (-464)) (T -649)) +((-2927 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 (-419 (-972 *6)))) (-5 *5 (-1180)) (-5 *3 (-419 (-972 *6))) (-4 *6 (-464)) (-5 *2 (-856 *3)) (-5 *1 (-649 *6)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-972 *5)))) (-5 *3 (-419 (-972 *5))) (-4 *5 (-464)) (-5 *2 (-846 *3)) (-5 *1 (-649 *5)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-846 (-972 *5)))) (-4 *5 (-464)) (-5 *2 (-846 (-419 (-972 *5)))) (-5 *1 (-649 *5)) (-5 *3 (-419 (-972 *5))))) (-2927 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-972 *5)))) (-5 *3 (-419 (-972 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-856 *3) (-2 (|:| |leftHandLimit| (-3 (-856 *3) "failed")) (|:| |rightHandLimit| (-3 (-856 *3) "failed"))) "failed")) (-5 *1 (-649 *5)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-856 (-972 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-856 (-419 (-972 *5))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 *5))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 *5))) "failed"))) "failed")) (-5 *1 (-649 *5)) (-5 *3 (-419 (-972 *5)))))) +(-10 -7 (-15 -2927 ((-3 (-856 (-419 (-972 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed"))) "failed") (-419 (-972 |#1|)) (-304 (-856 (-972 |#1|))))) (-15 -2927 ((-3 (-856 (-419 (-972 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed"))) "failed") (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))))) (-15 -3060 ((-846 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-304 (-846 (-972 |#1|))))) (-15 -3060 ((-846 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))))) (-15 -2927 ((-3 (-856 (-419 (-972 |#1|))) "failed") (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))) (-1180)))) +((-1550 (((-3 (-1289 (-419 |#1|)) "failed") (-1289 |#2|) |#2|) 64 (-2665 (|has| |#1| (-374)))) (((-3 (-1289 |#1|) "failed") (-1289 |#2|) |#2|) 49 (|has| |#1| (-374)))) (-3168 (((-112) (-1289 |#2|)) 33)) (-3003 (((-3 (-1289 |#1|) "failed") (-1289 |#2|)) 40))) +(((-650 |#1| |#2|) (-10 -7 (-15 -3168 ((-112) (-1289 |#2|))) (-15 -3003 ((-3 (-1289 |#1|) "failed") (-1289 |#2|))) (IF (|has| |#1| (-374)) (-15 -1550 ((-3 (-1289 |#1|) "failed") (-1289 |#2|) |#2|)) (-15 -1550 ((-3 (-1289 (-419 |#1|)) "failed") (-1289 |#2|) |#2|)))) (-568) (-13 (-1071) (-652 |#1|))) (T -650)) +((-1550 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 *5))) (-2665 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1289 (-419 *5))) (-5 *1 (-650 *5 *4)))) (-1550 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 *5))) (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1289 *5)) (-5 *1 (-650 *5 *4)))) (-3003 (*1 *2 *3) (|partial| -12 (-5 *3 (-1289 *5)) (-4 *5 (-13 (-1071) (-652 *4))) (-4 *4 (-568)) (-5 *2 (-1289 *4)) (-5 *1 (-650 *4 *5)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-1289 *5)) (-4 *5 (-13 (-1071) (-652 *4))) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) +(-10 -7 (-15 -3168 ((-112) (-1289 |#2|))) (-15 -3003 ((-3 (-1289 |#1|) "failed") (-1289 |#2|))) (IF (|has| |#1| (-374)) (-15 -1550 ((-3 (-1289 |#1|) "failed") (-1289 |#2|) |#2|)) (-15 -1550 ((-3 (-1289 (-419 |#1|)) "failed") (-1289 |#2|) |#2|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-1883 (($ (-657 |#1|) (-657 (-879 |#2|))) 27)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1451 (((-135)) 16)) (-3806 (((-1289 |#1|) $) 46)) (-3515 (((-877) $) NIL) (($ (-879 |#2|)) 11)) (-4166 (((-112) $ $) NIL)) (-2716 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 23)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-651 |#1| |#2|) (-13 (-1296 |#1|) (-628 (-879 |#2|)) (-10 -8 (-15 -1883 ($ (-657 |#1|) (-657 (-879 |#2|)))) (-15 -3806 ((-1289 |#1|) $)))) (-374) (-657 (-1198))) (T -651)) +((-1883 (*1 *1 *2 *3) (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 (-879 *5))) (-4 *4 (-374)) (-14 *5 (-657 (-1198))) (-5 *1 (-651 *4 *5)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-1289 *3)) (-5 *1 (-651 *3 *4)) (-4 *3 (-374)) (-14 *4 (-657 (-1198)))))) +(-13 (-1296 |#1|) (-628 (-879 |#2|)) (-10 -8 (-15 -1883 ($ (-657 |#1|) (-657 (-879 |#2|)))) (-15 -3806 ((-1289 |#1|) $)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3439 (((-702 |#1|) (-702 $)) 30) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 29)) (-1993 (((-702 |#1|) (-1289 $)) 32) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 31)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) +(((-652 |#1|) (-141) (-1071)) (T -652)) +((-1993 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-652 *4)) (-4 *4 (-1071)) (-5 *2 (-702 *4)))) (-1993 (*1 *2 *3 *1) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-652 *4)) (-4 *4 (-1071)) (-5 *2 (-2 (|:| -3962 (-702 *4)) (|:| |vec| (-1289 *4)))))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-702 *1)) (-4 *1 (-652 *4)) (-4 *4 (-1071)) (-5 *2 (-702 *4)))) (-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *1)) (-5 *4 (-1289 *1)) (-4 *1 (-652 *5)) (-4 *5 (-1071)) (-5 *2 (-2 (|:| -3962 (-702 *5)) (|:| |vec| (-1289 *5))))))) +(-13 (-661 |t#1|) (-10 -8 (-15 -1993 ((-702 |t#1|) (-1289 $))) (-15 -1993 ((-2 (|:| -3962 (-702 |t#1|)) (|:| |vec| (-1289 |t#1|))) (-1289 $) $)) (-15 -3439 ((-702 |t#1|) (-702 $))) (-15 -3439 ((-2 (|:| -3962 (-702 |t#1|)) (|:| |vec| (-1289 |t#1|))) (-702 $) (-1289 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8)) (* (($ |#1| $) 14) (($ $ |#1|) 17))) +(((-653 |#1|) (-141) (-1134)) (T -653)) +NIL +(-13 (-659 |t#1|) (-1073 |t#1|)) +(((-102) . T) ((-625 (-877)) . T) ((-659 |#1|) . T) ((-1073 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-1365 ((|#2| (-657 |#1|) (-657 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-657 |#1|) (-657 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|) |#2|) 17) ((|#2| (-657 |#1|) (-657 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|)) 12))) +(((-654 |#1| |#2|) (-10 -7 (-15 -1365 ((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|))) (-15 -1365 (|#2| (-657 |#1|) (-657 |#2|) |#1|)) (-15 -1365 ((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|) |#2|)) (-15 -1365 (|#2| (-657 |#1|) (-657 |#2|) |#1| |#2|)) (-15 -1365 ((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|) (-1 |#2| |#1|))) (-15 -1365 (|#2| (-657 |#1|) (-657 |#2|) |#1| (-1 |#2| |#1|)))) (-1122) (-1239)) (T -654)) +((-1365 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1122)) (-4 *2 (-1239)) (-5 *1 (-654 *5 *2)))) (-1365 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-657 *5)) (-5 *4 (-657 *6)) (-4 *5 (-1122)) (-4 *6 (-1239)) (-5 *1 (-654 *5 *6)))) (-1365 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *2)) (-4 *5 (-1122)) (-4 *2 (-1239)) (-5 *1 (-654 *5 *2)))) (-1365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 *5)) (-4 *6 (-1122)) (-4 *5 (-1239)) (-5 *2 (-1 *5 *6)) (-5 *1 (-654 *6 *5)))) (-1365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *2)) (-4 *5 (-1122)) (-4 *2 (-1239)) (-5 *1 (-654 *5 *2)))) (-1365 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *6)) (-4 *5 (-1122)) (-4 *6 (-1239)) (-5 *2 (-1 *6 *5)) (-5 *1 (-654 *5 *6))))) +(-10 -7 (-15 -1365 ((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|))) (-15 -1365 (|#2| (-657 |#1|) (-657 |#2|) |#1|)) (-15 -1365 ((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|) |#2|)) (-15 -1365 (|#2| (-657 |#1|) (-657 |#2|) |#1| |#2|)) (-15 -1365 ((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|) (-1 |#2| |#1|))) (-15 -1365 (|#2| (-657 |#1|) (-657 |#2|) |#1| (-1 |#2| |#1|)))) +((-3899 (((-657 |#2|) (-1 |#2| |#1| |#2|) (-657 |#1|) |#2|) 16)) (-3662 ((|#2| (-1 |#2| |#1| |#2|) (-657 |#1|) |#2|) 18)) (-4071 (((-657 |#2|) (-1 |#2| |#1|) (-657 |#1|)) 13))) +(((-655 |#1| |#2|) (-10 -7 (-15 -3899 ((-657 |#2|) (-1 |#2| |#1| |#2|) (-657 |#1|) |#2|)) (-15 -3662 (|#2| (-1 |#2| |#1| |#2|) (-657 |#1|) |#2|)) (-15 -4071 ((-657 |#2|) (-1 |#2| |#1|) (-657 |#1|)))) (-1239) (-1239)) (T -655)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-657 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-657 *6)) (-5 *1 (-655 *5 *6)))) (-3662 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-657 *5)) (-4 *5 (-1239)) (-4 *2 (-1239)) (-5 *1 (-655 *5 *2)))) (-3899 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-657 *6)) (-4 *6 (-1239)) (-4 *5 (-1239)) (-5 *2 (-657 *5)) (-5 *1 (-655 *6 *5))))) +(-10 -7 (-15 -3899 ((-657 |#2|) (-1 |#2| |#1| |#2|) (-657 |#1|) |#2|)) (-15 -3662 (|#2| (-1 |#2| |#1| |#2|) (-657 |#1|) |#2|)) (-15 -4071 ((-657 |#2|) (-1 |#2| |#1|) (-657 |#1|)))) +((-4071 (((-657 |#3|) (-1 |#3| |#1| |#2|) (-657 |#1|) (-657 |#2|)) 21))) +(((-656 |#1| |#2| |#3|) (-10 -7 (-15 -4071 ((-657 |#3|) (-1 |#3| |#1| |#2|) (-657 |#1|) (-657 |#2|)))) (-1239) (-1239) (-1239)) (T -656)) +((-4071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-657 *6)) (-5 *5 (-657 *7)) (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-657 *8)) (-5 *1 (-656 *6 *7 *8))))) +(-10 -7 (-15 -4071 ((-657 |#3|) (-1 |#3| |#1| |#2|) (-657 |#1|) (-657 |#2|)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3037 ((|#1| $) NIL)) (-2860 ((|#1| $) NIL)) (-4425 (($ $) NIL)) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3342 (($ $ (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1698 (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-1832 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-1439 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-3509 (($ $ $) NIL (|has| $ (-6 -4467)))) (-3554 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-1629 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "rest" $) NIL (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-3126 (($ $ $) 37 (|has| |#1| (-1122)))) (-3463 (($ $ $) 41 (|has| |#1| (-1122)))) (-3377 (($ $ $) 44 (|has| |#1| (-1122)))) (-3726 (($ (-1 (-112) |#1|) $) NIL)) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2849 ((|#1| $) NIL)) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-3542 (($ $) 23) (($ $ (-784)) NIL)) (-3588 (($ $) NIL (|has| |#1| (-1122)))) (-1620 (($ $) 36 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1920 (($ |#1| $) NIL (|has| |#1| (-1122))) (($ (-1 (-112) |#1|) $) NIL)) (-3901 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1810 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) NIL)) (-2872 (((-112) $) NIL)) (-3619 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122))) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) (-1 (-112) |#1|) $) NIL)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2655 (((-112) $) 11)) (-2754 (((-657 $) $) NIL)) (-4257 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4090 (($) 9 T CONST)) (-4096 (($ (-784) |#1|) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-1631 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1661 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1672 (($ |#1|) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-2397 (((-657 |#1|) $) NIL)) (-1743 (((-112) $) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3921 ((|#1| $) NIL) (($ $ (-784)) NIL)) (-2701 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2225 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3528 ((|#1| $) 20) (($ $ (-784)) NIL)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1495 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-1533 (((-112) $) NIL)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) 39)) (-3340 (($) 38)) (-2780 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1256 (-576))) NIL) ((|#1| $ (-576)) 42) ((|#1| $ (-576) |#1|) NIL)) (-3064 (((-576) $ $) NIL)) (-2683 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-3395 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-4392 (((-112) $) NIL)) (-3645 (($ $) NIL)) (-2463 (($ $) NIL (|has| $ (-6 -4467)))) (-2933 (((-784) $) NIL)) (-1961 (($ $) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) 53 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) NIL)) (-2814 (($ |#1| $) 12)) (-2752 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1637 (($ $ $) 35) (($ |#1| $) 43) (($ (-657 $)) NIL) (($ $ |#1|) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) NIL)) (-3631 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3419 (($ $ $) 13)) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4019 (((-1180) $) 31 (|has| |#1| (-841))) (((-1180) $ (-112)) 32 (|has| |#1| (-841))) (((-1294) (-835) $) 33 (|has| |#1| (-841))) (((-1294) (-835) $ (-112)) 34 (|has| |#1| (-841)))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-657 |#1|) (-13 (-679 |#1|) (-10 -8 (-15 -4090 ($) -1491) (-15 -2655 ((-112) $)) (-15 -2814 ($ |#1| $)) (-15 -3419 ($ $ $)) (IF (|has| |#1| (-1122)) (PROGN (-15 -3126 ($ $ $)) (-15 -3463 ($ $ $)) (-15 -3377 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|))) (-1239)) (T -657)) +((-4090 (*1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1239)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1239)))) (-2814 (*1 *1 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1239)))) (-3419 (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1239)))) (-3126 (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-1239)))) (-3463 (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-1239)))) (-3377 (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-1239))))) +(-13 (-679 |#1|) (-10 -8 (-15 -4090 ($) -1491) (-15 -2655 ((-112) $)) (-15 -2814 ($ |#1| $)) (-15 -3419 ($ $ $)) (IF (|has| |#1| (-1122)) (PROGN (-15 -3126 ($ $ $)) (-15 -3463 ($ $ $)) (-15 -3377 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 11) (($ (-1203)) NIL) (((-1203) $) NIL) ((|#1| $) 8)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-658 |#1|) (-13 (-1105) (-625 |#1|)) (-1122)) (T -658)) +NIL +(-13 (-1105) (-625 |#1|)) +((-3423 (((-112) $ $) 7)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8)) (* (($ |#1| $) 14))) +(((-659 |#1|) (-141) (-1134)) (T -659)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1134))))) +(-13 (-1122) (-10 -8 (-15 * ($ |t#1| $)))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2724 (($ |#1| |#1| $) 43)) (-4284 (((-112) $ (-784)) NIL)) (-3726 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-3588 (($ $) 45)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1920 (($ |#1| $) 56 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4466)))) (-3901 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1448 (((-657 |#1|) $) 9 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1799 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 37)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3107 ((|#1| $) 47)) (-2701 (($ |#1| $) 29) (($ |#1| $ (-784)) 42)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2184 ((|#1| $) 50)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 23)) (-3340 (($) 28)) (-4414 (((-112) $) 54)) (-3193 (((-657 (-2 (|:| -4440 |#1|) (|:| -1469 (-784)))) $) 67)) (-3009 (($) 26) (($ (-657 |#1|)) 19)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) 63 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) 20)) (-4136 (((-548) $) 34 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) NIL)) (-3515 (((-877) $) 14 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) 24)) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 69 (|has| |#1| (-102)))) (-3437 (((-784) $) 17 (|has| $ (-6 -4466))))) +(((-660 |#1|) (-13 (-708 |#1|) (-10 -8 (-6 -4466) (-15 -4414 ((-112) $)) (-15 -2724 ($ |#1| |#1| $)))) (-1122)) (T -660)) +((-4414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-660 *3)) (-4 *3 (-1122)))) (-2724 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1122))))) +(-13 (-708 |#1|) (-10 -8 (-6 -4466) (-15 -4414 ((-112) $)) (-15 -2724 ($ |#1| |#1| $)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) +(((-661 |#1|) (-141) (-1080)) (T -661)) +NIL +(-13 (-21) (-659 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784) $) 17)) (-1793 (($ $ |#1|) 69)) (-4072 (($ $) 39)) (-3796 (($ $) 37)) (-1593 (((-3 |#1| "failed") $) 61)) (-2830 ((|#1| $) NIL)) (-3550 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2899 (((-877) $ (-1 (-877) (-877) (-877)) (-1 (-877) (-877) (-877)) (-576)) 56)) (-1656 ((|#1| $ (-576)) 35)) (-3640 ((|#2| $ (-576)) 34)) (-3865 (($ (-1 |#1| |#1|) $) 41)) (-1555 (($ (-1 |#2| |#2|) $) 47)) (-3742 (($) 11)) (-1562 (($ |#1| |#2|) 24)) (-4112 (($ (-657 (-2 (|:| |gen| |#1|) (|:| -4056 |#2|)))) 25)) (-3181 (((-657 (-2 (|:| |gen| |#1|) (|:| -4056 |#2|))) $) 14)) (-3339 (($ |#1| $) 71)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2541 (((-112) $ $) 76)) (-3515 (((-877) $) 21) (($ |#1|) 18)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 27))) +(((-662 |#1| |#2| |#3|) (-13 (-1122) (-1060 |#1|) (-10 -8 (-15 -2899 ((-877) $ (-1 (-877) (-877) (-877)) (-1 (-877) (-877) (-877)) (-576))) (-15 -3181 ((-657 (-2 (|:| |gen| |#1|) (|:| -4056 |#2|))) $)) (-15 -1562 ($ |#1| |#2|)) (-15 -4112 ($ (-657 (-2 (|:| |gen| |#1|) (|:| -4056 |#2|))))) (-15 -3640 (|#2| $ (-576))) (-15 -1656 (|#1| $ (-576))) (-15 -3796 ($ $)) (-15 -4072 ($ $)) (-15 -2148 ((-784) $)) (-15 -3742 ($)) (-15 -1793 ($ $ |#1|)) (-15 -3339 ($ |#1| $)) (-15 -3550 ($ |#1| |#2| $)) (-15 -3550 ($ $ $)) (-15 -2541 ((-112) $ $)) (-15 -1555 ($ (-1 |#2| |#2|) $)) (-15 -3865 ($ (-1 |#1| |#1|) $)))) (-1122) (-23) |#2|) (T -662)) +((-2899 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-877) (-877) (-877))) (-5 *4 (-576)) (-5 *2 (-877)) (-5 *1 (-662 *5 *6 *7)) (-4 *5 (-1122)) (-4 *6 (-23)) (-14 *7 *6))) (-3181 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4056 *4)))) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4))) (-1562 (*1 *1 *2 *3) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4056 *4)))) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-662 *3 *4 *5)))) (-3640 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-662 *4 *2 *5)) (-4 *4 (-1122)) (-14 *5 *2))) (-1656 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-1122)) (-5 *1 (-662 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3796 (*1 *1 *1) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-4072 (*1 *1 *1) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4))) (-3742 (*1 *1) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-1793 (*1 *1 *1 *2) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-3339 (*1 *1 *2 *1) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-3550 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-3550 (*1 *1 *1 *1) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-2541 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4))) (-1555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)))) (-3865 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-662 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1122) (-1060 |#1|) (-10 -8 (-15 -2899 ((-877) $ (-1 (-877) (-877) (-877)) (-1 (-877) (-877) (-877)) (-576))) (-15 -3181 ((-657 (-2 (|:| |gen| |#1|) (|:| -4056 |#2|))) $)) (-15 -1562 ($ |#1| |#2|)) (-15 -4112 ($ (-657 (-2 (|:| |gen| |#1|) (|:| -4056 |#2|))))) (-15 -3640 (|#2| $ (-576))) (-15 -1656 (|#1| $ (-576))) (-15 -3796 ($ $)) (-15 -4072 ($ $)) (-15 -2148 ((-784) $)) (-15 -3742 ($)) (-15 -1793 ($ $ |#1|)) (-15 -3339 ($ |#1| $)) (-15 -3550 ($ |#1| |#2| $)) (-15 -3550 ($ $ $)) (-15 -2541 ((-112) $ $)) (-15 -1555 ($ (-1 |#2| |#2|) $)) (-15 -3865 ($ (-1 |#1| |#1|) $)))) +((-1833 (((-576) $) 31)) (-2225 (($ |#2| $ (-576)) 27) (($ $ $ (-576)) NIL)) (-3309 (((-657 (-576)) $) 12)) (-4324 (((-112) (-576) $) 18)) (-1637 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-657 $)) NIL))) +(((-663 |#1| |#2|) (-10 -8 (-15 -2225 (|#1| |#1| |#1| (-576))) (-15 -2225 (|#1| |#2| |#1| (-576))) (-15 -1637 (|#1| (-657 |#1|))) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#2| |#1|)) (-15 -1637 (|#1| |#1| |#2|)) (-15 -1833 ((-576) |#1|)) (-15 -3309 ((-657 (-576)) |#1|)) (-15 -4324 ((-112) (-576) |#1|))) (-664 |#2|) (-1239)) (T -663)) +NIL +(-10 -8 (-15 -2225 (|#1| |#1| |#1| (-576))) (-15 -2225 (|#1| |#2| |#1| (-576))) (-15 -1637 (|#1| (-657 |#1|))) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#2| |#1|)) (-15 -1637 (|#1| |#1| |#2|)) (-15 -1833 ((-576) |#1|)) (-15 -3309 ((-657 (-576)) |#1|)) (-15 -4324 ((-112) (-576) |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3590 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) 8)) (-3719 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 60 (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-1620 (($ $) 80 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#1| $) 79 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) 52)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-4096 (($ (-784) |#1|) 70)) (-1786 (((-112) $ (-784)) 9)) (-3363 (((-576) $) 44 (|has| (-576) (-862)))) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1833 (((-576) $) 45 (|has| (-576) (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-2225 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3309 (((-657 (-576)) $) 47)) (-4324 (((-112) (-576) $) 48)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3528 ((|#1| $) 43 (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1495 (($ $ |#1|) 42 (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) 49)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1256 (-576))) 71)) (-3395 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-4136 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 72)) (-1637 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-664 |#1|) (-141) (-1239)) (T -664)) +((-4096 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) (-1637 (*1 *1 *1 *2) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1239)))) (-1637 (*1 *1 *2 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1239)))) (-1637 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1239)))) (-1637 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) (-4071 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) (-3395 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) (-3395 (*1 *1 *1 *2) (-12 (-5 *2 (-1256 (-576))) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) (-2225 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-664 *2)) (-4 *2 (-1239)))) (-2225 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) (-3719 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1256 (-576))) (|has| *1 (-6 -4467)) (-4 *1 (-664 *2)) (-4 *2 (-1239))))) +(-13 (-616 (-576) |t#1|) (-152 |t#1|) (-296 (-1256 (-576)) $) (-10 -8 (-15 -4096 ($ (-784) |t#1|)) (-15 -1637 ($ $ |t#1|)) (-15 -1637 ($ |t#1| $)) (-15 -1637 ($ $ $)) (-15 -1637 ($ (-657 $))) (-15 -4071 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3395 ($ $ (-576))) (-15 -3395 ($ $ (-1256 (-576)))) (-15 -2225 ($ |t#1| $ (-576))) (-15 -2225 ($ $ $ (-576))) (IF (|has| $ (-6 -4467)) (-15 -3719 (|t#1| $ (-1256 (-576)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-2632 (((-3 |#2| "failed") |#3| |#2| (-1198) |#2| (-657 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2469 (-657 |#2|))) "failed") |#3| |#2| (-1198)) 44))) +(((-665 |#1| |#2| |#3|) (-10 -7 (-15 -2632 ((-3 (-2 (|:| |particular| |#2|) (|:| -2469 (-657 |#2|))) "failed") |#3| |#2| (-1198))) (-15 -2632 ((-3 |#2| "failed") |#3| |#2| (-1198) |#2| (-657 |#2|)))) (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148)) (-13 (-29 |#1|) (-1224) (-979)) (-669 |#2|)) (T -665)) +((-2632 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-657 *2)) (-4 *2 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *1 (-665 *6 *2 *3)) (-4 *3 (-669 *2)))) (-2632 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1198)) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1224) (-979))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2469 (-657 *4)))) (-5 *1 (-665 *6 *4 *3)) (-4 *3 (-669 *4))))) +(-10 -7 (-15 -2632 ((-3 (-2 (|:| |particular| |#2|) (|:| -2469 (-657 |#2|))) "failed") |#3| |#2| (-1198))) (-15 -2632 ((-3 |#2| "failed") |#3| |#2| (-1198) |#2| (-657 |#2|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1801 (($ $) NIL (|has| |#1| (-374)))) (-3739 (($ $ $) NIL (|has| |#1| (-374)))) (-2763 (($ $ (-784)) NIL (|has| |#1| (-374)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3136 (($ $ $) NIL (|has| |#1| (-374)))) (-4030 (($ $ $) NIL (|has| |#1| (-374)))) (-3383 (($ $ $) NIL (|has| |#1| (-374)))) (-1658 (($ $ $) NIL (|has| |#1| (-374)))) (-1511 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-4406 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3470 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#1| (-464)))) (-3994 (((-112) $) NIL)) (-1974 (($ |#1| (-784)) NIL)) (-1704 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-568)))) (-4108 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-568)))) (-4219 (((-784) $) NIL)) (-4288 (($ $ $) NIL (|has| |#1| (-374)))) (-1846 (($ $ $) NIL (|has| |#1| (-374)))) (-1341 (($ $ $) NIL (|has| |#1| (-374)))) (-2673 (($ $ $) NIL (|has| |#1| (-374)))) (-1626 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-4174 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2158 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2780 ((|#1| $ |#1|) NIL)) (-2944 (($ $ $) NIL (|has| |#1| (-374)))) (-4265 (((-784) $) NIL)) (-3614 ((|#1| $) NIL (|has| |#1| (-464)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) NIL)) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-784)) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-3514 ((|#1| $ |#1| |#1|) NIL)) (-3432 (($ $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($) NIL)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-666 |#1|) (-669 |#1|) (-238)) (T -666)) +NIL +(-669 |#1|) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1801 (($ $) NIL (|has| |#1| (-374)))) (-3739 (($ $ $) NIL (|has| |#1| (-374)))) (-2763 (($ $ (-784)) NIL (|has| |#1| (-374)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3136 (($ $ $) NIL (|has| |#1| (-374)))) (-4030 (($ $ $) NIL (|has| |#1| (-374)))) (-3383 (($ $ $) NIL (|has| |#1| (-374)))) (-1658 (($ $ $) NIL (|has| |#1| (-374)))) (-1511 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-4406 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3470 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#1| (-464)))) (-3994 (((-112) $) NIL)) (-1974 (($ |#1| (-784)) NIL)) (-1704 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-568)))) (-4108 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-568)))) (-4219 (((-784) $) NIL)) (-4288 (($ $ $) NIL (|has| |#1| (-374)))) (-1846 (($ $ $) NIL (|has| |#1| (-374)))) (-1341 (($ $ $) NIL (|has| |#1| (-374)))) (-2673 (($ $ $) NIL (|has| |#1| (-374)))) (-1626 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-4174 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2158 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2780 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2944 (($ $ $) NIL (|has| |#1| (-374)))) (-4265 (((-784) $) NIL)) (-3614 ((|#1| $) NIL (|has| |#1| (-464)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) NIL)) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-784)) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-3514 ((|#1| $ |#1| |#1|) NIL)) (-3432 (($ $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($) NIL)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-667 |#1| |#2|) (-13 (-669 |#1|) (-296 |#2| |#2|)) (-238) (-13 (-661 |#1|) (-10 -8 (-15 -2209 ($ $))))) (T -667)) +NIL +(-13 (-669 |#1|) (-296 |#2| |#2|)) +((-1801 (($ $) 29)) (-3432 (($ $) 27)) (-2066 (($) 13))) +(((-668 |#1| |#2|) (-10 -8 (-15 -1801 (|#1| |#1|)) (-15 -3432 (|#1| |#1|)) (-15 -2066 (|#1|))) (-669 |#2|) (-1071)) (T -668)) +NIL +(-10 -8 (-15 -1801 (|#1| |#1|)) (-15 -3432 (|#1| |#1|)) (-15 -2066 (|#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-1801 (($ $) 87 (|has| |#1| (-374)))) (-3739 (($ $ $) 89 (|has| |#1| (-374)))) (-2763 (($ $ (-784)) 88 (|has| |#1| (-374)))) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3136 (($ $ $) 50 (|has| |#1| (-374)))) (-4030 (($ $ $) 51 (|has| |#1| (-374)))) (-3383 (($ $ $) 53 (|has| |#1| (-374)))) (-1658 (($ $ $) 48 (|has| |#1| (-374)))) (-1511 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 47 (|has| |#1| (-374)))) (-4406 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-3470 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 52 (|has| |#1| (-374)))) (-1593 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2830 (((-576) $) 79 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 75)) (-2165 (($ $) 69)) (-3969 (((-3 $ "failed") $) 37)) (-1445 (($ $) 60 (|has| |#1| (-464)))) (-3994 (((-112) $) 35)) (-1974 (($ |#1| (-784)) 67)) (-1704 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 62 (|has| |#1| (-568)))) (-4108 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63 (|has| |#1| (-568)))) (-4219 (((-784) $) 71)) (-4288 (($ $ $) 57 (|has| |#1| (-374)))) (-1846 (($ $ $) 58 (|has| |#1| (-374)))) (-1341 (($ $ $) 46 (|has| |#1| (-374)))) (-2673 (($ $ $) 55 (|has| |#1| (-374)))) (-1626 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 54 (|has| |#1| (-374)))) (-4174 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2158 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 59 (|has| |#1| (-374)))) (-2141 ((|#1| $) 70)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3409 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2780 ((|#1| $ |#1|) 92)) (-2944 (($ $ $) 86 (|has| |#1| (-374)))) (-4265 (((-784) $) 72)) (-3614 ((|#1| $) 61 (|has| |#1| (-464)))) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) 73)) (-3987 (((-657 |#1|) $) 66)) (-2498 ((|#1| $ (-784)) 68)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-3514 ((|#1| $ |#1| |#1|) 65)) (-3432 (($ $) 90)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($) 91)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-669 |#1|) (-141) (-1071)) (T -669)) +((-2066 (*1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)))) (-3432 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)))) (-3739 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-2763 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-669 *3)) (-4 *3 (-1071)) (-4 *3 (-374)))) (-1801 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-2944 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) +(-13 (-867 |t#1|) (-296 |t#1| |t#1|) (-10 -8 (-15 -2066 ($)) (-15 -3432 ($ $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -3739 ($ $ $)) (-15 -2763 ($ $ (-784))) (-15 -1801 ($ $)) (-15 -2944 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-296 |#1| |#1|) . T) ((-423 |#1|) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-739) . T) ((-1060 #0#) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-867 |#1|) . T)) +((-3894 (((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|))) 85 (|has| |#1| (-27)))) (-1856 (((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|))) 84 (|has| |#1| (-27))) (((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|)) 19))) +(((-670 |#1| |#2|) (-10 -7 (-15 -1856 ((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1856 ((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|)))) (-15 -3894 ((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|))))) |%noBranch|)) (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576)))) (-1265 |#1|)) (T -670)) +((-3894 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *2 (-657 (-666 (-419 *5)))) (-5 *1 (-670 *4 *5)) (-5 *3 (-666 (-419 *5))))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *2 (-657 (-666 (-419 *5)))) (-5 *1 (-670 *4 *5)) (-5 *3 (-666 (-419 *5))))) (-1856 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-657 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-666 (-419 *6)))) (-5 *1 (-670 *5 *6)) (-5 *3 (-666 (-419 *6)))))) +(-10 -7 (-15 -1856 ((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1856 ((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|)))) (-15 -3894 ((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|))))) |%noBranch|)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1801 (($ $) NIL (|has| |#1| (-374)))) (-3739 (($ $ $) 28 (|has| |#1| (-374)))) (-2763 (($ $ (-784)) 31 (|has| |#1| (-374)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3136 (($ $ $) NIL (|has| |#1| (-374)))) (-4030 (($ $ $) NIL (|has| |#1| (-374)))) (-3383 (($ $ $) NIL (|has| |#1| (-374)))) (-1658 (($ $ $) NIL (|has| |#1| (-374)))) (-1511 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-4406 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3470 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#1| (-464)))) (-3994 (((-112) $) NIL)) (-1974 (($ |#1| (-784)) NIL)) (-1704 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-568)))) (-4108 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-568)))) (-4219 (((-784) $) NIL)) (-4288 (($ $ $) NIL (|has| |#1| (-374)))) (-1846 (($ $ $) NIL (|has| |#1| (-374)))) (-1341 (($ $ $) NIL (|has| |#1| (-374)))) (-2673 (($ $ $) NIL (|has| |#1| (-374)))) (-1626 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-4174 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2158 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2780 ((|#1| $ |#1|) 24)) (-2944 (($ $ $) 33 (|has| |#1| (-374)))) (-4265 (((-784) $) NIL)) (-3614 ((|#1| $) NIL (|has| |#1| (-464)))) (-3515 (((-877) $) 20) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) NIL)) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-784)) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-3514 ((|#1| $ |#1| |#1|) 23)) (-3432 (($ $) NIL)) (-2716 (($) 21 T CONST)) (-2725 (($) 8 T CONST)) (-2066 (($) NIL)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-671 |#1| |#2|) (-669 |#1|) (-1071) (-1 |#1| |#1|)) (T -671)) +NIL +(-669 |#1|) +((-3739 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-2763 ((|#2| |#2| (-784) (-1 |#1| |#1|)) 45)) (-2944 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) +(((-672 |#1| |#2|) (-10 -7 (-15 -3739 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2763 (|#2| |#2| (-784) (-1 |#1| |#1|))) (-15 -2944 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-374) (-669 |#1|)) (T -672)) +((-2944 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-672 *4 *2)) (-4 *2 (-669 *4)))) (-2763 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-672 *5 *2)) (-4 *2 (-669 *5)))) (-3739 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-672 *4 *2)) (-4 *2 (-669 *4))))) +(-10 -7 (-15 -3739 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2763 (|#2| |#2| (-784) (-1 |#1| |#1|))) (-15 -2944 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3505 (($ $ $) 9))) +(((-673 |#1|) (-10 -8 (-15 -3505 (|#1| |#1| |#1|))) (-674)) (T -673)) +NIL +(-10 -8 (-15 -3505 (|#1| |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-3452 (($ $) 11)) (-4166 (((-112) $ $) 6)) (-3505 (($ $ $) 9)) (-2881 (((-112) $ $) 8)) (-3493 (($ $ $) 10))) +(((-674) (-141)) (T -674)) +((-3452 (*1 *1 *1) (-4 *1 (-674))) (-3493 (*1 *1 *1 *1) (-4 *1 (-674))) (-3505 (*1 *1 *1 *1) (-4 *1 (-674)))) +(-13 (-102) (-10 -8 (-15 -3452 ($ $)) (-15 -3493 ($ $ $)) (-15 -3505 ($ $ $)))) +(((-102) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 15)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-1590 ((|#1| $) 23)) (-3740 (($ $ $) NIL (|has| |#1| (-804)))) (-2249 (($ $ $) NIL (|has| |#1| (-804)))) (-1708 (((-1180) $) 48)) (-1460 (((-1142) $) NIL)) (-1602 ((|#3| $) 24)) (-3515 (((-877) $) 43)) (-4166 (((-112) $ $) 22)) (-2716 (($) 10 T CONST)) (-2938 (((-112) $ $) NIL (|has| |#1| (-804)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-804)))) (-2881 (((-112) $ $) 20)) (-2925 (((-112) $ $) NIL (|has| |#1| (-804)))) (-2901 (((-112) $ $) 26 (|has| |#1| (-804)))) (-2995 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-2982 (($ $) 17) (($ $ $) NIL)) (-2971 (($ $ $) 29)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-675 |#1| |#2| |#3|) (-13 (-730 |#2|) (-10 -8 (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|) (-15 -2995 ($ $ |#3|)) (-15 -2995 ($ |#1| |#3|)) (-15 -1590 (|#1| $)) (-15 -1602 (|#3| $)))) (-730 |#2|) (-174) (|SubsetCategory| (-739) |#2|)) (T -675)) +((-2995 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-675 *3 *4 *2)) (-4 *3 (-730 *4)) (-4 *2 (|SubsetCategory| (-739) *4)))) (-2995 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-675 *2 *4 *3)) (-4 *2 (-730 *4)) (-4 *3 (|SubsetCategory| (-739) *4)))) (-1590 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-730 *3)) (-5 *1 (-675 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-739) *3)))) (-1602 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-739) *4)) (-5 *1 (-675 *3 *4 *2)) (-4 *3 (-730 *4))))) +(-13 (-730 |#2|) (-10 -8 (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|) (-15 -2995 ($ $ |#3|)) (-15 -2995 ($ |#1| |#3|)) (-15 -1590 (|#1| $)) (-15 -1602 (|#3| $)))) +((-2366 (((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|)) 33))) +(((-676 |#1|) (-10 -7 (-15 -2366 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|)))) (-929)) (T -676)) +((-2366 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-1194 *4))) (-5 *3 (-1194 *4)) (-4 *4 (-929)) (-5 *1 (-676 *4))))) +(-10 -7 (-15 -2366 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3375 (((-657 |#1|) $) 84)) (-2843 (($ $ (-784)) 94)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-2186 (((-1313 |#1| |#2|) (-1313 |#1| |#2|) $) 50)) (-1593 (((-3 (-685 |#1|) "failed") $) NIL)) (-2830 (((-685 |#1|) $) NIL)) (-2165 (($ $) 93)) (-2977 (((-784) $) NIL)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3646 (($ (-685 |#1|) |#2|) 70)) (-2774 (($ $) 89)) (-4071 (($ (-1 |#2| |#2|) $) NIL)) (-3532 (((-1313 |#1| |#2|) (-1313 |#1| |#2|) $) 49)) (-3688 (((-2 (|:| |k| (-685 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2129 (((-685 |#1|) $) NIL)) (-2141 ((|#2| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3205 (($ $ |#1| $) 32) (($ $ (-657 |#1|) (-657 $)) 34)) (-4265 (((-784) $) 91)) (-3529 (($ $ $) 20) (($ (-685 |#1|) (-685 |#1|)) 79) (($ (-685 |#1|) $) 77) (($ $ (-685 |#1|)) 78)) (-3515 (((-877) $) NIL) (($ |#1|) 76) (((-1304 |#1| |#2|) $) 60) (((-1313 |#1| |#2|) $) 43) (($ (-685 |#1|)) 27)) (-3987 (((-657 |#2|) $) NIL)) (-2498 ((|#2| $ (-685 |#1|)) NIL)) (-1735 ((|#2| (-1313 |#1| |#2|) $) 45)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 23 T CONST)) (-2818 (((-657 (-2 (|:| |k| (-685 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2307 (((-3 $ "failed") (-1304 |#1| |#2|)) 62)) (-4050 (($ (-685 |#1|)) 14)) (-2881 (((-112) $ $) 46)) (-2995 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-2982 (($ $) 68) (($ $ $) NIL)) (-2971 (($ $ $) 31)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-685 |#1|)) NIL))) +(((-677 |#1| |#2|) (-13 (-385 |#1| |#2|) (-393 |#2| (-685 |#1|)) (-10 -8 (-15 -2307 ((-3 $ "failed") (-1304 |#1| |#2|))) (-15 -3529 ($ (-685 |#1|) (-685 |#1|))) (-15 -3529 ($ (-685 |#1|) $)) (-15 -3529 ($ $ (-685 |#1|))))) (-862) (-174)) (T -677)) +((-2307 (*1 *1 *2) (|partial| -12 (-5 *2 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-677 *3 *4)))) (-3529 (*1 *1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-5 *1 (-677 *3 *4)) (-4 *4 (-174)))) (-3529 (*1 *1 *2 *1) (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-5 *1 (-677 *3 *4)) (-4 *4 (-174)))) (-3529 (*1 *1 *1 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-5 *1 (-677 *3 *4)) (-4 *4 (-174))))) +(-13 (-385 |#1| |#2|) (-393 |#2| (-685 |#1|)) (-10 -8 (-15 -2307 ((-3 $ "failed") (-1304 |#1| |#2|))) (-15 -3529 ($ (-685 |#1|) (-685 |#1|))) (-15 -3529 ($ (-685 |#1|) $)) (-15 -3529 ($ $ (-685 |#1|))))) +((-3925 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-1698 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3726 (($ (-1 (-112) |#2|) $) 29)) (-4072 (($ $) 65)) (-3588 (($ $) 74)) (-1920 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3662 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-3619 (((-576) |#2| $ (-576)) 71) (((-576) |#2| $) NIL) (((-576) (-1 (-112) |#2|) $) 54)) (-4096 (($ (-784) |#2|) 63)) (-1631 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-1661 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4071 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1672 (($ |#2|) 15)) (-2701 (($ $ $ (-576)) 42) (($ |#2| $ (-576)) 40)) (-4135 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2683 (($ $ (-1256 (-576))) 51) (($ $ (-576)) 44)) (-1818 (($ $ $ (-576)) 70)) (-1899 (($ $) 68)) (-2901 (((-112) $ $) 76))) +(((-678 |#1| |#2|) (-10 -8 (-15 -1672 (|#1| |#2|)) (-15 -2683 (|#1| |#1| (-576))) (-15 -2683 (|#1| |#1| (-1256 (-576)))) (-15 -1920 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2701 (|#1| |#2| |#1| (-576))) (-15 -2701 (|#1| |#1| |#1| (-576))) (-15 -1631 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3726 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1920 (|#1| |#2| |#1|)) (-15 -3588 (|#1| |#1|)) (-15 -1631 (|#1| |#1| |#1|)) (-15 -1661 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3925 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3619 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3619 ((-576) |#2| |#1|)) (-15 -3619 ((-576) |#2| |#1| (-576))) (-15 -1661 (|#1| |#1| |#1|)) (-15 -3925 ((-112) |#1|)) (-15 -1818 (|#1| |#1| |#1| (-576))) (-15 -4072 (|#1| |#1|)) (-15 -1698 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -2901 ((-112) |#1| |#1|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4135 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4096 (|#1| (-784) |#2|)) (-15 -4071 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1899 (|#1| |#1|))) (-679 |#2|) (-1239)) (T -678)) +NIL +(-10 -8 (-15 -1672 (|#1| |#2|)) (-15 -2683 (|#1| |#1| (-576))) (-15 -2683 (|#1| |#1| (-1256 (-576)))) (-15 -1920 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2701 (|#1| |#2| |#1| (-576))) (-15 -2701 (|#1| |#1| |#1| (-576))) (-15 -1631 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3726 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1920 (|#1| |#2| |#1|)) (-15 -3588 (|#1| |#1|)) (-15 -1631 (|#1| |#1| |#1|)) (-15 -1661 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3925 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3619 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3619 ((-576) |#2| |#1|)) (-15 -3619 ((-576) |#2| |#1| (-576))) (-15 -1661 (|#1| |#1| |#1|)) (-15 -3925 ((-112) |#1|)) (-15 -1818 (|#1| |#1| |#1| (-576))) (-15 -4072 (|#1| |#1|)) (-15 -1698 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -2901 ((-112) |#1| |#1|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3662 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4135 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4096 (|#1| (-784) |#2|)) (-15 -4071 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1899 (|#1| |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3037 ((|#1| $) 49)) (-2860 ((|#1| $) 66)) (-4425 (($ $) 68)) (-3590 (((-1294) $ (-576) (-576)) 99 (|has| $ (-6 -4467)))) (-3342 (($ $ (-576)) 53 (|has| $ (-6 -4467)))) (-3925 (((-112) $) 144 (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-1698 (($ $) 148 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4467)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4467)))) (-1832 (($ $) 143 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-4284 (((-112) $ (-784)) 8)) (-1439 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-3509 (($ $ $) 57 (|has| $ (-6 -4467)))) (-3554 ((|#1| $ |#1|) 55 (|has| $ (-6 -4467)))) (-1629 ((|#1| $ |#1|) 59 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4467))) (($ $ "rest" $) 56 (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 119 (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-3726 (($ (-1 (-112) |#1|) $) 131)) (-2007 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4466)))) (-2849 ((|#1| $) 67)) (-2515 (($) 7 T CONST)) (-4072 (($ $) 146 (|has| $ (-6 -4467)))) (-3796 (($ $) 136)) (-3542 (($ $) 74) (($ $ (-784)) 72)) (-3588 (($ $) 133 (|has| |#1| (-1122)))) (-1620 (($ $) 101 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1920 (($ |#1| $) 132 (|has| |#1| (-1122))) (($ (-1 (-112) |#1|) $) 127)) (-3901 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4466))) (($ |#1| $) 102 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1810 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) 89)) (-2872 (((-112) $) 85)) (-3619 (((-576) |#1| $ (-576)) 141 (|has| |#1| (-1122))) (((-576) |#1| $) 140 (|has| |#1| (-1122))) (((-576) (-1 (-112) |#1|) $) 139)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) 51)) (-4257 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-4096 (($ (-784) |#1|) 111)) (-1786 (((-112) $ (-784)) 9)) (-3363 (((-576) $) 97 (|has| (-576) (-862)))) (-3740 (($ $ $) 154 (|has| |#1| (-862)))) (-1631 (($ $ $) 134 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-1661 (($ $ $) 142 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1833 (((-576) $) 96 (|has| (-576) (-862)))) (-2249 (($ $ $) 153 (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1672 (($ |#1|) 124)) (-4326 (((-112) $ (-784)) 10)) (-2397 (((-657 |#1|) $) 46)) (-1743 (((-112) $) 50)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3921 ((|#1| $) 71) (($ $ (-784)) 69)) (-2701 (($ $ $ (-576)) 129) (($ |#1| $ (-576)) 128)) (-2225 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3309 (((-657 (-576)) $) 94)) (-4324 (((-112) (-576) $) 93)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3528 ((|#1| $) 77) (($ $ (-784)) 75)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1495 (($ $ |#1|) 98 (|has| $ (-6 -4467)))) (-1533 (((-112) $) 86)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) 92)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1256 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3064 (((-576) $ $) 45)) (-2683 (($ $ (-1256 (-576))) 126) (($ $ (-576)) 125)) (-3395 (($ $ (-1256 (-576))) 116) (($ $ (-576)) 115)) (-4392 (((-112) $) 47)) (-3645 (($ $) 63)) (-2463 (($ $) 60 (|has| $ (-6 -4467)))) (-2933 (((-784) $) 64)) (-1961 (($ $) 65)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1818 (($ $ $ (-576)) 145 (|has| $ (-6 -4467)))) (-1899 (($ $) 13)) (-4136 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 109)) (-2752 (($ $ $) 62) (($ $ |#1|) 61)) (-1637 (($ $ $) 79) (($ |#1| $) 78) (($ (-657 $)) 113) (($ $ |#1|) 112)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) 52)) (-3631 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) 152 (|has| |#1| (-862)))) (-2913 (((-112) $ $) 150 (|has| |#1| (-862)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2925 (((-112) $ $) 151 (|has| |#1| (-862)))) (-2901 (((-112) $ $) 149 (|has| |#1| (-862)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-679 |#1|) (-141) (-1239)) (T -679)) +((-1672 (*1 *1 *2) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1239))))) +(-13 (-1171 |t#1|) (-384 |t#1|) (-292 |t#1|) (-10 -8 (-15 -1672 ($ |t#1|)))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-292 |#1|) . T) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1032 |#1|) . T) ((-1122) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862))) ((-1171 |#1|) . T) ((-1239) . T) ((-1277 |#1|) . T)) +((-2632 (((-657 (-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|))))) (-657 (-657 |#1|)) (-657 (-1289 |#1|))) 22) (((-657 (-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|))))) (-702 |#1|) (-657 (-1289 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|)))) (-657 (-657 |#1|)) (-1289 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|)))) (-702 |#1|) (-1289 |#1|)) 14)) (-4343 (((-784) (-702 |#1|) (-1289 |#1|)) 30)) (-4318 (((-3 (-1289 |#1|) "failed") (-702 |#1|) (-1289 |#1|)) 24)) (-1604 (((-112) (-702 |#1|) (-1289 |#1|)) 27))) +(((-680 |#1|) (-10 -7 (-15 -2632 ((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|)))) (-702 |#1|) (-1289 |#1|))) (-15 -2632 ((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|)))) (-657 (-657 |#1|)) (-1289 |#1|))) (-15 -2632 ((-657 (-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|))))) (-702 |#1|) (-657 (-1289 |#1|)))) (-15 -2632 ((-657 (-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|))))) (-657 (-657 |#1|)) (-657 (-1289 |#1|)))) (-15 -4318 ((-3 (-1289 |#1|) "failed") (-702 |#1|) (-1289 |#1|))) (-15 -1604 ((-112) (-702 |#1|) (-1289 |#1|))) (-15 -4343 ((-784) (-702 |#1|) (-1289 |#1|)))) (-374)) (T -680)) +((-4343 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)) (-4 *5 (-374)) (-5 *2 (-784)) (-5 *1 (-680 *5)))) (-1604 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)) (-4 *5 (-374)) (-5 *2 (-112)) (-5 *1 (-680 *5)))) (-4318 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1289 *4)) (-5 *3 (-702 *4)) (-4 *4 (-374)) (-5 *1 (-680 *4)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-657 *5))) (-4 *5 (-374)) (-5 *2 (-657 (-2 (|:| |particular| (-3 (-1289 *5) "failed")) (|:| -2469 (-657 (-1289 *5)))))) (-5 *1 (-680 *5)) (-5 *4 (-657 (-1289 *5))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *5)) (-4 *5 (-374)) (-5 *2 (-657 (-2 (|:| |particular| (-3 (-1289 *5) "failed")) (|:| -2469 (-657 (-1289 *5)))))) (-5 *1 (-680 *5)) (-5 *4 (-657 (-1289 *5))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-657 *5))) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1289 *5) "failed")) (|:| -2469 (-657 (-1289 *5))))) (-5 *1 (-680 *5)) (-5 *4 (-1289 *5)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1289 *5) "failed")) (|:| -2469 (-657 (-1289 *5))))) (-5 *1 (-680 *5)) (-5 *4 (-1289 *5))))) +(-10 -7 (-15 -2632 ((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|)))) (-702 |#1|) (-1289 |#1|))) (-15 -2632 ((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|)))) (-657 (-657 |#1|)) (-1289 |#1|))) (-15 -2632 ((-657 (-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|))))) (-702 |#1|) (-657 (-1289 |#1|)))) (-15 -2632 ((-657 (-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|))))) (-657 (-657 |#1|)) (-657 (-1289 |#1|)))) (-15 -4318 ((-3 (-1289 |#1|) "failed") (-702 |#1|) (-1289 |#1|))) (-15 -1604 ((-112) (-702 |#1|) (-1289 |#1|))) (-15 -4343 ((-784) (-702 |#1|) (-1289 |#1|)))) +((-2632 (((-657 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2469 (-657 |#3|)))) |#4| (-657 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2469 (-657 |#3|))) |#4| |#3|) 60)) (-4343 (((-784) |#4| |#3|) 18)) (-4318 (((-3 |#3| "failed") |#4| |#3|) 21)) (-1604 (((-112) |#4| |#3|) 14))) +(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2632 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2469 (-657 |#3|))) |#4| |#3|)) (-15 -2632 ((-657 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2469 (-657 |#3|)))) |#4| (-657 |#3|))) (-15 -4318 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1604 ((-112) |#4| |#3|)) (-15 -4343 ((-784) |#4| |#3|))) (-374) (-13 (-384 |#1|) (-10 -7 (-6 -4467))) (-13 (-384 |#1|) (-10 -7 (-6 -4467))) (-700 |#1| |#2| |#3|)) (T -681)) +((-4343 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 (-784)) (-5 *1 (-681 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4)))) (-1604 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 (-112)) (-5 *1 (-681 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4)))) (-4318 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-374)) (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4467)))) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467)))) (-5 *1 (-681 *4 *5 *2 *3)) (-4 *3 (-700 *4 *5 *2)))) (-2632 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 (-657 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2469 (-657 *7))))) (-5 *1 (-681 *5 *6 *7 *3)) (-5 *4 (-657 *7)) (-4 *3 (-700 *5 *6 *7)))) (-2632 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) (-5 *1 (-681 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4))))) +(-10 -7 (-15 -2632 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2469 (-657 |#3|))) |#4| |#3|)) (-15 -2632 ((-657 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2469 (-657 |#3|)))) |#4| (-657 |#3|))) (-15 -4318 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1604 ((-112) |#4| |#3|)) (-15 -4343 ((-784) |#4| |#3|))) +((-2699 (((-2 (|:| |particular| (-3 (-1289 (-419 |#4|)) "failed")) (|:| -2469 (-657 (-1289 (-419 |#4|))))) (-657 |#4|) (-657 |#3|)) 51))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2699 ((-2 (|:| |particular| (-3 (-1289 (-419 |#4|)) "failed")) (|:| -2469 (-657 (-1289 (-419 |#4|))))) (-657 |#4|) (-657 |#3|)))) (-568) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -682)) +((-2699 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *7)) (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-5 *2 (-2 (|:| |particular| (-3 (-1289 (-419 *8)) "failed")) (|:| -2469 (-657 (-1289 (-419 *8)))))) (-5 *1 (-682 *5 *6 *7 *8))))) +(-10 -7 (-15 -2699 ((-2 (|:| |particular| (-3 (-1289 (-419 |#4|)) "failed")) (|:| -2469 (-657 (-1289 (-419 |#4|))))) (-657 |#4|) (-657 |#3|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-4119 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2256 ((|#2| $) NIL)) (-1616 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3731 (((-1289 (-702 |#2|))) NIL) (((-1289 (-702 |#2|)) (-1289 $)) NIL)) (-3425 (((-112) $) NIL)) (-2672 (((-1289 $)) 42)) (-4284 (((-112) $ (-784)) NIL)) (-1868 (($ |#2|) NIL)) (-2515 (($) NIL T CONST)) (-4389 (($ $) NIL (|has| |#2| (-317)))) (-3520 (((-245 |#1| |#2|) $ (-576)) NIL)) (-1992 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) NIL (|has| |#2| (-568)))) (-3247 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2259 (((-702 |#2|)) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2873 ((|#2| $) NIL)) (-2246 (((-702 |#2|) $) NIL) (((-702 |#2|) $ (-1289 $)) NIL)) (-4236 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-2408 (((-1194 (-972 |#2|))) NIL (|has| |#2| (-374)))) (-4408 (($ $ (-941)) NIL)) (-2348 ((|#2| $) NIL)) (-4270 (((-1194 |#2|) $) NIL (|has| |#2| (-568)))) (-3612 ((|#2|) NIL) ((|#2| (-1289 $)) NIL)) (-4446 (((-1194 |#2|) $) NIL)) (-3282 (((-112)) NIL)) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) ((|#2| $) NIL)) (-4093 (($ (-1289 |#2|)) NIL) (($ (-1289 |#2|) (-1289 $)) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-4343 (((-784) $) NIL (|has| |#2| (-568))) (((-941)) 43)) (-1741 ((|#2| $ (-576) (-576)) NIL)) (-2449 (((-112)) NIL)) (-3152 (($ $ (-941)) NIL)) (-1448 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3994 (((-112) $) NIL)) (-3652 (((-784) $) NIL (|has| |#2| (-568)))) (-2992 (((-657 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-568)))) (-2334 (((-784) $) NIL)) (-1738 (((-112)) NIL)) (-2344 (((-784) $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3242 ((|#2| $) NIL (|has| |#2| (-6 (-4468 "*"))))) (-4076 (((-576) $) NIL)) (-2581 (((-576) $) NIL)) (-3855 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2898 (((-576) $) NIL)) (-4230 (((-576) $) NIL)) (-2484 (($ (-657 (-657 |#2|))) NIL)) (-1799 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2819 (((-657 (-657 |#2|)) $) NIL)) (-3111 (((-112)) NIL)) (-1790 (((-112)) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-2427 (((-3 (-2 (|:| |particular| $) (|:| -2469 (-657 $))) "failed")) NIL (|has| |#2| (-568)))) (-3047 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-1546 (((-702 |#2|)) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-3001 ((|#2| $) NIL)) (-3138 (((-702 |#2|) $) NIL) (((-702 |#2|) $ (-1289 $)) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-1822 (((-1194 (-972 |#2|))) NIL (|has| |#2| (-374)))) (-3296 (($ $ (-941)) NIL)) (-2115 ((|#2| $) NIL)) (-2954 (((-1194 |#2|) $) NIL (|has| |#2| (-568)))) (-1861 ((|#2|) NIL) ((|#2| (-1289 $)) NIL)) (-1720 (((-1194 |#2|) $) NIL)) (-1525 (((-112)) NIL)) (-1708 (((-1180) $) NIL)) (-3897 (((-112)) NIL)) (-3110 (((-112)) NIL)) (-4278 (((-112)) NIL)) (-1455 (((-3 $ "failed") $) NIL (|has| |#2| (-374)))) (-1460 (((-1142) $) NIL)) (-2931 (((-112)) NIL)) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-2372 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) 28) ((|#2| $ (-576)) NIL)) (-2209 (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237))) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-3176 ((|#2| $) NIL)) (-2959 (($ (-657 |#2|)) NIL)) (-3249 (((-112) $) NIL)) (-3500 (((-245 |#1| |#2|) $) NIL)) (-3917 ((|#2| $) NIL (|has| |#2| (-6 (-4468 "*"))))) (-1469 (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1899 (($ $) NIL)) (-3806 (((-702 |#2|) (-1289 $)) NIL) (((-1289 |#2|) $) NIL) (((-702 |#2|) (-1289 $) (-1289 $)) NIL) (((-1289 |#2|) $ (-1289 $)) 31)) (-4136 (($ (-1289 |#2|)) NIL) (((-1289 |#2|) $) NIL)) (-3522 (((-657 (-972 |#2|))) NIL) (((-657 (-972 |#2|)) (-1289 $)) NIL)) (-1911 (($ $ $) NIL)) (-2473 (((-112)) NIL)) (-1612 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1060 (-419 (-576))))) (($ |#2|) NIL) (((-702 |#2|) $) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) 41)) (-3020 (((-657 (-1289 |#2|))) NIL (|has| |#2| (-568)))) (-3280 (($ $ $ $) NIL)) (-1433 (((-112)) NIL)) (-3514 (($ (-702 |#2|) $) NIL)) (-3258 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2203 (((-112) $) NIL)) (-2566 (($ $ $) NIL)) (-3692 (((-112)) NIL)) (-3560 (((-112)) NIL)) (-3844 (((-112)) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237))) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#2| (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-683 |#1| |#2|) (-13 (-1145 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-702 |#2|)) (-429 |#2|)) (-941) (-174)) (T -683)) +NIL +(-13 (-1145 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-702 |#2|)) (-429 |#2|)) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2058 (((-657 (-1157)) $) 10)) (-3515 (((-877) $) 16) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-684) (-13 (-1105) (-10 -8 (-15 -2058 ((-657 (-1157)) $))))) (T -684)) +((-2058 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-684))))) +(-13 (-1105) (-10 -8 (-15 -2058 ((-657 (-1157)) $)))) +((-3423 (((-112) $ $) NIL)) (-3375 (((-657 |#1|) $) NIL)) (-4228 (($ $) 62)) (-3402 (((-112) $) NIL)) (-1593 (((-3 |#1| "failed") $) NIL)) (-2830 ((|#1| $) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-2649 (((-3 $ "failed") (-832 |#1|)) 27)) (-2311 (((-112) (-832 |#1|)) 17)) (-4199 (($ (-832 |#1|)) 28)) (-3630 (((-112) $ $) 36)) (-3041 (((-941) $) 43)) (-4217 (($ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1856 (((-657 $) (-832 |#1|)) 19)) (-3515 (((-877) $) 51) (($ |#1|) 40) (((-832 |#1|) $) 47) (((-690 |#1|) $) 52)) (-4166 (((-112) $ $) NIL)) (-2745 (((-59 (-657 $)) (-657 |#1|) (-941)) 67)) (-3836 (((-657 $) (-657 |#1|) (-941)) 70)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 63)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 46))) +(((-685 |#1|) (-13 (-862) (-1060 |#1|) (-10 -8 (-15 -3402 ((-112) $)) (-15 -4217 ($ $)) (-15 -4228 ($ $)) (-15 -3041 ((-941) $)) (-15 -3630 ((-112) $ $)) (-15 -3515 ((-832 |#1|) $)) (-15 -3515 ((-690 |#1|) $)) (-15 -1856 ((-657 $) (-832 |#1|))) (-15 -2311 ((-112) (-832 |#1|))) (-15 -4199 ($ (-832 |#1|))) (-15 -2649 ((-3 $ "failed") (-832 |#1|))) (-15 -3375 ((-657 |#1|) $)) (-15 -2745 ((-59 (-657 $)) (-657 |#1|) (-941))) (-15 -3836 ((-657 $) (-657 |#1|) (-941))))) (-862)) (T -685)) +((-3402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) (-4217 (*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-862)))) (-4228 (*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-862)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) (-3630 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-690 *3)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-832 *4)) (-4 *4 (-862)) (-5 *2 (-657 (-685 *4))) (-5 *1 (-685 *4)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-832 *4)) (-4 *4 (-862)) (-5 *2 (-112)) (-5 *1 (-685 *4)))) (-4199 (*1 *1 *2) (-12 (-5 *2 (-832 *3)) (-4 *3 (-862)) (-5 *1 (-685 *3)))) (-2649 (*1 *1 *2) (|partial| -12 (-5 *2 (-832 *3)) (-4 *3 (-862)) (-5 *1 (-685 *3)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *5)) (-5 *4 (-941)) (-4 *5 (-862)) (-5 *2 (-59 (-657 (-685 *5)))) (-5 *1 (-685 *5)))) (-3836 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *5)) (-5 *4 (-941)) (-4 *5 (-862)) (-5 *2 (-657 (-685 *5))) (-5 *1 (-685 *5))))) +(-13 (-862) (-1060 |#1|) (-10 -8 (-15 -3402 ((-112) $)) (-15 -4217 ($ $)) (-15 -4228 ($ $)) (-15 -3041 ((-941) $)) (-15 -3630 ((-112) $ $)) (-15 -3515 ((-832 |#1|) $)) (-15 -3515 ((-690 |#1|) $)) (-15 -1856 ((-657 $) (-832 |#1|))) (-15 -2311 ((-112) (-832 |#1|))) (-15 -4199 ($ (-832 |#1|))) (-15 -2649 ((-3 $ "failed") (-832 |#1|))) (-15 -3375 ((-657 |#1|) $)) (-15 -2745 ((-59 (-657 $)) (-657 |#1|) (-941))) (-15 -3836 ((-657 $) (-657 |#1|) (-941))))) +((-3037 ((|#2| $) 100)) (-4425 (($ $) 121)) (-4284 (((-112) $ (-784)) 35)) (-3542 (($ $) 109) (($ $ (-784)) 112)) (-2872 (((-112) $) 122)) (-2754 (((-657 $) $) 96)) (-4257 (((-112) $ $) 92)) (-1786 (((-112) $ (-784)) 33)) (-3363 (((-576) $) 66)) (-1833 (((-576) $) 65)) (-4326 (((-112) $ (-784)) 31)) (-1743 (((-112) $) 98)) (-3921 ((|#2| $) 113) (($ $ (-784)) 117)) (-2225 (($ $ $ (-576)) 83) (($ |#2| $ (-576)) 82)) (-3309 (((-657 (-576)) $) 64)) (-4324 (((-112) (-576) $) 59)) (-3528 ((|#2| $) NIL) (($ $ (-784)) 108)) (-1456 (($ $ (-576)) 125)) (-1533 (((-112) $) 124)) (-2372 (((-112) (-1 (-112) |#2|) $) 42)) (-3585 (((-657 |#2|) $) 46)) (-2780 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1256 (-576))) 79) ((|#2| $ (-576)) 57) ((|#2| $ (-576) |#2|) 58)) (-3064 (((-576) $ $) 91)) (-3395 (($ $ (-1256 (-576))) 78) (($ $ (-576)) 72)) (-4392 (((-112) $) 87)) (-3645 (($ $) 105)) (-2933 (((-784) $) 104)) (-1961 (($ $) 103)) (-3529 (($ (-657 |#2|)) 53)) (-1557 (($ $) 126)) (-4160 (((-657 $) $) 90)) (-3631 (((-112) $ $) 89)) (-3258 (((-112) (-1 (-112) |#2|) $) 41)) (-2881 (((-112) $ $) 20)) (-3437 (((-784) $) 39))) +(((-686 |#1| |#2|) (-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1456 (|#1| |#1| (-576))) (-15 -2872 ((-112) |#1|)) (-15 -1533 ((-112) |#1|)) (-15 -2780 (|#2| |#1| (-576) |#2|)) (-15 -2780 (|#2| |#1| (-576))) (-15 -3585 ((-657 |#2|) |#1|)) (-15 -4324 ((-112) (-576) |#1|)) (-15 -3309 ((-657 (-576)) |#1|)) (-15 -1833 ((-576) |#1|)) (-15 -3363 ((-576) |#1|)) (-15 -3529 (|#1| (-657 |#2|))) (-15 -2780 (|#1| |#1| (-1256 (-576)))) (-15 -3395 (|#1| |#1| (-576))) (-15 -3395 (|#1| |#1| (-1256 (-576)))) (-15 -2225 (|#1| |#2| |#1| (-576))) (-15 -2225 (|#1| |#1| |#1| (-576))) (-15 -3645 (|#1| |#1|)) (-15 -2933 ((-784) |#1|)) (-15 -1961 (|#1| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -3921 (|#1| |#1| (-784))) (-15 -2780 (|#2| |#1| "last")) (-15 -3921 (|#2| |#1|)) (-15 -3542 (|#1| |#1| (-784))) (-15 -2780 (|#1| |#1| "rest")) (-15 -3542 (|#1| |#1|)) (-15 -3528 (|#1| |#1| (-784))) (-15 -2780 (|#2| |#1| "first")) (-15 -3528 (|#2| |#1|)) (-15 -4257 ((-112) |#1| |#1|)) (-15 -3631 ((-112) |#1| |#1|)) (-15 -3064 ((-576) |#1| |#1|)) (-15 -4392 ((-112) |#1|)) (-15 -2780 (|#2| |#1| "value")) (-15 -3037 (|#2| |#1|)) (-15 -1743 ((-112) |#1|)) (-15 -2754 ((-657 |#1|) |#1|)) (-15 -4160 ((-657 |#1|) |#1|)) (-15 -2372 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3258 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3437 ((-784) |#1|)) (-15 -4284 ((-112) |#1| (-784))) (-15 -1786 ((-112) |#1| (-784))) (-15 -4326 ((-112) |#1| (-784)))) (-687 |#2|) (-1239)) (T -686)) +NIL +(-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1456 (|#1| |#1| (-576))) (-15 -2872 ((-112) |#1|)) (-15 -1533 ((-112) |#1|)) (-15 -2780 (|#2| |#1| (-576) |#2|)) (-15 -2780 (|#2| |#1| (-576))) (-15 -3585 ((-657 |#2|) |#1|)) (-15 -4324 ((-112) (-576) |#1|)) (-15 -3309 ((-657 (-576)) |#1|)) (-15 -1833 ((-576) |#1|)) (-15 -3363 ((-576) |#1|)) (-15 -3529 (|#1| (-657 |#2|))) (-15 -2780 (|#1| |#1| (-1256 (-576)))) (-15 -3395 (|#1| |#1| (-576))) (-15 -3395 (|#1| |#1| (-1256 (-576)))) (-15 -2225 (|#1| |#2| |#1| (-576))) (-15 -2225 (|#1| |#1| |#1| (-576))) (-15 -3645 (|#1| |#1|)) (-15 -2933 ((-784) |#1|)) (-15 -1961 (|#1| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -3921 (|#1| |#1| (-784))) (-15 -2780 (|#2| |#1| "last")) (-15 -3921 (|#2| |#1|)) (-15 -3542 (|#1| |#1| (-784))) (-15 -2780 (|#1| |#1| "rest")) (-15 -3542 (|#1| |#1|)) (-15 -3528 (|#1| |#1| (-784))) (-15 -2780 (|#2| |#1| "first")) (-15 -3528 (|#2| |#1|)) (-15 -4257 ((-112) |#1| |#1|)) (-15 -3631 ((-112) |#1| |#1|)) (-15 -3064 ((-576) |#1| |#1|)) (-15 -4392 ((-112) |#1|)) (-15 -2780 (|#2| |#1| "value")) (-15 -3037 (|#2| |#1|)) (-15 -1743 ((-112) |#1|)) (-15 -2754 ((-657 |#1|) |#1|)) (-15 -4160 ((-657 |#1|) |#1|)) (-15 -2372 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3258 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3437 ((-784) |#1|)) (-15 -4284 ((-112) |#1| (-784))) (-15 -1786 ((-112) |#1| (-784))) (-15 -4326 ((-112) |#1| (-784)))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3037 ((|#1| $) 49)) (-2860 ((|#1| $) 66)) (-4425 (($ $) 68)) (-3590 (((-1294) $ (-576) (-576)) 99 (|has| $ (-6 -4467)))) (-3342 (($ $ (-576)) 53 (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) 8)) (-1439 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-3509 (($ $ $) 57 (|has| $ (-6 -4467)))) (-3554 ((|#1| $ |#1|) 55 (|has| $ (-6 -4467)))) (-1629 ((|#1| $ |#1|) 59 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4467))) (($ $ "rest" $) 56 (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 119 (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) 104)) (-2849 ((|#1| $) 67)) (-2515 (($) 7 T CONST)) (-3428 (($ $) 126)) (-3542 (($ $) 74) (($ $ (-784)) 72)) (-1620 (($ $) 101 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#1| $) 102 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 105)) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1810 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) 89)) (-2872 (((-112) $) 85)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1483 (((-784) $) 125)) (-2754 (((-657 $) $) 51)) (-4257 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-4096 (($ (-784) |#1|) 111)) (-1786 (((-112) $ (-784)) 9)) (-3363 (((-576) $) 97 (|has| (-576) (-862)))) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1833 (((-576) $) 96 (|has| (-576) (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-4326 (((-112) $ (-784)) 10)) (-2397 (((-657 |#1|) $) 46)) (-1743 (((-112) $) 50)) (-2241 (($ $) 128)) (-3476 (((-112) $) 129)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3921 ((|#1| $) 71) (($ $ (-784)) 69)) (-2225 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3309 (((-657 (-576)) $) 94)) (-4324 (((-112) (-576) $) 93)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3629 ((|#1| $) 127)) (-3528 ((|#1| $) 77) (($ $ (-784)) 75)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1495 (($ $ |#1|) 98 (|has| $ (-6 -4467)))) (-1456 (($ $ (-576)) 124)) (-1533 (((-112) $) 86)) (-1640 (((-112) $) 130)) (-1694 (((-112) $) 131)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) 92)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1256 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3064 (((-576) $ $) 45)) (-3395 (($ $ (-1256 (-576))) 116) (($ $ (-576)) 115)) (-4392 (((-112) $) 47)) (-3645 (($ $) 63)) (-2463 (($ $) 60 (|has| $ (-6 -4467)))) (-2933 (((-784) $) 64)) (-1961 (($ $) 65)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-4136 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 109)) (-2752 (($ $ $) 62 (|has| $ (-6 -4467))) (($ $ |#1|) 61 (|has| $ (-6 -4467)))) (-1637 (($ $ $) 79) (($ |#1| $) 78) (($ (-657 $)) 113) (($ $ |#1|) 112)) (-1557 (($ $) 123)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) 52)) (-3631 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-687 |#1|) (-141) (-1239)) (T -687)) +((-3901 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-687 *3)) (-4 *3 (-1239)))) (-2007 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-687 *3)) (-4 *3 (-1239)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) (-2241 (*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239)))) (-3428 (*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239)))) (-1483 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-784)))) (-1456 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-687 *3)) (-4 *3 (-1239)))) (-1557 (*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239))))) +(-13 (-1171 |t#1|) (-10 -8 (-15 -3901 ($ (-1 (-112) |t#1|) $)) (-15 -2007 ($ (-1 (-112) |t#1|) $)) (-15 -1694 ((-112) $)) (-15 -1640 ((-112) $)) (-15 -3476 ((-112) $)) (-15 -2241 ($ $)) (-15 -3629 (|t#1| $)) (-15 -3428 ($ $)) (-15 -1483 ((-784) $)) (-15 -1456 ($ $ (-576))) (-15 -1557 ($ $)))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-1032 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1171 |#1|) . T) ((-1239) . T) ((-1277 |#1|) . T)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3952 (($ (-784) (-784) (-784)) 53 (|has| |#1| (-1071)))) (-4284 (((-112) $ (-784)) NIL)) (-3115 ((|#1| $ (-784) (-784) (-784) |#1|) 47)) (-2515 (($) NIL T CONST)) (-3550 (($ $ $) 57 (|has| |#1| (-1071)))) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1692 (((-1289 (-784)) $) 12)) (-2223 (($ (-1198) $ $) 34)) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-4443 (($ (-784)) 55 (|has| |#1| (-1071)))) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ (-784) (-784) (-784)) 44)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-3529 (($ (-657 (-657 (-657 |#1|)))) 67)) (-3515 (($ (-978 (-978 (-978 |#1|)))) 23) (((-978 (-978 (-978 |#1|))) $) 19) (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-688 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1071)) (PROGN (-15 -3952 ($ (-784) (-784) (-784))) (-15 -4443 ($ (-784))) (-15 -3550 ($ $ $))) |%noBranch|) (-15 -3529 ($ (-657 (-657 (-657 |#1|))))) (-15 -2780 (|#1| $ (-784) (-784) (-784))) (-15 -3115 (|#1| $ (-784) (-784) (-784) |#1|)) (-15 -3515 ($ (-978 (-978 (-978 |#1|))))) (-15 -3515 ((-978 (-978 (-978 |#1|))) $)) (-15 -2223 ($ (-1198) $ $)) (-15 -1692 ((-1289 (-784)) $)))) (-1122)) (T -688)) +((-3952 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-688 *3)) (-4 *3 (-1071)) (-4 *3 (-1122)))) (-4443 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-688 *3)) (-4 *3 (-1071)) (-4 *3 (-1122)))) (-3550 (*1 *1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1071)) (-4 *2 (-1122)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-657 *3)))) (-4 *3 (-1122)) (-5 *1 (-688 *3)))) (-2780 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-784)) (-5 *1 (-688 *2)) (-4 *2 (-1122)))) (-3115 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-688 *2)) (-4 *2 (-1122)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-978 (-978 (-978 *3)))) (-4 *3 (-1122)) (-5 *1 (-688 *3)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-978 (-978 (-978 *3)))) (-5 *1 (-688 *3)) (-4 *3 (-1122)))) (-2223 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-688 *3)) (-4 *3 (-1122)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-1289 (-784))) (-5 *1 (-688 *3)) (-4 *3 (-1122))))) +(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1071)) (PROGN (-15 -3952 ($ (-784) (-784) (-784))) (-15 -4443 ($ (-784))) (-15 -3550 ($ $ $))) |%noBranch|) (-15 -3529 ($ (-657 (-657 (-657 |#1|))))) (-15 -2780 (|#1| $ (-784) (-784) (-784))) (-15 -3115 (|#1| $ (-784) (-784) (-784) |#1|)) (-15 -3515 ($ (-978 (-978 (-978 |#1|))))) (-15 -3515 ((-978 (-978 (-978 |#1|))) $)) (-15 -2223 ($ (-1198) $ $)) (-15 -1692 ((-1289 (-784)) $)))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-2626 (((-495) $) 10)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 19) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2645 (((-1157) $) 12)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-689) (-13 (-1105) (-10 -8 (-15 -2626 ((-495) $)) (-15 -2645 ((-1157) $))))) (T -689)) +((-2626 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-689)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-689))))) +(-13 (-1105) (-10 -8 (-15 -2626 ((-495) $)) (-15 -2645 ((-1157) $)))) +((-3423 (((-112) $ $) NIL)) (-3375 (((-657 |#1|) $) 15)) (-4228 (($ $) 19)) (-3402 (((-112) $) 20)) (-1593 (((-3 |#1| "failed") $) 23)) (-2830 ((|#1| $) 21)) (-3542 (($ $) 37)) (-2774 (($ $) 25)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-3630 (((-112) $ $) 47)) (-3041 (((-941) $) 40)) (-4217 (($ $) 18)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3528 ((|#1| $) 36)) (-3515 (((-877) $) 32) (($ |#1|) 24) (((-832 |#1|) $) 28)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 13)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-690 |#1|) (-13 (-862) (-1060 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3515 ((-832 |#1|) $)) (-15 -3528 (|#1| $)) (-15 -4217 ($ $)) (-15 -3041 ((-941) $)) (-15 -3630 ((-112) $ $)) (-15 -2774 ($ $)) (-15 -3542 ($ $)) (-15 -3402 ((-112) $)) (-15 -4228 ($ $)) (-15 -3375 ((-657 |#1|) $)))) (-862)) (T -690)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) (-3528 (*1 *2 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) (-4217 (*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) (-3630 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) (-2774 (*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) (-3542 (*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) (-4228 (*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-690 *3)) (-4 *3 (-862))))) +(-13 (-862) (-1060 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3515 ((-832 |#1|) $)) (-15 -3528 (|#1| $)) (-15 -4217 ($ $)) (-15 -3041 ((-941) $)) (-15 -3630 ((-112) $ $)) (-15 -2774 ($ $)) (-15 -3542 ($ $)) (-15 -3402 ((-112) $)) (-15 -4228 ($ $)) (-15 -3375 ((-657 |#1|) $)))) +((-3035 ((|#1| (-1 |#1| (-784) |#1|) (-784) |#1|) 11)) (-3991 ((|#1| (-1 |#1| |#1|) (-784) |#1|) 9))) +(((-691 |#1|) (-10 -7 (-15 -3991 (|#1| (-1 |#1| |#1|) (-784) |#1|)) (-15 -3035 (|#1| (-1 |#1| (-784) |#1|) (-784) |#1|))) (-1122)) (T -691)) +((-3035 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-784) *2)) (-5 *4 (-784)) (-4 *2 (-1122)) (-5 *1 (-691 *2)))) (-3991 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-784)) (-4 *2 (-1122)) (-5 *1 (-691 *2))))) +(-10 -7 (-15 -3991 (|#1| (-1 |#1| |#1|) (-784) |#1|)) (-15 -3035 (|#1| (-1 |#1| (-784) |#1|) (-784) |#1|))) +((-1328 ((|#2| |#1| |#2|) 9)) (-4439 ((|#1| |#1| |#2|) 8))) +(((-692 |#1| |#2|) (-10 -7 (-15 -4439 (|#1| |#1| |#2|)) (-15 -1328 (|#2| |#1| |#2|))) (-1122) (-1122)) (T -692)) +((-1328 (*1 *2 *3 *2) (-12 (-5 *1 (-692 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-4439 (*1 *2 *2 *3) (-12 (-5 *1 (-692 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) +(-10 -7 (-15 -4439 (|#1| |#1| |#2|)) (-15 -1328 (|#2| |#1| |#2|))) +((-1875 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-693 |#1| |#2| |#3|) (-10 -7 (-15 -1875 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1122) (-1122) (-1122)) (T -693)) +((-1875 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)) (-5 *1 (-693 *5 *6 *2))))) +(-10 -7 (-15 -1875 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3423 (((-112) $ $) NIL)) (-2930 (((-1238) $) 21)) (-2874 (((-657 (-1238)) $) 19)) (-4055 (($ (-657 (-1238)) (-1238)) 14)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 29) (($ (-1203)) NIL) (((-1203) $) NIL) (((-1238) $) 22) (($ (-1140)) 10)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-694) (-13 (-1105) (-625 (-1238)) (-10 -8 (-15 -3515 ($ (-1140))) (-15 -4055 ($ (-657 (-1238)) (-1238))) (-15 -2874 ((-657 (-1238)) $)) (-15 -2930 ((-1238) $))))) (T -694)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-694)))) (-4055 (*1 *1 *2 *3) (-12 (-5 *2 (-657 (-1238))) (-5 *3 (-1238)) (-5 *1 (-694)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-694)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-694))))) +(-13 (-1105) (-625 (-1238)) (-10 -8 (-15 -3515 ($ (-1140))) (-15 -4055 ($ (-657 (-1238)) (-1238))) (-15 -2874 ((-657 (-1238)) $)) (-15 -2930 ((-1238) $)))) +((-3035 (((-1 |#1| (-784) |#1|) (-1 |#1| (-784) |#1|)) 26)) (-1957 (((-1 |#1|) |#1|) 8)) (-3031 ((|#1| |#1|) 19)) (-2174 (((-657 |#1|) (-1 (-657 |#1|) (-657 |#1|)) (-576)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-3515 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-784)) 23))) +(((-695 |#1|) (-10 -7 (-15 -1957 ((-1 |#1|) |#1|)) (-15 -3515 ((-1 |#1|) |#1|)) (-15 -2174 (|#1| (-1 |#1| |#1|))) (-15 -2174 ((-657 |#1|) (-1 (-657 |#1|) (-657 |#1|)) (-576))) (-15 -3031 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-784))) (-15 -3035 ((-1 |#1| (-784) |#1|) (-1 |#1| (-784) |#1|)))) (-1122)) (T -695)) +((-3035 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-784) *3)) (-4 *3 (-1122)) (-5 *1 (-695 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-784)) (-4 *4 (-1122)) (-5 *1 (-695 *4)))) (-3031 (*1 *2 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-1122)))) (-2174 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-657 *5) (-657 *5))) (-5 *4 (-576)) (-5 *2 (-657 *5)) (-5 *1 (-695 *5)) (-4 *5 (-1122)))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-695 *2)) (-4 *2 (-1122)))) (-3515 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-695 *3)) (-4 *3 (-1122)))) (-1957 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-695 *3)) (-4 *3 (-1122))))) +(-10 -7 (-15 -1957 ((-1 |#1|) |#1|)) (-15 -3515 ((-1 |#1|) |#1|)) (-15 -2174 (|#1| (-1 |#1| |#1|))) (-15 -2174 ((-657 |#1|) (-1 (-657 |#1|) (-657 |#1|)) (-576))) (-15 -3031 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-784))) (-15 -3035 ((-1 |#1| (-784) |#1|) (-1 |#1| (-784) |#1|)))) +((-3890 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4432 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1491 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3680 (((-1 |#2| |#1|) |#2|) 11))) +(((-696 |#1| |#2|) (-10 -7 (-15 -3680 ((-1 |#2| |#1|) |#2|)) (-15 -4432 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1491 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3890 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1122) (-1122)) (T -696)) +((-3890 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-5 *2 (-1 *5 *4)) (-5 *1 (-696 *4 *5)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1122)) (-5 *2 (-1 *5 *4)) (-5 *1 (-696 *4 *5)) (-4 *4 (-1122)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-5 *2 (-1 *5)) (-5 *1 (-696 *4 *5)))) (-3680 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-696 *4 *3)) (-4 *4 (-1122)) (-4 *3 (-1122))))) +(-10 -7 (-15 -3680 ((-1 |#2| |#1|) |#2|)) (-15 -4432 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1491 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3890 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-3477 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3801 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1515 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-4144 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2837 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-697 |#1| |#2| |#3|) (-10 -7 (-15 -3801 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1515 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4144 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2837 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3477 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1122) (-1122) (-1122)) (T -697)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-1 *7 *5)) (-5 *1 (-697 *5 *6 *7)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-697 *4 *5 *6)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-697 *4 *5 *6)) (-4 *4 (-1122)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-697 *4 *5 *6)) (-4 *5 (-1122)))) (-1515 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *4 *5 *6)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1122)) (-4 *4 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *5 *4 *6))))) +(-10 -7 (-15 -3801 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1515 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4144 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2837 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3477 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-3662 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4071 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-698 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4071 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4071 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3662 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1071) (-384 |#1|) (-384 |#1|) (-700 |#1| |#2| |#3|) (-1071) (-384 |#5|) (-384 |#5|) (-700 |#5| |#6| |#7|)) (T -698)) +((-3662 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1071)) (-4 *2 (-1071)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) (-4 *9 (-384 *2)) (-5 *1 (-698 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-700 *5 *6 *7)) (-4 *10 (-700 *2 *8 *9)))) (-4071 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1071)) (-4 *8 (-1071)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-700 *8 *9 *10)) (-5 *1 (-698 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-700 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1071)) (-4 *8 (-1071)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-700 *8 *9 *10)) (-5 *1 (-698 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-700 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))) +(-10 -7 (-15 -4071 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4071 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3662 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3793 (($ (-784) (-784)) 42)) (-3191 (($ $ $) 73)) (-3564 (($ |#3|) 68) (($ $) 69)) (-1616 (((-112) $) 36)) (-2550 (($ $ (-576) (-576)) 84)) (-2528 (($ $ (-576) (-576)) 85)) (-1709 (($ $ (-576) (-576) (-576) (-576)) 90)) (-3620 (($ $) 71)) (-3425 (((-112) $) 15)) (-3276 (($ $ (-576) (-576) $) 91)) (-3719 ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-657 (-576)) (-657 (-576)) $) 89)) (-1868 (($ (-784) |#2|) 55)) (-2484 (($ (-657 (-657 |#2|))) 51) (($ (-784) (-784) (-1 |#2| (-576) (-576))) 53)) (-2819 (((-657 (-657 |#2|)) $) 80)) (-3616 (($ $ $) 72)) (-3409 (((-3 $ "failed") $ |#2|) 122)) (-2780 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-657 (-576)) (-657 (-576))) 88)) (-2959 (($ (-657 |#2|)) 56) (($ (-657 $)) 58)) (-3249 (((-112) $) 28)) (-3515 (($ |#4|) 63) (((-877) $) NIL)) (-2203 (((-112) $) 38)) (-2995 (($ $ |#2|) 124)) (-2982 (($ $ $) 95) (($ $) 98)) (-2971 (($ $ $) 93)) (** (($ $ (-784)) 111) (($ $ (-576)) 128)) (* (($ $ $) 104) (($ |#2| $) 100) (($ $ |#2|) 101) (($ (-576) $) 103) ((|#4| $ |#4|) 115) ((|#3| |#3| $) 119))) +(((-699 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3515 ((-877) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2995 (|#1| |#1| |#2|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-784))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -3276 (|#1| |#1| (-576) (-576) |#1|)) (-15 -1709 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -2528 (|#1| |#1| (-576) (-576))) (-15 -2550 (|#1| |#1| (-576) (-576))) (-15 -3719 (|#1| |#1| (-657 (-576)) (-657 (-576)) |#1|)) (-15 -2780 (|#1| |#1| (-657 (-576)) (-657 (-576)))) (-15 -2819 ((-657 (-657 |#2|)) |#1|)) (-15 -3191 (|#1| |#1| |#1|)) (-15 -3616 (|#1| |#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -3564 (|#1| |#1|)) (-15 -3564 (|#1| |#3|)) (-15 -3515 (|#1| |#4|)) (-15 -2959 (|#1| (-657 |#1|))) (-15 -2959 (|#1| (-657 |#2|))) (-15 -1868 (|#1| (-784) |#2|)) (-15 -2484 (|#1| (-784) (-784) (-1 |#2| (-576) (-576)))) (-15 -2484 (|#1| (-657 (-657 |#2|)))) (-15 -3793 (|#1| (-784) (-784))) (-15 -2203 ((-112) |#1|)) (-15 -1616 ((-112) |#1|)) (-15 -3249 ((-112) |#1|)) (-15 -3425 ((-112) |#1|)) (-15 -3719 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2780 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2780 (|#2| |#1| (-576) (-576)))) (-700 |#2| |#3| |#4|) (-1071) (-384 |#2|) (-384 |#2|)) (T -699)) +NIL +(-10 -8 (-15 -3515 ((-877) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2995 (|#1| |#1| |#2|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-784))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -3276 (|#1| |#1| (-576) (-576) |#1|)) (-15 -1709 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -2528 (|#1| |#1| (-576) (-576))) (-15 -2550 (|#1| |#1| (-576) (-576))) (-15 -3719 (|#1| |#1| (-657 (-576)) (-657 (-576)) |#1|)) (-15 -2780 (|#1| |#1| (-657 (-576)) (-657 (-576)))) (-15 -2819 ((-657 (-657 |#2|)) |#1|)) (-15 -3191 (|#1| |#1| |#1|)) (-15 -3616 (|#1| |#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -3564 (|#1| |#1|)) (-15 -3564 (|#1| |#3|)) (-15 -3515 (|#1| |#4|)) (-15 -2959 (|#1| (-657 |#1|))) (-15 -2959 (|#1| (-657 |#2|))) (-15 -1868 (|#1| (-784) |#2|)) (-15 -2484 (|#1| (-784) (-784) (-1 |#2| (-576) (-576)))) (-15 -2484 (|#1| (-657 (-657 |#2|)))) (-15 -3793 (|#1| (-784) (-784))) (-15 -2203 ((-112) |#1|)) (-15 -1616 ((-112) |#1|)) (-15 -3249 ((-112) |#1|)) (-15 -3425 ((-112) |#1|)) (-15 -3719 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2780 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2780 (|#2| |#1| (-576) (-576)))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3793 (($ (-784) (-784)) 99)) (-3191 (($ $ $) 88)) (-3564 (($ |#2|) 92) (($ $) 91)) (-1616 (((-112) $) 101)) (-2550 (($ $ (-576) (-576)) 84)) (-2528 (($ $ (-576) (-576)) 83)) (-1709 (($ $ (-576) (-576) (-576) (-576)) 82)) (-3620 (($ $) 90)) (-3425 (((-112) $) 103)) (-4284 (((-112) $ (-784)) 8)) (-3276 (($ $ (-576) (-576) $) 81)) (-3719 ((|#1| $ (-576) (-576) |#1|) 45) (($ $ (-657 (-576)) (-657 (-576)) $) 85)) (-1327 (($ $ (-576) |#2|) 43)) (-3960 (($ $ (-576) |#3|) 42)) (-1868 (($ (-784) |#1|) 96)) (-2515 (($) 7 T CONST)) (-4389 (($ $) 68 (|has| |#1| (-317)))) (-3520 ((|#2| $ (-576)) 47)) (-4343 (((-784) $) 67 (|has| |#1| (-568)))) (-1810 ((|#1| $ (-576) (-576) |#1|) 44)) (-1741 ((|#1| $ (-576) (-576)) 49)) (-1448 (((-657 |#1|) $) 31)) (-3652 (((-784) $) 66 (|has| |#1| (-568)))) (-2992 (((-657 |#3|) $) 65 (|has| |#1| (-568)))) (-2334 (((-784) $) 52)) (-4096 (($ (-784) (-784) |#1|) 58)) (-2344 (((-784) $) 51)) (-1786 (((-112) $ (-784)) 9)) (-3242 ((|#1| $) 63 (|has| |#1| (-6 (-4468 "*"))))) (-4076 (((-576) $) 56)) (-2581 (((-576) $) 54)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2898 (((-576) $) 55)) (-4230 (((-576) $) 53)) (-2484 (($ (-657 (-657 |#1|))) 98) (($ (-784) (-784) (-1 |#1| (-576) (-576))) 97)) (-1799 (($ (-1 |#1| |#1|) $) 35)) (-4071 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2819 (((-657 (-657 |#1|)) $) 87)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1455 (((-3 $ "failed") $) 62 (|has| |#1| (-374)))) (-3616 (($ $ $) 89)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-1495 (($ $ |#1|) 57)) (-3409 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-568)))) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48) (($ $ (-657 (-576)) (-657 (-576))) 86)) (-2959 (($ (-657 |#1|)) 95) (($ (-657 $)) 94)) (-3249 (((-112) $) 102)) (-3917 ((|#1| $) 64 (|has| |#1| (-6 (-4468 "*"))))) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-1612 ((|#3| $ (-576)) 46)) (-3515 (($ |#3|) 93) (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2203 (((-112) $) 100)) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2995 (($ $ |#1|) 69 (|has| |#1| (-374)))) (-2982 (($ $ $) 79) (($ $) 78)) (-2971 (($ $ $) 80)) (** (($ $ (-784)) 71) (($ $ (-576)) 61 (|has| |#1| (-374)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-576) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-700 |#1| |#2| |#3|) (-141) (-1071) (-384 |t#1|) (-384 |t#1|)) (T -700)) +((-3425 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-3793 (*1 *1 *2 *2) (-12 (-5 *2 (-784)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2484 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1071)) (-4 *1 (-700 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-1868 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2959 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2959 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3515 (*1 *1 *2) (-12 (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (-3564 (*1 *1 *2) (-12 (-4 *3 (-1071)) (-4 *1 (-700 *3 *2 *4)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (-3564 (*1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3620 (*1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3616 (*1 *1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3191 (*1 *1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-657 (-657 *3))))) (-2780 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-657 (-576))) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3719 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-657 (-576))) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2550 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2528 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1709 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3276 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2971 (*1 *1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2982 (*1 *1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2982 (*1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-700 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-700 *3 *2 *4)) (-4 *3 (-1071)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3409 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) (-2995 (*1 *1 *1 *2) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (-4389 (*1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-784)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-784)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-657 *5)))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071)))) (-1455 (*1 *1 *1) (|partial| -12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4467) (-6 -4466) (-15 -3425 ((-112) $)) (-15 -3249 ((-112) $)) (-15 -1616 ((-112) $)) (-15 -2203 ((-112) $)) (-15 -3793 ($ (-784) (-784))) (-15 -2484 ($ (-657 (-657 |t#1|)))) (-15 -2484 ($ (-784) (-784) (-1 |t#1| (-576) (-576)))) (-15 -1868 ($ (-784) |t#1|)) (-15 -2959 ($ (-657 |t#1|))) (-15 -2959 ($ (-657 $))) (-15 -3515 ($ |t#3|)) (-15 -3564 ($ |t#2|)) (-15 -3564 ($ $)) (-15 -3620 ($ $)) (-15 -3616 ($ $ $)) (-15 -3191 ($ $ $)) (-15 -2819 ((-657 (-657 |t#1|)) $)) (-15 -2780 ($ $ (-657 (-576)) (-657 (-576)))) (-15 -3719 ($ $ (-657 (-576)) (-657 (-576)) $)) (-15 -2550 ($ $ (-576) (-576))) (-15 -2528 ($ $ (-576) (-576))) (-15 -1709 ($ $ (-576) (-576) (-576) (-576))) (-15 -3276 ($ $ (-576) (-576) $)) (-15 -2971 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2982 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-576) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-784))) (IF (|has| |t#1| (-568)) (-15 -3409 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -2995 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -4389 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -4343 ((-784) $)) (-15 -3652 ((-784) $)) (-15 -2992 ((-657 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4468 "*"))) (PROGN (-15 -3917 (|t#1| $)) (-15 -3242 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -1455 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-57 |#1| |#2| |#3|) . T) ((-1239) . T)) +((-4389 ((|#4| |#4|) 92 (|has| |#1| (-317)))) (-4343 (((-784) |#4|) 120 (|has| |#1| (-568)))) (-3652 (((-784) |#4|) 96 (|has| |#1| (-568)))) (-2992 (((-657 |#3|) |#4|) 103 (|has| |#1| (-568)))) (-2868 (((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|) 135 (|has| |#1| (-317)))) (-3242 ((|#1| |#4|) 52)) (-2442 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-568)))) (-1455 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-374)))) (-2786 ((|#4| |#4|) 88 (|has| |#1| (-568)))) (-2401 ((|#4| |#4| |#1| (-576) (-576)) 60)) (-2951 ((|#4| |#4| (-576) (-576)) 55)) (-2984 ((|#4| |#4| |#1| (-576) (-576)) 65)) (-3917 ((|#1| |#4|) 98)) (-3432 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568))))) +(((-701 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3917 (|#1| |#4|)) (-15 -3242 (|#1| |#4|)) (-15 -2951 (|#4| |#4| (-576) (-576))) (-15 -2401 (|#4| |#4| |#1| (-576) (-576))) (-15 -2984 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -4343 ((-784) |#4|)) (-15 -3652 ((-784) |#4|)) (-15 -2992 ((-657 |#3|) |#4|)) (-15 -2786 (|#4| |#4|)) (-15 -2442 ((-3 |#4| "failed") |#4|)) (-15 -3432 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -4389 (|#4| |#4|)) (-15 -2868 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -1455 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-384 |#1|) (-384 |#1|) (-700 |#1| |#2| |#3|)) (T -701)) +((-1455 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-701 *3 *4 *5 *6)) (-4 *6 (-700 *3 *4 *5)))) (-4389 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-3432 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-701 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-2442 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-2786 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-2992 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-657 *6)) (-5 *1 (-701 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-3652 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-784)) (-5 *1 (-701 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-4343 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-784)) (-5 *1 (-701 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-2984 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-701 *3 *5 *6 *2)) (-4 *2 (-700 *3 *5 *6)))) (-2401 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-701 *3 *5 *6 *2)) (-4 *2 (-700 *3 *5 *6)))) (-2951 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *1 (-701 *4 *5 *6 *2)) (-4 *2 (-700 *4 *5 *6)))) (-3242 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-701 *2 *4 *5 *3)) (-4 *3 (-700 *2 *4 *5)))) (-3917 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-701 *2 *4 *5 *3)) (-4 *3 (-700 *2 *4 *5))))) +(-10 -7 (-15 -3917 (|#1| |#4|)) (-15 -3242 (|#1| |#4|)) (-15 -2951 (|#4| |#4| (-576) (-576))) (-15 -2401 (|#4| |#4| |#1| (-576) (-576))) (-15 -2984 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -4343 ((-784) |#4|)) (-15 -3652 ((-784) |#4|)) (-15 -2992 ((-657 |#3|) |#4|)) (-15 -2786 (|#4| |#4|)) (-15 -2442 ((-3 |#4| "failed") |#4|)) (-15 -3432 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -4389 (|#4| |#4|)) (-15 -2868 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -1455 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3793 (($ (-784) (-784)) 64)) (-3191 (($ $ $) NIL)) (-3564 (($ (-1289 |#1|)) NIL) (($ $) NIL)) (-1616 (((-112) $) NIL)) (-2550 (($ $ (-576) (-576)) 22)) (-2528 (($ $ (-576) (-576)) NIL)) (-1709 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-3620 (($ $) NIL)) (-3425 (((-112) $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-3276 (($ $ (-576) (-576) $) NIL)) (-3719 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-657 (-576)) (-657 (-576)) $) NIL)) (-1327 (($ $ (-576) (-1289 |#1|)) NIL)) (-3960 (($ $ (-576) (-1289 |#1|)) NIL)) (-1868 (($ (-784) |#1|) 37)) (-2515 (($) NIL T CONST)) (-4389 (($ $) 46 (|has| |#1| (-317)))) (-3520 (((-1289 |#1|) $ (-576)) NIL)) (-4343 (((-784) $) 48 (|has| |#1| (-568)))) (-1810 ((|#1| $ (-576) (-576) |#1|) 69)) (-1741 ((|#1| $ (-576) (-576)) NIL)) (-1448 (((-657 |#1|) $) NIL)) (-3652 (((-784) $) 50 (|has| |#1| (-568)))) (-2992 (((-657 (-1289 |#1|)) $) 53 (|has| |#1| (-568)))) (-2334 (((-784) $) 32)) (-4096 (($ (-784) (-784) |#1|) 28)) (-2344 (((-784) $) 33)) (-1786 (((-112) $ (-784)) NIL)) (-3242 ((|#1| $) 44 (|has| |#1| (-6 (-4468 "*"))))) (-4076 (((-576) $) 10)) (-2581 (((-576) $) 11)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2898 (((-576) $) 14)) (-4230 (((-576) $) 65)) (-2484 (($ (-657 (-657 |#1|))) NIL) (($ (-784) (-784) (-1 |#1| (-576) (-576))) NIL)) (-1799 (($ (-1 |#1| |#1|) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2819 (((-657 (-657 |#1|)) $) 76)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1455 (((-3 $ "failed") $) 60 (|has| |#1| (-374)))) (-3616 (($ $ $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1495 (($ $ |#1|) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-657 (-576)) (-657 (-576))) NIL)) (-2959 (($ (-657 |#1|)) NIL) (($ (-657 $)) NIL) (($ (-1289 |#1|)) 70)) (-3249 (((-112) $) NIL)) (-3917 ((|#1| $) 42 (|has| |#1| (-6 (-4468 "*"))))) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-4136 (((-548) $) 80 (|has| |#1| (-626 (-548))))) (-1612 (((-1289 |#1|) $ (-576)) NIL)) (-3515 (($ (-1289 |#1|)) NIL) (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2203 (((-112) $) NIL)) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $ $) NIL) (($ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-784)) 38) (($ $ (-576)) 62 (|has| |#1| (-374)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1289 |#1|) $ (-1289 |#1|)) NIL) (((-1289 |#1|) (-1289 |#1|) $) NIL)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-702 |#1|) (-13 (-700 |#1| (-1289 |#1|) (-1289 |#1|)) (-10 -8 (-15 -2959 ($ (-1289 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -1455 ((-3 $ "failed") $)) |%noBranch|))) (-1071)) (T -702)) +((-1455 (*1 *1 *1) (|partial| -12 (-5 *1 (-702 *2)) (-4 *2 (-374)) (-4 *2 (-1071)))) (-2959 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1071)) (-5 *1 (-702 *3))))) +(-13 (-700 |#1| (-1289 |#1|) (-1289 |#1|)) (-10 -8 (-15 -2959 ($ (-1289 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -1455 ((-3 $ "failed") $)) |%noBranch|))) +((-2829 (((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|)) 37)) (-2910 (((-702 |#1|) (-702 |#1|) (-702 |#1|) |#1|) 32)) (-1413 (((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|) (-784)) 43)) (-1681 (((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|)) 25)) (-3557 (((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|)) 29) (((-702 |#1|) (-702 |#1|) (-702 |#1|)) 27)) (-2116 (((-702 |#1|) (-702 |#1|) |#1| (-702 |#1|)) 31)) (-2539 (((-702 |#1|) (-702 |#1|) (-702 |#1|)) 23)) (** (((-702 |#1|) (-702 |#1|) (-784)) 46))) +(((-703 |#1|) (-10 -7 (-15 -2539 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -1681 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3557 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3557 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2116 ((-702 |#1|) (-702 |#1|) |#1| (-702 |#1|))) (-15 -2910 ((-702 |#1|) (-702 |#1|) (-702 |#1|) |#1|)) (-15 -2829 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -1413 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|) (-784))) (-15 ** ((-702 |#1|) (-702 |#1|) (-784)))) (-1071)) (T -703)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-702 *4)) (-5 *3 (-784)) (-4 *4 (-1071)) (-5 *1 (-703 *4)))) (-1413 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-702 *4)) (-5 *3 (-784)) (-4 *4 (-1071)) (-5 *1 (-703 *4)))) (-2829 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) (-2910 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) (-2116 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) (-3557 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) (-3557 (*1 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) (-1681 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) (-2539 (*1 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) +(-10 -7 (-15 -2539 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -1681 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3557 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3557 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2116 ((-702 |#1|) (-702 |#1|) |#1| (-702 |#1|))) (-15 -2910 ((-702 |#1|) (-702 |#1|) (-702 |#1|) |#1|)) (-15 -2829 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -1413 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|) (-784))) (-15 ** ((-702 |#1|) (-702 |#1|) (-784)))) +((-1593 (((-3 |#1| "failed") $) 18)) (-2830 ((|#1| $) NIL)) (-1408 (($) 7 T CONST)) (-4316 (($ |#1|) 8)) (-3515 (($ |#1|) 16) (((-877) $) 23)) (-2704 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1408)) 11)) (-1952 ((|#1| $) 15))) +(((-704 |#1|) (-13 (-1284) (-1060 |#1|) (-625 (-877)) (-10 -8 (-15 -4316 ($ |#1|)) (-15 -2704 ((-112) $ (|[\|\|]| |#1|))) (-15 -2704 ((-112) $ (|[\|\|]| -1408))) (-15 -1952 (|#1| $)) (-15 -1408 ($) -1491))) (-625 (-877))) (T -704)) +((-4316 (*1 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-625 (-877))))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-877))) (-5 *2 (-112)) (-5 *1 (-704 *4)))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1408)) (-5 *2 (-112)) (-5 *1 (-704 *4)) (-4 *4 (-625 (-877))))) (-1952 (*1 *2 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-625 (-877))))) (-1408 (*1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-625 (-877)))))) +(-13 (-1284) (-1060 |#1|) (-625 (-877)) (-10 -8 (-15 -4316 ($ |#1|)) (-15 -2704 ((-112) $ (|[\|\|]| |#1|))) (-15 -2704 ((-112) $ (|[\|\|]| -1408))) (-15 -1952 (|#1| $)) (-15 -1408 ($) -1491))) +((-3785 ((|#2| |#2| |#4|) 29)) (-3768 (((-702 |#2|) |#3| |#4|) 35)) (-3609 (((-702 |#2|) |#2| |#4|) 34)) (-4291 (((-1289 |#2|) |#2| |#4|) 16)) (-3163 ((|#2| |#3| |#4|) 28)) (-3128 (((-702 |#2|) |#3| |#4| (-784) (-784)) 47)) (-2859 (((-702 |#2|) |#2| |#4| (-784)) 46))) +(((-705 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4291 ((-1289 |#2|) |#2| |#4|)) (-15 -3163 (|#2| |#3| |#4|)) (-15 -3785 (|#2| |#2| |#4|)) (-15 -3609 ((-702 |#2|) |#2| |#4|)) (-15 -2859 ((-702 |#2|) |#2| |#4| (-784))) (-15 -3768 ((-702 |#2|) |#3| |#4|)) (-15 -3128 ((-702 |#2|) |#3| |#4| (-784) (-784)))) (-1122) (-918 |#1|) (-384 |#2|) (-13 (-384 |#1|) (-10 -7 (-6 -4466)))) (T -705)) +((-3128 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-784)) (-4 *6 (-1122)) (-4 *7 (-918 *6)) (-5 *2 (-702 *7)) (-5 *1 (-705 *6 *7 *3 *4)) (-4 *3 (-384 *7)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4466)))))) (-3768 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *6 (-918 *5)) (-5 *2 (-702 *6)) (-5 *1 (-705 *5 *6 *3 *4)) (-4 *3 (-384 *6)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466)))))) (-2859 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-784)) (-4 *6 (-1122)) (-4 *3 (-918 *6)) (-5 *2 (-702 *3)) (-5 *1 (-705 *6 *3 *7 *4)) (-4 *7 (-384 *3)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4466)))))) (-3609 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *3 (-918 *5)) (-5 *2 (-702 *3)) (-5 *1 (-705 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466)))))) (-3785 (*1 *2 *2 *3) (-12 (-4 *4 (-1122)) (-4 *2 (-918 *4)) (-5 *1 (-705 *4 *2 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4466)))))) (-3163 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *2 (-918 *5)) (-5 *1 (-705 *5 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466)))))) (-4291 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *3 (-918 *5)) (-5 *2 (-1289 *3)) (-5 *1 (-705 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466))))))) +(-10 -7 (-15 -4291 ((-1289 |#2|) |#2| |#4|)) (-15 -3163 (|#2| |#3| |#4|)) (-15 -3785 (|#2| |#2| |#4|)) (-15 -3609 ((-702 |#2|) |#2| |#4|)) (-15 -2859 ((-702 |#2|) |#2| |#4| (-784))) (-15 -3768 ((-702 |#2|) |#3| |#4|)) (-15 -3128 ((-702 |#2|) |#3| |#4| (-784) (-784)))) +((-3005 (((-2 (|:| |num| (-702 |#1|)) (|:| |den| |#1|)) (-702 |#2|)) 20)) (-3927 ((|#1| (-702 |#2|)) 9)) (-2255 (((-702 |#1|) (-702 |#2|)) 18))) +(((-706 |#1| |#2|) (-10 -7 (-15 -3927 (|#1| (-702 |#2|))) (-15 -2255 ((-702 |#1|) (-702 |#2|))) (-15 -3005 ((-2 (|:| |num| (-702 |#1|)) (|:| |den| |#1|)) (-702 |#2|)))) (-568) (-1014 |#1|)) (T -706)) +((-3005 (*1 *2 *3) (-12 (-5 *3 (-702 *5)) (-4 *5 (-1014 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-702 *4)) (|:| |den| *4))) (-5 *1 (-706 *4 *5)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-702 *5)) (-4 *5 (-1014 *4)) (-4 *4 (-568)) (-5 *2 (-702 *4)) (-5 *1 (-706 *4 *5)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-702 *4)) (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-706 *2 *4))))) +(-10 -7 (-15 -3927 (|#1| (-702 |#2|))) (-15 -2255 ((-702 |#1|) (-702 |#2|))) (-15 -3005 ((-2 (|:| |num| (-702 |#1|)) (|:| |den| |#1|)) (-702 |#2|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3011 (((-702 (-712))) NIL) (((-702 (-712)) (-1289 $)) NIL)) (-2256 (((-712) $) NIL)) (-2143 (($ $) NIL (|has| (-712) (-1224)))) (-2012 (($ $) NIL (|has| (-712) (-1224)))) (-2266 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-712) (-360)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-712) (-317)) (|has| (-712) (-929))))) (-3188 (($ $) NIL (-2748 (-12 (|has| (-712) (-317)) (|has| (-712) (-929))) (|has| (-712) (-374))))) (-4215 (((-430 $) $) NIL (-2748 (-12 (|has| (-712) (-317)) (|has| (-712) (-929))) (|has| (-712) (-374))))) (-1866 (($ $) NIL (-12 (|has| (-712) (-1024)) (|has| (-712) (-1224))))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-712) (-317)) (|has| (-712) (-929))))) (-3210 (((-112) $ $) NIL (|has| (-712) (-317)))) (-2148 (((-784)) NIL (|has| (-712) (-379)))) (-2120 (($ $) NIL (|has| (-712) (-1224)))) (-1989 (($ $) NIL (|has| (-712) (-1224)))) (-2166 (($ $) NIL (|has| (-712) (-1224)))) (-2033 (($ $) NIL (|has| (-712) (-1224)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL) (((-3 (-712) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-712) (-1060 (-419 (-576)))))) (-2830 (((-576) $) NIL) (((-712) $) NIL) (((-419 (-576)) $) NIL (|has| (-712) (-1060 (-419 (-576)))))) (-4093 (($ (-1289 (-712))) NIL) (($ (-1289 (-712)) (-1289 $)) NIL)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-712) (-360)))) (-3355 (($ $ $) NIL (|has| (-712) (-317)))) (-1584 (((-702 (-712)) $) NIL) (((-702 (-712)) $ (-1289 $)) NIL)) (-3439 (((-702 (-712)) (-702 $)) NIL) (((-2 (|:| -3962 (-702 (-712))) (|:| |vec| (-1289 (-712)))) (-702 $) (-1289 $)) NIL) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-712) (-652 (-576)))) (((-702 (-576)) (-702 $)) NIL (|has| (-712) (-652 (-576))))) (-3662 (((-3 $ "failed") (-419 (-1194 (-712)))) NIL (|has| (-712) (-374))) (($ (-1194 (-712))) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1880 (((-712) $) 29)) (-1758 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-712) (-557)))) (-3113 (((-112) $) NIL (|has| (-712) (-557)))) (-1842 (((-419 (-576)) $) NIL (|has| (-712) (-557)))) (-4343 (((-941)) NIL)) (-1876 (($) NIL (|has| (-712) (-379)))) (-3369 (($ $ $) NIL (|has| (-712) (-317)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| (-712) (-317)))) (-2846 (($) NIL (|has| (-712) (-360)))) (-2798 (((-112) $) NIL (|has| (-712) (-360)))) (-4266 (($ $) NIL (|has| (-712) (-360))) (($ $ (-784)) NIL (|has| (-712) (-360)))) (-4009 (((-112) $) NIL (-2748 (-12 (|has| (-712) (-317)) (|has| (-712) (-929))) (|has| (-712) (-374))))) (-4016 (((-2 (|:| |r| (-712)) (|:| |phi| (-712))) $) NIL (-12 (|has| (-712) (-1082)) (|has| (-712) (-1224))))) (-1622 (($) NIL (|has| (-712) (-1224)))) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-712) (-902 (-390)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-712) (-902 (-576))))) (-2650 (((-846 (-941)) $) NIL (|has| (-712) (-360))) (((-941) $) NIL (|has| (-712) (-360)))) (-3994 (((-112) $) NIL)) (-3856 (($ $ (-576)) NIL (-12 (|has| (-712) (-1024)) (|has| (-712) (-1224))))) (-3869 (((-712) $) NIL)) (-1955 (((-3 $ "failed") $) NIL (|has| (-712) (-360)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| (-712) (-317)))) (-3604 (((-1194 (-712)) $) NIL (|has| (-712) (-374)))) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-4071 (($ (-1 (-712) (-712)) $) NIL)) (-2327 (((-941) $) NIL (|has| (-712) (-379)))) (-3707 (($ $) NIL (|has| (-712) (-1224)))) (-3647 (((-1194 (-712)) $) NIL)) (-1993 (((-702 (-712)) (-1289 $)) NIL) (((-2 (|:| -3962 (-702 (-712))) (|:| |vec| (-1289 (-712)))) (-1289 $) $) NIL) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-712) (-652 (-576)))) (((-702 (-576)) (-1289 $)) NIL (|has| (-712) (-652 (-576))))) (-3388 (($ (-657 $)) NIL (|has| (-712) (-317))) (($ $ $) NIL (|has| (-712) (-317)))) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL (|has| (-712) (-374)))) (-1679 (($) NIL (|has| (-712) (-360)) CONST)) (-3146 (($ (-941)) NIL (|has| (-712) (-379)))) (-3474 (($) NIL)) (-1889 (((-712) $) 31)) (-1460 (((-1142) $) NIL)) (-4083 (($) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| (-712) (-317)))) (-3431 (($ (-657 $)) NIL (|has| (-712) (-317))) (($ $ $) NIL (|has| (-712) (-317)))) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL (|has| (-712) (-360)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-712) (-317)) (|has| (-712) (-929))))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-712) (-317)) (|has| (-712) (-929))))) (-1856 (((-430 $) $) NIL (-2748 (-12 (|has| (-712) (-317)) (|has| (-712) (-929))) (|has| (-712) (-374))))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-712) (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| (-712) (-317)))) (-3409 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-712)) NIL (|has| (-712) (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| (-712) (-317)))) (-4056 (($ $) NIL (|has| (-712) (-1224)))) (-3205 (($ $ (-1198) (-712)) NIL (|has| (-712) (-526 (-1198) (-712)))) (($ $ (-657 (-1198)) (-657 (-712))) NIL (|has| (-712) (-526 (-1198) (-712)))) (($ $ (-657 (-304 (-712)))) NIL (|has| (-712) (-319 (-712)))) (($ $ (-304 (-712))) NIL (|has| (-712) (-319 (-712)))) (($ $ (-712) (-712)) NIL (|has| (-712) (-319 (-712)))) (($ $ (-657 (-712)) (-657 (-712))) NIL (|has| (-712) (-319 (-712))))) (-4164 (((-784) $) NIL (|has| (-712) (-317)))) (-2780 (($ $ (-712)) NIL (|has| (-712) (-296 (-712) (-712))))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| (-712) (-317)))) (-1465 (((-712)) NIL) (((-712) (-1289 $)) NIL)) (-2495 (((-3 (-784) "failed") $ $) NIL (|has| (-712) (-360))) (((-784) $) NIL (|has| (-712) (-360)))) (-2209 (($ $ (-1 (-712) (-712)) (-784)) NIL) (($ $ (-1 (-712) (-712))) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-784)) NIL (-2748 (-12 (|has| (-712) (-238)) (|has| (-712) (-374))) (|has| (-712) (-237)))) (($ $) NIL (-2748 (-12 (|has| (-712) (-238)) (|has| (-712) (-374))) (|has| (-712) (-237))))) (-4301 (((-702 (-712)) (-1289 $) (-1 (-712) (-712))) NIL (|has| (-712) (-374)))) (-2005 (((-1194 (-712))) NIL)) (-2177 (($ $) NIL (|has| (-712) (-1224)))) (-2042 (($ $) NIL (|has| (-712) (-1224)))) (-4170 (($) NIL (|has| (-712) (-360)))) (-2155 (($ $) NIL (|has| (-712) (-1224)))) (-2023 (($ $) NIL (|has| (-712) (-1224)))) (-2131 (($ $) NIL (|has| (-712) (-1224)))) (-2002 (($ $) NIL (|has| (-712) (-1224)))) (-3806 (((-702 (-712)) (-1289 $)) NIL) (((-1289 (-712)) $) NIL) (((-702 (-712)) (-1289 $) (-1289 $)) NIL) (((-1289 (-712)) $ (-1289 $)) NIL)) (-4136 (((-548) $) NIL (|has| (-712) (-626 (-548)))) (((-171 (-227)) $) NIL (|has| (-712) (-1044))) (((-171 (-390)) $) NIL (|has| (-712) (-1044))) (((-908 (-390)) $) NIL (|has| (-712) (-626 (-908 (-390))))) (((-908 (-576)) $) NIL (|has| (-712) (-626 (-908 (-576))))) (($ (-1194 (-712))) NIL) (((-1194 (-712)) $) NIL) (($ (-1289 (-712))) NIL) (((-1289 (-712)) $) NIL)) (-1587 (($ $) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-2748 (-12 (|has| (-712) (-317)) (|has| $ (-146)) (|has| (-712) (-929))) (|has| (-712) (-360))))) (-4143 (($ (-712) (-712)) 12)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-712)) NIL) (($ (-171 (-390))) 13) (($ (-171 (-576))) 19) (($ (-171 (-712))) 28) (($ (-171 (-714))) 25) (((-171 (-390)) $) 33) (($ (-419 (-576))) NIL (-2748 (|has| (-712) (-1060 (-419 (-576)))) (|has| (-712) (-374))))) (-3414 (($ $) NIL (|has| (-712) (-360))) (((-3 $ "failed") $) NIL (-2748 (-12 (|has| (-712) (-317)) (|has| $ (-146)) (|has| (-712) (-929))) (|has| (-712) (-146))))) (-2948 (((-1194 (-712)) $) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL)) (-4110 (($ $) NIL (|has| (-712) (-1224)))) (-2082 (($ $) NIL (|has| (-712) (-1224)))) (-2607 (((-112) $ $) NIL)) (-2188 (($ $) NIL (|has| (-712) (-1224)))) (-2055 (($ $) NIL (|has| (-712) (-1224)))) (-4137 (($ $) NIL (|has| (-712) (-1224)))) (-2100 (($ $) NIL (|has| (-712) (-1224)))) (-2805 (((-712) $) NIL (|has| (-712) (-1224)))) (-1864 (($ $) NIL (|has| (-712) (-1224)))) (-2110 (($ $) NIL (|has| (-712) (-1224)))) (-4123 (($ $) NIL (|has| (-712) (-1224)))) (-2090 (($ $) NIL (|has| (-712) (-1224)))) (-4097 (($ $) NIL (|has| (-712) (-1224)))) (-2070 (($ $) NIL (|has| (-712) (-1224)))) (-2127 (($ $) NIL (|has| (-712) (-1082)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-1 (-712) (-712)) (-784)) NIL) (($ $ (-1 (-712) (-712))) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-784)) NIL (-2748 (-12 (|has| (-712) (-238)) (|has| (-712) (-374))) (|has| (-712) (-237)))) (($ $) NIL (-2748 (-12 (|has| (-712) (-238)) (|has| (-712) (-374))) (|has| (-712) (-237))))) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL (|has| (-712) (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ $) NIL (|has| (-712) (-1224))) (($ $ (-419 (-576))) NIL (-12 (|has| (-712) (-1024)) (|has| (-712) (-1224)))) (($ $ (-576)) NIL (|has| (-712) (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-712) $) NIL) (($ $ (-712)) NIL) (($ (-419 (-576)) $) NIL (|has| (-712) (-374))) (($ $ (-419 (-576))) NIL (|has| (-712) (-374))))) +(((-707) (-13 (-399) (-167 (-712)) (-10 -8 (-15 -3515 ($ (-171 (-390)))) (-15 -3515 ($ (-171 (-576)))) (-15 -3515 ($ (-171 (-712)))) (-15 -3515 ($ (-171 (-714)))) (-15 -3515 ((-171 (-390)) $))))) (T -707)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-707)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-707)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-171 (-712))) (-5 *1 (-707)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-171 (-714))) (-5 *1 (-707)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-707))))) +(-13 (-399) (-167 (-712)) (-10 -8 (-15 -3515 ($ (-171 (-390)))) (-15 -3515 ($ (-171 (-576)))) (-15 -3515 ($ (-171 (-712)))) (-15 -3515 ($ (-171 (-714)))) (-15 -3515 ((-171 (-390)) $)))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) 8)) (-3726 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-3588 (($ $) 63)) (-1620 (($ $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1920 (($ |#1| $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4466)))) (-3901 (($ |#1| $) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4466)))) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3107 ((|#1| $) 40)) (-2701 (($ |#1| $) 41) (($ |#1| $ (-784)) 64)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2184 ((|#1| $) 42)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-3193 (((-657 (-2 (|:| -4440 |#1|) (|:| -1469 (-784)))) $) 62)) (-3009 (($) 50) (($ (-657 |#1|)) 49)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-4136 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 51)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) 43)) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-708 |#1|) (-141) (-1122)) (T -708)) +((-2701 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-708 *2)) (-4 *2 (-1122)))) (-3588 (*1 *1 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1122)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1122)) (-5 *2 (-657 (-2 (|:| -4440 *3) (|:| -1469 (-784)))))))) +(-13 (-240 |t#1|) (-10 -8 (-15 -2701 ($ |t#1| $ (-784))) (-15 -3588 ($ $)) (-15 -3193 ((-657 (-2 (|:| -4440 |t#1|) (|:| -1469 (-784)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-3617 (((-657 |#1|) (-657 (-2 (|:| -1856 |#1|) (|:| -4265 (-576)))) (-576)) 65)) (-4260 ((|#1| |#1| (-576)) 62)) (-3431 ((|#1| |#1| |#1| (-576)) 46)) (-1856 (((-657 |#1|) |#1| (-576)) 49)) (-3169 ((|#1| |#1| (-576) |#1| (-576)) 40)) (-4227 (((-657 (-2 (|:| -1856 |#1|) (|:| -4265 (-576)))) |#1| (-576)) 61))) +(((-709 |#1|) (-10 -7 (-15 -3431 (|#1| |#1| |#1| (-576))) (-15 -4260 (|#1| |#1| (-576))) (-15 -1856 ((-657 |#1|) |#1| (-576))) (-15 -4227 ((-657 (-2 (|:| -1856 |#1|) (|:| -4265 (-576)))) |#1| (-576))) (-15 -3617 ((-657 |#1|) (-657 (-2 (|:| -1856 |#1|) (|:| -4265 (-576)))) (-576))) (-15 -3169 (|#1| |#1| (-576) |#1| (-576)))) (-1265 (-576))) (T -709)) +((-3169 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-709 *2)) (-4 *2 (-1265 *3)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-2 (|:| -1856 *5) (|:| -4265 (-576))))) (-5 *4 (-576)) (-4 *5 (-1265 *4)) (-5 *2 (-657 *5)) (-5 *1 (-709 *5)))) (-4227 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-657 (-2 (|:| -1856 *3) (|:| -4265 *4)))) (-5 *1 (-709 *3)) (-4 *3 (-1265 *4)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-657 *3)) (-5 *1 (-709 *3)) (-4 *3 (-1265 *4)))) (-4260 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-709 *2)) (-4 *2 (-1265 *3)))) (-3431 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-709 *2)) (-4 *2 (-1265 *3))))) +(-10 -7 (-15 -3431 (|#1| |#1| |#1| (-576))) (-15 -4260 (|#1| |#1| (-576))) (-15 -1856 ((-657 |#1|) |#1| (-576))) (-15 -4227 ((-657 (-2 (|:| -1856 |#1|) (|:| -4265 (-576)))) |#1| (-576))) (-15 -3617 ((-657 |#1|) (-657 (-2 (|:| -1856 |#1|) (|:| -4265 (-576)))) (-576))) (-15 -3169 (|#1| |#1| (-576) |#1| (-576)))) +((-1544 (((-1 (-963 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-3601 (((-1155 (-227)) (-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-657 (-270))) 53) (((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-657 (-270))) 55) (((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1116 (-227)) (-1116 (-227)) (-657 (-270))) 57)) (-3764 (((-1155 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-657 (-270))) NIL)) (-3376 (((-1155 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1116 (-227)) (-1116 (-227)) (-657 (-270))) 58))) +(((-710) (-10 -7 (-15 -3601 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -3601 ((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -3601 ((-1155 (-227)) (-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -3376 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -3764 ((-1155 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -1544 ((-1 (-963 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -710)) +((-1544 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-963 (-227)) (-227) (-227))) (-5 *1 (-710)))) (-3764 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1116 (-227))) (-5 *6 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-710)))) (-3376 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1116 (-227))) (-5 *6 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-710)))) (-3601 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1155 (-227))) (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-227))) (-5 *5 (-657 (-270))) (-5 *1 (-710)))) (-3601 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-227))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-710)))) (-3601 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1116 (-227))) (-5 *6 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-710))))) +(-10 -7 (-15 -3601 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -3601 ((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -3601 ((-1155 (-227)) (-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -3376 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -3764 ((-1155 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -1544 ((-1 (-963 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-1856 (((-430 (-1194 |#4|)) (-1194 |#4|)) 86) (((-430 |#4|) |#4|) 266))) +(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1856 ((-430 |#4|) |#4|)) (-15 -1856 ((-430 (-1194 |#4|)) (-1194 |#4|)))) (-862) (-806) (-360) (-969 |#3| |#2| |#1|)) (T -711)) +((-1856 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-360)) (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-430 (-1194 *7))) (-5 *1 (-711 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4))))) +(-10 -7 (-15 -1856 ((-430 |#4|) |#4|)) (-15 -1856 ((-430 (-1194 |#4|)) (-1194 |#4|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 97)) (-2923 (((-576) $) 34)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2212 (($ $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-1866 (($ $) NIL)) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL)) (-2515 (($) NIL T CONST)) (-1794 (($ $) NIL)) (-1593 (((-3 (-576) "failed") $) 85) (((-3 (-419 (-576)) "failed") $) 28) (((-3 (-390) "failed") $) 82)) (-2830 (((-576) $) 87) (((-419 (-576)) $) 79) (((-390) $) 80)) (-3355 (($ $ $) 109)) (-3969 (((-3 $ "failed") $) 100)) (-3369 (($ $ $) 108)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3955 (((-941)) 89) (((-941) (-941)) 88)) (-3810 (((-112) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL)) (-2650 (((-576) $) NIL)) (-3994 (((-112) $) NIL)) (-3856 (($ $ (-576)) NIL)) (-3869 (($ $) NIL)) (-3517 (((-112) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2217 (((-576) (-576)) 94) (((-576)) 95)) (-3740 (($ $ $) NIL) (($) NIL (-12 (-2665 (|has| $ (-6 -4449))) (-2665 (|has| $ (-6 -4457)))))) (-1552 (((-576) (-576)) 92) (((-576)) 93)) (-2249 (($ $ $) NIL) (($) NIL (-12 (-2665 (|has| $ (-6 -4449))) (-2665 (|has| $ (-6 -4457)))))) (-1504 (((-576) $) 17)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 104)) (-2909 (((-941) (-576)) NIL (|has| $ (-6 -4457)))) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2440 (($ $) NIL)) (-2681 (($ $) NIL)) (-2983 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-941)) NIL)) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) 105)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2128 (((-576) $) 24)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 107)) (-1409 (((-941)) NIL) (((-941) (-941)) NIL (|has| $ (-6 -4457)))) (-3626 (((-941) (-576)) NIL (|has| $ (-6 -4457)))) (-4136 (((-390) $) NIL) (((-227) $) NIL) (((-908 (-390)) $) NIL)) (-3515 (((-877) $) 63) (($ (-576)) 75) (($ $) NIL) (($ (-419 (-576))) 78) (($ (-576)) 75) (($ (-419 (-576))) 78) (($ (-390)) 72) (((-390) $) 61) (($ (-714)) 66)) (-3845 (((-784)) 119 T CONST)) (-2826 (($ (-576) (-576) (-941)) 54)) (-2140 (($ $) NIL)) (-1344 (((-941)) NIL) (((-941) (-941)) NIL (|has| $ (-6 -4457)))) (-4166 (((-112) $ $) NIL)) (-4129 (((-941)) 91) (((-941) (-941)) 90)) (-2607 (((-112) $ $) NIL)) (-2127 (($ $) NIL)) (-2716 (($) 37 T CONST)) (-2725 (($) 18 T CONST)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 96)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 118)) (-2995 (($ $ $) 77)) (-2982 (($ $) 115) (($ $ $) 116)) (-2971 (($ $ $) 114)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 103)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 110) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-712) (-13 (-416) (-399) (-374) (-1060 (-390)) (-1060 (-419 (-576))) (-148) (-10 -8 (-15 -3955 ((-941) (-941))) (-15 -3955 ((-941))) (-15 -4129 ((-941) (-941))) (-15 -1552 ((-576) (-576))) (-15 -1552 ((-576))) (-15 -2217 ((-576) (-576))) (-15 -2217 ((-576))) (-15 -3515 ((-390) $)) (-15 -3515 ($ (-714))) (-15 -1504 ((-576) $)) (-15 -2128 ((-576) $)) (-15 -2826 ($ (-576) (-576) (-941)))))) (T -712)) +((-2128 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) (-3955 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-712)))) (-3955 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-712)))) (-4129 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-712)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) (-1552 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) (-2217 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) (-2217 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-712)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-712)))) (-2826 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-941)) (-5 *1 (-712))))) +(-13 (-416) (-399) (-374) (-1060 (-390)) (-1060 (-419 (-576))) (-148) (-10 -8 (-15 -3955 ((-941) (-941))) (-15 -3955 ((-941))) (-15 -4129 ((-941) (-941))) (-15 -1552 ((-576) (-576))) (-15 -1552 ((-576))) (-15 -2217 ((-576) (-576))) (-15 -2217 ((-576))) (-15 -3515 ((-390) $)) (-15 -3515 ($ (-714))) (-15 -1504 ((-576) $)) (-15 -2128 ((-576) $)) (-15 -2826 ($ (-576) (-576) (-941))))) +((-1497 (((-702 |#1|) (-702 |#1|) |#1| |#1|) 85)) (-4389 (((-702 |#1|) (-702 |#1|) |#1|) 66)) (-4057 (((-702 |#1|) (-702 |#1|) |#1|) 86)) (-2966 (((-702 |#1|) (-702 |#1|)) 67)) (-2868 (((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|) 84))) +(((-713 |#1|) (-10 -7 (-15 -2966 ((-702 |#1|) (-702 |#1|))) (-15 -4389 ((-702 |#1|) (-702 |#1|) |#1|)) (-15 -4057 ((-702 |#1|) (-702 |#1|) |#1|)) (-15 -1497 ((-702 |#1|) (-702 |#1|) |#1| |#1|)) (-15 -2868 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|))) (-317)) (T -713)) +((-2868 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-713 *3)) (-4 *3 (-317)))) (-1497 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3)))) (-4057 (*1 *2 *2 *3) (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3)))) (-4389 (*1 *2 *2 *3) (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3)))) (-2966 (*1 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3))))) +(-10 -7 (-15 -2966 ((-702 |#1|) (-702 |#1|))) (-15 -4389 ((-702 |#1|) (-702 |#1|) |#1|)) (-15 -4057 ((-702 |#1|) (-702 |#1|) |#1|)) (-15 -1497 ((-702 |#1|) (-702 |#1|) |#1| |#1|)) (-15 -2868 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2793 (($ $ $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-4388 (($ $ $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL)) (-2736 (($ $ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) 31)) (-2830 (((-576) $) 29)) (-3355 (($ $ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1758 (((-3 (-419 (-576)) "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-1842 (((-419 (-576)) $) NIL)) (-1876 (($ $) NIL) (($) NIL)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-1760 (($ $ $ $) NIL)) (-3123 (($ $ $) NIL)) (-3810 (((-112) $) NIL)) (-3262 (($ $ $) NIL)) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL)) (-3994 (((-112) $) NIL)) (-1354 (((-112) $) NIL)) (-1955 (((-3 $ "failed") $) NIL)) (-3517 (((-112) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1931 (($ $ $ $) NIL)) (-3740 (($ $ $) NIL)) (-1985 (((-941) (-941)) 10) (((-941)) 9)) (-2249 (($ $ $) NIL)) (-4194 (($ $) NIL)) (-3041 (($ $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL)) (-3388 (($ (-657 $)) NIL) (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-2808 (($ $ $) NIL)) (-1679 (($) NIL T CONST)) (-1390 (($ $) NIL)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ (-657 $)) NIL) (($ $ $) NIL)) (-3067 (($ $) NIL)) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3341 (((-112) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2209 (($ $ (-784)) NIL) (($ $) NIL)) (-1843 (($ $) NIL)) (-1899 (($ $) NIL)) (-4136 (((-227) $) NIL) (((-390) $) NIL) (((-908 (-576)) $) NIL) (((-548) $) NIL) (((-576) $) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) 28) (($ $) NIL) (($ (-576)) 28) (((-326 $) (-326 (-576))) 18)) (-3845 (((-784)) NIL T CONST)) (-2639 (((-112) $ $) NIL)) (-1940 (($ $ $) NIL)) (-4166 (((-112) $ $) NIL)) (-4129 (($) NIL)) (-2607 (((-112) $ $) NIL)) (-4207 (($ $ $ $) NIL)) (-2127 (($ $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-784)) NIL) (($ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) +(((-714) (-13 (-399) (-557) (-10 -8 (-15 -1985 ((-941) (-941))) (-15 -1985 ((-941))) (-15 -3515 ((-326 $) (-326 (-576))))))) (T -714)) +((-1985 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-714)))) (-1985 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-714)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-714))) (-5 *1 (-714))))) +(-13 (-399) (-557) (-10 -8 (-15 -1985 ((-941) (-941))) (-15 -1985 ((-941))) (-15 -3515 ((-326 $) (-326 (-576)))))) +((-1663 (((-1 |#4| |#2| |#3|) |#1| (-1198) (-1198)) 19)) (-3248 (((-1 |#4| |#2| |#3|) (-1198)) 12))) +(((-715 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3248 ((-1 |#4| |#2| |#3|) (-1198))) (-15 -1663 ((-1 |#4| |#2| |#3|) |#1| (-1198) (-1198)))) (-626 (-548)) (-1239) (-1239) (-1239)) (T -715)) +((-1663 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-715 *3 *5 *6 *7)) (-4 *3 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239)) (-4 *7 (-1239)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-715 *4 *5 *6 *7)) (-4 *4 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239)) (-4 *7 (-1239))))) +(-10 -7 (-15 -3248 ((-1 |#4| |#2| |#3|) (-1198))) (-15 -1663 ((-1 |#4| |#2| |#3|) |#1| (-1198) (-1198)))) +((-3430 (((-1 (-227) (-227) (-227)) |#1| (-1198) (-1198)) 43) (((-1 (-227) (-227)) |#1| (-1198)) 48))) +(((-716 |#1|) (-10 -7 (-15 -3430 ((-1 (-227) (-227)) |#1| (-1198))) (-15 -3430 ((-1 (-227) (-227) (-227)) |#1| (-1198) (-1198)))) (-626 (-548))) (T -716)) +((-3430 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3430 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) +(-10 -7 (-15 -3430 ((-1 (-227) (-227)) |#1| (-1198))) (-15 -3430 ((-1 (-227) (-227) (-227)) |#1| (-1198) (-1198)))) +((-3265 (((-1198) |#1| (-1198) (-657 (-1198))) 10) (((-1198) |#1| (-1198) (-1198) (-1198)) 13) (((-1198) |#1| (-1198) (-1198)) 12) (((-1198) |#1| (-1198)) 11))) +(((-717 |#1|) (-10 -7 (-15 -3265 ((-1198) |#1| (-1198))) (-15 -3265 ((-1198) |#1| (-1198) (-1198))) (-15 -3265 ((-1198) |#1| (-1198) (-1198) (-1198))) (-15 -3265 ((-1198) |#1| (-1198) (-657 (-1198))))) (-626 (-548))) (T -717)) +((-3265 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-657 (-1198))) (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548))))) (-3265 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548))))) (-3265 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548))))) (-3265 (*1 *2 *3 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548)))))) +(-10 -7 (-15 -3265 ((-1198) |#1| (-1198))) (-15 -3265 ((-1198) |#1| (-1198) (-1198))) (-15 -3265 ((-1198) |#1| (-1198) (-1198) (-1198))) (-15 -3265 ((-1198) |#1| (-1198) (-657 (-1198))))) +((-2619 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-718 |#1| |#2|) (-10 -7 (-15 -2619 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1239) (-1239)) (T -718)) +((-2619 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-718 *3 *4)) (-4 *3 (-1239)) (-4 *4 (-1239))))) +(-10 -7 (-15 -2619 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-1371 (((-1 |#3| |#2|) (-1198)) 11)) (-1663 (((-1 |#3| |#2|) |#1| (-1198)) 21))) +(((-719 |#1| |#2| |#3|) (-10 -7 (-15 -1371 ((-1 |#3| |#2|) (-1198))) (-15 -1663 ((-1 |#3| |#2|) |#1| (-1198)))) (-626 (-548)) (-1239) (-1239)) (T -719)) +((-1663 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-1 *6 *5)) (-5 *1 (-719 *3 *5 *6)) (-4 *3 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1 *6 *5)) (-5 *1 (-719 *4 *5 *6)) (-4 *4 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239))))) +(-10 -7 (-15 -1371 ((-1 |#3| |#2|) (-1198))) (-15 -1663 ((-1 |#3| |#2|) |#1| (-1198)))) +((-1638 (((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 (-1194 |#4|)) (-657 |#3|) (-657 |#4|) (-657 (-657 (-2 (|:| -3253 (-784)) (|:| |pcoef| |#4|)))) (-657 (-784)) (-1289 (-657 (-1194 |#3|))) |#3|) 92)) (-2777 (((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 (-1194 |#3|)) (-657 |#3|) (-657 |#4|) (-657 (-784)) |#3|) 110)) (-2976 (((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 |#3|) (-657 (-784)) (-657 (-1194 |#4|)) (-1289 (-657 (-1194 |#3|))) |#3|) 47))) +(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2976 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 |#3|) (-657 (-784)) (-657 (-1194 |#4|)) (-1289 (-657 (-1194 |#3|))) |#3|)) (-15 -2777 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 (-1194 |#3|)) (-657 |#3|) (-657 |#4|) (-657 (-784)) |#3|)) (-15 -1638 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 (-1194 |#4|)) (-657 |#3|) (-657 |#4|) (-657 (-657 (-2 (|:| -3253 (-784)) (|:| |pcoef| |#4|)))) (-657 (-784)) (-1289 (-657 (-1194 |#3|))) |#3|))) (-806) (-862) (-317) (-969 |#3| |#1| |#2|)) (T -720)) +((-1638 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-657 (-1194 *13))) (-5 *3 (-1194 *13)) (-5 *4 (-657 *12)) (-5 *5 (-657 *10)) (-5 *6 (-657 *13)) (-5 *7 (-657 (-657 (-2 (|:| -3253 (-784)) (|:| |pcoef| *13))))) (-5 *8 (-657 (-784))) (-5 *9 (-1289 (-657 (-1194 *10)))) (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-969 *10 *11 *12)) (-4 *11 (-806)) (-5 *1 (-720 *11 *12 *10 *13)))) (-2777 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-657 *11)) (-5 *5 (-657 (-1194 *9))) (-5 *6 (-657 *9)) (-5 *7 (-657 *12)) (-5 *8 (-657 (-784))) (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-969 *9 *10 *11)) (-4 *10 (-806)) (-5 *2 (-657 (-1194 *12))) (-5 *1 (-720 *10 *11 *9 *12)) (-5 *3 (-1194 *12)))) (-2976 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-657 (-1194 *11))) (-5 *3 (-1194 *11)) (-5 *4 (-657 *10)) (-5 *5 (-657 *8)) (-5 *6 (-657 (-784))) (-5 *7 (-1289 (-657 (-1194 *8)))) (-4 *10 (-862)) (-4 *8 (-317)) (-4 *11 (-969 *8 *9 *10)) (-4 *9 (-806)) (-5 *1 (-720 *9 *10 *8 *11))))) +(-10 -7 (-15 -2976 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 |#3|) (-657 (-784)) (-657 (-1194 |#4|)) (-1289 (-657 (-1194 |#3|))) |#3|)) (-15 -2777 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 (-1194 |#3|)) (-657 |#3|) (-657 |#4|) (-657 (-784)) |#3|)) (-15 -1638 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 (-1194 |#4|)) (-657 |#3|) (-657 |#4|) (-657 (-657 (-2 (|:| -3253 (-784)) (|:| |pcoef| |#4|)))) (-657 (-784)) (-1289 (-657 (-1194 |#3|))) |#3|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-2165 (($ $) 48)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1974 (($ |#1| (-784)) 46)) (-4219 (((-784) $) 50)) (-2141 ((|#1| $) 49)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-4265 (((-784) $) 51)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-2498 ((|#1| $ (-784)) 47)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +(((-721 |#1|) (-141) (-1071)) (T -721)) +((-4265 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-1071)))) (-2165 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-1071)))) (-2498 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-721 *2)) (-4 *2 (-1071)))) (-1974 (*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-721 *2)) (-4 *2 (-1071))))) +(-13 (-1071) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4265 ((-784) $)) (-15 -4219 ((-784) $)) (-15 -2141 (|t#1| $)) (-15 -2165 ($ $)) (-15 -2498 (|t#1| $ (-784))) (-15 -1974 ($ |t#1| (-784))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-739) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-4071 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-722 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4071 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1265 |#1|) (-1265 (-419 |#2|)) (-568) (-1265 |#4|) (-1265 (-419 |#5|))) (T -722)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1265 *5)) (-4 *2 (-1265 (-419 *8))) (-5 *1 (-722 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1265 (-419 *6))) (-4 *8 (-1265 *7))))) +(-10 -7 (-15 -4071 (|#6| (-1 |#4| |#1|) |#3|))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3992 (((-1180) (-877)) 38)) (-2011 (((-1294) (-1180)) 31)) (-2551 (((-1180) (-877)) 28)) (-1953 (((-1180) (-877)) 29)) (-3515 (((-877) $) NIL) (((-1180) (-877)) 27)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-723) (-13 (-1122) (-10 -7 (-15 -3515 ((-1180) (-877))) (-15 -2551 ((-1180) (-877))) (-15 -1953 ((-1180) (-877))) (-15 -3992 ((-1180) (-877))) (-15 -2011 ((-1294) (-1180)))))) (T -723)) +((-3515 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723)))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723)))) (-3992 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-723))))) +(-13 (-1122) (-10 -7 (-15 -3515 ((-1180) (-877))) (-15 -2551 ((-1180) (-877))) (-15 -1953 ((-1180) (-877))) (-15 -3992 ((-1180) (-877))) (-15 -2011 ((-1294) (-1180))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-3355 (($ $ $) NIL)) (-3662 (($ |#1| |#2|) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3994 (((-112) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1648 ((|#2| $) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4145 (((-3 $ "failed") $ $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) ((|#1| $) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-724 |#1| |#2| |#3| |#4| |#5|) (-13 (-374) (-10 -8 (-15 -1648 (|#2| $)) (-15 -3515 (|#1| $)) (-15 -3662 ($ |#1| |#2|)) (-15 -4145 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -724)) +((-1648 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-724 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3515 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3662 (*1 *1 *2 *3) (-12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4145 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-374) (-10 -8 (-15 -1648 (|#2| $)) (-15 -3515 (|#1| $)) (-15 -3662 ($ |#1| |#2|)) (-15 -4145 ((-3 $ "failed") $ $)))) +((-3423 (((-112) $ $) 87)) (-2044 (((-112) $) 36)) (-1519 (((-1289 |#1|) $ (-784)) NIL)) (-1998 (((-657 (-1104)) $) NIL)) (-1324 (($ (-1194 |#1|)) NIL)) (-1825 (((-1194 $) $ (-1104)) NIL) (((-1194 |#1|) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 (-1104))) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3924 (($ $ $) NIL (|has| |#1| (-568)))) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3188 (($ $) NIL (|has| |#1| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2148 (((-784)) 54 (|has| |#1| (-379)))) (-2104 (($ $ (-784)) NIL)) (-2536 (($ $ (-784)) NIL)) (-4020 ((|#2| |#2|) 50)) (-2580 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-1104) "failed") $) NIL)) (-2830 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-1104) $) NIL)) (-4351 (($ $ $ (-1104)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-2165 (($ $) 40)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3662 (($ |#2|) 48)) (-3969 (((-3 $ "failed") $) 97)) (-1876 (($) 58 (|has| |#1| (-379)))) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-4042 (($ $ $) NIL)) (-2054 (($ $ $) NIL (|has| |#1| (-568)))) (-4010 (((-2 (|:| -1735 |#1|) (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-568)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-1445 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1104)) NIL (|has| |#1| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#1| (-929)))) (-2534 (((-978 $)) 89)) (-2643 (($ $ |#1| (-784) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1104) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1104) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-2650 (((-784) $ $) NIL (|has| |#1| (-568)))) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-1955 (((-3 $ "failed") $) NIL (|has| |#1| (-1174)))) (-1986 (($ (-1194 |#1|) (-1104)) NIL) (($ (-1194 $) (-1104)) NIL)) (-3920 (($ $ (-784)) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-784)) 85) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ (-1104)) NIL) (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-1648 ((|#2|) 51)) (-4219 (((-784) $) NIL) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-2308 (($ (-1 (-784) (-784)) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3518 (((-1194 |#1|) $) NIL)) (-2502 (((-3 (-1104) "failed") $) NIL)) (-2327 (((-941) $) NIL (|has| |#1| (-379)))) (-3647 ((|#2| $) 47)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#1| $) 34)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1708 (((-1180) $) NIL)) (-1498 (((-2 (|:| -2192 $) (|:| -3951 $)) $ (-784)) NIL)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| (-1104)) (|:| -2128 (-784))) "failed") $) NIL)) (-2320 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1679 (($) NIL (|has| |#1| (-1174)) CONST)) (-3146 (($ (-941)) NIL (|has| |#1| (-379)))) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) NIL)) (-2118 ((|#1| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3040 (($ $) 88 (|has| |#1| (-360)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-929)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1104) |#1|) NIL) (($ $ (-657 (-1104)) (-657 |#1|)) NIL) (($ $ (-1104) $) NIL) (($ $ (-657 (-1104)) (-657 $)) NIL)) (-4164 (((-784) $) NIL (|has| |#1| (-374)))) (-2780 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-3592 (((-3 $ "failed") $ (-784)) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 98 (|has| |#1| (-374)))) (-1465 (($ $ (-1104)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2209 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-4265 (((-784) $) 38) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-1104) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3614 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1104)) NIL (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3030 (((-978 $)) 42)) (-2375 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3515 (((-877) $) 68) (($ (-576)) NIL) (($ |#1|) 65) (($ (-1104)) NIL) (($ |#2|) 75) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-784)) 70) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2716 (($) 25 T CONST)) (-2854 (((-1289 |#1|) $) 83)) (-2475 (($ (-1289 |#1|)) 57)) (-2725 (($) 8 T CONST)) (-2066 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-3812 (((-1289 |#1|) $) NIL)) (-2881 (((-112) $ $) 76)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $) 79) (($ $ $) NIL)) (-2971 (($ $ $) 39)) (** (($ $ (-941)) NIL) (($ $ (-784)) 92)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 64) (($ $ $) 82) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) +(((-725 |#1| |#2|) (-13 (-1265 |#1|) (-628 |#2|) (-10 -8 (-15 -4020 (|#2| |#2|)) (-15 -1648 (|#2|)) (-15 -3662 ($ |#2|)) (-15 -3647 (|#2| $)) (-15 -2854 ((-1289 |#1|) $)) (-15 -2475 ($ (-1289 |#1|))) (-15 -3812 ((-1289 |#1|) $)) (-15 -2534 ((-978 $))) (-15 -3030 ((-978 $))) (IF (|has| |#1| (-360)) (-15 -3040 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) (-1071) (-1265 |#1|)) (T -725)) +((-4020 (*1 *2 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-725 *3 *2)) (-4 *2 (-1265 *3)))) (-1648 (*1 *2) (-12 (-4 *2 (-1265 *3)) (-5 *1 (-725 *3 *2)) (-4 *3 (-1071)))) (-3662 (*1 *1 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-725 *3 *2)) (-4 *2 (-1265 *3)))) (-3647 (*1 *2 *1) (-12 (-4 *2 (-1265 *3)) (-5 *1 (-725 *3 *2)) (-4 *3 (-1071)))) (-2854 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-5 *2 (-1289 *3)) (-5 *1 (-725 *3 *4)) (-4 *4 (-1265 *3)))) (-2475 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1071)) (-5 *1 (-725 *3 *4)) (-4 *4 (-1265 *3)))) (-3812 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-5 *2 (-1289 *3)) (-5 *1 (-725 *3 *4)) (-4 *4 (-1265 *3)))) (-2534 (*1 *2) (-12 (-4 *3 (-1071)) (-5 *2 (-978 (-725 *3 *4))) (-5 *1 (-725 *3 *4)) (-4 *4 (-1265 *3)))) (-3030 (*1 *2) (-12 (-4 *3 (-1071)) (-5 *2 (-978 (-725 *3 *4))) (-5 *1 (-725 *3 *4)) (-4 *4 (-1265 *3)))) (-3040 (*1 *1 *1) (-12 (-4 *2 (-360)) (-4 *2 (-1071)) (-5 *1 (-725 *2 *3)) (-4 *3 (-1265 *2))))) +(-13 (-1265 |#1|) (-628 |#2|) (-10 -8 (-15 -4020 (|#2| |#2|)) (-15 -1648 (|#2|)) (-15 -3662 ($ |#2|)) (-15 -3647 (|#2| $)) (-15 -2854 ((-1289 |#1|) $)) (-15 -2475 ($ (-1289 |#1|))) (-15 -3812 ((-1289 |#1|) $)) (-15 -2534 ((-978 $))) (-15 -3030 ((-978 $))) (IF (|has| |#1| (-360)) (-15 -3040 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) +((-3423 (((-112) $ $) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-3146 ((|#1| $) 13)) (-1460 (((-1142) $) NIL)) (-2128 ((|#2| $) 12)) (-3529 (($ |#1| |#2|) 16)) (-3515 (((-877) $) NIL) (($ (-2 (|:| -3146 |#1|) (|:| -2128 |#2|))) 15) (((-2 (|:| -3146 |#1|) (|:| -2128 |#2|)) $) 14)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 11))) +(((-726 |#1| |#2| |#3|) (-13 (-862) (-502 (-2 (|:| -3146 |#1|) (|:| -2128 |#2|))) (-10 -8 (-15 -2128 (|#2| $)) (-15 -3146 (|#1| $)) (-15 -3529 ($ |#1| |#2|)))) (-862) (-1122) (-1 (-112) (-2 (|:| -3146 |#1|) (|:| -2128 |#2|)) (-2 (|:| -3146 |#1|) (|:| -2128 |#2|)))) (T -726)) +((-2128 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-726 *3 *2 *4)) (-4 *3 (-862)) (-14 *4 (-1 (-112) (-2 (|:| -3146 *3) (|:| -2128 *2)) (-2 (|:| -3146 *3) (|:| -2128 *2)))))) (-3146 (*1 *2 *1) (-12 (-4 *2 (-862)) (-5 *1 (-726 *2 *3 *4)) (-4 *3 (-1122)) (-14 *4 (-1 (-112) (-2 (|:| -3146 *2) (|:| -2128 *3)) (-2 (|:| -3146 *2) (|:| -2128 *3)))))) (-3529 (*1 *1 *2 *3) (-12 (-5 *1 (-726 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1122)) (-14 *4 (-1 (-112) (-2 (|:| -3146 *2) (|:| -2128 *3)) (-2 (|:| -3146 *2) (|:| -2128 *3))))))) +(-13 (-862) (-502 (-2 (|:| -3146 |#1|) (|:| -2128 |#2|))) (-10 -8 (-15 -2128 (|#2| $)) (-15 -3146 (|#1| $)) (-15 -3529 ($ |#1| |#2|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 66)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2830 ((|#1| $) NIL) (((-115) $) 39)) (-3969 (((-3 $ "failed") $) 103)) (-4109 ((|#2| (-115) |#2|) 93)) (-3994 (((-112) $) NIL)) (-3523 (($ |#1| (-372 (-115))) 14)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2489 (($ $ (-1 |#2| |#2|)) 65)) (-1783 (($ $ (-1 |#2| |#2|)) 44)) (-2780 ((|#2| $ |#2|) 33)) (-4302 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-3515 (((-877) $) 73) (($ (-576)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) 37 T CONST)) (-4166 (((-112) $ $) NIL)) (-3432 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2716 (($) 21 T CONST)) (-2725 (($) 9 T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) 48) (($ $ $) NIL)) (-2971 (($ $ $) 83)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) 64)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) +(((-727 |#1| |#2|) (-13 (-1071) (-1060 |#1|) (-1060 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3432 ($ $)) (-15 -3432 ($ $ $)) (-15 -4302 (|#1| |#1|))) |%noBranch|) (-15 -1783 ($ $ (-1 |#2| |#2|))) (-15 -2489 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -4109 (|#2| (-115) |#2|)) (-15 -3523 ($ |#1| (-372 (-115)))))) (-1071) (-661 |#1|)) (T -727)) +((-3432 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1071)) (-5 *1 (-727 *2 *3)) (-4 *3 (-661 *2)))) (-3432 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1071)) (-5 *1 (-727 *2 *3)) (-4 *3 (-661 *2)))) (-4302 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1071)) (-5 *1 (-727 *2 *3)) (-4 *3 (-661 *2)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-661 *3)) (-4 *3 (-1071)) (-5 *1 (-727 *3 *4)))) (-2489 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-661 *3)) (-4 *3 (-1071)) (-5 *1 (-727 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1071)) (-5 *1 (-727 *4 *5)) (-4 *5 (-661 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *3 (-1071)) (-5 *1 (-727 *3 *4)) (-4 *4 (-661 *3)))) (-4109 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1071)) (-5 *1 (-727 *4 *2)) (-4 *2 (-661 *4)))) (-3523 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1071)) (-5 *1 (-727 *2 *4)) (-4 *4 (-661 *2))))) +(-13 (-1071) (-1060 |#1|) (-1060 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3432 ($ $)) (-15 -3432 ($ $ $)) (-15 -4302 (|#1| |#1|))) |%noBranch|) (-15 -1783 ($ $ (-1 |#2| |#2|))) (-15 -2489 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -4109 (|#2| (-115) |#2|)) (-15 -3523 ($ |#1| (-372 (-115)))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 33)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3662 (($ |#1| |#2|) 25)) (-3969 (((-3 $ "failed") $) 51)) (-3994 (((-112) $) 35)) (-1648 ((|#2| $) 12)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 52)) (-1460 (((-1142) $) NIL)) (-4145 (((-3 $ "failed") $ $) 50)) (-3515 (((-877) $) 24) (($ (-576)) 19) ((|#1| $) 13)) (-3845 (((-784)) 28 T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 16 T CONST)) (-2725 (($) 30 T CONST)) (-2881 (((-112) $ $) 41)) (-2982 (($ $) 46) (($ $ $) 40)) (-2971 (($ $ $) 43)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 21) (($ $ $) 20))) +(((-728 |#1| |#2| |#3| |#4| |#5|) (-13 (-1071) (-10 -8 (-15 -1648 (|#2| $)) (-15 -3515 (|#1| $)) (-15 -3662 ($ |#1| |#2|)) (-15 -4145 ((-3 $ "failed") $ $)) (-15 -3969 ((-3 $ "failed") $)) (-15 -2098 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -728)) +((-3969 (*1 *1 *1) (|partial| -12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1648 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-728 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3515 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3662 (*1 *1 *2 *3) (-12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4145 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2098 (*1 *1 *1) (-12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1071) (-10 -8 (-15 -1648 (|#2| $)) (-15 -3515 (|#1| $)) (-15 -3662 ($ |#1| |#2|)) (-15 -4145 ((-3 $ "failed") $ $)) (-15 -3969 ((-3 $ "failed") $)) (-15 -2098 ($ $)))) +((* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-729 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) (-730 |#2|) (-174)) (T -729)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-730 |#1|) (-141) (-174)) (T -730)) +NIL +(-13 (-111 |t#1| |t#1|) (-653 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2736 (($ |#1|) 17) (($ $ |#1|) 20)) (-3734 (($ |#1|) 18) (($ $ |#1|) 21)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3994 (((-112) $) NIL)) (-3900 (($ |#1| |#1| |#1| |#1|) 8)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 16)) (-1460 (((-1142) $) NIL)) (-3205 ((|#1| $ |#1|) 24) (((-846 |#1|) $ (-846 |#1|)) 32)) (-1587 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-3515 (((-877) $) 39)) (-4166 (((-112) $ $) NIL)) (-2725 (($) 9 T CONST)) (-2881 (((-112) $ $) 48)) (-2995 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 14))) +(((-731 |#1|) (-13 (-485) (-10 -8 (-15 -3900 ($ |#1| |#1| |#1| |#1|)) (-15 -2736 ($ |#1|)) (-15 -3734 ($ |#1|)) (-15 -3969 ($)) (-15 -2736 ($ $ |#1|)) (-15 -3734 ($ $ |#1|)) (-15 -3969 ($ $)) (-15 -3205 (|#1| $ |#1|)) (-15 -3205 ((-846 |#1|) $ (-846 |#1|))))) (-374)) (T -731)) +((-3900 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-2736 (*1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-3734 (*1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-3969 (*1 *1) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-2736 (*1 *1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-3734 (*1 *1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-3969 (*1 *1 *1) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-3205 (*1 *2 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-3205 (*1 *2 *1 *2) (-12 (-5 *2 (-846 *3)) (-4 *3 (-374)) (-5 *1 (-731 *3))))) +(-13 (-485) (-10 -8 (-15 -3900 ($ |#1| |#1| |#1| |#1|)) (-15 -2736 ($ |#1|)) (-15 -3734 ($ |#1|)) (-15 -3969 ($)) (-15 -2736 ($ $ |#1|)) (-15 -3734 ($ $ |#1|)) (-15 -3969 ($ $)) (-15 -3205 (|#1| $ |#1|)) (-15 -3205 ((-846 |#1|) $ (-846 |#1|))))) +((-4408 (($ $ (-941)) 19)) (-3296 (($ $ (-941)) 20)) (** (($ $ (-941)) 10))) +(((-732 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-941))) (-15 -3296 (|#1| |#1| (-941))) (-15 -4408 (|#1| |#1| (-941)))) (-733)) (T -732)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-941))) (-15 -3296 (|#1| |#1| (-941))) (-15 -4408 (|#1| |#1| (-941)))) +((-3423 (((-112) $ $) 7)) (-4408 (($ $ (-941)) 16)) (-3296 (($ $ (-941)) 15)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8)) (** (($ $ (-941)) 14)) (* (($ $ $) 17))) +(((-733) (-141)) (T -733)) +((* (*1 *1 *1 *1) (-4 *1 (-733))) (-4408 (*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-941)))) (-3296 (*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-941)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-941))))) +(-13 (-1122) (-10 -8 (-15 * ($ $ $)) (-15 -4408 ($ $ (-941))) (-15 -3296 ($ $ (-941))) (-15 ** ($ $ (-941))))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-4408 (($ $ (-941)) NIL) (($ $ (-784)) 18)) (-3994 (((-112) $) 10)) (-3296 (($ $ (-941)) NIL) (($ $ (-784)) 19)) (** (($ $ (-941)) NIL) (($ $ (-784)) 16))) +(((-734 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-784))) (-15 -3296 (|#1| |#1| (-784))) (-15 -4408 (|#1| |#1| (-784))) (-15 -3994 ((-112) |#1|)) (-15 ** (|#1| |#1| (-941))) (-15 -3296 (|#1| |#1| (-941))) (-15 -4408 (|#1| |#1| (-941)))) (-735)) (T -734)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-784))) (-15 -3296 (|#1| |#1| (-784))) (-15 -4408 (|#1| |#1| (-784))) (-15 -3994 ((-112) |#1|)) (-15 ** (|#1| |#1| (-941))) (-15 -3296 (|#1| |#1| (-941))) (-15 -4408 (|#1| |#1| (-941)))) +((-3423 (((-112) $ $) 7)) (-4236 (((-3 $ "failed") $) 18)) (-4408 (($ $ (-941)) 16) (($ $ (-784)) 23)) (-3969 (((-3 $ "failed") $) 20)) (-3994 (((-112) $) 24)) (-3157 (((-3 $ "failed") $) 19)) (-3296 (($ $ (-941)) 15) (($ $ (-784)) 22)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2725 (($) 25 T CONST)) (-2881 (((-112) $ $) 8)) (** (($ $ (-941)) 14) (($ $ (-784)) 21)) (* (($ $ $) 17))) +(((-735) (-141)) (T -735)) +((-2725 (*1 *1) (-4 *1 (-735))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-112)))) (-4408 (*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-784)))) (-3296 (*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-784)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-784)))) (-3969 (*1 *1 *1) (|partial| -4 *1 (-735))) (-3157 (*1 *1 *1) (|partial| -4 *1 (-735))) (-4236 (*1 *1 *1) (|partial| -4 *1 (-735)))) +(-13 (-733) (-10 -8 (-15 (-2725) ($) -1491) (-15 -3994 ((-112) $)) (-15 -4408 ($ $ (-784))) (-15 -3296 ($ $ (-784))) (-15 ** ($ $ (-784))) (-15 -3969 ((-3 $ "failed") $)) (-15 -3157 ((-3 $ "failed") $)) (-15 -4236 ((-3 $ "failed") $)))) +(((-102) . T) ((-625 (-877)) . T) ((-733) . T) ((-1122) . T) ((-1239) . T)) +((-2148 (((-784)) 39)) (-1593 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2830 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 23)) (-3662 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) 49)) (-3969 (((-3 $ "failed") $) 69)) (-1876 (($) 43)) (-3869 ((|#2| $) 21)) (-4083 (($) 18)) (-2209 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL) (($ $ (-784)) NIL) (($ $) NIL)) (-4301 (((-702 |#2|) (-1289 $) (-1 |#2| |#2|)) 64)) (-4136 (((-1289 |#2|) $) NIL) (($ (-1289 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2948 ((|#3| $) 36)) (-2469 (((-1289 $)) 33))) +(((-736 |#1| |#2| |#3|) (-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -1876 (|#1|)) (-15 -2148 ((-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4301 ((-702 |#2|) (-1289 |#1|) (-1 |#2| |#2|))) (-15 -3662 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4136 (|#1| |#3|)) (-15 -3662 (|#1| |#3|)) (-15 -4083 (|#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -4136 (|#3| |#1|)) (-15 -4136 (|#1| (-1289 |#2|))) (-15 -4136 ((-1289 |#2|) |#1|)) (-15 -2469 ((-1289 |#1|))) (-15 -2948 (|#3| |#1|)) (-15 -3869 (|#2| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|))) (-737 |#2| |#3|) (-174) (-1265 |#2|)) (T -736)) +((-2148 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-784)) (-5 *1 (-736 *3 *4 *5)) (-4 *3 (-737 *4 *5))))) +(-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -1876 (|#1|)) (-15 -2148 ((-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4301 ((-702 |#2|) (-1289 |#1|) (-1 |#2| |#2|))) (-15 -3662 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4136 (|#1| |#3|)) (-15 -3662 (|#1| |#3|)) (-15 -4083 (|#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -4136 (|#3| |#1|)) (-15 -4136 (|#1| (-1289 |#2|))) (-15 -4136 ((-1289 |#2|) |#1|)) (-15 -2469 ((-1289 |#1|))) (-15 -2948 (|#3| |#1|)) (-15 -3869 (|#2| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 105 (|has| |#1| (-374)))) (-2361 (($ $) 106 (|has| |#1| (-374)))) (-3286 (((-112) $) 108 (|has| |#1| (-374)))) (-3011 (((-702 |#1|) (-1289 $)) 53) (((-702 |#1|)) 68)) (-2256 ((|#1| $) 59)) (-2266 (((-1211 (-941) (-784)) (-576)) 158 (|has| |#1| (-360)))) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 125 (|has| |#1| (-374)))) (-4215 (((-430 $) $) 126 (|has| |#1| (-374)))) (-3210 (((-112) $ $) 116 (|has| |#1| (-374)))) (-2148 (((-784)) 99 (|has| |#1| (-379)))) (-2515 (($) 18 T CONST)) (-1593 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2830 (((-576) $) 184 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 181)) (-4093 (($ (-1289 |#1|) (-1289 $)) 55) (($ (-1289 |#1|)) 71)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-3355 (($ $ $) 120 (|has| |#1| (-374)))) (-1584 (((-702 |#1|) $ (-1289 $)) 60) (((-702 |#1|) $) 66)) (-3439 (((-702 (-576)) (-702 $)) 177 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 176 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 175) (((-702 |#1|) (-702 $)) 174)) (-3662 (($ |#2|) 169) (((-3 $ "failed") (-419 |#2|)) 166 (|has| |#1| (-374)))) (-3969 (((-3 $ "failed") $) 37)) (-4343 (((-941)) 61)) (-1876 (($) 102 (|has| |#1| (-379)))) (-3369 (($ $ $) 119 (|has| |#1| (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 114 (|has| |#1| (-374)))) (-2846 (($) 160 (|has| |#1| (-360)))) (-2798 (((-112) $) 161 (|has| |#1| (-360)))) (-4266 (($ $ (-784)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-4009 (((-112) $) 127 (|has| |#1| (-374)))) (-2650 (((-941) $) 163 (|has| |#1| (-360))) (((-846 (-941)) $) 149 (|has| |#1| (-360)))) (-3994 (((-112) $) 35)) (-3869 ((|#1| $) 58)) (-1955 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 123 (|has| |#1| (-374)))) (-3604 ((|#2| $) 51 (|has| |#1| (-374)))) (-2327 (((-941) $) 101 (|has| |#1| (-379)))) (-3647 ((|#2| $) 167)) (-1993 (((-702 (-576)) (-1289 $)) 179 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 178 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 173) (((-702 |#1|) (-1289 $)) 172)) (-3388 (($ (-657 $)) 112 (|has| |#1| (-374))) (($ $ $) 111 (|has| |#1| (-374)))) (-1708 (((-1180) $) 10)) (-2098 (($ $) 128 (|has| |#1| (-374)))) (-1679 (($) 154 (|has| |#1| (-360)) CONST)) (-3146 (($ (-941)) 100 (|has| |#1| (-379)))) (-1460 (((-1142) $) 11)) (-4083 (($) 171)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 113 (|has| |#1| (-374)))) (-3431 (($ (-657 $)) 110 (|has| |#1| (-374))) (($ $ $) 109 (|has| |#1| (-374)))) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) 157 (|has| |#1| (-360)))) (-1856 (((-430 $) $) 124 (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 121 (|has| |#1| (-374)))) (-3409 (((-3 $ "failed") $ $) 104 (|has| |#1| (-374)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 115 (|has| |#1| (-374)))) (-4164 (((-784) $) 117 (|has| |#1| (-374)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 118 (|has| |#1| (-374)))) (-1465 ((|#1| (-1289 $)) 54) ((|#1|) 67)) (-2495 (((-784) $) 162 (|has| |#1| (-360))) (((-3 (-784) "failed") $ $) 150 (|has| |#1| (-360)))) (-2209 (($ $ (-784)) 147 (-2748 (-2675 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 145 (-2748 (-2675 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-657 (-1198)) (-657 (-784))) 141 (-2675 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-1198) (-784)) 140 (-2675 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-657 (-1198))) 139 (-2675 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-1198)) 137 (-2675 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-784)) 135 (|has| |#1| (-374)))) (-4301 (((-702 |#1|) (-1289 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-2005 ((|#2|) 170)) (-4170 (($) 159 (|has| |#1| (-360)))) (-3806 (((-1289 |#1|) $ (-1289 $)) 57) (((-702 |#1|) (-1289 $) (-1289 $)) 56) (((-1289 |#1|) $) 73) (((-702 |#1|) (-1289 $)) 72)) (-4136 (((-1289 |#1|) $) 70) (($ (-1289 |#1|)) 69) ((|#2| $) 186) (($ |#2|) 168)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 156 (|has| |#1| (-360)))) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-374))) (($ (-419 (-576))) 98 (-2748 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576))))))) (-3414 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2948 ((|#2| $) 52)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2469 (((-1289 $)) 74)) (-2607 (((-112) $ $) 107 (|has| |#1| (-374)))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-784)) 148 (-2748 (-2675 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 146 (-2748 (-2675 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-657 (-1198)) (-657 (-784))) 144 (-2675 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-1198) (-784)) 143 (-2675 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-657 (-1198))) 142 (-2675 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-1198)) 138 (-2675 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-784)) 133 (|has| |#1| (-374)))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ $) 132 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) +(((-737 |#1| |#2|) (-141) (-174) (-1265 |t#1|)) (T -737)) +((-4083 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-737 *2 *3)) (-4 *3 (-1265 *2)))) (-2005 (*1 *2) (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1265 *3)))) (-3662 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-737 *3 *2)) (-4 *2 (-1265 *3)))) (-4136 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-737 *3 *2)) (-4 *2 (-1265 *3)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1265 *3)))) (-3662 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-374)) (-4 *3 (-174)) (-4 *1 (-737 *3 *4)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1289 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-4 *1 (-737 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1265 *5)) (-5 *2 (-702 *5))))) +(-13 (-421 |t#1| |t#2|) (-174) (-626 |t#2|) (-423 |t#1|) (-388 |t#1|) (-10 -8 (-15 -4083 ($)) (-15 -2005 (|t#2|)) (-15 -3662 ($ |t#2|)) (-15 -4136 ($ |t#2|)) (-15 -3647 (|t#2| $)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-374)) (-6 (-232 |t#1|)) (-15 -3662 ((-3 $ "failed") (-419 |t#2|))) (-15 -4301 ((-702 |t#1|) (-1289 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-102) . T) ((-111 #0# #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2748 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-625 (-877)) . T) ((-174) . T) ((-626 |#2|) . T) ((-234 $) -2748 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-232 |#1|) |has| |#1| (-374)) ((-238) -2748 (|has| |#1| (-360)) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-237) -2748 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-272 |#1|) |has| |#1| (-374)) ((-248) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-300) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-317) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-374) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2748 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| |#2|) . T) ((-421 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-568) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-659 #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-661 #1=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-653 |#1|) . T) ((-653 $) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 #1#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-730 |#1|) . T) ((-730 $) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-739) . T) ((-912 $ #2=(-1198)) -2748 (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))))) ((-918 (-1198)) -12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) ((-920 #2#) -2748 (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))))) ((-940) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1078 #0#) -2748 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1078 |#1|) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) |has| |#1| (-360)) ((-1239) . T) ((-1243) -2748 (|has| |#1| (-360)) (|has| |#1| (-374)))) +((-2515 (($) 11)) (-3969 (((-3 $ "failed") $) 14)) (-3994 (((-112) $) 10)) (** (($ $ (-941)) NIL) (($ $ (-784)) 20))) +(((-738 |#1|) (-10 -8 (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-784))) (-15 -3994 ((-112) |#1|)) (-15 -2515 (|#1|)) (-15 ** (|#1| |#1| (-941)))) (-739)) (T -738)) +NIL +(-10 -8 (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-784))) (-15 -3994 ((-112) |#1|)) (-15 -2515 (|#1|)) (-15 ** (|#1| |#1| (-941)))) +((-3423 (((-112) $ $) 7)) (-2515 (($) 19 T CONST)) (-3969 (((-3 $ "failed") $) 16)) (-3994 (((-112) $) 18)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2725 (($) 20 T CONST)) (-2881 (((-112) $ $) 8)) (** (($ $ (-941)) 14) (($ $ (-784)) 17)) (* (($ $ $) 15))) +(((-739) (-141)) (T -739)) +((-2725 (*1 *1) (-4 *1 (-739))) (-2515 (*1 *1) (-4 *1 (-739))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-739)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-739)) (-5 *2 (-784)))) (-3969 (*1 *1 *1) (|partial| -4 *1 (-739)))) +(-13 (-1134) (-10 -8 (-15 (-2725) ($) -1491) (-15 -2515 ($) -1491) (-15 -3994 ((-112) $)) (-15 ** ($ $ (-784))) (-15 -3969 ((-3 $ "failed") $)))) +(((-102) . T) ((-625 (-877)) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3473 (((-2 (|:| -2958 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3610 (((-2 (|:| -2958 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4297 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13)) (-3545 (((-2 (|:| |poly| |#2|) (|:| -2958 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48))) +(((-740 |#1| |#2|) (-10 -7 (-15 -3610 ((-2 (|:| -2958 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3473 ((-2 (|:| -2958 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4297 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3545 ((-2 (|:| |poly| |#2|) (|:| -2958 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1265 |#1|)) (T -740)) +((-3545 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2958 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-740 *5 *6)) (-5 *3 (-419 *6)))) (-4297 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1265 *5)) (-5 *1 (-740 *5 *2)) (-4 *5 (-374)))) (-3473 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2958 (-430 *3)) (|:| |special| (-430 *3)))) (-5 *1 (-740 *5 *3)))) (-3610 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2958 *3) (|:| |special| *3))) (-5 *1 (-740 *5 *3))))) +(-10 -7 (-15 -3610 ((-2 (|:| -2958 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3473 ((-2 (|:| -2958 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4297 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3545 ((-2 (|:| |poly| |#2|) (|:| -2958 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) +((-3478 ((|#7| (-657 |#5|) |#6|) NIL)) (-4071 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-741 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4071 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3478 (|#7| (-657 |#5|) |#6|))) (-862) (-806) (-806) (-1071) (-1071) (-969 |#4| |#2| |#1|) (-969 |#5| |#3| |#1|)) (T -741)) +((-3478 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *9)) (-4 *9 (-1071)) (-4 *5 (-862)) (-4 *6 (-806)) (-4 *8 (-1071)) (-4 *2 (-969 *9 *7 *5)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-806)) (-4 *4 (-969 *8 *6 *5)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1071)) (-4 *9 (-1071)) (-4 *5 (-862)) (-4 *6 (-806)) (-4 *2 (-969 *9 *7 *5)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-806)) (-4 *4 (-969 *8 *6 *5))))) +(-10 -7 (-15 -4071 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3478 (|#7| (-657 |#5|) |#6|))) +((-4071 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-742 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4071 (|#7| (-1 |#2| |#1|) |#6|))) (-862) (-862) (-806) (-806) (-1071) (-969 |#5| |#3| |#1|) (-969 |#5| |#4| |#2|)) (T -742)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-862)) (-4 *6 (-862)) (-4 *7 (-806)) (-4 *9 (-1071)) (-4 *2 (-969 *9 *8 *6)) (-5 *1 (-742 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-806)) (-4 *4 (-969 *9 *7 *5))))) +(-10 -7 (-15 -4071 (|#7| (-1 |#2| |#1|) |#6|))) +((-1856 (((-430 |#4|) |#4|) 42))) +(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1856 ((-430 |#4|) |#4|))) (-806) (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)) (-15 -2993 ((-3 $ "failed") (-1198))))) (-317) (-969 (-972 |#3|) |#1| |#2|)) (T -743)) +((-1856 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)) (-15 -2993 ((-3 $ "failed") (-1198)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-969 (-972 *6) *4 *5))))) +(-10 -7 (-15 -1856 ((-430 |#4|) |#4|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1998 (((-657 (-879 |#1|)) $) NIL)) (-1825 (((-1194 $) $ (-879 |#1|)) NIL) (((-1194 |#2|) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2361 (($ $) NIL (|has| |#2| (-568)))) (-3286 (((-112) $) NIL (|has| |#2| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 (-879 |#1|))) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3188 (($ $) NIL (|has| |#2| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-879 |#1|) "failed") $) NIL)) (-2830 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-879 |#1|) $) NIL)) (-4351 (($ $ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-2165 (($ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#2| (-929)))) (-2643 (($ $ |#2| (-543 (-879 |#1|)) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-1986 (($ (-1194 |#2|) (-879 |#1|)) NIL) (($ (-1194 $) (-879 |#1|)) NIL)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#2| (-543 (-879 |#1|))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ (-879 |#1|)) NIL)) (-4219 (((-543 (-879 |#1|)) $) NIL) (((-784) $ (-879 |#1|)) NIL) (((-657 (-784)) $ (-657 (-879 |#1|))) NIL)) (-2308 (($ (-1 (-543 (-879 |#1|)) (-543 (-879 |#1|))) $) NIL)) (-4071 (($ (-1 |#2| |#2|) $) NIL)) (-2502 (((-3 (-879 |#1|) "failed") $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#2| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1708 (((-1180) $) NIL)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| (-879 |#1|)) (|:| -2128 (-784))) "failed") $) NIL)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) NIL)) (-2118 ((|#2| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#2| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#2| (-929)))) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-879 |#1|) |#2|) NIL) (($ $ (-657 (-879 |#1|)) (-657 |#2|)) NIL) (($ $ (-879 |#1|) $) NIL) (($ $ (-657 (-879 |#1|)) (-657 $)) NIL)) (-1465 (($ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-2209 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-4265 (((-543 (-879 |#1|)) $) NIL) (((-784) $ (-879 |#1|)) NIL) (((-657 (-784)) $ (-657 (-879 |#1|))) NIL)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-879 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3614 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-879 |#1|)) NIL) (($ $) NIL (|has| |#2| (-568))) (($ (-419 (-576))) NIL (-2748 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576))))))) (-3987 (((-657 |#2|) $) NIL)) (-2498 ((|#2| $ (-543 (-879 |#1|))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#2| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#2| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-744 |#1| |#2|) (-969 |#2| (-543 (-879 |#1|)) (-879 |#1|)) (-657 (-1198)) (-1071)) (T -744)) +NIL +(-969 |#2| (-543 (-879 |#1|)) (-879 |#1|)) +((-1606 (((-2 (|:| -1323 (-972 |#3|)) (|:| -1702 (-972 |#3|))) |#4|) 14)) (-3556 ((|#4| |#4| |#2|) 33)) (-1922 ((|#4| (-419 (-972 |#3|)) |#2|) 64)) (-1901 ((|#4| (-1194 (-972 |#3|)) |#2|) 77)) (-4350 ((|#4| (-1194 |#4|) |#2|) 51)) (-1646 ((|#4| |#4| |#2|) 54)) (-1856 (((-430 |#4|) |#4|) 40))) +(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1606 ((-2 (|:| -1323 (-972 |#3|)) (|:| -1702 (-972 |#3|))) |#4|)) (-15 -1646 (|#4| |#4| |#2|)) (-15 -4350 (|#4| (-1194 |#4|) |#2|)) (-15 -3556 (|#4| |#4| |#2|)) (-15 -1901 (|#4| (-1194 (-972 |#3|)) |#2|)) (-15 -1922 (|#4| (-419 (-972 |#3|)) |#2|)) (-15 -1856 ((-430 |#4|) |#4|))) (-806) (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)))) (-568) (-969 (-419 (-972 |#3|)) |#1| |#2|)) (T -745)) +((-1856 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-969 (-419 (-972 *6)) *4 *5)))) (-1922 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-969 *3 *5 *4)) (-5 *1 (-745 *5 *4 *6 *2)) (-5 *3 (-419 (-972 *6))) (-4 *5 (-806)) (-4 *4 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $))))))) (-1901 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 (-972 *6))) (-4 *6 (-568)) (-4 *2 (-969 (-419 (-972 *6)) *5 *4)) (-5 *1 (-745 *5 *4 *6 *2)) (-4 *5 (-806)) (-4 *4 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $))))))) (-3556 (*1 *2 *2 *3) (-12 (-4 *4 (-806)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $))))) (-4 *5 (-568)) (-5 *1 (-745 *4 *3 *5 *2)) (-4 *2 (-969 (-419 (-972 *5)) *4 *3)))) (-4350 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *2)) (-4 *2 (-969 (-419 (-972 *6)) *5 *4)) (-5 *1 (-745 *5 *4 *6 *2)) (-4 *5 (-806)) (-4 *4 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $))))) (-4 *6 (-568)))) (-1646 (*1 *2 *2 *3) (-12 (-4 *4 (-806)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $))))) (-4 *5 (-568)) (-5 *1 (-745 *4 *3 *5 *2)) (-4 *2 (-969 (-419 (-972 *5)) *4 *3)))) (-1606 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -1323 (-972 *6)) (|:| -1702 (-972 *6)))) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-969 (-419 (-972 *6)) *4 *5))))) +(-10 -7 (-15 -1606 ((-2 (|:| -1323 (-972 |#3|)) (|:| -1702 (-972 |#3|))) |#4|)) (-15 -1646 (|#4| |#4| |#2|)) (-15 -4350 (|#4| (-1194 |#4|) |#2|)) (-15 -3556 (|#4| |#4| |#2|)) (-15 -1901 (|#4| (-1194 (-972 |#3|)) |#2|)) (-15 -1922 (|#4| (-419 (-972 |#3|)) |#2|)) (-15 -1856 ((-430 |#4|) |#4|))) +((-1856 (((-430 |#4|) |#4|) 54))) +(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1856 ((-430 |#4|) |#4|))) (-806) (-862) (-13 (-317) (-148)) (-969 (-419 |#3|) |#1| |#2|)) (T -746)) +((-1856 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *3 (-969 (-419 *6) *4 *5))))) +(-10 -7 (-15 -1856 ((-430 |#4|) |#4|))) +((-4071 (((-748 |#2| |#3|) (-1 |#2| |#1|) (-748 |#1| |#3|)) 18))) +(((-747 |#1| |#2| |#3|) (-10 -7 (-15 -4071 ((-748 |#2| |#3|) (-1 |#2| |#1|) (-748 |#1| |#3|)))) (-1071) (-1071) (-739)) (T -747)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-748 *5 *7)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-4 *7 (-739)) (-5 *2 (-748 *6 *7)) (-5 *1 (-747 *5 *6 *7))))) +(-10 -7 (-15 -4071 ((-748 |#2| |#3|) (-1 |#2| |#1|) (-748 |#1| |#3|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 36)) (-3212 (((-657 (-2 (|:| -1735 |#1|) (|:| -3646 |#2|))) $) 37)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2148 (((-784)) 22 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2830 ((|#2| $) NIL) ((|#1| $) NIL)) (-2165 (($ $) 102 (|has| |#2| (-862)))) (-3969 (((-3 $ "failed") $) 85)) (-1876 (($) 48 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) 70)) (-2278 (((-657 $) $) 52)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| |#2|) 17)) (-4071 (($ (-1 |#1| |#1|) $) 68)) (-2327 (((-941) $) 43 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-2129 ((|#2| $) 101 (|has| |#2| (-862)))) (-2141 ((|#1| $) 100 (|has| |#2| (-862)))) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) 35 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 99) (($ (-576)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-657 (-2 (|:| -1735 |#1|) (|:| -3646 |#2|)))) 11)) (-3987 (((-657 |#1|) $) 54)) (-2498 ((|#1| $ |#2|) 115)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 12 T CONST)) (-2725 (($) 44 T CONST)) (-2881 (((-112) $ $) 105)) (-2982 (($ $) 61) (($ $ $) NIL)) (-2971 (($ $ $) 33)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-748 |#1| |#2|) (-13 (-1071) (-1060 |#2|) (-1060 |#1|) (-10 -8 (-15 -1974 ($ |#1| |#2|)) (-15 -2498 (|#1| $ |#2|)) (-15 -3515 ($ (-657 (-2 (|:| -1735 |#1|) (|:| -3646 |#2|))))) (-15 -3212 ((-657 (-2 (|:| -1735 |#1|) (|:| -3646 |#2|))) $)) (-15 -4071 ($ (-1 |#1| |#1|) $)) (-15 -2343 ((-112) $)) (-15 -3987 ((-657 |#1|) $)) (-15 -2278 ((-657 $) $)) (-15 -2977 ((-784) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -2129 (|#2| $)) (-15 -2141 (|#1| $)) (-15 -2165 ($ $))) |%noBranch|))) (-1071) (-739)) (T -748)) +((-1974 (*1 *1 *2 *3) (-12 (-5 *1 (-748 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-739)))) (-2498 (*1 *2 *1 *3) (-12 (-4 *2 (-1071)) (-5 *1 (-748 *2 *3)) (-4 *3 (-739)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -1735 *3) (|:| -3646 *4)))) (-4 *3 (-1071)) (-4 *4 (-739)) (-5 *1 (-748 *3 *4)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| -1735 *3) (|:| -3646 *4)))) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-739)))) (-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-748 *3 *4)) (-4 *4 (-739)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-739)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-739)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-657 (-748 *3 *4))) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-739)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-739)))) (-2129 (*1 *2 *1) (-12 (-4 *2 (-739)) (-4 *2 (-862)) (-5 *1 (-748 *3 *2)) (-4 *3 (-1071)))) (-2141 (*1 *2 *1) (-12 (-4 *2 (-1071)) (-5 *1 (-748 *2 *3)) (-4 *3 (-862)) (-4 *3 (-739)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-748 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1071)) (-4 *3 (-739))))) +(-13 (-1071) (-1060 |#2|) (-1060 |#1|) (-10 -8 (-15 -1974 ($ |#1| |#2|)) (-15 -2498 (|#1| $ |#2|)) (-15 -3515 ($ (-657 (-2 (|:| -1735 |#1|) (|:| -3646 |#2|))))) (-15 -3212 ((-657 (-2 (|:| -1735 |#1|) (|:| -3646 |#2|))) $)) (-15 -4071 ($ (-1 |#1| |#1|) $)) (-15 -2343 ((-112) $)) (-15 -3987 ((-657 |#1|) $)) (-15 -2278 ((-657 $) $)) (-15 -2977 ((-784) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -2129 (|#2| $)) (-15 -2141 (|#1| $)) (-15 -2165 ($ $))) |%noBranch|))) +((-3423 (((-112) $ $) 20)) (-1849 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-1855 (($ $ $) 73)) (-2176 (((-112) $ $) 74)) (-4284 (((-112) $ (-784)) 8)) (-2119 (($ (-657 |#1|)) 69) (($) 68)) (-3726 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-3588 (($ $) 63)) (-1620 (($ $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1920 (($ |#1| $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4466)))) (-3901 (($ |#1| $) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4466)))) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1919 (((-112) $ $) 65)) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23)) (-3415 (($ $ $) 70)) (-3107 ((|#1| $) 40)) (-2701 (($ |#1| $) 41) (($ |#1| $ (-784)) 64)) (-1460 (((-1142) $) 22)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2184 ((|#1| $) 42)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-3193 (((-657 (-2 (|:| -4440 |#1|) (|:| -1469 (-784)))) $) 62)) (-1610 (($ $ |#1|) 72) (($ $ $) 71)) (-3009 (($) 50) (($ (-657 |#1|)) 49)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-4136 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 51)) (-3515 (((-877) $) 18)) (-1923 (($ (-657 |#1|)) 67) (($) 66)) (-4166 (((-112) $ $) 21)) (-1636 (($ (-657 |#1|)) 43)) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19)) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-749 |#1|) (-141) (-1122)) (T -749)) +NIL +(-13 (-708 |t#1|) (-1120 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-877)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-708 |#1|) . T) ((-1120 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-1849 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-1855 (($ $ $) 96)) (-2176 (((-112) $ $) 104)) (-4284 (((-112) $ (-784)) NIL)) (-2119 (($ (-657 |#1|)) 26) (($) 17)) (-3726 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-3588 (($ $) 85)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1920 (($ |#1| $) 70 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466))) (($ |#1| $ (-576)) 75) (($ (-1 (-112) |#1|) $ (-576)) 78)) (-3901 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (($ |#1| $ (-576)) 80) (($ (-1 (-112) |#1|) $ (-576)) 81)) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1448 (((-657 |#1|) $) 32 (|has| $ (-6 -4466)))) (-1919 (((-112) $ $) 103)) (-2747 (($) 15) (($ |#1|) 28) (($ (-657 |#1|)) 23)) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#1|) $) 38)) (-3326 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1799 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 89)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-3415 (($ $ $) 94)) (-3107 ((|#1| $) 62)) (-2701 (($ |#1| $) 63) (($ |#1| $ (-784)) 86)) (-1460 (((-1142) $) NIL)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2184 ((|#1| $) 61)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 56)) (-3340 (($) 14)) (-3193 (((-657 (-2 (|:| -4440 |#1|) (|:| -1469 (-784)))) $) 55)) (-1610 (($ $ |#1|) NIL) (($ $ $) 95)) (-3009 (($) 16) (($ (-657 |#1|)) 25)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) 68 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) 79)) (-4136 (((-548) $) 36 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 22)) (-3515 (((-877) $) 49)) (-1923 (($ (-657 |#1|)) 27) (($) 18)) (-4166 (((-112) $ $) NIL)) (-1636 (($ (-657 |#1|)) 24)) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 100)) (-3437 (((-784) $) 67 (|has| $ (-6 -4466))))) +(((-750 |#1|) (-13 (-749 |#1|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -2747 ($)) (-15 -2747 ($ |#1|)) (-15 -2747 ($ (-657 |#1|))) (-15 -3855 ((-657 |#1|) $)) (-15 -3901 ($ |#1| $ (-576))) (-15 -3901 ($ (-1 (-112) |#1|) $ (-576))) (-15 -1920 ($ |#1| $ (-576))) (-15 -1920 ($ (-1 (-112) |#1|) $ (-576))))) (-1122)) (T -750)) +((-2747 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1122)))) (-2747 (*1 *1 *2) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1122)))) (-2747 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-750 *3)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-750 *3)) (-4 *3 (-1122)))) (-3901 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-750 *2)) (-4 *2 (-1122)))) (-3901 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1122)) (-5 *1 (-750 *4)))) (-1920 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-750 *2)) (-4 *2 (-1122)))) (-1920 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1122)) (-5 *1 (-750 *4))))) +(-13 (-749 |#1|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -2747 ($)) (-15 -2747 ($ |#1|)) (-15 -2747 ($ (-657 |#1|))) (-15 -3855 ((-657 |#1|) $)) (-15 -3901 ($ |#1| $ (-576))) (-15 -3901 ($ (-1 (-112) |#1|) $ (-576))) (-15 -1920 ($ |#1| $ (-576))) (-15 -1920 ($ (-1 (-112) |#1|) $ (-576))))) +((-2922 (((-1294) (-1180)) 8))) +(((-751) (-10 -7 (-15 -2922 ((-1294) (-1180))))) (T -751)) +((-2922 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-751))))) +(-10 -7 (-15 -2922 ((-1294) (-1180)))) +((-2092 (((-657 |#1|) (-657 |#1|) (-657 |#1|)) 15))) +(((-752 |#1|) (-10 -7 (-15 -2092 ((-657 |#1|) (-657 |#1|) (-657 |#1|)))) (-862)) (T -752)) +((-2092 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-752 *3))))) +(-10 -7 (-15 -2092 ((-657 |#1|) (-657 |#1|) (-657 |#1|)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-1998 (((-657 |#2|) $) 149)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 142 (|has| |#1| (-568)))) (-2361 (($ $) 141 (|has| |#1| (-568)))) (-3286 (((-112) $) 139 (|has| |#1| (-568)))) (-2143 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) 20)) (-1866 (($ $) 80 (|has| |#1| (-38 (-419 (-576)))))) (-2120 (($ $) 97 (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-2166 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) 83 (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) 18 T CONST)) (-2165 (($ $) 133)) (-3969 (((-3 $ "failed") $) 37)) (-2991 (((-972 |#1|) $ (-784)) 111) (((-972 |#1|) $ (-784) (-784)) 110)) (-3155 (((-112) $) 150)) (-1622 (($) 108 (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-784) $ |#2|) 113) (((-784) $ |#2| (-784)) 112)) (-3994 (((-112) $) 35)) (-3856 (($ $ (-576)) 79 (|has| |#1| (-38 (-419 (-576)))))) (-2343 (((-112) $) 131)) (-1974 (($ $ (-657 |#2|) (-657 (-543 |#2|))) 148) (($ $ |#2| (-543 |#2|)) 147) (($ |#1| (-543 |#2|)) 132) (($ $ |#2| (-784)) 115) (($ $ (-657 |#2|) (-657 (-784))) 114)) (-4071 (($ (-1 |#1| |#1|) $) 130)) (-3707 (($ $) 105 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) 128)) (-2141 ((|#1| $) 127)) (-1708 (((-1180) $) 10)) (-2320 (($ $ |#2|) 109 (|has| |#1| (-38 (-419 (-576)))))) (-1460 (((-1142) $) 11)) (-1456 (($ $ (-784)) 116)) (-3409 (((-3 $ "failed") $ $) 143 (|has| |#1| (-568)))) (-4056 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-3205 (($ $ |#2| $) 124) (($ $ (-657 |#2|) (-657 $)) 123) (($ $ (-657 (-304 $))) 122) (($ $ (-304 $)) 121) (($ $ $ $) 120) (($ $ (-657 $) (-657 $)) 119)) (-2209 (($ $ (-657 |#2|) (-657 (-784))) 44) (($ $ |#2| (-784)) 43) (($ $ (-657 |#2|)) 42) (($ $ |#2|) 40)) (-4265 (((-543 |#2|) $) 129)) (-2177 (($ $) 95 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 84 (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) 85 (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) 93 (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) 86 (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) 151)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-568))) (($ (-419 (-576))) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2498 ((|#1| $ (-543 |#2|)) 134) (($ $ |#2| (-784)) 118) (($ $ (-657 |#2|) (-657 (-784))) 117)) (-3414 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-4110 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) 140 (|has| |#1| (-568)))) (-2188 (($ $) 103 (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) 91 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-1864 (($ $) 101 (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) 89 (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) 99 (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) 87 (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-657 |#2|) (-657 (-784))) 47) (($ $ |#2| (-784)) 46) (($ $ (-657 |#2|)) 45) (($ $ |#2|) 41)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 135 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ $) 107 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 78 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 138 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 137 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 126) (($ $ |#1|) 125))) +(((-753 |#1| |#2|) (-141) (-1071) (-862)) (T -753)) +((-2498 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *2)) (-4 *4 (-1071)) (-4 *2 (-862)))) (-2498 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *5)) (-5 *3 (-657 (-784))) (-4 *1 (-753 *4 *5)) (-4 *4 (-1071)) (-4 *5 (-862)))) (-1456 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-753 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-862)))) (-1974 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *2)) (-4 *4 (-1071)) (-4 *2 (-862)))) (-1974 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *5)) (-5 *3 (-657 (-784))) (-4 *1 (-753 *4 *5)) (-4 *4 (-1071)) (-4 *5 (-862)))) (-2650 (*1 *2 *1 *3) (-12 (-4 *1 (-753 *4 *3)) (-4 *4 (-1071)) (-4 *3 (-862)) (-5 *2 (-784)))) (-2650 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-784)) (-4 *1 (-753 *4 *3)) (-4 *4 (-1071)) (-4 *3 (-862)))) (-2991 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *5)) (-4 *4 (-1071)) (-4 *5 (-862)) (-5 *2 (-972 *4)))) (-2991 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *5)) (-4 *4 (-1071)) (-4 *5 (-862)) (-5 *2 (-972 *4)))) (-2320 (*1 *1 *1 *2) (-12 (-4 *1 (-753 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-862)) (-4 *3 (-38 (-419 (-576))))))) +(-13 (-918 |t#2|) (-995 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-319 $) (-10 -8 (-15 -2498 ($ $ |t#2| (-784))) (-15 -2498 ($ $ (-657 |t#2|) (-657 (-784)))) (-15 -1456 ($ $ (-784))) (-15 -1974 ($ $ |t#2| (-784))) (-15 -1974 ($ $ (-657 |t#2|) (-657 (-784)))) (-15 -2650 ((-784) $ |t#2|)) (-15 -2650 ((-784) $ |t#2| (-784))) (-15 -2991 ((-972 |t#1|) $ (-784))) (-15 -2991 ((-972 |t#1|) $ (-784) (-784))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2320 ($ $ |t#2|)) (-6 (-1024)) (-6 (-1224))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-543 |#2|)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-300) |has| |#1| (-568)) ((-319 $) . T) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-659 #1#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #1#) |has| |#1| (-38 (-419 (-576)))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #1#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-730 #1#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) . T) ((-912 $ |#2|) . T) ((-918 |#2|) . T) ((-920 |#2|) . T) ((-995 |#1| #0# |#2|) . T) ((-1024) |has| |#1| (-38 (-419 (-576)))) ((-1073 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1078 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1227) |has| |#1| (-38 (-419 (-576)))) ((-1239) . T)) +((-1856 (((-430 (-1194 |#4|)) (-1194 |#4|)) 30) (((-430 |#4|) |#4|) 26))) +(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1856 ((-430 |#4|) |#4|)) (-15 -1856 ((-430 (-1194 |#4|)) (-1194 |#4|)))) (-862) (-806) (-13 (-317) (-148)) (-969 |#3| |#2| |#1|)) (T -754)) +((-1856 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-430 (-1194 *7))) (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4))))) +(-10 -7 (-15 -1856 ((-430 |#4|) |#4|)) (-15 -1856 ((-430 (-1194 |#4|)) (-1194 |#4|)))) +((-1967 (((-430 |#4|) |#4| |#2|) 140)) (-4411 (((-430 |#4|) |#4|) NIL)) (-4215 (((-430 (-1194 |#4|)) (-1194 |#4|)) 127) (((-430 |#4|) |#4|) 52)) (-4251 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-657 (-2 (|:| -1856 (-1194 |#4|)) (|:| -2128 (-576)))))) (-1194 |#4|) (-657 |#2|) (-657 (-657 |#3|))) 81)) (-4125 (((-1194 |#3|) (-1194 |#3|) (-576)) 166)) (-3357 (((-657 (-784)) (-1194 |#4|) (-657 |#2|) (-784)) 75)) (-3647 (((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-1194 |#3|) (-1194 |#3|) |#4| (-657 |#2|) (-657 (-784)) (-657 |#3|)) 79)) (-3589 (((-2 (|:| |upol| (-1194 |#3|)) (|:| |Lval| (-657 |#3|)) (|:| |Lfact| (-657 (-2 (|:| -1856 (-1194 |#3|)) (|:| -2128 (-576))))) (|:| |ctpol| |#3|)) (-1194 |#4|) (-657 |#2|) (-657 (-657 |#3|))) 27)) (-2957 (((-2 (|:| -3587 (-1194 |#4|)) (|:| |polval| (-1194 |#3|))) (-1194 |#4|) (-1194 |#3|) (-576)) 72)) (-1394 (((-576) (-657 (-2 (|:| -1856 (-1194 |#3|)) (|:| -2128 (-576))))) 162)) (-1947 ((|#4| (-576) (-430 |#4|)) 73)) (-1569 (((-112) (-657 (-2 (|:| -1856 (-1194 |#3|)) (|:| -2128 (-576)))) (-657 (-2 (|:| -1856 (-1194 |#3|)) (|:| -2128 (-576))))) NIL))) +(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4215 ((-430 |#4|) |#4|)) (-15 -4215 ((-430 (-1194 |#4|)) (-1194 |#4|))) (-15 -4411 ((-430 |#4|) |#4|)) (-15 -1394 ((-576) (-657 (-2 (|:| -1856 (-1194 |#3|)) (|:| -2128 (-576)))))) (-15 -1967 ((-430 |#4|) |#4| |#2|)) (-15 -2957 ((-2 (|:| -3587 (-1194 |#4|)) (|:| |polval| (-1194 |#3|))) (-1194 |#4|) (-1194 |#3|) (-576))) (-15 -4251 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-657 (-2 (|:| -1856 (-1194 |#4|)) (|:| -2128 (-576)))))) (-1194 |#4|) (-657 |#2|) (-657 (-657 |#3|)))) (-15 -3589 ((-2 (|:| |upol| (-1194 |#3|)) (|:| |Lval| (-657 |#3|)) (|:| |Lfact| (-657 (-2 (|:| -1856 (-1194 |#3|)) (|:| -2128 (-576))))) (|:| |ctpol| |#3|)) (-1194 |#4|) (-657 |#2|) (-657 (-657 |#3|)))) (-15 -1947 (|#4| (-576) (-430 |#4|))) (-15 -1569 ((-112) (-657 (-2 (|:| -1856 (-1194 |#3|)) (|:| -2128 (-576)))) (-657 (-2 (|:| -1856 (-1194 |#3|)) (|:| -2128 (-576)))))) (-15 -3647 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-1194 |#3|) (-1194 |#3|) |#4| (-657 |#2|) (-657 (-784)) (-657 |#3|))) (-15 -3357 ((-657 (-784)) (-1194 |#4|) (-657 |#2|) (-784))) (-15 -4125 ((-1194 |#3|) (-1194 |#3|) (-576)))) (-806) (-862) (-317) (-969 |#3| |#1| |#2|)) (T -755)) +((-4125 (*1 *2 *2 *3) (-12 (-5 *2 (-1194 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-755 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-3357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1194 *9)) (-5 *4 (-657 *7)) (-4 *7 (-862)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-806)) (-4 *8 (-317)) (-5 *2 (-657 (-784))) (-5 *1 (-755 *6 *7 *8 *9)) (-5 *5 (-784)))) (-3647 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1194 *11)) (-5 *6 (-657 *10)) (-5 *7 (-657 (-784))) (-5 *8 (-657 *11)) (-4 *10 (-862)) (-4 *11 (-317)) (-4 *9 (-806)) (-4 *5 (-969 *11 *9 *10)) (-5 *2 (-657 (-1194 *5))) (-5 *1 (-755 *9 *10 *11 *5)) (-5 *3 (-1194 *5)))) (-1569 (*1 *2 *3 *3) (-12 (-5 *3 (-657 (-2 (|:| -1856 (-1194 *6)) (|:| -2128 (-576))))) (-4 *6 (-317)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-755 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-1947 (*1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-969 *7 *5 *6)) (-5 *1 (-755 *5 *6 *7 *2)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-317)))) (-3589 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1194 *9)) (-5 *4 (-657 *7)) (-5 *5 (-657 (-657 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-806)) (-5 *2 (-2 (|:| |upol| (-1194 *8)) (|:| |Lval| (-657 *8)) (|:| |Lfact| (-657 (-2 (|:| -1856 (-1194 *8)) (|:| -2128 (-576))))) (|:| |ctpol| *8))) (-5 *1 (-755 *6 *7 *8 *9)))) (-4251 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-657 *7)) (-5 *5 (-657 (-657 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *6 (-806)) (-4 *9 (-969 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-657 (-2 (|:| -1856 (-1194 *9)) (|:| -2128 (-576))))))) (-5 *1 (-755 *6 *7 *8 *9)) (-5 *3 (-1194 *9)))) (-2957 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-576)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-969 *8 *6 *7)) (-5 *2 (-2 (|:| -3587 (-1194 *9)) (|:| |polval| (-1194 *8)))) (-5 *1 (-755 *6 *7 *8 *9)) (-5 *3 (-1194 *9)) (-5 *4 (-1194 *8)))) (-1967 (*1 *2 *3 *4) (-12 (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-755 *5 *4 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -1856 (-1194 *6)) (|:| -2128 (-576))))) (-4 *6 (-317)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-755 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-4411 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-755 *4 *5 *6 *3)) (-4 *3 (-969 *6 *4 *5)))) (-4215 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-430 (-1194 *7))) (-5 *1 (-755 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) (-4215 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-755 *4 *5 *6 *3)) (-4 *3 (-969 *6 *4 *5))))) +(-10 -7 (-15 -4215 ((-430 |#4|) |#4|)) (-15 -4215 ((-430 (-1194 |#4|)) (-1194 |#4|))) (-15 -4411 ((-430 |#4|) |#4|)) (-15 -1394 ((-576) (-657 (-2 (|:| -1856 (-1194 |#3|)) (|:| -2128 (-576)))))) (-15 -1967 ((-430 |#4|) |#4| |#2|)) (-15 -2957 ((-2 (|:| -3587 (-1194 |#4|)) (|:| |polval| (-1194 |#3|))) (-1194 |#4|) (-1194 |#3|) (-576))) (-15 -4251 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-657 (-2 (|:| -1856 (-1194 |#4|)) (|:| -2128 (-576)))))) (-1194 |#4|) (-657 |#2|) (-657 (-657 |#3|)))) (-15 -3589 ((-2 (|:| |upol| (-1194 |#3|)) (|:| |Lval| (-657 |#3|)) (|:| |Lfact| (-657 (-2 (|:| -1856 (-1194 |#3|)) (|:| -2128 (-576))))) (|:| |ctpol| |#3|)) (-1194 |#4|) (-657 |#2|) (-657 (-657 |#3|)))) (-15 -1947 (|#4| (-576) (-430 |#4|))) (-15 -1569 ((-112) (-657 (-2 (|:| -1856 (-1194 |#3|)) (|:| -2128 (-576)))) (-657 (-2 (|:| -1856 (-1194 |#3|)) (|:| -2128 (-576)))))) (-15 -3647 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-1194 |#3|) (-1194 |#3|) |#4| (-657 |#2|) (-657 (-784)) (-657 |#3|))) (-15 -3357 ((-657 (-784)) (-1194 |#4|) (-657 |#2|) (-784))) (-15 -4125 ((-1194 |#3|) (-1194 |#3|) (-576)))) +((-3152 (($ $ (-941)) 17))) +(((-756 |#1| |#2|) (-10 -8 (-15 -3152 (|#1| |#1| (-941)))) (-757 |#2|) (-174)) (T -756)) +NIL +(-10 -8 (-15 -3152 (|#1| |#1| (-941)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-4408 (($ $ (-941)) 31)) (-3152 (($ $ (-941)) 38)) (-3296 (($ $ (-941)) 32)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1911 (($ $ $) 28)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-3280 (($ $ $ $) 29)) (-2566 (($ $ $) 27)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 33)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-757 |#1|) (-141) (-174)) (T -757)) +((-3152 (*1 *1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-757 *3)) (-4 *3 (-174))))) +(-13 (-774) (-730 |t#1|) (-10 -8 (-15 -3152 ($ $ (-941))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-733) . T) ((-774) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3657 (((-1057) (-702 (-227)) (-576) (-112) (-576)) 25)) (-2298 (((-1057) (-702 (-227)) (-576) (-112) (-576)) 24))) +(((-758) (-10 -7 (-15 -2298 ((-1057) (-702 (-227)) (-576) (-112) (-576))) (-15 -3657 ((-1057) (-702 (-227)) (-576) (-112) (-576))))) (T -758)) +((-3657 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1057)) (-5 *1 (-758)))) (-2298 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1057)) (-5 *1 (-758))))) +(-10 -7 (-15 -2298 ((-1057) (-702 (-227)) (-576) (-112) (-576))) (-15 -3657 ((-1057) (-702 (-227)) (-576) (-112) (-576)))) +((-3563 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) 43)) (-3837 (((-1057) (-576) (-576) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) 39)) (-1479 (((-1057) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) 32))) +(((-759) (-10 -7 (-15 -1479 ((-1057) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995))))) (-15 -3837 ((-1057) (-576) (-576) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -3563 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))) (T -759)) +((-3563 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1057)) (-5 *1 (-759)))) (-3837 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1057)) (-5 *1 (-759)))) (-1479 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) (-5 *2 (-1057)) (-5 *1 (-759))))) +(-10 -7 (-15 -1479 ((-1057) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995))))) (-15 -3837 ((-1057) (-576) (-576) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -3563 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))))) +((-2646 (((-1057) (-576) (-576) (-702 (-227)) (-576)) 34)) (-2314 (((-1057) (-576) (-576) (-702 (-227)) (-576)) 33)) (-2242 (((-1057) (-576) (-702 (-227)) (-576)) 32)) (-3677 (((-1057) (-576) (-702 (-227)) (-576)) 31)) (-3875 (((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 30)) (-1547 (((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 29)) (-4201 (((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-576)) 28)) (-3012 (((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-576)) 27)) (-2696 (((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 24)) (-3170 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576)) 23)) (-2974 (((-1057) (-576) (-702 (-227)) (-576)) 22)) (-4005 (((-1057) (-576) (-702 (-227)) (-576)) 21))) +(((-760) (-10 -7 (-15 -4005 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -2974 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -3170 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2696 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3012 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4201 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1547 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3875 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3677 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -2242 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -2314 ((-1057) (-576) (-576) (-702 (-227)) (-576))) (-15 -2646 ((-1057) (-576) (-576) (-702 (-227)) (-576))))) (T -760)) +((-2646 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-2314 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-2242 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-3677 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-3875 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-1547 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-4201 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-3012 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-2696 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-3170 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-2974 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-4005 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760))))) +(-10 -7 (-15 -4005 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -2974 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -3170 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2696 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3012 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4201 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1547 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3875 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3677 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -2242 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -2314 ((-1057) (-576) (-576) (-702 (-227)) (-576))) (-15 -2646 ((-1057) (-576) (-576) (-702 (-227)) (-576)))) +((-4000 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-227) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3189 (((-1057) (-702 (-227)) (-702 (-227)) (-576) (-576)) 51)) (-4061 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2722 (((-1057) (-227) (-227) (-576) (-576) (-576) (-576)) 46)) (-3495 (((-1057) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 45)) (-3915 (((-1057) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 44)) (-2838 (((-1057) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 43)) (-2806 (((-1057) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 42)) (-3385 (((-1057) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) 38)) (-2783 (((-1057) (-227) (-227) (-576) (-702 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) 37)) (-4317 (((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) 33)) (-1937 (((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) 32))) +(((-761) (-10 -7 (-15 -1937 ((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995))))) (-15 -4317 ((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995))))) (-15 -2783 ((-1057) (-227) (-227) (-576) (-702 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995))))) (-15 -3385 ((-1057) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995))))) (-15 -2806 ((-1057) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2838 ((-1057) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3915 ((-1057) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3495 ((-1057) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2722 ((-1057) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -4061 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -3189 ((-1057) (-702 (-227)) (-702 (-227)) (-576) (-576))) (-15 -4000 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-227) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))) (T -761)) +((-4000 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-3189 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-761)))) (-4061 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-2722 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-761)))) (-3495 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-3915 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-2838 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-2806 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-3385 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-2783 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-761)))) (-4317 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-1937 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) (-5 *2 (-1057)) (-5 *1 (-761))))) +(-10 -7 (-15 -1937 ((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995))))) (-15 -4317 ((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995))))) (-15 -2783 ((-1057) (-227) (-227) (-576) (-702 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995))))) (-15 -3385 ((-1057) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995))))) (-15 -2806 ((-1057) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2838 ((-1057) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3915 ((-1057) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3495 ((-1057) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2722 ((-1057) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -4061 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -3189 ((-1057) (-702 (-227)) (-702 (-227)) (-576) (-576))) (-15 -4000 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-227) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))))) +((-4089 (((-1057) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3776 (((-1057) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400)) 69) (((-1057) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3774 (((-1057) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) 57)) (-3880 (((-1057) (-702 (-227)) (-702 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 50)) (-3467 (((-1057) (-227) (-576) (-576) (-1180) (-576) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 49)) (-4421 (((-1057) (-227) (-576) (-576) (-227) (-1180) (-227) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3826 (((-1057) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 42)) (-2527 (((-1057) (-227) (-576) (-576) (-576) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-762) (-10 -7 (-15 -2527 ((-1057) (-227) (-576) (-576) (-576) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3826 ((-1057) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -4421 ((-1057) (-227) (-576) (-576) (-227) (-1180) (-227) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3467 ((-1057) (-227) (-576) (-576) (-1180) (-576) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3880 ((-1057) (-702 (-227)) (-702 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3774 ((-1057) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -3776 ((-1057) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -3776 ((-1057) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -4089 ((-1057) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -762)) +((-4089 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-762)))) (-3776 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-400)) (-5 *2 (-1057)) (-5 *1 (-762)))) (-3776 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1057)) (-5 *1 (-762)))) (-3774 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762)))) (-3880 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1057)) (-5 *1 (-762)))) (-3467 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-576)) (-5 *5 (-1180)) (-5 *6 (-702 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762)))) (-4421 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-576)) (-5 *5 (-1180)) (-5 *6 (-702 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762)))) (-3826 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762)))) (-2527 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762))))) +(-10 -7 (-15 -2527 ((-1057) (-227) (-576) (-576) (-576) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3826 ((-1057) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -4421 ((-1057) (-227) (-576) (-576) (-227) (-1180) (-227) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3467 ((-1057) (-227) (-576) (-576) (-1180) (-576) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3880 ((-1057) (-702 (-227)) (-702 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3774 ((-1057) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -3776 ((-1057) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -3776 ((-1057) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -4089 ((-1057) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-4386 (((-1057) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-688 (-227)) (-576)) 45)) (-3354 (((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1180) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) 41)) (-3847 (((-1057) (-576) (-576) (-576) (-576) (-227) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 23))) +(((-763) (-10 -7 (-15 -3847 ((-1057) (-576) (-576) (-576) (-576) (-227) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3354 ((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1180) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -4386 ((-1057) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-688 (-227)) (-576))))) (T -763)) +((-4386 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-688 (-227))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-763)))) (-3354 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1180)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1057)) (-5 *1 (-763)))) (-3847 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-763))))) +(-10 -7 (-15 -3847 ((-1057) (-576) (-576) (-576) (-576) (-227) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3354 ((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1180) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -4386 ((-1057) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-688 (-227)) (-576)))) +((-3913 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-702 (-227)) (-227) (-227) (-576)) 35)) (-1461 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-227) (-227) (-576)) 34)) (-3877 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-702 (-227)) (-227) (-227) (-576)) 33)) (-1403 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 29)) (-1510 (((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 28)) (-2531 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576)) 27)) (-3591 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-576)) 24)) (-2462 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-576)) 23)) (-2836 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576)) 22)) (-1954 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576)) 21))) +(((-764) (-10 -7 (-15 -1954 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576))) (-15 -2836 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2462 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -3591 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -2531 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576))) (-15 -1510 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1403 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3877 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-702 (-227)) (-227) (-227) (-576))) (-15 -1461 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -3913 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-702 (-227)) (-227) (-227) (-576))))) (T -764)) +((-3913 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *2 (-1057)) (-5 *1 (-764)))) (-1461 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *2 (-1057)) (-5 *1 (-764)))) (-3877 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-764)))) (-1403 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-764)))) (-1510 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-764)))) (-2531 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *2 (-1057)) (-5 *1 (-764)))) (-3591 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-764)))) (-2462 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-764)))) (-2836 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-764)))) (-1954 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-764))))) +(-10 -7 (-15 -1954 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576))) (-15 -2836 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2462 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -3591 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -2531 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576))) (-15 -1510 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1403 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3877 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-702 (-227)) (-227) (-227) (-576))) (-15 -1461 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -3913 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-702 (-227)) (-227) (-227) (-576)))) +((-3797 (((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576)) 45)) (-3722 (((-1057) (-576) (-576) (-576) (-227) (-702 (-227)) (-702 (-227)) (-576)) 44)) (-2467 (((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576)) 43)) (-3602 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 42)) (-3187 (((-1057) (-1180) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576)) 41)) (-2041 (((-1057) (-1180) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576)) 40)) (-3569 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576) (-576) (-576) (-227) (-702 (-227)) (-576)) 39)) (-3075 (((-1057) (-1180) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-576))) 38)) (-1573 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576)) 35)) (-3297 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576)) 34)) (-4044 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576)) 33)) (-3971 (((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 32)) (-1558 (((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-227) (-576)) 31)) (-2226 (((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-576)) 30)) (-4371 (((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-576) (-576) (-576)) 29)) (-4378 (((-1057) (-576) (-576) (-576) (-227) (-227) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576) (-702 (-576)) (-576) (-576) (-576)) 28)) (-3078 (((-1057) (-576) (-702 (-227)) (-227) (-576)) 24)) (-3479 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 21))) +(((-765) (-10 -7 (-15 -3479 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3078 ((-1057) (-576) (-702 (-227)) (-227) (-576))) (-15 -4378 ((-1057) (-576) (-576) (-576) (-227) (-227) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576) (-702 (-576)) (-576) (-576) (-576))) (-15 -4371 ((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -2226 ((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -1558 ((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-227) (-576))) (-15 -3971 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4044 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576))) (-15 -3297 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576))) (-15 -1573 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3075 ((-1057) (-1180) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-576)))) (-15 -3569 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576) (-576) (-576) (-227) (-702 (-227)) (-576))) (-15 -2041 ((-1057) (-1180) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576))) (-15 -3187 ((-1057) (-1180) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3602 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2467 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576))) (-15 -3722 ((-1057) (-576) (-576) (-576) (-227) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3797 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576))))) (T -765)) +((-3797 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3722 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-2467 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3602 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3187 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-2041 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1180)) (-5 *5 (-702 (-227))) (-5 *6 (-227)) (-5 *7 (-702 (-576))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3569 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3075 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1180)) (-5 *5 (-702 (-227))) (-5 *6 (-227)) (-5 *7 (-702 (-576))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-1573 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3297 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-4044 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3971 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-765)))) (-1558 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-2226 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-4371 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-4378 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-702 (-227))) (-5 *6 (-702 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3078 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3479 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-765))))) +(-10 -7 (-15 -3479 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3078 ((-1057) (-576) (-702 (-227)) (-227) (-576))) (-15 -4378 ((-1057) (-576) (-576) (-576) (-227) (-227) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576) (-702 (-576)) (-576) (-576) (-576))) (-15 -4371 ((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -2226 ((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -1558 ((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-227) (-576))) (-15 -3971 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4044 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576))) (-15 -3297 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576))) (-15 -1573 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3075 ((-1057) (-1180) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-576)))) (-15 -3569 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576) (-576) (-576) (-227) (-702 (-227)) (-576))) (-15 -2041 ((-1057) (-1180) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576))) (-15 -3187 ((-1057) (-1180) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3602 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2467 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576))) (-15 -3722 ((-1057) (-576) (-576) (-576) (-227) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3797 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576)))) +((-3693 (((-1057) (-576) (-576) (-576) (-227) (-702 (-227)) (-576) (-702 (-227)) (-576)) 63)) (-3000 (((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-576)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1340 (((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-112) (-112) (-112) (-576) (-576) (-702 (-227)) (-702 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) 58)) (-2016 (((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-112) (-576) (-576) (-702 (-227)) (-576)) 51)) (-4354 (((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3789 (((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3798 (((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1647 (((-1057) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-766) (-10 -7 (-15 -1647 ((-1057) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3798 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3789 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -4354 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -2016 ((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-112) (-576) (-576) (-702 (-227)) (-576))) (-15 -1340 ((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-112) (-112) (-112) (-576) (-576) (-702 (-227)) (-702 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -3000 ((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-576)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3693 ((-1057) (-576) (-576) (-576) (-227) (-702 (-227)) (-576) (-702 (-227)) (-576))))) (T -766)) +((-3693 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-766)))) (-3000 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-702 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-766)))) (-1340 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-702 (-227))) (-5 *6 (-112)) (-5 *7 (-702 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-766)))) (-2016 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-112)) (-5 *2 (-1057)) (-5 *1 (-766)))) (-4354 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1057)) (-5 *1 (-766)))) (-3789 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1057)) (-5 *1 (-766)))) (-3798 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1057)) (-5 *1 (-766)))) (-1647 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-702 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-766))))) +(-10 -7 (-15 -1647 ((-1057) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3798 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3789 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -4354 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -2016 ((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-112) (-576) (-576) (-702 (-227)) (-576))) (-15 -1340 ((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-112) (-112) (-112) (-576) (-576) (-702 (-227)) (-702 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -3000 ((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-576)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3693 ((-1057) (-576) (-576) (-576) (-227) (-702 (-227)) (-576) (-702 (-227)) (-576)))) +((-1773 (((-1057) (-1180) (-576) (-576) (-576) (-576) (-702 (-171 (-227))) (-702 (-171 (-227))) (-576)) 47)) (-4229 (((-1057) (-1180) (-1180) (-576) (-576) (-702 (-171 (-227))) (-576) (-702 (-171 (-227))) (-576) (-576) (-702 (-171 (-227))) (-576)) 46)) (-1633 (((-1057) (-576) (-576) (-576) (-702 (-171 (-227))) (-576)) 45)) (-2952 (((-1057) (-1180) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 40)) (-2247 (((-1057) (-1180) (-1180) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-702 (-227)) (-576)) 39)) (-1666 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-576)) 36)) (-3671 (((-1057) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576)) 35)) (-1607 (((-1057) (-576) (-576) (-576) (-576) (-657 (-112)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-227) (-227) (-576)) 34)) (-4280 (((-1057) (-576) (-576) (-576) (-702 (-576)) (-702 (-576)) (-702 (-576)) (-702 (-576)) (-112) (-227) (-112) (-702 (-576)) (-702 (-227)) (-576)) 33)) (-3288 (((-1057) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-657 (-112)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-576)) 32))) +(((-767) (-10 -7 (-15 -3288 ((-1057) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-657 (-112)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-576))) (-15 -4280 ((-1057) (-576) (-576) (-576) (-702 (-576)) (-702 (-576)) (-702 (-576)) (-702 (-576)) (-112) (-227) (-112) (-702 (-576)) (-702 (-227)) (-576))) (-15 -1607 ((-1057) (-576) (-576) (-576) (-576) (-657 (-112)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-227) (-227) (-576))) (-15 -3671 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576))) (-15 -1666 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-576))) (-15 -2247 ((-1057) (-1180) (-1180) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-702 (-227)) (-576))) (-15 -2952 ((-1057) (-1180) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1633 ((-1057) (-576) (-576) (-576) (-702 (-171 (-227))) (-576))) (-15 -4229 ((-1057) (-1180) (-1180) (-576) (-576) (-702 (-171 (-227))) (-576) (-702 (-171 (-227))) (-576) (-576) (-702 (-171 (-227))) (-576))) (-15 -1773 ((-1057) (-1180) (-576) (-576) (-576) (-576) (-702 (-171 (-227))) (-702 (-171 (-227))) (-576))))) (T -767)) +((-1773 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-171 (-227)))) (-5 *2 (-1057)) (-5 *1 (-767)))) (-4229 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-171 (-227)))) (-5 *2 (-1057)) (-5 *1 (-767)))) (-1633 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-171 (-227)))) (-5 *2 (-1057)) (-5 *1 (-767)))) (-2952 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-767)))) (-2247 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-767)))) (-1666 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-767)))) (-3671 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-767)))) (-1607 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-657 (-112))) (-5 *5 (-702 (-227))) (-5 *6 (-702 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-767)))) (-4280 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-702 (-576))) (-5 *5 (-112)) (-5 *7 (-702 (-227))) (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1057)) (-5 *1 (-767)))) (-3288 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-657 (-112))) (-5 *7 (-702 (-227))) (-5 *8 (-702 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1057)) (-5 *1 (-767))))) +(-10 -7 (-15 -3288 ((-1057) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-657 (-112)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-576))) (-15 -4280 ((-1057) (-576) (-576) (-576) (-702 (-576)) (-702 (-576)) (-702 (-576)) (-702 (-576)) (-112) (-227) (-112) (-702 (-576)) (-702 (-227)) (-576))) (-15 -1607 ((-1057) (-576) (-576) (-576) (-576) (-657 (-112)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-227) (-227) (-576))) (-15 -3671 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576))) (-15 -1666 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-576))) (-15 -2247 ((-1057) (-1180) (-1180) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-702 (-227)) (-576))) (-15 -2952 ((-1057) (-1180) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1633 ((-1057) (-576) (-576) (-576) (-702 (-171 (-227))) (-576))) (-15 -4229 ((-1057) (-1180) (-1180) (-576) (-576) (-702 (-171 (-227))) (-576) (-702 (-171 (-227))) (-576) (-576) (-702 (-171 (-227))) (-576))) (-15 -1773 ((-1057) (-1180) (-576) (-576) (-576) (-576) (-702 (-171 (-227))) (-702 (-171 (-227))) (-576)))) +((-4172 (((-1057) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-702 (-171 (-227))) (-702 (-171 (-227))) (-576)) 79)) (-4018 (((-1057) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-702 (-227)) (-702 (-227)) (-576)) 68)) (-3486 (((-1057) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400)) 56) (((-1057) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) 55)) (-3406 (((-1057) (-576) (-576) (-576) (-227) (-112) (-576) (-702 (-227)) (-702 (-227)) (-576)) 37)) (-1534 (((-1057) (-576) (-576) (-227) (-227) (-576) (-576) (-702 (-227)) (-576)) 33)) (-4015 (((-1057) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-576) (-576) (-576)) 30)) (-2272 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 29)) (-2228 (((-1057) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 28)) (-2547 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 27)) (-3903 (((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576)) 26)) (-2781 (((-1057) (-576) (-576) (-702 (-227)) (-576)) 25)) (-3906 (((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 24)) (-3472 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 23)) (-1336 (((-1057) (-702 (-227)) (-576) (-576) (-576) (-576)) 22)) (-1881 (((-1057) (-576) (-576) (-702 (-227)) (-576)) 21))) +(((-768) (-10 -7 (-15 -1881 ((-1057) (-576) (-576) (-702 (-227)) (-576))) (-15 -1336 ((-1057) (-702 (-227)) (-576) (-576) (-576) (-576))) (-15 -3472 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3906 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2781 ((-1057) (-576) (-576) (-702 (-227)) (-576))) (-15 -3903 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576))) (-15 -2547 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2228 ((-1057) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2272 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4015 ((-1057) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1534 ((-1057) (-576) (-576) (-227) (-227) (-576) (-576) (-702 (-227)) (-576))) (-15 -3406 ((-1057) (-576) (-576) (-576) (-227) (-112) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3486 ((-1057) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -3486 ((-1057) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -4018 ((-1057) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4172 ((-1057) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-702 (-171 (-227))) (-702 (-171 (-227))) (-576))))) (T -768)) +((-4172 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-702 (-171 (-227)))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-4018 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-3486 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-768)))) (-3486 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-768)))) (-3406 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-768)))) (-1534 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-768)))) (-4015 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-768)))) (-2272 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-2228 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-2547 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-3903 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-2781 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-3906 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-3472 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-1336 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-768)))) (-1881 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768))))) +(-10 -7 (-15 -1881 ((-1057) (-576) (-576) (-702 (-227)) (-576))) (-15 -1336 ((-1057) (-702 (-227)) (-576) (-576) (-576) (-576))) (-15 -3472 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3906 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2781 ((-1057) (-576) (-576) (-702 (-227)) (-576))) (-15 -3903 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576))) (-15 -2547 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2228 ((-1057) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2272 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4015 ((-1057) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1534 ((-1057) (-576) (-576) (-227) (-227) (-576) (-576) (-702 (-227)) (-576))) (-15 -3406 ((-1057) (-576) (-576) (-576) (-227) (-112) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3486 ((-1057) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -3486 ((-1057) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -4018 ((-1057) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4172 ((-1057) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-702 (-171 (-227))) (-702 (-171 (-227))) (-576)))) +((-2185 (((-1057) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) 64)) (-3461 (((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-576)) (-576) (-702 (-227)) (-576) (-576) (-576) (-576)) 60)) (-3638 (((-1057) (-576) (-702 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2430 (((-1057) (-576) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576) (-702 (-576)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576)) 37)) (-2271 (((-1057) (-576) (-576) (-576) (-227) (-576) (-702 (-227)) (-702 (-227)) (-576)) 36)) (-4094 (((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 33)) (-4059 (((-1057) (-576) (-702 (-227)) (-576) (-702 (-576)) (-702 (-576)) (-576) (-702 (-576)) (-702 (-227))) 32)) (-3618 (((-1057) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-576)) 28)) (-1391 (((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576)) 27)) (-3299 (((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576)) 26)) (-2231 (((-1057) (-576) (-702 (-171 (-227))) (-576) (-576) (-576) (-576) (-702 (-171 (-227))) (-576)) 22))) +(((-769) (-10 -7 (-15 -2231 ((-1057) (-576) (-702 (-171 (-227))) (-576) (-576) (-576) (-576) (-702 (-171 (-227))) (-576))) (-15 -3299 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -1391 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -3618 ((-1057) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-576))) (-15 -4059 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-576)) (-702 (-576)) (-576) (-702 (-576)) (-702 (-227)))) (-15 -4094 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2271 ((-1057) (-576) (-576) (-576) (-227) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2430 ((-1057) (-576) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576) (-702 (-576)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576))) (-15 -3638 ((-1057) (-576) (-702 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -3461 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-576)) (-576) (-702 (-227)) (-576) (-576) (-576) (-576))) (-15 -2185 ((-1057) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))) (T -769)) +((-2185 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-769)))) (-3461 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-769)))) (-3638 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1057)) (-5 *1 (-769)))) (-2430 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-769)))) (-2271 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-769)))) (-4094 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-769)))) (-4059 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-769)))) (-3618 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-769)))) (-1391 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-769)))) (-3299 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-769)))) (-2231 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-171 (-227)))) (-5 *2 (-1057)) (-5 *1 (-769))))) +(-10 -7 (-15 -2231 ((-1057) (-576) (-702 (-171 (-227))) (-576) (-576) (-576) (-576) (-702 (-171 (-227))) (-576))) (-15 -3299 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -1391 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -3618 ((-1057) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-576))) (-15 -4059 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-576)) (-702 (-576)) (-576) (-702 (-576)) (-702 (-227)))) (-15 -4094 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2271 ((-1057) (-576) (-576) (-576) (-227) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2430 ((-1057) (-576) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576) (-702 (-576)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576))) (-15 -3638 ((-1057) (-576) (-702 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -3461 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-576)) (-576) (-702 (-227)) (-576) (-576) (-576) (-576))) (-15 -2185 ((-1057) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))))) +((-3686 (((-1057) (-1180) (-576) (-576) (-702 (-227)) (-576) (-576) (-702 (-227))) 29)) (-3762 (((-1057) (-1180) (-576) (-576) (-702 (-227))) 28)) (-2809 (((-1057) (-1180) (-576) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576) (-702 (-227))) 27)) (-3033 (((-1057) (-576) (-576) (-576) (-702 (-227))) 21))) +(((-770) (-10 -7 (-15 -3033 ((-1057) (-576) (-576) (-576) (-702 (-227)))) (-15 -2809 ((-1057) (-1180) (-576) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576) (-702 (-227)))) (-15 -3762 ((-1057) (-1180) (-576) (-576) (-702 (-227)))) (-15 -3686 ((-1057) (-1180) (-576) (-576) (-702 (-227)) (-576) (-576) (-702 (-227)))))) (T -770)) +((-3686 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-770)))) (-3762 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-770)))) (-2809 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1180)) (-5 *5 (-702 (-227))) (-5 *6 (-702 (-576))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-770)))) (-3033 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-770))))) +(-10 -7 (-15 -3033 ((-1057) (-576) (-576) (-576) (-702 (-227)))) (-15 -2809 ((-1057) (-1180) (-576) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576) (-702 (-227)))) (-15 -3762 ((-1057) (-1180) (-576) (-576) (-702 (-227)))) (-15 -3686 ((-1057) (-1180) (-576) (-576) (-702 (-227)) (-576) (-576) (-702 (-227))))) +((-3411 (((-1057) (-227) (-227) (-227) (-227) (-576)) 62)) (-4012 (((-1057) (-227) (-227) (-227) (-576)) 61)) (-1372 (((-1057) (-227) (-227) (-227) (-576)) 60)) (-3330 (((-1057) (-227) (-227) (-576)) 59)) (-3980 (((-1057) (-227) (-576)) 58)) (-3568 (((-1057) (-227) (-576)) 57)) (-2309 (((-1057) (-227) (-576)) 56)) (-2416 (((-1057) (-227) (-576)) 55)) (-3799 (((-1057) (-227) (-576)) 54)) (-1664 (((-1057) (-227) (-576)) 53)) (-1915 (((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576)) 52)) (-3103 (((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576)) 51)) (-3882 (((-1057) (-227) (-576)) 50)) (-3227 (((-1057) (-227) (-576)) 49)) (-2537 (((-1057) (-227) (-576)) 48)) (-3305 (((-1057) (-227) (-576)) 47)) (-3121 (((-1057) (-576) (-227) (-171 (-227)) (-576) (-1180) (-576)) 46)) (-3184 (((-1057) (-1180) (-171 (-227)) (-1180) (-576)) 45)) (-2470 (((-1057) (-1180) (-171 (-227)) (-1180) (-576)) 44)) (-2323 (((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576)) 43)) (-1434 (((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576)) 42)) (-3214 (((-1057) (-227) (-576)) 39)) (-4151 (((-1057) (-227) (-576)) 38)) (-3101 (((-1057) (-227) (-576)) 37)) (-1847 (((-1057) (-227) (-576)) 36)) (-1385 (((-1057) (-227) (-576)) 35)) (-3159 (((-1057) (-227) (-576)) 34)) (-3760 (((-1057) (-227) (-576)) 33)) (-3909 (((-1057) (-227) (-576)) 32)) (-2377 (((-1057) (-227) (-576)) 31)) (-2261 (((-1057) (-227) (-576)) 30)) (-1576 (((-1057) (-227) (-227) (-227) (-576)) 29)) (-3690 (((-1057) (-227) (-576)) 28)) (-4322 (((-1057) (-227) (-576)) 27)) (-3503 (((-1057) (-227) (-576)) 26)) (-3506 (((-1057) (-227) (-576)) 25)) (-2426 (((-1057) (-227) (-576)) 24)) (-3815 (((-1057) (-171 (-227)) (-576)) 21))) +(((-771) (-10 -7 (-15 -3815 ((-1057) (-171 (-227)) (-576))) (-15 -2426 ((-1057) (-227) (-576))) (-15 -3506 ((-1057) (-227) (-576))) (-15 -3503 ((-1057) (-227) (-576))) (-15 -4322 ((-1057) (-227) (-576))) (-15 -3690 ((-1057) (-227) (-576))) (-15 -1576 ((-1057) (-227) (-227) (-227) (-576))) (-15 -2261 ((-1057) (-227) (-576))) (-15 -2377 ((-1057) (-227) (-576))) (-15 -3909 ((-1057) (-227) (-576))) (-15 -3760 ((-1057) (-227) (-576))) (-15 -3159 ((-1057) (-227) (-576))) (-15 -1385 ((-1057) (-227) (-576))) (-15 -1847 ((-1057) (-227) (-576))) (-15 -3101 ((-1057) (-227) (-576))) (-15 -4151 ((-1057) (-227) (-576))) (-15 -3214 ((-1057) (-227) (-576))) (-15 -1434 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -2323 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -2470 ((-1057) (-1180) (-171 (-227)) (-1180) (-576))) (-15 -3184 ((-1057) (-1180) (-171 (-227)) (-1180) (-576))) (-15 -3121 ((-1057) (-576) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -3305 ((-1057) (-227) (-576))) (-15 -2537 ((-1057) (-227) (-576))) (-15 -3227 ((-1057) (-227) (-576))) (-15 -3882 ((-1057) (-227) (-576))) (-15 -3103 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -1915 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -1664 ((-1057) (-227) (-576))) (-15 -3799 ((-1057) (-227) (-576))) (-15 -2416 ((-1057) (-227) (-576))) (-15 -2309 ((-1057) (-227) (-576))) (-15 -3568 ((-1057) (-227) (-576))) (-15 -3980 ((-1057) (-227) (-576))) (-15 -3330 ((-1057) (-227) (-227) (-576))) (-15 -1372 ((-1057) (-227) (-227) (-227) (-576))) (-15 -4012 ((-1057) (-227) (-227) (-227) (-576))) (-15 -3411 ((-1057) (-227) (-227) (-227) (-227) (-576))))) (T -771)) +((-3411 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-4012 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1372 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3330 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3568 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2309 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3799 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1664 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1915 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3103 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3305 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3121 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1180)) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3184 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1180)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2470 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1180)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2323 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1434 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3101 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1847 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1385 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3159 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3760 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3909 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2377 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1576 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-4322 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3503 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3506 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(-10 -7 (-15 -3815 ((-1057) (-171 (-227)) (-576))) (-15 -2426 ((-1057) (-227) (-576))) (-15 -3506 ((-1057) (-227) (-576))) (-15 -3503 ((-1057) (-227) (-576))) (-15 -4322 ((-1057) (-227) (-576))) (-15 -3690 ((-1057) (-227) (-576))) (-15 -1576 ((-1057) (-227) (-227) (-227) (-576))) (-15 -2261 ((-1057) (-227) (-576))) (-15 -2377 ((-1057) (-227) (-576))) (-15 -3909 ((-1057) (-227) (-576))) (-15 -3760 ((-1057) (-227) (-576))) (-15 -3159 ((-1057) (-227) (-576))) (-15 -1385 ((-1057) (-227) (-576))) (-15 -1847 ((-1057) (-227) (-576))) (-15 -3101 ((-1057) (-227) (-576))) (-15 -4151 ((-1057) (-227) (-576))) (-15 -3214 ((-1057) (-227) (-576))) (-15 -1434 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -2323 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -2470 ((-1057) (-1180) (-171 (-227)) (-1180) (-576))) (-15 -3184 ((-1057) (-1180) (-171 (-227)) (-1180) (-576))) (-15 -3121 ((-1057) (-576) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -3305 ((-1057) (-227) (-576))) (-15 -2537 ((-1057) (-227) (-576))) (-15 -3227 ((-1057) (-227) (-576))) (-15 -3882 ((-1057) (-227) (-576))) (-15 -3103 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -1915 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -1664 ((-1057) (-227) (-576))) (-15 -3799 ((-1057) (-227) (-576))) (-15 -2416 ((-1057) (-227) (-576))) (-15 -2309 ((-1057) (-227) (-576))) (-15 -3568 ((-1057) (-227) (-576))) (-15 -3980 ((-1057) (-227) (-576))) (-15 -3330 ((-1057) (-227) (-227) (-576))) (-15 -1372 ((-1057) (-227) (-227) (-227) (-576))) (-15 -4012 ((-1057) (-227) (-227) (-227) (-576))) (-15 -3411 ((-1057) (-227) (-227) (-227) (-227) (-576)))) +((-1780 (((-1294)) 20)) (-3257 (((-1180)) 34)) (-3429 (((-1180)) 33)) (-1886 (((-1126) (-1198) (-702 (-576))) 47) (((-1126) (-1198) (-702 (-227))) 43)) (-1564 (((-112)) 19)) (-4041 (((-1180) (-1180)) 37))) +(((-772) (-10 -7 (-15 -3429 ((-1180))) (-15 -3257 ((-1180))) (-15 -4041 ((-1180) (-1180))) (-15 -1886 ((-1126) (-1198) (-702 (-227)))) (-15 -1886 ((-1126) (-1198) (-702 (-576)))) (-15 -1564 ((-112))) (-15 -1780 ((-1294))))) (T -772)) +((-1780 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-772)))) (-1564 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-772)))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-702 (-576))) (-5 *2 (-1126)) (-5 *1 (-772)))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-702 (-227))) (-5 *2 (-1126)) (-5 *1 (-772)))) (-4041 (*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-772)))) (-3257 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-772)))) (-3429 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-772))))) +(-10 -7 (-15 -3429 ((-1180))) (-15 -3257 ((-1180))) (-15 -4041 ((-1180) (-1180))) (-15 -1886 ((-1126) (-1198) (-702 (-227)))) (-15 -1886 ((-1126) (-1198) (-702 (-576)))) (-15 -1564 ((-112))) (-15 -1780 ((-1294)))) +((-1911 (($ $ $) 10)) (-3280 (($ $ $ $) 9)) (-2566 (($ $ $) 12))) +(((-773 |#1|) (-10 -8 (-15 -2566 (|#1| |#1| |#1|)) (-15 -1911 (|#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| |#1| |#1|))) (-774)) (T -773)) +NIL +(-10 -8 (-15 -2566 (|#1| |#1| |#1|)) (-15 -1911 (|#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-4408 (($ $ (-941)) 31)) (-3296 (($ $ (-941)) 32)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1911 (($ $ $) 28)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-3280 (($ $ $ $) 29)) (-2566 (($ $ $) 27)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 33)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 30))) +(((-774) (-141)) (T -774)) +((-3280 (*1 *1 *1 *1 *1) (-4 *1 (-774))) (-1911 (*1 *1 *1 *1) (-4 *1 (-774))) (-2566 (*1 *1 *1 *1) (-4 *1 (-774)))) +(-13 (-21) (-733) (-10 -8 (-15 -3280 ($ $ $ $)) (-15 -1911 ($ $ $)) (-15 -2566 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-733) . T) ((-1122) . T) ((-1239) . T)) +((-3515 (((-877) $) NIL) (($ (-576)) 10))) +(((-775 |#1|) (-10 -8 (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) (-776)) (T -775)) +NIL +(-10 -8 (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-4236 (((-3 $ "failed") $) 43)) (-4408 (($ $ (-941)) 31) (($ $ (-784)) 38)) (-3969 (((-3 $ "failed") $) 41)) (-3994 (((-112) $) 37)) (-3157 (((-3 $ "failed") $) 42)) (-3296 (($ $ (-941)) 32) (($ $ (-784)) 39)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1911 (($ $ $) 28)) (-3515 (((-877) $) 12) (($ (-576)) 34)) (-3845 (((-784)) 35 T CONST)) (-4166 (((-112) $ $) 6)) (-3280 (($ $ $ $) 29)) (-2566 (($ $ $) 27)) (-2716 (($) 19 T CONST)) (-2725 (($) 36 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 33) (($ $ (-784)) 40)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 30))) +(((-776) (-141)) (T -776)) +((-3845 (*1 *2) (-12 (-4 *1 (-776)) (-5 *2 (-784)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-776))))) +(-13 (-774) (-735) (-10 -8 (-15 -3845 ((-784)) -1491) (-15 -3515 ($ (-576))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-733) . T) ((-735) . T) ((-774) . T) ((-1122) . T) ((-1239) . T)) +((-3150 (((-657 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 (-171 |#1|)))))) (-702 (-171 (-419 (-576)))) |#1|) 33)) (-1379 (((-657 (-171 |#1|)) (-702 (-171 (-419 (-576)))) |#1|) 23)) (-2948 (((-972 (-171 (-419 (-576)))) (-702 (-171 (-419 (-576)))) (-1198)) 20) (((-972 (-171 (-419 (-576)))) (-702 (-171 (-419 (-576))))) 19))) +(((-777 |#1|) (-10 -7 (-15 -2948 ((-972 (-171 (-419 (-576)))) (-702 (-171 (-419 (-576)))))) (-15 -2948 ((-972 (-171 (-419 (-576)))) (-702 (-171 (-419 (-576)))) (-1198))) (-15 -1379 ((-657 (-171 |#1|)) (-702 (-171 (-419 (-576)))) |#1|)) (-15 -3150 ((-657 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 (-171 |#1|)))))) (-702 (-171 (-419 (-576)))) |#1|))) (-13 (-374) (-861))) (T -777)) +((-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-171 (-419 (-576))))) (-5 *2 (-657 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 (-171 *4))))))) (-5 *1 (-777 *4)) (-4 *4 (-13 (-374) (-861))))) (-1379 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-171 (-419 (-576))))) (-5 *2 (-657 (-171 *4))) (-5 *1 (-777 *4)) (-4 *4 (-13 (-374) (-861))))) (-2948 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-171 (-419 (-576))))) (-5 *4 (-1198)) (-5 *2 (-972 (-171 (-419 (-576))))) (-5 *1 (-777 *5)) (-4 *5 (-13 (-374) (-861))))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-702 (-171 (-419 (-576))))) (-5 *2 (-972 (-171 (-419 (-576))))) (-5 *1 (-777 *4)) (-4 *4 (-13 (-374) (-861)))))) +(-10 -7 (-15 -2948 ((-972 (-171 (-419 (-576)))) (-702 (-171 (-419 (-576)))))) (-15 -2948 ((-972 (-171 (-419 (-576)))) (-702 (-171 (-419 (-576)))) (-1198))) (-15 -1379 ((-657 (-171 |#1|)) (-702 (-171 (-419 (-576)))) |#1|)) (-15 -3150 ((-657 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 (-171 |#1|)))))) (-702 (-171 (-419 (-576)))) |#1|))) +((-3636 (((-176 (-576)) |#1|) 27))) +(((-778 |#1|) (-10 -7 (-15 -3636 ((-176 (-576)) |#1|))) (-416)) (T -778)) +((-3636 (*1 *2 *3) (-12 (-5 *2 (-176 (-576))) (-5 *1 (-778 *3)) (-4 *3 (-416))))) +(-10 -7 (-15 -3636 ((-176 (-576)) |#1|))) +((-4288 ((|#1| |#1| |#1|) 28)) (-1846 ((|#1| |#1| |#1|) 27)) (-1341 ((|#1| |#1| |#1|) 38)) (-2673 ((|#1| |#1| |#1|) 34)) (-4174 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2158 (((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|) 26))) +(((-779 |#1| |#2|) (-10 -7 (-15 -2158 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -1846 (|#1| |#1| |#1|)) (-15 -4288 (|#1| |#1| |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2673 (|#1| |#1| |#1|)) (-15 -1341 (|#1| |#1| |#1|))) (-721 |#2|) (-374)) (T -779)) +((-1341 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) (-2673 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) (-4174 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) (-4288 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) (-1846 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) (-2158 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-779 *3 *4)) (-4 *3 (-721 *4))))) +(-10 -7 (-15 -2158 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -1846 (|#1| |#1| |#1|)) (-15 -4288 (|#1| |#1| |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2673 (|#1| |#1| |#1|)) (-15 -1341 (|#1| |#1| |#1|))) +((-2599 (((-704 (-1247)) $ (-1247)) 26)) (-1711 (((-704 (-561)) $ (-561)) 25)) (-2151 (((-784) $ (-129)) 27)) (-1683 (((-704 (-130)) $ (-130)) 24)) (-1879 (((-704 (-1247)) $) 12)) (-3095 (((-704 (-1245)) $) 8)) (-2711 (((-704 (-1244)) $) 10)) (-2776 (((-704 (-561)) $) 13)) (-1520 (((-704 (-559)) $) 9)) (-1706 (((-704 (-558)) $) 11)) (-2394 (((-784) $ (-129)) 7)) (-1792 (((-704 (-130)) $) 14)) (-4274 (((-112) $) 31)) (-1537 (((-704 $) |#1| (-974)) 32)) (-3950 (($ $) 6))) +(((-780 |#1|) (-141) (-1122)) (T -780)) +((-1537 (*1 *2 *3 *4) (-12 (-5 *4 (-974)) (-4 *3 (-1122)) (-5 *2 (-704 *1)) (-4 *1 (-780 *3)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) +(-13 (-588) (-10 -8 (-15 -1537 ((-704 $) |t#1| (-974))) (-15 -4274 ((-112) $)))) +(((-175) . T) ((-539) . T) ((-588) . T) ((-875) . T)) +((-1951 (((-2 (|:| -2469 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576)))) (-576)) 71)) (-3929 (((-2 (|:| -2469 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576))))) 69)) (-1465 (((-576)) 85))) +(((-781 |#1| |#2|) (-10 -7 (-15 -1465 ((-576))) (-15 -3929 ((-2 (|:| -2469 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576)))))) (-15 -1951 ((-2 (|:| -2469 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576)))) (-576)))) (-1265 (-576)) (-421 (-576) |#1|)) (T -781)) +((-1951 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1265 *3)) (-5 *2 (-2 (|:| -2469 (-702 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-702 *3)))) (-5 *1 (-781 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3929 (*1 *2) (-12 (-4 *3 (-1265 (-576))) (-5 *2 (-2 (|:| -2469 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576))))) (-5 *1 (-781 *3 *4)) (-4 *4 (-421 (-576) *3)))) (-1465 (*1 *2) (-12 (-4 *3 (-1265 *2)) (-5 *2 (-576)) (-5 *1 (-781 *3 *4)) (-4 *4 (-421 *2 *3))))) +(-10 -7 (-15 -1465 ((-576))) (-15 -3929 ((-2 (|:| -2469 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576)))))) (-15 -1951 ((-2 (|:| -2469 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576)))) (-576)))) +((-3423 (((-112) $ $) NIL)) (-2830 (((-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 20) (($ (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-782) (-13 (-1122) (-10 -8 (-15 -3515 ($ (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3515 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3515 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2830 ((-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -782)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-782)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-782)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-782)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-782))))) +(-13 (-1122) (-10 -8 (-15 -3515 ($ (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3515 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3515 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2830 ((-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) +((-3985 (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|))) 18) (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)) (-657 (-1198))) 17)) (-2632 (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|))) 20) (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)) (-657 (-1198))) 19))) +(((-783 |#1|) (-10 -7 (-15 -3985 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -3985 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)))) (-15 -2632 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -2632 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|))))) (-568)) (T -783)) +((-2632 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-783 *4)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-657 (-1198))) (-4 *5 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-783 *5)))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-783 *4)))) (-3985 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-657 (-1198))) (-4 *5 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-783 *5))))) +(-10 -7 (-15 -3985 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -3985 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)))) (-15 -2632 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -2632 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1323 (($ $ $) 10)) (-2423 (((-3 $ "failed") $ $) 15)) (-2736 (($ $ (-576)) 11)) (-2515 (($) NIL T CONST)) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($ $) NIL)) (-3369 (($ $ $) NIL)) (-3994 (((-112) $) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3431 (($ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 6 T CONST)) (-2725 (($) NIL T CONST)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-784)) NIL) (($ $ (-941)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ $ $) NIL))) +(((-784) (-13 (-806) (-739) (-10 -8 (-15 -3369 ($ $ $)) (-15 -3355 ($ $ $)) (-15 -3431 ($ $ $)) (-15 -3977 ((-2 (|:| -2192 $) (|:| -3951 $)) $ $)) (-15 -3409 ((-3 $ "failed") $ $)) (-15 -2736 ($ $ (-576))) (-15 -1876 ($ $)) (-6 (-4468 "*"))))) (T -784)) +((-3369 (*1 *1 *1 *1) (-5 *1 (-784))) (-3355 (*1 *1 *1 *1) (-5 *1 (-784))) (-3431 (*1 *1 *1 *1) (-5 *1 (-784))) (-3977 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2192 (-784)) (|:| -3951 (-784)))) (-5 *1 (-784)))) (-3409 (*1 *1 *1 *1) (|partial| -5 *1 (-784))) (-2736 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-784)))) (-1876 (*1 *1 *1) (-5 *1 (-784)))) +(-13 (-806) (-739) (-10 -8 (-15 -3369 ($ $ $)) (-15 -3355 ($ $ $)) (-15 -3431 ($ $ $)) (-15 -3977 ((-2 (|:| -2192 $) (|:| -3951 $)) $ $)) (-15 -3409 ((-3 $ "failed") $ $)) (-15 -2736 ($ $ (-576))) (-15 -1876 ($ $)) (-6 (-4468 "*")))) ((|Integer|) (|%ige| |#1| 0)) -((-4138 (((-3 |#2| "failed") |#2| |#2| (-115) (-1197)) 37))) -(((-784 |#1| |#2|) (-10 -7 (-15 -4138 ((-3 |#2| "failed") |#2| |#2| (-115) (-1197)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978))) (T -784)) -((-4138 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1223) (-978)))))) -(-10 -7 (-15 -4138 ((-3 |#2| "failed") |#2| |#2| (-115) (-1197)))) -((-4113 (((-786) |#1|) 8))) -(((-785 |#1|) (-10 -7 (-15 -4113 ((-786) |#1|))) (-1238)) (T -785)) -((-4113 (*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1238))))) -(-10 -7 (-15 -4113 ((-786) |#1|))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 7)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 9))) -(((-786) (-1121)) (T -786)) -NIL -(-1121) -((-2595 ((|#2| |#4|) 35))) -(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2595 (|#2| |#4|))) (-464) (-1264 |#1|) (-736 |#1| |#2|) (-1264 |#3|)) (T -787)) -((-2595 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1264 *5))))) -(-10 -7 (-15 -2595 (|#2| |#4|))) -((-1851 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1872 (((-1293) (-1179) (-1179) |#4| |#5|) 33)) (-1346 ((|#4| |#4| |#5|) 74)) (-2874 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|) 79)) (-3313 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|) 16))) -(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1851 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1346 (|#4| |#4| |#5|)) (-15 -2874 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -1872 ((-1293) (-1179) (-1179) |#4| |#5|)) (-15 -3313 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -788)) -((-3313 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1872 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1179)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *4 (-1086 *6 *7 *8)) (-5 *2 (-1293)) (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1092 *6 *7 *8 *4)))) (-2874 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1346 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *2 (-1086 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) (-4 *3 (-1092 *4 *5 *6 *2)))) (-1851 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(-10 -7 (-15 -1851 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1346 (|#4| |#4| |#5|)) (-15 -2874 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -1872 ((-1293) (-1179) (-1179) |#4| |#5|)) (-15 -3313 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|))) -((-2982 (((-3 (-1193 (-1193 |#1|)) "failed") |#4|) 51)) (-3041 (((-656 |#4|) |#4|) 22)) (-2510 ((|#4| |#4|) 17))) -(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3041 ((-656 |#4|) |#4|)) (-15 -2982 ((-3 (-1193 (-1193 |#1|)) "failed") |#4|)) (-15 -2510 (|#4| |#4|))) (-360) (-339 |#1|) (-1264 |#2|) (-1264 |#3|) (-940)) (T -789)) -((-2510 (*1 *2 *2) (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1264 *4)) (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1264 *5)) (-14 *6 (-940)))) (-2982 (*1 *2 *3) (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) (-5 *2 (-1193 (-1193 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) (-14 *7 (-940)))) (-3041 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) (-14 *7 (-940))))) -(-10 -7 (-15 -3041 ((-656 |#4|) |#4|)) (-15 -2982 ((-3 (-1193 (-1193 |#1|)) "failed") |#4|)) (-15 -2510 (|#4| |#4|))) -((-2248 (((-2 (|:| |deter| (-656 (-1193 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -3299 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1193 |#5|) (-656 |#1|) (-656 |#5|)) 72)) (-4151 (((-656 (-783)) |#1|) 20))) -(((-790 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2248 ((-2 (|:| |deter| (-656 (-1193 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -3299 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1193 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -4151 ((-656 (-783)) |#1|))) (-1264 |#4|) (-805) (-861) (-317) (-968 |#4| |#2| |#3|)) (T -790)) -((-4151 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *6)) (-4 *7 (-968 *6 *4 *5)))) (-2248 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1264 *9)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-317)) (-4 *10 (-968 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-656 (-1193 *10))) (|:| |dterm| (-656 (-656 (-2 (|:| -3299 (-783)) (|:| |pcoef| *10))))) (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1193 *10)) (-5 *4 (-656 *6)) (-5 *5 (-656 *10))))) -(-10 -7 (-15 -2248 ((-2 (|:| |deter| (-656 (-1193 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -3299 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1193 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -4151 ((-656 (-783)) |#1|))) -((-2276 (((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|) 31)) (-1327 (((-656 |#1|) (-701 (-419 (-576))) |#1|) 21)) (-4358 (((-971 (-419 (-576))) (-701 (-419 (-576))) (-1197)) 18) (((-971 (-419 (-576))) (-701 (-419 (-576)))) 17))) -(((-791 |#1|) (-10 -7 (-15 -4358 ((-971 (-419 (-576))) (-701 (-419 (-576))))) (-15 -4358 ((-971 (-419 (-576))) (-701 (-419 (-576))) (-1197))) (-15 -1327 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -2276 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) (-13 (-374) (-860))) (T -791)) -((-2276 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 (-2 (|:| |outval| *4) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *4)))))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-1327 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1197)) (-5 *2 (-971 (-419 (-576)))) (-5 *1 (-791 *5)) (-4 *5 (-13 (-374) (-860))))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-971 (-419 (-576)))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -4358 ((-971 (-419 (-576))) (-701 (-419 (-576))))) (-15 -4358 ((-971 (-419 (-576))) (-701 (-419 (-576))) (-1197))) (-15 -1327 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -2276 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 36)) (-1585 (((-656 |#2|) $) NIL)) (-1421 (((-1193 $) $ |#2|) NIL) (((-1193 |#1|) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 |#2|)) NIL)) (-3095 (($ $) 30)) (-2577 (((-112) $ $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2163 (($ $ $) 110 (|has| |#1| (-568)))) (-3913 (((-656 $) $ $) 123 (|has| |#1| (-568)))) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2658 (($ $) NIL (|has| |#1| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-971 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))))) (((-3 $ "failed") (-971 (-576))) NIL (-3795 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2299 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197)))))) (((-3 $ "failed") (-971 |#1|)) NIL (-3795 (-12 (|has| |#2| (-626 (-1197))) (-2299 (|has| |#1| (-38 (-419 (-576))))) (-2299 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2299 (|has| |#1| (-38 (-419 (-576))))) (-2299 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))) (-2299 (|has| |#1| (-1013 (-576))))))) (((-3 (-1146 |#1| |#2|) "failed") $) 21)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) ((|#2| $) NIL) (($ (-971 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))))) (($ (-971 (-576))) NIL (-3795 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2299 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197)))))) (($ (-971 |#1|)) NIL (-3795 (-12 (|has| |#2| (-626 (-1197))) (-2299 (|has| |#1| (-38 (-419 (-576))))) (-2299 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2299 (|has| |#1| (-38 (-419 (-576))))) (-2299 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))) (-2299 (|has| |#1| (-1013 (-576))))))) (((-1146 |#1| |#2|) $) NIL)) (-2970 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-568)))) (-3310 (($ $) NIL) (($ $ |#2|) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-2559 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-3454 (((-112) $) NIL)) (-2799 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 81)) (-2673 (($ $) 136 (|has| |#1| (-464)))) (-1788 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#1| (-928)))) (-3494 (($ $) NIL (|has| |#1| (-568)))) (-3557 (($ $) NIL (|has| |#1| (-568)))) (-3924 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-1692 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-1975 (($ $ |#1| (-543 |#2|) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-2486 (((-112) $) 57)) (-2018 (((-783) $) NIL)) (-1938 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-1830 (($ $ $ $ $) 107 (|has| |#1| (-568)))) (-4260 ((|#2| $) 22)) (-1574 (($ (-1193 |#1|) |#2|) NIL) (($ (-1193 $) |#2|) NIL)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3822 (($ $ $) 63)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ |#2|) NIL)) (-3048 (((-112) $) NIL)) (-2192 (((-543 |#2|) $) NIL) (((-783) $ |#2|) NIL) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-1802 (((-783) $) 23)) (-3784 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-3477 (((-3 |#2| "failed") $) NIL)) (-2761 (($ $) NIL (|has| |#1| (-464)))) (-2823 (($ $) NIL (|has| |#1| (-464)))) (-4272 (((-656 $) $) NIL)) (-1729 (($ $) 39)) (-4395 (($ $) NIL (|has| |#1| (-464)))) (-1787 (((-656 $) $) 43)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3084 (($ $) 41)) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1482 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3738 (-783))) $ $) 96)) (-3762 (((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -2675 $) (|:| -3561 $)) $ $) 78) (((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -2675 $) (|:| -3561 $)) $ $ |#2|) NIL)) (-4031 (((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -3561 $)) $ $) NIL) (((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -3561 $)) $ $ |#2|) NIL)) (-2914 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2364 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-2447 (((-1179) $) NIL)) (-4381 (($ $ $) 125 (|has| |#1| (-568)))) (-3175 (((-656 $) $) 32)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| |#2|) (|:| -4080 (-783))) "failed") $) NIL)) (-2915 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3648 (($ $ $) NIL)) (-3650 (($ $) 24)) (-2384 (((-112) $ $) NIL)) (-2200 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-2565 (($ $ $) NIL)) (-3050 (($ $) 26)) (-3116 (((-1141) $) NIL)) (-2674 (((-2 (|:| -3115 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)))) (-4136 (((-2 (|:| -3115 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)))) (-1678 (((-112) $) 56)) (-1686 ((|#1| $) 58)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3115 ((|#1| |#1| $) 133 (|has| |#1| (-464))) (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-928)))) (-4104 (((-2 (|:| -3115 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)))) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-568)))) (-3314 (($ $ |#1|) 129 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-1591 (($ $ |#1|) 128 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-656 |#2|) (-656 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-656 |#2|) (-656 $)) NIL)) (-1790 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-4107 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2196 (((-543 |#2|) $) NIL) (((-783) $ |#2|) 45) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-3769 (($ $) NIL)) (-3830 (($ $) 35)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) (($ (-971 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197))))) (($ (-971 (-576))) NIL (-3795 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1197))) (-2299 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1197)))))) (($ (-971 |#1|)) NIL (|has| |#2| (-626 (-1197)))) (((-1179) $) NIL (-12 (|has| |#1| (-1059 (-576))) (|has| |#2| (-626 (-1197))))) (((-971 |#1|) $) NIL (|has| |#2| (-626 (-1197))))) (-1944 ((|#1| $) 132 (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-971 |#1|) $) NIL (|has| |#2| (-626 (-1197)))) (((-1146 |#1| |#2|) $) 18) (($ (-1146 |#1| |#2|)) 19) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) 47) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4313 (($) 13 T CONST)) (-2738 (((-3 (-112) "failed") $ $) NIL)) (-4322 (($) 37 T CONST)) (-1676 (($ $ $ $ (-783)) 105 (|has| |#1| (-568)))) (-2580 (($ $ $ (-783)) 104 (|has| |#1| (-568)))) (-3157 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) 75)) (-4026 (($ $ $) 85)) (** (($ $ (-940)) NIL) (($ $ (-783)) 70)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 62) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) -(((-792 |#1| |#2|) (-13 (-1086 |#1| (-543 |#2|) |#2|) (-625 (-1146 |#1| |#2|)) (-1059 (-1146 |#1| |#2|))) (-1070) (-861)) (T -792)) -NIL -(-13 (-1086 |#1| (-543 |#2|) |#2|) (-625 (-1146 |#1| |#2|)) (-1059 (-1146 |#1| |#2|))) -((-2423 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 13))) -(((-793 |#1| |#2|) (-10 -7 (-15 -2423 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1070) (-1070)) (T -793)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))) -(-10 -7 (-15 -2423 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 12)) (-2732 (((-1288 |#1|) $ (-783)) NIL)) (-1585 (((-656 (-1103)) $) NIL)) (-3287 (($ (-1193 |#1|)) NIL)) (-1421 (((-1193 $) $ (-1103)) NIL) (((-1193 |#1|) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2365 (((-656 $) $ $) 54 (|has| |#1| (-568)))) (-2163 (($ $ $) 50 (|has| |#1| (-568)))) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2658 (($ $) NIL (|has| |#1| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2665 (($ $ (-783)) NIL)) (-2713 (($ $ (-783)) NIL)) (-2096 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL) (((-3 (-1193 |#1|) "failed") $) 10)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1103) $) NIL) (((-1193 |#1|) $) NIL)) (-2970 (($ $ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-3310 (($ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-3895 (($ $ $) NIL)) (-4201 (($ $ $) 87 (|has| |#1| (-568)))) (-2799 (((-2 (|:| -2862 |#1|) (|:| -2675 $) (|:| -3561 $)) $ $) 86 (|has| |#1| (-568)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1788 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#1| (-928)))) (-1975 (($ $ |#1| (-783) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3359 (((-783) $ $) NIL (|has| |#1| (-568)))) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1574 (($ (-1193 |#1|) (-1103)) NIL) (($ (-1193 $) (-1103)) NIL)) (-4328 (($ $ (-783)) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-3822 (($ $ $) 27)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ (-1103)) NIL) (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-2192 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-3784 (($ (-1 (-783) (-783)) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2253 (((-1193 |#1|) $) NIL)) (-3477 (((-3 (-1103) "failed") $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1482 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3738 (-783))) $ $) 37)) (-2140 (($ $ $) 41)) (-1703 (($ $ $) 47)) (-3762 (((-2 (|:| -2862 |#1|) (|:| |gap| (-783)) (|:| -2675 $) (|:| -3561 $)) $ $) 46)) (-2447 (((-1179) $) NIL)) (-4381 (($ $ $) 56 (|has| |#1| (-568)))) (-2107 (((-2 (|:| -2675 $) (|:| -3561 $)) $ (-783)) NIL)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| (-1103)) (|:| -4080 (-783))) "failed") $) NIL)) (-4412 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3650 (($) NIL (|has| |#1| (-1173)) CONST)) (-3116 (((-1141) $) NIL)) (-2674 (((-2 (|:| -3115 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)))) (-4136 (((-2 (|:| -3115 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)))) (-2710 (((-2 (|:| -2970 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)))) (-1948 (((-2 (|:| -2970 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)))) (-1678 (((-112) $) 13)) (-1686 ((|#1| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4179 (($ $ (-783) |#1| $) 26)) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-928)))) (-4104 (((-2 (|:| -3115 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)))) (-1469 (((-2 (|:| -2970 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#1|) NIL) (($ $ (-656 (-1103)) (-656 |#1|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-2812 (((-783) $) NIL (|has| |#1| (-374)))) (-4369 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4292 (((-3 $ "failed") $ (-783)) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-1790 (($ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-4107 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2196 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1944 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-4105 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1103)) NIL) (((-1193 |#1|) $) 7) (($ (-1193 |#1|)) 8) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4313 (($) 28 T CONST)) (-4322 (($) 32 T CONST)) (-3157 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $) 40) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-794 |#1|) (-13 (-1264 |#1|) (-625 (-1193 |#1|)) (-1059 (-1193 |#1|)) (-10 -8 (-15 -4179 ($ $ (-783) |#1| $)) (-15 -3822 ($ $ $)) (-15 -1482 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3738 (-783))) $ $)) (-15 -2140 ($ $ $)) (-15 -3762 ((-2 (|:| -2862 |#1|) (|:| |gap| (-783)) (|:| -2675 $) (|:| -3561 $)) $ $)) (-15 -1703 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2365 ((-656 $) $ $)) (-15 -4381 ($ $ $)) (-15 -4104 ((-2 (|:| -3115 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4136 ((-2 (|:| -3115 $) (|:| |coef1| $)) $ $)) (-15 -2674 ((-2 (|:| -3115 $) (|:| |coef2| $)) $ $)) (-15 -1469 ((-2 (|:| -2970 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1948 ((-2 (|:| -2970 |#1|) (|:| |coef1| $)) $ $)) (-15 -2710 ((-2 (|:| -2970 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1070)) (T -794)) -((-4179 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) (-3822 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) (-1482 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -3738 (-783)))) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) (-2140 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) (-3762 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2862 *3) (|:| |gap| (-783)) (|:| -2675 (-794 *3)) (|:| -3561 (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) (-1703 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) (-2365 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-4381 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1070)))) (-4104 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3115 (-794 *3)) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-4136 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3115 (-794 *3)) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-2674 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3115 (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-1469 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2970 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-1948 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2970 *3) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) (-2710 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2970 *3) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) -(-13 (-1264 |#1|) (-625 (-1193 |#1|)) (-1059 (-1193 |#1|)) (-10 -8 (-15 -4179 ($ $ (-783) |#1| $)) (-15 -3822 ($ $ $)) (-15 -1482 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3738 (-783))) $ $)) (-15 -2140 ($ $ $)) (-15 -3762 ((-2 (|:| -2862 |#1|) (|:| |gap| (-783)) (|:| -2675 $) (|:| -3561 $)) $ $)) (-15 -1703 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2365 ((-656 $) $ $)) (-15 -4381 ($ $ $)) (-15 -4104 ((-2 (|:| -3115 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4136 ((-2 (|:| -3115 $) (|:| |coef1| $)) $ $)) (-15 -2674 ((-2 (|:| -3115 $) (|:| |coef2| $)) $ $)) (-15 -1469 ((-2 (|:| -2970 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1948 ((-2 (|:| -2970 |#1|) (|:| |coef1| $)) $ $)) (-15 -2710 ((-2 (|:| -2970 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-2567 ((|#1| (-783) |#1|) 33 (|has| |#1| (-38 (-419 (-576)))))) (-3394 ((|#1| (-783) |#1|) 23)) (-2412 ((|#1| (-783) |#1|) 35 (|has| |#1| (-38 (-419 (-576))))))) -(((-795 |#1|) (-10 -7 (-15 -3394 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2412 (|#1| (-783) |#1|)) (-15 -2567 (|#1| (-783) |#1|))) |%noBranch|)) (-174)) (T -795)) -((-2567 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-2412 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-3394 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -3394 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2412 (|#1| (-783) |#1|)) (-15 -2567 (|#1| (-783) |#1|))) |%noBranch|)) -((-1957 (((-112) $ $) 7)) (-2048 (((-656 (-2 (|:| -1597 $) (|:| -3823 (-656 |#4|)))) (-656 |#4|)) 86)) (-2739 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1585 (((-656 |#3|) $) 34)) (-4404 (((-112) $) 27)) (-3921 (((-112) $) 18 (|has| |#1| (-568)))) (-2417 (((-112) |#4| $) 102) (((-112) $) 98)) (-1916 ((|#4| |#4| $) 93)) (-2658 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| $) 127)) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |#3|) 28)) (-4234 (((-112) $ (-783)) 45)) (-3603 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3170 (($) 46 T CONST)) (-4016 (((-112) $) 23 (|has| |#1| (-568)))) (-3403 (((-112) $ $) 25 (|has| |#1| (-568)))) (-4357 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2159 (((-112) $) 26 (|has| |#1| (-568)))) (-2460 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3496 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-3588 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2982 (((-3 $ "failed") (-656 |#4|)) 37)) (-2317 (($ (-656 |#4|)) 36)) (-1764 (((-3 $ "failed") $) 83)) (-2458 ((|#4| |#4| $) 90)) (-3841 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3561 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2559 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3234 ((|#4| |#4| $) 88)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1794 (((-2 (|:| -1597 (-656 |#4|)) (|:| -3823 (-656 |#4|))) $) 106)) (-2220 (((-112) |#4| $) 137)) (-1473 (((-112) |#4| $) 134)) (-2289 (((-112) |#4| $) 138) (((-112) $) 135)) (-3722 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-1938 (((-112) |#4| $) 105) (((-112) $) 104)) (-4260 ((|#3| $) 35)) (-3215 (((-112) $ (-783)) 44)) (-2911 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-1602 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#4| |#4|) $) 48)) (-3240 (((-656 |#3|) $) 33)) (-3821 (((-112) |#3| $) 32)) (-1884 (((-112) $ (-783)) 43)) (-2447 (((-1179) $) 10)) (-2890 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4381 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| |#4| $) 128)) (-2850 (((-3 |#4| "failed") $) 84)) (-2489 (((-656 $) |#4| $) 130)) (-4003 (((-3 (-112) (-656 $)) |#4| $) 133)) (-3891 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1431 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2341 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-4387 (((-656 |#4|) $) 108)) (-2915 (((-112) |#4| $) 100) (((-112) $) 96)) (-3648 ((|#4| |#4| $) 91)) (-2384 (((-112) $ $) 111)) (-2296 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-2200 (((-112) |#4| $) 101) (((-112) $) 97)) (-2565 ((|#4| |#4| $) 92)) (-3116 (((-1141) $) 11)) (-1755 (((-3 |#4| "failed") $) 85)) (-4220 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3238 (((-3 $ "failed") $ |#4|) 79)) (-2419 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-1759 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-1645 (((-112) $ $) 39)) (-3617 (((-112) $) 42)) (-3307 (($) 41)) (-2196 (((-783) $) 107)) (-3127 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-4287 (($ $) 40)) (-1556 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4125 (($ (-656 |#4|)) 61)) (-4023 (($ $ |#3|) 29)) (-2715 (($ $ |#3|) 31)) (-1357 (($ $) 89)) (-3142 (($ $ |#3|) 30)) (-4113 (((-876) $) 12) (((-656 |#4|) $) 38)) (-2524 (((-783) $) 77 (|has| |#3| (-379)))) (-2950 (((-112) $ $) 6)) (-1671 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1638 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3290 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2543 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-1754 (((-656 |#3|) $) 82)) (-3462 (((-112) |#4| $) 136)) (-1736 (((-112) |#3| $) 81)) (-3939 (((-112) $ $) 8)) (-1970 (((-783) $) 47 (|has| $ (-6 -4464))))) -(((-796 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -796)) -NIL -(-13 (-1092 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1092 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) -((-3703 (((-3 (-390) "failed") (-326 |#1|) (-940)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-390) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-390) "failed") (-419 (-971 |#1|)) (-940)) 41 (|has| |#1| (-568))) (((-3 (-390) "failed") (-419 (-971 |#1|))) 40 (|has| |#1| (-568))) (((-3 (-390) "failed") (-971 |#1|) (-940)) 31 (|has| |#1| (-1070))) (((-3 (-390) "failed") (-971 |#1|)) 30 (|has| |#1| (-1070)))) (-3002 (((-390) (-326 |#1|) (-940)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-390) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-390) (-419 (-971 |#1|)) (-940)) 91 (|has| |#1| (-568))) (((-390) (-419 (-971 |#1|))) 90 (|has| |#1| (-568))) (((-390) (-971 |#1|) (-940)) 86 (|has| |#1| (-1070))) (((-390) (-971 |#1|)) 85 (|has| |#1| (-1070))) (((-390) |#1| (-940)) 76) (((-390) |#1|) 22)) (-3182 (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-940)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 |#1|) (-940)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))) (-940)) 46 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|)))) 45 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)) (-940)) 39 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-971 |#1|))) 38 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-971 |#1|) (-940)) 28 (|has| |#1| (-1070))) (((-3 (-171 (-390)) "failed") (-971 |#1|)) 26 (|has| |#1| (-1070))) (((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)) (-940)) 18 (|has| |#1| (-174))) (((-3 (-171 (-390)) "failed") (-971 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-1371 (((-171 (-390)) (-326 (-171 |#1|)) (-940)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 |#1|) (-940)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-861)))) (((-171 (-390)) (-419 (-971 (-171 |#1|))) (-940)) 93 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-971 (-171 |#1|)))) 92 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-971 |#1|)) (-940)) 89 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-971 |#1|))) 88 (|has| |#1| (-568))) (((-171 (-390)) (-971 |#1|) (-940)) 84 (|has| |#1| (-1070))) (((-171 (-390)) (-971 |#1|)) 83 (|has| |#1| (-1070))) (((-171 (-390)) (-971 (-171 |#1|)) (-940)) 78 (|has| |#1| (-174))) (((-171 (-390)) (-971 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|) (-940)) 80 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-390)) |#1| (-940)) 27) (((-171 (-390)) |#1|) 25))) -(((-797 |#1|) (-10 -7 (-15 -3002 ((-390) |#1|)) (-15 -3002 ((-390) |#1| (-940))) (-15 -1371 ((-171 (-390)) |#1|)) (-15 -1371 ((-171 (-390)) |#1| (-940))) (IF (|has| |#1| (-174)) (PROGN (-15 -1371 ((-171 (-390)) (-171 |#1|))) (-15 -1371 ((-171 (-390)) (-171 |#1|) (-940))) (-15 -1371 ((-171 (-390)) (-971 (-171 |#1|)))) (-15 -1371 ((-171 (-390)) (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -3002 ((-390) (-971 |#1|))) (-15 -3002 ((-390) (-971 |#1|) (-940))) (-15 -1371 ((-171 (-390)) (-971 |#1|))) (-15 -1371 ((-171 (-390)) (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3002 ((-390) (-419 (-971 |#1|)))) (-15 -3002 ((-390) (-419 (-971 |#1|)) (-940))) (-15 -1371 ((-171 (-390)) (-419 (-971 |#1|)))) (-15 -1371 ((-171 (-390)) (-419 (-971 |#1|)) (-940))) (-15 -1371 ((-171 (-390)) (-419 (-971 (-171 |#1|))))) (-15 -1371 ((-171 (-390)) (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -3002 ((-390) (-326 |#1|))) (-15 -3002 ((-390) (-326 |#1|) (-940))) (-15 -1371 ((-171 (-390)) (-326 |#1|))) (-15 -1371 ((-171 (-390)) (-326 |#1|) (-940))) (-15 -1371 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -1371 ((-171 (-390)) (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3182 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -3703 ((-3 (-390) "failed") (-971 |#1|))) (-15 -3703 ((-3 (-390) "failed") (-971 |#1|) (-940))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-971 |#1|))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3703 ((-3 (-390) "failed") (-419 (-971 |#1|)))) (-15 -3703 ((-3 (-390) "failed") (-419 (-971 |#1|)) (-940))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)) (-940))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -3703 ((-3 (-390) "failed") (-326 |#1|))) (-15 -3703 ((-3 (-390) "failed") (-326 |#1|) (-940))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-940))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|)) (-626 (-390))) (T -797)) -((-3182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3182 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3182 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3703 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3182 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3182 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3703 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3182 (*1 *2 *3) (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3703 (*1 *2 *3) (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3182 (*1 *2 *3) (|partial| -12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-940)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-1371 (*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-3002 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) (-3002 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2))))) -(-10 -7 (-15 -3002 ((-390) |#1|)) (-15 -3002 ((-390) |#1| (-940))) (-15 -1371 ((-171 (-390)) |#1|)) (-15 -1371 ((-171 (-390)) |#1| (-940))) (IF (|has| |#1| (-174)) (PROGN (-15 -1371 ((-171 (-390)) (-171 |#1|))) (-15 -1371 ((-171 (-390)) (-171 |#1|) (-940))) (-15 -1371 ((-171 (-390)) (-971 (-171 |#1|)))) (-15 -1371 ((-171 (-390)) (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -3002 ((-390) (-971 |#1|))) (-15 -3002 ((-390) (-971 |#1|) (-940))) (-15 -1371 ((-171 (-390)) (-971 |#1|))) (-15 -1371 ((-171 (-390)) (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3002 ((-390) (-419 (-971 |#1|)))) (-15 -3002 ((-390) (-419 (-971 |#1|)) (-940))) (-15 -1371 ((-171 (-390)) (-419 (-971 |#1|)))) (-15 -1371 ((-171 (-390)) (-419 (-971 |#1|)) (-940))) (-15 -1371 ((-171 (-390)) (-419 (-971 (-171 |#1|))))) (-15 -1371 ((-171 (-390)) (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -3002 ((-390) (-326 |#1|))) (-15 -3002 ((-390) (-326 |#1|) (-940))) (-15 -1371 ((-171 (-390)) (-326 |#1|))) (-15 -1371 ((-171 (-390)) (-326 |#1|) (-940))) (-15 -1371 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -1371 ((-171 (-390)) (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3182 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-971 (-171 |#1|)) (-940)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -3703 ((-3 (-390) "failed") (-971 |#1|))) (-15 -3703 ((-3 (-390) "failed") (-971 |#1|) (-940))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-971 |#1|))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-971 |#1|) (-940)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3703 ((-3 (-390) "failed") (-419 (-971 |#1|)))) (-15 -3703 ((-3 (-390) "failed") (-419 (-971 |#1|)) (-940))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-419 (-971 |#1|)) (-940))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-419 (-971 (-171 |#1|))) (-940))) (IF (|has| |#1| (-861)) (PROGN (-15 -3703 ((-3 (-390) "failed") (-326 |#1|))) (-15 -3703 ((-3 (-390) "failed") (-326 |#1|) (-940))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-940))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -3182 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-940)))) |%noBranch|)) |%noBranch|)) -((-3161 (((-940) (-1179)) 89)) (-2076 (((-3 (-390) "failed") (-1179)) 36)) (-1874 (((-390) (-1179)) 34)) (-2829 (((-940) (-1179)) 63)) (-3459 (((-1179) (-940)) 73)) (-3423 (((-1179) (-940)) 62))) -(((-798) (-10 -7 (-15 -3423 ((-1179) (-940))) (-15 -2829 ((-940) (-1179))) (-15 -3459 ((-1179) (-940))) (-15 -3161 ((-940) (-1179))) (-15 -1874 ((-390) (-1179))) (-15 -2076 ((-3 (-390) "failed") (-1179))))) (T -798)) -((-2076 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798))))) -(-10 -7 (-15 -3423 ((-1179) (-940))) (-15 -2829 ((-940) (-1179))) (-15 -3459 ((-1179) (-940))) (-15 -3161 ((-940) (-1179))) (-15 -1874 ((-390) (-1179))) (-15 -2076 ((-3 (-390) "failed") (-1179)))) -((-1957 (((-112) $ $) 7)) (-4185 (((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 16) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056)) 14)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) -(((-799) (-141)) (T -799)) -((-1952 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056)))))) (-4185 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1056)) (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-1952 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056)))))) (-4185 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1056)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(-13 (-1121) (-10 -7 (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4185 ((-1056) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4185 ((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1056))))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-2238 (((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4176 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390))) 55) (((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4176 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 52)) (-4280 (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 61)) (-2261 (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 50)) (-2094 (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390))) 63) (((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))) 62))) -(((-800) (-10 -7 (-15 -2094 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2094 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -2261 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2238 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4176 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2238 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4176 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -4280 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))))) (T -800)) -((-4280 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2238 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4176 (-390)))) (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2238 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4176 (-390)))) (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2261 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2094 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800)))) (-2094 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) (-5 *1 (-800))))) -(-10 -7 (-15 -2094 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2094 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -2261 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2238 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4176 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)))) (-15 -2238 ((-1293) (-1288 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4176 (-390))) (-390) (-1288 (-390)) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)) (-1288 (-390)))) (-15 -4280 ((-1293) (-1288 (-390)) (-576) (-390) (-390) (-576) (-1 (-1293) (-1288 (-390)) (-1288 (-390)) (-390))))) -((-1825 (((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 64)) (-3750 (((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 40)) (-3165 (((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 63)) (-2879 (((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 38)) (-3378 (((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 62)) (-1834 (((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 24)) (-3306 (((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 41)) (-3543 (((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 39)) (-2288 (((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 37))) -(((-801) (-10 -7 (-15 -2288 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3543 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3306 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1834 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2879 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3750 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3378 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3165 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1825 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))) (T -801)) -((-1825 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3165 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3378 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3750 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2879 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1834 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3306 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3543 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2288 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) -(-10 -7 (-15 -2288 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3543 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3306 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1834 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2879 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3750 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3378 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3165 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1825 ((-2 (|:| -1690 (-390)) (|:| -2178 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)))) -((-3187 (((-1233 |#1|) |#1| (-227) (-576)) 69))) -(((-802 |#1|) (-10 -7 (-15 -3187 ((-1233 |#1|) |#1| (-227) (-576)))) (-995)) (T -802)) -((-3187 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1233 *3)) (-5 *1 (-802 *3)) (-4 *3 (-995))))) -(-10 -7 (-15 -3187 ((-1233 |#1|) |#1| (-227) (-576)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 26)) (-1765 (((-3 $ "failed") $ $) 28)) (-3170 (($) 25 T CONST)) (-2907 (($ $ $) 20)) (-3777 (($ $ $) 19)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 24 T CONST)) (-3995 (((-112) $ $) 18)) (-3975 (((-112) $ $) 16)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 17)) (-3963 (((-112) $ $) 15)) (-4037 (($ $ $) 32) (($ $) 31)) (-4026 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27) (($ (-576) $) 30))) -(((-803) (-141)) (T -803)) -NIL -(-13 (-807) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 26)) (-3170 (($) 25 T CONST)) (-2907 (($ $ $) 20)) (-3777 (($ $ $) 19)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 24 T CONST)) (-3995 (((-112) $ $) 18)) (-3975 (((-112) $ $) 16)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 17)) (-3963 (((-112) $ $) 15)) (-4026 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27))) +((-2632 (((-3 |#2| "failed") |#2| |#2| (-115) (-1198)) 37))) +(((-785 |#1| |#2|) (-10 -7 (-15 -2632 ((-3 |#2| "failed") |#2| |#2| (-115) (-1198)))) (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148)) (-13 (-29 |#1|) (-1224) (-979))) (T -785)) +((-2632 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *1 (-785 *5 *2)) (-4 *2 (-13 (-29 *5) (-1224) (-979)))))) +(-10 -7 (-15 -2632 ((-3 |#2| "failed") |#2| |#2| (-115) (-1198)))) +((-3515 (((-787) |#1|) 8))) +(((-786 |#1|) (-10 -7 (-15 -3515 ((-787) |#1|))) (-1239)) (T -786)) +((-3515 (*1 *2 *3) (-12 (-5 *2 (-787)) (-5 *1 (-786 *3)) (-4 *3 (-1239))))) +(-10 -7 (-15 -3515 ((-787) |#1|))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 7)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 9))) +(((-787) (-1122)) (T -787)) +NIL +(-1122) +((-3869 ((|#2| |#4|) 35))) +(((-788 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3869 (|#2| |#4|))) (-464) (-1265 |#1|) (-737 |#1| |#2|) (-1265 |#3|)) (T -788)) +((-3869 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-737 *4 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-788 *4 *2 *5 *3)) (-4 *3 (-1265 *5))))) +(-10 -7 (-15 -3869 (|#2| |#4|))) +((-3969 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-4188 (((-1294) (-1180) (-1180) |#4| |#5|) 33)) (-1527 ((|#4| |#4| |#5|) 74)) (-3435 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#5|) 79)) (-3390 (((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|) 16))) +(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3969 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1527 (|#4| |#4| |#5|)) (-15 -3435 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#5|)) (-15 -4188 ((-1294) (-1180) (-1180) |#4| |#5|)) (-15 -3390 ((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|)) (T -789)) +((-3390 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3941 *4)))) (-5 *1 (-789 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-4188 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1180)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *4 (-1087 *6 *7 *8)) (-5 *2 (-1294)) (-5 *1 (-789 *6 *7 *8 *4 *5)) (-4 *5 (-1093 *6 *7 *8 *4)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) (-5 *1 (-789 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-1527 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *2 (-1087 *4 *5 *6)) (-5 *1 (-789 *4 *5 *6 *2 *3)) (-4 *3 (-1093 *4 *5 *6 *2)))) (-3969 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-789 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(-10 -7 (-15 -3969 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1527 (|#4| |#4| |#5|)) (-15 -3435 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#5|)) (-15 -4188 ((-1294) (-1180) (-1180) |#4| |#5|)) (-15 -3390 ((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|))) +((-1593 (((-3 (-1194 (-1194 |#1|)) "failed") |#4|) 51)) (-3802 (((-657 |#4|) |#4|) 22)) (-4237 ((|#4| |#4|) 17))) +(((-790 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3802 ((-657 |#4|) |#4|)) (-15 -1593 ((-3 (-1194 (-1194 |#1|)) "failed") |#4|)) (-15 -4237 (|#4| |#4|))) (-360) (-339 |#1|) (-1265 |#2|) (-1265 |#3|) (-941)) (T -790)) +((-4237 (*1 *2 *2) (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1265 *4)) (-5 *1 (-790 *3 *4 *5 *2 *6)) (-4 *2 (-1265 *5)) (-14 *6 (-941)))) (-1593 (*1 *2 *3) (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1265 *5)) (-5 *2 (-1194 (-1194 *4))) (-5 *1 (-790 *4 *5 *6 *3 *7)) (-4 *3 (-1265 *6)) (-14 *7 (-941)))) (-3802 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1265 *5)) (-5 *2 (-657 *3)) (-5 *1 (-790 *4 *5 *6 *3 *7)) (-4 *3 (-1265 *6)) (-14 *7 (-941))))) +(-10 -7 (-15 -3802 ((-657 |#4|) |#4|)) (-15 -1593 ((-3 (-1194 (-1194 |#1|)) "failed") |#4|)) (-15 -4237 (|#4| |#4|))) +((-3446 (((-2 (|:| |deter| (-657 (-1194 |#5|))) (|:| |dterm| (-657 (-657 (-2 (|:| -3253 (-784)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-657 |#1|)) (|:| |nlead| (-657 |#5|))) (-1194 |#5|) (-657 |#1|) (-657 |#5|)) 72)) (-1583 (((-657 (-784)) |#1|) 20))) +(((-791 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3446 ((-2 (|:| |deter| (-657 (-1194 |#5|))) (|:| |dterm| (-657 (-657 (-2 (|:| -3253 (-784)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-657 |#1|)) (|:| |nlead| (-657 |#5|))) (-1194 |#5|) (-657 |#1|) (-657 |#5|))) (-15 -1583 ((-657 (-784)) |#1|))) (-1265 |#4|) (-806) (-862) (-317) (-969 |#4| |#2| |#3|)) (T -791)) +((-1583 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-657 (-784))) (-5 *1 (-791 *3 *4 *5 *6 *7)) (-4 *3 (-1265 *6)) (-4 *7 (-969 *6 *4 *5)))) (-3446 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1265 *9)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *9 (-317)) (-4 *10 (-969 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-657 (-1194 *10))) (|:| |dterm| (-657 (-657 (-2 (|:| -3253 (-784)) (|:| |pcoef| *10))))) (|:| |nfacts| (-657 *6)) (|:| |nlead| (-657 *10)))) (-5 *1 (-791 *6 *7 *8 *9 *10)) (-5 *3 (-1194 *10)) (-5 *4 (-657 *6)) (-5 *5 (-657 *10))))) +(-10 -7 (-15 -3446 ((-2 (|:| |deter| (-657 (-1194 |#5|))) (|:| |dterm| (-657 (-657 (-2 (|:| -3253 (-784)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-657 |#1|)) (|:| |nlead| (-657 |#5|))) (-1194 |#5|) (-657 |#1|) (-657 |#5|))) (-15 -1583 ((-657 (-784)) |#1|))) +((-3775 (((-657 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 |#1|))))) (-702 (-419 (-576))) |#1|) 31)) (-3455 (((-657 |#1|) (-702 (-419 (-576))) |#1|) 21)) (-2948 (((-972 (-419 (-576))) (-702 (-419 (-576))) (-1198)) 18) (((-972 (-419 (-576))) (-702 (-419 (-576)))) 17))) +(((-792 |#1|) (-10 -7 (-15 -2948 ((-972 (-419 (-576))) (-702 (-419 (-576))))) (-15 -2948 ((-972 (-419 (-576))) (-702 (-419 (-576))) (-1198))) (-15 -3455 ((-657 |#1|) (-702 (-419 (-576))) |#1|)) (-15 -3775 ((-657 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 |#1|))))) (-702 (-419 (-576))) |#1|))) (-13 (-374) (-861))) (T -792)) +((-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *2 (-657 (-2 (|:| |outval| *4) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 *4)))))) (-5 *1 (-792 *4)) (-4 *4 (-13 (-374) (-861))))) (-3455 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *2 (-657 *4)) (-5 *1 (-792 *4)) (-4 *4 (-13 (-374) (-861))))) (-2948 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *4 (-1198)) (-5 *2 (-972 (-419 (-576)))) (-5 *1 (-792 *5)) (-4 *5 (-13 (-374) (-861))))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *2 (-972 (-419 (-576)))) (-5 *1 (-792 *4)) (-4 *4 (-13 (-374) (-861)))))) +(-10 -7 (-15 -2948 ((-972 (-419 (-576))) (-702 (-419 (-576))))) (-15 -2948 ((-972 (-419 (-576))) (-702 (-419 (-576))) (-1198))) (-15 -3455 ((-657 |#1|) (-702 (-419 (-576))) |#1|)) (-15 -3775 ((-657 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 |#1|))))) (-702 (-419 (-576))) |#1|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 36)) (-1998 (((-657 |#2|) $) NIL)) (-1825 (((-1194 $) $ |#2|) NIL) (((-1194 |#1|) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 |#2|)) NIL)) (-4425 (($ $) 30)) (-3672 (((-112) $ $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3924 (($ $ $) 110 (|has| |#1| (-568)))) (-4244 (((-657 $) $ $) 123 (|has| |#1| (-568)))) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3188 (($ $) NIL (|has| |#1| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-972 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198))))) (((-3 $ "failed") (-972 (-576))) NIL (-2748 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1198))) (-2665 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198)))))) (((-3 $ "failed") (-972 |#1|)) NIL (-2748 (-12 (|has| |#2| (-626 (-1198))) (-2665 (|has| |#1| (-38 (-419 (-576))))) (-2665 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1198))) (-2665 (|has| |#1| (-38 (-419 (-576))))) (-2665 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198))) (-2665 (|has| |#1| (-1014 (-576))))))) (((-3 (-1147 |#1| |#2|) "failed") $) 21)) (-2830 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) ((|#2| $) NIL) (($ (-972 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198))))) (($ (-972 (-576))) NIL (-2748 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1198))) (-2665 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198)))))) (($ (-972 |#1|)) NIL (-2748 (-12 (|has| |#2| (-626 (-1198))) (-2665 (|has| |#1| (-38 (-419 (-576))))) (-2665 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1198))) (-2665 (|has| |#1| (-38 (-419 (-576))))) (-2665 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198))) (-2665 (|has| |#1| (-1014 (-576))))))) (((-1147 |#1| |#2|) $) NIL)) (-4351 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-568)))) (-2165 (($ $) NIL) (($ $ |#2|) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3427 (((-112) $ $) NIL) (((-112) $ (-657 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-2313 (((-112) $) NIL)) (-4010 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 81)) (-2170 (($ $) 136 (|has| |#1| (-464)))) (-1445 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#1| (-929)))) (-1477 (($ $) NIL (|has| |#1| (-568)))) (-2009 (($ $) NIL (|has| |#1| (-568)))) (-4369 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-2882 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2643 (($ $ |#1| (-543 |#2|) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| |#1| (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| |#1| (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-3994 (((-112) $) 57)) (-2977 (((-784) $) NIL)) (-3537 (((-112) $ $) NIL) (((-112) $ (-657 $)) NIL)) (-1844 (($ $ $ $ $) 107 (|has| |#1| (-568)))) (-1428 ((|#2| $) 22)) (-1986 (($ (-1194 |#1|) |#2|) NIL) (($ (-1194 $) |#2|) NIL)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-784)) 38) (($ $ (-657 |#2|) (-657 (-784))) NIL)) (-2620 (($ $ $) 63)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ |#2|) NIL)) (-2609 (((-112) $) NIL)) (-4219 (((-543 |#2|) $) NIL) (((-784) $ |#2|) NIL) (((-657 (-784)) $ (-657 |#2|)) NIL)) (-1560 (((-784) $) 23)) (-2308 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-2502 (((-3 |#2| "failed") $) NIL)) (-1765 (($ $) NIL (|has| |#1| (-464)))) (-4254 (($ $) NIL (|has| |#1| (-464)))) (-3361 (((-657 $) $) NIL)) (-2062 (($ $) 39)) (-3304 (($ $) NIL (|has| |#1| (-464)))) (-1435 (((-657 $) $) 43)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2945 (($ $) 41)) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1597 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3066 (-784))) $ $) 96)) (-2103 (((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -2192 $) (|:| -3951 $)) $ $) 78) (((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -2192 $) (|:| -3951 $)) $ $ |#2|) NIL)) (-2813 (((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -3951 $)) $ $) NIL) (((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -3951 $)) $ $ |#2|) NIL)) (-3884 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2107 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-1708 (((-1180) $) NIL)) (-3156 (($ $ $) 125 (|has| |#1| (-568)))) (-2561 (((-657 $) $) 32)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| |#2|) (|:| -2128 (-784))) "failed") $) NIL)) (-3893 (((-112) $ $) NIL) (((-112) $ (-657 $)) NIL)) (-3510 (($ $ $) NIL)) (-1679 (($ $) 24)) (-2304 (((-112) $ $) NIL)) (-4299 (((-112) $ $) NIL) (((-112) $ (-657 $)) NIL)) (-3511 (($ $ $) NIL)) (-2626 (($ $) 26)) (-1460 (((-1142) $) NIL)) (-2181 (((-2 (|:| -3431 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)))) (-2616 (((-2 (|:| -3431 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)))) (-2108 (((-112) $) 56)) (-2118 ((|#1| $) 58)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3431 ((|#1| |#1| $) 133 (|has| |#1| (-464))) (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-929)))) (-2362 (((-2 (|:| -3431 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-568)))) (-3405 (($ $ |#1|) 129 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3220 (($ $ |#1|) 128 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-657 |#2|) (-657 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-657 |#2|) (-657 $)) NIL)) (-1465 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2209 (($ $ (-657 |#2|) (-657 (-784))) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|)) NIL) (($ $ |#2|) NIL)) (-4265 (((-543 |#2|) $) NIL) (((-784) $ |#2|) 45) (((-657 (-784)) $ (-657 |#2|)) NIL)) (-2159 (($ $) NIL)) (-1518 (($ $) 35)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) (($ (-972 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198))))) (($ (-972 (-576))) NIL (-2748 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1198))) (-2665 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198)))))) (($ (-972 |#1|)) NIL (|has| |#2| (-626 (-1198)))) (((-1180) $) NIL (-12 (|has| |#1| (-1060 (-576))) (|has| |#2| (-626 (-1198))))) (((-972 |#1|) $) NIL (|has| |#2| (-626 (-1198))))) (-3614 ((|#1| $) 132 (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-972 |#1|) $) NIL (|has| |#2| (-626 (-1198)))) (((-1147 |#1| |#2|) $) 18) (($ (-1147 |#1| |#2|)) 19) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-784)) 47) (($ $ (-657 |#2|) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2716 (($) 13 T CONST)) (-1568 (((-3 (-112) "failed") $ $) NIL)) (-2725 (($) 37 T CONST)) (-2770 (($ $ $ $ (-784)) 105 (|has| |#1| (-568)))) (-3703 (($ $ $ (-784)) 104 (|has| |#1| (-568)))) (-2066 (($ $ (-657 |#2|) (-657 (-784))) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|)) NIL) (($ $ |#2|) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) 75)) (-2971 (($ $ $) 85)) (** (($ $ (-941)) NIL) (($ $ (-784)) 70)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 62) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +(((-793 |#1| |#2|) (-13 (-1087 |#1| (-543 |#2|) |#2|) (-625 (-1147 |#1| |#2|)) (-1060 (-1147 |#1| |#2|))) (-1071) (-862)) (T -793)) +NIL +(-13 (-1087 |#1| (-543 |#2|) |#2|) (-625 (-1147 |#1| |#2|)) (-1060 (-1147 |#1| |#2|))) +((-4071 (((-795 |#2|) (-1 |#2| |#1|) (-795 |#1|)) 13))) +(((-794 |#1| |#2|) (-10 -7 (-15 -4071 ((-795 |#2|) (-1 |#2| |#1|) (-795 |#1|)))) (-1071) (-1071)) (T -794)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-795 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-5 *2 (-795 *6)) (-5 *1 (-794 *5 *6))))) +(-10 -7 (-15 -4071 ((-795 |#2|) (-1 |#2| |#1|) (-795 |#1|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 12)) (-1519 (((-1289 |#1|) $ (-784)) NIL)) (-1998 (((-657 (-1104)) $) NIL)) (-1324 (($ (-1194 |#1|)) NIL)) (-1825 (((-1194 $) $ (-1104)) NIL) (((-1194 |#1|) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 (-1104))) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2117 (((-657 $) $ $) 54 (|has| |#1| (-568)))) (-3924 (($ $ $) 50 (|has| |#1| (-568)))) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3188 (($ $) NIL (|has| |#1| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2104 (($ $ (-784)) NIL)) (-2536 (($ $ (-784)) NIL)) (-2580 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-1104) "failed") $) NIL) (((-3 (-1194 |#1|) "failed") $) 10)) (-2830 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-1104) $) NIL) (((-1194 |#1|) $) NIL)) (-4351 (($ $ $ (-1104)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-2165 (($ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-4042 (($ $ $) NIL)) (-2054 (($ $ $) 87 (|has| |#1| (-568)))) (-4010 (((-2 (|:| -1735 |#1|) (|:| -2192 $) (|:| -3951 $)) $ $) 86 (|has| |#1| (-568)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-1445 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1104)) NIL (|has| |#1| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#1| (-929)))) (-2643 (($ $ |#1| (-784) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1104) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1104) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-2650 (((-784) $ $) NIL (|has| |#1| (-568)))) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-1955 (((-3 $ "failed") $) NIL (|has| |#1| (-1174)))) (-1986 (($ (-1194 |#1|) (-1104)) NIL) (($ (-1194 $) (-1104)) NIL)) (-3920 (($ $ (-784)) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-784)) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-2620 (($ $ $) 27)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ (-1104)) NIL) (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-4219 (((-784) $) NIL) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-2308 (($ (-1 (-784) (-784)) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3518 (((-1194 |#1|) $) NIL)) (-2502 (((-3 (-1104) "failed") $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1597 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3066 (-784))) $ $) 37)) (-1808 (($ $ $) 41)) (-2981 (($ $ $) 47)) (-2103 (((-2 (|:| -1735 |#1|) (|:| |gap| (-784)) (|:| -2192 $) (|:| -3951 $)) $ $) 46)) (-1708 (((-1180) $) NIL)) (-3156 (($ $ $) 56 (|has| |#1| (-568)))) (-1498 (((-2 (|:| -2192 $) (|:| -3951 $)) $ (-784)) NIL)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| (-1104)) (|:| -2128 (-784))) "failed") $) NIL)) (-2320 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1679 (($) NIL (|has| |#1| (-1174)) CONST)) (-1460 (((-1142) $) NIL)) (-2181 (((-2 (|:| -3431 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)))) (-2616 (((-2 (|:| -3431 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)))) (-2506 (((-2 (|:| -4351 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)))) (-3656 (((-2 (|:| -4351 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)))) (-2108 (((-112) $) 13)) (-2118 ((|#1| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1836 (($ $ (-784) |#1| $) 26)) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-929)))) (-2362 (((-2 (|:| -3431 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)))) (-1486 (((-2 (|:| -4351 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1104) |#1|) NIL) (($ $ (-657 (-1104)) (-657 |#1|)) NIL) (($ $ (-1104) $) NIL) (($ $ (-657 (-1104)) (-657 $)) NIL)) (-4164 (((-784) $) NIL (|has| |#1| (-374)))) (-2780 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-3592 (((-3 $ "failed") $ (-784)) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-1465 (($ $ (-1104)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2209 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-4265 (((-784) $) NIL) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-1104) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3614 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1104)) NIL (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-2375 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1104)) NIL) (((-1194 |#1|) $) 7) (($ (-1194 |#1|)) 8) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-784)) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2716 (($) 28 T CONST)) (-2725 (($) 32 T CONST)) (-2066 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $) 40) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-795 |#1|) (-13 (-1265 |#1|) (-625 (-1194 |#1|)) (-1060 (-1194 |#1|)) (-10 -8 (-15 -1836 ($ $ (-784) |#1| $)) (-15 -2620 ($ $ $)) (-15 -1597 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3066 (-784))) $ $)) (-15 -1808 ($ $ $)) (-15 -2103 ((-2 (|:| -1735 |#1|) (|:| |gap| (-784)) (|:| -2192 $) (|:| -3951 $)) $ $)) (-15 -2981 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2117 ((-657 $) $ $)) (-15 -3156 ($ $ $)) (-15 -2362 ((-2 (|:| -3431 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2616 ((-2 (|:| -3431 $) (|:| |coef1| $)) $ $)) (-15 -2181 ((-2 (|:| -3431 $) (|:| |coef2| $)) $ $)) (-15 -1486 ((-2 (|:| -4351 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3656 ((-2 (|:| -4351 |#1|) (|:| |coef1| $)) $ $)) (-15 -2506 ((-2 (|:| -4351 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1071)) (T -795)) +((-1836 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-784)) (-5 *1 (-795 *3)) (-4 *3 (-1071)))) (-2620 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1071)))) (-1597 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-795 *3)) (|:| |polden| *3) (|:| -3066 (-784)))) (-5 *1 (-795 *3)) (-4 *3 (-1071)))) (-1808 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1071)))) (-2103 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1735 *3) (|:| |gap| (-784)) (|:| -2192 (-795 *3)) (|:| -3951 (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-1071)))) (-2981 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1071)))) (-2117 (*1 *2 *1 *1) (-12 (-5 *2 (-657 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) (-3156 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-568)) (-4 *2 (-1071)))) (-2362 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3431 (-795 *3)) (|:| |coef1| (-795 *3)) (|:| |coef2| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) (-2616 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3431 (-795 *3)) (|:| |coef1| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) (-2181 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3431 (-795 *3)) (|:| |coef2| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) (-1486 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4351 *3) (|:| |coef1| (-795 *3)) (|:| |coef2| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) (-3656 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4351 *3) (|:| |coef1| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) (-2506 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4351 *3) (|:| |coef2| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071))))) +(-13 (-1265 |#1|) (-625 (-1194 |#1|)) (-1060 (-1194 |#1|)) (-10 -8 (-15 -1836 ($ $ (-784) |#1| $)) (-15 -2620 ($ $ $)) (-15 -1597 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3066 (-784))) $ $)) (-15 -1808 ($ $ $)) (-15 -2103 ((-2 (|:| -1735 |#1|) (|:| |gap| (-784)) (|:| -2192 $) (|:| -3951 $)) $ $)) (-15 -2981 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2117 ((-657 $) $ $)) (-15 -3156 ($ $ $)) (-15 -2362 ((-2 (|:| -3431 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2616 ((-2 (|:| -3431 $) (|:| |coef1| $)) $ $)) (-15 -2181 ((-2 (|:| -3431 $) (|:| |coef2| $)) $ $)) (-15 -1486 ((-2 (|:| -4351 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3656 ((-2 (|:| -4351 |#1|) (|:| |coef1| $)) $ $)) (-15 -2506 ((-2 (|:| -4351 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-3538 ((|#1| (-784) |#1|) 33 (|has| |#1| (-38 (-419 (-576)))))) (-2962 ((|#1| (-784) |#1|) 23)) (-2557 ((|#1| (-784) |#1|) 35 (|has| |#1| (-38 (-419 (-576))))))) +(((-796 |#1|) (-10 -7 (-15 -2962 (|#1| (-784) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2557 (|#1| (-784) |#1|)) (-15 -3538 (|#1| (-784) |#1|))) |%noBranch|)) (-174)) (T -796)) +((-3538 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-796 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-2557 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-796 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-2962 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-796 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -2962 (|#1| (-784) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2557 (|#1| (-784) |#1|)) (-15 -3538 (|#1| (-784) |#1|))) |%noBranch|)) +((-3423 (((-112) $ $) 7)) (-2112 (((-657 (-2 (|:| -1988 $) (|:| -3179 (-657 |#4|)))) (-657 |#4|)) 86)) (-1578 (((-657 $) (-657 |#4|)) 87) (((-657 $) (-657 |#4|) (-112)) 112)) (-1998 (((-657 |#3|) $) 34)) (-2250 (((-112) $) 27)) (-4334 (((-112) $) 18 (|has| |#1| (-568)))) (-2605 (((-112) |#4| $) 102) (((-112) $) 98)) (-3300 ((|#4| |#4| $) 93)) (-3188 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 $))) |#4| $) 127)) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |#3|) 28)) (-4284 (((-112) $ (-784)) 45)) (-2007 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 80)) (-2515 (($) 46 T CONST)) (-2697 (((-112) $) 23 (|has| |#1| (-568)))) (-3025 (((-112) $ $) 25 (|has| |#1| (-568)))) (-2936 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1978 (((-112) $) 26 (|has| |#1| (-568)))) (-1835 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1494 (((-657 |#4|) (-657 |#4|) $) 19 (|has| |#1| (-568)))) (-4203 (((-657 |#4|) (-657 |#4|) $) 20 (|has| |#1| (-568)))) (-1593 (((-3 $ "failed") (-657 |#4|)) 37)) (-2830 (($ (-657 |#4|)) 36)) (-3542 (((-3 $ "failed") $) 83)) (-1815 ((|#4| |#4| $) 90)) (-1620 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4466)))) (-3951 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3427 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1979 ((|#4| |#4| $) 88)) (-3662 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1492 (((-2 (|:| -1988 (-657 |#4|)) (|:| -3179 (-657 |#4|))) $) 106)) (-1381 (((-112) |#4| $) 137)) (-1526 (((-112) |#4| $) 134)) (-3883 (((-112) |#4| $) 138) (((-112) $) 135)) (-1448 (((-657 |#4|) $) 53 (|has| $ (-6 -4466)))) (-3537 (((-112) |#4| $) 105) (((-112) $) 104)) (-1428 ((|#3| $) 35)) (-1786 (((-112) $ (-784)) 44)) (-3855 (((-657 |#4|) $) 54 (|has| $ (-6 -4466)))) (-3326 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#4| |#4|) $) 48)) (-3944 (((-657 |#3|) $) 33)) (-2611 (((-112) |#3| $) 32)) (-4326 (((-112) $ (-784)) 43)) (-1708 (((-1180) $) 10)) (-3653 (((-3 |#4| (-657 $)) |#4| |#4| $) 129)) (-3156 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 $))) |#4| |#4| $) 128)) (-3921 (((-3 |#4| "failed") $) 84)) (-4024 (((-657 $) |#4| $) 130)) (-3846 (((-3 (-112) (-657 $)) |#4| $) 133)) (-4002 (((-657 (-2 (|:| |val| (-112)) (|:| -3941 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3415 (((-657 $) |#4| $) 126) (((-657 $) (-657 |#4|) $) 125) (((-657 $) (-657 |#4|) (-657 $)) 124) (((-657 $) |#4| (-657 $)) 123)) (-3082 (($ |#4| $) 118) (($ (-657 |#4|) $) 117)) (-3218 (((-657 |#4|) $) 108)) (-3893 (((-112) |#4| $) 100) (((-112) $) 96)) (-3510 ((|#4| |#4| $) 91)) (-2304 (((-112) $ $) 111)) (-2678 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-4299 (((-112) |#4| $) 101) (((-112) $) 97)) (-3511 ((|#4| |#4| $) 92)) (-1460 (((-1142) $) 11)) (-3528 (((-3 |#4| "failed") $) 85)) (-4135 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3923 (((-3 $ "failed") $ |#4|) 79)) (-1456 (($ $ |#4|) 78) (((-657 $) |#4| $) 116) (((-657 $) |#4| (-657 $)) 115) (((-657 $) (-657 |#4|) $) 114) (((-657 $) (-657 |#4|) (-657 $)) 113)) (-2372 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#4|) (-657 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-3807 (((-112) $ $) 39)) (-1368 (((-112) $) 42)) (-3340 (($) 41)) (-4265 (((-784) $) 107)) (-1469 (((-784) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4466)))) (-1899 (($ $) 40)) (-4136 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3529 (($ (-657 |#4|)) 61)) (-2764 (($ $ |#3|) 29)) (-2555 (($ $ |#3|) 31)) (-2038 (($ $) 89)) (-2267 (($ $ |#3|) 30)) (-3515 (((-877) $) 12) (((-657 |#4|) $) 38)) (-4384 (((-784) $) 77 (|has| |#3| (-379)))) (-4166 (((-112) $ $) 6)) (-2726 (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3741 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) 99)) (-1360 (((-657 $) |#4| $) 122) (((-657 $) |#4| (-657 $)) 121) (((-657 $) (-657 |#4|) $) 120) (((-657 $) (-657 |#4|) (-657 $)) 119)) (-3258 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4466)))) (-2330 (((-657 |#3|) $) 82)) (-2374 (((-112) |#4| $) 136)) (-2137 (((-112) |#3| $) 81)) (-2881 (((-112) $ $) 8)) (-3437 (((-784) $) 47 (|has| $ (-6 -4466))))) +(((-797 |#1| |#2| |#3| |#4|) (-141) (-464) (-806) (-862) (-1087 |t#1| |t#2| |t#3|)) (T -797)) +NIL +(-13 (-1093 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-625 (-657 |#4|)) . T) ((-625 (-877)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-998 |#1| |#2| |#3| |#4|) . T) ((-1093 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1232 |#1| |#2| |#3| |#4|) . T) ((-1239) . T)) +((-2768 (((-3 (-390) "failed") (-326 |#1|) (-941)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-419 (-972 |#1|)) (-941)) 41 (|has| |#1| (-568))) (((-3 (-390) "failed") (-419 (-972 |#1|))) 40 (|has| |#1| (-568))) (((-3 (-390) "failed") (-972 |#1|) (-941)) 31 (|has| |#1| (-1071))) (((-3 (-390) "failed") (-972 |#1|)) 30 (|has| |#1| (-1071)))) (-3154 (((-390) (-326 |#1|) (-941)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-419 (-972 |#1|)) (-941)) 91 (|has| |#1| (-568))) (((-390) (-419 (-972 |#1|))) 90 (|has| |#1| (-568))) (((-390) (-972 |#1|) (-941)) 86 (|has| |#1| (-1071))) (((-390) (-972 |#1|)) 85 (|has| |#1| (-1071))) (((-390) |#1| (-941)) 76) (((-390) |#1|) 22)) (-1462 (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-941)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|) (-941)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-419 (-972 (-171 |#1|))) (-941)) 46 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-972 (-171 |#1|)))) 45 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-972 |#1|)) (-941)) 39 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-972 |#1|))) 38 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-972 |#1|) (-941)) 28 (|has| |#1| (-1071))) (((-3 (-171 (-390)) "failed") (-972 |#1|)) 26 (|has| |#1| (-1071))) (((-3 (-171 (-390)) "failed") (-972 (-171 |#1|)) (-941)) 18 (|has| |#1| (-174))) (((-3 (-171 (-390)) "failed") (-972 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-3996 (((-171 (-390)) (-326 (-171 |#1|)) (-941)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|) (-941)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-419 (-972 (-171 |#1|))) (-941)) 93 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-972 (-171 |#1|)))) 92 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-972 |#1|)) (-941)) 89 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-972 |#1|))) 88 (|has| |#1| (-568))) (((-171 (-390)) (-972 |#1|) (-941)) 84 (|has| |#1| (-1071))) (((-171 (-390)) (-972 |#1|)) 83 (|has| |#1| (-1071))) (((-171 (-390)) (-972 (-171 |#1|)) (-941)) 78 (|has| |#1| (-174))) (((-171 (-390)) (-972 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|) (-941)) 80 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-390)) |#1| (-941)) 27) (((-171 (-390)) |#1|) 25))) +(((-798 |#1|) (-10 -7 (-15 -3154 ((-390) |#1|)) (-15 -3154 ((-390) |#1| (-941))) (-15 -3996 ((-171 (-390)) |#1|)) (-15 -3996 ((-171 (-390)) |#1| (-941))) (IF (|has| |#1| (-174)) (PROGN (-15 -3996 ((-171 (-390)) (-171 |#1|))) (-15 -3996 ((-171 (-390)) (-171 |#1|) (-941))) (-15 -3996 ((-171 (-390)) (-972 (-171 |#1|)))) (-15 -3996 ((-171 (-390)) (-972 (-171 |#1|)) (-941)))) |%noBranch|) (IF (|has| |#1| (-1071)) (PROGN (-15 -3154 ((-390) (-972 |#1|))) (-15 -3154 ((-390) (-972 |#1|) (-941))) (-15 -3996 ((-171 (-390)) (-972 |#1|))) (-15 -3996 ((-171 (-390)) (-972 |#1|) (-941)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3154 ((-390) (-419 (-972 |#1|)))) (-15 -3154 ((-390) (-419 (-972 |#1|)) (-941))) (-15 -3996 ((-171 (-390)) (-419 (-972 |#1|)))) (-15 -3996 ((-171 (-390)) (-419 (-972 |#1|)) (-941))) (-15 -3996 ((-171 (-390)) (-419 (-972 (-171 |#1|))))) (-15 -3996 ((-171 (-390)) (-419 (-972 (-171 |#1|))) (-941))) (IF (|has| |#1| (-862)) (PROGN (-15 -3154 ((-390) (-326 |#1|))) (-15 -3154 ((-390) (-326 |#1|) (-941))) (-15 -3996 ((-171 (-390)) (-326 |#1|))) (-15 -3996 ((-171 (-390)) (-326 |#1|) (-941))) (-15 -3996 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -3996 ((-171 (-390)) (-326 (-171 |#1|)) (-941)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -1462 ((-3 (-171 (-390)) "failed") (-972 (-171 |#1|)))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-972 (-171 |#1|)) (-941)))) |%noBranch|) (IF (|has| |#1| (-1071)) (PROGN (-15 -2768 ((-3 (-390) "failed") (-972 |#1|))) (-15 -2768 ((-3 (-390) "failed") (-972 |#1|) (-941))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-972 |#1|))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-972 |#1|) (-941)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2768 ((-3 (-390) "failed") (-419 (-972 |#1|)))) (-15 -2768 ((-3 (-390) "failed") (-419 (-972 |#1|)) (-941))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-419 (-972 |#1|)))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-419 (-972 |#1|)) (-941))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-419 (-972 (-171 |#1|))))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-419 (-972 (-171 |#1|))) (-941))) (IF (|has| |#1| (-862)) (PROGN (-15 -2768 ((-3 (-390) "failed") (-326 |#1|))) (-15 -2768 ((-3 (-390) "failed") (-326 |#1|) (-941))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-941))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-941)))) |%noBranch|)) |%noBranch|)) (-626 (-390))) (T -798)) +((-1462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-1462 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-1462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-1462 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-2768 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) (-2768 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) (-1462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-972 (-171 *5)))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-1462 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-972 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-1462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-1462 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-2768 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) (-2768 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) (-1462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-1462 (*1 *2 *3) (|partial| -12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-2768 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) (-2768 (*1 *2 *3) (|partial| -12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) (-1462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-972 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-1462 (*1 *2 *3) (|partial| -12 (-5 *3 (-972 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-3996 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-3996 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) (-3996 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 (-171 *5)))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-3996 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) (-3996 (*1 *2 *3 *4) (-12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) (-3996 (*1 *2 *3 *4) (-12 (-5 *3 (-972 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-972 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-3996 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-941)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-3996 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-5 *2 (-171 (-390))) (-5 *1 (-798 *3)) (-4 *3 (-626 (-390))))) (-3996 (*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-798 *3)) (-4 *3 (-626 (-390))))) (-3154 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-5 *2 (-390)) (-5 *1 (-798 *3)) (-4 *3 (-626 *2)))) (-3154 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-798 *3)) (-4 *3 (-626 *2))))) +(-10 -7 (-15 -3154 ((-390) |#1|)) (-15 -3154 ((-390) |#1| (-941))) (-15 -3996 ((-171 (-390)) |#1|)) (-15 -3996 ((-171 (-390)) |#1| (-941))) (IF (|has| |#1| (-174)) (PROGN (-15 -3996 ((-171 (-390)) (-171 |#1|))) (-15 -3996 ((-171 (-390)) (-171 |#1|) (-941))) (-15 -3996 ((-171 (-390)) (-972 (-171 |#1|)))) (-15 -3996 ((-171 (-390)) (-972 (-171 |#1|)) (-941)))) |%noBranch|) (IF (|has| |#1| (-1071)) (PROGN (-15 -3154 ((-390) (-972 |#1|))) (-15 -3154 ((-390) (-972 |#1|) (-941))) (-15 -3996 ((-171 (-390)) (-972 |#1|))) (-15 -3996 ((-171 (-390)) (-972 |#1|) (-941)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3154 ((-390) (-419 (-972 |#1|)))) (-15 -3154 ((-390) (-419 (-972 |#1|)) (-941))) (-15 -3996 ((-171 (-390)) (-419 (-972 |#1|)))) (-15 -3996 ((-171 (-390)) (-419 (-972 |#1|)) (-941))) (-15 -3996 ((-171 (-390)) (-419 (-972 (-171 |#1|))))) (-15 -3996 ((-171 (-390)) (-419 (-972 (-171 |#1|))) (-941))) (IF (|has| |#1| (-862)) (PROGN (-15 -3154 ((-390) (-326 |#1|))) (-15 -3154 ((-390) (-326 |#1|) (-941))) (-15 -3996 ((-171 (-390)) (-326 |#1|))) (-15 -3996 ((-171 (-390)) (-326 |#1|) (-941))) (-15 -3996 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -3996 ((-171 (-390)) (-326 (-171 |#1|)) (-941)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -1462 ((-3 (-171 (-390)) "failed") (-972 (-171 |#1|)))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-972 (-171 |#1|)) (-941)))) |%noBranch|) (IF (|has| |#1| (-1071)) (PROGN (-15 -2768 ((-3 (-390) "failed") (-972 |#1|))) (-15 -2768 ((-3 (-390) "failed") (-972 |#1|) (-941))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-972 |#1|))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-972 |#1|) (-941)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2768 ((-3 (-390) "failed") (-419 (-972 |#1|)))) (-15 -2768 ((-3 (-390) "failed") (-419 (-972 |#1|)) (-941))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-419 (-972 |#1|)))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-419 (-972 |#1|)) (-941))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-419 (-972 (-171 |#1|))))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-419 (-972 (-171 |#1|))) (-941))) (IF (|has| |#1| (-862)) (PROGN (-15 -2768 ((-3 (-390) "failed") (-326 |#1|))) (-15 -2768 ((-3 (-390) "failed") (-326 |#1|) (-941))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-941))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -1462 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-941)))) |%noBranch|)) |%noBranch|)) +((-2429 (((-941) (-1180)) 89)) (-2388 (((-3 (-390) "failed") (-1180)) 36)) (-4212 (((-390) (-1180)) 34)) (-4311 (((-941) (-1180)) 63)) (-2351 (((-1180) (-941)) 73)) (-3202 (((-1180) (-941)) 62))) +(((-799) (-10 -7 (-15 -3202 ((-1180) (-941))) (-15 -4311 ((-941) (-1180))) (-15 -2351 ((-1180) (-941))) (-15 -2429 ((-941) (-1180))) (-15 -4212 ((-390) (-1180))) (-15 -2388 ((-3 (-390) "failed") (-1180))))) (T -799)) +((-2388 (*1 *2 *3) (|partial| -12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-799)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-799)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-941)) (-5 *1 (-799)))) (-2351 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1180)) (-5 *1 (-799)))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-941)) (-5 *1 (-799)))) (-3202 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1180)) (-5 *1 (-799))))) +(-10 -7 (-15 -3202 ((-1180) (-941))) (-15 -4311 ((-941) (-1180))) (-15 -2351 ((-1180) (-941))) (-15 -2429 ((-941) (-1180))) (-15 -4212 ((-390) (-1180))) (-15 -2388 ((-3 (-390) "failed") (-1180)))) +((-3423 (((-112) $ $) 7)) (-1904 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 16) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 14)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) +(((-800) (-141)) (T -800)) +((-3701 (*1 *2 *3 *4) (-12 (-4 *1 (-800)) (-5 *3 (-1085)) (-5 *4 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057)))))) (-1904 (*1 *2 *3 *2) (-12 (-4 *1 (-800)) (-5 *2 (-1057)) (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-3701 (*1 *2 *3 *4) (-12 (-4 *1 (-800)) (-5 *3 (-1085)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057)))))) (-1904 (*1 *2 *3 *2) (-12 (-4 *1 (-800)) (-5 *2 (-1057)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(-13 (-1122) (-10 -7 (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1904 ((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1904 ((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057))))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3365 (((-1294) (-1289 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4279 (-390))) (-390) (-1289 (-390)) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390))) 55) (((-1294) (-1289 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4279 (-390))) (-390) (-1289 (-390)) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390))) 52)) (-3457 (((-1294) (-1289 (-390)) (-576) (-390) (-390) (-576) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390))) 61)) (-3607 (((-1294) (-1289 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390))) 50)) (-2560 (((-1294) (-1289 (-390)) (-576) (-390) (-390) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390))) 63) (((-1294) (-1289 (-390)) (-576) (-390) (-390) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390))) 62))) +(((-801) (-10 -7 (-15 -2560 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))) (-15 -2560 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)))) (-15 -3607 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))) (-15 -3365 ((-1294) (-1289 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4279 (-390))) (-390) (-1289 (-390)) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))) (-15 -3365 ((-1294) (-1289 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4279 (-390))) (-390) (-1289 (-390)) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)))) (-15 -3457 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-576) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))))) (T -801)) +((-3457 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) (-5 *1 (-801)))) (-3365 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4279 (-390)))) (-5 *7 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) (-5 *1 (-801)))) (-3365 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4279 (-390)))) (-5 *7 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) (-5 *1 (-801)))) (-3607 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) (-5 *1 (-801)))) (-2560 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) (-5 *1 (-801)))) (-2560 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) (-5 *1 (-801))))) +(-10 -7 (-15 -2560 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))) (-15 -2560 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)))) (-15 -3607 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))) (-15 -3365 ((-1294) (-1289 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4279 (-390))) (-390) (-1289 (-390)) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))) (-15 -3365 ((-1294) (-1289 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4279 (-390))) (-390) (-1289 (-390)) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)))) (-15 -3457 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-576) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390))))) +((-1802 (((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 64)) (-3174 (((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 40)) (-2468 (((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 63)) (-3504 (((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 38)) (-2833 (((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 62)) (-1888 (((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 24)) (-3328 (((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 41)) (-1890 (((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 39)) (-3872 (((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 37))) +(((-802) (-10 -7 (-15 -3872 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1890 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3328 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1888 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3504 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3174 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2833 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2468 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1802 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))) (T -802)) +((-1802 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-2468 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-2833 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-3174 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-3504 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-1888 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-3328 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-1890 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-3872 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576))))) +(-10 -7 (-15 -3872 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1890 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3328 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1888 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3504 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3174 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2833 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2468 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1802 ((-2 (|:| -3037 (-390)) (|:| -3235 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)))) +((-1508 (((-1234 |#1|) |#1| (-227) (-576)) 69))) +(((-803 |#1|) (-10 -7 (-15 -1508 ((-1234 |#1|) |#1| (-227) (-576)))) (-996)) (T -803)) +((-1508 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1234 *3)) (-5 *1 (-803 *3)) (-4 *3 (-996))))) +(-10 -7 (-15 -1508 ((-1234 |#1|) |#1| (-227) (-576)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 26)) (-2423 (((-3 $ "failed") $ $) 28)) (-2515 (($) 25 T CONST)) (-3740 (($ $ $) 20)) (-2249 (($ $ $) 19)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 24 T CONST)) (-2938 (((-112) $ $) 18)) (-2913 (((-112) $ $) 16)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 17)) (-2901 (((-112) $ $) 15)) (-2982 (($ $ $) 32) (($ $) 31)) (-2971 (($ $ $) 22)) (* (($ (-941) $) 23) (($ (-784) $) 27) (($ (-576) $) 30))) (((-804) (-141)) (T -804)) NIL -(-13 (-806) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-806) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 26)) (-2214 (($ $ $) 29)) (-1765 (((-3 $ "failed") $ $) 28)) (-3170 (($) 25 T CONST)) (-2907 (($ $ $) 20)) (-3777 (($ $ $) 19)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 24 T CONST)) (-3995 (((-112) $ $) 18)) (-3975 (((-112) $ $) 16)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 17)) (-3963 (((-112) $ $) 15)) (-4026 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27))) +(-13 (-808) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 26)) (-2515 (($) 25 T CONST)) (-3740 (($ $ $) 20)) (-2249 (($ $ $) 19)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 24 T CONST)) (-2938 (((-112) $ $) 18)) (-2913 (((-112) $ $) 16)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 17)) (-2901 (((-112) $ $) 15)) (-2971 (($ $ $) 22)) (* (($ (-941) $) 23) (($ (-784) $) 27))) (((-805) (-141)) (T -805)) -((-2214 (*1 *1 *1 *1) (-4 *1 (-805)))) -(-13 (-807) (-10 -8 (-15 -2214 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-2907 (($ $ $) 20)) (-3777 (($ $ $) 19)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3995 (((-112) $ $) 18)) (-3975 (((-112) $ $) 16)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 17)) (-3963 (((-112) $ $) 15)) (-4026 (($ $ $) 22)) (* (($ (-940) $) 23))) -(((-806) (-141)) (T -806)) NIL -(-13 (-861) (-25)) -(((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 26)) (-1765 (((-3 $ "failed") $ $) 28)) (-3170 (($) 25 T CONST)) (-2907 (($ $ $) 20)) (-3777 (($ $ $) 19)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 24 T CONST)) (-3995 (((-112) $ $) 18)) (-3975 (((-112) $ $) 16)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 17)) (-3963 (((-112) $ $) 15)) (-4026 (($ $ $) 22)) (* (($ (-940) $) 23) (($ (-783) $) 27))) +(-13 (-807) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-877)) . T) ((-807) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 26)) (-1323 (($ $ $) 29)) (-2423 (((-3 $ "failed") $ $) 28)) (-2515 (($) 25 T CONST)) (-3740 (($ $ $) 20)) (-2249 (($ $ $) 19)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 24 T CONST)) (-2938 (((-112) $ $) 18)) (-2913 (((-112) $ $) 16)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 17)) (-2901 (((-112) $ $) 15)) (-2971 (($ $ $) 22)) (* (($ (-941) $) 23) (($ (-784) $) 27))) +(((-806) (-141)) (T -806)) +((-1323 (*1 *1 *1 *1) (-4 *1 (-806)))) +(-13 (-808) (-10 -8 (-15 -1323 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-3740 (($ $ $) 20)) (-2249 (($ $ $) 19)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2938 (((-112) $ $) 18)) (-2913 (((-112) $ $) 16)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 17)) (-2901 (((-112) $ $) 15)) (-2971 (($ $ $) 22)) (* (($ (-941) $) 23))) (((-807) (-141)) (T -807)) NIL -(-13 (-804) (-132)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-804) . T) ((-806) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-3114 (((-112) $) 42)) (-2982 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2317 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 43)) (-3526 (((-3 (-419 (-576)) "failed") $) 78)) (-4063 (((-112) $) 72)) (-1400 (((-419 (-576)) $) 76)) (-2595 ((|#2| $) 26)) (-2423 (($ (-1 |#2| |#2|) $) 23)) (-1669 (($ $) 58)) (-1556 (((-548) $) 67)) (-2117 (($ $) 21)) (-4113 (((-876) $) 53) (($ (-576)) 40) (($ |#2|) 38) (($ (-419 (-576))) NIL)) (-2910 (((-783)) 10)) (-2366 ((|#2| $) 71)) (-3939 (((-112) $ $) 30)) (-3963 (((-112) $ $) 69)) (-4037 (($ $) 32) (($ $ $) NIL)) (-4026 (($ $ $) 31)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-808 |#1| |#2|) (-10 -8 (-15 -3963 ((-112) |#1| |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -3526 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1400 ((-419 (-576)) |#1|)) (-15 -4063 ((-112) |#1|)) (-15 -2366 (|#2| |#1|)) (-15 -2595 (|#2| |#1|)) (-15 -2117 (|#1| |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -4113 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2910 ((-783))) (-15 -4113 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3114 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -3939 ((-112) |#1| |#1|))) (-809 |#2|) (-174)) (T -808)) -((-2910 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) (-4 *3 (-809 *4))))) -(-10 -8 (-15 -3963 ((-112) |#1| |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -3526 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1400 ((-419 (-576)) |#1|)) (-15 -4063 ((-112) |#1|)) (-15 -2366 (|#2| |#1|)) (-15 -2595 (|#2| |#1|)) (-15 -2117 (|#1| |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -4113 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2910 ((-783))) (-15 -4113 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3114 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -3939 ((-112) |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-2201 (((-783)) 59 (|has| |#1| (-379)))) (-3170 (($) 18 T CONST)) (-2982 (((-3 (-576) "failed") $) 101 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2317 (((-576) $) 100 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 96)) (-1851 (((-3 $ "failed") $) 37)) (-1474 ((|#1| $) 85)) (-3526 (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-557)))) (-4063 (((-112) $) 74 (|has| |#1| (-557)))) (-1400 (((-419 (-576)) $) 73 (|has| |#1| (-557)))) (-4370 (($) 62 (|has| |#1| (-379)))) (-2486 (((-112) $) 35)) (-4347 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76)) (-2595 ((|#1| $) 77)) (-2907 (($ $ $) 63 (|has| |#1| (-861)))) (-3777 (($ $ $) 64 (|has| |#1| (-861)))) (-2423 (($ (-1 |#1| |#1|) $) 87)) (-3787 (((-940) $) 61 (|has| |#1| (-379)))) (-2447 (((-1179) $) 10)) (-1669 (($ $) 71 (|has| |#1| (-374)))) (-2411 (($ (-940)) 60 (|has| |#1| (-379)))) (-3355 ((|#1| $) 82)) (-2791 ((|#1| $) 83)) (-2469 ((|#1| $) 84)) (-4211 ((|#1| $) 78)) (-4375 ((|#1| $) 79)) (-1820 ((|#1| $) 80)) (-1447 ((|#1| $) 81)) (-3116 (((-1141) $) 11)) (-2145 (($ $ (-656 |#1|) (-656 |#1|)) 93 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 92 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 91 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 90 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 89 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 88 (|has| |#1| (-526 (-1197) |#1|)))) (-4369 (($ $ |#1|) 94 (|has| |#1| (-296 |#1| |#1|)))) (-1556 (((-548) $) 69 (|has| |#1| (-626 (-548))))) (-2117 (($ $) 86)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 99 (|has| |#1| (-1059 (-419 (-576)))))) (-4276 (((-3 $ "failed") $) 70 (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-2366 ((|#1| $) 75 (|has| |#1| (-1081)))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3995 (((-112) $ $) 65 (|has| |#1| (-861)))) (-3975 (((-112) $ $) 67 (|has| |#1| (-861)))) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 66 (|has| |#1| (-861)))) (-3963 (((-112) $ $) 68 (|has| |#1| (-861)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-809 |#1|) (-141) (-174)) (T -809)) -((-2117 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2791 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4375 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4211 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2595 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4347 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3526 (*1 *2 *1) (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-1669 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(-13 (-38 |t#1|) (-423 |t#1|) (-349 |t#1|) (-10 -8 (-15 -2117 ($ $)) (-15 -1474 (|t#1| $)) (-15 -2469 (|t#1| $)) (-15 -2791 (|t#1| $)) (-15 -3355 (|t#1| $)) (-15 -1447 (|t#1| $)) (-15 -1820 (|t#1| $)) (-15 -4375 (|t#1| $)) (-15 -4211 (|t#1| $)) (-15 -2595 (|t#1| $)) (-15 -4347 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -2366 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -4063 ((-112) $)) (-15 -1400 ((-419 (-576)) $)) (-15 -3526 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -1669 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0=(-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-379) |has| |#1| (-379)) ((-349 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1059 #0#) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2423 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2423 (|#3| (-1 |#4| |#2|) |#1|))) (-809 |#2|) (-174) (-809 |#4|) (-174)) (T -810)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5))))) -(-10 -7 (-15 -2423 (|#3| (-1 |#4| |#2|) |#1|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2201 (((-783)) NIL (|has| |#1| (-379)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL) (((-3 (-1020 |#1|) "failed") $) 35) (((-3 (-576) "failed") $) NIL (-3795 (|has| (-1020 |#1|) (-1059 (-576))) (|has| |#1| (-1059 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL (-3795 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-2317 ((|#1| $) NIL) (((-1020 |#1|) $) 33) (((-576) $) NIL (-3795 (|has| (-1020 |#1|) (-1059 (-576))) (|has| |#1| (-1059 (-576))))) (((-419 (-576)) $) NIL (-3795 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-1851 (((-3 $ "failed") $) NIL)) (-1474 ((|#1| $) 16)) (-3526 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-4063 (((-112) $) NIL (|has| |#1| (-557)))) (-1400 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-4370 (($) NIL (|has| |#1| (-379)))) (-2486 (((-112) $) NIL)) (-4347 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1020 |#1|) (-1020 |#1|)) 29)) (-2595 ((|#1| $) NIL)) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-3787 (((-940) $) NIL (|has| |#1| (-379)))) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL (|has| |#1| (-374)))) (-2411 (($ (-940)) NIL (|has| |#1| (-379)))) (-3355 ((|#1| $) 22)) (-2791 ((|#1| $) 20)) (-2469 ((|#1| $) 18)) (-4211 ((|#1| $) 26)) (-4375 ((|#1| $) 25)) (-1820 ((|#1| $) 24)) (-1447 ((|#1| $) 23)) (-3116 (((-1141) $) NIL)) (-2145 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-4369 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-1556 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2117 (($ $) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1020 |#1|)) 30) (($ (-419 (-576))) NIL (-3795 (|has| (-1020 |#1|) (-1059 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2366 ((|#1| $) NIL (|has| |#1| (-1081)))) (-4313 (($) 8 T CONST)) (-4322 (($) 12 T CONST)) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-811 |#1|) (-13 (-809 |#1|) (-423 (-1020 |#1|)) (-10 -8 (-15 -4347 ($ (-1020 |#1|) (-1020 |#1|))))) (-174)) (T -811)) -((-4347 (*1 *1 *2 *2) (-12 (-5 *2 (-1020 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) -(-13 (-809 |#1|) (-423 (-1020 |#1|)) (-10 -8 (-15 -4347 ($ (-1020 |#1|) (-1020 |#1|))))) -((-1957 (((-112) $ $) 7)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-1390 (((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-3939 (((-112) $ $) 8))) -(((-812) (-141)) (T -812)) -((-1952 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)))))) (-1390 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1056))))) -(-13 (-1121) (-10 -7 (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1390 ((-1056) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-2993 (((-2 (|:| |particular| |#2|) (|:| -2704 (-656 |#2|))) |#3| |#2| (-1197)) 19))) -(((-813 |#1| |#2| |#3|) (-10 -7 (-15 -2993 ((-2 (|:| |particular| |#2|) (|:| -2704 (-656 |#2|))) |#3| |#2| (-1197)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978)) (-668 |#2|)) (T -813)) -((-2993 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1197)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1223) (-978))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2704 (-656 *4)))) (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -2993 ((-2 (|:| |particular| |#2|) (|:| -2704 (-656 |#2|))) |#3| |#2| (-1197)))) -((-4138 (((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)) 28) (((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2704 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1197)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2704 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1197)) 18) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2704 (-656 (-1288 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1197)) 24) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2704 (-656 (-1288 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1197)) 26) (((-3 (-656 (-1288 |#2|)) "failed") (-701 |#2|) (-1197)) 37) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2704 (-656 (-1288 |#2|)))) "failed") (-701 |#2|) (-1288 |#2|) (-1197)) 35))) -(((-814 |#1| |#2|) (-10 -7 (-15 -4138 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2704 (-656 (-1288 |#2|)))) "failed") (-701 |#2|) (-1288 |#2|) (-1197))) (-15 -4138 ((-3 (-656 (-1288 |#2|)) "failed") (-701 |#2|) (-1197))) (-15 -4138 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2704 (-656 (-1288 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1197))) (-15 -4138 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2704 (-656 (-1288 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1197))) (-15 -4138 ((-3 (-2 (|:| |particular| |#2|) (|:| -2704 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1197))) (-15 -4138 ((-3 (-2 (|:| |particular| |#2|) (|:| -2704 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1197))) (-15 -4138 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -4138 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978))) (T -814)) -((-4138 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-814 *6 *2)))) (-4138 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-5 *1 (-814 *6 *2)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))))) (-4138 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1197)) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2704 (-656 *3))) *3 "failed")) (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1223) (-978))))) (-4138 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2704 (-656 *7))) *7 "failed")) (-5 *1 (-814 *6 *7)))) (-4138 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -2704 (-656 (-1288 *7))))) (-5 *1 (-814 *6 *7)))) (-4138 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -2704 (-656 (-1288 *7))))) (-5 *1 (-814 *6 *7)))) (-4138 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1197)) (-4 *6 (-13 (-29 *5) (-1223) (-978))) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-1288 *6))) (-5 *1 (-814 *5 *6)))) (-4138 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -2704 (-656 (-1288 *7))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1288 *7))))) -(-10 -7 (-15 -4138 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2704 (-656 (-1288 |#2|)))) "failed") (-701 |#2|) (-1288 |#2|) (-1197))) (-15 -4138 ((-3 (-656 (-1288 |#2|)) "failed") (-701 |#2|) (-1197))) (-15 -4138 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2704 (-656 (-1288 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1197))) (-15 -4138 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2704 (-656 (-1288 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1197))) (-15 -4138 ((-3 (-2 (|:| |particular| |#2|) (|:| -2704 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1197))) (-15 -4138 ((-3 (-2 (|:| |particular| |#2|) (|:| -2704 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1197))) (-15 -4138 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -4138 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) -((-3380 (($) 9)) (-2703 (((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-2353 (((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-3695 (($ (-2 (|:| -2240 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) 24)) (-2660 (($ (-656 (-2 (|:| -2240 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) 22)) (-3003 (((-1293)) 11))) -(((-815) (-10 -8 (-15 -3380 ($)) (-15 -3003 ((-1293))) (-15 -2353 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2660 ($ (-656 (-2 (|:| -2240 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -3695 ($ (-2 (|:| -2240 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -2703 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -815)) -((-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *1 (-815)))) (-3695 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2240 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) (-5 *1 (-815)))) (-2660 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2240 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-5 *1 (-815)))) (-2353 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-815)))) (-3003 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-815)))) (-3380 (*1 *1) (-5 *1 (-815)))) -(-10 -8 (-15 -3380 ($)) (-15 -3003 ((-1293))) (-15 -2353 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2660 ($ (-656 (-2 (|:| -2240 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -3695 ($ (-2 (|:| -2240 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2905 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -2703 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-4406 ((|#2| |#2| (-1197)) 17)) (-2698 ((|#2| |#2| (-1197)) 56)) (-3304 (((-1 |#2| |#2|) (-1197)) 11))) -(((-816 |#1| |#2|) (-10 -7 (-15 -4406 (|#2| |#2| (-1197))) (-15 -2698 (|#2| |#2| (-1197))) (-15 -3304 ((-1 |#2| |#2|) (-1197)))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1223) (-978))) (T -816)) -((-3304 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) (-4 *5 (-13 (-29 *4) (-1223) (-978))))) (-2698 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978))))) (-4406 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978)))))) -(-10 -7 (-15 -4406 (|#2| |#2| (-1197))) (-15 -2698 (|#2| |#2| (-1197))) (-15 -3304 ((-1 |#2| |#2|) (-1197)))) -((-4138 (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390)) 128) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390)) 129) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390)) 131) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390)) 133) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390)) 134) (((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390))) 136) (((-1056) (-820) (-1084)) 120) (((-1056) (-820)) 121)) (-1952 (((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820) (-1084)) 80) (((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820)) 82))) -(((-817) (-10 -7 (-15 -4138 ((-1056) (-820))) (-15 -4138 ((-1056) (-820) (-1084))) (-15 -4138 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -4138 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -4138 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -4138 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -4138 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -4138 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820) (-1084))))) (T -817)) -((-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-817)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-817)))) (-4138 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4138 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4138 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4138 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4138 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4138 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-817)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1056)) (-5 *1 (-817))))) -(-10 -7 (-15 -4138 ((-1056) (-820))) (-15 -4138 ((-1056) (-820) (-1084))) (-15 -4138 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -4138 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -4138 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -4138 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -4138 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -4138 ((-1056) (-1288 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-820) (-1084)))) -((-3992 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2704 (-656 |#4|))) (-665 |#4|) |#4|) 33))) -(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3992 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2704 (-656 |#4|))) (-665 |#4|) |#4|))) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -818)) -((-3992 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) (-5 *1 (-818 *5 *6 *7 *4))))) -(-10 -7 (-15 -3992 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2704 (-656 |#4|))) (-665 |#4|) |#4|))) -((-1706 (((-2 (|:| -3379 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))) 53)) (-2807 (((-656 (-2 (|:| -3188 |#2|) (|:| -2441 |#2|))) |#4| |#2|) 62) (((-656 (-2 (|:| -3188 |#2|) (|:| -2441 |#2|))) |#4|) 61) (((-656 (-2 (|:| -3188 |#2|) (|:| -2441 |#2|))) |#3| |#2|) 20) (((-656 (-2 (|:| -3188 |#2|) (|:| -2441 |#2|))) |#3|) 21)) (-2995 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-4303 ((|#2| |#3| (-656 (-419 |#2|))) 109) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105))) -(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4303 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -4303 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -2807 ((-656 (-2 (|:| -3188 |#2|) (|:| -2441 |#2|))) |#3|)) (-15 -2807 ((-656 (-2 (|:| -3188 |#2|) (|:| -2441 |#2|))) |#3| |#2|)) (-15 -2995 (|#2| |#3| |#1|)) (-15 -2807 ((-656 (-2 (|:| -3188 |#2|) (|:| -2441 |#2|))) |#4|)) (-15 -2807 ((-656 (-2 (|:| -3188 |#2|) (|:| -2441 |#2|))) |#4| |#2|)) (-15 -2995 (|#2| |#4| |#1|)) (-15 -1706 ((-2 (|:| -3379 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1059 (-419 (-576)))) (-1264 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -819)) -((-1706 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-2 (|:| -3379 *7) (|:| |rh| (-656 (-419 *6))))) (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) (-2995 (*1 *2 *3 *4) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *5 *3)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-668 *2)) (-4 *3 (-668 (-419 *2))))) (-2807 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -3188 *4) (|:| -2441 *4)))) (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) (-4 *3 (-668 (-419 *4))))) (-2807 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -3188 *5) (|:| -2441 *5)))) (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 (-419 *5))))) (-2995 (*1 *2 *3 *4) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2))))) (-2807 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -3188 *4) (|:| -2441 *4)))) (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) (-4 *6 (-668 (-419 *4))))) (-2807 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -3188 *5) (|:| -2441 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-4303 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1264 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 (-419 *2))))) (-4303 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 *4))))) -(-10 -7 (-15 -4303 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -4303 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -2807 ((-656 (-2 (|:| -3188 |#2|) (|:| -2441 |#2|))) |#3|)) (-15 -2807 ((-656 (-2 (|:| -3188 |#2|) (|:| -2441 |#2|))) |#3| |#2|)) (-15 -2995 (|#2| |#3| |#1|)) (-15 -2807 ((-656 (-2 (|:| -3188 |#2|) (|:| -2441 |#2|))) |#4|)) (-15 -2807 ((-656 (-2 (|:| -3188 |#2|) (|:| -2441 |#2|))) |#4| |#2|)) (-15 -2995 (|#2| |#4| |#1|)) (-15 -1706 ((-2 (|:| -3379 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) -((-1957 (((-112) $ $) NIL)) (-2317 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-820) (-13 (-1121) (-10 -8 (-15 -4113 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2317 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -820)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820))))) -(-13 (-1121) (-10 -8 (-15 -4113 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2317 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) -((-3670 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3379 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1193 |#2|)) (-1 (-430 |#2|) |#2|)) 154)) (-3565 (((-656 (-2 (|:| |poly| |#2|) (|:| -3379 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 52)) (-3143 (((-656 (-2 (|:| |deg| (-783)) (|:| -3379 |#2|))) |#3|) 122)) (-3484 ((|#2| |#3|) 42)) (-3506 (((-656 (-2 (|:| -2666 |#1|) (|:| -3379 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 99)) (-3903 ((|#3| |#3| (-419 |#2|)) 72) ((|#3| |#3| |#2|) 96))) -(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3484 (|#2| |#3|)) (-15 -3143 ((-656 (-2 (|:| |deg| (-783)) (|:| -3379 |#2|))) |#3|)) (-15 -3506 ((-656 (-2 (|:| -2666 |#1|) (|:| -3379 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3565 ((-656 (-2 (|:| |poly| |#2|) (|:| -3379 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3670 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3379 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1193 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3903 (|#3| |#3| |#2|)) (-15 -3903 (|#3| |#3| (-419 |#2|)))) (-13 (-374) (-148) (-1059 (-419 (-576)))) (-1264 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -821)) -((-3903 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3)))) (-3903 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-1264 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) (-4 *5 (-668 (-419 *3))))) (-3670 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-656 *7) *7 (-1193 *7))) (-5 *5 (-1 (-430 *7) *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -3379 *3)))) (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) (-4 *8 (-668 (-419 *7))))) (-3565 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3379 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-3506 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -2666 *5) (|:| -3379 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-3143 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3379 *5)))) (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-3484 (*1 *2 *3) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-821 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2)))))) -(-10 -7 (-15 -3484 (|#2| |#3|)) (-15 -3143 ((-656 (-2 (|:| |deg| (-783)) (|:| -3379 |#2|))) |#3|)) (-15 -3506 ((-656 (-2 (|:| -2666 |#1|) (|:| -3379 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3565 ((-656 (-2 (|:| |poly| |#2|) (|:| -3379 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3670 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3379 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1193 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3903 (|#3| |#3| |#2|)) (-15 -3903 (|#3| |#3| (-419 |#2|)))) -((-2007 (((-2 (|:| -2704 (-656 (-419 |#2|))) (|:| -3563 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|))) 146) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2704 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|)) 145) (((-2 (|:| -2704 (-656 (-419 |#2|))) (|:| -3563 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|))) 140) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2704 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|)) 138)) (-1570 ((|#2| (-666 |#2| (-419 |#2|))) 87) ((|#2| (-665 (-419 |#2|))) 90))) -(((-822 |#1| |#2|) (-10 -7 (-15 -2007 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2704 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2007 ((-2 (|:| -2704 (-656 (-419 |#2|))) (|:| -3563 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2007 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2704 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2007 ((-2 (|:| -2704 (-656 (-419 |#2|))) (|:| -3563 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -1570 (|#2| (-665 (-419 |#2|)))) (-15 -1570 (|#2| (-666 |#2| (-419 |#2|))))) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -822)) -((-1570 (*1 *2 *3) (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| -2704 (-656 (-419 *6))) (|:| -3563 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) (-5 *1 (-822 *5 *6)))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| -2704 (-656 (-419 *6))) (|:| -3563 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) (-5 *1 (-822 *5 *6))))) -(-10 -7 (-15 -2007 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2704 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2007 ((-2 (|:| -2704 (-656 (-419 |#2|))) (|:| -3563 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2007 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2704 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2007 ((-2 (|:| -2704 (-656 (-419 |#2|))) (|:| -3563 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -1570 (|#2| (-665 (-419 |#2|)))) (-15 -1570 (|#2| (-666 |#2| (-419 |#2|))))) -((-2499 (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|) 49))) -(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2499 ((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|))) (-374) (-668 |#1|) (-1264 |#1|) (-736 |#1| |#3|) (-668 |#4|)) (T -823)) -((-2499 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *7 (-1264 *5)) (-4 *4 (-736 *5 *7)) (-5 *2 (-2 (|:| -3563 (-701 *6)) (|:| |vec| (-1288 *5)))) (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -2499 ((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|))) -((-3670 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3379 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 47)) (-3275 (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|))) 164 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|))) 166 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 38) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 39) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 36) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 37)) (-3565 (((-656 (-2 (|:| |poly| |#2|) (|:| -3379 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 96))) -(((-824 |#1| |#2|) (-10 -7 (-15 -3275 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3275 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3275 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3275 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3670 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3379 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3565 ((-656 (-2 (|:| |poly| |#2|) (|:| -3379 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3275 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -3275 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3275 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -3275 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))) (-1264 |#1|)) (T -824)) -((-3275 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-3565 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3379 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-3670 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *6)) (|:| -3379 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-3275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) -(-10 -7 (-15 -3275 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3275 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3275 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3275 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3670 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3379 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3565 ((-656 (-2 (|:| |poly| |#2|) (|:| -3379 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3275 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -3275 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3275 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -3275 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) -((-3951 (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) (-701 |#2|) (-1288 |#1|)) 110) (((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -3379 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1288 |#1|)) 15)) (-1534 (((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|)))) (-701 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2704 (-656 |#1|))) |#2| |#1|)) 116)) (-4138 (((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -2704 (-701 |#1|))) "failed") (-701 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2704 (-656 |#1|))) "failed") |#2| |#1|)) 54))) -(((-825 |#1| |#2|) (-10 -7 (-15 -3951 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -3379 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1288 |#1|))) (-15 -3951 ((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) (-701 |#2|) (-1288 |#1|))) (-15 -4138 ((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -2704 (-701 |#1|))) "failed") (-701 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2704 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -1534 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|)))) (-701 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2704 (-656 |#1|))) |#2| |#1|)))) (-374) (-668 |#1|)) (T -825)) -((-1534 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2704 (-656 *6))) *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *6) "failed")) (|:| -2704 (-656 (-1288 *6))))) (-5 *1 (-825 *6 *7)) (-5 *4 (-1288 *6)))) (-4138 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2704 (-656 *6))) "failed") *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-1288 *6)) (|:| -2704 (-701 *6)))) (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *6)))) (-3951 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) (-5 *2 (-2 (|:| -3563 (-701 *6)) (|:| |vec| (-1288 *5)))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *5)))) (-3951 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| A (-701 *5)) (|:| |eqs| (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5)) (|:| -3379 *6) (|:| |rh| *5)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *6 (-668 *5))))) -(-10 -7 (-15 -3951 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -3379 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1288 |#1|))) (-15 -3951 ((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#1|))) (-701 |#2|) (-1288 |#1|))) (-15 -4138 ((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -2704 (-701 |#1|))) "failed") (-701 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2704 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -1534 ((-2 (|:| |particular| (-3 (-1288 |#1|) "failed")) (|:| -2704 (-656 (-1288 |#1|)))) (-701 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2704 (-656 |#1|))) |#2| |#1|)))) -((-2400 (((-701 |#1|) (-656 |#1|) (-783)) 14) (((-701 |#1|) (-656 |#1|)) 15)) (-4414 (((-3 (-1288 |#1|) "failed") |#2| |#1| (-656 |#1|)) 39)) (-4237 (((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)) 46))) -(((-826 |#1| |#2|) (-10 -7 (-15 -2400 ((-701 |#1|) (-656 |#1|))) (-15 -2400 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -4414 ((-3 (-1288 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -4237 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -826)) -((-4237 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) (-4414 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1288 *4)) (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4)))) (-2400 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4))))) -(-10 -7 (-15 -2400 ((-701 |#1|) (-656 |#1|))) (-15 -2400 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -4414 ((-3 (-1288 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -4237 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) -((-1957 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3114 (((-112) $) NIL (|has| |#2| (-23)))) (-2846 (($ (-940)) NIL (|has| |#2| (-1070)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2214 (($ $ $) NIL (|has| |#2| (-805)))) (-1765 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-4234 (((-112) $ (-783)) NIL)) (-2201 (((-783)) NIL (|has| |#2| (-379)))) (-4268 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1121)))) (-2317 (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) ((|#2| $) NIL (|has| |#2| (-1121)))) (-1930 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1070)))) (-1851 (((-3 $ "failed") $) NIL (|has| |#2| (-1070)))) (-4370 (($) NIL (|has| |#2| (-379)))) (-1910 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#2| $ (-576)) NIL)) (-3722 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2486 (((-112) $) NIL (|has| |#2| (-1070)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#2| (-861)))) (-2911 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#2| (-861)))) (-1898 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#2| |#2|) $) NIL)) (-3787 (((-940) $) NIL (|has| |#2| (-379)))) (-1884 (((-112) $ (-783)) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1070)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070))) (((-701 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)))) (-2447 (((-1179) $) NIL (|has| |#2| (-1121)))) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-2411 (($ (-940)) NIL (|has| |#2| (-379)))) (-3116 (((-1141) $) NIL (|has| |#2| (-1121)))) (-1755 ((|#2| $) NIL (|has| (-576) (-861)))) (-4267 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2885 (((-656 |#2|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-1875 ((|#2| $ $) NIL (|has| |#2| (-1070)))) (-1492 (($ (-1288 |#2|)) NIL)) (-3181 (((-135)) NIL (|has| |#2| (-374)))) (-4107 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-3127 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-1288 |#2|) $) NIL) (($ (-576)) NIL (-3795 (-12 (|has| |#2| (-1059 (-576))) (|has| |#2| (-1121))) (|has| |#2| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1059 (-419 (-576)))) (|has| |#2| (-1121)))) (($ |#2|) NIL (|has| |#2| (-1121))) (((-876) $) NIL (|has| |#2| (-625 (-876))))) (-2910 (((-783)) NIL (|has| |#2| (-1070)) CONST)) (-2950 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2543 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-4313 (($) NIL (|has| |#2| (-23)) CONST)) (-4322 (($) NIL (|has| |#2| (-1070)) CONST)) (-3157 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#2| (-919 (-1197))) (|has| |#2| (-1070)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1070)))) (-3995 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3963 (((-112) $ $) 11 (|has| |#2| (-861)))) (-4047 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4037 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4026 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1070))) (($ $ (-940)) NIL (|has| |#2| (-1070)))) (* (($ $ $) NIL (|has| |#2| (-1070))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-940) $) NIL (|has| |#2| (-25)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-827 |#1| |#2| |#3|) (-243 |#1| |#2|) (-783) (-805) (-1 (-112) (-1288 |#2|) (-1288 |#2|))) (T -827)) +(-13 (-862) (-25)) +(((-25) . T) ((-102) . T) ((-625 (-877)) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 26)) (-2423 (((-3 $ "failed") $ $) 28)) (-2515 (($) 25 T CONST)) (-3740 (($ $ $) 20)) (-2249 (($ $ $) 19)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 24 T CONST)) (-2938 (((-112) $ $) 18)) (-2913 (((-112) $ $) 16)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 17)) (-2901 (((-112) $ $) 15)) (-2971 (($ $ $) 22)) (* (($ (-941) $) 23) (($ (-784) $) 27))) +(((-808) (-141)) (T -808)) +NIL +(-13 (-805) (-132)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-805) . T) ((-807) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) +((-2044 (((-112) $) 42)) (-1593 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2830 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 43)) (-1758 (((-3 (-419 (-576)) "failed") $) 78)) (-3113 (((-112) $) 72)) (-1842 (((-419 (-576)) $) 76)) (-3869 ((|#2| $) 26)) (-4071 (($ (-1 |#2| |#2|) $) 23)) (-2098 (($ $) 58)) (-4136 (((-548) $) 67)) (-1587 (($ $) 21)) (-3515 (((-877) $) 53) (($ (-576)) 40) (($ |#2|) 38) (($ (-419 (-576))) NIL)) (-3845 (((-784)) 10)) (-2127 ((|#2| $) 71)) (-2881 (((-112) $ $) 30)) (-2901 (((-112) $ $) 69)) (-2982 (($ $) 32) (($ $ $) NIL)) (-2971 (($ $ $) 31)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-809 |#1| |#2|) (-10 -8 (-15 -2901 ((-112) |#1| |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -1758 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1842 ((-419 (-576)) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -2127 (|#2| |#1|)) (-15 -3869 (|#2| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -3515 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 ((-784))) (-15 -3515 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 -2044 ((-112) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -2881 ((-112) |#1| |#1|))) (-810 |#2|) (-174)) (T -809)) +((-3845 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-784)) (-5 *1 (-809 *3 *4)) (-4 *3 (-810 *4))))) +(-10 -8 (-15 -2901 ((-112) |#1| |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -1758 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1842 ((-419 (-576)) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -2127 (|#2| |#1|)) (-15 -3869 (|#2| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -3515 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 ((-784))) (-15 -3515 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 -2044 ((-112) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -2881 ((-112) |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2148 (((-784)) 59 (|has| |#1| (-379)))) (-2515 (($) 18 T CONST)) (-1593 (((-3 (-576) "failed") $) 101 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2830 (((-576) $) 100 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 96)) (-3969 (((-3 $ "failed") $) 37)) (-1880 ((|#1| $) 85)) (-1758 (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-557)))) (-3113 (((-112) $) 74 (|has| |#1| (-557)))) (-1842 (((-419 (-576)) $) 73 (|has| |#1| (-557)))) (-1876 (($) 62 (|has| |#1| (-379)))) (-3994 (((-112) $) 35)) (-2839 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76)) (-3869 ((|#1| $) 77)) (-3740 (($ $ $) 63 (|has| |#1| (-862)))) (-2249 (($ $ $) 64 (|has| |#1| (-862)))) (-4071 (($ (-1 |#1| |#1|) $) 87)) (-2327 (((-941) $) 61 (|has| |#1| (-379)))) (-1708 (((-1180) $) 10)) (-2098 (($ $) 71 (|has| |#1| (-374)))) (-3146 (($ (-941)) 60 (|has| |#1| (-379)))) (-3873 ((|#1| $) 82)) (-2036 ((|#1| $) 83)) (-1934 ((|#1| $) 84)) (-4036 ((|#1| $) 78)) (-3098 ((|#1| $) 79)) (-1747 ((|#1| $) 80)) (-3605 ((|#1| $) 81)) (-1460 (((-1142) $) 11)) (-3205 (($ $ (-657 |#1|) (-657 |#1|)) 93 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 92 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 91 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) 90 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 89 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) 88 (|has| |#1| (-526 (-1198) |#1|)))) (-2780 (($ $ |#1|) 94 (|has| |#1| (-296 |#1| |#1|)))) (-4136 (((-548) $) 69 (|has| |#1| (-626 (-548))))) (-1587 (($ $) 86)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 99 (|has| |#1| (-1060 (-419 (-576)))))) (-3414 (((-3 $ "failed") $) 70 (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2127 ((|#1| $) 75 (|has| |#1| (-1082)))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2938 (((-112) $ $) 65 (|has| |#1| (-862)))) (-2913 (((-112) $ $) 67 (|has| |#1| (-862)))) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 66 (|has| |#1| (-862)))) (-2901 (((-112) $ $) 68 (|has| |#1| (-862)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-810 |#1|) (-141) (-174)) (T -810)) +((-1587 (*1 *1 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-2036 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-3869 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-2839 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)) (-4 *2 (-1082)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-1758 (*1 *2 *1) (|partial| -12 (-4 *1 (-810 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2098 (*1 *1 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) +(-13 (-38 |t#1|) (-423 |t#1|) (-349 |t#1|) (-10 -8 (-15 -1587 ($ $)) (-15 -1880 (|t#1| $)) (-15 -1934 (|t#1| $)) (-15 -2036 (|t#1| $)) (-15 -3873 (|t#1| $)) (-15 -3605 (|t#1| $)) (-15 -1747 (|t#1| $)) (-15 -3098 (|t#1| $)) (-15 -4036 (|t#1| $)) (-15 -3869 (|t#1| $)) (-15 -2839 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1082)) (-15 -2127 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3113 ((-112) $)) (-15 -1842 ((-419 (-576)) $)) (-15 -1758 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -2098 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0=(-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-379) |has| |#1| (-379)) ((-349 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-739) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1060 #0#) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-4071 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-811 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 (|#3| (-1 |#4| |#2|) |#1|))) (-810 |#2|) (-174) (-810 |#4|) (-174)) (T -811)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-810 *6)) (-5 *1 (-811 *4 *5 *2 *6)) (-4 *4 (-810 *5))))) +(-10 -7 (-15 -4071 (|#3| (-1 |#4| |#2|) |#1|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2148 (((-784)) NIL (|has| |#1| (-379)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL) (((-3 (-1021 |#1|) "failed") $) 35) (((-3 (-576) "failed") $) NIL (-2748 (|has| (-1021 |#1|) (-1060 (-576))) (|has| |#1| (-1060 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL (-2748 (|has| (-1021 |#1|) (-1060 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-2830 ((|#1| $) NIL) (((-1021 |#1|) $) 33) (((-576) $) NIL (-2748 (|has| (-1021 |#1|) (-1060 (-576))) (|has| |#1| (-1060 (-576))))) (((-419 (-576)) $) NIL (-2748 (|has| (-1021 |#1|) (-1060 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-3969 (((-3 $ "failed") $) NIL)) (-1880 ((|#1| $) 16)) (-1758 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3113 (((-112) $) NIL (|has| |#1| (-557)))) (-1842 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-1876 (($) NIL (|has| |#1| (-379)))) (-3994 (((-112) $) NIL)) (-2839 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1021 |#1|) (-1021 |#1|)) 29)) (-3869 ((|#1| $) NIL)) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-2327 (((-941) $) NIL (|has| |#1| (-379)))) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL (|has| |#1| (-374)))) (-3146 (($ (-941)) NIL (|has| |#1| (-379)))) (-3873 ((|#1| $) 22)) (-2036 ((|#1| $) 20)) (-1934 ((|#1| $) 18)) (-4036 ((|#1| $) 26)) (-3098 ((|#1| $) 25)) (-1747 ((|#1| $) 24)) (-3605 ((|#1| $) 23)) (-1460 (((-1142) $) NIL)) (-3205 (($ $ (-657 |#1|) (-657 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) NIL (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)))) (-2780 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-4136 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-1587 (($ $) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1021 |#1|)) 30) (($ (-419 (-576))) NIL (-2748 (|has| (-1021 |#1|) (-1060 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2127 ((|#1| $) NIL (|has| |#1| (-1082)))) (-2716 (($) 8 T CONST)) (-2725 (($) 12 T CONST)) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-812 |#1|) (-13 (-810 |#1|) (-423 (-1021 |#1|)) (-10 -8 (-15 -2839 ($ (-1021 |#1|) (-1021 |#1|))))) (-174)) (T -812)) +((-2839 (*1 *1 *2 *2) (-12 (-5 *2 (-1021 *3)) (-4 *3 (-174)) (-5 *1 (-812 *3))))) +(-13 (-810 |#1|) (-423 (-1021 |#1|)) (-10 -8 (-15 -2839 ($ (-1021 |#1|) (-1021 |#1|))))) +((-3423 (((-112) $ $) 7)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-3499 (((-1057) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2881 (((-112) $ $) 8))) +(((-813) (-141)) (T -813)) +((-3701 (*1 *2 *3 *4) (-12 (-4 *1 (-813)) (-5 *3 (-1085)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)))))) (-3499 (*1 *2 *3) (-12 (-4 *1 (-813)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1057))))) +(-13 (-1122) (-10 -7 (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3499 ((-1057) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3267 (((-2 (|:| |particular| |#2|) (|:| -2469 (-657 |#2|))) |#3| |#2| (-1198)) 19))) +(((-814 |#1| |#2| |#3|) (-10 -7 (-15 -3267 ((-2 (|:| |particular| |#2|) (|:| -2469 (-657 |#2|))) |#3| |#2| (-1198)))) (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148)) (-13 (-29 |#1|) (-1224) (-979)) (-669 |#2|)) (T -814)) +((-3267 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1198)) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1224) (-979))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2469 (-657 *4)))) (-5 *1 (-814 *6 *4 *3)) (-4 *3 (-669 *4))))) +(-10 -7 (-15 -3267 ((-2 (|:| |particular| |#2|) (|:| -2469 (-657 |#2|))) |#3| |#2| (-1198)))) +((-2632 (((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-657 |#2|)) 28) (((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-657 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2469 (-657 |#2|))) |#2| "failed") |#2| (-115) (-1198)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2469 (-657 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1198)) 18) (((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -2469 (-657 (-1289 |#2|)))) "failed") (-657 |#2|) (-657 (-115)) (-1198)) 24) (((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -2469 (-657 (-1289 |#2|)))) "failed") (-657 (-304 |#2|)) (-657 (-115)) (-1198)) 26) (((-3 (-657 (-1289 |#2|)) "failed") (-702 |#2|) (-1198)) 37) (((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -2469 (-657 (-1289 |#2|)))) "failed") (-702 |#2|) (-1289 |#2|) (-1198)) 35))) +(((-815 |#1| |#2|) (-10 -7 (-15 -2632 ((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -2469 (-657 (-1289 |#2|)))) "failed") (-702 |#2|) (-1289 |#2|) (-1198))) (-15 -2632 ((-3 (-657 (-1289 |#2|)) "failed") (-702 |#2|) (-1198))) (-15 -2632 ((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -2469 (-657 (-1289 |#2|)))) "failed") (-657 (-304 |#2|)) (-657 (-115)) (-1198))) (-15 -2632 ((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -2469 (-657 (-1289 |#2|)))) "failed") (-657 |#2|) (-657 (-115)) (-1198))) (-15 -2632 ((-3 (-2 (|:| |particular| |#2|) (|:| -2469 (-657 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1198))) (-15 -2632 ((-3 (-2 (|:| |particular| |#2|) (|:| -2469 (-657 |#2|))) |#2| "failed") |#2| (-115) (-1198))) (-15 -2632 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-657 |#2|))) (-15 -2632 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-657 |#2|)))) (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148)) (-13 (-29 |#1|) (-1224) (-979))) (T -815)) +((-2632 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-657 *2)) (-4 *2 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *1 (-815 *6 *2)))) (-2632 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-657 *2)) (-4 *2 (-13 (-29 *6) (-1224) (-979))) (-5 *1 (-815 *6 *2)) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))))) (-2632 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1198)) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2469 (-657 *3))) *3 "failed")) (-5 *1 (-815 *6 *3)) (-4 *3 (-13 (-29 *6) (-1224) (-979))))) (-2632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2469 (-657 *7))) *7 "failed")) (-5 *1 (-815 *6 *7)))) (-2632 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-657 *7)) (-5 *4 (-657 (-115))) (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1289 *7)) (|:| -2469 (-657 (-1289 *7))))) (-5 *1 (-815 *6 *7)))) (-2632 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-657 (-304 *7))) (-5 *4 (-657 (-115))) (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1289 *7)) (|:| -2469 (-657 (-1289 *7))))) (-5 *1 (-815 *6 *7)))) (-2632 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-702 *6)) (-5 *4 (-1198)) (-4 *6 (-13 (-29 *5) (-1224) (-979))) (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-657 (-1289 *6))) (-5 *1 (-815 *5 *6)))) (-2632 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-702 *7)) (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1289 *7)) (|:| -2469 (-657 (-1289 *7))))) (-5 *1 (-815 *6 *7)) (-5 *4 (-1289 *7))))) +(-10 -7 (-15 -2632 ((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -2469 (-657 (-1289 |#2|)))) "failed") (-702 |#2|) (-1289 |#2|) (-1198))) (-15 -2632 ((-3 (-657 (-1289 |#2|)) "failed") (-702 |#2|) (-1198))) (-15 -2632 ((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -2469 (-657 (-1289 |#2|)))) "failed") (-657 (-304 |#2|)) (-657 (-115)) (-1198))) (-15 -2632 ((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -2469 (-657 (-1289 |#2|)))) "failed") (-657 |#2|) (-657 (-115)) (-1198))) (-15 -2632 ((-3 (-2 (|:| |particular| |#2|) (|:| -2469 (-657 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1198))) (-15 -2632 ((-3 (-2 (|:| |particular| |#2|) (|:| -2469 (-657 |#2|))) |#2| "failed") |#2| (-115) (-1198))) (-15 -2632 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-657 |#2|))) (-15 -2632 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-657 |#2|)))) +((-2842 (($) 9)) (-2460 (((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-3135 (((-657 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2701 (($ (-2 (|:| -4286 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) 24)) (-3208 (($ (-657 (-2 (|:| -4286 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) 22)) (-3370 (((-1294)) 11))) +(((-816) (-10 -8 (-15 -2842 ($)) (-15 -3370 ((-1294))) (-15 -3135 ((-657 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3208 ($ (-657 (-2 (|:| -4286 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2701 ($ (-2 (|:| -4286 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -2460 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -816)) +((-2460 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *1 (-816)))) (-2701 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4286 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) (-5 *1 (-816)))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -4286 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-5 *1 (-816)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-816)))) (-3370 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-816)))) (-2842 (*1 *1) (-5 *1 (-816)))) +(-10 -8 (-15 -2842 ($)) (-15 -3370 ((-1294))) (-15 -3135 ((-657 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3208 ($ (-657 (-2 (|:| -4286 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2701 ($ (-2 (|:| -4286 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -2460 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3860 ((|#2| |#2| (-1198)) 17)) (-2410 ((|#2| |#2| (-1198)) 56)) (-3307 (((-1 |#2| |#2|) (-1198)) 11))) +(((-817 |#1| |#2|) (-10 -7 (-15 -3860 (|#2| |#2| (-1198))) (-15 -2410 (|#2| |#2| (-1198))) (-15 -3307 ((-1 |#2| |#2|) (-1198)))) (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148)) (-13 (-29 |#1|) (-1224) (-979))) (T -817)) +((-3307 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-817 *4 *5)) (-4 *5 (-13 (-29 *4) (-1224) (-979))))) (-2410 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *1 (-817 *4 *2)) (-4 *2 (-13 (-29 *4) (-1224) (-979))))) (-3860 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *1 (-817 *4 *2)) (-4 *2 (-13 (-29 *4) (-1224) (-979)))))) +(-10 -7 (-15 -3860 (|#2| |#2| (-1198))) (-15 -2410 (|#2| |#2| (-1198))) (-15 -3307 ((-1 |#2| |#2|) (-1198)))) +((-2632 (((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-657 (-390)) (-390) (-390)) 128) (((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-657 (-390)) (-390)) 129) (((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-657 (-390)) (-390)) 131) (((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-390)) 133) (((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-390)) 134) (((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390))) 136) (((-1057) (-821) (-1085)) 120) (((-1057) (-821)) 121)) (-3701 (((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-821) (-1085)) 80) (((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-821)) 82))) +(((-818) (-10 -7 (-15 -2632 ((-1057) (-821))) (-15 -2632 ((-1057) (-821) (-1085))) (-15 -2632 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)))) (-15 -2632 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-390))) (-15 -2632 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-390))) (-15 -2632 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-657 (-390)) (-390))) (-15 -2632 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-657 (-390)) (-390))) (-15 -2632 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-657 (-390)) (-390) (-390))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-821))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-821) (-1085))))) (T -818)) +((-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-1085)) (-5 *2 (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *1 (-818)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *1 (-818)))) (-2632 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1289 (-326 *4))) (-5 *5 (-657 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-2632 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1289 (-326 *4))) (-5 *5 (-657 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-2632 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1289 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-657 *4)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-2632 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1289 (-326 *4))) (-5 *5 (-657 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-2632 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1289 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-657 *4)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-2632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1289 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-657 *4)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-1085)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1057)) (-5 *1 (-818))))) +(-10 -7 (-15 -2632 ((-1057) (-821))) (-15 -2632 ((-1057) (-821) (-1085))) (-15 -2632 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)))) (-15 -2632 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-390))) (-15 -2632 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-390))) (-15 -2632 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-657 (-390)) (-390))) (-15 -2632 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-657 (-390)) (-390))) (-15 -2632 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-657 (-390)) (-390) (-390))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-821))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-821) (-1085)))) +((-3733 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2469 (-657 |#4|))) (-666 |#4|) |#4|) 33))) +(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2469 (-657 |#4|))) (-666 |#4|) |#4|))) (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576)))) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -819)) +((-3733 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *4)) (-4 *4 (-353 *5 *6 *7)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) (-5 *1 (-819 *5 *6 *7 *4))))) +(-10 -7 (-15 -3733 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2469 (-657 |#4|))) (-666 |#4|) |#4|))) +((-3005 (((-2 (|:| -3981 |#3|) (|:| |rh| (-657 (-419 |#2|)))) |#4| (-657 (-419 |#2|))) 53)) (-4103 (((-657 (-2 (|:| -3713 |#2|) (|:| -2371 |#2|))) |#4| |#2|) 62) (((-657 (-2 (|:| -3713 |#2|) (|:| -2371 |#2|))) |#4|) 61) (((-657 (-2 (|:| -3713 |#2|) (|:| -2371 |#2|))) |#3| |#2|) 20) (((-657 (-2 (|:| -3713 |#2|) (|:| -2371 |#2|))) |#3|) 21)) (-3289 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3718 ((|#2| |#3| (-657 (-419 |#2|))) 109) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105))) +(((-820 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3718 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -3718 (|#2| |#3| (-657 (-419 |#2|)))) (-15 -4103 ((-657 (-2 (|:| -3713 |#2|) (|:| -2371 |#2|))) |#3|)) (-15 -4103 ((-657 (-2 (|:| -3713 |#2|) (|:| -2371 |#2|))) |#3| |#2|)) (-15 -3289 (|#2| |#3| |#1|)) (-15 -4103 ((-657 (-2 (|:| -3713 |#2|) (|:| -2371 |#2|))) |#4|)) (-15 -4103 ((-657 (-2 (|:| -3713 |#2|) (|:| -2371 |#2|))) |#4| |#2|)) (-15 -3289 (|#2| |#4| |#1|)) (-15 -3005 ((-2 (|:| -3981 |#3|) (|:| |rh| (-657 (-419 |#2|)))) |#4| (-657 (-419 |#2|))))) (-13 (-374) (-148) (-1060 (-419 (-576)))) (-1265 |#1|) (-669 |#2|) (-669 (-419 |#2|))) (T -820)) +((-3005 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-2 (|:| -3981 *7) (|:| |rh| (-657 (-419 *6))))) (-5 *1 (-820 *5 *6 *7 *3)) (-5 *4 (-657 (-419 *6))) (-4 *7 (-669 *6)) (-4 *3 (-669 (-419 *6))))) (-3289 (*1 *2 *3 *4) (-12 (-4 *2 (-1265 *4)) (-5 *1 (-820 *4 *2 *5 *3)) (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-669 *2)) (-4 *3 (-669 (-419 *2))))) (-4103 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *4 (-1265 *5)) (-5 *2 (-657 (-2 (|:| -3713 *4) (|:| -2371 *4)))) (-5 *1 (-820 *5 *4 *6 *3)) (-4 *6 (-669 *4)) (-4 *3 (-669 (-419 *4))))) (-4103 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *2 (-657 (-2 (|:| -3713 *5) (|:| -2371 *5)))) (-5 *1 (-820 *4 *5 *6 *3)) (-4 *6 (-669 *5)) (-4 *3 (-669 (-419 *5))))) (-3289 (*1 *2 *3 *4) (-12 (-4 *2 (-1265 *4)) (-5 *1 (-820 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) (-4 *5 (-669 (-419 *2))))) (-4103 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *4 (-1265 *5)) (-5 *2 (-657 (-2 (|:| -3713 *4) (|:| -2371 *4)))) (-5 *1 (-820 *5 *4 *3 *6)) (-4 *3 (-669 *4)) (-4 *6 (-669 (-419 *4))))) (-4103 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *2 (-657 (-2 (|:| -3713 *5) (|:| -2371 *5)))) (-5 *1 (-820 *4 *5 *3 *6)) (-4 *3 (-669 *5)) (-4 *6 (-669 (-419 *5))))) (-3718 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-419 *2))) (-4 *2 (-1265 *5)) (-5 *1 (-820 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) (-4 *6 (-669 (-419 *2))))) (-3718 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1265 *5)) (-5 *1 (-820 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) (-4 *6 (-669 *4))))) +(-10 -7 (-15 -3718 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -3718 (|#2| |#3| (-657 (-419 |#2|)))) (-15 -4103 ((-657 (-2 (|:| -3713 |#2|) (|:| -2371 |#2|))) |#3|)) (-15 -4103 ((-657 (-2 (|:| -3713 |#2|) (|:| -2371 |#2|))) |#3| |#2|)) (-15 -3289 (|#2| |#3| |#1|)) (-15 -4103 ((-657 (-2 (|:| -3713 |#2|) (|:| -2371 |#2|))) |#4|)) (-15 -4103 ((-657 (-2 (|:| -3713 |#2|) (|:| -2371 |#2|))) |#4| |#2|)) (-15 -3289 (|#2| |#4| |#1|)) (-15 -3005 ((-2 (|:| -3981 |#3|) (|:| |rh| (-657 (-419 |#2|)))) |#4| (-657 (-419 |#2|))))) +((-3423 (((-112) $ $) NIL)) (-2830 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-821) (-13 (-1122) (-10 -8 (-15 -3515 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2830 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -821)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-821)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-821))))) +(-13 (-1122) (-10 -8 (-15 -3515 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2830 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) +((-3727 (((-657 (-2 (|:| |frac| (-419 |#2|)) (|:| -3981 |#3|))) |#3| (-1 (-657 |#2|) |#2| (-1194 |#2|)) (-1 (-430 |#2|) |#2|)) 154)) (-3982 (((-657 (-2 (|:| |poly| |#2|) (|:| -3981 |#3|))) |#3| (-1 (-657 |#1|) |#2|)) 52)) (-2277 (((-657 (-2 (|:| |deg| (-784)) (|:| -3981 |#2|))) |#3|) 122)) (-2558 ((|#2| |#3|) 42)) (-1580 (((-657 (-2 (|:| -1491 |#1|) (|:| -3981 |#3|))) |#3| (-1 (-657 |#1|) |#2|)) 99)) (-4142 ((|#3| |#3| (-419 |#2|)) 72) ((|#3| |#3| |#2|) 96))) +(((-822 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2558 (|#2| |#3|)) (-15 -2277 ((-657 (-2 (|:| |deg| (-784)) (|:| -3981 |#2|))) |#3|)) (-15 -1580 ((-657 (-2 (|:| -1491 |#1|) (|:| -3981 |#3|))) |#3| (-1 (-657 |#1|) |#2|))) (-15 -3982 ((-657 (-2 (|:| |poly| |#2|) (|:| -3981 |#3|))) |#3| (-1 (-657 |#1|) |#2|))) (-15 -3727 ((-657 (-2 (|:| |frac| (-419 |#2|)) (|:| -3981 |#3|))) |#3| (-1 (-657 |#2|) |#2| (-1194 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -4142 (|#3| |#3| |#2|)) (-15 -4142 (|#3| |#3| (-419 |#2|)))) (-13 (-374) (-148) (-1060 (-419 (-576)))) (-1265 |#1|) (-669 |#2|) (-669 (-419 |#2|))) (T -822)) +((-4142 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *1 (-822 *4 *5 *2 *6)) (-4 *2 (-669 *5)) (-4 *6 (-669 *3)))) (-4142 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-1265 *4)) (-5 *1 (-822 *4 *3 *2 *5)) (-4 *2 (-669 *3)) (-4 *5 (-669 (-419 *3))))) (-3727 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-657 *7) *7 (-1194 *7))) (-5 *5 (-1 (-430 *7) *7)) (-4 *7 (-1265 *6)) (-4 *6 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-5 *2 (-657 (-2 (|:| |frac| (-419 *7)) (|:| -3981 *3)))) (-5 *1 (-822 *6 *7 *3 *8)) (-4 *3 (-669 *7)) (-4 *8 (-669 (-419 *7))))) (-3982 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-657 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-2 (|:| |poly| *6) (|:| -3981 *3)))) (-5 *1 (-822 *5 *6 *3 *7)) (-4 *3 (-669 *6)) (-4 *7 (-669 (-419 *6))))) (-1580 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-657 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-2 (|:| -1491 *5) (|:| -3981 *3)))) (-5 *1 (-822 *5 *6 *3 *7)) (-4 *3 (-669 *6)) (-4 *7 (-669 (-419 *6))))) (-2277 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *2 (-657 (-2 (|:| |deg| (-784)) (|:| -3981 *5)))) (-5 *1 (-822 *4 *5 *3 *6)) (-4 *3 (-669 *5)) (-4 *6 (-669 (-419 *5))))) (-2558 (*1 *2 *3) (-12 (-4 *2 (-1265 *4)) (-5 *1 (-822 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) (-4 *5 (-669 (-419 *2)))))) +(-10 -7 (-15 -2558 (|#2| |#3|)) (-15 -2277 ((-657 (-2 (|:| |deg| (-784)) (|:| -3981 |#2|))) |#3|)) (-15 -1580 ((-657 (-2 (|:| -1491 |#1|) (|:| -3981 |#3|))) |#3| (-1 (-657 |#1|) |#2|))) (-15 -3982 ((-657 (-2 (|:| |poly| |#2|) (|:| -3981 |#3|))) |#3| (-1 (-657 |#1|) |#2|))) (-15 -3727 ((-657 (-2 (|:| |frac| (-419 |#2|)) (|:| -3981 |#3|))) |#3| (-1 (-657 |#2|) |#2| (-1194 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -4142 (|#3| |#3| |#2|)) (-15 -4142 (|#3| |#3| (-419 |#2|)))) +((-2886 (((-2 (|:| -2469 (-657 (-419 |#2|))) (|:| -3962 (-702 |#1|))) (-667 |#2| (-419 |#2|)) (-657 (-419 |#2|))) 146) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2469 (-657 (-419 |#2|)))) (-667 |#2| (-419 |#2|)) (-419 |#2|)) 145) (((-2 (|:| -2469 (-657 (-419 |#2|))) (|:| -3962 (-702 |#1|))) (-666 (-419 |#2|)) (-657 (-419 |#2|))) 140) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2469 (-657 (-419 |#2|)))) (-666 (-419 |#2|)) (-419 |#2|)) 138)) (-4355 ((|#2| (-667 |#2| (-419 |#2|))) 87) ((|#2| (-666 (-419 |#2|))) 90))) +(((-823 |#1| |#2|) (-10 -7 (-15 -2886 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2469 (-657 (-419 |#2|)))) (-666 (-419 |#2|)) (-419 |#2|))) (-15 -2886 ((-2 (|:| -2469 (-657 (-419 |#2|))) (|:| -3962 (-702 |#1|))) (-666 (-419 |#2|)) (-657 (-419 |#2|)))) (-15 -2886 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2469 (-657 (-419 |#2|)))) (-667 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2886 ((-2 (|:| -2469 (-657 (-419 |#2|))) (|:| -3962 (-702 |#1|))) (-667 |#2| (-419 |#2|)) (-657 (-419 |#2|)))) (-15 -4355 (|#2| (-666 (-419 |#2|)))) (-15 -4355 (|#2| (-667 |#2| (-419 |#2|))))) (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576)))) (-1265 |#1|)) (T -823)) +((-4355 (*1 *2 *3) (-12 (-5 *3 (-667 *2 (-419 *2))) (-4 *2 (-1265 *4)) (-5 *1 (-823 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-666 (-419 *2))) (-4 *2 (-1265 *4)) (-5 *1 (-823 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))))) (-2886 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *6 (-419 *6))) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-2 (|:| -2469 (-657 (-419 *6))) (|:| -3962 (-702 *5)))) (-5 *1 (-823 *5 *6)) (-5 *4 (-657 (-419 *6))))) (-2886 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) (-5 *1 (-823 *5 *6)))) (-2886 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-419 *6))) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-2 (|:| -2469 (-657 (-419 *6))) (|:| -3962 (-702 *5)))) (-5 *1 (-823 *5 *6)) (-5 *4 (-657 (-419 *6))))) (-2886 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) (-5 *1 (-823 *5 *6))))) +(-10 -7 (-15 -2886 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2469 (-657 (-419 |#2|)))) (-666 (-419 |#2|)) (-419 |#2|))) (-15 -2886 ((-2 (|:| -2469 (-657 (-419 |#2|))) (|:| -3962 (-702 |#1|))) (-666 (-419 |#2|)) (-657 (-419 |#2|)))) (-15 -2886 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -2469 (-657 (-419 |#2|)))) (-667 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2886 ((-2 (|:| -2469 (-657 (-419 |#2|))) (|:| -3962 (-702 |#1|))) (-667 |#2| (-419 |#2|)) (-657 (-419 |#2|)))) (-15 -4355 (|#2| (-666 (-419 |#2|)))) (-15 -4355 (|#2| (-667 |#2| (-419 |#2|))))) +((-4120 (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#1|))) |#5| |#4|) 49))) +(((-824 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4120 ((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#1|))) |#5| |#4|))) (-374) (-669 |#1|) (-1265 |#1|) (-737 |#1| |#3|) (-669 |#4|)) (T -824)) +((-4120 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *7 (-1265 *5)) (-4 *4 (-737 *5 *7)) (-5 *2 (-2 (|:| -3962 (-702 *6)) (|:| |vec| (-1289 *5)))) (-5 *1 (-824 *5 *6 *7 *4 *3)) (-4 *6 (-669 *5)) (-4 *3 (-669 *4))))) +(-10 -7 (-15 -4120 ((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#1|))) |#5| |#4|))) +((-3727 (((-657 (-2 (|:| |frac| (-419 |#2|)) (|:| -3981 (-667 |#2| (-419 |#2|))))) (-667 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 47)) (-4309 (((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|))) 164 (|has| |#1| (-27))) (((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-657 (-419 |#2|)) (-666 (-419 |#2|))) 166 (|has| |#1| (-27))) (((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 38) (((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|)) 39) (((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 36) (((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|)) 37)) (-3982 (((-657 (-2 (|:| |poly| |#2|) (|:| -3981 (-667 |#2| (-419 |#2|))))) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|)) 96))) +(((-825 |#1| |#2|) (-10 -7 (-15 -4309 ((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (-15 -4309 ((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -4309 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (-15 -4309 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3727 ((-657 (-2 (|:| |frac| (-419 |#2|)) (|:| -3981 (-667 |#2| (-419 |#2|))))) (-667 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3982 ((-657 (-2 (|:| |poly| |#2|) (|:| -3981 (-667 |#2| (-419 |#2|))))) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4309 ((-657 (-419 |#2|)) (-666 (-419 |#2|)))) (-15 -4309 ((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -4309 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)))) (-15 -4309 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576)))) (-1265 |#1|)) (T -825)) +((-4309 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6)))) (-4309 (*1 *2 *3) (-12 (-5 *3 (-667 *5 (-419 *5))) (-4 *5 (-1265 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-657 (-419 *5))) (-5 *1 (-825 *4 *5)))) (-4309 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6)))) (-4309 (*1 *2 *3) (-12 (-5 *3 (-666 (-419 *5))) (-4 *5 (-1265 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-657 (-419 *5))) (-5 *1 (-825 *4 *5)))) (-3982 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-657 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-2 (|:| |poly| *6) (|:| -3981 (-667 *6 (-419 *6)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-667 *6 (-419 *6))))) (-3727 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-657 (-2 (|:| |frac| (-419 *6)) (|:| -3981 (-667 *6 (-419 *6)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-667 *6 (-419 *6))))) (-4309 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *7 (-419 *7))) (-5 *4 (-1 (-657 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *7 (-1265 *6)) (-5 *2 (-657 (-419 *7))) (-5 *1 (-825 *6 *7)))) (-4309 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *6 (-419 *6))) (-5 *4 (-1 (-657 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6)))) (-4309 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 (-419 *7))) (-5 *4 (-1 (-657 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *7 (-1265 *6)) (-5 *2 (-657 (-419 *7))) (-5 *1 (-825 *6 *7)))) (-4309 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-419 *6))) (-5 *4 (-1 (-657 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6))))) +(-10 -7 (-15 -4309 ((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (-15 -4309 ((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -4309 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (-15 -4309 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3727 ((-657 (-2 (|:| |frac| (-419 |#2|)) (|:| -3981 (-667 |#2| (-419 |#2|))))) (-667 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3982 ((-657 (-2 (|:| |poly| |#2|) (|:| -3981 (-667 |#2| (-419 |#2|))))) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4309 ((-657 (-419 |#2|)) (-666 (-419 |#2|)))) (-15 -4309 ((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -4309 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)))) (-15 -4309 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) +((-3298 (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#1|))) (-702 |#2|) (-1289 |#1|)) 110) (((-2 (|:| A (-702 |#1|)) (|:| |eqs| (-657 (-2 (|:| C (-702 |#1|)) (|:| |g| (-1289 |#1|)) (|:| -3981 |#2|) (|:| |rh| |#1|))))) (-702 |#1|) (-1289 |#1|)) 15)) (-3985 (((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|)))) (-702 |#2|) (-1289 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2469 (-657 |#1|))) |#2| |#1|)) 116)) (-2632 (((-3 (-2 (|:| |particular| (-1289 |#1|)) (|:| -2469 (-702 |#1|))) "failed") (-702 |#1|) (-1289 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2469 (-657 |#1|))) "failed") |#2| |#1|)) 54))) +(((-826 |#1| |#2|) (-10 -7 (-15 -3298 ((-2 (|:| A (-702 |#1|)) (|:| |eqs| (-657 (-2 (|:| C (-702 |#1|)) (|:| |g| (-1289 |#1|)) (|:| -3981 |#2|) (|:| |rh| |#1|))))) (-702 |#1|) (-1289 |#1|))) (-15 -3298 ((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#1|))) (-702 |#2|) (-1289 |#1|))) (-15 -2632 ((-3 (-2 (|:| |particular| (-1289 |#1|)) (|:| -2469 (-702 |#1|))) "failed") (-702 |#1|) (-1289 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2469 (-657 |#1|))) "failed") |#2| |#1|))) (-15 -3985 ((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|)))) (-702 |#2|) (-1289 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2469 (-657 |#1|))) |#2| |#1|)))) (-374) (-669 |#1|)) (T -826)) +((-3985 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2469 (-657 *6))) *7 *6)) (-4 *6 (-374)) (-4 *7 (-669 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1289 *6) "failed")) (|:| -2469 (-657 (-1289 *6))))) (-5 *1 (-826 *6 *7)) (-5 *4 (-1289 *6)))) (-2632 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2469 (-657 *6))) "failed") *7 *6)) (-4 *6 (-374)) (-4 *7 (-669 *6)) (-5 *2 (-2 (|:| |particular| (-1289 *6)) (|:| -2469 (-702 *6)))) (-5 *1 (-826 *6 *7)) (-5 *3 (-702 *6)) (-5 *4 (-1289 *6)))) (-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-669 *5)) (-5 *2 (-2 (|:| -3962 (-702 *6)) (|:| |vec| (-1289 *5)))) (-5 *1 (-826 *5 *6)) (-5 *3 (-702 *6)) (-5 *4 (-1289 *5)))) (-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| A (-702 *5)) (|:| |eqs| (-657 (-2 (|:| C (-702 *5)) (|:| |g| (-1289 *5)) (|:| -3981 *6) (|:| |rh| *5)))))) (-5 *1 (-826 *5 *6)) (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)) (-4 *6 (-669 *5))))) +(-10 -7 (-15 -3298 ((-2 (|:| A (-702 |#1|)) (|:| |eqs| (-657 (-2 (|:| C (-702 |#1|)) (|:| |g| (-1289 |#1|)) (|:| -3981 |#2|) (|:| |rh| |#1|))))) (-702 |#1|) (-1289 |#1|))) (-15 -3298 ((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#1|))) (-702 |#2|) (-1289 |#1|))) (-15 -2632 ((-3 (-2 (|:| |particular| (-1289 |#1|)) (|:| -2469 (-702 |#1|))) "failed") (-702 |#1|) (-1289 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2469 (-657 |#1|))) "failed") |#2| |#1|))) (-15 -3985 ((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -2469 (-657 (-1289 |#1|)))) (-702 |#2|) (-1289 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2469 (-657 |#1|))) |#2| |#1|)))) +((-2465 (((-702 |#1|) (-657 |#1|) (-784)) 14) (((-702 |#1|) (-657 |#1|)) 15)) (-2339 (((-3 (-1289 |#1|) "failed") |#2| |#1| (-657 |#1|)) 39)) (-4318 (((-3 |#1| "failed") |#2| |#1| (-657 |#1|) (-1 |#1| |#1|)) 46))) +(((-827 |#1| |#2|) (-10 -7 (-15 -2465 ((-702 |#1|) (-657 |#1|))) (-15 -2465 ((-702 |#1|) (-657 |#1|) (-784))) (-15 -2339 ((-3 (-1289 |#1|) "failed") |#2| |#1| (-657 |#1|))) (-15 -4318 ((-3 |#1| "failed") |#2| |#1| (-657 |#1|) (-1 |#1| |#1|)))) (-374) (-669 |#1|)) (T -827)) +((-4318 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-657 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) (-5 *1 (-827 *2 *3)) (-4 *3 (-669 *2)))) (-2339 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-657 *4)) (-4 *4 (-374)) (-5 *2 (-1289 *4)) (-5 *1 (-827 *4 *3)) (-4 *3 (-669 *4)))) (-2465 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *5)) (-5 *4 (-784)) (-4 *5 (-374)) (-5 *2 (-702 *5)) (-5 *1 (-827 *5 *6)) (-4 *6 (-669 *5)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-374)) (-5 *2 (-702 *4)) (-5 *1 (-827 *4 *5)) (-4 *5 (-669 *4))))) +(-10 -7 (-15 -2465 ((-702 |#1|) (-657 |#1|))) (-15 -2465 ((-702 |#1|) (-657 |#1|) (-784))) (-15 -2339 ((-3 (-1289 |#1|) "failed") |#2| |#1| (-657 |#1|))) (-15 -4318 ((-3 |#1| "failed") |#2| |#1| (-657 |#1|) (-1 |#1| |#1|)))) +((-3423 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2044 (((-112) $) NIL (|has| |#2| (-23)))) (-1375 (($ (-941)) NIL (|has| |#2| (-1071)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1323 (($ $ $) NIL (|has| |#2| (-806)))) (-2423 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-4284 (((-112) $ (-784)) NIL)) (-2148 (((-784)) NIL (|has| |#2| (-379)))) (-3719 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1122)))) (-2830 (((-576) $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) ((|#2| $) NIL (|has| |#2| (-1122)))) (-3439 (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL (|has| |#2| (-1071))) (((-702 |#2|) (-702 $)) NIL (|has| |#2| (-1071)))) (-3969 (((-3 $ "failed") $) NIL (|has| |#2| (-1071)))) (-1876 (($) NIL (|has| |#2| (-379)))) (-1810 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#2| $ (-576)) NIL)) (-1448 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3994 (((-112) $) NIL (|has| |#2| (-1071)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#2| (-862)))) (-3855 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#2| (-862)))) (-1799 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#2| |#2|) $) NIL)) (-2327 (((-941) $) NIL (|has| |#2| (-379)))) (-4326 (((-112) $ (-784)) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL (|has| |#2| (-1071))) (((-702 |#2|) (-1289 $)) NIL (|has| |#2| (-1071)))) (-1708 (((-1180) $) NIL (|has| |#2| (-1122)))) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-3146 (($ (-941)) NIL (|has| |#2| (-379)))) (-1460 (((-1142) $) NIL (|has| |#2| (-1122)))) (-3528 ((|#2| $) NIL (|has| (-576) (-862)))) (-1495 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3585 (((-657 |#2|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-4224 ((|#2| $ $) NIL (|has| |#2| (-1071)))) (-1902 (($ (-1289 |#2|)) NIL)) (-1451 (((-135)) NIL (|has| |#2| (-374)))) (-2209 (($ $ (-784)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#2| (-1071)))) (-1469 (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-1289 |#2|) $) NIL) (($ (-576)) NIL (-2748 (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (($ |#2|) NIL (|has| |#2| (-1122))) (((-877) $) NIL (|has| |#2| (-625 (-877))))) (-3845 (((-784)) NIL (|has| |#2| (-1071)) CONST)) (-4166 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3258 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2716 (($) NIL (|has| |#2| (-23)) CONST)) (-2725 (($) NIL (|has| |#2| (-1071)) CONST)) (-2066 (($ $ (-784)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#2| (-1071)))) (-2938 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2901 (((-112) $ $) 11 (|has| |#2| (-862)))) (-2995 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-2982 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-2971 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-784)) NIL (|has| |#2| (-1071))) (($ $ (-941)) NIL (|has| |#2| (-1071)))) (* (($ $ $) NIL (|has| |#2| (-1071))) (($ $ |#2|) NIL (|has| |#2| (-739))) (($ |#2| $) NIL (|has| |#2| (-739))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-784) $) NIL (|has| |#2| (-23))) (($ (-941) $) NIL (|has| |#2| (-25)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-828 |#1| |#2| |#3|) (-243 |#1| |#2|) (-784) (-806) (-1 (-112) (-1289 |#2|) (-1289 |#2|))) (T -828)) NIL (-243 |#1| |#2|) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2904 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1197)) NIL)) (-2028 (((-783) $) NIL) (((-783) $ (-1197)) NIL)) (-1585 (((-656 (-830 (-1197))) $) NIL)) (-1421 (((-1193 $) $ (-830 (-1197))) NIL) (((-1193 |#1|) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 (-830 (-1197)))) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2658 (($ $) NIL (|has| |#1| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3483 (($ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-830 (-1197)) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL) (((-3 (-1146 |#1| (-1197)) "failed") $) NIL)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-830 (-1197)) $) NIL) (((-1197) $) NIL) (((-1146 |#1| (-1197)) $) NIL)) (-2970 (($ $ $ (-830 (-1197))) NIL (|has| |#1| (-174)))) (-3310 (($ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1197))) NIL (|has| |#1| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#1| (-928)))) (-1975 (($ $ |#1| (-543 (-830 (-1197))) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-830 (-1197)) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-830 (-1197)) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3359 (((-783) $ (-1197)) NIL) (((-783) $) NIL)) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-1574 (($ (-1193 |#1|) (-830 (-1197))) NIL) (($ (-1193 $) (-830 (-1197))) NIL)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-543 (-830 (-1197)))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ (-830 (-1197))) NIL)) (-2192 (((-543 (-830 (-1197))) $) NIL) (((-783) $ (-830 (-1197))) NIL) (((-656 (-783)) $ (-656 (-830 (-1197)))) NIL)) (-3784 (($ (-1 (-543 (-830 (-1197))) (-543 (-830 (-1197)))) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2554 (((-1 $ (-783)) (-1197)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-3477 (((-3 (-830 (-1197)) "failed") $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-4195 (((-830 (-1197)) $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2447 (((-1179) $) NIL)) (-3274 (((-112) $) NIL)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| (-830 (-1197))) (|:| -4080 (-783))) "failed") $) NIL)) (-2294 (($ $) NIL)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) NIL)) (-1686 ((|#1| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-928)))) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-830 (-1197)) |#1|) NIL) (($ $ (-656 (-830 (-1197))) (-656 |#1|)) NIL) (($ $ (-830 (-1197)) $) NIL) (($ $ (-656 (-830 (-1197))) (-656 $)) NIL) (($ $ (-1197) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-1790 (($ $ (-830 (-1197))) NIL (|has| |#1| (-174)))) (-4107 (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197)))) NIL) (($ $ (-830 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2066 (((-656 (-1197)) $) NIL)) (-2196 (((-543 (-830 (-1197))) $) NIL) (((-783) $ (-830 (-1197))) NIL) (((-656 (-783)) $ (-656 (-830 (-1197)))) NIL) (((-783) $ (-1197)) NIL)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| (-830 (-1197)) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-830 (-1197)) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-830 (-1197)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1944 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1197))) NIL (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-830 (-1197))) NIL) (($ (-1197)) NIL) (($ (-1146 |#1| (-1197))) NIL) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-543 (-830 (-1197)))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-656 (-830 (-1197))) (-656 (-783))) NIL) (($ $ (-830 (-1197)) (-783)) NIL) (($ $ (-656 (-830 (-1197)))) NIL) (($ $ (-830 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-828 |#1|) (-13 (-260 |#1| (-1197) (-830 (-1197)) (-543 (-830 (-1197)))) (-1059 (-1146 |#1| (-1197)))) (-1070)) (T -828)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3800 (((-657 (-784)) $) NIL) (((-657 (-784)) $ (-1198)) NIL)) (-3074 (((-784) $) NIL) (((-784) $ (-1198)) NIL)) (-1998 (((-657 (-831 (-1198))) $) NIL)) (-1825 (((-1194 $) $ (-831 (-1198))) NIL) (((-1194 |#1|) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 (-831 (-1198)))) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3188 (($ $) NIL (|has| |#1| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2549 (($ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-831 (-1198)) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL) (((-3 (-1147 |#1| (-1198)) "failed") $) NIL)) (-2830 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-831 (-1198)) $) NIL) (((-1198) $) NIL) (((-1147 |#1| (-1198)) $) NIL)) (-4351 (($ $ $ (-831 (-1198))) NIL (|has| |#1| (-174)))) (-2165 (($ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#1| (-464))) (($ $ (-831 (-1198))) NIL (|has| |#1| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#1| (-929)))) (-2643 (($ $ |#1| (-543 (-831 (-1198))) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-831 (-1198)) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-831 (-1198)) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-2650 (((-784) $ (-1198)) NIL) (((-784) $) NIL)) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-1986 (($ (-1194 |#1|) (-831 (-1198))) NIL) (($ (-1194 $) (-831 (-1198))) NIL)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-543 (-831 (-1198)))) NIL) (($ $ (-831 (-1198)) (-784)) NIL) (($ $ (-657 (-831 (-1198))) (-657 (-784))) NIL)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ (-831 (-1198))) NIL)) (-4219 (((-543 (-831 (-1198))) $) NIL) (((-784) $ (-831 (-1198))) NIL) (((-657 (-784)) $ (-657 (-831 (-1198)))) NIL)) (-2308 (($ (-1 (-543 (-831 (-1198))) (-543 (-831 (-1198)))) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3359 (((-1 $ (-784)) (-1198)) NIL) (((-1 $ (-784)) $) NIL (|has| |#1| (-238)))) (-2502 (((-3 (-831 (-1198)) "failed") $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-1582 (((-831 (-1198)) $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1708 (((-1180) $) NIL)) (-4298 (((-112) $) NIL)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| (-831 (-1198))) (|:| -2128 (-784))) "failed") $) NIL)) (-4268 (($ $) NIL)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) NIL)) (-2118 ((|#1| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-929)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-831 (-1198)) |#1|) NIL) (($ $ (-657 (-831 (-1198))) (-657 |#1|)) NIL) (($ $ (-831 (-1198)) $) NIL) (($ $ (-657 (-831 (-1198))) (-657 $)) NIL) (($ $ (-1198) $) NIL (|has| |#1| (-238))) (($ $ (-657 (-1198)) (-657 $)) NIL (|has| |#1| (-238))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-238))) (($ $ (-657 (-1198)) (-657 |#1|)) NIL (|has| |#1| (-238)))) (-1465 (($ $ (-831 (-1198))) NIL (|has| |#1| (-174)))) (-2209 (($ $ (-657 (-831 (-1198))) (-657 (-784))) NIL) (($ $ (-831 (-1198)) (-784)) NIL) (($ $ (-657 (-831 (-1198)))) NIL) (($ $ (-831 (-1198))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-2297 (((-657 (-1198)) $) NIL)) (-4265 (((-543 (-831 (-1198))) $) NIL) (((-784) $ (-831 (-1198))) NIL) (((-657 (-784)) $ (-657 (-831 (-1198)))) NIL) (((-784) $ (-1198)) NIL)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| (-831 (-1198)) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-831 (-1198)) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-831 (-1198)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3614 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-831 (-1198))) NIL (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-831 (-1198))) NIL) (($ (-1198)) NIL) (($ (-1147 |#1| (-1198))) NIL) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-543 (-831 (-1198)))) NIL) (($ $ (-831 (-1198)) (-784)) NIL) (($ $ (-657 (-831 (-1198))) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-657 (-831 (-1198))) (-657 (-784))) NIL) (($ $ (-831 (-1198)) (-784)) NIL) (($ $ (-657 (-831 (-1198)))) NIL) (($ $ (-831 (-1198))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-829 |#1|) (-13 (-260 |#1| (-1198) (-831 (-1198)) (-543 (-831 (-1198)))) (-1060 (-1147 |#1| (-1198)))) (-1071)) (T -829)) NIL -(-13 (-260 |#1| (-1197) (-830 (-1197)) (-543 (-830 (-1197)))) (-1059 (-1146 |#1| (-1197)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-374)))) (-2390 (($ $) NIL (|has| |#2| (-374)))) (-3302 (((-112) $) NIL (|has| |#2| (-374)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL (|has| |#2| (-374)))) (-3589 (((-430 $) $) NIL (|has| |#2| (-374)))) (-4386 (((-112) $ $) NIL (|has| |#2| (-374)))) (-3170 (($) NIL T CONST)) (-1895 (($ $ $) NIL (|has| |#2| (-374)))) (-1851 (((-3 $ "failed") $) NIL)) (-1908 (($ $ $) NIL (|has| |#2| (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-2171 (((-112) $) NIL (|has| |#2| (-374)))) (-2486 (((-112) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3076 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 20 (|has| |#2| (-374)))) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-374)))) (-3115 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-1452 (((-430 $) $) NIL (|has| |#2| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#2| (-374)))) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2812 (((-783) $) NIL (|has| |#2| (-374)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#2| (-374)))) (-4107 (($ $) 13) (($ $ (-783)) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-419 (-576))) NIL (|has| |#2| (-374))) (($ $) NIL (|has| |#2| (-374)))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#2| (-374)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $) NIL) (($ $ (-783)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) 15 (|has| |#2| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL) (($ $ (-576)) 18 (|has| |#2| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) NIL (|has| |#2| (-374))) (($ $ (-419 (-576))) NIL (|has| |#2| (-374))))) -(((-829 |#1| |#2| |#3|) (-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) (-1121) (-917 |#1|) |#1|) (T -829)) +(-13 (-260 |#1| (-1198) (-831 (-1198)) (-543 (-831 (-1198)))) (-1060 (-1147 |#1| (-1198)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#2| (-374)))) (-2361 (($ $) NIL (|has| |#2| (-374)))) (-3286 (((-112) $) NIL (|has| |#2| (-374)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL (|has| |#2| (-374)))) (-4215 (((-430 $) $) NIL (|has| |#2| (-374)))) (-3210 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2515 (($) NIL T CONST)) (-3355 (($ $ $) NIL (|has| |#2| (-374)))) (-3969 (((-3 $ "failed") $) NIL)) (-3369 (($ $ $) NIL (|has| |#2| (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#2| (-374)))) (-4009 (((-112) $) NIL (|has| |#2| (-374)))) (-3994 (((-112) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#2| (-374)))) (-3388 (($ (-657 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 20 (|has| |#2| (-374)))) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#2| (-374)))) (-3431 (($ (-657 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-1856 (((-430 $) $) NIL (|has| |#2| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#2| (-374)))) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#2| (-374)))) (-4164 (((-784) $) NIL (|has| |#2| (-374)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#2| (-374)))) (-2209 (($ $) 13) (($ $ (-784)) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-419 (-576))) NIL (|has| |#2| (-374))) (($ $) NIL (|has| |#2| (-374)))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $) NIL) (($ $ (-784)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) 15 (|has| |#2| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-784)) NIL) (($ $ (-941)) NIL) (($ $ (-576)) 18 (|has| |#2| (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) NIL (|has| |#2| (-374))) (($ $ (-419 (-576))) NIL (|has| |#2| (-374))))) +(((-830 |#1| |#2| |#3|) (-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) (-1122) (-918 |#1|) |#1|) (T -830)) NIL (-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) -((-1957 (((-112) $ $) NIL)) (-2028 (((-783) $) NIL)) (-1654 ((|#1| $) 10)) (-2982 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-3359 (((-783) $) 11)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2554 (($ |#1| (-783)) 9)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4107 (($ $ (-783)) NIL) (($ $) NIL)) (-4113 (((-876) $) NIL) (($ |#1|) NIL)) (-2950 (((-112) $ $) NIL)) (-3157 (($ $ (-783)) NIL) (($ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL))) -(((-830 |#1|) (-275 |#1|) (-861)) (T -830)) +((-3423 (((-112) $ $) NIL)) (-3074 (((-784) $) NIL)) (-2993 ((|#1| $) 10)) (-1593 (((-3 |#1| "failed") $) NIL)) (-2830 ((|#1| $) NIL)) (-2650 (((-784) $) 11)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-3359 (($ |#1| (-784)) 9)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2209 (($ $ (-784)) NIL) (($ $) NIL)) (-3515 (((-877) $) NIL) (($ |#1|) NIL)) (-4166 (((-112) $ $) NIL)) (-2066 (($ $ (-784)) NIL) (($ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL))) +(((-831 |#1|) (-275 |#1|) (-862)) (T -831)) NIL (-275 |#1|) -((-1957 (((-112) $ $) NIL)) (-1418 (((-656 |#1|) $) 38)) (-2201 (((-783) $) NIL)) (-3170 (($) NIL T CONST)) (-4085 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2982 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-1764 (($ $) 42)) (-1851 (((-3 $ "failed") $) NIL)) (-1322 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2486 (((-112) $) NIL)) (-4158 ((|#1| $ (-576)) NIL)) (-1450 (((-783) $ (-576)) NIL)) (-4027 (($ $) 54)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2912 (($ (-1 |#1| |#1|) $) NIL)) (-1477 (($ (-1 (-783) (-783)) $) NIL)) (-3324 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2574 (((-112) $ $) 51)) (-3108 (((-783) $) 34)) (-2447 (((-1179) $) NIL)) (-3295 (($ $ $) NIL)) (-3191 (($ $ $) NIL)) (-3116 (((-1141) $) NIL)) (-1755 ((|#1| $) 41)) (-3497 (((-656 (-2 (|:| |gen| |#1|) (|:| -2156 (-783)))) $) NIL)) (-3889 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1933 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4113 (((-876) $) NIL) (($ |#1|) NIL)) (-2950 (((-112) $ $) NIL)) (-4322 (($) 20 T CONST)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 53)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-831 |#1|) (-13 (-397 |#1|) (-858) (-10 -8 (-15 -1755 (|#1| $)) (-15 -1764 ($ $)) (-15 -4027 ($ $)) (-15 -2574 ((-112) $ $)) (-15 -3324 ((-3 $ "failed") $ |#1|)) (-15 -4085 ((-3 $ "failed") $ |#1|)) (-15 -1933 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3108 ((-783) $)) (-15 -1418 ((-656 |#1|) $)))) (-861)) (T -831)) -((-1755 (*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-1764 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-4027 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-2574 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-3324 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-4085 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) (-1933 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-861))))) -(-13 (-397 |#1|) (-858) (-10 -8 (-15 -1755 (|#1| $)) (-15 -1764 ($ $)) (-15 -4027 ($ $)) (-15 -2574 ((-112) $ $)) (-15 -3324 ((-3 $ "failed") $ |#1|)) (-15 -4085 ((-3 $ "failed") $ |#1|)) (-15 -1933 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3108 ((-783) $)) (-15 -1418 ((-656 |#1|) $)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-1527 (((-576) $) 60)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2279 (((-112) $) 58)) (-2486 (((-112) $) 35)) (-3323 (((-112) $) 59)) (-2907 (($ $ $) 52)) (-3777 (($ $ $) 53)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1946 (((-3 $ "failed") $ $) 48)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-2366 (($ $) 61)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3995 (((-112) $ $) 54)) (-3975 (((-112) $ $) 56)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 55)) (-3963 (((-112) $ $) 57)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-832) (-141)) (T -832)) -NIL -(-13 (-568) (-860)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3690 (($ (-1141)) 7)) (-1571 (((-112) $ (-1179) (-1141)) 15)) (-1907 (((-834) $) 12)) (-4336 (((-834) $) 11)) (-2884 (((-1293) $) 9)) (-2749 (((-112) $ (-1141)) 16))) -(((-833) (-10 -8 (-15 -3690 ($ (-1141))) (-15 -2884 ((-1293) $)) (-15 -4336 ((-834) $)) (-15 -1907 ((-834) $)) (-15 -1571 ((-112) $ (-1179) (-1141))) (-15 -2749 ((-112) $ (-1141))))) (T -833)) -((-2749 (*1 *2 *1 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-112)) (-5 *1 (-833)))) (-1571 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-1141)) (-5 *2 (-112)) (-5 *1 (-833)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-4336 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-833)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-833))))) -(-10 -8 (-15 -3690 ($ (-1141))) (-15 -2884 ((-1293) $)) (-15 -4336 ((-834) $)) (-15 -1907 ((-834) $)) (-15 -1571 ((-112) $ (-1179) (-1141))) (-15 -2749 ((-112) $ (-1141)))) -((-4394 (((-1293) $ (-835)) 12)) (-3072 (((-1293) $ (-1197)) 32)) (-3284 (((-1293) $ (-1179) (-1179)) 34)) (-2323 (((-1293) $ (-1179)) 33)) (-1749 (((-1293) $) 19)) (-2629 (((-1293) $ (-576)) 28)) (-2670 (((-1293) $ (-227)) 30)) (-3945 (((-1293) $) 18)) (-3839 (((-1293) $) 26)) (-3176 (((-1293) $) 25)) (-4194 (((-1293) $) 23)) (-4090 (((-1293) $) 24)) (-4030 (((-1293) $) 22)) (-2581 (((-1293) $) 21)) (-3941 (((-1293) $) 20)) (-4064 (((-1293) $) 16)) (-3776 (((-1293) $) 17)) (-3450 (((-1293) $) 15)) (-1844 (((-1293) $) 14)) (-3520 (((-1293) $) 13)) (-4088 (($ (-1179) (-835)) 9)) (-1922 (($ (-1179) (-1179) (-835)) 8)) (-3007 (((-1197) $) 51)) (-1387 (((-1197) $) 55)) (-4423 (((-2 (|:| |cd| (-1179)) (|:| -4149 (-1179))) $) 54)) (-2768 (((-1179) $) 52)) (-2378 (((-1293) $) 41)) (-2452 (((-576) $) 49)) (-3433 (((-227) $) 50)) (-3610 (((-1293) $) 40)) (-2373 (((-1293) $) 48)) (-3801 (((-1293) $) 47)) (-3584 (((-1293) $) 45)) (-1621 (((-1293) $) 46)) (-3639 (((-1293) $) 44)) (-2047 (((-1293) $) 43)) (-2903 (((-1293) $) 42)) (-1951 (((-1293) $) 38)) (-3129 (((-1293) $) 39)) (-1740 (((-1293) $) 37)) (-1713 (((-1293) $) 36)) (-2788 (((-1293) $) 35)) (-3463 (((-1293) $) 11))) -(((-834) (-10 -8 (-15 -1922 ($ (-1179) (-1179) (-835))) (-15 -4088 ($ (-1179) (-835))) (-15 -3463 ((-1293) $)) (-15 -4394 ((-1293) $ (-835))) (-15 -3520 ((-1293) $)) (-15 -1844 ((-1293) $)) (-15 -3450 ((-1293) $)) (-15 -4064 ((-1293) $)) (-15 -3776 ((-1293) $)) (-15 -3945 ((-1293) $)) (-15 -1749 ((-1293) $)) (-15 -3941 ((-1293) $)) (-15 -2581 ((-1293) $)) (-15 -4030 ((-1293) $)) (-15 -4194 ((-1293) $)) (-15 -4090 ((-1293) $)) (-15 -3176 ((-1293) $)) (-15 -3839 ((-1293) $)) (-15 -2629 ((-1293) $ (-576))) (-15 -2670 ((-1293) $ (-227))) (-15 -3072 ((-1293) $ (-1197))) (-15 -2323 ((-1293) $ (-1179))) (-15 -3284 ((-1293) $ (-1179) (-1179))) (-15 -2788 ((-1293) $)) (-15 -1713 ((-1293) $)) (-15 -1740 ((-1293) $)) (-15 -1951 ((-1293) $)) (-15 -3129 ((-1293) $)) (-15 -3610 ((-1293) $)) (-15 -2378 ((-1293) $)) (-15 -2903 ((-1293) $)) (-15 -2047 ((-1293) $)) (-15 -3639 ((-1293) $)) (-15 -3584 ((-1293) $)) (-15 -1621 ((-1293) $)) (-15 -3801 ((-1293) $)) (-15 -2373 ((-1293) $)) (-15 -2452 ((-576) $)) (-15 -3433 ((-227) $)) (-15 -3007 ((-1197) $)) (-15 -2768 ((-1179) $)) (-15 -4423 ((-2 (|:| |cd| (-1179)) (|:| -4149 (-1179))) $)) (-15 -1387 ((-1197) $)))) (T -834)) -((-1387 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834)))) (-4423 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1179)) (|:| -4149 (-1179)))) (-5 *1 (-834)))) (-2768 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-834)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834)))) (-2452 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834)))) (-2373 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3639 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3129 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1713 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3284 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-2323 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-3072 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-2670 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-2629 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1749 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4394 (*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1293)) (-5 *1 (-834)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834)))) (-4088 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834)))) (-1922 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834))))) -(-10 -8 (-15 -1922 ($ (-1179) (-1179) (-835))) (-15 -4088 ($ (-1179) (-835))) (-15 -3463 ((-1293) $)) (-15 -4394 ((-1293) $ (-835))) (-15 -3520 ((-1293) $)) (-15 -1844 ((-1293) $)) (-15 -3450 ((-1293) $)) (-15 -4064 ((-1293) $)) (-15 -3776 ((-1293) $)) (-15 -3945 ((-1293) $)) (-15 -1749 ((-1293) $)) (-15 -3941 ((-1293) $)) (-15 -2581 ((-1293) $)) (-15 -4030 ((-1293) $)) (-15 -4194 ((-1293) $)) (-15 -4090 ((-1293) $)) (-15 -3176 ((-1293) $)) (-15 -3839 ((-1293) $)) (-15 -2629 ((-1293) $ (-576))) (-15 -2670 ((-1293) $ (-227))) (-15 -3072 ((-1293) $ (-1197))) (-15 -2323 ((-1293) $ (-1179))) (-15 -3284 ((-1293) $ (-1179) (-1179))) (-15 -2788 ((-1293) $)) (-15 -1713 ((-1293) $)) (-15 -1740 ((-1293) $)) (-15 -1951 ((-1293) $)) (-15 -3129 ((-1293) $)) (-15 -3610 ((-1293) $)) (-15 -2378 ((-1293) $)) (-15 -2903 ((-1293) $)) (-15 -2047 ((-1293) $)) (-15 -3639 ((-1293) $)) (-15 -3584 ((-1293) $)) (-15 -1621 ((-1293) $)) (-15 -3801 ((-1293) $)) (-15 -2373 ((-1293) $)) (-15 -2452 ((-576) $)) (-15 -3433 ((-227) $)) (-15 -3007 ((-1197) $)) (-15 -2768 ((-1179) $)) (-15 -4423 ((-2 (|:| |cd| (-1179)) (|:| -4149 (-1179))) $)) (-15 -1387 ((-1197) $))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 13)) (-2950 (((-112) $ $) NIL)) (-3977 (($) 16)) (-2747 (($) 14)) (-2444 (($) 17)) (-3301 (($) 15)) (-3939 (((-112) $ $) 9))) -(((-835) (-13 (-1121) (-10 -8 (-15 -2747 ($)) (-15 -3977 ($)) (-15 -2444 ($)) (-15 -3301 ($))))) (T -835)) -((-2747 (*1 *1) (-5 *1 (-835))) (-3977 (*1 *1) (-5 *1 (-835))) (-2444 (*1 *1) (-5 *1 (-835))) (-3301 (*1 *1) (-5 *1 (-835)))) -(-13 (-1121) (-10 -8 (-15 -2747 ($)) (-15 -3977 ($)) (-15 -2444 ($)) (-15 -3301 ($)))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 23) (($ (-1197)) 19)) (-2950 (((-112) $ $) NIL)) (-2138 (((-112) $) 10)) (-2131 (((-112) $) 9)) (-3771 (((-112) $) 11)) (-3946 (((-112) $) 8)) (-3939 (((-112) $ $) 21))) -(((-836) (-13 (-1121) (-10 -8 (-15 -4113 ($ (-1197))) (-15 -3946 ((-112) $)) (-15 -2131 ((-112) $)) (-15 -2138 ((-112) $)) (-15 -3771 ((-112) $))))) (T -836)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-836)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(-13 (-1121) (-10 -8 (-15 -4113 ($ (-1197))) (-15 -3946 ((-112) $)) (-15 -2131 ((-112) $)) (-15 -2138 ((-112) $)) (-15 -3771 ((-112) $)))) -((-1957 (((-112) $ $) NIL)) (-1631 (($ (-836) (-656 (-1197))) 32)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1363 (((-836) $) 33)) (-1376 (((-656 (-1197)) $) 34)) (-4113 (((-876) $) 31)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-837) (-13 (-1121) (-10 -8 (-15 -1363 ((-836) $)) (-15 -1376 ((-656 (-1197)) $)) (-15 -1631 ($ (-836) (-656 (-1197))))))) (T -837)) -((-1363 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-837)))) (-1631 (*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1197))) (-5 *1 (-837))))) -(-13 (-1121) (-10 -8 (-15 -1363 ((-836) $)) (-15 -1376 ((-656 (-1197)) $)) (-15 -1631 ($ (-836) (-656 (-1197)))))) -((-2172 (((-1293) (-834) (-326 |#1|) (-112)) 23) (((-1293) (-834) (-326 |#1|)) 89) (((-1179) (-326 |#1|) (-112)) 88) (((-1179) (-326 |#1|)) 87))) -(((-838 |#1|) (-10 -7 (-15 -2172 ((-1179) (-326 |#1|))) (-15 -2172 ((-1179) (-326 |#1|) (-112))) (-15 -2172 ((-1293) (-834) (-326 |#1|))) (-15 -2172 ((-1293) (-834) (-326 |#1|) (-112)))) (-13 (-840) (-1070))) (T -838)) -((-2172 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-840) (-1070))) (-5 *2 (-1293)) (-5 *1 (-838 *6)))) (-2172 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1070))) (-5 *2 (-1293)) (-5 *1 (-838 *5)))) (-2172 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1070))) (-5 *2 (-1179)) (-5 *1 (-838 *5)))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1070))) (-5 *2 (-1179)) (-5 *1 (-838 *4))))) -(-10 -7 (-15 -2172 ((-1179) (-326 |#1|))) (-15 -2172 ((-1179) (-326 |#1|) (-112))) (-15 -2172 ((-1293) (-834) (-326 |#1|))) (-15 -2172 ((-1293) (-834) (-326 |#1|) (-112)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-3285 ((|#1| $) 10)) (-3961 (($ |#1|) 9)) (-2486 (((-112) $) NIL)) (-1564 (($ |#2| (-783)) NIL)) (-2192 (((-783) $) NIL)) (-1711 ((|#2| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4107 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-2196 (((-783) $) NIL)) (-4113 (((-876) $) 17) (($ (-576)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-2707 ((|#2| $ (-783)) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-839 |#1| |#2|) (-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -3961 ($ |#1|)) (-15 -3285 (|#1| $)))) (-720 |#2|) (-1070)) (T -839)) -((-3961 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3)))) (-3285 (*1 *2 *1) (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1070))))) -(-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -3961 ($ |#1|)) (-15 -3285 (|#1| $)))) -((-2172 (((-1293) (-834) $ (-112)) 9) (((-1293) (-834) $) 8) (((-1179) $ (-112)) 7) (((-1179) $) 6))) -(((-840) (-141)) (T -840)) -((-2172 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1293)))) (-2172 (*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1293)))) (-2172 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1179)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1179))))) -(-13 (-10 -8 (-15 -2172 ((-1179) $)) (-15 -2172 ((-1179) $ (-112))) (-15 -2172 ((-1293) (-834) $)) (-15 -2172 ((-1293) (-834) $ (-112))))) -((-4258 (((-322) (-1179) (-1179)) 12)) (-2817 (((-112) (-1179) (-1179)) 34)) (-2472 (((-112) (-1179)) 33)) (-4403 (((-52) (-1179)) 25)) (-3056 (((-52) (-1179)) 23)) (-4042 (((-52) (-834)) 17)) (-4028 (((-656 (-1179)) (-1179)) 28)) (-2274 (((-656 (-1179))) 27))) -(((-841) (-10 -7 (-15 -4042 ((-52) (-834))) (-15 -3056 ((-52) (-1179))) (-15 -4403 ((-52) (-1179))) (-15 -2274 ((-656 (-1179)))) (-15 -4028 ((-656 (-1179)) (-1179))) (-15 -2472 ((-112) (-1179))) (-15 -2817 ((-112) (-1179) (-1179))) (-15 -4258 ((-322) (-1179) (-1179))))) (T -841)) -((-4258 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-841)))) (-2817 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841)))) (-4028 (*1 *2 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841)) (-5 *3 (-1179)))) (-2274 (*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841)))) (-4403 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) -(-10 -7 (-15 -4042 ((-52) (-834))) (-15 -3056 ((-52) (-1179))) (-15 -4403 ((-52) (-1179))) (-15 -2274 ((-656 (-1179)))) (-15 -4028 ((-656 (-1179)) (-1179))) (-15 -2472 ((-112) (-1179))) (-15 -2817 ((-112) (-1179) (-1179))) (-15 -4258 ((-322) (-1179) (-1179)))) -((-1957 (((-112) $ $) 20)) (-4025 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-1831 (($ $ $) 73)) (-4084 (((-112) $ $) 74)) (-4234 (((-112) $ (-783)) 8)) (-3704 (($ (-656 |#1|)) 69) (($) 68)) (-1954 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-1942 (($ $) 63)) (-3841 (($ $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3872 (($ |#1| $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4464)))) (-2825 (($ |#1| $) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4464)))) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-2779 (((-112) $ $) 65)) (-3215 (((-112) $ (-783)) 9)) (-2907 ((|#1| $) 79)) (-2745 (($ $ $) 82)) (-2748 (($ $ $) 81)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3777 ((|#1| $) 80)) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23)) (-1431 (($ $ $) 70)) (-3743 ((|#1| $) 40)) (-3695 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3116 (((-1141) $) 22)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2372 ((|#1| $) 42)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4071 (((-656 (-2 (|:| -2905 |#1|) (|:| -3127 (-783)))) $) 62)) (-3198 (($ $ |#1|) 72) (($ $ $) 71)) (-3091 (($) 50) (($ (-656 |#1|)) 49)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-1556 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 51)) (-4113 (((-876) $) 18)) (-1515 (($ (-656 |#1|)) 67) (($) 66)) (-2950 (((-112) $ $) 21)) (-4156 (($ (-656 |#1|)) 43)) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19)) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-842 |#1|) (-141) (-861)) (T -842)) -((-2907 (*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-861))))) -(-13 (-748 |t#1|) (-989 |t#1|) (-10 -8 (-15 -2907 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-876)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-707 |#1|) . T) ((-748 |#1|) . T) ((-989 |#1|) . T) ((-1119 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-4068 (((-1293) (-1141) (-1141)) 48)) (-2465 (((-1293) (-833) (-52)) 45)) (-1680 (((-52) (-833)) 16))) -(((-843) (-10 -7 (-15 -1680 ((-52) (-833))) (-15 -2465 ((-1293) (-833) (-52))) (-15 -4068 ((-1293) (-1141) (-1141))))) (T -843)) -((-4068 (*1 *2 *3 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-1293)) (-5 *1 (-843)))) (-2465 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1293)) (-5 *1 (-843)))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) -(-10 -7 (-15 -1680 ((-52) (-833))) (-15 -2465 ((-1293) (-833) (-52))) (-15 -4068 ((-1293) (-1141) (-1141)))) -((-2423 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)) 12) (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 13))) -(((-844 |#1| |#2|) (-10 -7 (-15 -2423 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -2423 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) (-1121) (-1121)) (T -844)) -((-2423 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-844 *5 *6)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6))))) -(-10 -7 (-15 -2423 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -2423 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL (|has| |#1| (-21)))) (-1765 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1527 (((-576) $) NIL (|has| |#1| (-860)))) (-3170 (($) NIL (|has| |#1| (-21)) CONST)) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 15)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 9)) (-1851 (((-3 $ "failed") $) 42 (|has| |#1| (-860)))) (-3526 (((-3 (-419 (-576)) "failed") $) 52 (|has| |#1| (-557)))) (-4063 (((-112) $) 46 (|has| |#1| (-557)))) (-1400 (((-419 (-576)) $) 49 (|has| |#1| (-557)))) (-2279 (((-112) $) NIL (|has| |#1| (-860)))) (-2486 (((-112) $) NIL (|has| |#1| (-860)))) (-3323 (((-112) $) NIL (|has| |#1| (-860)))) (-2907 (($ $ $) NIL (|has| |#1| (-860)))) (-3777 (($ $ $) NIL (|has| |#1| (-860)))) (-2447 (((-1179) $) NIL)) (-2737 (($) 13)) (-3376 (((-112) $) 12)) (-3116 (((-1141) $) NIL)) (-3614 (((-112) $) 11)) (-4113 (((-876) $) 18) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-3795 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))))) (-2910 (((-783)) 36 (|has| |#1| (-860)) CONST)) (-2950 (((-112) $ $) 54)) (-2366 (($ $) NIL (|has| |#1| (-860)))) (-4313 (($) 23 (|has| |#1| (-21)) CONST)) (-4322 (($) 33 (|has| |#1| (-860)) CONST)) (-3995 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3939 (((-112) $ $) 21)) (-3984 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3963 (((-112) $ $) 45 (|has| |#1| (-860)))) (-4037 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-4026 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-940)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 39 (|has| |#1| (-860))) (($ (-576) $) 27 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-940) $) NIL (|has| |#1| (-21))))) -(((-845 |#1|) (-13 (-1121) (-423 |#1|) (-10 -8 (-15 -2737 ($)) (-15 -3614 ((-112) $)) (-15 -3376 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -4063 ((-112) $)) (-15 -1400 ((-419 (-576)) $)) (-15 -3526 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1121)) (T -845)) -((-2737 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1121)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-3526 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121))))) -(-13 (-1121) (-423 |#1|) (-10 -8 (-15 -2737 ($)) (-15 -3614 ((-112) $)) (-15 -3376 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -4063 ((-112) $)) (-15 -1400 ((-419 (-576)) $)) (-15 -3526 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -((-4227 (((-112) $ |#2|) 14)) (-4113 (((-876) $) 11))) -(((-846 |#1| |#2|) (-10 -8 (-15 -4227 ((-112) |#1| |#2|)) (-15 -4113 ((-876) |#1|))) (-847 |#2|) (-1121)) (T -846)) -NIL -(-10 -8 (-15 -4227 ((-112) |#1| |#2|)) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-4149 ((|#1| $) 16)) (-2447 (((-1179) $) 10)) (-4227 (((-112) $ |#1|) 14)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-2771 (((-55) $) 15)) (-3939 (((-112) $ $) 8))) -(((-847 |#1|) (-141) (-1121)) (T -847)) -((-4149 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1121)))) (-2771 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-55)))) (-4227 (*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(-13 (-1121) (-10 -8 (-15 -4149 (|t#1| $)) (-15 -2771 ((-55) $)) (-15 -4227 ((-112) $ |t#1|)))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2317 ((|#1| $) NIL) (((-115) $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4217 ((|#1| (-115) |#1|) NIL)) (-2486 (((-112) $) NIL)) (-3016 (($ |#1| (-372 (-115))) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2706 (($ $ (-1 |#1| |#1|)) NIL)) (-3857 (($ $ (-1 |#1| |#1|)) NIL)) (-4369 ((|#1| $ |#1|) NIL)) (-1882 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2247 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-848 |#1|) (-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2247 ($ $)) (-15 -2247 ($ $ $)) (-15 -1882 (|#1| |#1|))) |%noBranch|) (-15 -3857 ($ $ (-1 |#1| |#1|))) (-15 -2706 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -4217 (|#1| (-115) |#1|)) (-15 -3016 ($ |#1| (-372 (-115)))))) (-1070)) (T -848)) -((-2247 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) (-2247 (*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) (-1882 (*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) (-3857 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3)))) (-2706 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1070)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1070)))) (-4217 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1070)))) (-3016 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1070))))) -(-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2247 ($ $)) (-15 -2247 ($ $ $)) (-15 -1882 (|#1| |#1|))) |%noBranch|) (-15 -3857 ($ $ (-1 |#1| |#1|))) (-15 -2706 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -4217 (|#1| (-115) |#1|)) (-15 -3016 ($ |#1| (-372 (-115)))))) -((-1688 (((-216 (-514)) (-1179)) 9))) -(((-849) (-10 -7 (-15 -1688 ((-216 (-514)) (-1179))))) (T -849)) -((-1688 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) -(-10 -7 (-15 -1688 ((-216 (-514)) (-1179)))) -((-1957 (((-112) $ $) NIL)) (-3514 (((-1139) $) 10)) (-4149 (((-518) $) 9)) (-2447 (((-1179) $) NIL)) (-4227 (((-112) $ (-518)) NIL)) (-3116 (((-1141) $) NIL)) (-4125 (($ (-518) (-1139)) 8)) (-4113 (((-876) $) 25)) (-2950 (((-112) $ $) NIL)) (-2771 (((-55) $) 20)) (-3939 (((-112) $ $) 12))) -(((-850) (-13 (-847 (-518)) (-10 -8 (-15 -3514 ((-1139) $)) (-15 -4125 ($ (-518) (-1139)))))) (T -850)) -((-3514 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-850)))) (-4125 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-850))))) -(-13 (-847 (-518)) (-10 -8 (-15 -3514 ((-1139) $)) (-15 -4125 ($ (-518) (-1139))))) -((-1957 (((-112) $ $) 7)) (-1822 (((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 15) (((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 17) (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 16)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) -(((-851) (-141)) (T -851)) -((-1952 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)))))) (-1952 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) (-5 *2 (-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)))))) (-1822 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) (-5 *2 (-1056)))) (-1822 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-1056))))) -(-13 (-1121) (-10 -7 (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -1822 ((-1056) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -1822 ((-1056) (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1691 (((-1056) (-656 (-326 (-390))) (-656 (-390))) 166) (((-1056) (-326 (-390)) (-656 (-390))) 164) (((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390)))) 162) (((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390)))) 160) (((-1056) (-853)) 125) (((-1056) (-853) (-1084)) 124)) (-1952 (((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853) (-1084)) 85) (((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853)) 87)) (-3298 (((-1056) (-656 (-326 (-390))) (-656 (-390))) 167) (((-1056) (-853)) 150))) -(((-852) (-10 -7 (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853) (-1084))) (-15 -1691 ((-1056) (-853) (-1084))) (-15 -1691 ((-1056) (-853))) (-15 -3298 ((-1056) (-853))) (-15 -1691 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -1691 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -1691 ((-1056) (-326 (-390)) (-656 (-390)))) (-15 -1691 ((-1056) (-656 (-326 (-390))) (-656 (-390)))) (-15 -3298 ((-1056) (-656 (-326 (-390))) (-656 (-390)))))) (T -852)) -((-3298 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-1691 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-1691 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1056)) (-5 *1 (-852)))) (-3298 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-852)))) (-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-852)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-852))))) -(-10 -7 (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-853) (-1084))) (-15 -1691 ((-1056) (-853) (-1084))) (-15 -1691 ((-1056) (-853))) (-15 -3298 ((-1056) (-853))) (-15 -1691 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -1691 ((-1056) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -1691 ((-1056) (-326 (-390)) (-656 (-390)))) (-15 -1691 ((-1056) (-656 (-326 (-390))) (-656 (-390)))) (-15 -3298 ((-1056) (-656 (-326 (-390))) (-656 (-390))))) -((-1957 (((-112) $ $) NIL)) (-2317 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) $) 21)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 20) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14) (($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))))) 18)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-853) (-13 (-1121) (-10 -8 (-15 -4113 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -4113 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -4113 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))))) (-15 -2317 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) $))))) (T -853)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-853)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) (-5 *1 (-853)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))))) (-5 *1 (-853)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))))) (-5 *1 (-853))))) -(-13 (-1121) (-10 -8 (-15 -4113 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -4113 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) (-15 -4113 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))))) (-15 -2317 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227)))))) $)))) -((-2423 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)) 13) (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14))) -(((-854 |#1| |#2|) (-10 -7 (-15 -2423 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -2423 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) (-1121) (-1121)) (T -854)) -((-2423 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-854 *5 *6)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))) -(-10 -7 (-15 -2423 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -2423 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL (|has| |#1| (-21)))) (-3066 (((-1141) $) 31)) (-1765 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1527 (((-576) $) NIL (|has| |#1| (-860)))) (-3170 (($) NIL (|has| |#1| (-21)) CONST)) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 18)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 9)) (-1851 (((-3 $ "failed") $) 58 (|has| |#1| (-860)))) (-3526 (((-3 (-419 (-576)) "failed") $) 65 (|has| |#1| (-557)))) (-4063 (((-112) $) 60 (|has| |#1| (-557)))) (-1400 (((-419 (-576)) $) 63 (|has| |#1| (-557)))) (-2279 (((-112) $) NIL (|has| |#1| (-860)))) (-4356 (($) 14)) (-2486 (((-112) $) NIL (|has| |#1| (-860)))) (-3323 (((-112) $) NIL (|has| |#1| (-860)))) (-4365 (($) 16)) (-2907 (($ $ $) NIL (|has| |#1| (-860)))) (-3777 (($ $ $) NIL (|has| |#1| (-860)))) (-2447 (((-1179) $) NIL)) (-3376 (((-112) $) 12)) (-3116 (((-1141) $) NIL)) (-3614 (((-112) $) 11)) (-4113 (((-876) $) 24) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-3795 (|has| |#1| (-860)) (|has| |#1| (-1059 (-576)))))) (-2910 (((-783)) 51 (|has| |#1| (-860)) CONST)) (-2950 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| |#1| (-860)))) (-4313 (($) 37 (|has| |#1| (-21)) CONST)) (-4322 (($) 48 (|has| |#1| (-860)) CONST)) (-3995 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3939 (((-112) $ $) 35)) (-3984 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3963 (((-112) $ $) 59 (|has| |#1| (-860)))) (-4037 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-4026 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-940)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 55 (|has| |#1| (-860))) (($ (-576) $) 42 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-940) $) NIL (|has| |#1| (-21))))) -(((-855 |#1|) (-13 (-1121) (-423 |#1|) (-10 -8 (-15 -4356 ($)) (-15 -4365 ($)) (-15 -3614 ((-112) $)) (-15 -3376 ((-112) $)) (-15 -3066 ((-1141) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -4063 ((-112) $)) (-15 -1400 ((-419 (-576)) $)) (-15 -3526 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1121)) (T -855)) -((-4356 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121)))) (-4365 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121)))) (-3066 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-855 *3)) (-4 *3 (-1121)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-3526 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121))))) -(-13 (-1121) (-423 |#1|) (-10 -8 (-15 -4356 ($)) (-15 -4365 ($)) (-15 -3614 ((-112) $)) (-15 -3376 ((-112) $)) (-15 -3066 ((-1141) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -4063 ((-112) $)) (-15 -1400 ((-419 (-576)) $)) (-15 -3526 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -((-1957 (((-112) $ $) 7)) (-2201 (((-783)) 24)) (-4370 (($) 27)) (-2907 (($ $ $) 20) (($) 23 T CONST)) (-3777 (($ $ $) 19) (($) 22 T CONST)) (-3787 (((-940) $) 26)) (-2447 (((-1179) $) 10)) (-2411 (($ (-940)) 25)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3995 (((-112) $ $) 18)) (-3975 (((-112) $ $) 16)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 17)) (-3963 (((-112) $ $) 15))) -(((-856) (-141)) (T -856)) -((-2907 (*1 *1) (-4 *1 (-856))) (-3777 (*1 *1) (-4 *1 (-856)))) -(-13 (-861) (-379) (-10 -8 (-15 -2907 ($) -2666) (-15 -3777 ($) -2666))) -(((-102) . T) ((-625 (-876)) . T) ((-379) . T) ((-861) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-2134 (((-112) (-1288 |#2|) (-1288 |#2|)) 19)) (-3556 (((-112) (-1288 |#2|) (-1288 |#2|)) 20)) (-4089 (((-112) (-1288 |#2|) (-1288 |#2|)) 16))) -(((-857 |#1| |#2|) (-10 -7 (-15 -4089 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -2134 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -3556 ((-112) (-1288 |#2|) (-1288 |#2|)))) (-783) (-804)) (T -857)) -((-3556 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-2134 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-4089 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(-10 -7 (-15 -4089 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -2134 ((-112) (-1288 |#2|) (-1288 |#2|))) (-15 -3556 ((-112) (-1288 |#2|) (-1288 |#2|)))) -((-1957 (((-112) $ $) 7)) (-3170 (($) 25 T CONST)) (-1851 (((-3 $ "failed") $) 28)) (-2486 (((-112) $) 26)) (-2907 (($ $ $) 20)) (-3777 (($ $ $) 19)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4322 (($) 24 T CONST)) (-3995 (((-112) $ $) 18)) (-3975 (((-112) $ $) 16)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 17)) (-3963 (((-112) $ $) 15)) (** (($ $ (-940)) 23) (($ $ (-783)) 27)) (* (($ $ $) 22))) -(((-858) (-141)) (T -858)) -NIL -(-13 (-871) (-738)) -(((-102) . T) ((-625 (-876)) . T) ((-738) . T) ((-871) . T) ((-861) . T) ((-864) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1527 (((-576) $) 21)) (-2279 (((-112) $) 10)) (-3323 (((-112) $) 12)) (-2366 (($ $) 23))) -(((-859 |#1|) (-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -1527 ((-576) |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -2279 ((-112) |#1|))) (-860)) (T -859)) -NIL -(-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -1527 ((-576) |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -2279 ((-112) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 26)) (-1765 (((-3 $ "failed") $ $) 28)) (-1527 (((-576) $) 38)) (-3170 (($) 25 T CONST)) (-1851 (((-3 $ "failed") $) 43)) (-2279 (((-112) $) 40)) (-2486 (((-112) $) 45)) (-3323 (((-112) $) 39)) (-2907 (($ $ $) 20)) (-3777 (($ $ $) 19)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-576)) 47)) (-2910 (((-783)) 48 T CONST)) (-2950 (((-112) $ $) 6)) (-2366 (($ $) 37)) (-4313 (($) 24 T CONST)) (-4322 (($) 46 T CONST)) (-3995 (((-112) $ $) 18)) (-3975 (((-112) $ $) 16)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 17)) (-3963 (((-112) $ $) 15)) (-4037 (($ $ $) 32) (($ $) 31)) (-4026 (($ $ $) 22)) (** (($ $ (-783)) 44) (($ $ (-940)) 41)) (* (($ (-940) $) 23) (($ (-783) $) 27) (($ (-576) $) 30) (($ $ $) 42))) -(((-860) (-141)) (T -860)) -((-2279 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) (-2366 (*1 *1 *1) (-4 *1 (-860)))) -(-13 (-803) (-1070) (-738) (-10 -8 (-15 -2279 ((-112) $)) (-15 -3323 ((-112) $)) (-15 -1527 ((-576) $)) (-15 -2366 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-861) . T) ((-864) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-2907 (($ $ $) 20)) (-3777 (($ $ $) 19)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3995 (((-112) $ $) 18)) (-3975 (((-112) $ $) 16)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 17)) (-3963 (((-112) $ $) 15))) +((-3423 (((-112) $ $) NIL)) (-3375 (((-657 |#1|) $) 38)) (-2148 (((-784) $) NIL)) (-2515 (($) NIL T CONST)) (-2186 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1593 (((-3 |#1| "failed") $) NIL)) (-2830 ((|#1| $) NIL)) (-3542 (($ $) 42)) (-3969 (((-3 $ "failed") $) NIL)) (-3394 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3994 (((-112) $) NIL)) (-1656 ((|#1| $ (-576)) NIL)) (-3640 (((-784) $ (-576)) NIL)) (-2774 (($ $) 54)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-3865 (($ (-1 |#1| |#1|) $) NIL)) (-1555 (($ (-1 (-784) (-784)) $) NIL)) (-3532 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-3630 (((-112) $ $) 51)) (-3041 (((-784) $) 34)) (-1708 (((-1180) $) NIL)) (-3221 (($ $ $) NIL)) (-1536 (($ $ $) NIL)) (-1460 (((-1142) $) NIL)) (-3528 ((|#1| $) 41)) (-1502 (((-657 (-2 (|:| |gen| |#1|) (|:| -4056 (-784)))) $) NIL)) (-3977 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3396 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3515 (((-877) $) NIL) (($ |#1|) NIL)) (-4166 (((-112) $ $) NIL)) (-2725 (($) 20 T CONST)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 53)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ |#1| (-784)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-832 |#1|) (-13 (-397 |#1|) (-859) (-10 -8 (-15 -3528 (|#1| $)) (-15 -3542 ($ $)) (-15 -2774 ($ $)) (-15 -3630 ((-112) $ $)) (-15 -3532 ((-3 $ "failed") $ |#1|)) (-15 -2186 ((-3 $ "failed") $ |#1|)) (-15 -3396 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3041 ((-784) $)) (-15 -3375 ((-657 |#1|) $)))) (-862)) (T -832)) +((-3528 (*1 *2 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) (-3542 (*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) (-2774 (*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) (-3630 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832 *3)) (-4 *3 (-862)))) (-3532 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) (-2186 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) (-3396 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-832 *3)) (|:| |rm| (-832 *3)))) (-5 *1 (-832 *3)) (-4 *3 (-862)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-832 *3)) (-4 *3 (-862)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-832 *3)) (-4 *3 (-862))))) +(-13 (-397 |#1|) (-859) (-10 -8 (-15 -3528 (|#1| $)) (-15 -3542 ($ $)) (-15 -2774 ($ $)) (-15 -3630 ((-112) $ $)) (-15 -3532 ((-3 $ "failed") $ |#1|)) (-15 -2186 ((-3 $ "failed") $ |#1|)) (-15 -3396 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3041 ((-784) $)) (-15 -3375 ((-657 |#1|) $)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-3922 (((-576) $) 60)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3810 (((-112) $) 58)) (-3994 (((-112) $) 35)) (-3517 (((-112) $) 59)) (-3740 (($ $ $) 52)) (-2249 (($ $ $) 53)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3409 (((-3 $ "failed") $ $) 48)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2127 (($ $) 61)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2938 (((-112) $ $) 54)) (-2913 (((-112) $ $) 56)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 55)) (-2901 (((-112) $ $) 57)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-833) (-141)) (T -833)) +NIL +(-13 (-568) (-861)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-804) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-861) . T) ((-862) . T) ((-865) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-2664 (($ (-1142)) 7)) (-4366 (((-112) $ (-1180) (-1142)) 15)) (-3236 (((-835) $) 12)) (-3997 (((-835) $) 11)) (-3573 (((-1294) $) 9)) (-1670 (((-112) $ (-1142)) 16))) +(((-834) (-10 -8 (-15 -2664 ($ (-1142))) (-15 -3573 ((-1294) $)) (-15 -3997 ((-835) $)) (-15 -3236 ((-835) $)) (-15 -4366 ((-112) $ (-1180) (-1142))) (-15 -1670 ((-112) $ (-1142))))) (T -834)) +((-1670 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-834)))) (-4366 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-1142)) (-5 *2 (-112)) (-5 *1 (-834)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-834)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-834)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-834)))) (-2664 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-834))))) +(-10 -8 (-15 -2664 ($ (-1142))) (-15 -3573 ((-1294) $)) (-15 -3997 ((-835) $)) (-15 -3236 ((-835) $)) (-15 -4366 ((-112) $ (-1180) (-1142))) (-15 -1670 ((-112) $ (-1142)))) +((-3293 (((-1294) $ (-836)) 12)) (-2825 (((-1294) $ (-1198)) 32)) (-4410 (((-1294) $ (-1180) (-1180)) 34)) (-2915 (((-1294) $ (-1180)) 33)) (-2281 (((-1294) $) 19)) (-2935 (((-1294) $ (-576)) 28)) (-2135 (((-1294) $ (-227)) 30)) (-1443 (((-1294) $) 18)) (-1601 (((-1294) $) 26)) (-2570 (((-1294) $) 25)) (-1987 (((-1294) $) 23)) (-2245 (((-1294) $) 24)) (-2804 (((-1294) $) 22)) (-3717 (((-1294) $) 21)) (-1406 (((-1294) $) 20)) (-3122 (((-1294) $) 16)) (-2238 (((-1294) $) 17)) (-2273 (((-1294) $) 15)) (-3895 (((-1294) $) 14)) (-1707 (((-1294) $) 13)) (-2224 (($ (-1180) (-836)) 9)) (-3358 (($ (-1180) (-1180) (-836)) 8)) (-3424 (((-1198) $) 51)) (-4313 (((-1198) $) 55)) (-2432 (((-2 (|:| |cd| (-1180)) (|:| -2634 (-1180))) $) 54)) (-1821 (((-1180) $) 52)) (-2253 (((-1294) $) 41)) (-1748 (((-576) $) 49)) (-2138 (((-227) $) 50)) (-4416 (((-1294) $) 40)) (-2198 (((-1294) $) 48)) (-2461 (((-1294) $) 47)) (-4168 (((-1294) $) 45)) (-3543 (((-1294) $) 46)) (-3399 (((-1294) $) 44)) (-2101 (((-1294) $) 43)) (-3788 (((-1294) $) 42)) (-3691 (((-1294) $) 38)) (-2145 (((-1294) $) 39)) (-2183 (((-1294) $) 37)) (-3068 (((-1294) $) 36)) (-2004 (((-1294) $) 35)) (-2383 (((-1294) $) 11))) +(((-835) (-10 -8 (-15 -3358 ($ (-1180) (-1180) (-836))) (-15 -2224 ($ (-1180) (-836))) (-15 -2383 ((-1294) $)) (-15 -3293 ((-1294) $ (-836))) (-15 -1707 ((-1294) $)) (-15 -3895 ((-1294) $)) (-15 -2273 ((-1294) $)) (-15 -3122 ((-1294) $)) (-15 -2238 ((-1294) $)) (-15 -1443 ((-1294) $)) (-15 -2281 ((-1294) $)) (-15 -1406 ((-1294) $)) (-15 -3717 ((-1294) $)) (-15 -2804 ((-1294) $)) (-15 -1987 ((-1294) $)) (-15 -2245 ((-1294) $)) (-15 -2570 ((-1294) $)) (-15 -1601 ((-1294) $)) (-15 -2935 ((-1294) $ (-576))) (-15 -2135 ((-1294) $ (-227))) (-15 -2825 ((-1294) $ (-1198))) (-15 -2915 ((-1294) $ (-1180))) (-15 -4410 ((-1294) $ (-1180) (-1180))) (-15 -2004 ((-1294) $)) (-15 -3068 ((-1294) $)) (-15 -2183 ((-1294) $)) (-15 -3691 ((-1294) $)) (-15 -2145 ((-1294) $)) (-15 -4416 ((-1294) $)) (-15 -2253 ((-1294) $)) (-15 -3788 ((-1294) $)) (-15 -2101 ((-1294) $)) (-15 -3399 ((-1294) $)) (-15 -4168 ((-1294) $)) (-15 -3543 ((-1294) $)) (-15 -2461 ((-1294) $)) (-15 -2198 ((-1294) $)) (-15 -1748 ((-576) $)) (-15 -2138 ((-227) $)) (-15 -3424 ((-1198) $)) (-15 -1821 ((-1180) $)) (-15 -2432 ((-2 (|:| |cd| (-1180)) (|:| -2634 (-1180))) $)) (-15 -4313 ((-1198) $)))) (T -835)) +((-4313 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-835)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1180)) (|:| -2634 (-1180)))) (-5 *1 (-835)))) (-1821 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-835)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-835)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-835)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-835)))) (-2198 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3788 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2253 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-4416 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-4410 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-835)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-835)))) (-2825 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-835)))) (-2135 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1294)) (-5 *1 (-835)))) (-2935 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-835)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2245 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3293 (*1 *2 *1 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1294)) (-5 *1 (-835)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2224 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-836)) (-5 *1 (-835)))) (-3358 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-836)) (-5 *1 (-835))))) +(-10 -8 (-15 -3358 ($ (-1180) (-1180) (-836))) (-15 -2224 ($ (-1180) (-836))) (-15 -2383 ((-1294) $)) (-15 -3293 ((-1294) $ (-836))) (-15 -1707 ((-1294) $)) (-15 -3895 ((-1294) $)) (-15 -2273 ((-1294) $)) (-15 -3122 ((-1294) $)) (-15 -2238 ((-1294) $)) (-15 -1443 ((-1294) $)) (-15 -2281 ((-1294) $)) (-15 -1406 ((-1294) $)) (-15 -3717 ((-1294) $)) (-15 -2804 ((-1294) $)) (-15 -1987 ((-1294) $)) (-15 -2245 ((-1294) $)) (-15 -2570 ((-1294) $)) (-15 -1601 ((-1294) $)) (-15 -2935 ((-1294) $ (-576))) (-15 -2135 ((-1294) $ (-227))) (-15 -2825 ((-1294) $ (-1198))) (-15 -2915 ((-1294) $ (-1180))) (-15 -4410 ((-1294) $ (-1180) (-1180))) (-15 -2004 ((-1294) $)) (-15 -3068 ((-1294) $)) (-15 -2183 ((-1294) $)) (-15 -3691 ((-1294) $)) (-15 -2145 ((-1294) $)) (-15 -4416 ((-1294) $)) (-15 -2253 ((-1294) $)) (-15 -3788 ((-1294) $)) (-15 -2101 ((-1294) $)) (-15 -3399 ((-1294) $)) (-15 -4168 ((-1294) $)) (-15 -3543 ((-1294) $)) (-15 -2461 ((-1294) $)) (-15 -2198 ((-1294) $)) (-15 -1748 ((-576) $)) (-15 -2138 ((-227) $)) (-15 -3424 ((-1198) $)) (-15 -1821 ((-1180) $)) (-15 -2432 ((-2 (|:| |cd| (-1180)) (|:| -2634 (-1180))) $)) (-15 -4313 ((-1198) $))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 13)) (-4166 (((-112) $ $) NIL)) (-3561 (($) 16)) (-1651 (($) 14)) (-1675 (($) 17)) (-3274 (($) 15)) (-2881 (((-112) $ $) 9))) +(((-836) (-13 (-1122) (-10 -8 (-15 -1651 ($)) (-15 -3561 ($)) (-15 -1675 ($)) (-15 -3274 ($))))) (T -836)) +((-1651 (*1 *1) (-5 *1 (-836))) (-3561 (*1 *1) (-5 *1 (-836))) (-1675 (*1 *1) (-5 *1 (-836))) (-3274 (*1 *1) (-5 *1 (-836)))) +(-13 (-1122) (-10 -8 (-15 -1651 ($)) (-15 -3561 ($)) (-15 -1675 ($)) (-15 -3274 ($)))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 23) (($ (-1198)) 19)) (-4166 (((-112) $ $) NIL)) (-1785 (((-112) $) 10)) (-1713 (((-112) $) 9)) (-2180 (((-112) $) 11)) (-1452 (((-112) $) 8)) (-2881 (((-112) $ $) 21))) +(((-837) (-13 (-1122) (-10 -8 (-15 -3515 ($ (-1198))) (-15 -1452 ((-112) $)) (-15 -1713 ((-112) $)) (-15 -1785 ((-112) $)) (-15 -2180 ((-112) $))))) (T -837)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-837)))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837)))) (-1713 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837)))) (-1785 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) +(-13 (-1122) (-10 -8 (-15 -3515 ($ (-1198))) (-15 -1452 ((-112) $)) (-15 -1713 ((-112) $)) (-15 -1785 ((-112) $)) (-15 -2180 ((-112) $)))) +((-3423 (((-112) $ $) NIL)) (-3661 (($ (-837) (-657 (-1198))) 32)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3069 (((-837) $) 33)) (-3356 (((-657 (-1198)) $) 34)) (-3515 (((-877) $) 31)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-838) (-13 (-1122) (-10 -8 (-15 -3069 ((-837) $)) (-15 -3356 ((-657 (-1198)) $)) (-15 -3661 ($ (-837) (-657 (-1198))))))) (T -838)) +((-3069 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-838)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-838)))) (-3661 (*1 *1 *2 *3) (-12 (-5 *2 (-837)) (-5 *3 (-657 (-1198))) (-5 *1 (-838))))) +(-13 (-1122) (-10 -8 (-15 -3069 ((-837) $)) (-15 -3356 ((-657 (-1198)) $)) (-15 -3661 ($ (-837) (-657 (-1198)))))) +((-4019 (((-1294) (-835) (-326 |#1|) (-112)) 23) (((-1294) (-835) (-326 |#1|)) 89) (((-1180) (-326 |#1|) (-112)) 88) (((-1180) (-326 |#1|)) 87))) +(((-839 |#1|) (-10 -7 (-15 -4019 ((-1180) (-326 |#1|))) (-15 -4019 ((-1180) (-326 |#1|) (-112))) (-15 -4019 ((-1294) (-835) (-326 |#1|))) (-15 -4019 ((-1294) (-835) (-326 |#1|) (-112)))) (-13 (-841) (-1071))) (T -839)) +((-4019 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-835)) (-5 *4 (-326 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-841) (-1071))) (-5 *2 (-1294)) (-5 *1 (-839 *6)))) (-4019 (*1 *2 *3 *4) (-12 (-5 *3 (-835)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-841) (-1071))) (-5 *2 (-1294)) (-5 *1 (-839 *5)))) (-4019 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-841) (-1071))) (-5 *2 (-1180)) (-5 *1 (-839 *5)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-841) (-1071))) (-5 *2 (-1180)) (-5 *1 (-839 *4))))) +(-10 -7 (-15 -4019 ((-1180) (-326 |#1|))) (-15 -4019 ((-1180) (-326 |#1|) (-112))) (-15 -4019 ((-1294) (-835) (-326 |#1|))) (-15 -4019 ((-1294) (-835) (-326 |#1|) (-112)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-4424 ((|#1| $) 10)) (-1782 (($ |#1|) 9)) (-3994 (((-112) $) NIL)) (-1974 (($ |#2| (-784)) NIL)) (-4219 (((-784) $) NIL)) (-2141 ((|#2| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2209 (($ $) NIL (|has| |#1| (-238))) (($ $ (-784)) NIL (|has| |#1| (-238)))) (-4265 (((-784) $) NIL)) (-3515 (((-877) $) 17) (($ (-576)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-2498 ((|#2| $ (-784)) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $) NIL (|has| |#1| (-238))) (($ $ (-784)) NIL (|has| |#1| (-238)))) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-840 |#1| |#2|) (-13 (-721 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1782 ($ |#1|)) (-15 -4424 (|#1| $)))) (-721 |#2|) (-1071)) (T -840)) +((-1782 (*1 *1 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-840 *2 *3)) (-4 *2 (-721 *3)))) (-4424 (*1 *2 *1) (-12 (-4 *2 (-721 *3)) (-5 *1 (-840 *2 *3)) (-4 *3 (-1071))))) +(-13 (-721 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1782 ($ |#1|)) (-15 -4424 (|#1| $)))) +((-4019 (((-1294) (-835) $ (-112)) 9) (((-1294) (-835) $) 8) (((-1180) $ (-112)) 7) (((-1180) $) 6))) +(((-841) (-141)) (T -841)) +((-4019 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-841)) (-5 *3 (-835)) (-5 *4 (-112)) (-5 *2 (-1294)))) (-4019 (*1 *2 *3 *1) (-12 (-4 *1 (-841)) (-5 *3 (-835)) (-5 *2 (-1294)))) (-4019 (*1 *2 *1 *3) (-12 (-4 *1 (-841)) (-5 *3 (-112)) (-5 *2 (-1180)))) (-4019 (*1 *2 *1) (-12 (-4 *1 (-841)) (-5 *2 (-1180))))) +(-13 (-10 -8 (-15 -4019 ((-1180) $)) (-15 -4019 ((-1180) $ (-112))) (-15 -4019 ((-1294) (-835) $)) (-15 -4019 ((-1294) (-835) $ (-112))))) +((-1411 (((-322) (-1180) (-1180)) 12)) (-4211 (((-112) (-1180) (-1180)) 34)) (-1963 (((-112) (-1180)) 33)) (-2240 (((-52) (-1180)) 25)) (-2661 (((-52) (-1180)) 23)) (-2917 (((-52) (-835)) 17)) (-2784 (((-657 (-1180)) (-1180)) 28)) (-3754 (((-657 (-1180))) 27))) +(((-842) (-10 -7 (-15 -2917 ((-52) (-835))) (-15 -2661 ((-52) (-1180))) (-15 -2240 ((-52) (-1180))) (-15 -3754 ((-657 (-1180)))) (-15 -2784 ((-657 (-1180)) (-1180))) (-15 -1963 ((-112) (-1180))) (-15 -4211 ((-112) (-1180) (-1180))) (-15 -1411 ((-322) (-1180) (-1180))))) (T -842)) +((-1411 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-842)))) (-4211 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-112)) (-5 *1 (-842)))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-112)) (-5 *1 (-842)))) (-2784 (*1 *2 *3) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-842)) (-5 *3 (-1180)))) (-3754 (*1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-842)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-52)) (-5 *1 (-842)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-52)) (-5 *1 (-842)))) (-2917 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-52)) (-5 *1 (-842))))) +(-10 -7 (-15 -2917 ((-52) (-835))) (-15 -2661 ((-52) (-1180))) (-15 -2240 ((-52) (-1180))) (-15 -3754 ((-657 (-1180)))) (-15 -2784 ((-657 (-1180)) (-1180))) (-15 -1963 ((-112) (-1180))) (-15 -4211 ((-112) (-1180) (-1180))) (-15 -1411 ((-322) (-1180) (-1180)))) +((-3423 (((-112) $ $) 20)) (-1849 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-1855 (($ $ $) 73)) (-2176 (((-112) $ $) 74)) (-4284 (((-112) $ (-784)) 8)) (-2119 (($ (-657 |#1|)) 69) (($) 68)) (-3726 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-3588 (($ $) 63)) (-1620 (($ $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1920 (($ |#1| $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4466)))) (-3901 (($ |#1| $) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4466)))) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1919 (((-112) $ $) 65)) (-1786 (((-112) $ (-784)) 9)) (-3740 ((|#1| $) 79)) (-1631 (($ $ $) 82)) (-1661 (($ $ $) 81)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2249 ((|#1| $) 80)) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23)) (-3415 (($ $ $) 70)) (-3107 ((|#1| $) 40)) (-2701 (($ |#1| $) 41) (($ |#1| $ (-784)) 64)) (-1460 (((-1142) $) 22)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2184 ((|#1| $) 42)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-3193 (((-657 (-2 (|:| -4440 |#1|) (|:| -1469 (-784)))) $) 62)) (-1610 (($ $ |#1|) 72) (($ $ $) 71)) (-3009 (($) 50) (($ (-657 |#1|)) 49)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-4136 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 51)) (-3515 (((-877) $) 18)) (-1923 (($ (-657 |#1|)) 67) (($) 66)) (-4166 (((-112) $ $) 21)) (-1636 (($ (-657 |#1|)) 43)) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19)) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-843 |#1|) (-141) (-862)) (T -843)) +((-3740 (*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-862))))) +(-13 (-749 |t#1|) (-990 |t#1|) (-10 -8 (-15 -3740 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-877)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-708 |#1|) . T) ((-749 |#1|) . T) ((-990 |#1|) . T) ((-1120 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3160 (((-1294) (-1142) (-1142)) 48)) (-1891 (((-1294) (-834) (-52)) 45)) (-2801 (((-52) (-834)) 16))) +(((-844) (-10 -7 (-15 -2801 ((-52) (-834))) (-15 -1891 ((-1294) (-834) (-52))) (-15 -3160 ((-1294) (-1142) (-1142))))) (T -844)) +((-3160 (*1 *2 *3 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1294)) (-5 *1 (-844)))) (-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-52)) (-5 *2 (-1294)) (-5 *1 (-844)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-844))))) +(-10 -7 (-15 -2801 ((-52) (-834))) (-15 -1891 ((-1294) (-834) (-52))) (-15 -3160 ((-1294) (-1142) (-1142)))) +((-4071 (((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|) (-846 |#2|)) 12) (((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)) 13))) +(((-845 |#1| |#2|) (-10 -7 (-15 -4071 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|))) (-15 -4071 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|) (-846 |#2|)))) (-1122) (-1122)) (T -845)) +((-4071 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-846 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *1 (-845 *5 *6)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-846 *6)) (-5 *1 (-845 *5 *6))))) +(-10 -7 (-15 -4071 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|))) (-15 -4071 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|) (-846 |#2|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL (|has| |#1| (-21)))) (-2423 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3922 (((-576) $) NIL (|has| |#1| (-861)))) (-2515 (($) NIL (|has| |#1| (-21)) CONST)) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 15)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 9)) (-3969 (((-3 $ "failed") $) 42 (|has| |#1| (-861)))) (-1758 (((-3 (-419 (-576)) "failed") $) 52 (|has| |#1| (-557)))) (-3113 (((-112) $) 46 (|has| |#1| (-557)))) (-1842 (((-419 (-576)) $) 49 (|has| |#1| (-557)))) (-3810 (((-112) $) NIL (|has| |#1| (-861)))) (-3994 (((-112) $) NIL (|has| |#1| (-861)))) (-3517 (((-112) $) NIL (|has| |#1| (-861)))) (-3740 (($ $ $) NIL (|has| |#1| (-861)))) (-2249 (($ $ $) NIL (|has| |#1| (-861)))) (-1708 (((-1180) $) NIL)) (-1632 (($) 13)) (-2811 (((-112) $) 12)) (-1460 (((-1142) $) NIL)) (-1332 (((-112) $) 11)) (-3515 (((-877) $) 18) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2748 (|has| |#1| (-861)) (|has| |#1| (-1060 (-576)))))) (-3845 (((-784)) 36 (|has| |#1| (-861)) CONST)) (-4166 (((-112) $ $) 54)) (-2127 (($ $) NIL (|has| |#1| (-861)))) (-2716 (($) 23 (|has| |#1| (-21)) CONST)) (-2725 (($) 33 (|has| |#1| (-861)) CONST)) (-2938 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2881 (((-112) $ $) 21)) (-2925 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2901 (((-112) $ $) 45 (|has| |#1| (-861)))) (-2982 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-2971 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-941)) NIL (|has| |#1| (-861))) (($ $ (-784)) NIL (|has| |#1| (-861)))) (* (($ $ $) 39 (|has| |#1| (-861))) (($ (-576) $) 27 (|has| |#1| (-21))) (($ (-784) $) NIL (|has| |#1| (-21))) (($ (-941) $) NIL (|has| |#1| (-21))))) +(((-846 |#1|) (-13 (-1122) (-423 |#1|) (-10 -8 (-15 -1632 ($)) (-15 -1332 ((-112) $)) (-15 -2811 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3113 ((-112) $)) (-15 -1842 ((-419 (-576)) $)) (-15 -1758 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1122)) (T -846)) +((-1632 (*1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-1122)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846 *3)) (-4 *3 (-1122)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846 *3)) (-4 *3 (-1122)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) (-1842 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-846 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) (-1758 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-846 *3)) (-4 *3 (-557)) (-4 *3 (-1122))))) +(-13 (-1122) (-423 |#1|) (-10 -8 (-15 -1632 ($)) (-15 -1332 ((-112) $)) (-15 -2811 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3113 ((-112) $)) (-15 -1842 ((-419 (-576)) $)) (-15 -1758 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) +((-4216 (((-112) $ |#2|) 14)) (-3515 (((-877) $) 11))) +(((-847 |#1| |#2|) (-10 -8 (-15 -4216 ((-112) |#1| |#2|)) (-15 -3515 ((-877) |#1|))) (-848 |#2|) (-1122)) (T -847)) +NIL +(-10 -8 (-15 -4216 ((-112) |#1| |#2|)) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2634 ((|#1| $) 16)) (-1708 (((-1180) $) 10)) (-4216 (((-112) $ |#1|) 14)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-1853 (((-55) $) 15)) (-2881 (((-112) $ $) 8))) +(((-848 |#1|) (-141) (-1122)) (T -848)) +((-2634 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1122)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1122)) (-5 *2 (-55)))) (-4216 (*1 *2 *1 *3) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) +(-13 (-1122) (-10 -8 (-15 -2634 (|t#1| $)) (-15 -1853 ((-55) $)) (-15 -4216 ((-112) $ |t#1|)))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2830 ((|#1| $) NIL) (((-115) $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-4109 ((|#1| (-115) |#1|) NIL)) (-3994 (((-112) $) NIL)) (-3523 (($ |#1| (-372 (-115))) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2489 (($ $ (-1 |#1| |#1|)) NIL)) (-1783 (($ $ (-1 |#1| |#1|)) NIL)) (-2780 ((|#1| $ |#1|) NIL)) (-4302 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-3432 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-849 |#1|) (-13 (-1071) (-1060 |#1|) (-1060 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3432 ($ $)) (-15 -3432 ($ $ $)) (-15 -4302 (|#1| |#1|))) |%noBranch|) (-15 -1783 ($ $ (-1 |#1| |#1|))) (-15 -2489 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -4109 (|#1| (-115) |#1|)) (-15 -3523 ($ |#1| (-372 (-115)))))) (-1071)) (T -849)) +((-3432 (*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) (-3432 (*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) (-4302 (*1 *2 *2) (-12 (-5 *1 (-849 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-849 *3)))) (-2489 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-849 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-849 *4)) (-4 *4 (-1071)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-849 *3)) (-4 *3 (-1071)))) (-4109 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-849 *2)) (-4 *2 (-1071)))) (-3523 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-5 *1 (-849 *2)) (-4 *2 (-1071))))) +(-13 (-1071) (-1060 |#1|) (-1060 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3432 ($ $)) (-15 -3432 ($ $ $)) (-15 -4302 (|#1| |#1|))) |%noBranch|) (-15 -1783 ($ $ (-1 |#1| |#1|))) (-15 -2489 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -4109 (|#1| (-115) |#1|)) (-15 -3523 ($ |#1| (-372 (-115)))))) +((-2861 (((-216 (-514)) (-1180)) 9))) +(((-850) (-10 -7 (-15 -2861 ((-216 (-514)) (-1180))))) (T -850)) +((-2861 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-216 (-514))) (-5 *1 (-850))))) +(-10 -7 (-15 -2861 ((-216 (-514)) (-1180)))) +((-3423 (((-112) $ $) NIL)) (-2702 (((-1140) $) 10)) (-2634 (((-518) $) 9)) (-1708 (((-1180) $) NIL)) (-4216 (((-112) $ (-518)) NIL)) (-1460 (((-1142) $) NIL)) (-3529 (($ (-518) (-1140)) 8)) (-3515 (((-877) $) 25)) (-4166 (((-112) $ $) NIL)) (-1853 (((-55) $) 20)) (-2881 (((-112) $ $) 12))) +(((-851) (-13 (-848 (-518)) (-10 -8 (-15 -2702 ((-1140) $)) (-15 -3529 ($ (-518) (-1140)))))) (T -851)) +((-2702 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-851)))) (-3529 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1140)) (-5 *1 (-851))))) +(-13 (-848 (-518)) (-10 -8 (-15 -2702 ((-1140) $)) (-15 -3529 ($ (-518) (-1140))))) +((-3423 (((-112) $ $) 7)) (-1767 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) 15) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 14)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 17) (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) 16)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) +(((-852) (-141)) (T -852)) +((-3701 (*1 *2 *3 *4) (-12 (-4 *1 (-852)) (-5 *3 (-1085)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (-5 *2 (-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)))))) (-3701 (*1 *2 *3 *4) (-12 (-4 *1 (-852)) (-5 *3 (-1085)) (-5 *4 (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) (-5 *2 (-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)))))) (-1767 (*1 *2 *3) (-12 (-4 *1 (-852)) (-5 *3 (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) (-5 *2 (-1057)))) (-1767 (*1 *2 *3) (-12 (-4 *1 (-852)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (-5 *2 (-1057))))) +(-13 (-1122) (-10 -7 (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))) (-15 -1767 ((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))) (-15 -1767 ((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))))))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3255 (((-1057) (-657 (-326 (-390))) (-657 (-390))) 166) (((-1057) (-326 (-390)) (-657 (-390))) 164) (((-1057) (-326 (-390)) (-657 (-390)) (-657 (-856 (-390))) (-657 (-856 (-390)))) 162) (((-1057) (-326 (-390)) (-657 (-390)) (-657 (-856 (-390))) (-657 (-326 (-390))) (-657 (-856 (-390)))) 160) (((-1057) (-854)) 125) (((-1057) (-854) (-1085)) 124)) (-3701 (((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-854) (-1085)) 85) (((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-854)) 87)) (-3245 (((-1057) (-657 (-326 (-390))) (-657 (-390))) 167) (((-1057) (-854)) 150))) +(((-853) (-10 -7 (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-854))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-854) (-1085))) (-15 -3255 ((-1057) (-854) (-1085))) (-15 -3255 ((-1057) (-854))) (-15 -3245 ((-1057) (-854))) (-15 -3255 ((-1057) (-326 (-390)) (-657 (-390)) (-657 (-856 (-390))) (-657 (-326 (-390))) (-657 (-856 (-390))))) (-15 -3255 ((-1057) (-326 (-390)) (-657 (-390)) (-657 (-856 (-390))) (-657 (-856 (-390))))) (-15 -3255 ((-1057) (-326 (-390)) (-657 (-390)))) (-15 -3255 ((-1057) (-657 (-326 (-390))) (-657 (-390)))) (-15 -3245 ((-1057) (-657 (-326 (-390))) (-657 (-390)))))) (T -853)) +((-3245 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-326 (-390)))) (-5 *4 (-657 (-390))) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3255 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-326 (-390)))) (-5 *4 (-657 (-390))) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3255 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-390))) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3255 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-390))) (-5 *5 (-657 (-856 (-390)))) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3255 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-657 (-390))) (-5 *5 (-657 (-856 (-390)))) (-5 *6 (-657 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3245 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3255 (*1 *2 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-1085)) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-1085)) (-5 *2 (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *1 (-853)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *1 (-853))))) +(-10 -7 (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-854))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-854) (-1085))) (-15 -3255 ((-1057) (-854) (-1085))) (-15 -3255 ((-1057) (-854))) (-15 -3245 ((-1057) (-854))) (-15 -3255 ((-1057) (-326 (-390)) (-657 (-390)) (-657 (-856 (-390))) (-657 (-326 (-390))) (-657 (-856 (-390))))) (-15 -3255 ((-1057) (-326 (-390)) (-657 (-390)) (-657 (-856 (-390))) (-657 (-856 (-390))))) (-15 -3255 ((-1057) (-326 (-390)) (-657 (-390)))) (-15 -3255 ((-1057) (-657 (-326 (-390))) (-657 (-390)))) (-15 -3245 ((-1057) (-657 (-326 (-390))) (-657 (-390))))) +((-3423 (((-112) $ $) NIL)) (-2830 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))) $) 21)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 20) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 14) (($ (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))))) 18)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-854) (-13 (-1122) (-10 -8 (-15 -3515 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))))) (-15 -3515 ($ (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))) (-15 -3515 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))))) (-15 -2830 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))) $))))) (T -854)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (-5 *1 (-854)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) (-5 *1 (-854)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))))) (-5 *1 (-854)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))))) (-5 *1 (-854))))) +(-13 (-1122) (-10 -8 (-15 -3515 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))))) (-15 -3515 ($ (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))) (-15 -3515 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))))) (-15 -2830 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227)))))) $)))) +((-4071 (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|) (-856 |#2|) (-856 |#2|)) 13) (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)) 14))) +(((-855 |#1| |#2|) (-10 -7 (-15 -4071 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|))) (-15 -4071 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|) (-856 |#2|) (-856 |#2|)))) (-1122) (-1122)) (T -855)) +((-4071 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-856 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *1 (-855 *5 *6)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6))))) +(-10 -7 (-15 -4071 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|))) (-15 -4071 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|) (-856 |#2|) (-856 |#2|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL (|has| |#1| (-21)))) (-2766 (((-1142) $) 31)) (-2423 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3922 (((-576) $) NIL (|has| |#1| (-861)))) (-2515 (($) NIL (|has| |#1| (-21)) CONST)) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 18)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 9)) (-3969 (((-3 $ "failed") $) 58 (|has| |#1| (-861)))) (-1758 (((-3 (-419 (-576)) "failed") $) 65 (|has| |#1| (-557)))) (-3113 (((-112) $) 60 (|has| |#1| (-557)))) (-1842 (((-419 (-576)) $) 63 (|has| |#1| (-557)))) (-3810 (((-112) $) NIL (|has| |#1| (-861)))) (-2906 (($) 14)) (-3994 (((-112) $) NIL (|has| |#1| (-861)))) (-3517 (((-112) $) NIL (|has| |#1| (-861)))) (-2919 (($) 16)) (-3740 (($ $ $) NIL (|has| |#1| (-861)))) (-2249 (($ $ $) NIL (|has| |#1| (-861)))) (-1708 (((-1180) $) NIL)) (-2811 (((-112) $) 12)) (-1460 (((-1142) $) NIL)) (-1332 (((-112) $) 11)) (-3515 (((-877) $) 24) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2748 (|has| |#1| (-861)) (|has| |#1| (-1060 (-576)))))) (-3845 (((-784)) 51 (|has| |#1| (-861)) CONST)) (-4166 (((-112) $ $) NIL)) (-2127 (($ $) NIL (|has| |#1| (-861)))) (-2716 (($) 37 (|has| |#1| (-21)) CONST)) (-2725 (($) 48 (|has| |#1| (-861)) CONST)) (-2938 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2881 (((-112) $ $) 35)) (-2925 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2901 (((-112) $ $) 59 (|has| |#1| (-861)))) (-2982 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-2971 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-941)) NIL (|has| |#1| (-861))) (($ $ (-784)) NIL (|has| |#1| (-861)))) (* (($ $ $) 55 (|has| |#1| (-861))) (($ (-576) $) 42 (|has| |#1| (-21))) (($ (-784) $) NIL (|has| |#1| (-21))) (($ (-941) $) NIL (|has| |#1| (-21))))) +(((-856 |#1|) (-13 (-1122) (-423 |#1|) (-10 -8 (-15 -2906 ($)) (-15 -2919 ($)) (-15 -1332 ((-112) $)) (-15 -2811 ((-112) $)) (-15 -2766 ((-1142) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3113 ((-112) $)) (-15 -1842 ((-419 (-576)) $)) (-15 -1758 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1122)) (T -856)) +((-2906 (*1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1122)))) (-2919 (*1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1122)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856 *3)) (-4 *3 (-1122)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856 *3)) (-4 *3 (-1122)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-856 *3)) (-4 *3 (-1122)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) (-1842 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-856 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) (-1758 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-856 *3)) (-4 *3 (-557)) (-4 *3 (-1122))))) +(-13 (-1122) (-423 |#1|) (-10 -8 (-15 -2906 ($)) (-15 -2919 ($)) (-15 -1332 ((-112) $)) (-15 -2811 ((-112) $)) (-15 -2766 ((-1142) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3113 ((-112) $)) (-15 -1842 ((-419 (-576)) $)) (-15 -1758 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) +((-3423 (((-112) $ $) 7)) (-2148 (((-784)) 24)) (-1876 (($) 27)) (-3740 (($ $ $) 20) (($) 23 T CONST)) (-2249 (($ $ $) 19) (($) 22 T CONST)) (-2327 (((-941) $) 26)) (-1708 (((-1180) $) 10)) (-3146 (($ (-941)) 25)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2938 (((-112) $ $) 18)) (-2913 (((-112) $ $) 16)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 17)) (-2901 (((-112) $ $) 15))) +(((-857) (-141)) (T -857)) +((-3740 (*1 *1) (-4 *1 (-857))) (-2249 (*1 *1) (-4 *1 (-857)))) +(-13 (-862) (-379) (-10 -8 (-15 -3740 ($) -1491) (-15 -2249 ($) -1491))) +(((-102) . T) ((-625 (-877)) . T) ((-379) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) +((-1742 (((-112) (-1289 |#2|) (-1289 |#2|)) 19)) (-1999 (((-112) (-1289 |#2|) (-1289 |#2|)) 20)) (-2234 (((-112) (-1289 |#2|) (-1289 |#2|)) 16))) +(((-858 |#1| |#2|) (-10 -7 (-15 -2234 ((-112) (-1289 |#2|) (-1289 |#2|))) (-15 -1742 ((-112) (-1289 |#2|) (-1289 |#2|))) (-15 -1999 ((-112) (-1289 |#2|) (-1289 |#2|)))) (-784) (-805)) (T -858)) +((-1999 (*1 *2 *3 *3) (-12 (-5 *3 (-1289 *5)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-858 *4 *5)) (-14 *4 (-784)))) (-1742 (*1 *2 *3 *3) (-12 (-5 *3 (-1289 *5)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-858 *4 *5)) (-14 *4 (-784)))) (-2234 (*1 *2 *3 *3) (-12 (-5 *3 (-1289 *5)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-858 *4 *5)) (-14 *4 (-784))))) +(-10 -7 (-15 -2234 ((-112) (-1289 |#2|) (-1289 |#2|))) (-15 -1742 ((-112) (-1289 |#2|) (-1289 |#2|))) (-15 -1999 ((-112) (-1289 |#2|) (-1289 |#2|)))) +((-3423 (((-112) $ $) 7)) (-2515 (($) 25 T CONST)) (-3969 (((-3 $ "failed") $) 28)) (-3994 (((-112) $) 26)) (-3740 (($ $ $) 20)) (-2249 (($ $ $) 19)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2725 (($) 24 T CONST)) (-2938 (((-112) $ $) 18)) (-2913 (((-112) $ $) 16)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 17)) (-2901 (((-112) $ $) 15)) (** (($ $ (-941)) 23) (($ $ (-784)) 27)) (* (($ $ $) 22))) +(((-859) (-141)) (T -859)) +NIL +(-13 (-872) (-739)) +(((-102) . T) ((-625 (-877)) . T) ((-739) . T) ((-872) . T) ((-862) . T) ((-865) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3922 (((-576) $) 21)) (-3810 (((-112) $) 10)) (-3517 (((-112) $) 12)) (-2127 (($ $) 23))) +(((-860 |#1|) (-10 -8 (-15 -2127 (|#1| |#1|)) (-15 -3922 ((-576) |#1|)) (-15 -3517 ((-112) |#1|)) (-15 -3810 ((-112) |#1|))) (-861)) (T -860)) +NIL +(-10 -8 (-15 -2127 (|#1| |#1|)) (-15 -3922 ((-576) |#1|)) (-15 -3517 ((-112) |#1|)) (-15 -3810 ((-112) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 26)) (-2423 (((-3 $ "failed") $ $) 28)) (-3922 (((-576) $) 38)) (-2515 (($) 25 T CONST)) (-3969 (((-3 $ "failed") $) 43)) (-3810 (((-112) $) 40)) (-3994 (((-112) $) 45)) (-3517 (((-112) $) 39)) (-3740 (($ $ $) 20)) (-2249 (($ $ $) 19)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-576)) 47)) (-3845 (((-784)) 48 T CONST)) (-4166 (((-112) $ $) 6)) (-2127 (($ $) 37)) (-2716 (($) 24 T CONST)) (-2725 (($) 46 T CONST)) (-2938 (((-112) $ $) 18)) (-2913 (((-112) $ $) 16)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 17)) (-2901 (((-112) $ $) 15)) (-2982 (($ $ $) 32) (($ $) 31)) (-2971 (($ $ $) 22)) (** (($ $ (-784)) 44) (($ $ (-941)) 41)) (* (($ (-941) $) 23) (($ (-784) $) 27) (($ (-576) $) 30) (($ $ $) 42))) (((-861) (-141)) (T -861)) -NIL -(-13 (-1121) (-864)) -(((-102) . T) ((-625 (-876)) . T) ((-864) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-4113 (($ |#1|) 10) ((|#1| $) 9)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 12))) -(((-862 |#1| |#2|) (-13 (-864) (-502 |#1|)) (-1238) (-1 (-112) |#1| |#1|)) (T -862)) -NIL -(-13 (-864) (-502 |#1|)) -((-2907 (($ $ $) 16)) (-3777 (($ $ $) 15)) (-2950 (((-112) $ $) 17)) (-3995 (((-112) $ $) 12)) (-3975 (((-112) $ $) 9)) (-3939 (((-112) $ $) 14)) (-3984 (((-112) $ $) 11))) -(((-863 |#1|) (-10 -8 (-15 -2907 (|#1| |#1| |#1|)) (-15 -3777 (|#1| |#1| |#1|)) (-15 -3995 ((-112) |#1| |#1|)) (-15 -3984 ((-112) |#1| |#1|)) (-15 -3975 ((-112) |#1| |#1|)) (-15 -2950 ((-112) |#1| |#1|)) (-15 -3939 ((-112) |#1| |#1|))) (-864)) (T -863)) -NIL -(-10 -8 (-15 -2907 (|#1| |#1| |#1|)) (-15 -3777 (|#1| |#1| |#1|)) (-15 -3995 ((-112) |#1| |#1|)) (-15 -3984 ((-112) |#1| |#1|)) (-15 -3975 ((-112) |#1| |#1|)) (-15 -2950 ((-112) |#1| |#1|)) (-15 -3939 ((-112) |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-2907 (($ $ $) 9)) (-3777 (($ $ $) 10)) (-2950 (((-112) $ $) 6)) (-3995 (((-112) $ $) 11)) (-3975 (((-112) $ $) 13)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 12)) (-3963 (((-112) $ $) 14))) -(((-864) (-141)) (T -864)) -((-3963 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-3975 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-3984 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-3995 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-3777 (*1 *1 *1 *1) (-4 *1 (-864))) (-2907 (*1 *1 *1 *1) (-4 *1 (-864)))) -(-13 (-102) (-10 -8 (-15 -3963 ((-112) $ $)) (-15 -3975 ((-112) $ $)) (-15 -3984 ((-112) $ $)) (-15 -3995 ((-112) $ $)) (-15 -3777 ($ $ $)) (-15 -2907 ($ $ $)))) -(((-102) . T) ((-1238) . T)) -((-3746 (($ $ $) 49)) (-2801 (($ $ $) 48)) (-3004 (($ $ $) 46)) (-2126 (($ $ $) 55)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 50)) (-4246 (((-3 $ "failed") $ $) 53)) (-2982 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1788 (($ $) 39)) (-3273 (($ $ $) 43)) (-3538 (($ $ $) 42)) (-2531 (($ $ $) 51)) (-3691 (($ $ $) 57)) (-4155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 45)) (-2188 (((-3 $ "failed") $ $) 52)) (-1946 (((-3 $ "failed") $ |#2|) 32)) (-1944 ((|#2| $) 36)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#2|) 13)) (-3244 (((-656 |#2|) $) 21)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-865 |#1| |#2|) (-10 -8 (-15 -2531 (|#1| |#1| |#1|)) (-15 -1796 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2549 |#1|)) |#1| |#1|)) (-15 -2126 (|#1| |#1| |#1|)) (-15 -4246 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3746 (|#1| |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1|)) (-15 -3004 (|#1| |#1| |#1|)) (-15 -4155 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2549 |#1|)) |#1| |#1|)) (-15 -3691 (|#1| |#1| |#1|)) (-15 -2188 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3273 (|#1| |#1| |#1|)) (-15 -3538 (|#1| |#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1944 (|#2| |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3244 ((-656 |#2|) |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4113 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -4113 ((-876) |#1|))) (-866 |#2|) (-1070)) (T -865)) -NIL -(-10 -8 (-15 -2531 (|#1| |#1| |#1|)) (-15 -1796 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2549 |#1|)) |#1| |#1|)) (-15 -2126 (|#1| |#1| |#1|)) (-15 -4246 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3746 (|#1| |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1|)) (-15 -3004 (|#1| |#1| |#1|)) (-15 -4155 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2549 |#1|)) |#1| |#1|)) (-15 -3691 (|#1| |#1| |#1|)) (-15 -2188 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3273 (|#1| |#1| |#1|)) (-15 -3538 (|#1| |#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1944 (|#2| |#1|)) (-15 -1946 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3244 ((-656 |#2|) |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4113 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-3746 (($ $ $) 50 (|has| |#1| (-374)))) (-2801 (($ $ $) 51 (|has| |#1| (-374)))) (-3004 (($ $ $) 53 (|has| |#1| (-374)))) (-2126 (($ $ $) 48 (|has| |#1| (-374)))) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 47 (|has| |#1| (-374)))) (-4246 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-2562 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 52 (|has| |#1| (-374)))) (-2982 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2317 (((-576) $) 79 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 75)) (-3310 (($ $) 69)) (-1851 (((-3 $ "failed") $) 37)) (-1788 (($ $) 60 (|has| |#1| (-464)))) (-2486 (((-112) $) 35)) (-1564 (($ |#1| (-783)) 67)) (-2752 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 62 (|has| |#1| (-568)))) (-3578 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63 (|has| |#1| (-568)))) (-2192 (((-783) $) 71)) (-3273 (($ $ $) 57 (|has| |#1| (-374)))) (-3538 (($ $ $) 58 (|has| |#1| (-374)))) (-2531 (($ $ $) 46 (|has| |#1| (-374)))) (-3691 (($ $ $) 55 (|has| |#1| (-374)))) (-4155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 54 (|has| |#1| (-374)))) (-2188 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2672 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 59 (|has| |#1| (-374)))) (-1711 ((|#1| $) 70)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1946 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2196 (((-783) $) 72)) (-1944 ((|#1| $) 61 (|has| |#1| (-464)))) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) 73)) (-3244 (((-656 |#1|) $) 66)) (-2707 ((|#1| $ (-783)) 68)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-2653 ((|#1| $ |#1| |#1|) 65)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-866 |#1|) (-141) (-1070)) (T -866)) -((-2196 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2192 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-3310 (*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-1564 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-656 *3)))) (-2653 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-1946 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-3578 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-866 *3)))) (-2752 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-866 *3)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-1788 (*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-2672 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-866 *3)))) (-3538 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3273 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-2188 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3691 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-4155 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2549 *1))) (-4 *1 (-866 *3)))) (-3004 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-2562 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-866 *3)))) (-2801 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-3746 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-4246 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-2126 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-1796 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2549 *1))) (-4 *1 (-866 *3)))) (-2531 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(-13 (-1070) (-111 |t#1| |t#1|) (-423 |t#1|) (-10 -8 (-15 -2196 ((-783) $)) (-15 -2192 ((-783) $)) (-15 -1711 (|t#1| $)) (-15 -3310 ($ $)) (-15 -2707 (|t#1| $ (-783))) (-15 -1564 ($ |t#1| (-783))) (-15 -3244 ((-656 |t#1|) $)) (-15 -2653 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -1946 ((-3 $ "failed") $ |t#1|)) (-15 -3578 ((-2 (|:| -2675 $) (|:| -3561 $)) $ $)) (-15 -2752 ((-2 (|:| -2675 $) (|:| -3561 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -1944 (|t#1| $)) (-15 -1788 ($ $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2672 ((-2 (|:| -2675 $) (|:| -3561 $)) $ $)) (-15 -3538 ($ $ $)) (-15 -3273 ($ $ $)) (-15 -2188 ((-3 $ "failed") $ $)) (-15 -3691 ($ $ $)) (-15 -4155 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $)) (-15 -3004 ($ $ $)) (-15 -2562 ((-2 (|:| -2675 $) (|:| -3561 $)) $ $)) (-15 -2801 ($ $ $)) (-15 -3746 ($ $ $)) (-15 -4246 ((-3 $ "failed") $ $)) (-15 -2126 ($ $ $)) (-15 -1796 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $)) (-15 -2531 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1059 #0#) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1583 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2562 (((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-374)))) (-2752 (((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)))) (-3578 (((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)))) (-2672 (((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-374)))) (-2653 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) -(((-867 |#1| |#2|) (-10 -7 (-15 -1583 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2653 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3578 ((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2752 ((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2672 ((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2562 ((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1070) (-866 |#1|)) (T -867)) -((-2562 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-2672 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-2752 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-3578 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-2653 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1070)) (-5 *1 (-867 *2 *3)) (-4 *3 (-866 *2)))) (-1583 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1070)) (-5 *1 (-867 *5 *2)) (-4 *2 (-866 *5))))) -(-10 -7 (-15 -1583 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2653 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3578 ((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2752 ((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2672 ((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2562 ((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-3746 (($ $ $) NIL (|has| |#1| (-374)))) (-2801 (($ $ $) NIL (|has| |#1| (-374)))) (-3004 (($ $ $) NIL (|has| |#1| (-374)))) (-2126 (($ $ $) NIL (|has| |#1| (-374)))) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-4246 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2562 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 34 (|has| |#1| (-374)))) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-464)))) (-4353 (((-876) $ (-876)) NIL)) (-2486 (((-112) $) NIL)) (-1564 (($ |#1| (-783)) NIL)) (-2752 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 30 (|has| |#1| (-568)))) (-3578 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 28 (|has| |#1| (-568)))) (-2192 (((-783) $) NIL)) (-3273 (($ $ $) NIL (|has| |#1| (-374)))) (-3538 (($ $ $) NIL (|has| |#1| (-374)))) (-2531 (($ $ $) NIL (|has| |#1| (-374)))) (-3691 (($ $ $) NIL (|has| |#1| (-374)))) (-4155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-2188 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2672 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 32 (|has| |#1| (-374)))) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2196 (((-783) $) NIL)) (-1944 ((|#1| $) NIL (|has| |#1| (-464)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1059 (-419 (-576))))) (($ |#1|) NIL)) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-783)) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2653 ((|#1| $ |#1| |#1|) 15)) (-4313 (($) NIL T CONST)) (-4322 (($) 23 T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) 19) (($ $ (-783)) 24)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-868 |#1| |#2| |#3|) (-13 (-866 |#1|) (-10 -8 (-15 -4353 ((-876) $ (-876))))) (-1070) (-99 |#1|) (-1 |#1| |#1|)) (T -868)) -((-4353 (*1 *2 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-866 |#1|) (-10 -8 (-15 -4353 ((-876) $ (-876))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-3746 (($ $ $) NIL (|has| |#2| (-374)))) (-2801 (($ $ $) NIL (|has| |#2| (-374)))) (-3004 (($ $ $) NIL (|has| |#2| (-374)))) (-2126 (($ $ $) NIL (|has| |#2| (-374)))) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#2| (-374)))) (-4246 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2562 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#2| (-374)))) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) NIL)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#2| (-464)))) (-2486 (((-112) $) NIL)) (-1564 (($ |#2| (-783)) 17)) (-2752 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#2| (-568)))) (-3578 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#2| (-568)))) (-2192 (((-783) $) NIL)) (-3273 (($ $ $) NIL (|has| |#2| (-374)))) (-3538 (($ $ $) NIL (|has| |#2| (-374)))) (-2531 (($ $ $) NIL (|has| |#2| (-374)))) (-3691 (($ $ $) NIL (|has| |#2| (-374)))) (-4155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#2| (-374)))) (-2188 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2672 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#2| (-374)))) (-1711 ((|#2| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1946 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-2196 (((-783) $) NIL)) (-1944 ((|#2| $) NIL (|has| |#2| (-464)))) (-4113 (((-876) $) 24) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) NIL) (($ (-1284 |#1|)) 19)) (-3244 (((-656 |#2|) $) NIL)) (-2707 ((|#2| $ (-783)) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2653 ((|#2| $ |#2| |#2|) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) 13 T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-869 |#1| |#2| |#3| |#4|) (-13 (-866 |#2|) (-628 (-1284 |#1|))) (-1197) (-1070) (-99 |#2|) (-1 |#2| |#2|)) (T -869)) -NIL -(-13 (-866 |#2|) (-628 (-1284 |#1|))) -((-1393 ((|#1| (-783) |#1|) 45 (|has| |#1| (-38 (-419 (-576)))))) (-4418 ((|#1| (-783) (-783) |#1|) 36) ((|#1| (-783) |#1|) 24)) (-3687 ((|#1| (-783) |#1|) 40)) (-2432 ((|#1| (-783) |#1|) 38)) (-4230 ((|#1| (-783) |#1|) 37))) -(((-870 |#1|) (-10 -7 (-15 -4230 (|#1| (-783) |#1|)) (-15 -2432 (|#1| (-783) |#1|)) (-15 -3687 (|#1| (-783) |#1|)) (-15 -4418 (|#1| (-783) |#1|)) (-15 -4418 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1393 (|#1| (-783) |#1|)) |%noBranch|)) (-174)) (T -870)) -((-1393 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-4418 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-4418 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-3687 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-2432 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) (-4230 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -4230 (|#1| (-783) |#1|)) (-15 -2432 (|#1| (-783) |#1|)) (-15 -3687 (|#1| (-783) |#1|)) (-15 -4418 (|#1| (-783) |#1|)) (-15 -4418 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1393 (|#1| (-783) |#1|)) |%noBranch|)) -((-1957 (((-112) $ $) 7)) (-2907 (($ $ $) 20)) (-3777 (($ $ $) 19)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3995 (((-112) $ $) 18)) (-3975 (((-112) $ $) 16)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 17)) (-3963 (((-112) $ $) 15)) (** (($ $ (-940)) 23)) (* (($ $ $) 22))) -(((-871) (-141)) (T -871)) -NIL -(-13 (-861) (-1133)) -(((-102) . T) ((-625 (-876)) . T) ((-861) . T) ((-864) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-1690 (((-576) $) 14)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 20) (($ (-576)) 13)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 9)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 11))) -(((-872) (-13 (-861) (-10 -8 (-15 -4113 ($ (-576))) (-15 -1690 ((-576) $))))) (T -872)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-872)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-872))))) -(-13 (-861) (-10 -8 (-15 -4113 ($ (-576))) (-15 -1690 ((-576) $)))) -((-1968 (((-703 (-1246)) $ (-1246)) 15)) (-1495 (((-703 (-561)) $ (-561)) 12)) (-3434 (((-783) $ (-129)) 30))) -(((-873 |#1|) (-10 -8 (-15 -3434 ((-783) |#1| (-129))) (-15 -1968 ((-703 (-1246)) |#1| (-1246))) (-15 -1495 ((-703 (-561)) |#1| (-561)))) (-874)) (T -873)) -NIL -(-10 -8 (-15 -3434 ((-783) |#1| (-129))) (-15 -1968 ((-703 (-1246)) |#1| (-1246))) (-15 -1495 ((-703 (-561)) |#1| (-561)))) -((-1968 (((-703 (-1246)) $ (-1246)) 8)) (-1495 (((-703 (-561)) $ (-561)) 9)) (-3434 (((-783) $ (-129)) 7)) (-2750 (((-703 (-130)) $ (-130)) 10)) (-2481 (($ $) 6))) -(((-874) (-141)) (T -874)) -((-2750 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-703 (-130))) (-5 *3 (-130)))) (-1495 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-703 (-561))) (-5 *3 (-561)))) (-1968 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-703 (-1246))) (-5 *3 (-1246)))) (-3434 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *3 (-129)) (-5 *2 (-783))))) -(-13 (-175) (-10 -8 (-15 -2750 ((-703 (-130)) $ (-130))) (-15 -1495 ((-703 (-561)) $ (-561))) (-15 -1968 ((-703 (-1246)) $ (-1246))) (-15 -3434 ((-783) $ (-129))))) +((-3810 (*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-576)))) (-2127 (*1 *1 *1) (-4 *1 (-861)))) +(-13 (-804) (-1071) (-739) (-10 -8 (-15 -3810 ((-112) $)) (-15 -3517 ((-112) $)) (-15 -3922 ((-576) $)) (-15 -2127 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-804) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-862) . T) ((-865) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-3740 (($ $ $) 20)) (-2249 (($ $ $) 19)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2938 (((-112) $ $) 18)) (-2913 (((-112) $ $) 16)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 17)) (-2901 (((-112) $ $) 15))) +(((-862) (-141)) (T -862)) +NIL +(-13 (-1122) (-865)) +(((-102) . T) ((-625 (-877)) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-3515 (($ |#1|) 10) ((|#1| $) 9) (((-877) $) 15 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 12))) +(((-863 |#1| |#2|) (-13 (-865) (-502 |#1|) (-10 -7 (IF (|has| |#1| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|))) (-1239) (-1 (-112) |#1| |#1|)) (T -863)) +NIL +(-13 (-865) (-502 |#1|) (-10 -7 (IF (|has| |#1| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|))) +((-3740 (($ $ $) 16)) (-2249 (($ $ $) 15)) (-4166 (((-112) $ $) 17)) (-2938 (((-112) $ $) 12)) (-2913 (((-112) $ $) 9)) (-2881 (((-112) $ $) 14)) (-2925 (((-112) $ $) 11))) +(((-864 |#1|) (-10 -8 (-15 -3740 (|#1| |#1| |#1|)) (-15 -2249 (|#1| |#1| |#1|)) (-15 -2938 ((-112) |#1| |#1|)) (-15 -2925 ((-112) |#1| |#1|)) (-15 -2913 ((-112) |#1| |#1|)) (-15 -4166 ((-112) |#1| |#1|)) (-15 -2881 ((-112) |#1| |#1|))) (-865)) (T -864)) +NIL +(-10 -8 (-15 -3740 (|#1| |#1| |#1|)) (-15 -2249 (|#1| |#1| |#1|)) (-15 -2938 ((-112) |#1| |#1|)) (-15 -2925 ((-112) |#1| |#1|)) (-15 -2913 ((-112) |#1| |#1|)) (-15 -4166 ((-112) |#1| |#1|)) (-15 -2881 ((-112) |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-3740 (($ $ $) 9)) (-2249 (($ $ $) 10)) (-4166 (((-112) $ $) 6)) (-2938 (((-112) $ $) 11)) (-2913 (((-112) $ $) 13)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 12)) (-2901 (((-112) $ $) 14))) +(((-865) (-141)) (T -865)) +((-2901 (*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) (-2913 (*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) (-2925 (*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) (-2938 (*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) (-2249 (*1 *1 *1 *1) (-4 *1 (-865))) (-3740 (*1 *1 *1 *1) (-4 *1 (-865)))) +(-13 (-102) (-10 -8 (-15 -2901 ((-112) $ $)) (-15 -2913 ((-112) $ $)) (-15 -2925 ((-112) $ $)) (-15 -2938 ((-112) $ $)) (-15 -2249 ($ $ $)) (-15 -3740 ($ $ $)))) +(((-102) . T) ((-1239) . T)) +((-3136 (($ $ $) 49)) (-4030 (($ $ $) 48)) (-3383 (($ $ $) 46)) (-1658 (($ $ $) 55)) (-1511 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 50)) (-4406 (((-3 $ "failed") $ $) 53)) (-1593 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1445 (($ $) 39)) (-4288 (($ $ $) 43)) (-1846 (($ $ $) 42)) (-1341 (($ $ $) 51)) (-2673 (($ $ $) 57)) (-1626 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 45)) (-4174 (((-3 $ "failed") $ $) 52)) (-3409 (((-3 $ "failed") $ |#2|) 32)) (-3614 ((|#2| $) 36)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#2|) 13)) (-3987 (((-657 |#2|) $) 21)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-866 |#1| |#2|) (-10 -8 (-15 -1341 (|#1| |#1| |#1|)) (-15 -1511 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4083 |#1|)) |#1| |#1|)) (-15 -1658 (|#1| |#1| |#1|)) (-15 -4406 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3136 (|#1| |#1| |#1|)) (-15 -4030 (|#1| |#1| |#1|)) (-15 -3383 (|#1| |#1| |#1|)) (-15 -1626 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4083 |#1|)) |#1| |#1|)) (-15 -2673 (|#1| |#1| |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4288 (|#1| |#1| |#1|)) (-15 -1846 (|#1| |#1| |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -3614 (|#2| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3987 ((-657 |#2|) |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3515 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -3515 ((-877) |#1|))) (-867 |#2|) (-1071)) (T -866)) +NIL +(-10 -8 (-15 -1341 (|#1| |#1| |#1|)) (-15 -1511 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4083 |#1|)) |#1| |#1|)) (-15 -1658 (|#1| |#1| |#1|)) (-15 -4406 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3136 (|#1| |#1| |#1|)) (-15 -4030 (|#1| |#1| |#1|)) (-15 -3383 (|#1| |#1| |#1|)) (-15 -1626 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4083 |#1|)) |#1| |#1|)) (-15 -2673 (|#1| |#1| |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4288 (|#1| |#1| |#1|)) (-15 -1846 (|#1| |#1| |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -3614 (|#2| |#1|)) (-15 -3409 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3987 ((-657 |#2|) |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3515 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3136 (($ $ $) 50 (|has| |#1| (-374)))) (-4030 (($ $ $) 51 (|has| |#1| (-374)))) (-3383 (($ $ $) 53 (|has| |#1| (-374)))) (-1658 (($ $ $) 48 (|has| |#1| (-374)))) (-1511 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 47 (|has| |#1| (-374)))) (-4406 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-3470 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 52 (|has| |#1| (-374)))) (-1593 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2830 (((-576) $) 79 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 75)) (-2165 (($ $) 69)) (-3969 (((-3 $ "failed") $) 37)) (-1445 (($ $) 60 (|has| |#1| (-464)))) (-3994 (((-112) $) 35)) (-1974 (($ |#1| (-784)) 67)) (-1704 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 62 (|has| |#1| (-568)))) (-4108 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63 (|has| |#1| (-568)))) (-4219 (((-784) $) 71)) (-4288 (($ $ $) 57 (|has| |#1| (-374)))) (-1846 (($ $ $) 58 (|has| |#1| (-374)))) (-1341 (($ $ $) 46 (|has| |#1| (-374)))) (-2673 (($ $ $) 55 (|has| |#1| (-374)))) (-1626 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 54 (|has| |#1| (-374)))) (-4174 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2158 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 59 (|has| |#1| (-374)))) (-2141 ((|#1| $) 70)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3409 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-4265 (((-784) $) 72)) (-3614 ((|#1| $) 61 (|has| |#1| (-464)))) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) 73)) (-3987 (((-657 |#1|) $) 66)) (-2498 ((|#1| $ (-784)) 68)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-3514 ((|#1| $ |#1| |#1|) 65)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-867 |#1|) (-141) (-1071)) (T -867)) +((-4265 (*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)))) (-2165 (*1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)))) (-2498 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-867 *2)) (-4 *2 (-1071)))) (-1974 (*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-867 *2)) (-4 *2 (-1071)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-4 *3 (-1071)) (-5 *2 (-657 *3)))) (-3514 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)))) (-3409 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-568)))) (-4108 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-867 *3)))) (-1704 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-867 *3)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-464)))) (-1445 (*1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-464)))) (-2158 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-867 *3)))) (-1846 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-4288 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-4174 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-2673 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-1626 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4083 *1))) (-4 *1 (-867 *3)))) (-3383 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-3470 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-867 *3)))) (-4030 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-3136 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-4406 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-1658 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-1511 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4083 *1))) (-4 *1 (-867 *3)))) (-1341 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) +(-13 (-1071) (-111 |t#1| |t#1|) (-423 |t#1|) (-10 -8 (-15 -4265 ((-784) $)) (-15 -4219 ((-784) $)) (-15 -2141 (|t#1| $)) (-15 -2165 ($ $)) (-15 -2498 (|t#1| $ (-784))) (-15 -1974 ($ |t#1| (-784))) (-15 -3987 ((-657 |t#1|) $)) (-15 -3514 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3409 ((-3 $ "failed") $ |t#1|)) (-15 -4108 ((-2 (|:| -2192 $) (|:| -3951 $)) $ $)) (-15 -1704 ((-2 (|:| -2192 $) (|:| -3951 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3614 (|t#1| $)) (-15 -1445 ($ $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2158 ((-2 (|:| -2192 $) (|:| -3951 $)) $ $)) (-15 -1846 ($ $ $)) (-15 -4288 ($ $ $)) (-15 -4174 ((-3 $ "failed") $ $)) (-15 -2673 ($ $ $)) (-15 -1626 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $)) (-15 -3383 ($ $ $)) (-15 -3470 ((-2 (|:| -2192 $) (|:| -3951 $)) $ $)) (-15 -4030 ($ $ $)) (-15 -3136 ($ $ $)) (-15 -4406 ((-3 $ "failed") $ $)) (-15 -1658 ($ $ $)) (-15 -1511 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $)) (-15 -1341 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-423 |#1|) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-739) . T) ((-1060 #0#) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3593 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3470 (((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-374)))) (-1704 (((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)))) (-4108 (((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)))) (-2158 (((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-374)))) (-3514 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) +(((-868 |#1| |#2|) (-10 -7 (-15 -3593 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3514 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -4108 ((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1704 ((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2158 ((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3470 ((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1071) (-867 |#1|)) (T -868)) +((-3470 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1071)) (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-868 *5 *3)) (-4 *3 (-867 *5)))) (-2158 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1071)) (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-868 *5 *3)) (-4 *3 (-867 *5)))) (-1704 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1071)) (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-868 *5 *3)) (-4 *3 (-867 *5)))) (-4108 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1071)) (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-868 *5 *3)) (-4 *3 (-867 *5)))) (-3514 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1071)) (-5 *1 (-868 *2 *3)) (-4 *3 (-867 *2)))) (-3593 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1071)) (-5 *1 (-868 *5 *2)) (-4 *2 (-867 *5))))) +(-10 -7 (-15 -3593 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3514 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -4108 ((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1704 ((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2158 ((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3470 ((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3136 (($ $ $) NIL (|has| |#1| (-374)))) (-4030 (($ $ $) NIL (|has| |#1| (-374)))) (-3383 (($ $ $) NIL (|has| |#1| (-374)))) (-1658 (($ $ $) NIL (|has| |#1| (-374)))) (-1511 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-4406 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3470 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 34 (|has| |#1| (-374)))) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#1| (-464)))) (-2899 (((-877) $ (-877)) NIL)) (-3994 (((-112) $) NIL)) (-1974 (($ |#1| (-784)) NIL)) (-1704 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 30 (|has| |#1| (-568)))) (-4108 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 28 (|has| |#1| (-568)))) (-4219 (((-784) $) NIL)) (-4288 (($ $ $) NIL (|has| |#1| (-374)))) (-1846 (($ $ $) NIL (|has| |#1| (-374)))) (-1341 (($ $ $) NIL (|has| |#1| (-374)))) (-2673 (($ $ $) NIL (|has| |#1| (-374)))) (-1626 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-4174 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2158 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 32 (|has| |#1| (-374)))) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4265 (((-784) $) NIL)) (-3614 ((|#1| $) NIL (|has| |#1| (-464)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) NIL)) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-784)) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-3514 ((|#1| $ |#1| |#1|) 15)) (-2716 (($) NIL T CONST)) (-2725 (($) 23 T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) 19) (($ $ (-784)) 24)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-869 |#1| |#2| |#3|) (-13 (-867 |#1|) (-10 -8 (-15 -2899 ((-877) $ (-877))))) (-1071) (-99 |#1|) (-1 |#1| |#1|)) (T -869)) +((-2899 (*1 *2 *1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-869 *3 *4 *5)) (-4 *3 (-1071)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-867 |#1|) (-10 -8 (-15 -2899 ((-877) $ (-877))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3136 (($ $ $) NIL (|has| |#2| (-374)))) (-4030 (($ $ $) NIL (|has| |#2| (-374)))) (-3383 (($ $ $) NIL (|has| |#2| (-374)))) (-1658 (($ $ $) NIL (|has| |#2| (-374)))) (-1511 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#2| (-374)))) (-4406 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-3470 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#2| (-374)))) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) ((|#2| $) NIL)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#2| (-464)))) (-3994 (((-112) $) NIL)) (-1974 (($ |#2| (-784)) 17)) (-1704 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#2| (-568)))) (-4108 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#2| (-568)))) (-4219 (((-784) $) NIL)) (-4288 (($ $ $) NIL (|has| |#2| (-374)))) (-1846 (($ $ $) NIL (|has| |#2| (-374)))) (-1341 (($ $ $) NIL (|has| |#2| (-374)))) (-2673 (($ $ $) NIL (|has| |#2| (-374)))) (-1626 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#2| (-374)))) (-4174 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2158 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#2| (-374)))) (-2141 ((|#2| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-4265 (((-784) $) NIL)) (-3614 ((|#2| $) NIL (|has| |#2| (-464)))) (-3515 (((-877) $) 24) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1060 (-419 (-576))))) (($ |#2|) NIL) (($ (-1285 |#1|)) 19)) (-3987 (((-657 |#2|) $) NIL)) (-2498 ((|#2| $ (-784)) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-3514 ((|#2| $ |#2| |#2|) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) 13 T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-870 |#1| |#2| |#3| |#4|) (-13 (-867 |#2|) (-628 (-1285 |#1|))) (-1198) (-1071) (-99 |#2|) (-1 |#2| |#2|)) (T -870)) +NIL +(-13 (-867 |#2|) (-628 (-1285 |#1|))) +((-3632 ((|#1| (-784) |#1|) 45 (|has| |#1| (-38 (-419 (-576)))))) (-2381 ((|#1| (-784) (-784) |#1|) 36) ((|#1| (-784) |#1|) 24)) (-3898 ((|#1| (-784) |#1|) 40)) (-1571 ((|#1| (-784) |#1|) 38)) (-4238 ((|#1| (-784) |#1|) 37))) +(((-871 |#1|) (-10 -7 (-15 -4238 (|#1| (-784) |#1|)) (-15 -1571 (|#1| (-784) |#1|)) (-15 -3898 (|#1| (-784) |#1|)) (-15 -2381 (|#1| (-784) |#1|)) (-15 -2381 (|#1| (-784) (-784) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3632 (|#1| (-784) |#1|)) |%noBranch|)) (-174)) (T -871)) +((-3632 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-2381 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) (-2381 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) (-3898 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) (-1571 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) (-4238 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -4238 (|#1| (-784) |#1|)) (-15 -1571 (|#1| (-784) |#1|)) (-15 -3898 (|#1| (-784) |#1|)) (-15 -2381 (|#1| (-784) |#1|)) (-15 -2381 (|#1| (-784) (-784) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3632 (|#1| (-784) |#1|)) |%noBranch|)) +((-3423 (((-112) $ $) 7)) (-3740 (($ $ $) 20)) (-2249 (($ $ $) 19)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2938 (((-112) $ $) 18)) (-2913 (((-112) $ $) 16)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 17)) (-2901 (((-112) $ $) 15)) (** (($ $ (-941)) 23)) (* (($ $ $) 22))) +(((-872) (-141)) (T -872)) +NIL +(-13 (-862) (-1134)) +(((-102) . T) ((-625 (-877)) . T) ((-862) . T) ((-865) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-3037 (((-576) $) 14)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 20) (($ (-576)) 13)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 9)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 11))) +(((-873) (-13 (-862) (-10 -8 (-15 -3515 ($ (-576))) (-15 -3037 ((-576) $))))) (T -873)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-873)))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-873))))) +(-13 (-862) (-10 -8 (-15 -3515 ($ (-576))) (-15 -3037 ((-576) $)))) +((-2599 (((-704 (-1247)) $ (-1247)) 15)) (-1711 (((-704 (-561)) $ (-561)) 12)) (-2151 (((-784) $ (-129)) 30))) +(((-874 |#1|) (-10 -8 (-15 -2151 ((-784) |#1| (-129))) (-15 -2599 ((-704 (-1247)) |#1| (-1247))) (-15 -1711 ((-704 (-561)) |#1| (-561)))) (-875)) (T -874)) +NIL +(-10 -8 (-15 -2151 ((-784) |#1| (-129))) (-15 -2599 ((-704 (-1247)) |#1| (-1247))) (-15 -1711 ((-704 (-561)) |#1| (-561)))) +((-2599 (((-704 (-1247)) $ (-1247)) 8)) (-1711 (((-704 (-561)) $ (-561)) 9)) (-2151 (((-784) $ (-129)) 7)) (-1683 (((-704 (-130)) $ (-130)) 10)) (-3950 (($ $) 6))) +(((-875) (-141)) (T -875)) +((-1683 (*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *2 (-704 (-130))) (-5 *3 (-130)))) (-1711 (*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *2 (-704 (-561))) (-5 *3 (-561)))) (-2599 (*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *2 (-704 (-1247))) (-5 *3 (-1247)))) (-2151 (*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *3 (-129)) (-5 *2 (-784))))) +(-13 (-175) (-10 -8 (-15 -1683 ((-704 (-130)) $ (-130))) (-15 -1711 ((-704 (-561)) $ (-561))) (-15 -2599 ((-704 (-1247)) $ (-1247))) (-15 -2151 ((-784) $ (-129))))) (((-175) . T)) -((-1968 (((-703 (-1246)) $ (-1246)) NIL)) (-1495 (((-703 (-561)) $ (-561)) NIL)) (-3434 (((-783) $ (-129)) NIL)) (-2750 (((-703 (-130)) $ (-130)) 22)) (-3757 (($ (-400)) 12) (($ (-1179)) 14)) (-2044 (((-112) $) 19)) (-4113 (((-876) $) 26)) (-2481 (($ $) 23))) -(((-875) (-13 (-874) (-625 (-876)) (-10 -8 (-15 -3757 ($ (-400))) (-15 -3757 ($ (-1179))) (-15 -2044 ((-112) $))))) (T -875)) -((-3757 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-875)))) (-3757 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-875)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875))))) -(-13 (-874) (-625 (-876)) (-10 -8 (-15 -3757 ($ (-400))) (-15 -3757 ($ (-1179))) (-15 -2044 ((-112) $)))) -((-1957 (((-112) $ $) NIL) (($ $ $) 85)) (-2470 (($ $ $) 125)) (-1924 (((-576) $) 31) (((-576)) 36)) (-2293 (($ (-576)) 53)) (-2391 (($ $ $) 54) (($ (-656 $)) 84)) (-4301 (($ $ (-656 $)) 82)) (-2100 (((-576) $) 34)) (-3530 (($ $ $) 73)) (-3352 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-1662 (((-576) $) 33)) (-3824 (($ $ $) 72)) (-1533 (($ $) 114)) (-3221 (($ $ $) 129)) (-2385 (($ (-656 $)) 61)) (-3125 (($ $ (-656 $)) 79)) (-3996 (($ (-576) (-576)) 55)) (-4076 (($ $) 126) (($ $ $) 127)) (-2113 (($ $ (-576)) 43) (($ $) 46)) (-1895 (($ $ $) 97)) (-1510 (($ $ $) 132)) (-1603 (($ $) 115)) (-1908 (($ $ $) 98)) (-1546 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3252 (((-1293) $) 10)) (-3972 (($ $) 118) (($ $ (-783)) 122)) (-1517 (($ $ $) 75)) (-3678 (($ $ $) 74)) (-1995 (($ $ (-656 $)) 110)) (-3962 (($ $ $) 113)) (-3826 (($ (-656 $)) 59)) (-3043 (($ $) 70) (($ (-656 $)) 71)) (-4208 (($ $ $) 123)) (-2462 (($ $) 116)) (-3862 (($ $ $) 128)) (-4353 (($ (-576)) 21) (($ (-1197)) 23) (($ (-1179)) 30) (($ (-227)) 25)) (-2324 (($ $ $) 101)) (-2299 (($ $) 102)) (-1733 (((-1293) (-1179)) 15)) (-2012 (($ (-1179)) 14)) (-3410 (($ (-656 (-656 $))) 58)) (-2102 (($ $ (-576)) 42) (($ $) 45)) (-2447 (((-1179) $) NIL)) (-3022 (($ $ $) 131)) (-4406 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2351 (((-112) $) 108)) (-1372 (($ $ (-656 $)) 111) (($ $ $ $) 112)) (-3792 (($ (-576)) 39)) (-2955 (((-576) $) 32) (((-576)) 35)) (-4376 (($ $ $) 40) (($ (-656 $)) 83)) (-3116 (((-1141) $) NIL)) (-1946 (($ $ $) 99)) (-3307 (($) 13)) (-4369 (($ $ (-656 $)) 109)) (-2016 (((-1179) (-1179)) 8)) (-1875 (($ $) 117) (($ $ (-783)) 121)) (-1933 (($ $ $) 96)) (-4107 (($ $ (-783)) 139)) (-3919 (($ (-656 $)) 60)) (-4113 (((-876) $) 19)) (-3188 (($ $ (-576)) 41) (($ $) 44)) (-2611 (($ $) 68) (($ (-656 $)) 69)) (-1515 (($ $) 66) (($ (-656 $)) 67)) (-2345 (($ $) 124)) (-3197 (($ (-656 $)) 65)) (-1348 (($ $ $) 105)) (-2950 (((-112) $ $) NIL)) (-4263 (($ $ $) 130)) (-2311 (($ $ $) 100)) (-2497 (($ $ $) 103) (($ $) 104)) (-3995 (($ $ $) 89)) (-3975 (($ $ $) 87)) (-3939 (((-112) $ $) 16) (($ $ $) 17)) (-3984 (($ $ $) 88)) (-3963 (($ $ $) 86)) (-4047 (($ $ $) 94)) (-4037 (($ $ $) 91) (($ $) 92)) (-4026 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-876) (-13 (-1121) (-10 -8 (-15 -3252 ((-1293) $)) (-15 -2012 ($ (-1179))) (-15 -1733 ((-1293) (-1179))) (-15 -4353 ($ (-576))) (-15 -4353 ($ (-1197))) (-15 -4353 ($ (-1179))) (-15 -4353 ($ (-227))) (-15 -3307 ($)) (-15 -2016 ((-1179) (-1179))) (-15 -1924 ((-576) $)) (-15 -2955 ((-576) $)) (-15 -1924 ((-576))) (-15 -2955 ((-576))) (-15 -1662 ((-576) $)) (-15 -2100 ((-576) $)) (-15 -3792 ($ (-576))) (-15 -2293 ($ (-576))) (-15 -3996 ($ (-576) (-576))) (-15 -2102 ($ $ (-576))) (-15 -2113 ($ $ (-576))) (-15 -3188 ($ $ (-576))) (-15 -2102 ($ $)) (-15 -2113 ($ $)) (-15 -3188 ($ $)) (-15 -4376 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -4376 ($ (-656 $))) (-15 -2391 ($ (-656 $))) (-15 -1995 ($ $ (-656 $))) (-15 -1372 ($ $ (-656 $))) (-15 -1372 ($ $ $ $)) (-15 -3962 ($ $ $)) (-15 -2351 ((-112) $)) (-15 -4369 ($ $ (-656 $))) (-15 -1533 ($ $)) (-15 -3022 ($ $ $)) (-15 -2345 ($ $)) (-15 -3410 ($ (-656 (-656 $)))) (-15 -2470 ($ $ $)) (-15 -4076 ($ $)) (-15 -4076 ($ $ $)) (-15 -3862 ($ $ $)) (-15 -3221 ($ $ $)) (-15 -4263 ($ $ $)) (-15 -1510 ($ $ $)) (-15 -4107 ($ $ (-783))) (-15 -1348 ($ $ $)) (-15 -3824 ($ $ $)) (-15 -3530 ($ $ $)) (-15 -3678 ($ $ $)) (-15 -1517 ($ $ $)) (-15 -3125 ($ $ (-656 $))) (-15 -4301 ($ $ (-656 $))) (-15 -1603 ($ $)) (-15 -1875 ($ $)) (-15 -1875 ($ $ (-783))) (-15 -3972 ($ $)) (-15 -3972 ($ $ (-783))) (-15 -2462 ($ $)) (-15 -4208 ($ $ $)) (-15 -3352 ($ $)) (-15 -3352 ($ $ $)) (-15 -3352 ($ $ $ $)) (-15 -1546 ($ $)) (-15 -1546 ($ $ $)) (-15 -1546 ($ $ $ $)) (-15 -4406 ($ $)) (-15 -4406 ($ $ $)) (-15 -4406 ($ $ $ $)) (-15 -1515 ($ $)) (-15 -1515 ($ (-656 $))) (-15 -2611 ($ $)) (-15 -2611 ($ (-656 $))) (-15 -3043 ($ $)) (-15 -3043 ($ (-656 $))) (-15 -3826 ($ (-656 $))) (-15 -3919 ($ (-656 $))) (-15 -2385 ($ (-656 $))) (-15 -3197 ($ (-656 $))) (-15 -3939 ($ $ $)) (-15 -1957 ($ $ $)) (-15 -3963 ($ $ $)) (-15 -3975 ($ $ $)) (-15 -3984 ($ $ $)) (-15 -3995 ($ $ $)) (-15 -4026 ($ $ $)) (-15 -4037 ($ $ $)) (-15 -4037 ($ $)) (-15 * ($ $ $)) (-15 -4047 ($ $ $)) (-15 ** ($ $ $)) (-15 -1933 ($ $ $)) (-15 -1895 ($ $ $)) (-15 -1908 ($ $ $)) (-15 -1946 ($ $ $)) (-15 -2311 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -2299 ($ $)) (-15 -2497 ($ $ $)) (-15 -2497 ($ $))))) (T -876)) -((-3252 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-876)))) (-2012 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-876)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-876)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-876)))) (-3307 (*1 *1) (-5 *1 (-876))) (-2016 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-1924 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2955 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-3792 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-3996 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2102 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) (-2102 (*1 *1 *1) (-5 *1 (-876))) (-2113 (*1 *1 *1) (-5 *1 (-876))) (-3188 (*1 *1 *1) (-5 *1 (-876))) (-4376 (*1 *1 *1 *1) (-5 *1 (-876))) (-2391 (*1 *1 *1 *1) (-5 *1 (-876))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2391 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1995 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1372 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1372 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-3962 (*1 *1 *1 *1) (-5 *1 (-876))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1533 (*1 *1 *1) (-5 *1 (-876))) (-3022 (*1 *1 *1 *1) (-5 *1 (-876))) (-2345 (*1 *1 *1) (-5 *1 (-876))) (-3410 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-876)))) (-2470 (*1 *1 *1 *1) (-5 *1 (-876))) (-4076 (*1 *1 *1) (-5 *1 (-876))) (-4076 (*1 *1 *1 *1) (-5 *1 (-876))) (-3862 (*1 *1 *1 *1) (-5 *1 (-876))) (-3221 (*1 *1 *1 *1) (-5 *1 (-876))) (-4263 (*1 *1 *1 *1) (-5 *1 (-876))) (-1510 (*1 *1 *1 *1) (-5 *1 (-876))) (-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) (-1348 (*1 *1 *1 *1) (-5 *1 (-876))) (-3824 (*1 *1 *1 *1) (-5 *1 (-876))) (-3530 (*1 *1 *1 *1) (-5 *1 (-876))) (-3678 (*1 *1 *1 *1) (-5 *1 (-876))) (-1517 (*1 *1 *1 *1) (-5 *1 (-876))) (-3125 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-4301 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-1603 (*1 *1 *1) (-5 *1 (-876))) (-1875 (*1 *1 *1) (-5 *1 (-876))) (-1875 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) (-3972 (*1 *1 *1) (-5 *1 (-876))) (-3972 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) (-2462 (*1 *1 *1) (-5 *1 (-876))) (-4208 (*1 *1 *1 *1) (-5 *1 (-876))) (-3352 (*1 *1 *1) (-5 *1 (-876))) (-3352 (*1 *1 *1 *1) (-5 *1 (-876))) (-3352 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-1546 (*1 *1 *1) (-5 *1 (-876))) (-1546 (*1 *1 *1 *1) (-5 *1 (-876))) (-1546 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-4406 (*1 *1 *1) (-5 *1 (-876))) (-4406 (*1 *1 *1 *1) (-5 *1 (-876))) (-4406 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-1515 (*1 *1 *1) (-5 *1 (-876))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2611 (*1 *1 *1) (-5 *1 (-876))) (-2611 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3043 (*1 *1 *1) (-5 *1 (-876))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3826 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3919 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-2385 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3197 (*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) (-3939 (*1 *1 *1 *1) (-5 *1 (-876))) (-1957 (*1 *1 *1 *1) (-5 *1 (-876))) (-3963 (*1 *1 *1 *1) (-5 *1 (-876))) (-3975 (*1 *1 *1 *1) (-5 *1 (-876))) (-3984 (*1 *1 *1 *1) (-5 *1 (-876))) (-3995 (*1 *1 *1 *1) (-5 *1 (-876))) (-4026 (*1 *1 *1 *1) (-5 *1 (-876))) (-4037 (*1 *1 *1 *1) (-5 *1 (-876))) (-4037 (*1 *1 *1) (-5 *1 (-876))) (* (*1 *1 *1 *1) (-5 *1 (-876))) (-4047 (*1 *1 *1 *1) (-5 *1 (-876))) (** (*1 *1 *1 *1) (-5 *1 (-876))) (-1933 (*1 *1 *1 *1) (-5 *1 (-876))) (-1895 (*1 *1 *1 *1) (-5 *1 (-876))) (-1908 (*1 *1 *1 *1) (-5 *1 (-876))) (-1946 (*1 *1 *1 *1) (-5 *1 (-876))) (-2311 (*1 *1 *1 *1) (-5 *1 (-876))) (-2324 (*1 *1 *1 *1) (-5 *1 (-876))) (-2299 (*1 *1 *1) (-5 *1 (-876))) (-2497 (*1 *1 *1 *1) (-5 *1 (-876))) (-2497 (*1 *1 *1) (-5 *1 (-876)))) -(-13 (-1121) (-10 -8 (-15 -3252 ((-1293) $)) (-15 -2012 ($ (-1179))) (-15 -1733 ((-1293) (-1179))) (-15 -4353 ($ (-576))) (-15 -4353 ($ (-1197))) (-15 -4353 ($ (-1179))) (-15 -4353 ($ (-227))) (-15 -3307 ($)) (-15 -2016 ((-1179) (-1179))) (-15 -1924 ((-576) $)) (-15 -2955 ((-576) $)) (-15 -1924 ((-576))) (-15 -2955 ((-576))) (-15 -1662 ((-576) $)) (-15 -2100 ((-576) $)) (-15 -3792 ($ (-576))) (-15 -2293 ($ (-576))) (-15 -3996 ($ (-576) (-576))) (-15 -2102 ($ $ (-576))) (-15 -2113 ($ $ (-576))) (-15 -3188 ($ $ (-576))) (-15 -2102 ($ $)) (-15 -2113 ($ $)) (-15 -3188 ($ $)) (-15 -4376 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -4376 ($ (-656 $))) (-15 -2391 ($ (-656 $))) (-15 -1995 ($ $ (-656 $))) (-15 -1372 ($ $ (-656 $))) (-15 -1372 ($ $ $ $)) (-15 -3962 ($ $ $)) (-15 -2351 ((-112) $)) (-15 -4369 ($ $ (-656 $))) (-15 -1533 ($ $)) (-15 -3022 ($ $ $)) (-15 -2345 ($ $)) (-15 -3410 ($ (-656 (-656 $)))) (-15 -2470 ($ $ $)) (-15 -4076 ($ $)) (-15 -4076 ($ $ $)) (-15 -3862 ($ $ $)) (-15 -3221 ($ $ $)) (-15 -4263 ($ $ $)) (-15 -1510 ($ $ $)) (-15 -4107 ($ $ (-783))) (-15 -1348 ($ $ $)) (-15 -3824 ($ $ $)) (-15 -3530 ($ $ $)) (-15 -3678 ($ $ $)) (-15 -1517 ($ $ $)) (-15 -3125 ($ $ (-656 $))) (-15 -4301 ($ $ (-656 $))) (-15 -1603 ($ $)) (-15 -1875 ($ $)) (-15 -1875 ($ $ (-783))) (-15 -3972 ($ $)) (-15 -3972 ($ $ (-783))) (-15 -2462 ($ $)) (-15 -4208 ($ $ $)) (-15 -3352 ($ $)) (-15 -3352 ($ $ $)) (-15 -3352 ($ $ $ $)) (-15 -1546 ($ $)) (-15 -1546 ($ $ $)) (-15 -1546 ($ $ $ $)) (-15 -4406 ($ $)) (-15 -4406 ($ $ $)) (-15 -4406 ($ $ $ $)) (-15 -1515 ($ $)) (-15 -1515 ($ (-656 $))) (-15 -2611 ($ $)) (-15 -2611 ($ (-656 $))) (-15 -3043 ($ $)) (-15 -3043 ($ (-656 $))) (-15 -3826 ($ (-656 $))) (-15 -3919 ($ (-656 $))) (-15 -2385 ($ (-656 $))) (-15 -3197 ($ (-656 $))) (-15 -3939 ($ $ $)) (-15 -1957 ($ $ $)) (-15 -3963 ($ $ $)) (-15 -3975 ($ $ $)) (-15 -3984 ($ $ $)) (-15 -3995 ($ $ $)) (-15 -4026 ($ $ $)) (-15 -4037 ($ $ $)) (-15 -4037 ($ $)) (-15 * ($ $ $)) (-15 -4047 ($ $ $)) (-15 ** ($ $ $)) (-15 -1933 ($ $ $)) (-15 -1895 ($ $ $)) (-15 -1908 ($ $ $)) (-15 -1946 ($ $ $)) (-15 -2311 ($ $ $)) (-15 -2324 ($ $ $)) (-15 -2299 ($ $)) (-15 -2497 ($ $ $)) (-15 -2497 ($ $)))) -((-4169 (((-1293) (-656 (-52))) 23)) (-3401 (((-1293) (-1179) (-876)) 13) (((-1293) (-876)) 8) (((-1293) (-1179)) 10))) -(((-877) (-10 -7 (-15 -3401 ((-1293) (-1179))) (-15 -3401 ((-1293) (-876))) (-15 -3401 ((-1293) (-1179) (-876))) (-15 -4169 ((-1293) (-656 (-52)))))) (T -877)) -((-4169 (*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1293)) (-5 *1 (-877)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) (-3401 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) (-3401 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-877))))) -(-10 -7 (-15 -3401 ((-1293) (-1179))) (-15 -3401 ((-1293) (-876))) (-15 -3401 ((-1293) (-1179) (-876))) (-15 -4169 ((-1293) (-656 (-52))))) -((-1957 (((-112) $ $) NIL)) (-1654 (((-3 $ "failed") (-1197)) 36)) (-2201 (((-783)) 32)) (-4370 (($) NIL)) (-2907 (($ $ $) NIL) (($) NIL T CONST)) (-3777 (($ $ $) NIL) (($) NIL T CONST)) (-3787 (((-940) $) 29)) (-2447 (((-1179) $) 43)) (-2411 (($ (-940)) 28)) (-3116 (((-1141) $) NIL)) (-1556 (((-1197) $) 13) (((-548) $) 19) (((-907 (-390)) $) 26) (((-907 (-576)) $) 22)) (-4113 (((-876) $) 16)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 40)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 38))) -(((-878 |#1|) (-13 (-856) (-626 (-1197)) (-626 (-548)) (-626 (-907 (-390))) (-626 (-907 (-576))) (-10 -8 (-15 -1654 ((-3 $ "failed") (-1197))))) (-656 (-1197))) (T -878)) -((-1654 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-878 *3)) (-14 *3 (-656 *2))))) -(-13 (-856) (-626 (-1197)) (-626 (-548)) (-626 (-907 (-390))) (-626 (-907 (-576))) (-10 -8 (-15 -1654 ((-3 $ "failed") (-1197))))) -((-1957 (((-112) $ $) NIL)) (-4149 (((-518) $) 9)) (-2911 (((-656 (-451)) $) 13)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 21)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 16))) -(((-879) (-13 (-1121) (-10 -8 (-15 -4149 ((-518) $)) (-15 -2911 ((-656 (-451)) $))))) (T -879)) -((-4149 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-879)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-879))))) -(-13 (-1121) (-10 -8 (-15 -4149 ((-518) $)) (-15 -2911 ((-656 (-451)) $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) NIL)) (-2486 (((-112) $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ (-971 |#1|)) NIL) (((-971 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-2910 (((-783)) NIL T CONST)) (-3572 (((-1293) (-783)) NIL)) (-2950 (((-112) $ $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4047 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-880 |#1| |#2| |#3| |#4|) (-13 (-1070) (-502 (-971 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4047 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3572 ((-1293) (-783))))) (-1070) (-656 (-1197)) (-656 (-783)) (-783)) (T -880)) -((-4047 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-880 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-783))) (-14 *5 (-783)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-880 *4 *5 *6 *7)) (-4 *4 (-1070)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 *3)) (-14 *7 *3)))) -(-13 (-1070) (-502 (-971 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4047 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3572 ((-1293) (-783))))) -((-2640 (((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|) 38)) (-4444 (((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|) 29))) -(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -4444 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -2640 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) (-374) (-1279 |#1|) (-1264 |#1|)) (T -881)) -((-2640 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5)))) (-4444 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5))))) -(-10 -7 (-15 -4444 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -2640 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) -((-4444 (((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|)) 30) (((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) 28))) -(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -4444 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (-15 -4444 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|)))) (-374) (-1197) |#1|) (T -882)) -((-4444 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) (-5 *1 (-882 *5 *6 *7)))) (-4444 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) (-5 *1 (-882 *5 *6 *7))))) -(-10 -7 (-15 -4444 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (-15 -4444 ((-3 (-419 (-1261 |#2| |#1|)) "failed") (-783) (-783) (-1280 |#1| |#2| |#3|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-1462 (($ $ (-576)) 68)) (-4386 (((-112) $ $) 65)) (-3170 (($) 18 T CONST)) (-4076 (($ (-1193 (-576)) (-576)) 67)) (-1895 (($ $ $) 61)) (-1851 (((-3 $ "failed") $) 37)) (-1407 (($ $) 70)) (-1908 (($ $ $) 62)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-3359 (((-783) $) 75)) (-2486 (((-112) $) 35)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1488 (((-576)) 72)) (-4130 (((-576) $) 71)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2419 (($ $ (-576)) 74)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2812 (((-783) $) 64)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63)) (-2539 (((-1178 (-576)) $) 76)) (-3193 (($ $) 73)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-2642 (((-576) $ (-576)) 69)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-883 |#1|) (-141) (-576)) (T -883)) -((-2539 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-1178 (-576))))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-783)))) (-2419 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-3193 (*1 *1 *1) (-4 *1 (-883 *2))) (-1488 (*1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-4130 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-1407 (*1 *1 *1) (-4 *1 (-883 *2))) (-2642 (*1 *2 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-1462 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) (-4076 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *3 (-576)) (-4 *1 (-883 *4))))) -(-13 (-317) (-148) (-10 -8 (-15 -2539 ((-1178 (-576)) $)) (-15 -3359 ((-783) $)) (-15 -2419 ($ $ (-576))) (-15 -3193 ($ $)) (-15 -1488 ((-576))) (-15 -4130 ((-576) $)) (-15 -1407 ($ $)) (-15 -2642 ((-576) $ (-576))) (-15 -1462 ($ $ (-576))) (-15 -4076 ($ (-1193 (-576)) (-576))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $ (-576)) NIL)) (-4386 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-4076 (($ (-1193 (-576)) (-576)) NIL)) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1407 (($ $) NIL)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3359 (((-783) $) NIL)) (-2486 (((-112) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1488 (((-576)) NIL)) (-4130 (((-576) $) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2419 (($ $ (-576)) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-2539 (((-1178 (-576)) $) NIL)) (-3193 (($ $) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2642 (((-576) $ (-576)) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-884 |#1|) (-883 |#1|) (-576)) (T -884)) -NIL -(-883 |#1|) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2628 (((-884 |#1|) $) NIL (|has| (-884 |#1|) (-317)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL (|has| (-884 |#1|) (-832)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-884 |#1|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| (-884 |#1|) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-884 |#1|) (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-884 |#1|) (-1059 (-576))))) (-2317 (((-884 |#1|) $) NIL) (((-1197) $) NIL (|has| (-884 |#1|) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-884 |#1|) (-1059 (-576)))) (((-576) $) NIL (|has| (-884 |#1|) (-1059 (-576))))) (-3516 (($ $) NIL) (($ (-576) $) NIL)) (-1895 (($ $ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-884 |#1|))) (|:| |vec| (-1288 (-884 |#1|)))) (-701 $) (-1288 $)) NIL) (((-701 (-884 |#1|)) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| (-884 |#1|) (-557)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2279 (((-112) $) NIL (|has| (-884 |#1|) (-832)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-884 |#1|) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-884 |#1|) (-901 (-390))))) (-2486 (((-112) $) NIL)) (-2252 (($ $) NIL)) (-2687 (((-884 |#1|) $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| (-884 |#1|) (-1173)))) (-3323 (((-112) $) NIL (|has| (-884 |#1|) (-832)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2907 (($ $ $) NIL (|has| (-884 |#1|) (-861)))) (-3777 (($ $ $) NIL (|has| (-884 |#1|) (-861)))) (-2423 (($ (-1 (-884 |#1|) (-884 |#1|)) $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-884 |#1|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-884 |#1|))) (|:| |vec| (-1288 (-884 |#1|)))) (-1288 $) $) NIL) (((-701 (-884 |#1|)) (-1288 $)) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| (-884 |#1|) (-1173)) CONST)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2701 (($ $) NIL (|has| (-884 |#1|) (-317)))) (-3058 (((-884 |#1|) $) NIL (|has| (-884 |#1|) (-557)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-884 |#1|) (-928)))) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2145 (($ $ (-656 (-884 |#1|)) (-656 (-884 |#1|))) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-884 |#1|) (-884 |#1|)) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-304 (-884 |#1|))) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-656 (-304 (-884 |#1|)))) NIL (|has| (-884 |#1|) (-319 (-884 |#1|)))) (($ $ (-656 (-1197)) (-656 (-884 |#1|))) NIL (|has| (-884 |#1|) (-526 (-1197) (-884 |#1|)))) (($ $ (-1197) (-884 |#1|)) NIL (|has| (-884 |#1|) (-526 (-1197) (-884 |#1|))))) (-2812 (((-783) $) NIL)) (-4369 (($ $ (-884 |#1|)) NIL (|has| (-884 |#1|) (-296 (-884 |#1|) (-884 |#1|))))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4107 (($ $ (-1 (-884 |#1|) (-884 |#1|))) NIL) (($ $ (-1 (-884 |#1|) (-884 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-884 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-884 |#1|) (-237)))) (-3591 (($ $) NIL)) (-2697 (((-884 |#1|) $) NIL)) (-1556 (((-907 (-576)) $) NIL (|has| (-884 |#1|) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-884 |#1|) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-884 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-884 |#1|) (-1043))) (((-227) $) NIL (|has| (-884 |#1|) (-1043)))) (-2264 (((-176 (-419 (-576))) $) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-884 |#1|) (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-884 |#1|)) NIL) (($ (-1197)) NIL (|has| (-884 |#1|) (-1059 (-1197))))) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| (-884 |#1|) (-928))) (|has| (-884 |#1|) (-146))))) (-2910 (((-783)) NIL T CONST)) (-4081 (((-884 |#1|) $) NIL (|has| (-884 |#1|) (-557)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2642 (((-419 (-576)) $ (-576)) NIL)) (-2366 (($ $) NIL (|has| (-884 |#1|) (-832)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-1 (-884 |#1|) (-884 |#1|))) NIL) (($ $ (-1 (-884 |#1|) (-884 |#1|)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-884 |#1|) (-919 (-1197)))) (($ $) NIL (|has| (-884 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-884 |#1|) (-237)))) (-3995 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-3975 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-3963 (((-112) $ $) NIL (|has| (-884 |#1|) (-861)))) (-4047 (($ $ $) NIL) (($ (-884 |#1|) (-884 |#1|)) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-884 |#1|) $) NIL) (($ $ (-884 |#1|)) NIL))) -(((-885 |#1|) (-13 (-1013 (-884 |#1|)) (-10 -8 (-15 -2642 ((-419 (-576)) $ (-576))) (-15 -2264 ((-176 (-419 (-576))) $)) (-15 -3516 ($ $)) (-15 -3516 ($ (-576) $)))) (-576)) (T -885)) -((-2642 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-885 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-885 *3)) (-14 *3 (-576)))) (-3516 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-14 *2 (-576)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-885 *3)) (-14 *3 *2)))) -(-13 (-1013 (-884 |#1|)) (-10 -8 (-15 -2642 ((-419 (-576)) $ (-576))) (-15 -2264 ((-176 (-419 (-576))) $)) (-15 -3516 ($ $)) (-15 -3516 ($ (-576) $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2628 ((|#2| $) NIL (|has| |#2| (-317)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL (|has| |#2| (-832)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#2| "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (|has| |#2| (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576))))) (-2317 ((|#2| $) NIL) (((-1197) $) NIL (|has| |#2| (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-576)))) (((-576) $) NIL (|has| |#2| (-1059 (-576))))) (-3516 (($ $) 35) (($ (-576) $) 38)) (-1895 (($ $ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) 64)) (-4370 (($) NIL (|has| |#2| (-557)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2279 (((-112) $) NIL (|has| |#2| (-832)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| |#2| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| |#2| (-901 (-390))))) (-2486 (((-112) $) NIL)) (-2252 (($ $) NIL)) (-2687 ((|#2| $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| |#2| (-1173)))) (-3323 (((-112) $) NIL (|has| |#2| (-832)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2907 (($ $ $) NIL (|has| |#2| (-861)))) (-3777 (($ $ $) NIL (|has| |#2| (-861)))) (-2423 (($ (-1 |#2| |#2|) $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 60)) (-3650 (($) NIL (|has| |#2| (-1173)) CONST)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2701 (($ $) NIL (|has| |#2| (-317)))) (-3058 ((|#2| $) NIL (|has| |#2| (-557)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2145 (($ $ (-656 |#2|) (-656 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-319 |#2|))) (($ $ (-304 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-304 |#2|))) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-1197)) (-656 |#2|)) NIL (|has| |#2| (-526 (-1197) |#2|))) (($ $ (-1197) |#2|) NIL (|has| |#2| (-526 (-1197) |#2|)))) (-2812 (((-783) $) NIL)) (-4369 (($ $ |#2|) NIL (|has| |#2| (-296 |#2| |#2|)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4107 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-3591 (($ $) NIL)) (-2697 ((|#2| $) NIL)) (-1556 (((-907 (-576)) $) NIL (|has| |#2| (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| |#2| (-626 (-907 (-390))))) (((-548) $) NIL (|has| |#2| (-626 (-548)))) (((-390) $) NIL (|has| |#2| (-1043))) (((-227) $) NIL (|has| |#2| (-1043)))) (-2264 (((-176 (-419 (-576))) $) 78)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-4113 (((-876) $) 106) (($ (-576)) 20) (($ $) NIL) (($ (-419 (-576))) 25) (($ |#2|) 19) (($ (-1197)) NIL (|has| |#2| (-1059 (-1197))))) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-2910 (((-783)) NIL T CONST)) (-4081 ((|#2| $) NIL (|has| |#2| (-557)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2642 (((-419 (-576)) $ (-576)) 71)) (-2366 (($ $) NIL (|has| |#2| (-832)))) (-4313 (($) 15 T CONST)) (-4322 (($) 17 T CONST)) (-3157 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-3995 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3939 (((-112) $ $) 46)) (-3984 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#2| (-861)))) (-4047 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4037 (($ $) 50) (($ $ $) 52)) (-4026 (($ $ $) 48)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 61)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 53) (($ $ $) 55) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-886 |#1| |#2|) (-13 (-1013 |#2|) (-10 -8 (-15 -2642 ((-419 (-576)) $ (-576))) (-15 -2264 ((-176 (-419 (-576))) $)) (-15 -3516 ($ $)) (-15 -3516 ($ (-576) $)))) (-576) (-883 |#1|)) (T -886)) -((-2642 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-886 *4 *5)) (-5 *3 (-576)) (-4 *5 (-883 *4)))) (-2264 (*1 *2 *1) (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-886 *3 *4)) (-4 *4 (-883 *3)))) (-3516 (*1 *1 *1) (-12 (-14 *2 (-576)) (-5 *1 (-886 *2 *3)) (-4 *3 (-883 *2)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-886 *3 *4)) (-4 *4 (-883 *3))))) -(-13 (-1013 |#2|) (-10 -8 (-15 -2642 ((-419 (-576)) $ (-576))) (-15 -2264 ((-176 (-419 (-576))) $)) (-15 -3516 ($ $)) (-15 -3516 ($ (-576) $)))) -((-1957 (((-112) $ $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-3443 ((|#2| $) 12)) (-2448 (($ |#1| |#2|) 9)) (-2447 (((-1179) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-3116 (((-1141) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-1755 ((|#1| $) 11)) (-4125 (($ |#1| |#2|) 10)) (-4113 (((-876) $) 18 (-3795 (-12 (|has| |#1| (-625 (-876))) (|has| |#2| (-625 (-876)))) (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121)))))) (-2950 (((-112) $ $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) (-3939 (((-112) $ $) 23 (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121)))))) -(((-887 |#1| |#2|) (-13 (-1238) (-10 -8 (IF (|has| |#1| (-625 (-876))) (IF (|has| |#2| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1121)) (IF (|has| |#2| (-1121)) (-6 (-1121)) |%noBranch|) |%noBranch|) (-15 -2448 ($ |#1| |#2|)) (-15 -4125 ($ |#1| |#2|)) (-15 -1755 (|#1| $)) (-15 -3443 (|#2| $)))) (-1238) (-1238)) (T -887)) -((-2448 (*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) (-4125 (*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) (-1755 (*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1238)))) (-3443 (*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1238))))) -(-13 (-1238) (-10 -8 (IF (|has| |#1| (-625 (-876))) (IF (|has| |#2| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1121)) (IF (|has| |#2| (-1121)) (-6 (-1121)) |%noBranch|) |%noBranch|) (-15 -2448 ($ |#1| |#2|)) (-15 -4125 ($ |#1| |#2|)) (-15 -1755 (|#1| $)) (-15 -3443 (|#2| $)))) -((-1957 (((-112) $ $) NIL)) (-4302 (((-576) $) 16)) (-3681 (($ (-158)) 13)) (-3231 (($ (-158)) 14)) (-2447 (((-1179) $) NIL)) (-4411 (((-158) $) 15)) (-3116 (((-1141) $) NIL)) (-1913 (($ (-158)) 11)) (-2513 (($ (-158)) 10)) (-4113 (((-876) $) 24) (($ (-158)) 17)) (-2124 (($ (-158)) 12)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-888) (-13 (-1121) (-10 -8 (-15 -2513 ($ (-158))) (-15 -1913 ($ (-158))) (-15 -2124 ($ (-158))) (-15 -3681 ($ (-158))) (-15 -3231 ($ (-158))) (-15 -4411 ((-158) $)) (-15 -4302 ((-576) $)) (-15 -4113 ($ (-158)))))) (T -888)) -((-2513 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-2124 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-3681 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-3231 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-4411 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-888)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) -(-13 (-1121) (-10 -8 (-15 -2513 ($ (-158))) (-15 -1913 ($ (-158))) (-15 -2124 ($ (-158))) (-15 -3681 ($ (-158))) (-15 -3231 ($ (-158))) (-15 -4411 ((-158) $)) (-15 -4302 ((-576) $)) (-15 -4113 ($ (-158))))) -((-4113 (((-326 (-576)) (-419 (-971 (-48)))) 23) (((-326 (-576)) (-971 (-48))) 18))) -(((-889) (-10 -7 (-15 -4113 ((-326 (-576)) (-971 (-48)))) (-15 -4113 ((-326 (-576)) (-419 (-971 (-48))))))) (T -889)) -((-4113 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 (-48)))) (-5 *2 (-326 (-576))) (-5 *1 (-889)))) (-4113 (*1 *2 *3) (-12 (-5 *3 (-971 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-889))))) -(-10 -7 (-15 -4113 ((-326 (-576)) (-971 (-48)))) (-15 -4113 ((-326 (-576)) (-419 (-971 (-48)))))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 18) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4305 (((-112) $ (|[\|\|]| (-518))) 9) (((-112) $ (|[\|\|]| (-1179))) 13)) (-2950 (((-112) $ $) NIL)) (-4333 (((-518) $) 10) (((-1179) $) 14)) (-3939 (((-112) $ $) 15))) -(((-890) (-13 (-1104) (-1283) (-10 -8 (-15 -4305 ((-112) $ (|[\|\|]| (-518)))) (-15 -4333 ((-518) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1179)))) (-15 -4333 ((-1179) $))))) (T -890)) -((-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-890)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-890)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)) (-5 *1 (-890)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-890))))) -(-13 (-1104) (-1283) (-10 -8 (-15 -4305 ((-112) $ (|[\|\|]| (-518)))) (-15 -4333 ((-518) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1179)))) (-15 -4333 ((-1179) $)))) -((-2423 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15))) -(((-891 |#1| |#2|) (-10 -7 (-15 -2423 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1238) (-1238)) (T -891)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) -(-10 -7 (-15 -2423 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) -((-3604 (($ |#1| |#1|) 8)) (-3947 ((|#1| $ (-783)) 15))) -(((-892 |#1|) (-10 -8 (-15 -3604 ($ |#1| |#1|)) (-15 -3947 (|#1| $ (-783)))) (-1238)) (T -892)) -((-3947 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1238)))) (-3604 (*1 *1 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1238))))) -(-10 -8 (-15 -3604 ($ |#1| |#1|)) (-15 -3947 (|#1| $ (-783)))) -((-2423 (((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)) 15))) -(((-893 |#1| |#2|) (-10 -7 (-15 -2423 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) (-1238) (-1238)) (T -893)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6))))) -(-10 -7 (-15 -2423 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) -((-3604 (($ |#1| |#1| |#1|) 8)) (-3947 ((|#1| $ (-783)) 15))) -(((-894 |#1|) (-10 -8 (-15 -3604 ($ |#1| |#1| |#1|)) (-15 -3947 (|#1| $ (-783)))) (-1238)) (T -894)) -((-3947 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-894 *2)) (-4 *2 (-1238)))) (-3604 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1238))))) -(-10 -8 (-15 -3604 ($ |#1| |#1| |#1|)) (-15 -3947 (|#1| $ (-783)))) -((-2363 (((-656 (-1202)) (-1179)) 9))) -(((-895) (-10 -7 (-15 -2363 ((-656 (-1202)) (-1179))))) (T -895)) -((-2363 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-895))))) -(-10 -7 (-15 -2363 ((-656 (-1202)) (-1179)))) -((-2423 (((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)) 15))) -(((-896 |#1| |#2|) (-10 -7 (-15 -2423 ((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)))) (-1238) (-1238)) (T -896)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-897 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-897 *6)) (-5 *1 (-896 *5 *6))))) -(-10 -7 (-15 -2423 ((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)))) -((-3337 (($ |#1| |#1| |#1|) 8)) (-3947 ((|#1| $ (-783)) 15))) -(((-897 |#1|) (-10 -8 (-15 -3337 ($ |#1| |#1| |#1|)) (-15 -3947 (|#1| $ (-783)))) (-1238)) (T -897)) -((-3947 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-897 *2)) (-4 *2 (-1238)))) (-3337 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1238))))) -(-10 -8 (-15 -3337 ($ |#1| |#1| |#1|)) (-15 -3947 (|#1| $ (-783)))) -((-3700 (((-1178 (-656 (-576))) (-656 (-576)) (-1178 (-656 (-576)))) 41)) (-1724 (((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576))) 31)) (-1459 (((-1178 (-656 (-576))) (-656 (-576))) 53) (((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576))) 50)) (-4191 (((-1178 (-656 (-576))) (-576)) 55)) (-2754 (((-1178 (-656 (-940))) (-1178 (-656 (-940)))) 22)) (-2117 (((-656 (-940)) (-656 (-940))) 18))) -(((-898) (-10 -7 (-15 -2117 ((-656 (-940)) (-656 (-940)))) (-15 -2754 ((-1178 (-656 (-940))) (-1178 (-656 (-940))))) (-15 -1724 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -3700 ((-1178 (-656 (-576))) (-656 (-576)) (-1178 (-656 (-576))))) (-15 -1459 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -1459 ((-1178 (-656 (-576))) (-656 (-576)))) (-15 -4191 ((-1178 (-656 (-576))) (-576))))) (T -898)) -((-4191 (*1 *2 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-576)))) (-1459 (*1 *2 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-656 (-576))))) (-1459 (*1 *2 *3 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-656 (-576))))) (-3700 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *3 (-656 (-576))) (-5 *1 (-898)))) (-1724 (*1 *2 *3 *3) (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-656 (-576))))) (-2754 (*1 *2 *2) (-12 (-5 *2 (-1178 (-656 (-940)))) (-5 *1 (-898)))) (-2117 (*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-898))))) -(-10 -7 (-15 -2117 ((-656 (-940)) (-656 (-940)))) (-15 -2754 ((-1178 (-656 (-940))) (-1178 (-656 (-940))))) (-15 -1724 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -3700 ((-1178 (-656 (-576))) (-656 (-576)) (-1178 (-656 (-576))))) (-15 -1459 ((-1178 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -1459 ((-1178 (-656 (-576))) (-656 (-576)))) (-15 -4191 ((-1178 (-656 (-576))) (-576)))) -((-1556 (((-907 (-390)) $) 9 (|has| |#1| (-626 (-907 (-390))))) (((-907 (-576)) $) 8 (|has| |#1| (-626 (-907 (-576))))))) -(((-899 |#1|) (-141) (-1238)) (T -899)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-626 (-907 (-576)))) (-6 (-626 (-907 (-576)))) |%noBranch|) (IF (|has| |t#1| (-626 (-907 (-390)))) (-6 (-626 (-907 (-390)))) |%noBranch|))) -(((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576))))) -((-1957 (((-112) $ $) NIL)) (-1991 (($) 14)) (-2463 (($ (-904 |#1| |#2|) (-904 |#1| |#3|)) 28)) (-4205 (((-904 |#1| |#3|) $) 16)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2541 (((-112) $) 22)) (-2532 (($) 19)) (-4113 (((-876) $) 31)) (-2950 (((-112) $ $) NIL)) (-2024 (((-904 |#1| |#2|) $) 15)) (-3939 (((-112) $ $) 26))) -(((-900 |#1| |#2| |#3|) (-13 (-1121) (-10 -8 (-15 -2541 ((-112) $)) (-15 -2532 ($)) (-15 -1991 ($)) (-15 -2463 ($ (-904 |#1| |#2|) (-904 |#1| |#3|))) (-15 -2024 ((-904 |#1| |#2|) $)) (-15 -4205 ((-904 |#1| |#3|) $)))) (-1121) (-1121) (-678 |#2|)) (T -900)) -((-2541 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4)))) (-2532 (*1 *1) (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) (-4 *4 (-678 *3)))) (-1991 (*1 *1) (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) (-4 *4 (-678 *3)))) (-2463 (*1 *1 *2 *3) (-12 (-5 *2 (-904 *4 *5)) (-5 *3 (-904 *4 *6)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-678 *5)) (-5 *1 (-900 *4 *5 *6)))) (-2024 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *4)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4)))) (-4205 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *5)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-678 *4))))) -(-13 (-1121) (-10 -8 (-15 -2541 ((-112) $)) (-15 -2532 ($)) (-15 -1991 ($)) (-15 -2463 ($ (-904 |#1| |#2|) (-904 |#1| |#3|))) (-15 -2024 ((-904 |#1| |#2|) $)) (-15 -4205 ((-904 |#1| |#3|) $)))) -((-1957 (((-112) $ $) 7)) (-2477 (((-904 |#1| $) $ (-907 |#1|) (-904 |#1| $)) 14)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) -(((-901 |#1|) (-141) (-1121)) (T -901)) -((-2477 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-904 *4 *1)) (-5 *3 (-907 *4)) (-4 *1 (-901 *4)) (-4 *4 (-1121))))) -(-13 (-1121) (-10 -8 (-15 -2477 ((-904 |t#1| $) $ (-907 |t#1|) (-904 |t#1| $))))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-4227 (((-112) (-656 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1761 (((-904 |#1| |#2|) |#2| |#3|) 45 (-12 (-2299 (|has| |#2| (-1059 (-1197)))) (-2299 (|has| |#2| (-1070))))) (((-656 (-304 (-971 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1070)) (-2299 (|has| |#2| (-1059 (-1197)))))) (((-656 (-304 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1059 (-1197)))) (((-900 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|) 21))) -(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -4227 ((-112) |#2| |#3|)) (-15 -4227 ((-112) (-656 |#2|) |#3|)) (-15 -1761 ((-900 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1059 (-1197))) (-15 -1761 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1070)) (-15 -1761 ((-656 (-304 (-971 |#2|))) |#2| |#3|)) (-15 -1761 ((-904 |#1| |#2|) |#2| |#3|))))) (-1121) (-901 |#1|) (-626 (-907 |#1|))) (T -902)) -((-1761 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-904 *5 *3)) (-5 *1 (-902 *5 *3 *4)) (-2299 (-4 *3 (-1059 (-1197)))) (-2299 (-4 *3 (-1070))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) (-1761 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 (-971 *3)))) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1070)) (-2299 (-4 *3 (-1059 (-1197)))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) (-1761 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1059 (-1197))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) (-1761 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *6 (-901 *5)) (-5 *2 (-900 *5 *6 (-656 *6))) (-5 *1 (-902 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-907 *5))))) (-4227 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-4 *6 (-901 *5)) (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-902 *5 *6 *4)) (-4 *4 (-626 (-907 *5))))) (-4227 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5)))))) -(-10 -7 (-15 -4227 ((-112) |#2| |#3|)) (-15 -4227 ((-112) (-656 |#2|) |#3|)) (-15 -1761 ((-900 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1059 (-1197))) (-15 -1761 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1070)) (-15 -1761 ((-656 (-304 (-971 |#2|))) |#2| |#3|)) (-15 -1761 ((-904 |#1| |#2|) |#2| |#3|))))) -((-2423 (((-904 |#1| |#3|) (-1 |#3| |#2|) (-904 |#1| |#2|)) 22))) -(((-903 |#1| |#2| |#3|) (-10 -7 (-15 -2423 ((-904 |#1| |#3|) (-1 |#3| |#2|) (-904 |#1| |#2|)))) (-1121) (-1121) (-1121)) (T -903)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-904 *5 *6)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-904 *5 *7)) (-5 *1 (-903 *5 *6 *7))))) -(-10 -7 (-15 -2423 ((-904 |#1| |#3|) (-1 |#3| |#2|) (-904 |#1| |#2|)))) -((-1957 (((-112) $ $) NIL)) (-4025 (($ $ $) 40)) (-1655 (((-3 (-112) "failed") $ (-907 |#1|)) 37)) (-1991 (($) 12)) (-2447 (((-1179) $) NIL)) (-1420 (($ (-907 |#1|) |#2| $) 20)) (-3116 (((-1141) $) NIL)) (-1962 (((-3 |#2| "failed") (-907 |#1|) $) 51)) (-2541 (((-112) $) 15)) (-2532 (($) 13)) (-1525 (((-656 (-2 (|:| -2240 (-1197)) (|:| -2905 |#2|))) $) 25)) (-4125 (($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 |#2|)))) 23)) (-4113 (((-876) $) 45)) (-2950 (((-112) $ $) NIL)) (-2305 (($ (-907 |#1|) |#2| $ |#2|) 49)) (-3082 (($ (-907 |#1|) |#2| $) 48)) (-3939 (((-112) $ $) 42))) -(((-904 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -2541 ((-112) $)) (-15 -2532 ($)) (-15 -1991 ($)) (-15 -4025 ($ $ $)) (-15 -1962 ((-3 |#2| "failed") (-907 |#1|) $)) (-15 -3082 ($ (-907 |#1|) |#2| $)) (-15 -1420 ($ (-907 |#1|) |#2| $)) (-15 -2305 ($ (-907 |#1|) |#2| $ |#2|)) (-15 -1525 ((-656 (-2 (|:| -2240 (-1197)) (|:| -2905 |#2|))) $)) (-15 -4125 ($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 |#2|))))) (-15 -1655 ((-3 (-112) "failed") $ (-907 |#1|))))) (-1121) (-1121)) (T -904)) -((-2541 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-2532 (*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-1991 (*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-4025 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-1962 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) (-5 *1 (-904 *4 *2)))) (-3082 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1121)))) (-1420 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1121)))) (-2305 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1121)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 *4)))) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4125 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 *4)))) (-4 *4 (-1121)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)))) (-1655 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-904 *4 *5)) (-4 *5 (-1121))))) -(-13 (-1121) (-10 -8 (-15 -2541 ((-112) $)) (-15 -2532 ($)) (-15 -1991 ($)) (-15 -4025 ($ $ $)) (-15 -1962 ((-3 |#2| "failed") (-907 |#1|) $)) (-15 -3082 ($ (-907 |#1|) |#2| $)) (-15 -1420 ($ (-907 |#1|) |#2| $)) (-15 -2305 ($ (-907 |#1|) |#2| $ |#2|)) (-15 -1525 ((-656 (-2 (|:| -2240 (-1197)) (|:| -2905 |#2|))) $)) (-15 -4125 ($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 |#2|))))) (-15 -1655 ((-3 (-112) "failed") $ (-907 |#1|))))) -((-3767 (((-907 |#1|) (-907 |#1|) (-656 (-1197)) (-1 (-112) (-656 |#2|))) 32) (((-907 |#1|) (-907 |#1|) (-656 (-1 (-112) |#2|))) 46) (((-907 |#1|) (-907 |#1|) (-1 (-112) |#2|)) 35)) (-1655 (((-112) (-656 |#2|) (-907 |#1|)) 42) (((-112) |#2| (-907 |#1|)) 36)) (-2371 (((-1 (-112) |#2|) (-907 |#1|)) 16)) (-3677 (((-656 |#2|) (-907 |#1|)) 24)) (-2262 (((-907 |#1|) (-907 |#1|) |#2|) 20))) -(((-905 |#1| |#2|) (-10 -7 (-15 -3767 ((-907 |#1|) (-907 |#1|) (-1 (-112) |#2|))) (-15 -3767 ((-907 |#1|) (-907 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -3767 ((-907 |#1|) (-907 |#1|) (-656 (-1197)) (-1 (-112) (-656 |#2|)))) (-15 -2371 ((-1 (-112) |#2|) (-907 |#1|))) (-15 -1655 ((-112) |#2| (-907 |#1|))) (-15 -1655 ((-112) (-656 |#2|) (-907 |#1|))) (-15 -2262 ((-907 |#1|) (-907 |#1|) |#2|)) (-15 -3677 ((-656 |#2|) (-907 |#1|)))) (-1121) (-1238)) (T -905)) -((-3677 (*1 *2 *3) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-656 *5)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1238)))) (-2262 (*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-905 *4 *3)) (-4 *3 (-1238)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *2 (-112)) (-5 *1 (-905 *5 *6)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-905 *5 *3)) (-4 *3 (-1238)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1238)))) (-3767 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-907 *5)) (-5 *3 (-656 (-1197))) (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *1 (-905 *5 *6)))) (-3767 (*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1121)) (-4 *5 (-1238)) (-5 *1 (-905 *4 *5)))) (-3767 (*1 *2 *2 *3) (-12 (-5 *2 (-907 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1121)) (-4 *5 (-1238)) (-5 *1 (-905 *4 *5))))) -(-10 -7 (-15 -3767 ((-907 |#1|) (-907 |#1|) (-1 (-112) |#2|))) (-15 -3767 ((-907 |#1|) (-907 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -3767 ((-907 |#1|) (-907 |#1|) (-656 (-1197)) (-1 (-112) (-656 |#2|)))) (-15 -2371 ((-1 (-112) |#2|) (-907 |#1|))) (-15 -1655 ((-112) |#2| (-907 |#1|))) (-15 -1655 ((-112) (-656 |#2|) (-907 |#1|))) (-15 -2262 ((-907 |#1|) (-907 |#1|) |#2|)) (-15 -3677 ((-656 |#2|) (-907 |#1|)))) -((-2423 (((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)) 19))) -(((-906 |#1| |#2|) (-10 -7 (-15 -2423 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)))) (-1121) (-1121)) (T -906)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-907 *6)) (-5 *1 (-906 *5 *6))))) -(-10 -7 (-15 -2423 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)))) -((-1957 (((-112) $ $) NIL)) (-3598 (($ $ (-656 (-52))) 74)) (-1585 (((-656 $) $) 139)) (-3643 (((-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52))) $) 30)) (-3283 (((-112) $) 35)) (-3156 (($ $ (-656 (-1197)) (-52)) 31)) (-2933 (($ $ (-656 (-52))) 73)) (-2982 (((-3 |#1| "failed") $) 71) (((-3 (-1197) "failed") $) 164)) (-2317 ((|#1| $) 68) (((-1197) $) NIL)) (-2285 (($ $) 126)) (-2763 (((-112) $) 55)) (-3291 (((-656 (-52)) $) 50)) (-4190 (($ (-1197) (-112) (-112) (-112)) 75)) (-3425 (((-3 (-656 $) "failed") (-656 $)) 82)) (-2765 (((-112) $) 58)) (-2382 (((-112) $) 57)) (-2447 (((-1179) $) NIL)) (-4050 (((-3 (-656 $) "failed") $) 41)) (-2899 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3838 (((-3 (-2 (|:| |val| $) (|:| -4080 $)) "failed") $) 97)) (-2646 (((-3 (-656 $) "failed") $) 40)) (-2149 (((-3 (-656 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -3961 (-115)) (|:| |arg| (-656 $))) "failed") $) 107)) (-2175 (((-3 (-656 $) "failed") $) 42)) (-1608 (((-3 (-2 (|:| |val| $) (|:| -4080 (-783))) "failed") $) 45)) (-1670 (((-112) $) 34)) (-3116 (((-1141) $) NIL)) (-4221 (((-112) $) 28)) (-3402 (((-112) $) 52)) (-2551 (((-656 (-52)) $) 130)) (-3232 (((-112) $) 56)) (-4369 (($ (-115) (-656 $)) 104)) (-4307 (((-783) $) 33)) (-4287 (($ $) 72)) (-1556 (($ (-656 $)) 69)) (-1505 (((-112) $) 32)) (-4113 (((-876) $) 63) (($ |#1|) 23) (($ (-1197)) 76)) (-2950 (((-112) $ $) NIL)) (-2262 (($ $ (-52)) 129)) (-4313 (($) 103 T CONST)) (-4322 (($) 83 T CONST)) (-3939 (((-112) $ $) 93)) (-4047 (($ $ $) 117)) (-4026 (($ $ $) 121)) (** (($ $ (-783)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-907 |#1|) (-13 (-1121) (-1059 |#1|) (-1059 (-1197)) (-10 -8 (-15 0 ($) -2666) (-15 1 ($) -2666) (-15 -2646 ((-3 (-656 $) "failed") $)) (-15 -4050 ((-3 (-656 $) "failed") $)) (-15 -2149 ((-3 (-656 $) "failed") $ (-115))) (-15 -2149 ((-3 (-2 (|:| -3961 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -1608 ((-3 (-2 (|:| |val| $) (|:| -4080 (-783))) "failed") $)) (-15 -2899 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2175 ((-3 (-656 $) "failed") $)) (-15 -3838 ((-3 (-2 (|:| |val| $) (|:| -4080 $)) "failed") $)) (-15 -4369 ($ (-115) (-656 $))) (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -4047 ($ $ $)) (-15 -4307 ((-783) $)) (-15 -1556 ($ (-656 $))) (-15 -4287 ($ $)) (-15 -1670 ((-112) $)) (-15 -2763 ((-112) $)) (-15 -3283 ((-112) $)) (-15 -1505 ((-112) $)) (-15 -3232 ((-112) $)) (-15 -2382 ((-112) $)) (-15 -2765 ((-112) $)) (-15 -3402 ((-112) $)) (-15 -3291 ((-656 (-52)) $)) (-15 -2933 ($ $ (-656 (-52)))) (-15 -3598 ($ $ (-656 (-52)))) (-15 -4190 ($ (-1197) (-112) (-112) (-112))) (-15 -3156 ($ $ (-656 (-1197)) (-52))) (-15 -3643 ((-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52))) $)) (-15 -4221 ((-112) $)) (-15 -2285 ($ $)) (-15 -2262 ($ $ (-52))) (-15 -2551 ((-656 (-52)) $)) (-15 -1585 ((-656 $) $)) (-15 -3425 ((-3 (-656 $) "failed") (-656 $))))) (-1121)) (T -907)) -((-4313 (*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-4322 (*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-2646 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4050 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2149 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-907 *4))) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-2149 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3961 (-115)) (|:| |arg| (-656 (-907 *3))))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1608 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -4080 (-783)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2899 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-907 *3)) (|:| |den| (-907 *3)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2175 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3838 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -4080 (-907 *3)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4369 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-907 *4))) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-4026 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-4047 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4287 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-1670 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1505 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2765 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3291 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2933 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3598 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4190 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-112)) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-3156 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-52)) (-5 *1 (-907 *4)) (-4 *4 (-1121)))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52)))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2285 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) (-2262 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) (-3425 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(-13 (-1121) (-1059 |#1|) (-1059 (-1197)) (-10 -8 (-15 (-4313) ($) -2666) (-15 (-4322) ($) -2666) (-15 -2646 ((-3 (-656 $) "failed") $)) (-15 -4050 ((-3 (-656 $) "failed") $)) (-15 -2149 ((-3 (-656 $) "failed") $ (-115))) (-15 -2149 ((-3 (-2 (|:| -3961 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -1608 ((-3 (-2 (|:| |val| $) (|:| -4080 (-783))) "failed") $)) (-15 -2899 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2175 ((-3 (-656 $) "failed") $)) (-15 -3838 ((-3 (-2 (|:| |val| $) (|:| -4080 $)) "failed") $)) (-15 -4369 ($ (-115) (-656 $))) (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -4047 ($ $ $)) (-15 -4307 ((-783) $)) (-15 -1556 ($ (-656 $))) (-15 -4287 ($ $)) (-15 -1670 ((-112) $)) (-15 -2763 ((-112) $)) (-15 -3283 ((-112) $)) (-15 -1505 ((-112) $)) (-15 -3232 ((-112) $)) (-15 -2382 ((-112) $)) (-15 -2765 ((-112) $)) (-15 -3402 ((-112) $)) (-15 -3291 ((-656 (-52)) $)) (-15 -2933 ($ $ (-656 (-52)))) (-15 -3598 ($ $ (-656 (-52)))) (-15 -4190 ($ (-1197) (-112) (-112) (-112))) (-15 -3156 ($ $ (-656 (-1197)) (-52))) (-15 -3643 ((-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52))) $)) (-15 -4221 ((-112) $)) (-15 -2285 ($ $)) (-15 -2262 ($ $ (-52))) (-15 -2551 ((-656 (-52)) $)) (-15 -1585 ((-656 $) $)) (-15 -3425 ((-3 (-656 $) "failed") (-656 $))))) -((-1957 (((-112) $ $) NIL)) (-1418 (((-656 |#1|) $) 19)) (-4275 (((-112) $) 49)) (-2982 (((-3 (-684 |#1|) "failed") $) 56)) (-2317 (((-684 |#1|) $) 54)) (-1764 (($ $) 23)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-3108 (((-783) $) 61)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1755 (((-684 |#1|) $) 21)) (-4113 (((-876) $) 47) (($ (-684 |#1|)) 26) (((-831 |#1|) $) 36) (($ |#1|) 25)) (-2950 (((-112) $ $) NIL)) (-4322 (($) 9 T CONST)) (-2618 (((-656 (-684 |#1|)) $) 28)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 12)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 67))) -(((-908 |#1|) (-13 (-861) (-1059 (-684 |#1|)) (-10 -8 (-15 1 ($) -2666) (-15 -4113 ((-831 |#1|) $)) (-15 -4113 ($ |#1|)) (-15 -1755 ((-684 |#1|) $)) (-15 -3108 ((-783) $)) (-15 -2618 ((-656 (-684 |#1|)) $)) (-15 -1764 ($ $)) (-15 -4275 ((-112) $)) (-15 -1418 ((-656 |#1|) $)))) (-861)) (T -908)) -((-4322 (*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-4113 (*1 *1 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-1764 (*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861))))) -(-13 (-861) (-1059 (-684 |#1|)) (-10 -8 (-15 (-4322) ($) -2666) (-15 -4113 ((-831 |#1|) $)) (-15 -4113 ($ |#1|)) (-15 -1755 ((-684 |#1|) $)) (-15 -3108 ((-783) $)) (-15 -2618 ((-656 (-684 |#1|)) $)) (-15 -1764 ($ $)) (-15 -4275 ((-112) $)) (-15 -1418 ((-656 |#1|) $)))) -((-3958 ((|#1| |#1| |#1|) 19))) -(((-909 |#1| |#2|) (-10 -7 (-15 -3958 (|#1| |#1| |#1|))) (-1264 |#2|) (-1070)) (T -909)) -((-3958 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1264 *3))))) -(-10 -7 (-15 -3958 (|#1| |#1| |#1|))) -((-3157 ((|#2| $ |#3|) 10))) -(((-910 |#1| |#2| |#3|) (-10 -8 (-15 -3157 (|#2| |#1| |#3|))) (-911 |#2| |#3|) (-1238) (-1238)) (T -910)) -NIL -(-10 -8 (-15 -3157 (|#2| |#1| |#3|))) -((-4107 ((|#1| $ |#2|) 7)) (-3157 ((|#1| $ |#2|) 6))) -(((-911 |#1| |#2|) (-141) (-1238) (-1238)) (T -911)) -((-4107 (*1 *2 *1 *3) (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238)))) (-3157 (*1 *2 *1 *3) (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -4107 (|t#1| $ |t#2|)) (-15 -3157 (|t#1| $ |t#2|)))) -(((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-1952 (((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 15)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3828 (((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 14)) (-3939 (((-112) $ $) 8))) -(((-912) (-141)) (T -912)) -((-1952 (*1 *2 *3 *4) (-12 (-4 *1 (-912)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)))))) (-3828 (*1 *2 *3) (-12 (-4 *1 (-912)) (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *2 (-1056))))) -(-13 (-1121) (-10 -7 (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| |explanations| (-1179))) (-1084) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))) (-15 -3828 ((-1056) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-3615 ((|#1| |#1| (-783)) 27)) (-4178 (((-3 |#1| "failed") |#1| |#1|) 24)) (-3325 (((-3 (-2 (|:| -2102 |#1|) (|:| -2113 |#1|)) "failed") |#1| (-783) (-783)) 30) (((-656 |#1|) |#1|) 38))) -(((-913 |#1| |#2|) (-10 -7 (-15 -3325 ((-656 |#1|) |#1|)) (-15 -3325 ((-3 (-2 (|:| -2102 |#1|) (|:| -2113 |#1|)) "failed") |#1| (-783) (-783))) (-15 -4178 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3615 (|#1| |#1| (-783)))) (-1264 |#2|) (-374)) (T -913)) -((-3615 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-913 *2 *4)) (-4 *2 (-1264 *4)))) (-4178 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-913 *2 *3)) (-4 *2 (-1264 *3)))) (-3325 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2102 *3) (|:| -2113 *3))) (-5 *1 (-913 *3 *5)) (-4 *3 (-1264 *5)))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -3325 ((-656 |#1|) |#1|)) (-15 -3325 ((-3 (-2 (|:| -2102 |#1|) (|:| -2113 |#1|)) "failed") |#1| (-783) (-783))) (-15 -4178 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3615 (|#1| |#1| (-783)))) -((-4138 (((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179)) 104) (((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179) (-227)) 100) (((-1056) (-915) (-1084)) 92) (((-1056) (-915)) 93)) (-1952 (((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915) (-1084)) 62) (((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915)) 64))) -(((-914) (-10 -7 (-15 -4138 ((-1056) (-915))) (-15 -4138 ((-1056) (-915) (-1084))) (-15 -4138 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179) (-227))) (-15 -4138 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915) (-1084))))) (T -914)) -((-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-914)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179))))) (-5 *1 (-914)))) (-4138 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-4138 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1056)) (-5 *1 (-914))))) -(-10 -7 (-15 -4138 ((-1056) (-915))) (-15 -4138 ((-1056) (-915) (-1084))) (-15 -4138 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179) (-227))) (-15 -4138 ((-1056) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1179))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915))) (-15 -1952 ((-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) (|:| |explanations| (-656 (-1179)))) (-915) (-1084)))) -((-1957 (((-112) $ $) NIL)) (-2317 (((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))) $) 19)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 21) (($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) 18)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-915) (-13 (-1121) (-10 -8 (-15 -4113 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))) (-15 -2317 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))) $))))) (T -915)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *1 (-915)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227)))) (-5 *1 (-915))))) -(-13 (-1121) (-10 -8 (-15 -4113 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))))) (-15 -2317 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) (|:| |tol| (-227))) $)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4107 (($ $ (-656 |#2|) (-656 (-783))) 39) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|)) 37) (($ $ |#2|) 35)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3157 (($ $ (-656 |#2|) (-656 (-783))) 42) (($ $ |#2| (-783)) 41) (($ $ (-656 |#2|)) 40) (($ $ |#2|) 36)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-916 |#1| |#2|) (-141) (-1070) (-1121)) (T -916)) -NIL -(-13 (-111 |t#1| |t#1|) (-919 |t#2|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-911 $ |#2|) . T) ((-919 |#2|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4107 (($ $ (-656 |#1|) (-656 (-783))) 44) (($ $ |#1| (-783)) 43) (($ $ (-656 |#1|)) 42) (($ $ |#1|) 40)) (-4113 (((-876) $) 12) (($ (-576)) 33)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-656 |#1|) (-656 (-783))) 47) (($ $ |#1| (-783)) 46) (($ $ (-656 |#1|)) 45) (($ $ |#1|) 41)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-917 |#1|) (-141) (-1121)) (T -917)) -NIL -(-13 (-1070) (-919 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-911 $ |#1|) . T) ((-919 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-4107 (($ $ |#2|) NIL) (($ $ (-656 |#2|)) 10) (($ $ |#2| (-783)) 12) (($ $ (-656 |#2|) (-656 (-783))) 15)) (-3157 (($ $ |#2|) 16) (($ $ (-656 |#2|)) 18) (($ $ |#2| (-783)) 19) (($ $ (-656 |#2|) (-656 (-783))) 21))) -(((-918 |#1| |#2|) (-10 -8 (-15 -3157 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3157 (|#1| |#1| |#2| (-783))) (-15 -3157 (|#1| |#1| (-656 |#2|))) (-15 -4107 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -4107 (|#1| |#1| |#2| (-783))) (-15 -4107 (|#1| |#1| (-656 |#2|))) (-15 -3157 (|#1| |#1| |#2|)) (-15 -4107 (|#1| |#1| |#2|))) (-919 |#2|) (-1121)) (T -918)) -NIL -(-10 -8 (-15 -3157 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3157 (|#1| |#1| |#2| (-783))) (-15 -3157 (|#1| |#1| (-656 |#2|))) (-15 -4107 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -4107 (|#1| |#1| |#2| (-783))) (-15 -4107 (|#1| |#1| (-656 |#2|))) (-15 -3157 (|#1| |#1| |#2|)) (-15 -4107 (|#1| |#1| |#2|))) -((-4107 (($ $ |#1|) 7) (($ $ (-656 |#1|)) 15) (($ $ |#1| (-783)) 14) (($ $ (-656 |#1|) (-656 (-783))) 13)) (-3157 (($ $ |#1|) 6) (($ $ (-656 |#1|)) 12) (($ $ |#1| (-783)) 11) (($ $ (-656 |#1|) (-656 (-783))) 10))) -(((-919 |#1|) (-141) (-1121)) (T -919)) -((-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121)))) (-4107 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) (-4107 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-919 *4)) (-4 *4 (-1121)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121)))) (-3157 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) (-3157 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-919 *4)) (-4 *4 (-1121))))) -(-13 (-911 $ |t#1|) (-10 -8 (-15 -4107 ($ $ (-656 |t#1|))) (-15 -4107 ($ $ |t#1| (-783))) (-15 -4107 ($ $ (-656 |t#1|) (-656 (-783)))) (-15 -3157 ($ $ (-656 |t#1|))) (-15 -3157 ($ $ |t#1| (-783))) (-15 -3157 ($ $ (-656 |t#1|) (-656 (-783)))))) -(((-911 $ |#1|) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1690 ((|#1| $) 26)) (-4234 (((-112) $ (-783)) NIL)) (-4261 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-3804 (($ $ $) NIL (|has| $ (-6 -4465)))) (-4286 (($ $ $) NIL (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) (($ $ "left" $) NIL (|has| $ (-6 -4465))) (($ $ "right" $) NIL (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-2113 (($ $) 25)) (-1573 (($ |#1|) 12) (($ $ $) 17)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) NIL)) (-1878 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2102 (($ $) 23)) (-4186 (((-656 |#1|) $) NIL)) (-3211 (((-112) $) 20)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2027 (((-576) $ $) NIL)) (-2974 (((-112) $) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-1224 |#1|) $) 9) (((-876) $) 29 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) NIL)) (-4295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-920 |#1|) (-13 (-120 |#1|) (-625 (-1224 |#1|)) (-10 -8 (-15 -1573 ($ |#1|)) (-15 -1573 ($ $ $)))) (-1121)) (T -920)) -((-1573 (*1 *1 *2) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1121)))) (-1573 (*1 *1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1121))))) -(-13 (-120 |#1|) (-625 (-1224 |#1|)) (-10 -8 (-15 -1573 ($ |#1|)) (-15 -1573 ($ $ $)))) -((-2429 ((|#2| (-1163 |#1| |#2|)) 48))) -(((-921 |#1| |#2|) (-10 -7 (-15 -2429 (|#2| (-1163 |#1| |#2|)))) (-940) (-13 (-1070) (-10 -7 (-6 (-4466 "*"))))) (T -921)) -((-2429 (*1 *2 *3) (-12 (-5 *3 (-1163 *4 *2)) (-14 *4 (-940)) (-4 *2 (-13 (-1070) (-10 -7 (-6 (-4466 "*"))))) (-5 *1 (-921 *4 *2))))) -(-10 -7 (-15 -2429 (|#2| (-1163 |#1| |#2|)))) -((-1957 (((-112) $ $) 7)) (-1896 (((-1123 |#1|) $) 36)) (-3170 (($) 19 T CONST)) (-1851 (((-3 $ "failed") $) 16)) (-1553 (((-1123 |#1|) $ |#1|) 35)) (-2486 (((-112) $) 18)) (-2907 (($ $ $) 29 (-3795 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-3777 (($ $ $) 30 (-3795 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-2447 (((-1179) $) 10)) (-1669 (($ $) 25)) (-3116 (((-1141) $) 11)) (-4369 ((|#1| $ |#1|) 39)) (-2316 (($ (-656 (-656 |#1|))) 37)) (-1663 (($ (-656 |#1|)) 38)) (-2117 (($ $ $) 22)) (-3871 (($ $ $) 21)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4322 (($) 20 T CONST)) (-3995 (((-112) $ $) 31 (-3795 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-3975 (((-112) $ $) 33 (-3795 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 32 (-3795 (|has| |#1| (-861)) (|has| |#1| (-379))))) (-3963 (((-112) $ $) 34)) (-4047 (($ $ $) 24)) (** (($ $ (-940)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) -(((-922 |#1|) (-141) (-1121)) (T -922)) -((-1663 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-922 *3)))) (-2316 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-4 *1 (-922 *3)))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) (-1553 (*1 *2 *1 *3) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) (-3963 (*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(-13 (-485) (-296 |t#1| |t#1|) (-10 -8 (-15 -1663 ($ (-656 |t#1|))) (-15 -2316 ($ (-656 (-656 |t#1|)))) (-15 -1896 ((-1123 |t#1|) $)) (-15 -1553 ((-1123 |t#1|) $ |t#1|)) (-15 -3963 ((-112) $ $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-379)) (-6 (-861)) |%noBranch|))) -(((-102) . T) ((-625 (-876)) . T) ((-296 |#1| |#1|) . T) ((-485) . T) ((-738) . T) ((-861) -3795 (|has| |#1| (-861)) (|has| |#1| (-379))) ((-864) -3795 (|has| |#1| (-861)) (|has| |#1| (-379))) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-2777 (((-656 (-656 (-783))) $) 160)) (-3017 (((-656 (-783)) (-924 |#1|) $) 188)) (-1429 (((-656 (-783)) (-924 |#1|) $) 189)) (-1896 (((-1123 |#1|) $) 152)) (-2321 (((-656 (-924 |#1|)) $) 149)) (-4370 (((-924 |#1|) $ (-576)) 154) (((-924 |#1|) $) 155)) (-3397 (($ (-656 (-924 |#1|))) 162)) (-3359 (((-783) $) 156)) (-1486 (((-1123 (-1123 |#1|)) $) 186)) (-1553 (((-1123 |#1|) $ |#1|) 177) (((-1123 (-1123 |#1|)) $ (-1123 |#1|)) 197) (((-1123 (-656 |#1|)) $ (-656 |#1|)) 200)) (-1602 (((-112) (-924 |#1|) $) 137)) (-2447 (((-1179) $) NIL)) (-1547 (((-1293) $) 142) (((-1293) $ (-576) (-576)) 201)) (-3116 (((-1141) $) NIL)) (-1934 (((-656 (-924 |#1|)) $) 143)) (-4369 (((-924 |#1|) $ (-783)) 150)) (-2196 (((-783) $) 157)) (-4113 (((-876) $) 174) (((-656 (-924 |#1|)) $) 28) (($ (-656 (-924 |#1|))) 161)) (-2950 (((-112) $ $) NIL)) (-1869 (((-656 |#1|) $) 159)) (-3939 (((-112) $ $) 194)) (-3984 (((-112) $ $) 192)) (-3963 (((-112) $ $) 191))) -(((-923 |#1|) (-13 (-1121) (-10 -8 (-15 -4113 ((-656 (-924 |#1|)) $)) (-15 -1934 ((-656 (-924 |#1|)) $)) (-15 -4369 ((-924 |#1|) $ (-783))) (-15 -4370 ((-924 |#1|) $ (-576))) (-15 -4370 ((-924 |#1|) $)) (-15 -3359 ((-783) $)) (-15 -2196 ((-783) $)) (-15 -1869 ((-656 |#1|) $)) (-15 -2321 ((-656 (-924 |#1|)) $)) (-15 -2777 ((-656 (-656 (-783))) $)) (-15 -4113 ($ (-656 (-924 |#1|)))) (-15 -3397 ($ (-656 (-924 |#1|)))) (-15 -1553 ((-1123 |#1|) $ |#1|)) (-15 -1486 ((-1123 (-1123 |#1|)) $)) (-15 -1553 ((-1123 (-1123 |#1|)) $ (-1123 |#1|))) (-15 -1553 ((-1123 (-656 |#1|)) $ (-656 |#1|))) (-15 -1602 ((-112) (-924 |#1|) $)) (-15 -3017 ((-656 (-783)) (-924 |#1|) $)) (-15 -1429 ((-656 (-783)) (-924 |#1|) $)) (-15 -1896 ((-1123 |#1|) $)) (-15 -3963 ((-112) $ $)) (-15 -3984 ((-112) $ $)) (-15 -1547 ((-1293) $)) (-15 -1547 ((-1293) $ (-576) (-576))))) (-1121)) (T -923)) -((-4113 (*1 *2 *1) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) (-4370 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) (-4370 (*1 *2 *1) (-12 (-5 *2 (-924 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) (-3397 (*1 *1 *2) (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) (-1553 (*1 *2 *1 *3) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-1123 (-1123 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-1553 (*1 *2 *1 *3) (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-1123 *4))) (-5 *1 (-923 *4)) (-5 *3 (-1123 *4)))) (-1553 (*1 *2 *1 *3) (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-656 *4))) (-5 *1 (-923 *4)) (-5 *3 (-656 *4)))) (-1602 (*1 *2 *3 *1) (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-923 *4)))) (-3017 (*1 *2 *3 *1) (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) (-5 *1 (-923 *4)))) (-1429 (*1 *2 *3 *1) (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) (-5 *1 (-923 *4)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3963 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3984 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-1547 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-923 *4)) (-4 *4 (-1121))))) -(-13 (-1121) (-10 -8 (-15 -4113 ((-656 (-924 |#1|)) $)) (-15 -1934 ((-656 (-924 |#1|)) $)) (-15 -4369 ((-924 |#1|) $ (-783))) (-15 -4370 ((-924 |#1|) $ (-576))) (-15 -4370 ((-924 |#1|) $)) (-15 -3359 ((-783) $)) (-15 -2196 ((-783) $)) (-15 -1869 ((-656 |#1|) $)) (-15 -2321 ((-656 (-924 |#1|)) $)) (-15 -2777 ((-656 (-656 (-783))) $)) (-15 -4113 ($ (-656 (-924 |#1|)))) (-15 -3397 ($ (-656 (-924 |#1|)))) (-15 -1553 ((-1123 |#1|) $ |#1|)) (-15 -1486 ((-1123 (-1123 |#1|)) $)) (-15 -1553 ((-1123 (-1123 |#1|)) $ (-1123 |#1|))) (-15 -1553 ((-1123 (-656 |#1|)) $ (-656 |#1|))) (-15 -1602 ((-112) (-924 |#1|) $)) (-15 -3017 ((-656 (-783)) (-924 |#1|) $)) (-15 -1429 ((-656 (-783)) (-924 |#1|) $)) (-15 -1896 ((-1123 |#1|) $)) (-15 -3963 ((-112) $ $)) (-15 -3984 ((-112) $ $)) (-15 -1547 ((-1293) $)) (-15 -1547 ((-1293) $ (-576) (-576))))) -((-1957 (((-112) $ $) NIL)) (-1896 (((-1123 |#1|) $) 60)) (-2380 (((-656 $) (-656 $)) 103)) (-1527 (((-576) $) 83)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) NIL)) (-3359 (((-783) $) 80)) (-1553 (((-1123 |#1|) $ |#1|) 70)) (-2486 (((-112) $) NIL)) (-3616 (((-112) $) 88)) (-4408 (((-783) $) 84)) (-2907 (($ $ $) NIL (-3795 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-3777 (($ $ $) NIL (-3795 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-3662 (((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $) 55)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 130)) (-3116 (((-1141) $) NIL)) (-3486 (((-1123 |#1|) $) 136 (|has| |#1| (-379)))) (-3955 (((-112) $) 81)) (-4369 ((|#1| $ |#1|) 68)) (-2196 (((-783) $) 62)) (-2316 (($ (-656 (-656 |#1|))) 118)) (-2936 (((-992) $) 74)) (-1663 (($ (-656 |#1|)) 32)) (-2117 (($ $ $) NIL)) (-3871 (($ $ $) NIL)) (-2427 (($ (-656 (-656 |#1|))) 57)) (-1440 (($ (-656 (-656 |#1|))) 123)) (-4368 (($ (-656 |#1|)) 132)) (-4113 (((-876) $) 117) (($ (-656 (-656 |#1|))) 91) (($ (-656 |#1|)) 92)) (-2950 (((-112) $ $) NIL)) (-4322 (($) 24 T CONST)) (-3995 (((-112) $ $) NIL (-3795 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-3975 (((-112) $ $) NIL (-3795 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-3939 (((-112) $ $) 66)) (-3984 (((-112) $ $) NIL (-3795 (|has| |#1| (-379)) (|has| |#1| (-861))))) (-3963 (((-112) $ $) 90)) (-4047 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 33))) -(((-924 |#1|) (-13 (-922 |#1|) (-10 -8 (-15 -3662 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -2427 ($ (-656 (-656 |#1|)))) (-15 -4113 ($ (-656 (-656 |#1|)))) (-15 -4113 ($ (-656 |#1|))) (-15 -1440 ($ (-656 (-656 |#1|)))) (-15 -2196 ((-783) $)) (-15 -2936 ((-992) $)) (-15 -3359 ((-783) $)) (-15 -4408 ((-783) $)) (-15 -1527 ((-576) $)) (-15 -3955 ((-112) $)) (-15 -3616 ((-112) $)) (-15 -2380 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -3486 ((-1123 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -4368 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -4368 ($ (-656 |#1|))) |%noBranch|)))) (-1121)) (T -924)) -((-3662 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-2427 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-1440 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-4408 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-2380 (*1 *2 *2) (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-924 *3)) (-4 *3 (-379)) (-4 *3 (-1121)))) (-4368 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) -(-13 (-922 |#1|) (-10 -8 (-15 -3662 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -2427 ($ (-656 (-656 |#1|)))) (-15 -4113 ($ (-656 (-656 |#1|)))) (-15 -4113 ($ (-656 |#1|))) (-15 -1440 ($ (-656 (-656 |#1|)))) (-15 -2196 ((-783) $)) (-15 -2936 ((-992) $)) (-15 -3359 ((-783) $)) (-15 -4408 ((-783) $)) (-15 -1527 ((-576) $)) (-15 -3955 ((-112) $)) (-15 -3616 ((-112) $)) (-15 -2380 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -3486 ((-1123 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -4368 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -4368 ($ (-656 |#1|))) |%noBranch|)))) -((-4247 (((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|)) 160)) (-2367 ((|#1|) 97)) (-1347 (((-430 (-1193 |#4|)) (-1193 |#4|)) 169)) (-3967 (((-430 (-1193 |#4|)) (-656 |#3|) (-1193 |#4|)) 84)) (-4021 (((-430 (-1193 |#4|)) (-1193 |#4|)) 179)) (-4415 (((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|) |#3|) 113))) -(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4247 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|))) (-15 -4021 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -1347 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -2367 (|#1|)) (-15 -4415 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|) |#3|)) (-15 -3967 ((-430 (-1193 |#4|)) (-656 |#3|) (-1193 |#4|)))) (-928) (-805) (-861) (-968 |#1| |#2| |#3|)) (T -925)) -((-3967 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *7)) (-4 *7 (-861)) (-4 *5 (-928)) (-4 *6 (-805)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-430 (-1193 *8))) (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-1193 *8)))) (-4415 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) (-4 *7 (-968 *5 *6 *4)) (-4 *5 (-928)) (-4 *6 (-805)) (-4 *4 (-861)) (-5 *1 (-925 *5 *6 *4 *7)))) (-2367 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) (-5 *1 (-925 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-1347 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-4021 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) (-4247 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-925 *4 *5 *6 *7))))) -(-10 -7 (-15 -4247 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|))) (-15 -4021 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -1347 ((-430 (-1193 |#4|)) (-1193 |#4|))) (-15 -2367 (|#1|)) (-15 -4415 ((-3 (-656 (-1193 |#4|)) "failed") (-656 (-1193 |#4|)) (-1193 |#4|) |#3|)) (-15 -3967 ((-430 (-1193 |#4|)) (-656 |#3|) (-1193 |#4|)))) -((-4247 (((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|)) 39)) (-2367 ((|#1|) 72)) (-1347 (((-430 (-1193 |#2|)) (-1193 |#2|)) 121)) (-3967 (((-430 (-1193 |#2|)) (-1193 |#2|)) 105)) (-4021 (((-430 (-1193 |#2|)) (-1193 |#2|)) 132))) -(((-926 |#1| |#2|) (-10 -7 (-15 -4247 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|))) (-15 -4021 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -1347 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -2367 (|#1|)) (-15 -3967 ((-430 (-1193 |#2|)) (-1193 |#2|)))) (-928) (-1264 |#1|)) (T -926)) -((-3967 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5)))) (-2367 (*1 *2) (-12 (-4 *2 (-928)) (-5 *1 (-926 *2 *3)) (-4 *3 (-1264 *2)))) (-1347 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5)))) (-4021 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5)))) (-4247 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-928)) (-5 *1 (-926 *4 *5))))) -(-10 -7 (-15 -4247 ((-3 (-656 (-1193 |#2|)) "failed") (-656 (-1193 |#2|)) (-1193 |#2|))) (-15 -4021 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -1347 ((-430 (-1193 |#2|)) (-1193 |#2|))) (-15 -2367 (|#1|)) (-15 -3967 ((-430 (-1193 |#2|)) (-1193 |#2|)))) -((-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 42)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 18)) (-4276 (((-3 $ "failed") $) 36))) -(((-927 |#1|) (-10 -8 (-15 -4276 ((-3 |#1| "failed") |#1|)) (-15 -1626 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -2142 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) (-928)) (T -927)) -NIL -(-10 -8 (-15 -4276 ((-3 |#1| "failed") |#1|)) (-15 -1626 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -2142 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-2725 (((-430 (-1193 $)) (-1193 $)) 66)) (-2658 (($ $) 57)) (-3589 (((-430 $) $) 58)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 63)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2171 (((-112) $) 59)) (-2486 (((-112) $) 35)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-4112 (((-430 (-1193 $)) (-1193 $)) 64)) (-3680 (((-430 (-1193 $)) (-1193 $)) 65)) (-1452 (((-430 $) $) 56)) (-1946 (((-3 $ "failed") $ $) 48)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 62 (|has| $ (-146)))) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-4276 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-928) (-141)) (T -928)) -((-2142 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-928)))) (-2725 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1)))) (-3680 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1)))) (-4112 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1)))) (-1626 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1193 *1))) (-5 *3 (-1193 *1)) (-4 *1 (-928)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-928)) (-5 *2 (-1288 *1)))) (-4276 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-928))))) -(-13 (-1242) (-10 -8 (-15 -2725 ((-430 (-1193 $)) (-1193 $))) (-15 -3680 ((-430 (-1193 $)) (-1193 $))) (-15 -4112 ((-430 (-1193 $)) (-1193 $))) (-15 -2142 ((-1193 $) (-1193 $) (-1193 $))) (-15 -1626 ((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $))) (IF (|has| $ (-146)) (PROGN (-15 -4055 ((-3 (-1288 $) "failed") (-701 $))) (-15 -4276 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-2536 (((-112) $) NIL)) (-3570 (((-783)) NIL)) (-3832 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-2063 (((-1210 (-940) (-783)) (-576)) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-2317 (($ $) NIL)) (-2496 (($ (-1288 $)) NIL)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-3712 (($) NIL)) (-2616 (((-112) $) NIL)) (-2824 (($ $) NIL) (($ $ (-783)) NIL)) (-2171 (((-112) $) NIL)) (-3359 (((-845 (-940)) $) NIL) (((-940) $) NIL)) (-2486 (((-112) $) NIL)) (-3121 (($) NIL (|has| $ (-379)))) (-2882 (((-112) $) NIL (|has| $ (-379)))) (-2595 (($ $ (-940)) NIL (|has| $ (-379))) (($ $) NIL)) (-3552 (((-3 $ "failed") $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4293 (((-1193 $) $ (-940)) NIL (|has| $ (-379))) (((-1193 $) $) NIL)) (-3787 (((-940) $) NIL)) (-2089 (((-1193 $) $) NIL (|has| $ (-379)))) (-3922 (((-3 (-1193 $) "failed") $ $) NIL (|has| $ (-379))) (((-1193 $) $) NIL (|has| $ (-379)))) (-4010 (($ $ (-1193 $)) NIL (|has| $ (-379)))) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL T CONST)) (-2411 (($ (-940)) NIL)) (-3464 (((-112) $) NIL)) (-3116 (((-1141) $) NIL)) (-2549 (($) NIL (|has| $ (-379)))) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL)) (-1452 (((-430 $) $) NIL)) (-3835 (((-940)) NIL) (((-845 (-940))) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-3168 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-3181 (((-135)) NIL)) (-4107 (($ $) NIL) (($ $ (-783)) NIL)) (-2196 (((-940) $) NIL) (((-845 (-940)) $) NIL)) (-3881 (((-1193 $)) NIL)) (-4223 (($) NIL)) (-2174 (($) NIL (|has| $ (-379)))) (-4314 (((-701 $) (-1288 $)) NIL) (((-1288 $) $) NIL)) (-1556 (((-576) $) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL)) (-4276 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $) (-940)) NIL) (((-1288 $)) NIL)) (-4134 (((-112) $ $) NIL)) (-1736 (((-112) $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-2510 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-3157 (($ $) NIL) (($ $ (-783)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-929 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-940)) (T -929)) +((-2599 (((-704 (-1247)) $ (-1247)) NIL)) (-1711 (((-704 (-561)) $ (-561)) NIL)) (-2151 (((-784) $ (-129)) NIL)) (-1683 (((-704 (-130)) $ (-130)) 22)) (-3209 (($ (-400)) 12) (($ (-1180)) 14)) (-2072 (((-112) $) 19)) (-3515 (((-877) $) 26)) (-3950 (($ $) 23))) +(((-876) (-13 (-875) (-625 (-877)) (-10 -8 (-15 -3209 ($ (-400))) (-15 -3209 ($ (-1180))) (-15 -2072 ((-112) $))))) (T -876)) +((-3209 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-876)))) (-3209 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-876)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876))))) +(-13 (-875) (-625 (-877)) (-10 -8 (-15 -3209 ($ (-400))) (-15 -3209 ($ (-1180))) (-15 -2072 ((-112) $)))) +((-3423 (((-112) $ $) NIL) (($ $ $) 85)) (-1943 (($ $ $) 125)) (-3283 (((-576) $) 31) (((-576)) 36)) (-2658 (($ (-576)) 53)) (-2373 (($ $ $) 54) (($ (-657 $)) 84)) (-3694 (($ $ (-657 $)) 82)) (-1450 (((-576) $) 34)) (-1905 (($ $ $) 73)) (-2598 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2666 (((-576) $) 33)) (-2627 (($ $ $) 72)) (-1331 (($ $) 114)) (-1850 (($ $ $) 129)) (-2312 (($ (-657 $)) 61)) (-3053 (($ $ (-657 $)) 79)) (-3766 (($ (-576) (-576)) 55)) (-3246 (($ $) 126) (($ $ $) 127)) (-4228 (($ $ (-576)) 43) (($ $) 46)) (-3355 (($ $ $) 97)) (-1860 (($ $ $) 132)) (-3338 (($ $) 115)) (-3369 (($ $ $) 98)) (-4124 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2164 (((-1294) $) 10)) (-3519 (($ $) 118) (($ $ (-784)) 122)) (-3831 (($ $ $) 75)) (-3804 (($ $ $) 74)) (-3959 (($ $ (-657 $)) 110)) (-3407 (($ $ $) 113)) (-2647 (($ (-657 $)) 59)) (-3816 (($ $) 70) (($ (-657 $)) 71)) (-2109 (($ $ $) 123)) (-1857 (($ $) 116)) (-1830 (($ $ $) 128)) (-2899 (($ (-576)) 21) (($ (-1198)) 23) (($ (-1180)) 30) (($ (-227)) 25)) (-2685 (($ $ $) 101)) (-2665 (($ $) 102)) (-2105 (((-1294) (-1180)) 15)) (-2757 (($ (-1180)) 14)) (-2484 (($ (-657 (-657 $))) 58)) (-4217 (($ $ (-576)) 42) (($ $) 45)) (-1708 (((-1180) $) NIL)) (-2516 (($ $ $) 131)) (-3860 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-4182 (((-112) $) 108)) (-4422 (($ $ (-657 $)) 111) (($ $ $ $) 112)) (-2379 (($ (-576)) 39)) (-2363 (((-576) $) 32) (((-576)) 35)) (-3109 (($ $ $) 40) (($ (-657 $)) 83)) (-1460 (((-1142) $) NIL)) (-3409 (($ $ $) 99)) (-3340 (($) 13)) (-2780 (($ $ (-657 $)) 109)) (-2955 (((-1180) (-1180)) 8)) (-4224 (($ $) 117) (($ $ (-784)) 121)) (-3396 (($ $ $) 96)) (-2209 (($ $ (-784)) 139)) (-4312 (($ (-657 $)) 60)) (-3515 (((-877) $) 19)) (-3713 (($ $ (-576)) 41) (($ $) 44)) (-2746 (($ $) 68) (($ (-657 $)) 69)) (-1923 (($ $) 66) (($ (-657 $)) 67)) (-1791 (($ $) 124)) (-1598 (($ (-657 $)) 65)) (-1940 (($ $ $) 105)) (-4166 (((-112) $ $) NIL)) (-1457 (($ $ $) 130)) (-2675 (($ $ $) 100)) (-1812 (($ $ $) 103) (($ $) 104)) (-2938 (($ $ $) 89)) (-2913 (($ $ $) 87)) (-2881 (((-112) $ $) 16) (($ $ $) 17)) (-2925 (($ $ $) 88)) (-2901 (($ $ $) 86)) (-2995 (($ $ $) 94)) (-2982 (($ $ $) 91) (($ $) 92)) (-2971 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-877) (-13 (-1122) (-10 -8 (-15 -2164 ((-1294) $)) (-15 -2757 ($ (-1180))) (-15 -2105 ((-1294) (-1180))) (-15 -2899 ($ (-576))) (-15 -2899 ($ (-1198))) (-15 -2899 ($ (-1180))) (-15 -2899 ($ (-227))) (-15 -3340 ($)) (-15 -2955 ((-1180) (-1180))) (-15 -3283 ((-576) $)) (-15 -2363 ((-576) $)) (-15 -3283 ((-576))) (-15 -2363 ((-576))) (-15 -2666 ((-576) $)) (-15 -1450 ((-576) $)) (-15 -2379 ($ (-576))) (-15 -2658 ($ (-576))) (-15 -3766 ($ (-576) (-576))) (-15 -4217 ($ $ (-576))) (-15 -4228 ($ $ (-576))) (-15 -3713 ($ $ (-576))) (-15 -4217 ($ $)) (-15 -4228 ($ $)) (-15 -3713 ($ $)) (-15 -3109 ($ $ $)) (-15 -2373 ($ $ $)) (-15 -3109 ($ (-657 $))) (-15 -2373 ($ (-657 $))) (-15 -3959 ($ $ (-657 $))) (-15 -4422 ($ $ (-657 $))) (-15 -4422 ($ $ $ $)) (-15 -3407 ($ $ $)) (-15 -4182 ((-112) $)) (-15 -2780 ($ $ (-657 $))) (-15 -1331 ($ $)) (-15 -2516 ($ $ $)) (-15 -1791 ($ $)) (-15 -2484 ($ (-657 (-657 $)))) (-15 -1943 ($ $ $)) (-15 -3246 ($ $)) (-15 -3246 ($ $ $)) (-15 -1830 ($ $ $)) (-15 -1850 ($ $ $)) (-15 -1457 ($ $ $)) (-15 -1860 ($ $ $)) (-15 -2209 ($ $ (-784))) (-15 -1940 ($ $ $)) (-15 -2627 ($ $ $)) (-15 -1905 ($ $ $)) (-15 -3804 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3053 ($ $ (-657 $))) (-15 -3694 ($ $ (-657 $))) (-15 -3338 ($ $)) (-15 -4224 ($ $)) (-15 -4224 ($ $ (-784))) (-15 -3519 ($ $)) (-15 -3519 ($ $ (-784))) (-15 -1857 ($ $)) (-15 -2109 ($ $ $)) (-15 -2598 ($ $)) (-15 -2598 ($ $ $)) (-15 -2598 ($ $ $ $)) (-15 -4124 ($ $)) (-15 -4124 ($ $ $)) (-15 -4124 ($ $ $ $)) (-15 -3860 ($ $)) (-15 -3860 ($ $ $)) (-15 -3860 ($ $ $ $)) (-15 -1923 ($ $)) (-15 -1923 ($ (-657 $))) (-15 -2746 ($ $)) (-15 -2746 ($ (-657 $))) (-15 -3816 ($ $)) (-15 -3816 ($ (-657 $))) (-15 -2647 ($ (-657 $))) (-15 -4312 ($ (-657 $))) (-15 -2312 ($ (-657 $))) (-15 -1598 ($ (-657 $))) (-15 -2881 ($ $ $)) (-15 -3423 ($ $ $)) (-15 -2901 ($ $ $)) (-15 -2913 ($ $ $)) (-15 -2925 ($ $ $)) (-15 -2938 ($ $ $)) (-15 -2971 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2982 ($ $)) (-15 * ($ $ $)) (-15 -2995 ($ $ $)) (-15 ** ($ $ $)) (-15 -3396 ($ $ $)) (-15 -3355 ($ $ $)) (-15 -3369 ($ $ $)) (-15 -3409 ($ $ $)) (-15 -2675 ($ $ $)) (-15 -2685 ($ $ $)) (-15 -2665 ($ $)) (-15 -1812 ($ $ $)) (-15 -1812 ($ $))))) (T -877)) +((-2164 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-877)))) (-2757 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-877)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-877)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-877)))) (-3340 (*1 *1) (-5 *1 (-877))) (-2955 (*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-2363 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-3283 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-2363 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-2379 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-3766 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-3713 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-4217 (*1 *1 *1) (-5 *1 (-877))) (-4228 (*1 *1 *1) (-5 *1 (-877))) (-3713 (*1 *1 *1) (-5 *1 (-877))) (-3109 (*1 *1 *1 *1) (-5 *1 (-877))) (-2373 (*1 *1 *1 *1) (-5 *1 (-877))) (-3109 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-2373 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-3959 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-4422 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-4422 (*1 *1 *1 *1 *1) (-5 *1 (-877))) (-3407 (*1 *1 *1 *1) (-5 *1 (-877))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877)))) (-2780 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-1331 (*1 *1 *1) (-5 *1 (-877))) (-2516 (*1 *1 *1 *1) (-5 *1 (-877))) (-1791 (*1 *1 *1) (-5 *1 (-877))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-877)))) (-5 *1 (-877)))) (-1943 (*1 *1 *1 *1) (-5 *1 (-877))) (-3246 (*1 *1 *1) (-5 *1 (-877))) (-3246 (*1 *1 *1 *1) (-5 *1 (-877))) (-1830 (*1 *1 *1 *1) (-5 *1 (-877))) (-1850 (*1 *1 *1 *1) (-5 *1 (-877))) (-1457 (*1 *1 *1 *1) (-5 *1 (-877))) (-1860 (*1 *1 *1 *1) (-5 *1 (-877))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-877)))) (-1940 (*1 *1 *1 *1) (-5 *1 (-877))) (-2627 (*1 *1 *1 *1) (-5 *1 (-877))) (-1905 (*1 *1 *1 *1) (-5 *1 (-877))) (-3804 (*1 *1 *1 *1) (-5 *1 (-877))) (-3831 (*1 *1 *1 *1) (-5 *1 (-877))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-3694 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-3338 (*1 *1 *1) (-5 *1 (-877))) (-4224 (*1 *1 *1) (-5 *1 (-877))) (-4224 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-877)))) (-3519 (*1 *1 *1) (-5 *1 (-877))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-877)))) (-1857 (*1 *1 *1) (-5 *1 (-877))) (-2109 (*1 *1 *1 *1) (-5 *1 (-877))) (-2598 (*1 *1 *1) (-5 *1 (-877))) (-2598 (*1 *1 *1 *1) (-5 *1 (-877))) (-2598 (*1 *1 *1 *1 *1) (-5 *1 (-877))) (-4124 (*1 *1 *1) (-5 *1 (-877))) (-4124 (*1 *1 *1 *1) (-5 *1 (-877))) (-4124 (*1 *1 *1 *1 *1) (-5 *1 (-877))) (-3860 (*1 *1 *1) (-5 *1 (-877))) (-3860 (*1 *1 *1 *1) (-5 *1 (-877))) (-3860 (*1 *1 *1 *1 *1) (-5 *1 (-877))) (-1923 (*1 *1 *1) (-5 *1 (-877))) (-1923 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-2746 (*1 *1 *1) (-5 *1 (-877))) (-2746 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-3816 (*1 *1 *1) (-5 *1 (-877))) (-3816 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-2647 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-2312 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-1598 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-2881 (*1 *1 *1 *1) (-5 *1 (-877))) (-3423 (*1 *1 *1 *1) (-5 *1 (-877))) (-2901 (*1 *1 *1 *1) (-5 *1 (-877))) (-2913 (*1 *1 *1 *1) (-5 *1 (-877))) (-2925 (*1 *1 *1 *1) (-5 *1 (-877))) (-2938 (*1 *1 *1 *1) (-5 *1 (-877))) (-2971 (*1 *1 *1 *1) (-5 *1 (-877))) (-2982 (*1 *1 *1 *1) (-5 *1 (-877))) (-2982 (*1 *1 *1) (-5 *1 (-877))) (* (*1 *1 *1 *1) (-5 *1 (-877))) (-2995 (*1 *1 *1 *1) (-5 *1 (-877))) (** (*1 *1 *1 *1) (-5 *1 (-877))) (-3396 (*1 *1 *1 *1) (-5 *1 (-877))) (-3355 (*1 *1 *1 *1) (-5 *1 (-877))) (-3369 (*1 *1 *1 *1) (-5 *1 (-877))) (-3409 (*1 *1 *1 *1) (-5 *1 (-877))) (-2675 (*1 *1 *1 *1) (-5 *1 (-877))) (-2685 (*1 *1 *1 *1) (-5 *1 (-877))) (-2665 (*1 *1 *1) (-5 *1 (-877))) (-1812 (*1 *1 *1 *1) (-5 *1 (-877))) (-1812 (*1 *1 *1) (-5 *1 (-877)))) +(-13 (-1122) (-10 -8 (-15 -2164 ((-1294) $)) (-15 -2757 ($ (-1180))) (-15 -2105 ((-1294) (-1180))) (-15 -2899 ($ (-576))) (-15 -2899 ($ (-1198))) (-15 -2899 ($ (-1180))) (-15 -2899 ($ (-227))) (-15 -3340 ($)) (-15 -2955 ((-1180) (-1180))) (-15 -3283 ((-576) $)) (-15 -2363 ((-576) $)) (-15 -3283 ((-576))) (-15 -2363 ((-576))) (-15 -2666 ((-576) $)) (-15 -1450 ((-576) $)) (-15 -2379 ($ (-576))) (-15 -2658 ($ (-576))) (-15 -3766 ($ (-576) (-576))) (-15 -4217 ($ $ (-576))) (-15 -4228 ($ $ (-576))) (-15 -3713 ($ $ (-576))) (-15 -4217 ($ $)) (-15 -4228 ($ $)) (-15 -3713 ($ $)) (-15 -3109 ($ $ $)) (-15 -2373 ($ $ $)) (-15 -3109 ($ (-657 $))) (-15 -2373 ($ (-657 $))) (-15 -3959 ($ $ (-657 $))) (-15 -4422 ($ $ (-657 $))) (-15 -4422 ($ $ $ $)) (-15 -3407 ($ $ $)) (-15 -4182 ((-112) $)) (-15 -2780 ($ $ (-657 $))) (-15 -1331 ($ $)) (-15 -2516 ($ $ $)) (-15 -1791 ($ $)) (-15 -2484 ($ (-657 (-657 $)))) (-15 -1943 ($ $ $)) (-15 -3246 ($ $)) (-15 -3246 ($ $ $)) (-15 -1830 ($ $ $)) (-15 -1850 ($ $ $)) (-15 -1457 ($ $ $)) (-15 -1860 ($ $ $)) (-15 -2209 ($ $ (-784))) (-15 -1940 ($ $ $)) (-15 -2627 ($ $ $)) (-15 -1905 ($ $ $)) (-15 -3804 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3053 ($ $ (-657 $))) (-15 -3694 ($ $ (-657 $))) (-15 -3338 ($ $)) (-15 -4224 ($ $)) (-15 -4224 ($ $ (-784))) (-15 -3519 ($ $)) (-15 -3519 ($ $ (-784))) (-15 -1857 ($ $)) (-15 -2109 ($ $ $)) (-15 -2598 ($ $)) (-15 -2598 ($ $ $)) (-15 -2598 ($ $ $ $)) (-15 -4124 ($ $)) (-15 -4124 ($ $ $)) (-15 -4124 ($ $ $ $)) (-15 -3860 ($ $)) (-15 -3860 ($ $ $)) (-15 -3860 ($ $ $ $)) (-15 -1923 ($ $)) (-15 -1923 ($ (-657 $))) (-15 -2746 ($ $)) (-15 -2746 ($ (-657 $))) (-15 -3816 ($ $)) (-15 -3816 ($ (-657 $))) (-15 -2647 ($ (-657 $))) (-15 -4312 ($ (-657 $))) (-15 -2312 ($ (-657 $))) (-15 -1598 ($ (-657 $))) (-15 -2881 ($ $ $)) (-15 -3423 ($ $ $)) (-15 -2901 ($ $ $)) (-15 -2913 ($ $ $)) (-15 -2925 ($ $ $)) (-15 -2938 ($ $ $)) (-15 -2971 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2982 ($ $)) (-15 * ($ $ $)) (-15 -2995 ($ $ $)) (-15 ** ($ $ $)) (-15 -3396 ($ $ $)) (-15 -3355 ($ $ $)) (-15 -3369 ($ $ $)) (-15 -3409 ($ $ $)) (-15 -2675 ($ $ $)) (-15 -2685 ($ $ $)) (-15 -2665 ($ $)) (-15 -1812 ($ $ $)) (-15 -1812 ($ $)))) +((-3381 (((-1294) (-657 (-52))) 23)) (-2741 (((-1294) (-1180) (-877)) 13) (((-1294) (-877)) 8) (((-1294) (-1180)) 10))) +(((-878) (-10 -7 (-15 -2741 ((-1294) (-1180))) (-15 -2741 ((-1294) (-877))) (-15 -2741 ((-1294) (-1180) (-877))) (-15 -3381 ((-1294) (-657 (-52)))))) (T -878)) +((-3381 (*1 *2 *3) (-12 (-5 *3 (-657 (-52))) (-5 *2 (-1294)) (-5 *1 (-878)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-877)) (-5 *2 (-1294)) (-5 *1 (-878)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-878)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-878))))) +(-10 -7 (-15 -2741 ((-1294) (-1180))) (-15 -2741 ((-1294) (-877))) (-15 -2741 ((-1294) (-1180) (-877))) (-15 -3381 ((-1294) (-657 (-52))))) +((-3423 (((-112) $ $) NIL)) (-2993 (((-3 $ "failed") (-1198)) 36)) (-2148 (((-784)) 32)) (-1876 (($) NIL)) (-3740 (($ $ $) NIL) (($) NIL T CONST)) (-2249 (($ $ $) NIL) (($) NIL T CONST)) (-2327 (((-941) $) 29)) (-1708 (((-1180) $) 43)) (-3146 (($ (-941)) 28)) (-1460 (((-1142) $) NIL)) (-4136 (((-1198) $) 13) (((-548) $) 19) (((-908 (-390)) $) 26) (((-908 (-576)) $) 22)) (-3515 (((-877) $) 16)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 40)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 38))) +(((-879 |#1|) (-13 (-857) (-626 (-1198)) (-626 (-548)) (-626 (-908 (-390))) (-626 (-908 (-576))) (-10 -8 (-15 -2993 ((-3 $ "failed") (-1198))))) (-657 (-1198))) (T -879)) +((-2993 (*1 *1 *2) (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-879 *3)) (-14 *3 (-657 *2))))) +(-13 (-857) (-626 (-1198)) (-626 (-548)) (-626 (-908 (-390))) (-626 (-908 (-576))) (-10 -8 (-15 -2993 ((-3 $ "failed") (-1198))))) +((-3423 (((-112) $ $) NIL)) (-2634 (((-518) $) 9)) (-3855 (((-657 (-451)) $) 13)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 21)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 16))) +(((-880) (-13 (-1122) (-10 -8 (-15 -2634 ((-518) $)) (-15 -3855 ((-657 (-451)) $))))) (T -880)) +((-2634 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-880)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-657 (-451))) (-5 *1 (-880))))) +(-13 (-1122) (-10 -8 (-15 -2634 ((-518) $)) (-15 -3855 ((-657 (-451)) $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ (-972 |#1|)) NIL) (((-972 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-3845 (((-784)) NIL T CONST)) (-4047 (((-1294) (-784)) NIL)) (-4166 (((-112) $ $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2995 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-881 |#1| |#2| |#3| |#4|) (-13 (-1071) (-502 (-972 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2995 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4047 ((-1294) (-784))))) (-1071) (-657 (-1198)) (-657 (-784)) (-784)) (T -881)) +((-2995 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-881 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *2 (-1071)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-784))) (-14 *5 (-784)))) (-4047 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-881 *4 *5 *6 *7)) (-4 *4 (-1071)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 *3)) (-14 *7 *3)))) +(-13 (-1071) (-502 (-972 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2995 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4047 ((-1294) (-784))))) +((-3043 (((-3 (-176 |#3|) "failed") (-784) (-784) |#2| |#2|) 38)) (-2603 (((-3 (-419 |#3|) "failed") (-784) (-784) |#2| |#2|) 29))) +(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -2603 ((-3 (-419 |#3|) "failed") (-784) (-784) |#2| |#2|)) (-15 -3043 ((-3 (-176 |#3|) "failed") (-784) (-784) |#2| |#2|))) (-374) (-1280 |#1|) (-1265 |#1|)) (T -882)) +((-3043 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-784)) (-4 *5 (-374)) (-5 *2 (-176 *6)) (-5 *1 (-882 *5 *4 *6)) (-4 *4 (-1280 *5)) (-4 *6 (-1265 *5)))) (-2603 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-784)) (-4 *5 (-374)) (-5 *2 (-419 *6)) (-5 *1 (-882 *5 *4 *6)) (-4 *4 (-1280 *5)) (-4 *6 (-1265 *5))))) +(-10 -7 (-15 -2603 ((-3 (-419 |#3|) "failed") (-784) (-784) |#2| |#2|)) (-15 -3043 ((-3 (-176 |#3|) "failed") (-784) (-784) |#2| |#2|))) +((-2603 (((-3 (-419 (-1262 |#2| |#1|)) "failed") (-784) (-784) (-1281 |#1| |#2| |#3|)) 30) (((-3 (-419 (-1262 |#2| |#1|)) "failed") (-784) (-784) (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|)) 28))) +(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -2603 ((-3 (-419 (-1262 |#2| |#1|)) "failed") (-784) (-784) (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|))) (-15 -2603 ((-3 (-419 (-1262 |#2| |#1|)) "failed") (-784) (-784) (-1281 |#1| |#2| |#3|)))) (-374) (-1198) |#1|) (T -883)) +((-2603 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-784)) (-5 *4 (-1281 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1198)) (-14 *7 *5) (-5 *2 (-419 (-1262 *6 *5))) (-5 *1 (-883 *5 *6 *7)))) (-2603 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-784)) (-5 *4 (-1281 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1198)) (-14 *7 *5) (-5 *2 (-419 (-1262 *6 *5))) (-5 *1 (-883 *5 *6 *7))))) +(-10 -7 (-15 -2603 ((-3 (-419 (-1262 |#2| |#1|)) "failed") (-784) (-784) (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|))) (-15 -2603 ((-3 (-419 (-1262 |#2| |#1|)) "failed") (-784) (-784) (-1281 |#1| |#2| |#3|)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-1866 (($ $ (-576)) 68)) (-3210 (((-112) $ $) 65)) (-2515 (($) 18 T CONST)) (-3246 (($ (-1194 (-576)) (-576)) 67)) (-3355 (($ $ $) 61)) (-3969 (((-3 $ "failed") $) 37)) (-3173 (($ $) 70)) (-3369 (($ $ $) 62)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-2650 (((-784) $) 75)) (-3994 (((-112) $) 35)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-1648 (((-576)) 72)) (-2578 (((-576) $) 71)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1456 (($ $ (-576)) 74)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-4164 (((-784) $) 64)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63)) (-1409 (((-1179 (-576)) $) 76)) (-1557 (($ $) 73)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-4130 (((-576) $ (-576)) 69)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-884 |#1|) (-141) (-576)) (T -884)) +((-1409 (*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-1179 (-576))))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-784)))) (-1456 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) (-1557 (*1 *1 *1) (-4 *1 (-884 *2))) (-1648 (*1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) (-3173 (*1 *1 *1) (-4 *1 (-884 *2))) (-4130 (*1 *2 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) (-1866 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) (-3246 (*1 *1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *3 (-576)) (-4 *1 (-884 *4))))) +(-13 (-317) (-148) (-10 -8 (-15 -1409 ((-1179 (-576)) $)) (-15 -2650 ((-784) $)) (-15 -1456 ($ $ (-576))) (-15 -1557 ($ $)) (-15 -1648 ((-576))) (-15 -2578 ((-576) $)) (-15 -3173 ($ $)) (-15 -4130 ((-576) $ (-576))) (-15 -1866 ($ $ (-576))) (-15 -3246 ($ (-1194 (-576)) (-576))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-1866 (($ $ (-576)) NIL)) (-3210 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-3246 (($ (-1194 (-576)) (-576)) NIL)) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3173 (($ $) NIL)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2650 (((-784) $) NIL)) (-3994 (((-112) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1648 (((-576)) NIL)) (-2578 (((-576) $) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1456 (($ $ (-576)) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-1409 (((-1179 (-576)) $) NIL)) (-1557 (($ $) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-4130 (((-576) $ (-576)) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) +(((-885 |#1|) (-884 |#1|) (-576)) (T -885)) +NIL +(-884 |#1|) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2923 (((-885 |#1|) $) NIL (|has| (-885 |#1|) (-317)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-885 |#1|) (-929)))) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-885 |#1|) (-929)))) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL (|has| (-885 |#1|) (-833)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-885 |#1|) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| (-885 |#1|) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-885 |#1|) (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-885 |#1|) (-1060 (-576))))) (-2830 (((-885 |#1|) $) NIL) (((-1198) $) NIL (|has| (-885 |#1|) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-885 |#1|) (-1060 (-576)))) (((-576) $) NIL (|has| (-885 |#1|) (-1060 (-576))))) (-1665 (($ $) NIL) (($ (-576) $) NIL)) (-3355 (($ $ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| (-885 |#1|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-885 |#1|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-885 |#1|))) (|:| |vec| (-1289 (-885 |#1|)))) (-702 $) (-1289 $)) NIL) (((-702 (-885 |#1|)) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| (-885 |#1|) (-557)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3810 (((-112) $) NIL (|has| (-885 |#1|) (-833)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-885 |#1|) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-885 |#1|) (-902 (-390))))) (-3994 (((-112) $) NIL)) (-3502 (($ $) NIL)) (-1590 (((-885 |#1|) $) NIL)) (-1955 (((-3 $ "failed") $) NIL (|has| (-885 |#1|) (-1174)))) (-3517 (((-112) $) NIL (|has| (-885 |#1|) (-833)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3740 (($ $ $) NIL (|has| (-885 |#1|) (-862)))) (-2249 (($ $ $) NIL (|has| (-885 |#1|) (-862)))) (-4071 (($ (-1 (-885 |#1|) (-885 |#1|)) $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| (-885 |#1|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-885 |#1|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-885 |#1|))) (|:| |vec| (-1289 (-885 |#1|)))) (-1289 $) $) NIL) (((-702 (-885 |#1|)) (-1289 $)) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| (-885 |#1|) (-1174)) CONST)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2440 (($ $) NIL (|has| (-885 |#1|) (-317)))) (-2681 (((-885 |#1|) $) NIL (|has| (-885 |#1|) (-557)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-885 |#1|) (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-885 |#1|) (-929)))) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3205 (($ $ (-657 (-885 |#1|)) (-657 (-885 |#1|))) NIL (|has| (-885 |#1|) (-319 (-885 |#1|)))) (($ $ (-885 |#1|) (-885 |#1|)) NIL (|has| (-885 |#1|) (-319 (-885 |#1|)))) (($ $ (-304 (-885 |#1|))) NIL (|has| (-885 |#1|) (-319 (-885 |#1|)))) (($ $ (-657 (-304 (-885 |#1|)))) NIL (|has| (-885 |#1|) (-319 (-885 |#1|)))) (($ $ (-657 (-1198)) (-657 (-885 |#1|))) NIL (|has| (-885 |#1|) (-526 (-1198) (-885 |#1|)))) (($ $ (-1198) (-885 |#1|)) NIL (|has| (-885 |#1|) (-526 (-1198) (-885 |#1|))))) (-4164 (((-784) $) NIL)) (-2780 (($ $ (-885 |#1|)) NIL (|has| (-885 |#1|) (-296 (-885 |#1|) (-885 |#1|))))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2209 (($ $ (-1 (-885 |#1|) (-885 |#1|))) NIL) (($ $ (-1 (-885 |#1|) (-885 |#1|)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $) NIL (|has| (-885 |#1|) (-237))) (($ $ (-784)) NIL (|has| (-885 |#1|) (-237)))) (-4226 (($ $) NIL)) (-1602 (((-885 |#1|) $) NIL)) (-4136 (((-908 (-576)) $) NIL (|has| (-885 |#1|) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-885 |#1|) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-885 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-885 |#1|) (-1044))) (((-227) $) NIL (|has| (-885 |#1|) (-1044)))) (-3636 (((-176 (-419 (-576))) $) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-885 |#1|) (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-885 |#1|)) NIL) (($ (-1198)) NIL (|has| (-885 |#1|) (-1060 (-1198))))) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| (-885 |#1|) (-929))) (|has| (-885 |#1|) (-146))))) (-3845 (((-784)) NIL T CONST)) (-2140 (((-885 |#1|) $) NIL (|has| (-885 |#1|) (-557)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-4130 (((-419 (-576)) $ (-576)) NIL)) (-2127 (($ $) NIL (|has| (-885 |#1|) (-833)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-1 (-885 |#1|) (-885 |#1|))) NIL) (($ $ (-1 (-885 |#1|) (-885 |#1|)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $) NIL (|has| (-885 |#1|) (-237))) (($ $ (-784)) NIL (|has| (-885 |#1|) (-237)))) (-2938 (((-112) $ $) NIL (|has| (-885 |#1|) (-862)))) (-2913 (((-112) $ $) NIL (|has| (-885 |#1|) (-862)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| (-885 |#1|) (-862)))) (-2901 (((-112) $ $) NIL (|has| (-885 |#1|) (-862)))) (-2995 (($ $ $) NIL) (($ (-885 |#1|) (-885 |#1|)) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-885 |#1|) $) NIL) (($ $ (-885 |#1|)) NIL))) +(((-886 |#1|) (-13 (-1014 (-885 |#1|)) (-10 -8 (-15 -4130 ((-419 (-576)) $ (-576))) (-15 -3636 ((-176 (-419 (-576))) $)) (-15 -1665 ($ $)) (-15 -1665 ($ (-576) $)))) (-576)) (T -886)) +((-4130 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-886 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-886 *3)) (-14 *3 (-576)))) (-1665 (*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-14 *2 (-576)))) (-1665 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886 *3)) (-14 *3 *2)))) +(-13 (-1014 (-885 |#1|)) (-10 -8 (-15 -4130 ((-419 (-576)) $ (-576))) (-15 -3636 ((-176 (-419 (-576))) $)) (-15 -1665 ($ $)) (-15 -1665 ($ (-576) $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2923 ((|#2| $) NIL (|has| |#2| (-317)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL (|has| |#2| (-833)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#2| "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| |#2| (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576))))) (-2830 ((|#2| $) NIL) (((-1198) $) NIL (|has| |#2| (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-576)))) (((-576) $) NIL (|has| |#2| (-1060 (-576))))) (-1665 (($ $) 35) (($ (-576) $) 38)) (-3355 (($ $ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) 64)) (-1876 (($) NIL (|has| |#2| (-557)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3810 (((-112) $) NIL (|has| |#2| (-833)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| |#2| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| |#2| (-902 (-390))))) (-3994 (((-112) $) NIL)) (-3502 (($ $) NIL)) (-1590 ((|#2| $) NIL)) (-1955 (((-3 $ "failed") $) NIL (|has| |#2| (-1174)))) (-3517 (((-112) $) NIL (|has| |#2| (-833)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3740 (($ $ $) NIL (|has| |#2| (-862)))) (-2249 (($ $ $) NIL (|has| |#2| (-862)))) (-4071 (($ (-1 |#2| |#2|) $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 60)) (-1679 (($) NIL (|has| |#2| (-1174)) CONST)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2440 (($ $) NIL (|has| |#2| (-317)))) (-2681 ((|#2| $) NIL (|has| |#2| (-557)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3205 (($ $ (-657 |#2|) (-657 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-319 |#2|))) (($ $ (-304 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ (-657 (-304 |#2|))) NIL (|has| |#2| (-319 |#2|))) (($ $ (-657 (-1198)) (-657 |#2|)) NIL (|has| |#2| (-526 (-1198) |#2|))) (($ $ (-1198) |#2|) NIL (|has| |#2| (-526 (-1198) |#2|)))) (-4164 (((-784) $) NIL)) (-2780 (($ $ |#2|) NIL (|has| |#2| (-296 |#2| |#2|)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2209 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237)))) (-4226 (($ $) NIL)) (-1602 ((|#2| $) NIL)) (-4136 (((-908 (-576)) $) NIL (|has| |#2| (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| |#2| (-626 (-908 (-390))))) (((-548) $) NIL (|has| |#2| (-626 (-548)))) (((-390) $) NIL (|has| |#2| (-1044))) (((-227) $) NIL (|has| |#2| (-1044)))) (-3636 (((-176 (-419 (-576))) $) 78)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929))))) (-3515 (((-877) $) 106) (($ (-576)) 20) (($ $) NIL) (($ (-419 (-576))) 25) (($ |#2|) 19) (($ (-1198)) NIL (|has| |#2| (-1060 (-1198))))) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#2| (-146))))) (-3845 (((-784)) NIL T CONST)) (-2140 ((|#2| $) NIL (|has| |#2| (-557)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-4130 (((-419 (-576)) $ (-576)) 71)) (-2127 (($ $) NIL (|has| |#2| (-833)))) (-2716 (($) 15 T CONST)) (-2725 (($) 17 T CONST)) (-2066 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237)))) (-2938 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2881 (((-112) $ $) 46)) (-2925 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2995 (($ $ $) 24) (($ |#2| |#2|) 65)) (-2982 (($ $) 50) (($ $ $) 52)) (-2971 (($ $ $) 48)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 61)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 53) (($ $ $) 55) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-887 |#1| |#2|) (-13 (-1014 |#2|) (-10 -8 (-15 -4130 ((-419 (-576)) $ (-576))) (-15 -3636 ((-176 (-419 (-576))) $)) (-15 -1665 ($ $)) (-15 -1665 ($ (-576) $)))) (-576) (-884 |#1|)) (T -887)) +((-4130 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-887 *4 *5)) (-5 *3 (-576)) (-4 *5 (-884 *4)))) (-3636 (*1 *2 *1) (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-887 *3 *4)) (-4 *4 (-884 *3)))) (-1665 (*1 *1 *1) (-12 (-14 *2 (-576)) (-5 *1 (-887 *2 *3)) (-4 *3 (-884 *2)))) (-1665 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-887 *3 *4)) (-4 *4 (-884 *3))))) +(-13 (-1014 |#2|) (-10 -8 (-15 -4130 ((-419 (-576)) $ (-576))) (-15 -3636 ((-176 (-419 (-576))) $)) (-15 -1665 ($ $)) (-15 -1665 ($ (-576) $)))) +((-3423 (((-112) $ $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-2849 ((|#2| $) 12)) (-3175 (($ |#1| |#2|) 9)) (-1708 (((-1180) $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-1460 (((-1142) $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-3528 ((|#1| $) 11)) (-3529 (($ |#1| |#2|) 10)) (-3515 (((-877) $) 18 (-2748 (-12 (|has| |#1| (-625 (-877))) (|has| |#2| (-625 (-877)))) (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122)))))) (-4166 (((-112) $ $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-2881 (((-112) $ $) 23 (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122)))))) +(((-888 |#1| |#2|) (-13 (-1239) (-10 -8 (IF (|has| |#1| (-625 (-877))) (IF (|has| |#2| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1122)) (IF (|has| |#2| (-1122)) (-6 (-1122)) |%noBranch|) |%noBranch|) (-15 -3175 ($ |#1| |#2|)) (-15 -3529 ($ |#1| |#2|)) (-15 -3528 (|#1| $)) (-15 -2849 (|#2| $)))) (-1239) (-1239)) (T -888)) +((-3175 (*1 *1 *2 *3) (-12 (-5 *1 (-888 *2 *3)) (-4 *2 (-1239)) (-4 *3 (-1239)))) (-3529 (*1 *1 *2 *3) (-12 (-5 *1 (-888 *2 *3)) (-4 *2 (-1239)) (-4 *3 (-1239)))) (-3528 (*1 *2 *1) (-12 (-4 *2 (-1239)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1239)))) (-2849 (*1 *2 *1) (-12 (-4 *2 (-1239)) (-5 *1 (-888 *3 *2)) (-4 *3 (-1239))))) +(-13 (-1239) (-10 -8 (IF (|has| |#1| (-625 (-877))) (IF (|has| |#2| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1122)) (IF (|has| |#2| (-1122)) (-6 (-1122)) |%noBranch|) |%noBranch|) (-15 -3175 ($ |#1| |#2|)) (-15 -3529 ($ |#1| |#2|)) (-15 -3528 (|#1| $)) (-15 -2849 (|#2| $)))) +((-3423 (((-112) $ $) NIL)) (-3705 (((-576) $) 16)) (-3838 (($ (-158)) 13)) (-1949 (($ (-158)) 14)) (-1708 (((-1180) $) NIL)) (-2310 (((-158) $) 15)) (-1460 (((-1142) $) NIL)) (-2703 (($ (-158)) 11)) (-4271 (($ (-158)) 10)) (-3515 (((-877) $) 24) (($ (-158)) 17)) (-3185 (($ (-158)) 12)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-889) (-13 (-1122) (-10 -8 (-15 -4271 ($ (-158))) (-15 -2703 ($ (-158))) (-15 -3185 ($ (-158))) (-15 -3838 ($ (-158))) (-15 -1949 ($ (-158))) (-15 -2310 ((-158) $)) (-15 -3705 ((-576) $)) (-15 -3515 ($ (-158)))))) (T -889)) +((-4271 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) (-2703 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) (-3185 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-889)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889))))) +(-13 (-1122) (-10 -8 (-15 -4271 ($ (-158))) (-15 -2703 ($ (-158))) (-15 -3185 ($ (-158))) (-15 -3838 ($ (-158))) (-15 -1949 ($ (-158))) (-15 -2310 ((-158) $)) (-15 -3705 ((-576) $)) (-15 -3515 ($ (-158))))) +((-3515 (((-326 (-576)) (-419 (-972 (-48)))) 23) (((-326 (-576)) (-972 (-48))) 18))) +(((-890) (-10 -7 (-15 -3515 ((-326 (-576)) (-972 (-48)))) (-15 -3515 ((-326 (-576)) (-419 (-972 (-48))))))) (T -890)) +((-3515 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 (-48)))) (-5 *2 (-326 (-576))) (-5 *1 (-890)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-972 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-890))))) +(-10 -7 (-15 -3515 ((-326 (-576)) (-972 (-48)))) (-15 -3515 ((-326 (-576)) (-419 (-972 (-48)))))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 18) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2704 (((-112) $ (|[\|\|]| (-518))) 9) (((-112) $ (|[\|\|]| (-1180))) 13)) (-4166 (((-112) $ $) NIL)) (-1952 (((-518) $) 10) (((-1180) $) 14)) (-2881 (((-112) $ $) 15))) +(((-891) (-13 (-1105) (-1284) (-10 -8 (-15 -2704 ((-112) $ (|[\|\|]| (-518)))) (-15 -1952 ((-518) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1180)))) (-15 -1952 ((-1180) $))))) (T -891)) +((-2704 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-891)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-891)))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)) (-5 *1 (-891)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-891))))) +(-13 (-1105) (-1284) (-10 -8 (-15 -2704 ((-112) $ (|[\|\|]| (-518)))) (-15 -1952 ((-518) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1180)))) (-15 -1952 ((-1180) $)))) +((-4071 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 15))) +(((-892 |#1| |#2|) (-10 -7 (-15 -4071 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1239) (-1239)) (T -892)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6))))) +(-10 -7 (-15 -4071 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) +((-4352 (($ |#1| |#1|) 8)) (-1464 ((|#1| $ (-784)) 15))) +(((-893 |#1|) (-10 -8 (-15 -4352 ($ |#1| |#1|)) (-15 -1464 (|#1| $ (-784)))) (-1239)) (T -893)) +((-1464 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-893 *2)) (-4 *2 (-1239)))) (-4352 (*1 *1 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1239))))) +(-10 -8 (-15 -4352 ($ |#1| |#1|)) (-15 -1464 (|#1| $ (-784)))) +((-4071 (((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)) 15))) +(((-894 |#1| |#2|) (-10 -7 (-15 -4071 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) (-1239) (-1239)) (T -894)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6))))) +(-10 -7 (-15 -4071 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) +((-4352 (($ |#1| |#1| |#1|) 8)) (-1464 ((|#1| $ (-784)) 15))) +(((-895 |#1|) (-10 -8 (-15 -4352 ($ |#1| |#1| |#1|)) (-15 -1464 (|#1| $ (-784)))) (-1239)) (T -895)) +((-1464 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-895 *2)) (-4 *2 (-1239)))) (-4352 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1239))))) +(-10 -8 (-15 -4352 ($ |#1| |#1| |#1|)) (-15 -1464 (|#1| $ (-784)))) +((-2097 (((-657 (-1203)) (-1180)) 9))) +(((-896) (-10 -7 (-15 -2097 ((-657 (-1203)) (-1180))))) (T -896)) +((-2097 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-657 (-1203))) (-5 *1 (-896))))) +(-10 -7 (-15 -2097 ((-657 (-1203)) (-1180)))) +((-4071 (((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)) 15))) +(((-897 |#1| |#2|) (-10 -7 (-15 -4071 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) (-1239) (-1239)) (T -897)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6))))) +(-10 -7 (-15 -4071 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) +((-3687 (($ |#1| |#1| |#1|) 8)) (-1464 ((|#1| $ (-784)) 15))) +(((-898 |#1|) (-10 -8 (-15 -3687 ($ |#1| |#1| |#1|)) (-15 -1464 (|#1| $ (-784)))) (-1239)) (T -898)) +((-1464 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-898 *2)) (-4 *2 (-1239)))) (-3687 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1239))))) +(-10 -8 (-15 -3687 ($ |#1| |#1| |#1|)) (-15 -1464 (|#1| $ (-784)))) +((-2734 (((-1179 (-657 (-576))) (-657 (-576)) (-1179 (-657 (-576)))) 41)) (-2006 (((-1179 (-657 (-576))) (-657 (-576)) (-657 (-576))) 31)) (-1412 (((-1179 (-657 (-576))) (-657 (-576))) 53) (((-1179 (-657 (-576))) (-657 (-576)) (-657 (-576))) 50)) (-1956 (((-1179 (-657 (-576))) (-576)) 55)) (-1715 (((-1179 (-657 (-941))) (-1179 (-657 (-941)))) 22)) (-1587 (((-657 (-941)) (-657 (-941))) 18))) +(((-899) (-10 -7 (-15 -1587 ((-657 (-941)) (-657 (-941)))) (-15 -1715 ((-1179 (-657 (-941))) (-1179 (-657 (-941))))) (-15 -2006 ((-1179 (-657 (-576))) (-657 (-576)) (-657 (-576)))) (-15 -2734 ((-1179 (-657 (-576))) (-657 (-576)) (-1179 (-657 (-576))))) (-15 -1412 ((-1179 (-657 (-576))) (-657 (-576)) (-657 (-576)))) (-15 -1412 ((-1179 (-657 (-576))) (-657 (-576)))) (-15 -1956 ((-1179 (-657 (-576))) (-576))))) (T -899)) +((-1956 (*1 *2 *3) (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) (-5 *3 (-576)))) (-1412 (*1 *2 *3) (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) (-5 *3 (-657 (-576))))) (-1412 (*1 *2 *3 *3) (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) (-5 *3 (-657 (-576))))) (-2734 (*1 *2 *3 *2) (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *3 (-657 (-576))) (-5 *1 (-899)))) (-2006 (*1 *2 *3 *3) (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) (-5 *3 (-657 (-576))))) (-1715 (*1 *2 *2) (-12 (-5 *2 (-1179 (-657 (-941)))) (-5 *1 (-899)))) (-1587 (*1 *2 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-899))))) +(-10 -7 (-15 -1587 ((-657 (-941)) (-657 (-941)))) (-15 -1715 ((-1179 (-657 (-941))) (-1179 (-657 (-941))))) (-15 -2006 ((-1179 (-657 (-576))) (-657 (-576)) (-657 (-576)))) (-15 -2734 ((-1179 (-657 (-576))) (-657 (-576)) (-1179 (-657 (-576))))) (-15 -1412 ((-1179 (-657 (-576))) (-657 (-576)) (-657 (-576)))) (-15 -1412 ((-1179 (-657 (-576))) (-657 (-576)))) (-15 -1956 ((-1179 (-657 (-576))) (-576)))) +((-4136 (((-908 (-390)) $) 9 (|has| |#1| (-626 (-908 (-390))))) (((-908 (-576)) $) 8 (|has| |#1| (-626 (-908 (-576))))))) +(((-900 |#1|) (-141) (-1239)) (T -900)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-626 (-908 (-576)))) (-6 (-626 (-908 (-576)))) |%noBranch|) (IF (|has| |t#1| (-626 (-908 (-390)))) (-6 (-626 (-908 (-390)))) |%noBranch|))) +(((-626 (-908 (-390))) |has| |#1| (-626 (-908 (-390)))) ((-626 (-908 (-576))) |has| |#1| (-626 (-908 (-576))))) +((-3423 (((-112) $ $) NIL)) (-4096 (($) 14)) (-1867 (($ (-905 |#1| |#2|) (-905 |#1| |#3|)) 28)) (-4420 (((-905 |#1| |#3|) $) 16)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1427 (((-112) $) 22)) (-4165 (($) 19)) (-3515 (((-877) $) 31)) (-4166 (((-112) $ $) NIL)) (-3028 (((-905 |#1| |#2|) $) 15)) (-2881 (((-112) $ $) 26))) +(((-901 |#1| |#2| |#3|) (-13 (-1122) (-10 -8 (-15 -1427 ((-112) $)) (-15 -4165 ($)) (-15 -4096 ($)) (-15 -1867 ($ (-905 |#1| |#2|) (-905 |#1| |#3|))) (-15 -3028 ((-905 |#1| |#2|) $)) (-15 -4420 ((-905 |#1| |#3|) $)))) (-1122) (-1122) (-679 |#2|)) (T -901)) +((-1427 (*1 *2 *1) (-12 (-4 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-901 *3 *4 *5)) (-4 *3 (-1122)) (-4 *5 (-679 *4)))) (-4165 (*1 *1) (-12 (-4 *3 (-1122)) (-5 *1 (-901 *2 *3 *4)) (-4 *2 (-1122)) (-4 *4 (-679 *3)))) (-4096 (*1 *1) (-12 (-4 *3 (-1122)) (-5 *1 (-901 *2 *3 *4)) (-4 *2 (-1122)) (-4 *4 (-679 *3)))) (-1867 (*1 *1 *2 *3) (-12 (-5 *2 (-905 *4 *5)) (-5 *3 (-905 *4 *6)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-679 *5)) (-5 *1 (-901 *4 *5 *6)))) (-3028 (*1 *2 *1) (-12 (-4 *4 (-1122)) (-5 *2 (-905 *3 *4)) (-5 *1 (-901 *3 *4 *5)) (-4 *3 (-1122)) (-4 *5 (-679 *4)))) (-4420 (*1 *2 *1) (-12 (-4 *4 (-1122)) (-5 *2 (-905 *3 *5)) (-5 *1 (-901 *3 *4 *5)) (-4 *3 (-1122)) (-4 *5 (-679 *4))))) +(-13 (-1122) (-10 -8 (-15 -1427 ((-112) $)) (-15 -4165 ($)) (-15 -4096 ($)) (-15 -1867 ($ (-905 |#1| |#2|) (-905 |#1| |#3|))) (-15 -3028 ((-905 |#1| |#2|) $)) (-15 -4420 ((-905 |#1| |#3|) $)))) +((-3423 (((-112) $ $) 7)) (-2008 (((-905 |#1| $) $ (-908 |#1|) (-905 |#1| $)) 14)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) +(((-902 |#1|) (-141) (-1122)) (T -902)) +((-2008 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-905 *4 *1)) (-5 *3 (-908 *4)) (-4 *1 (-902 *4)) (-4 *4 (-1122))))) +(-13 (-1122) (-10 -8 (-15 -2008 ((-905 |t#1| $) $ (-908 |t#1|) (-905 |t#1| $))))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-4216 (((-112) (-657 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2393 (((-905 |#1| |#2|) |#2| |#3|) 45 (-12 (-2665 (|has| |#2| (-1060 (-1198)))) (-2665 (|has| |#2| (-1071))))) (((-657 (-304 (-972 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1071)) (-2665 (|has| |#2| (-1060 (-1198)))))) (((-657 (-304 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1060 (-1198)))) (((-901 |#1| |#2| (-657 |#2|)) (-657 |#2|) |#3|) 21))) +(((-903 |#1| |#2| |#3|) (-10 -7 (-15 -4216 ((-112) |#2| |#3|)) (-15 -4216 ((-112) (-657 |#2|) |#3|)) (-15 -2393 ((-901 |#1| |#2| (-657 |#2|)) (-657 |#2|) |#3|)) (IF (|has| |#2| (-1060 (-1198))) (-15 -2393 ((-657 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1071)) (-15 -2393 ((-657 (-304 (-972 |#2|))) |#2| |#3|)) (-15 -2393 ((-905 |#1| |#2|) |#2| |#3|))))) (-1122) (-902 |#1|) (-626 (-908 |#1|))) (T -903)) +((-2393 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-5 *2 (-905 *5 *3)) (-5 *1 (-903 *5 *3 *4)) (-2665 (-4 *3 (-1060 (-1198)))) (-2665 (-4 *3 (-1071))) (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5))))) (-2393 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-5 *2 (-657 (-304 (-972 *3)))) (-5 *1 (-903 *5 *3 *4)) (-4 *3 (-1071)) (-2665 (-4 *3 (-1060 (-1198)))) (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5))))) (-2393 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-5 *2 (-657 (-304 *3))) (-5 *1 (-903 *5 *3 *4)) (-4 *3 (-1060 (-1198))) (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5))))) (-2393 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *6 (-902 *5)) (-5 *2 (-901 *5 *6 (-657 *6))) (-5 *1 (-903 *5 *6 *4)) (-5 *3 (-657 *6)) (-4 *4 (-626 (-908 *5))))) (-4216 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *6)) (-4 *6 (-902 *5)) (-4 *5 (-1122)) (-5 *2 (-112)) (-5 *1 (-903 *5 *6 *4)) (-4 *4 (-626 (-908 *5))))) (-4216 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-5 *2 (-112)) (-5 *1 (-903 *5 *3 *4)) (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5)))))) +(-10 -7 (-15 -4216 ((-112) |#2| |#3|)) (-15 -4216 ((-112) (-657 |#2|) |#3|)) (-15 -2393 ((-901 |#1| |#2| (-657 |#2|)) (-657 |#2|) |#3|)) (IF (|has| |#2| (-1060 (-1198))) (-15 -2393 ((-657 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1071)) (-15 -2393 ((-657 (-304 (-972 |#2|))) |#2| |#3|)) (-15 -2393 ((-905 |#1| |#2|) |#2| |#3|))))) +((-4071 (((-905 |#1| |#3|) (-1 |#3| |#2|) (-905 |#1| |#2|)) 22))) +(((-904 |#1| |#2| |#3|) (-10 -7 (-15 -4071 ((-905 |#1| |#3|) (-1 |#3| |#2|) (-905 |#1| |#2|)))) (-1122) (-1122) (-1122)) (T -904)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-905 *5 *6)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-905 *5 *7)) (-5 *1 (-904 *5 *6 *7))))) +(-10 -7 (-15 -4071 ((-905 |#1| |#3|) (-1 |#3| |#2|) (-905 |#1| |#2|)))) +((-3423 (((-112) $ $) NIL)) (-1849 (($ $ $) 40)) (-2622 (((-3 (-112) "failed") $ (-908 |#1|)) 37)) (-4096 (($) 12)) (-1708 (((-1180) $) NIL)) (-3303 (($ (-908 |#1|) |#2| $) 20)) (-1460 (((-1142) $) NIL)) (-3790 (((-3 |#2| "failed") (-908 |#1|) $) 51)) (-1427 (((-112) $) 15)) (-4165 (($) 13)) (-1933 (((-657 (-2 (|:| -4286 (-1198)) (|:| -4440 |#2|))) $) 25)) (-3529 (($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 |#2|)))) 23)) (-3515 (((-877) $) 45)) (-4166 (((-112) $ $) NIL)) (-2751 (($ (-908 |#1|) |#2| $ |#2|) 49)) (-2921 (($ (-908 |#1|) |#2| $) 48)) (-2881 (((-112) $ $) 42))) +(((-905 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -1427 ((-112) $)) (-15 -4165 ($)) (-15 -4096 ($)) (-15 -1849 ($ $ $)) (-15 -3790 ((-3 |#2| "failed") (-908 |#1|) $)) (-15 -2921 ($ (-908 |#1|) |#2| $)) (-15 -3303 ($ (-908 |#1|) |#2| $)) (-15 -2751 ($ (-908 |#1|) |#2| $ |#2|)) (-15 -1933 ((-657 (-2 (|:| -4286 (-1198)) (|:| -4440 |#2|))) $)) (-15 -3529 ($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 |#2|))))) (-15 -2622 ((-3 (-112) "failed") $ (-908 |#1|))))) (-1122) (-1122)) (T -905)) +((-1427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-4165 (*1 *1) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-4096 (*1 *1) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-1849 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-3790 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-4 *2 (-1122)) (-5 *1 (-905 *4 *2)))) (-2921 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-905 *4 *3)) (-4 *3 (-1122)))) (-3303 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-905 *4 *3)) (-4 *3 (-1122)))) (-2751 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-905 *4 *3)) (-4 *3 (-1122)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 *4)))) (-5 *1 (-905 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 *4)))) (-4 *4 (-1122)) (-5 *1 (-905 *3 *4)) (-4 *3 (-1122)))) (-2622 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1122))))) +(-13 (-1122) (-10 -8 (-15 -1427 ((-112) $)) (-15 -4165 ($)) (-15 -4096 ($)) (-15 -1849 ($ $ $)) (-15 -3790 ((-3 |#2| "failed") (-908 |#1|) $)) (-15 -2921 ($ (-908 |#1|) |#2| $)) (-15 -3303 ($ (-908 |#1|) |#2| $)) (-15 -2751 ($ (-908 |#1|) |#2| $ |#2|)) (-15 -1933 ((-657 (-2 (|:| -4286 (-1198)) (|:| -4440 |#2|))) $)) (-15 -3529 ($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 |#2|))))) (-15 -2622 ((-3 (-112) "failed") $ (-908 |#1|))))) +((-4239 (((-908 |#1|) (-908 |#1|) (-657 (-1198)) (-1 (-112) (-657 |#2|))) 32) (((-908 |#1|) (-908 |#1|) (-657 (-1 (-112) |#2|))) 46) (((-908 |#1|) (-908 |#1|) (-1 (-112) |#2|)) 35)) (-2622 (((-112) (-657 |#2|) (-908 |#1|)) 42) (((-112) |#2| (-908 |#1|)) 36)) (-2056 (((-1 (-112) |#2|) (-908 |#1|)) 16)) (-3791 (((-657 |#2|) (-908 |#1|)) 24)) (-3622 (((-908 |#1|) (-908 |#1|) |#2|) 20))) +(((-906 |#1| |#2|) (-10 -7 (-15 -4239 ((-908 |#1|) (-908 |#1|) (-1 (-112) |#2|))) (-15 -4239 ((-908 |#1|) (-908 |#1|) (-657 (-1 (-112) |#2|)))) (-15 -4239 ((-908 |#1|) (-908 |#1|) (-657 (-1198)) (-1 (-112) (-657 |#2|)))) (-15 -2056 ((-1 (-112) |#2|) (-908 |#1|))) (-15 -2622 ((-112) |#2| (-908 |#1|))) (-15 -2622 ((-112) (-657 |#2|) (-908 |#1|))) (-15 -3622 ((-908 |#1|) (-908 |#1|) |#2|)) (-15 -3791 ((-657 |#2|) (-908 |#1|)))) (-1122) (-1239)) (T -906)) +((-3791 (*1 *2 *3) (-12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-5 *2 (-657 *5)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1239)))) (-3622 (*1 *2 *2 *3) (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-906 *4 *3)) (-4 *3 (-1239)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *6)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-4 *6 (-1239)) (-5 *2 (-112)) (-5 *1 (-906 *5 *6)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-5 *2 (-112)) (-5 *1 (-906 *5 *3)) (-4 *3 (-1239)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1239)))) (-4239 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-908 *5)) (-5 *3 (-657 (-1198))) (-5 *4 (-1 (-112) (-657 *6))) (-4 *5 (-1122)) (-4 *6 (-1239)) (-5 *1 (-906 *5 *6)))) (-4239 (*1 *2 *2 *3) (-12 (-5 *2 (-908 *4)) (-5 *3 (-657 (-1 (-112) *5))) (-4 *4 (-1122)) (-4 *5 (-1239)) (-5 *1 (-906 *4 *5)))) (-4239 (*1 *2 *2 *3) (-12 (-5 *2 (-908 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1122)) (-4 *5 (-1239)) (-5 *1 (-906 *4 *5))))) +(-10 -7 (-15 -4239 ((-908 |#1|) (-908 |#1|) (-1 (-112) |#2|))) (-15 -4239 ((-908 |#1|) (-908 |#1|) (-657 (-1 (-112) |#2|)))) (-15 -4239 ((-908 |#1|) (-908 |#1|) (-657 (-1198)) (-1 (-112) (-657 |#2|)))) (-15 -2056 ((-1 (-112) |#2|) (-908 |#1|))) (-15 -2622 ((-112) |#2| (-908 |#1|))) (-15 -2622 ((-112) (-657 |#2|) (-908 |#1|))) (-15 -3622 ((-908 |#1|) (-908 |#1|) |#2|)) (-15 -3791 ((-657 |#2|) (-908 |#1|)))) +((-4071 (((-908 |#2|) (-1 |#2| |#1|) (-908 |#1|)) 19))) +(((-907 |#1| |#2|) (-10 -7 (-15 -4071 ((-908 |#2|) (-1 |#2| |#1|) (-908 |#1|)))) (-1122) (-1122)) (T -907)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-908 *6)) (-5 *1 (-907 *5 *6))))) +(-10 -7 (-15 -4071 ((-908 |#2|) (-1 |#2| |#1|) (-908 |#1|)))) +((-3423 (((-112) $ $) NIL)) (-4305 (($ $ (-657 (-52))) 74)) (-1998 (((-657 $) $) 139)) (-3440 (((-2 (|:| |var| (-657 (-1198))) (|:| |pred| (-52))) $) 30)) (-4397 (((-112) $) 35)) (-2389 (($ $ (-657 (-1198)) (-52)) 31)) (-3968 (($ $ (-657 (-52))) 73)) (-1593 (((-3 |#1| "failed") $) 71) (((-3 (-1198) "failed") $) 164)) (-2830 ((|#1| $) 68) (((-1198) $) NIL)) (-3863 (($ $) 126)) (-1787 (((-112) $) 55)) (-1373 (((-657 (-52)) $) 50)) (-1944 (($ (-1198) (-112) (-112) (-112)) 75)) (-2051 (((-3 (-657 $) "failed") (-657 $)) 82)) (-1811 (((-112) $) 58)) (-2283 (((-112) $) 57)) (-1708 (((-1180) $) NIL)) (-2998 (((-3 (-657 $) "failed") $) 41)) (-2315 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-1588 (((-3 (-2 (|:| |val| $) (|:| -2128 $)) "failed") $) 97)) (-3097 (((-3 (-657 $) "failed") $) 40)) (-1895 (((-3 (-657 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -1782 (-115)) (|:| |arg| (-657 $))) "failed") $) 107)) (-4051 (((-3 (-657 $) "failed") $) 42)) (-3403 (((-3 (-2 (|:| |val| $) (|:| -2128 (-784))) "failed") $) 45)) (-2717 (((-112) $) 34)) (-1460 (((-1142) $) NIL)) (-4148 (((-112) $) 28)) (-3016 (((-112) $) 52)) (-3324 (((-657 (-52)) $) 130)) (-1958 (((-112) $) 56)) (-2780 (($ (-115) (-657 $)) 104)) (-3106 (((-784) $) 33)) (-1899 (($ $) 72)) (-4136 (($ (-657 $)) 69)) (-1807 (((-112) $) 32)) (-3515 (((-877) $) 63) (($ |#1|) 23) (($ (-1198)) 76)) (-4166 (((-112) $ $) NIL)) (-3622 (($ $ (-52)) 129)) (-2716 (($) 103 T CONST)) (-2725 (($) 83 T CONST)) (-2881 (((-112) $ $) 93)) (-2995 (($ $ $) 117)) (-2971 (($ $ $) 121)) (** (($ $ (-784)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-908 |#1|) (-13 (-1122) (-1060 |#1|) (-1060 (-1198)) (-10 -8 (-15 0 ($) -1491) (-15 1 ($) -1491) (-15 -3097 ((-3 (-657 $) "failed") $)) (-15 -2998 ((-3 (-657 $) "failed") $)) (-15 -1895 ((-3 (-657 $) "failed") $ (-115))) (-15 -1895 ((-3 (-2 (|:| -1782 (-115)) (|:| |arg| (-657 $))) "failed") $)) (-15 -3403 ((-3 (-2 (|:| |val| $) (|:| -2128 (-784))) "failed") $)) (-15 -2315 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4051 ((-3 (-657 $) "failed") $)) (-15 -1588 ((-3 (-2 (|:| |val| $) (|:| -2128 $)) "failed") $)) (-15 -2780 ($ (-115) (-657 $))) (-15 -2971 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-784))) (-15 ** ($ $ $)) (-15 -2995 ($ $ $)) (-15 -3106 ((-784) $)) (-15 -4136 ($ (-657 $))) (-15 -1899 ($ $)) (-15 -2717 ((-112) $)) (-15 -1787 ((-112) $)) (-15 -4397 ((-112) $)) (-15 -1807 ((-112) $)) (-15 -1958 ((-112) $)) (-15 -2283 ((-112) $)) (-15 -1811 ((-112) $)) (-15 -3016 ((-112) $)) (-15 -1373 ((-657 (-52)) $)) (-15 -3968 ($ $ (-657 (-52)))) (-15 -4305 ($ $ (-657 (-52)))) (-15 -1944 ($ (-1198) (-112) (-112) (-112))) (-15 -2389 ($ $ (-657 (-1198)) (-52))) (-15 -3440 ((-2 (|:| |var| (-657 (-1198))) (|:| |pred| (-52))) $)) (-15 -4148 ((-112) $)) (-15 -3863 ($ $)) (-15 -3622 ($ $ (-52))) (-15 -3324 ((-657 (-52)) $)) (-15 -1998 ((-657 $) $)) (-15 -2051 ((-3 (-657 $) "failed") (-657 $))))) (-1122)) (T -908)) +((-2716 (*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (-2725 (*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (-3097 (*1 *2 *1) (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2998 (*1 *2 *1) (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1895 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-657 (-908 *4))) (-5 *1 (-908 *4)) (-4 *4 (-1122)))) (-1895 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1782 (-115)) (|:| |arg| (-657 (-908 *3))))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-3403 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-908 *3)) (|:| -2128 (-784)))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2315 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-908 *3)) (|:| |den| (-908 *3)))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-4051 (*1 *2 *1) (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1588 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-908 *3)) (|:| -2128 (-908 *3)))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2780 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-657 (-908 *4))) (-5 *1 (-908 *4)) (-4 *4 (-1122)))) (-2971 (*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (-2995 (*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1899 (*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-4397 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1958 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-3968 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-4305 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1944 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-112)) (-5 *1 (-908 *4)) (-4 *4 (-1122)))) (-2389 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-52)) (-5 *1 (-908 *4)) (-4 *4 (-1122)))) (-3440 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-657 (-1198))) (|:| |pred| (-52)))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-3863 (*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (-3622 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2051 (*1 *2 *2) (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(-13 (-1122) (-1060 |#1|) (-1060 (-1198)) (-10 -8 (-15 (-2716) ($) -1491) (-15 (-2725) ($) -1491) (-15 -3097 ((-3 (-657 $) "failed") $)) (-15 -2998 ((-3 (-657 $) "failed") $)) (-15 -1895 ((-3 (-657 $) "failed") $ (-115))) (-15 -1895 ((-3 (-2 (|:| -1782 (-115)) (|:| |arg| (-657 $))) "failed") $)) (-15 -3403 ((-3 (-2 (|:| |val| $) (|:| -2128 (-784))) "failed") $)) (-15 -2315 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4051 ((-3 (-657 $) "failed") $)) (-15 -1588 ((-3 (-2 (|:| |val| $) (|:| -2128 $)) "failed") $)) (-15 -2780 ($ (-115) (-657 $))) (-15 -2971 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-784))) (-15 ** ($ $ $)) (-15 -2995 ($ $ $)) (-15 -3106 ((-784) $)) (-15 -4136 ($ (-657 $))) (-15 -1899 ($ $)) (-15 -2717 ((-112) $)) (-15 -1787 ((-112) $)) (-15 -4397 ((-112) $)) (-15 -1807 ((-112) $)) (-15 -1958 ((-112) $)) (-15 -2283 ((-112) $)) (-15 -1811 ((-112) $)) (-15 -3016 ((-112) $)) (-15 -1373 ((-657 (-52)) $)) (-15 -3968 ($ $ (-657 (-52)))) (-15 -4305 ($ $ (-657 (-52)))) (-15 -1944 ($ (-1198) (-112) (-112) (-112))) (-15 -2389 ($ $ (-657 (-1198)) (-52))) (-15 -3440 ((-2 (|:| |var| (-657 (-1198))) (|:| |pred| (-52))) $)) (-15 -4148 ((-112) $)) (-15 -3863 ($ $)) (-15 -3622 ($ $ (-52))) (-15 -3324 ((-657 (-52)) $)) (-15 -1998 ((-657 $) $)) (-15 -2051 ((-3 (-657 $) "failed") (-657 $))))) +((-3423 (((-112) $ $) NIL)) (-3375 (((-657 |#1|) $) 19)) (-3402 (((-112) $) 49)) (-1593 (((-3 (-685 |#1|) "failed") $) 56)) (-2830 (((-685 |#1|) $) 54)) (-3542 (($ $) 23)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-3041 (((-784) $) 61)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3528 (((-685 |#1|) $) 21)) (-3515 (((-877) $) 47) (($ (-685 |#1|)) 26) (((-832 |#1|) $) 36) (($ |#1|) 25)) (-4166 (((-112) $ $) NIL)) (-2725 (($) 9 T CONST)) (-2818 (((-657 (-685 |#1|)) $) 28)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 12)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 67))) +(((-909 |#1|) (-13 (-862) (-1060 (-685 |#1|)) (-10 -8 (-15 1 ($) -1491) (-15 -3515 ((-832 |#1|) $)) (-15 -3515 ($ |#1|)) (-15 -3528 ((-685 |#1|) $)) (-15 -3041 ((-784) $)) (-15 -2818 ((-657 (-685 |#1|)) $)) (-15 -3542 ($ $)) (-15 -3402 ((-112) $)) (-15 -3375 ((-657 |#1|) $)))) (-862)) (T -909)) +((-2725 (*1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-862)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) (-3515 (*1 *1 *2) (-12 (-5 *1 (-909 *2)) (-4 *2 (-862)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-685 *3)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-657 (-685 *3))) (-5 *1 (-909 *3)) (-4 *3 (-862)))) (-3542 (*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-862)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-909 *3)) (-4 *3 (-862))))) +(-13 (-862) (-1060 (-685 |#1|)) (-10 -8 (-15 (-2725) ($) -1491) (-15 -3515 ((-832 |#1|) $)) (-15 -3515 ($ |#1|)) (-15 -3528 ((-685 |#1|) $)) (-15 -3041 ((-784) $)) (-15 -2818 ((-657 (-685 |#1|)) $)) (-15 -3542 ($ $)) (-15 -3402 ((-112) $)) (-15 -3375 ((-657 |#1|) $)))) +((-3380 ((|#1| |#1| |#1|) 19))) +(((-910 |#1| |#2|) (-10 -7 (-15 -3380 (|#1| |#1| |#1|))) (-1265 |#2|) (-1071)) (T -910)) +((-3380 (*1 *2 *2 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-910 *2 *3)) (-4 *2 (-1265 *3))))) +(-10 -7 (-15 -3380 (|#1| |#1| |#1|))) +((-2066 ((|#2| $ |#3|) 10))) +(((-911 |#1| |#2| |#3|) (-10 -8 (-15 -2066 (|#2| |#1| |#3|))) (-912 |#2| |#3|) (-1239) (-1239)) (T -911)) +NIL +(-10 -8 (-15 -2066 (|#2| |#1| |#3|))) +((-2209 ((|#1| $ |#2|) 7)) (-2066 ((|#1| $ |#2|) 6))) +(((-912 |#1| |#2|) (-141) (-1239) (-1239)) (T -912)) +((-2209 (*1 *2 *1 *3) (-12 (-4 *1 (-912 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1239)))) (-2066 (*1 *2 *1 *3) (-12 (-4 *1 (-912 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1239))))) +(-13 (-1239) (-10 -8 (-15 -2209 (|t#1| $ |t#2|)) (-15 -2066 (|t#1| $ |t#2|)))) +(((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-3701 (((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 15)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-1499 (((-1057) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 14)) (-2881 (((-112) $ $) 8))) +(((-913) (-141)) (T -913)) +((-3701 (*1 *2 *3 *4) (-12 (-4 *1 (-913)) (-5 *3 (-1085)) (-5 *4 (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)))))) (-1499 (*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *3 (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) (-5 *2 (-1057))))) +(-13 (-1122) (-10 -7 (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))))) (-15 -1499 ((-1057) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))))))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-1342 ((|#1| |#1| (-784)) 27)) (-1826 (((-3 |#1| "failed") |#1| |#1|) 24)) (-3545 (((-3 (-2 (|:| -4217 |#1|) (|:| -4228 |#1|)) "failed") |#1| (-784) (-784)) 30) (((-657 |#1|) |#1|) 38))) +(((-914 |#1| |#2|) (-10 -7 (-15 -3545 ((-657 |#1|) |#1|)) (-15 -3545 ((-3 (-2 (|:| -4217 |#1|) (|:| -4228 |#1|)) "failed") |#1| (-784) (-784))) (-15 -1826 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1342 (|#1| |#1| (-784)))) (-1265 |#2|) (-374)) (T -914)) +((-1342 (*1 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-374)) (-5 *1 (-914 *2 *4)) (-4 *2 (-1265 *4)))) (-1826 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-914 *2 *3)) (-4 *2 (-1265 *3)))) (-3545 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-784)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4217 *3) (|:| -4228 *3))) (-5 *1 (-914 *3 *5)) (-4 *3 (-1265 *5)))) (-3545 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-657 *3)) (-5 *1 (-914 *3 *4)) (-4 *3 (-1265 *4))))) +(-10 -7 (-15 -3545 ((-657 |#1|) |#1|)) (-15 -3545 ((-3 (-2 (|:| -4217 |#1|) (|:| -4228 |#1|)) "failed") |#1| (-784) (-784))) (-15 -1826 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1342 (|#1| |#1| (-784)))) +((-2632 (((-1057) (-390) (-390) (-390) (-390) (-784) (-784) (-657 (-326 (-390))) (-657 (-657 (-326 (-390)))) (-1180)) 104) (((-1057) (-390) (-390) (-390) (-390) (-784) (-784) (-657 (-326 (-390))) (-657 (-657 (-326 (-390)))) (-1180) (-227)) 100) (((-1057) (-916) (-1085)) 92) (((-1057) (-916)) 93)) (-3701 (((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-916) (-1085)) 62) (((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-916)) 64))) +(((-915) (-10 -7 (-15 -2632 ((-1057) (-916))) (-15 -2632 ((-1057) (-916) (-1085))) (-15 -2632 ((-1057) (-390) (-390) (-390) (-390) (-784) (-784) (-657 (-326 (-390))) (-657 (-657 (-326 (-390)))) (-1180) (-227))) (-15 -2632 ((-1057) (-390) (-390) (-390) (-390) (-784) (-784) (-657 (-326 (-390))) (-657 (-657 (-326 (-390)))) (-1180))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-916))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-916) (-1085))))) (T -915)) +((-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1085)) (-5 *2 (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *1 (-915)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *1 (-915)))) (-2632 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-784)) (-5 *6 (-657 (-657 (-326 *3)))) (-5 *7 (-1180)) (-5 *5 (-657 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1057)) (-5 *1 (-915)))) (-2632 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-784)) (-5 *6 (-657 (-657 (-326 *3)))) (-5 *7 (-1180)) (-5 *8 (-227)) (-5 *5 (-657 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1057)) (-5 *1 (-915)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1085)) (-5 *2 (-1057)) (-5 *1 (-915)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1057)) (-5 *1 (-915))))) +(-10 -7 (-15 -2632 ((-1057) (-916))) (-15 -2632 ((-1057) (-916) (-1085))) (-15 -2632 ((-1057) (-390) (-390) (-390) (-390) (-784) (-784) (-657 (-326 (-390))) (-657 (-657 (-326 (-390)))) (-1180) (-227))) (-15 -2632 ((-1057) (-390) (-390) (-390) (-390) (-784) (-784) (-657 (-326 (-390))) (-657 (-657 (-326 (-390)))) (-1180))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-916))) (-15 -3701 ((-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) (|:| |explanations| (-657 (-1180)))) (-916) (-1085)))) +((-3423 (((-112) $ $) NIL)) (-2830 (((-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))) $) 19)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 21) (($ (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 18)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-916) (-13 (-1122) (-10 -8 (-15 -3515 ($ (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))))) (-15 -2830 ((-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))) $))))) (T -916)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) (-5 *1 (-916)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) (-5 *1 (-916))))) +(-13 (-1122) (-10 -8 (-15 -3515 ($ (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))))) (-15 -2830 ((-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))) $)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-2209 (($ $ (-657 |#2|) (-657 (-784))) 39) (($ $ |#2| (-784)) 38) (($ $ (-657 |#2|)) 37) (($ $ |#2|) 35)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2066 (($ $ (-657 |#2|) (-657 (-784))) 42) (($ $ |#2| (-784)) 41) (($ $ (-657 |#2|)) 40) (($ $ |#2|) 36)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-917 |#1| |#2|) (-141) (-1071) (-1122)) (T -917)) +NIL +(-13 (-111 |t#1| |t#1|) (-920 |t#2|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-730 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-912 $ |#2|) . T) ((-920 |#2|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-2209 (($ $ (-657 |#1|) (-657 (-784))) 44) (($ $ |#1| (-784)) 43) (($ $ (-657 |#1|)) 42) (($ $ |#1|) 40)) (-3515 (((-877) $) 12) (($ (-576)) 33)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-657 |#1|) (-657 (-784))) 47) (($ $ |#1| (-784)) 46) (($ $ (-657 |#1|)) 45) (($ $ |#1|) 41)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-918 |#1|) (-141) (-1122)) (T -918)) +NIL +(-13 (-1071) (-920 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-912 $ |#1|) . T) ((-920 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-2209 (($ $ |#2|) NIL) (($ $ (-657 |#2|)) 10) (($ $ |#2| (-784)) 12) (($ $ (-657 |#2|) (-657 (-784))) 15)) (-2066 (($ $ |#2|) 16) (($ $ (-657 |#2|)) 18) (($ $ |#2| (-784)) 19) (($ $ (-657 |#2|) (-657 (-784))) 21))) +(((-919 |#1| |#2|) (-10 -8 (-15 -2066 (|#1| |#1| (-657 |#2|) (-657 (-784)))) (-15 -2066 (|#1| |#1| |#2| (-784))) (-15 -2066 (|#1| |#1| (-657 |#2|))) (-15 -2209 (|#1| |#1| (-657 |#2|) (-657 (-784)))) (-15 -2209 (|#1| |#1| |#2| (-784))) (-15 -2209 (|#1| |#1| (-657 |#2|))) (-15 -2066 (|#1| |#1| |#2|)) (-15 -2209 (|#1| |#1| |#2|))) (-920 |#2|) (-1122)) (T -919)) +NIL +(-10 -8 (-15 -2066 (|#1| |#1| (-657 |#2|) (-657 (-784)))) (-15 -2066 (|#1| |#1| |#2| (-784))) (-15 -2066 (|#1| |#1| (-657 |#2|))) (-15 -2209 (|#1| |#1| (-657 |#2|) (-657 (-784)))) (-15 -2209 (|#1| |#1| |#2| (-784))) (-15 -2209 (|#1| |#1| (-657 |#2|))) (-15 -2066 (|#1| |#1| |#2|)) (-15 -2209 (|#1| |#1| |#2|))) +((-2209 (($ $ |#1|) 7) (($ $ (-657 |#1|)) 15) (($ $ |#1| (-784)) 14) (($ $ (-657 |#1|) (-657 (-784))) 13)) (-2066 (($ $ |#1|) 6) (($ $ (-657 |#1|)) 12) (($ $ |#1| (-784)) 11) (($ $ (-657 |#1|) (-657 (-784))) 10))) +(((-920 |#1|) (-141) (-1122)) (T -920)) +((-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *1 (-920 *3)) (-4 *3 (-1122)))) (-2209 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-920 *2)) (-4 *2 (-1122)))) (-2209 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 (-784))) (-4 *1 (-920 *4)) (-4 *4 (-1122)))) (-2066 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *1 (-920 *3)) (-4 *3 (-1122)))) (-2066 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-920 *2)) (-4 *2 (-1122)))) (-2066 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 (-784))) (-4 *1 (-920 *4)) (-4 *4 (-1122))))) +(-13 (-912 $ |t#1|) (-10 -8 (-15 -2209 ($ $ (-657 |t#1|))) (-15 -2209 ($ $ |t#1| (-784))) (-15 -2209 ($ $ (-657 |t#1|) (-657 (-784)))) (-15 -2066 ($ $ (-657 |t#1|))) (-15 -2066 ($ $ |t#1| (-784))) (-15 -2066 ($ $ (-657 |t#1|) (-657 (-784)))))) +(((-912 $ |#1|) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3037 ((|#1| $) 26)) (-4284 (((-112) $ (-784)) NIL)) (-1439 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-2488 (($ $ $) NIL (|has| $ (-6 -4467)))) (-3521 (($ $ $) NIL (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "left" $) NIL (|has| $ (-6 -4467))) (($ $ "right" $) NIL (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-4228 (($ $) 25)) (-1673 (($ |#1|) 12) (($ $ $) 17)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) NIL)) (-4257 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-4217 (($ $) 23)) (-2397 (((-657 |#1|) $) NIL)) (-1743 (((-112) $) 20)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3064 (((-576) $ $) NIL)) (-4392 (((-112) $) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-1225 |#1|) $) 9) (((-877) $) 29 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) NIL)) (-3631 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-921 |#1|) (-13 (-120 |#1|) (-625 (-1225 |#1|)) (-10 -8 (-15 -1673 ($ |#1|)) (-15 -1673 ($ $ $)))) (-1122)) (T -921)) +((-1673 (*1 *1 *2) (-12 (-5 *1 (-921 *2)) (-4 *2 (-1122)))) (-1673 (*1 *1 *1 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-1122))))) +(-13 (-120 |#1|) (-625 (-1225 |#1|)) (-10 -8 (-15 -1673 ($ |#1|)) (-15 -1673 ($ $ $)))) +((-1542 ((|#2| (-1164 |#1| |#2|)) 48))) +(((-922 |#1| |#2|) (-10 -7 (-15 -1542 (|#2| (-1164 |#1| |#2|)))) (-941) (-13 (-1071) (-10 -7 (-6 (-4468 "*"))))) (T -922)) +((-1542 (*1 *2 *3) (-12 (-5 *3 (-1164 *4 *2)) (-14 *4 (-941)) (-4 *2 (-13 (-1071) (-10 -7 (-6 (-4468 "*"))))) (-5 *1 (-922 *4 *2))))) +(-10 -7 (-15 -1542 (|#2| (-1164 |#1| |#2|)))) +((-3423 (((-112) $ $) 7)) (-4441 (((-1124 |#1|) $) 36)) (-2515 (($) 19 T CONST)) (-3969 (((-3 $ "failed") $) 16)) (-4183 (((-1124 |#1|) $ |#1|) 35)) (-3994 (((-112) $) 18)) (-3740 (($ $ $) 29 (-2748 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2249 (($ $ $) 30 (-2748 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-1708 (((-1180) $) 10)) (-2098 (($ $) 25)) (-1460 (((-1142) $) 11)) (-2780 ((|#1| $ |#1|) 39)) (-2852 (($ (-657 (-657 |#1|))) 37)) (-2676 (($ (-657 |#1|)) 38)) (-1587 (($ $ $) 22)) (-1911 (($ $ $) 21)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2725 (($) 20 T CONST)) (-2938 (((-112) $ $) 31 (-2748 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2913 (((-112) $ $) 33 (-2748 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 32 (-2748 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2901 (((-112) $ $) 34)) (-2995 (($ $ $) 24)) (** (($ $ (-941)) 14) (($ $ (-784)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) +(((-923 |#1|) (-141) (-1122)) (T -923)) +((-2676 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-923 *3)))) (-2852 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-4 *1 (-923 *3)))) (-4441 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-1124 *3)))) (-4183 (*1 *2 *1 *3) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-1124 *3)))) (-2901 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) +(-13 (-485) (-296 |t#1| |t#1|) (-10 -8 (-15 -2676 ($ (-657 |t#1|))) (-15 -2852 ($ (-657 (-657 |t#1|)))) (-15 -4441 ((-1124 |t#1|) $)) (-15 -4183 ((-1124 |t#1|) $ |t#1|)) (-15 -2901 ((-112) $ $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-379)) (-6 (-862)) |%noBranch|))) +(((-102) . T) ((-625 (-877)) . T) ((-296 |#1| |#1|) . T) ((-485) . T) ((-739) . T) ((-862) -2748 (|has| |#1| (-862)) (|has| |#1| (-379))) ((-865) -2748 (|has| |#1| (-862)) (|has| |#1| (-379))) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-1897 (((-657 (-657 (-784))) $) 160)) (-3536 (((-657 (-784)) (-925 |#1|) $) 188)) (-3387 (((-657 (-784)) (-925 |#1|) $) 189)) (-4441 (((-1124 |#1|) $) 152)) (-2892 (((-657 (-925 |#1|)) $) 149)) (-1876 (((-925 |#1|) $ (-576)) 154) (((-925 |#1|) $) 155)) (-2997 (($ (-657 (-925 |#1|))) 162)) (-2650 (((-784) $) 156)) (-1627 (((-1124 (-1124 |#1|)) $) 186)) (-4183 (((-1124 |#1|) $ |#1|) 177) (((-1124 (-1124 |#1|)) $ (-1124 |#1|)) 197) (((-1124 (-657 |#1|)) $ (-657 |#1|)) 200)) (-3326 (((-112) (-925 |#1|) $) 137)) (-1708 (((-1180) $) NIL)) (-4138 (((-1294) $) 142) (((-1294) $ (-576) (-576)) 201)) (-1460 (((-1142) $) NIL)) (-3480 (((-657 (-925 |#1|)) $) 143)) (-2780 (((-925 |#1|) $ (-784)) 150)) (-4265 (((-784) $) 157)) (-3515 (((-877) $) 174) (((-657 (-925 |#1|)) $) 28) (($ (-657 (-925 |#1|))) 161)) (-4166 (((-112) $ $) NIL)) (-4129 (((-657 |#1|) $) 159)) (-2881 (((-112) $ $) 194)) (-2925 (((-112) $ $) 192)) (-2901 (((-112) $ $) 191))) +(((-924 |#1|) (-13 (-1122) (-10 -8 (-15 -3515 ((-657 (-925 |#1|)) $)) (-15 -3480 ((-657 (-925 |#1|)) $)) (-15 -2780 ((-925 |#1|) $ (-784))) (-15 -1876 ((-925 |#1|) $ (-576))) (-15 -1876 ((-925 |#1|) $)) (-15 -2650 ((-784) $)) (-15 -4265 ((-784) $)) (-15 -4129 ((-657 |#1|) $)) (-15 -2892 ((-657 (-925 |#1|)) $)) (-15 -1897 ((-657 (-657 (-784))) $)) (-15 -3515 ($ (-657 (-925 |#1|)))) (-15 -2997 ($ (-657 (-925 |#1|)))) (-15 -4183 ((-1124 |#1|) $ |#1|)) (-15 -1627 ((-1124 (-1124 |#1|)) $)) (-15 -4183 ((-1124 (-1124 |#1|)) $ (-1124 |#1|))) (-15 -4183 ((-1124 (-657 |#1|)) $ (-657 |#1|))) (-15 -3326 ((-112) (-925 |#1|) $)) (-15 -3536 ((-657 (-784)) (-925 |#1|) $)) (-15 -3387 ((-657 (-784)) (-925 |#1|) $)) (-15 -4441 ((-1124 |#1|) $)) (-15 -2901 ((-112) $ $)) (-15 -2925 ((-112) $ $)) (-15 -4138 ((-1294) $)) (-15 -4138 ((-1294) $ (-576) (-576))))) (-1122)) (T -924)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3480 (*1 *2 *1) (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *2 (-925 *4)) (-5 *1 (-924 *4)) (-4 *4 (-1122)))) (-1876 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-925 *4)) (-5 *1 (-924 *4)) (-4 *4 (-1122)))) (-1876 (*1 *2 *1) (-12 (-5 *2 (-925 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-784)))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-925 *3))) (-4 *3 (-1122)) (-5 *1 (-924 *3)))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-657 (-925 *3))) (-4 *3 (-1122)) (-5 *1 (-924 *3)))) (-4183 (*1 *2 *1 *3) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-1124 (-1124 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-4183 (*1 *2 *1 *3) (-12 (-4 *4 (-1122)) (-5 *2 (-1124 (-1124 *4))) (-5 *1 (-924 *4)) (-5 *3 (-1124 *4)))) (-4183 (*1 *2 *1 *3) (-12 (-4 *4 (-1122)) (-5 *2 (-1124 (-657 *4))) (-5 *1 (-924 *4)) (-5 *3 (-657 *4)))) (-3326 (*1 *2 *3 *1) (-12 (-5 *3 (-925 *4)) (-4 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-924 *4)))) (-3536 (*1 *2 *3 *1) (-12 (-5 *3 (-925 *4)) (-4 *4 (-1122)) (-5 *2 (-657 (-784))) (-5 *1 (-924 *4)))) (-3387 (*1 *2 *3 *1) (-12 (-5 *3 (-925 *4)) (-4 *4 (-1122)) (-5 *2 (-657 (-784))) (-5 *1 (-924 *4)))) (-4441 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-2901 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-2925 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-4138 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-924 *4)) (-4 *4 (-1122))))) +(-13 (-1122) (-10 -8 (-15 -3515 ((-657 (-925 |#1|)) $)) (-15 -3480 ((-657 (-925 |#1|)) $)) (-15 -2780 ((-925 |#1|) $ (-784))) (-15 -1876 ((-925 |#1|) $ (-576))) (-15 -1876 ((-925 |#1|) $)) (-15 -2650 ((-784) $)) (-15 -4265 ((-784) $)) (-15 -4129 ((-657 |#1|) $)) (-15 -2892 ((-657 (-925 |#1|)) $)) (-15 -1897 ((-657 (-657 (-784))) $)) (-15 -3515 ($ (-657 (-925 |#1|)))) (-15 -2997 ($ (-657 (-925 |#1|)))) (-15 -4183 ((-1124 |#1|) $ |#1|)) (-15 -1627 ((-1124 (-1124 |#1|)) $)) (-15 -4183 ((-1124 (-1124 |#1|)) $ (-1124 |#1|))) (-15 -4183 ((-1124 (-657 |#1|)) $ (-657 |#1|))) (-15 -3326 ((-112) (-925 |#1|) $)) (-15 -3536 ((-657 (-784)) (-925 |#1|) $)) (-15 -3387 ((-657 (-784)) (-925 |#1|) $)) (-15 -4441 ((-1124 |#1|) $)) (-15 -2901 ((-112) $ $)) (-15 -2925 ((-112) $ $)) (-15 -4138 ((-1294) $)) (-15 -4138 ((-1294) $ (-576) (-576))))) +((-3423 (((-112) $ $) NIL)) (-4441 (((-1124 |#1|) $) 60)) (-1832 (((-657 $) (-657 $)) 103)) (-3922 (((-576) $) 83)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL)) (-2650 (((-784) $) 80)) (-4183 (((-1124 |#1|) $ |#1|) 70)) (-3994 (((-112) $) NIL)) (-1354 (((-112) $) 88)) (-2280 (((-784) $) 84)) (-3740 (($ $ $) NIL (-2748 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2249 (($ $ $) NIL (-2748 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3658 (((-2 (|:| |preimage| (-657 |#1|)) (|:| |image| (-657 |#1|))) $) 55)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 130)) (-1460 (((-1142) $) NIL)) (-2576 (((-1124 |#1|) $) 136 (|has| |#1| (-379)))) (-3341 (((-112) $) 81)) (-2780 ((|#1| $ |#1|) 68)) (-4265 (((-784) $) 62)) (-2852 (($ (-657 (-657 |#1|))) 118)) (-4003 (((-993) $) 74)) (-2676 (($ (-657 |#1|)) 32)) (-1587 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-1521 (($ (-657 (-657 |#1|))) 57)) (-3512 (($ (-657 (-657 |#1|))) 123)) (-3044 (($ (-657 |#1|)) 132)) (-3515 (((-877) $) 117) (($ (-657 (-657 |#1|))) 91) (($ (-657 |#1|)) 92)) (-4166 (((-112) $ $) NIL)) (-2725 (($) 24 T CONST)) (-2938 (((-112) $ $) NIL (-2748 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2913 (((-112) $ $) NIL (-2748 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2881 (((-112) $ $) 66)) (-2925 (((-112) $ $) NIL (-2748 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2901 (((-112) $ $) 90)) (-2995 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 33))) +(((-925 |#1|) (-13 (-923 |#1|) (-10 -8 (-15 -3658 ((-2 (|:| |preimage| (-657 |#1|)) (|:| |image| (-657 |#1|))) $)) (-15 -1521 ($ (-657 (-657 |#1|)))) (-15 -3515 ($ (-657 (-657 |#1|)))) (-15 -3515 ($ (-657 |#1|))) (-15 -3512 ($ (-657 (-657 |#1|)))) (-15 -4265 ((-784) $)) (-15 -4003 ((-993) $)) (-15 -2650 ((-784) $)) (-15 -2280 ((-784) $)) (-15 -3922 ((-576) $)) (-15 -3341 ((-112) $)) (-15 -1354 ((-112) $)) (-15 -1832 ((-657 $) (-657 $))) (IF (|has| |#1| (-379)) (-15 -2576 ((-1124 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3044 ($ (-657 |#1|))) (IF (|has| |#1| (-379)) (-15 -3044 ($ (-657 |#1|))) |%noBranch|)))) (-1122)) (T -925)) +((-3658 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-657 *3)) (|:| |image| (-657 *3)))) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-925 *3)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-925 *3)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-925 *3)))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-925 *3)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-993)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-925 *3)) (-4 *3 (-379)) (-4 *3 (-1122)))) (-3044 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-925 *3))))) +(-13 (-923 |#1|) (-10 -8 (-15 -3658 ((-2 (|:| |preimage| (-657 |#1|)) (|:| |image| (-657 |#1|))) $)) (-15 -1521 ($ (-657 (-657 |#1|)))) (-15 -3515 ($ (-657 (-657 |#1|)))) (-15 -3515 ($ (-657 |#1|))) (-15 -3512 ($ (-657 (-657 |#1|)))) (-15 -4265 ((-784) $)) (-15 -4003 ((-993) $)) (-15 -2650 ((-784) $)) (-15 -2280 ((-784) $)) (-15 -3922 ((-576) $)) (-15 -3341 ((-112) $)) (-15 -1354 ((-112) $)) (-15 -1832 ((-657 $) (-657 $))) (IF (|has| |#1| (-379)) (-15 -2576 ((-1124 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3044 ($ (-657 |#1|))) (IF (|has| |#1| (-379)) (-15 -3044 ($ (-657 |#1|))) |%noBranch|)))) +((-4418 (((-3 (-657 (-1194 |#4|)) "failed") (-657 (-1194 |#4|)) (-1194 |#4|)) 160)) (-2139 ((|#1|) 97)) (-1929 (((-430 (-1194 |#4|)) (-1194 |#4|)) 169)) (-3464 (((-430 (-1194 |#4|)) (-657 |#3|) (-1194 |#4|)) 84)) (-2742 (((-430 (-1194 |#4|)) (-1194 |#4|)) 179)) (-2349 (((-3 (-657 (-1194 |#4|)) "failed") (-657 (-1194 |#4|)) (-1194 |#4|) |#3|) 113))) +(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4418 ((-3 (-657 (-1194 |#4|)) "failed") (-657 (-1194 |#4|)) (-1194 |#4|))) (-15 -2742 ((-430 (-1194 |#4|)) (-1194 |#4|))) (-15 -1929 ((-430 (-1194 |#4|)) (-1194 |#4|))) (-15 -2139 (|#1|)) (-15 -2349 ((-3 (-657 (-1194 |#4|)) "failed") (-657 (-1194 |#4|)) (-1194 |#4|) |#3|)) (-15 -3464 ((-430 (-1194 |#4|)) (-657 |#3|) (-1194 |#4|)))) (-929) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -926)) +((-3464 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *7)) (-4 *7 (-862)) (-4 *5 (-929)) (-4 *6 (-806)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-430 (-1194 *8))) (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-1194 *8)))) (-2349 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-657 (-1194 *7))) (-5 *3 (-1194 *7)) (-4 *7 (-969 *5 *6 *4)) (-4 *5 (-929)) (-4 *6 (-806)) (-4 *4 (-862)) (-5 *1 (-926 *5 *6 *4 *7)))) (-2139 (*1 *2) (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-929)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-1929 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-430 (-1194 *7))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) (-2742 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-430 (-1194 *7))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) (-4418 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-1194 *7))) (-5 *3 (-1194 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-929)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-926 *4 *5 *6 *7))))) +(-10 -7 (-15 -4418 ((-3 (-657 (-1194 |#4|)) "failed") (-657 (-1194 |#4|)) (-1194 |#4|))) (-15 -2742 ((-430 (-1194 |#4|)) (-1194 |#4|))) (-15 -1929 ((-430 (-1194 |#4|)) (-1194 |#4|))) (-15 -2139 (|#1|)) (-15 -2349 ((-3 (-657 (-1194 |#4|)) "failed") (-657 (-1194 |#4|)) (-1194 |#4|) |#3|)) (-15 -3464 ((-430 (-1194 |#4|)) (-657 |#3|) (-1194 |#4|)))) +((-4418 (((-3 (-657 (-1194 |#2|)) "failed") (-657 (-1194 |#2|)) (-1194 |#2|)) 39)) (-2139 ((|#1|) 72)) (-1929 (((-430 (-1194 |#2|)) (-1194 |#2|)) 121)) (-3464 (((-430 (-1194 |#2|)) (-1194 |#2|)) 105)) (-2742 (((-430 (-1194 |#2|)) (-1194 |#2|)) 132))) +(((-927 |#1| |#2|) (-10 -7 (-15 -4418 ((-3 (-657 (-1194 |#2|)) "failed") (-657 (-1194 |#2|)) (-1194 |#2|))) (-15 -2742 ((-430 (-1194 |#2|)) (-1194 |#2|))) (-15 -1929 ((-430 (-1194 |#2|)) (-1194 |#2|))) (-15 -2139 (|#1|)) (-15 -3464 ((-430 (-1194 |#2|)) (-1194 |#2|)))) (-929) (-1265 |#1|)) (T -927)) +((-3464 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-1265 *4)) (-5 *2 (-430 (-1194 *5))) (-5 *1 (-927 *4 *5)) (-5 *3 (-1194 *5)))) (-2139 (*1 *2) (-12 (-4 *2 (-929)) (-5 *1 (-927 *2 *3)) (-4 *3 (-1265 *2)))) (-1929 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-1265 *4)) (-5 *2 (-430 (-1194 *5))) (-5 *1 (-927 *4 *5)) (-5 *3 (-1194 *5)))) (-2742 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-1265 *4)) (-5 *2 (-430 (-1194 *5))) (-5 *1 (-927 *4 *5)) (-5 *3 (-1194 *5)))) (-4418 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-1194 *5))) (-5 *3 (-1194 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-929)) (-5 *1 (-927 *4 *5))))) +(-10 -7 (-15 -4418 ((-3 (-657 (-1194 |#2|)) "failed") (-657 (-1194 |#2|)) (-1194 |#2|))) (-15 -2742 ((-430 (-1194 |#2|)) (-1194 |#2|))) (-15 -1929 ((-430 (-1194 |#2|)) (-1194 |#2|))) (-15 -2139 (|#1|)) (-15 -3464 ((-430 (-1194 |#2|)) (-1194 |#2|)))) +((-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 42)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 18)) (-3414 (((-3 $ "failed") $) 36))) +(((-928 |#1|) (-10 -8 (-15 -3414 ((-3 |#1| "failed") |#1|)) (-15 -3606 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -1828 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|)))) (-929)) (T -928)) +NIL +(-10 -8 (-15 -3414 ((-3 |#1| "failed") |#1|)) (-15 -3606 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -1828 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-2628 (((-430 (-1194 $)) (-1194 $)) 66)) (-3188 (($ $) 57)) (-4215 (((-430 $) $) 58)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 63)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-4009 (((-112) $) 59)) (-3994 (((-112) $) 35)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-2436 (((-430 (-1194 $)) (-1194 $)) 64)) (-3828 (((-430 (-1194 $)) (-1194 $)) 65)) (-1856 (((-430 $) $) 56)) (-3409 (((-3 $ "failed") $ $) 48)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 62 (|has| $ (-146)))) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-3414 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-929) (-141)) (T -929)) +((-1828 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-929)))) (-2628 (*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-430 (-1194 *1))) (-5 *3 (-1194 *1)))) (-3828 (*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-430 (-1194 *1))) (-5 *3 (-1194 *1)))) (-2436 (*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-430 (-1194 *1))) (-5 *3 (-1194 *1)))) (-3606 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-1194 *1))) (-5 *3 (-1194 *1)) (-4 *1 (-929)))) (-3036 (*1 *2 *3) (|partial| -12 (-5 *3 (-702 *1)) (-4 *1 (-146)) (-4 *1 (-929)) (-5 *2 (-1289 *1)))) (-3414 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-929))))) +(-13 (-1243) (-10 -8 (-15 -2628 ((-430 (-1194 $)) (-1194 $))) (-15 -3828 ((-430 (-1194 $)) (-1194 $))) (-15 -2436 ((-430 (-1194 $)) (-1194 $))) (-15 -1828 ((-1194 $) (-1194 $) (-1194 $))) (-15 -3606 ((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $))) (IF (|has| $ (-146)) (PROGN (-15 -3036 ((-3 (-1289 $) "failed") (-702 $))) (-15 -3414 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1388 (((-112) $) NIL)) (-4025 (((-784)) NIL)) (-2256 (($ $ (-941)) NIL (|has| $ (-379))) (($ $) NIL)) (-2266 (((-1211 (-941) (-784)) (-576)) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 $ "failed") $) NIL)) (-2830 (($ $) NIL)) (-4093 (($ (-1289 $)) NIL)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-2846 (($) NIL)) (-2798 (((-112) $) NIL)) (-4266 (($ $) NIL) (($ $ (-784)) NIL)) (-4009 (((-112) $) NIL)) (-2650 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-3994 (((-112) $) NIL)) (-2084 (($) NIL (|has| $ (-379)))) (-3547 (((-112) $) NIL (|has| $ (-379)))) (-3869 (($ $ (-941)) NIL (|has| $ (-379))) (($ $) NIL)) (-1955 (((-3 $ "failed") $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3604 (((-1194 $) $ (-941)) NIL (|has| $ (-379))) (((-1194 $) $) NIL)) (-2327 (((-941) $) NIL)) (-2514 (((-1194 $) $) NIL (|has| $ (-379)))) (-4348 (((-3 (-1194 $) "failed") $ $) NIL (|has| $ (-379))) (((-1194 $) $) NIL (|has| $ (-379)))) (-3905 (($ $ (-1194 $)) NIL (|has| $ (-379)))) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL T CONST)) (-3146 (($ (-941)) NIL)) (-2395 (((-112) $) NIL)) (-1460 (((-1142) $) NIL)) (-4083 (($) NIL (|has| $ (-379)))) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL)) (-1856 (((-430 $) $) NIL)) (-1559 (((-941)) NIL) (((-846 (-941))) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2495 (((-3 (-784) "failed") $ $) NIL) (((-784) $) NIL)) (-1451 (((-135)) NIL)) (-2209 (($ $) NIL) (($ $ (-784)) NIL)) (-4265 (((-941) $) NIL) (((-846 (-941)) $) NIL)) (-2005 (((-1194 $)) NIL)) (-4170 (($) NIL)) (-4039 (($) NIL (|has| $ (-379)))) (-3806 (((-702 $) (-1289 $)) NIL) (((-1289 $) $) NIL)) (-4136 (((-576) $) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3414 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $) (-941)) NIL) (((-1289 $)) NIL)) (-2607 (((-112) $ $) NIL)) (-2137 (((-112) $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-4237 (($ $ (-784)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-2066 (($ $) NIL) (($ $ (-784)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-930 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-941)) (T -930)) NIL (-13 (-360) (-339 $) (-626 (-576))) -((-2421 (((-3 (-2 (|:| -3359 (-783)) (|:| -2952 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)) 77)) (-3279 (((-112) (-347 |#2| |#3| |#4| |#5|)) 17)) (-3359 (((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|)) 15))) -(((-930 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3359 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -3279 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -2421 ((-3 (-2 (|:| -3359 (-783)) (|:| -2952 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1059 (-576))) (-442 |#1|) (-1264 |#2|) (-1264 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -930)) -((-2421 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-2 (|:| -3359 (-783)) (|:| -2952 *8))) (-5 *1 (-930 *4 *5 *6 *7 *8)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7 *8)))) (-3359 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-783)) (-5 *1 (-930 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3359 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -3279 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -2421 ((-3 (-2 (|:| -3359 (-783)) (|:| -2952 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) -((-2421 (((-3 (-2 (|:| -3359 (-783)) (|:| -2952 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 64)) (-3279 (((-112) (-347 (-419 (-576)) |#1| |#2| |#3|)) 16)) (-3359 (((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 14))) -(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -3359 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3279 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -2421 ((-3 (-2 (|:| -3359 (-783)) (|:| -2952 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) (-1264 (-419 (-576))) (-1264 (-419 |#1|)) (-353 (-419 (-576)) |#1| |#2|)) (T -931)) -((-2421 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-2 (|:| -3359 (-783)) (|:| -2952 *6))) (-5 *1 (-931 *4 *5 *6)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-931 *4 *5 *6)))) (-3359 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) (-5 *1 (-931 *4 *5 *6))))) -(-10 -7 (-15 -3359 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3279 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -2421 ((-3 (-2 (|:| -3359 (-783)) (|:| -2952 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) -((-3798 ((|#2| |#2|) 26)) (-3469 (((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) 15)) (-1478 (((-940) (-576)) 38)) (-3904 (((-576) |#2|) 45)) (-1880 (((-576) |#2|) 21) (((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|) 20))) -(((-932 |#1| |#2|) (-10 -7 (-15 -1478 ((-940) (-576))) (-15 -1880 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -1880 ((-576) |#2|)) (-15 -3469 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -3904 ((-576) |#2|)) (-15 -3798 (|#2| |#2|))) (-1264 (-419 (-576))) (-1264 (-419 |#1|))) (T -932)) -((-3798 (*1 *2 *2) (-12 (-4 *3 (-1264 (-419 (-576)))) (-5 *1 (-932 *3 *2)) (-4 *2 (-1264 (-419 *3))))) (-3904 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4))))) (-1880 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-1880 (*1 *2 *3) (-12 (-4 *3 (-1264 (-419 (-576)))) (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) (-5 *1 (-932 *3 *4)) (-4 *4 (-1264 (-419 *3))))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1264 (-419 *3))) (-5 *2 (-940)) (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4)))))) -(-10 -7 (-15 -1478 ((-940) (-576))) (-15 -1880 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -1880 ((-576) |#2|)) (-15 -3469 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -3904 ((-576) |#2|)) (-15 -3798 (|#2| |#2|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2628 ((|#1| $) 100)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-1895 (($ $ $) NIL)) (-1851 (((-3 $ "failed") $) 94)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2118 (($ |#1| (-430 |#1|)) 92)) (-2949 (((-1193 |#1|) |#1| |#1|) 53)) (-3593 (($ $) 61)) (-2486 (((-112) $) NIL)) (-4196 (((-576) $) 97)) (-4317 (($ $ (-576)) 99)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2689 ((|#1| $) 96)) (-1945 (((-430 |#1|) $) 95)) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) 93)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-1508 (($ $) 50)) (-4113 (((-876) $) 124) (($ (-576)) 73) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 41) (((-419 |#1|) $) 78) (($ (-419 (-430 |#1|))) 86)) (-2910 (((-783)) 71 T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-4313 (($) 26 T CONST)) (-4322 (($) 15 T CONST)) (-3939 (((-112) $ $) 87)) (-4047 (($ $ $) NIL)) (-4037 (($ $) 108) (($ $ $) NIL)) (-4026 (($ $ $) 49)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 48) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-933 |#1|) (-13 (-374) (-38 |#1|) (-10 -8 (-15 -4113 ((-419 |#1|) $)) (-15 -4113 ($ (-419 (-430 |#1|)))) (-15 -1508 ($ $)) (-15 -1945 ((-430 |#1|) $)) (-15 -2689 (|#1| $)) (-15 -4317 ($ $ (-576))) (-15 -4196 ((-576) $)) (-15 -2949 ((-1193 |#1|) |#1| |#1|)) (-15 -3593 ($ $)) (-15 -2118 ($ |#1| (-430 |#1|))) (-15 -2628 (|#1| $)))) (-317)) (T -933)) -((-4113 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-933 *3)))) (-1508 (*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-2689 (*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) (-4317 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-4196 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-2949 (*1 *2 *3 *3) (-12 (-5 *2 (-1193 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) (-3593 (*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) (-2118 (*1 *1 *2 *3) (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-933 *2)))) (-2628 (*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) -(-13 (-374) (-38 |#1|) (-10 -8 (-15 -4113 ((-419 |#1|) $)) (-15 -4113 ($ (-419 (-430 |#1|)))) (-15 -1508 ($ $)) (-15 -1945 ((-430 |#1|) $)) (-15 -2689 (|#1| $)) (-15 -4317 ($ $ (-576))) (-15 -4196 ((-576) $)) (-15 -2949 ((-1193 |#1|) |#1| |#1|)) (-15 -3593 ($ $)) (-15 -2118 ($ |#1| (-430 |#1|))) (-15 -2628 (|#1| $)))) -((-2118 (((-52) (-971 |#1|) (-430 (-971 |#1|)) (-1197)) 17) (((-52) (-419 (-971 |#1|)) (-1197)) 18))) -(((-934 |#1|) (-10 -7 (-15 -2118 ((-52) (-419 (-971 |#1|)) (-1197))) (-15 -2118 ((-52) (-971 |#1|) (-430 (-971 |#1|)) (-1197)))) (-13 (-317) (-148))) (T -934)) -((-2118 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-430 (-971 *6))) (-5 *5 (-1197)) (-5 *3 (-971 *6)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *6)))) (-2118 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *5))))) -(-10 -7 (-15 -2118 ((-52) (-419 (-971 |#1|)) (-1197))) (-15 -2118 ((-52) (-971 |#1|) (-430 (-971 |#1|)) (-1197)))) -((-1394 ((|#4| (-656 |#4|)) 147) (((-1193 |#4|) (-1193 |#4|) (-1193 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3115 (((-1193 |#4|) (-656 (-1193 |#4|))) 140) (((-1193 |#4|) (-1193 |#4|) (-1193 |#4|)) 61) ((|#4| (-656 |#4|)) 69) ((|#4| |#4| |#4|) 107))) -(((-935 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3115 (|#4| |#4| |#4|)) (-15 -3115 (|#4| (-656 |#4|))) (-15 -3115 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3115 ((-1193 |#4|) (-656 (-1193 |#4|)))) (-15 -1394 (|#4| |#4| |#4|)) (-15 -1394 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -1394 (|#4| (-656 |#4|)))) (-805) (-861) (-317) (-968 |#3| |#1| |#2|)) (T -935)) -((-1394 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)))) (-1394 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) (-1394 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-656 (-1193 *7))) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-1193 *7)) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-3115 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)))) (-3115 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4))))) -(-10 -7 (-15 -3115 (|#4| |#4| |#4|)) (-15 -3115 (|#4| (-656 |#4|))) (-15 -3115 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -3115 ((-1193 |#4|) (-656 (-1193 |#4|)))) (-15 -1394 (|#4| |#4| |#4|)) (-15 -1394 ((-1193 |#4|) (-1193 |#4|) (-1193 |#4|))) (-15 -1394 (|#4| (-656 |#4|)))) -((-3707 (((-923 (-576)) (-992)) 38) (((-923 (-576)) (-656 (-576))) 34)) (-2358 (((-923 (-576)) (-656 (-576))) 67) (((-923 (-576)) (-940)) 68)) (-1841 (((-923 (-576))) 39)) (-1351 (((-923 (-576))) 53) (((-923 (-576)) (-656 (-576))) 52)) (-2186 (((-923 (-576))) 51) (((-923 (-576)) (-656 (-576))) 50)) (-2270 (((-923 (-576))) 49) (((-923 (-576)) (-656 (-576))) 48)) (-1592 (((-923 (-576))) 47) (((-923 (-576)) (-656 (-576))) 46)) (-3837 (((-923 (-576))) 45) (((-923 (-576)) (-656 (-576))) 44)) (-1732 (((-923 (-576))) 55) (((-923 (-576)) (-656 (-576))) 54)) (-2273 (((-923 (-576)) (-656 (-576))) 72) (((-923 (-576)) (-940)) 74)) (-3361 (((-923 (-576)) (-656 (-576))) 69) (((-923 (-576)) (-940)) 70)) (-3258 (((-923 (-576)) (-656 (-576))) 65) (((-923 (-576)) (-940)) 66)) (-3768 (((-923 (-576)) (-656 (-940))) 57))) -(((-936) (-10 -7 (-15 -2358 ((-923 (-576)) (-940))) (-15 -2358 ((-923 (-576)) (-656 (-576)))) (-15 -3258 ((-923 (-576)) (-940))) (-15 -3258 ((-923 (-576)) (-656 (-576)))) (-15 -3768 ((-923 (-576)) (-656 (-940)))) (-15 -3361 ((-923 (-576)) (-940))) (-15 -3361 ((-923 (-576)) (-656 (-576)))) (-15 -2273 ((-923 (-576)) (-940))) (-15 -2273 ((-923 (-576)) (-656 (-576)))) (-15 -3837 ((-923 (-576)) (-656 (-576)))) (-15 -3837 ((-923 (-576)))) (-15 -1592 ((-923 (-576)) (-656 (-576)))) (-15 -1592 ((-923 (-576)))) (-15 -2270 ((-923 (-576)) (-656 (-576)))) (-15 -2270 ((-923 (-576)))) (-15 -2186 ((-923 (-576)) (-656 (-576)))) (-15 -2186 ((-923 (-576)))) (-15 -1351 ((-923 (-576)) (-656 (-576)))) (-15 -1351 ((-923 (-576)))) (-15 -1732 ((-923 (-576)) (-656 (-576)))) (-15 -1732 ((-923 (-576)))) (-15 -1841 ((-923 (-576)))) (-15 -3707 ((-923 (-576)) (-656 (-576)))) (-15 -3707 ((-923 (-576)) (-992))))) (T -936)) -((-3707 (*1 *2 *3) (-12 (-5 *3 (-992)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1841 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1732 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1351 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2186 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2186 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2270 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1592 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3837 (*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3837 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(-10 -7 (-15 -2358 ((-923 (-576)) (-940))) (-15 -2358 ((-923 (-576)) (-656 (-576)))) (-15 -3258 ((-923 (-576)) (-940))) (-15 -3258 ((-923 (-576)) (-656 (-576)))) (-15 -3768 ((-923 (-576)) (-656 (-940)))) (-15 -3361 ((-923 (-576)) (-940))) (-15 -3361 ((-923 (-576)) (-656 (-576)))) (-15 -2273 ((-923 (-576)) (-940))) (-15 -2273 ((-923 (-576)) (-656 (-576)))) (-15 -3837 ((-923 (-576)) (-656 (-576)))) (-15 -3837 ((-923 (-576)))) (-15 -1592 ((-923 (-576)) (-656 (-576)))) (-15 -1592 ((-923 (-576)))) (-15 -2270 ((-923 (-576)) (-656 (-576)))) (-15 -2270 ((-923 (-576)))) (-15 -2186 ((-923 (-576)) (-656 (-576)))) (-15 -2186 ((-923 (-576)))) (-15 -1351 ((-923 (-576)) (-656 (-576)))) (-15 -1351 ((-923 (-576)))) (-15 -1732 ((-923 (-576)) (-656 (-576)))) (-15 -1732 ((-923 (-576)))) (-15 -1841 ((-923 (-576)))) (-15 -3707 ((-923 (-576)) (-656 (-576)))) (-15 -3707 ((-923 (-576)) (-992)))) -((-1771 (((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))) 14)) (-3077 (((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))) 13))) -(((-937 |#1|) (-10 -7 (-15 -3077 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -1771 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))))) (-464)) (T -937)) -((-1771 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) (-5 *1 (-937 *4)))) (-3077 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) (-5 *1 (-937 *4))))) -(-10 -7 (-15 -3077 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -1771 ((-656 (-971 |#1|)) (-656 (-971 |#1|)) (-656 (-1197))))) -((-4113 (((-326 |#1|) (-489)) 16))) -(((-938 |#1|) (-10 -7 (-15 -4113 ((-326 |#1|) (-489)))) (-568)) (T -938)) -((-4113 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-938 *4)) (-4 *4 (-568))))) -(-10 -7 (-15 -4113 ((-326 |#1|) (-489)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-2486 (((-112) $) 35)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-939) (-141)) (T -939)) -((-1607 (*1 *2 *3) (-12 (-4 *1 (-939)) (-5 *2 (-2 (|:| -2862 (-656 *1)) (|:| -2549 *1))) (-5 *3 (-656 *1)))) (-4377 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-939))))) -(-13 (-464) (-10 -8 (-15 -1607 ((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $))) (-15 -4377 ((-3 (-656 $) "failed") (-656 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) NIL)) (-2486 (((-112) $) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3115 (($ $ $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-4322 (($) NIL T CONST)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ $ $) NIL))) -(((-940) (-13 (-806) (-738) (-10 -8 (-15 -3115 ($ $ $)) (-6 (-4466 "*"))))) (T -940)) -((-3115 (*1 *1 *1 *1) (-5 *1 (-940)))) -(-13 (-806) (-738) (-10 -8 (-15 -3115 ($ $ $)) (-6 (-4466 "*")))) +((-1476 (((-3 (-2 (|:| -2650 (-784)) (|:| -3265 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)) 77)) (-4356 (((-112) (-347 |#2| |#3| |#4| |#5|)) 17)) (-2650 (((-3 (-784) "failed") (-347 |#2| |#3| |#4| |#5|)) 15))) +(((-931 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2650 ((-3 (-784) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -4356 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -1476 ((-3 (-2 (|:| -2650 (-784)) (|:| -3265 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1060 (-576))) (-442 |#1|) (-1265 |#2|) (-1265 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -931)) +((-1476 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-2 (|:| -2650 (-784)) (|:| -3265 *8))) (-5 *1 (-931 *4 *5 *6 *7 *8)))) (-4356 (*1 *2 *3) (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-112)) (-5 *1 (-931 *4 *5 *6 *7 *8)))) (-2650 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-784)) (-5 *1 (-931 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -2650 ((-3 (-784) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -4356 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -1476 ((-3 (-2 (|:| -2650 (-784)) (|:| -3265 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) +((-1476 (((-3 (-2 (|:| -2650 (-784)) (|:| -3265 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 64)) (-4356 (((-112) (-347 (-419 (-576)) |#1| |#2| |#3|)) 16)) (-2650 (((-3 (-784) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 14))) +(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -2650 ((-3 (-784) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -4356 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1476 ((-3 (-2 (|:| -2650 (-784)) (|:| -3265 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) (-1265 (-419 (-576))) (-1265 (-419 |#1|)) (-353 (-419 (-576)) |#1| |#2|)) (T -932)) +((-1476 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-2 (|:| -2650 (-784)) (|:| -3265 *6))) (-5 *1 (-932 *4 *5 *6)))) (-4356 (*1 *2 *3) (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-932 *4 *5 *6)))) (-2650 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-784)) (-5 *1 (-932 *4 *5 *6))))) +(-10 -7 (-15 -2650 ((-3 (-784) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -4356 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1476 ((-3 (-2 (|:| -2650 (-784)) (|:| -3265 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) +((-2431 ((|#2| |#2|) 26)) (-2446 (((-576) (-657 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) 15)) (-1565 (((-941) (-576)) 38)) (-4153 (((-576) |#2|) 45)) (-4281 (((-576) |#2|) 21) (((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|) 20))) +(((-933 |#1| |#2|) (-10 -7 (-15 -1565 ((-941) (-576))) (-15 -4281 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -4281 ((-576) |#2|)) (-15 -2446 ((-576) (-657 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -4153 ((-576) |#2|)) (-15 -2431 (|#2| |#2|))) (-1265 (-419 (-576))) (-1265 (-419 |#1|))) (T -933)) +((-2431 (*1 *2 *2) (-12 (-4 *3 (-1265 (-419 (-576)))) (-5 *1 (-933 *3 *2)) (-4 *2 (-1265 (-419 *3))))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-1265 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-933 *4 *3)) (-4 *3 (-1265 (-419 *4))))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) (-4 *4 (-1265 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-933 *4 *5)) (-4 *5 (-1265 (-419 *4))))) (-4281 (*1 *2 *3) (-12 (-4 *4 (-1265 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-933 *4 *3)) (-4 *3 (-1265 (-419 *4))))) (-4281 (*1 *2 *3) (-12 (-4 *3 (-1265 (-419 (-576)))) (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) (-5 *1 (-933 *3 *4)) (-4 *4 (-1265 (-419 *3))))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1265 (-419 *3))) (-5 *2 (-941)) (-5 *1 (-933 *4 *5)) (-4 *5 (-1265 (-419 *4)))))) +(-10 -7 (-15 -1565 ((-941) (-576))) (-15 -4281 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -4281 ((-576) |#2|)) (-15 -2446 ((-576) (-657 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -4153 ((-576) |#2|)) (-15 -2431 (|#2| |#2|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2923 ((|#1| $) 100)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-3355 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $) 94)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-1599 (($ |#1| (-430 |#1|)) 92)) (-4154 (((-1194 |#1|) |#1| |#1|) 53)) (-4248 (($ $) 61)) (-3994 (((-112) $) NIL)) (-2001 (((-576) $) 97)) (-3841 (($ $ (-576)) 99)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2328 ((|#1| $) 96)) (-3627 (((-430 |#1|) $) 95)) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) 93)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-1838 (($ $) 50)) (-3515 (((-877) $) 124) (($ (-576)) 73) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 41) (((-419 |#1|) $) 78) (($ (-419 (-430 |#1|))) 86)) (-3845 (((-784)) 71 T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2716 (($) 26 T CONST)) (-2725 (($) 15 T CONST)) (-2881 (((-112) $ $) 87)) (-2995 (($ $ $) NIL)) (-2982 (($ $) 108) (($ $ $) NIL)) (-2971 (($ $ $) 49)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 110) (($ $ $) 48) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-934 |#1|) (-13 (-374) (-38 |#1|) (-10 -8 (-15 -3515 ((-419 |#1|) $)) (-15 -3515 ($ (-419 (-430 |#1|)))) (-15 -1838 ($ $)) (-15 -3627 ((-430 |#1|) $)) (-15 -2328 (|#1| $)) (-15 -3841 ($ $ (-576))) (-15 -2001 ((-576) $)) (-15 -4154 ((-1194 |#1|) |#1| |#1|)) (-15 -4248 ($ $)) (-15 -1599 ($ |#1| (-430 |#1|))) (-15 -2923 (|#1| $)))) (-317)) (T -934)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-934 *3)) (-4 *3 (-317)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-934 *3)))) (-1838 (*1 *1 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317)))) (-3627 (*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-934 *3)) (-4 *3 (-317)))) (-2328 (*1 *2 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317)))) (-3841 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-934 *3)) (-4 *3 (-317)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-934 *3)) (-4 *3 (-317)))) (-4154 (*1 *2 *3 *3) (-12 (-5 *2 (-1194 *3)) (-5 *1 (-934 *3)) (-4 *3 (-317)))) (-4248 (*1 *1 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317)))) (-1599 (*1 *1 *2 *3) (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-934 *2)))) (-2923 (*1 *2 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317))))) +(-13 (-374) (-38 |#1|) (-10 -8 (-15 -3515 ((-419 |#1|) $)) (-15 -3515 ($ (-419 (-430 |#1|)))) (-15 -1838 ($ $)) (-15 -3627 ((-430 |#1|) $)) (-15 -2328 (|#1| $)) (-15 -3841 ($ $ (-576))) (-15 -2001 ((-576) $)) (-15 -4154 ((-1194 |#1|) |#1| |#1|)) (-15 -4248 ($ $)) (-15 -1599 ($ |#1| (-430 |#1|))) (-15 -2923 (|#1| $)))) +((-1599 (((-52) (-972 |#1|) (-430 (-972 |#1|)) (-1198)) 17) (((-52) (-419 (-972 |#1|)) (-1198)) 18))) +(((-935 |#1|) (-10 -7 (-15 -1599 ((-52) (-419 (-972 |#1|)) (-1198))) (-15 -1599 ((-52) (-972 |#1|) (-430 (-972 |#1|)) (-1198)))) (-13 (-317) (-148))) (T -935)) +((-1599 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-430 (-972 *6))) (-5 *5 (-1198)) (-5 *3 (-972 *6)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-935 *6)))) (-1599 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-935 *5))))) +(-10 -7 (-15 -1599 ((-52) (-419 (-972 |#1|)) (-1198))) (-15 -1599 ((-52) (-972 |#1|) (-430 (-972 |#1|)) (-1198)))) +((-1524 ((|#4| (-657 |#4|)) 147) (((-1194 |#4|) (-1194 |#4|) (-1194 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3431 (((-1194 |#4|) (-657 (-1194 |#4|))) 140) (((-1194 |#4|) (-1194 |#4|) (-1194 |#4|)) 61) ((|#4| (-657 |#4|)) 69) ((|#4| |#4| |#4|) 107))) +(((-936 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3431 (|#4| |#4| |#4|)) (-15 -3431 (|#4| (-657 |#4|))) (-15 -3431 ((-1194 |#4|) (-1194 |#4|) (-1194 |#4|))) (-15 -3431 ((-1194 |#4|) (-657 (-1194 |#4|)))) (-15 -1524 (|#4| |#4| |#4|)) (-15 -1524 ((-1194 |#4|) (-1194 |#4|) (-1194 |#4|))) (-15 -1524 (|#4| (-657 |#4|)))) (-806) (-862) (-317) (-969 |#3| |#1| |#2|)) (T -936)) +((-1524 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *6 *4 *5)) (-5 *1 (-936 *4 *5 *6 *2)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)))) (-1524 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-936 *3 *4 *5 *6)))) (-1524 (*1 *2 *2 *2) (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-936 *3 *4 *5 *2)) (-4 *2 (-969 *5 *3 *4)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-657 (-1194 *7))) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-1194 *7)) (-5 *1 (-936 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-3431 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *6 *4 *5)) (-5 *1 (-936 *4 *5 *6 *2)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)))) (-3431 (*1 *2 *2 *2) (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-936 *3 *4 *5 *2)) (-4 *2 (-969 *5 *3 *4))))) +(-10 -7 (-15 -3431 (|#4| |#4| |#4|)) (-15 -3431 (|#4| (-657 |#4|))) (-15 -3431 ((-1194 |#4|) (-1194 |#4|) (-1194 |#4|))) (-15 -3431 ((-1194 |#4|) (-657 (-1194 |#4|)))) (-15 -1524 (|#4| |#4| |#4|)) (-15 -1524 ((-1194 |#4|) (-1194 |#4|) (-1194 |#4|))) (-15 -1524 (|#4| (-657 |#4|)))) +((-2799 (((-924 (-576)) (-993)) 38) (((-924 (-576)) (-657 (-576))) 34)) (-2065 (((-924 (-576)) (-657 (-576))) 67) (((-924 (-576)) (-941)) 68)) (-3866 (((-924 (-576))) 39)) (-1968 (((-924 (-576))) 53) (((-924 (-576)) (-657 (-576))) 52)) (-4161 (((-924 (-576))) 51) (((-924 (-576)) (-657 (-576))) 50)) (-3710 (((-924 (-576))) 49) (((-924 (-576)) (-657 (-576))) 48)) (-3230 (((-924 (-576))) 47) (((-924 (-576)) (-657 (-576))) 46)) (-1577 (((-924 (-576))) 45) (((-924 (-576)) (-657 (-576))) 44)) (-2095 (((-924 (-576))) 55) (((-924 (-576)) (-657 (-576))) 54)) (-3743 (((-924 (-576)) (-657 (-576))) 72) (((-924 (-576)) (-941)) 74)) (-2667 (((-924 (-576)) (-657 (-576))) 69) (((-924 (-576)) (-941)) 70)) (-4139 (((-924 (-576)) (-657 (-576))) 65) (((-924 (-576)) (-941)) 66)) (-2147 (((-924 (-576)) (-657 (-941))) 57))) +(((-937) (-10 -7 (-15 -2065 ((-924 (-576)) (-941))) (-15 -2065 ((-924 (-576)) (-657 (-576)))) (-15 -4139 ((-924 (-576)) (-941))) (-15 -4139 ((-924 (-576)) (-657 (-576)))) (-15 -2147 ((-924 (-576)) (-657 (-941)))) (-15 -2667 ((-924 (-576)) (-941))) (-15 -2667 ((-924 (-576)) (-657 (-576)))) (-15 -3743 ((-924 (-576)) (-941))) (-15 -3743 ((-924 (-576)) (-657 (-576)))) (-15 -1577 ((-924 (-576)) (-657 (-576)))) (-15 -1577 ((-924 (-576)))) (-15 -3230 ((-924 (-576)) (-657 (-576)))) (-15 -3230 ((-924 (-576)))) (-15 -3710 ((-924 (-576)) (-657 (-576)))) (-15 -3710 ((-924 (-576)))) (-15 -4161 ((-924 (-576)) (-657 (-576)))) (-15 -4161 ((-924 (-576)))) (-15 -1968 ((-924 (-576)) (-657 (-576)))) (-15 -1968 ((-924 (-576)))) (-15 -2095 ((-924 (-576)) (-657 (-576)))) (-15 -2095 ((-924 (-576)))) (-15 -3866 ((-924 (-576)))) (-15 -2799 ((-924 (-576)) (-657 (-576)))) (-15 -2799 ((-924 (-576)) (-993))))) (T -937)) +((-2799 (*1 *2 *3) (-12 (-5 *3 (-993)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3866 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2095 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-1968 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-4161 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3710 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3230 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-1577 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) +(-10 -7 (-15 -2065 ((-924 (-576)) (-941))) (-15 -2065 ((-924 (-576)) (-657 (-576)))) (-15 -4139 ((-924 (-576)) (-941))) (-15 -4139 ((-924 (-576)) (-657 (-576)))) (-15 -2147 ((-924 (-576)) (-657 (-941)))) (-15 -2667 ((-924 (-576)) (-941))) (-15 -2667 ((-924 (-576)) (-657 (-576)))) (-15 -3743 ((-924 (-576)) (-941))) (-15 -3743 ((-924 (-576)) (-657 (-576)))) (-15 -1577 ((-924 (-576)) (-657 (-576)))) (-15 -1577 ((-924 (-576)))) (-15 -3230 ((-924 (-576)) (-657 (-576)))) (-15 -3230 ((-924 (-576)))) (-15 -3710 ((-924 (-576)) (-657 (-576)))) (-15 -3710 ((-924 (-576)))) (-15 -4161 ((-924 (-576)) (-657 (-576)))) (-15 -4161 ((-924 (-576)))) (-15 -1968 ((-924 (-576)) (-657 (-576)))) (-15 -1968 ((-924 (-576)))) (-15 -2095 ((-924 (-576)) (-657 (-576)))) (-15 -2095 ((-924 (-576)))) (-15 -3866 ((-924 (-576)))) (-15 -2799 ((-924 (-576)) (-657 (-576)))) (-15 -2799 ((-924 (-576)) (-993)))) +((-2482 (((-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198))) 14)) (-2865 (((-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198))) 13))) +(((-938 |#1|) (-10 -7 (-15 -2865 ((-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -2482 ((-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198))))) (-464)) (T -938)) +((-2482 (*1 *2 *2 *3) (-12 (-5 *2 (-657 (-972 *4))) (-5 *3 (-657 (-1198))) (-4 *4 (-464)) (-5 *1 (-938 *4)))) (-2865 (*1 *2 *2 *3) (-12 (-5 *2 (-657 (-972 *4))) (-5 *3 (-657 (-1198))) (-4 *4 (-464)) (-5 *1 (-938 *4))))) +(-10 -7 (-15 -2865 ((-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -2482 ((-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198))))) +((-3515 (((-326 |#1|) (-489)) 16))) +(((-939 |#1|) (-10 -7 (-15 -3515 ((-326 |#1|) (-489)))) (-568)) (T -939)) +((-3515 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-939 *4)) (-4 *4 (-568))))) +(-10 -7 (-15 -3515 ((-326 |#1|) (-489)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-3994 (((-112) $) 35)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-940) (-141)) (T -940)) +((-3389 (*1 *2 *3) (-12 (-4 *1 (-940)) (-5 *2 (-2 (|:| -1735 (-657 *1)) (|:| -4083 *1))) (-5 *3 (-657 *1)))) (-3118 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-657 *1)) (-4 *1 (-940))))) +(-13 (-464) (-10 -8 (-15 -3389 ((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $))) (-15 -3118 ((-3 (-657 $) "failed") (-657 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3431 (($ $ $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2725 (($) NIL T CONST)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-784)) NIL) (($ $ (-941)) NIL)) (* (($ (-941) $) NIL) (($ $ $) NIL))) +(((-941) (-13 (-807) (-739) (-10 -8 (-15 -3431 ($ $ $)) (-6 (-4468 "*"))))) (T -941)) +((-3431 (*1 *1 *1 *1) (-5 *1 (-941)))) +(-13 (-807) (-739) (-10 -8 (-15 -3431 ($ $ $)) (-6 (-4468 "*")))) ((|NonNegativeInteger|) (|%igt| |#1| 0)) -((-1832 ((|#2| (-656 |#1|) (-656 |#1|)) 28))) -(((-941 |#1| |#2|) (-10 -7 (-15 -1832 (|#2| (-656 |#1|) (-656 |#1|)))) (-374) (-1264 |#1|)) (T -941)) -((-1832 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1264 *4)) (-5 *1 (-941 *4 *2))))) -(-10 -7 (-15 -1832 (|#2| (-656 |#1|) (-656 |#1|)))) -((-2746 (((-1193 |#2|) (-656 |#2|) (-656 |#2|)) 17) (((-1261 |#1| |#2|) (-1261 |#1| |#2|) (-656 |#2|) (-656 |#2|)) 13))) -(((-942 |#1| |#2|) (-10 -7 (-15 -2746 ((-1261 |#1| |#2|) (-1261 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -2746 ((-1193 |#2|) (-656 |#2|) (-656 |#2|)))) (-1197) (-374)) (T -942)) -((-2746 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1193 *5)) (-5 *1 (-942 *4 *5)) (-14 *4 (-1197)))) (-2746 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1261 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1197)) (-4 *5 (-374)) (-5 *1 (-942 *4 *5))))) -(-10 -7 (-15 -2746 ((-1261 |#1| |#2|) (-1261 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -2746 ((-1193 |#2|) (-656 |#2|) (-656 |#2|)))) -((-3820 (((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179)) 174)) (-1536 ((|#4| |#4|) 193)) (-2997 (((-656 (-419 (-971 |#1|))) (-656 (-1197))) 146)) (-3255 (((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576)) 88)) (-3525 (((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))) (-656 |#4|)) 69)) (-1956 (((-701 |#4|) (-701 |#4|) (-656 |#4|)) 65)) (-2604 (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179)) 186)) (-2406 (((-576) (-701 |#4|) (-940) (-1179)) 166) (((-576) (-701 |#4|) (-656 (-1197)) (-940) (-1179)) 165) (((-576) (-701 |#4|) (-656 |#4|) (-940) (-1179)) 164) (((-576) (-701 |#4|) (-1179)) 154) (((-576) (-701 |#4|) (-656 (-1197)) (-1179)) 153) (((-576) (-701 |#4|) (-656 |#4|) (-1179)) 152) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-940)) 151) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)) (-940)) 150) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-940)) 149) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|)) 148) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197))) 147) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|)) 143)) (-3844 ((|#4| (-971 |#1|)) 80)) (-2760 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 190)) (-4172 (((-656 (-656 (-576))) (-576) (-576)) 159)) (-1768 (((-656 (-656 |#4|)) (-656 (-656 |#4|))) 106)) (-3358 (((-783) (-656 (-2 (|:| -4135 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 100)) (-4114 (((-783) (-656 (-2 (|:| -4135 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 99)) (-2702 (((-112) (-656 (-971 |#1|))) 19) (((-112) (-656 |#4|)) 15)) (-1963 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|)) 84)) (-1681 (((-656 |#4|) |#4|) 57)) (-2404 (((-656 (-419 (-971 |#1|))) (-656 |#4|)) 142) (((-701 (-419 (-971 |#1|))) (-701 |#4|)) 66) (((-419 (-971 |#1|)) |#4|) 139)) (-1695 (((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-783) (-1179) (-576)) 112)) (-3689 (((-656 (-2 (|:| -4135 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783)) 98)) (-2249 (((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783)) 121)) (-1329 (((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| -3563 (-701 (-419 (-971 |#1|)))) (|:| |vec| (-656 (-419 (-971 |#1|)))) (|:| -4135 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) 56))) -(((-943 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2406 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -2406 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)))) (-15 -2406 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|))) (-15 -2406 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-940))) (-15 -2406 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)) (-940))) (-15 -2406 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-940))) (-15 -2406 ((-576) (-701 |#4|) (-656 |#4|) (-1179))) (-15 -2406 ((-576) (-701 |#4|) (-656 (-1197)) (-1179))) (-15 -2406 ((-576) (-701 |#4|) (-1179))) (-15 -2406 ((-576) (-701 |#4|) (-656 |#4|) (-940) (-1179))) (-15 -2406 ((-576) (-701 |#4|) (-656 (-1197)) (-940) (-1179))) (-15 -2406 ((-576) (-701 |#4|) (-940) (-1179))) (-15 -3820 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -2604 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -1695 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-783) (-1179) (-576))) (-15 -2404 ((-419 (-971 |#1|)) |#4|)) (-15 -2404 ((-701 (-419 (-971 |#1|))) (-701 |#4|))) (-15 -2404 ((-656 (-419 (-971 |#1|))) (-656 |#4|))) (-15 -2997 ((-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -3844 (|#4| (-971 |#1|))) (-15 -1963 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -3689 ((-656 (-2 (|:| -4135 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -3525 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))) (-656 |#4|))) (-15 -1329 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| -3563 (-701 (-419 (-971 |#1|)))) (|:| |vec| (-656 (-419 (-971 |#1|)))) (|:| -4135 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -1681 ((-656 |#4|) |#4|)) (-15 -4114 ((-783) (-656 (-2 (|:| -4135 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -3358 ((-783) (-656 (-2 (|:| -4135 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -1768 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -4172 ((-656 (-656 (-576))) (-576) (-576))) (-15 -2760 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2249 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -1956 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -3255 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -1536 (|#4| |#4|)) (-15 -2702 ((-112) (-656 |#4|))) (-15 -2702 ((-112) (-656 (-971 |#1|))))) (-13 (-317) (-148)) (-13 (-861) (-626 (-1197))) (-805) (-968 |#1| |#3| |#2|)) (T -943)) -((-2702 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *4 *5 *6 *7)))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *2)) (-4 *2 (-968 *3 *5 *4)))) (-3255 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-971 *9)))) (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) (-4 *9 (-13 (-317) (-148))) (-4 *12 (-968 *9 *11 *10)) (-4 *10 (-13 (-861) (-626 (-1197)))) (-4 *11 (-805)) (-5 *2 (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) (|:| |wcond| (-656 (-971 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *9)))) (|:| -2704 (-656 (-1288 (-419 (-971 *9))))))))) (-5 *1 (-943 *9 *10 *11 *12)))) (-1956 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *5 *6 *7 *8)))) (-4172 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *6 *5)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-968 *3 *5 *4)) (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *6)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4135 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-943 *4 *5 *6 *7)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4135 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-943 *4 *5 *6 *7)))) (-1681 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-943 *4 *5 *6 *3)) (-4 *3 (-968 *4 *6 *5)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3563 (-701 (-419 (-971 *4)))) (|:| |vec| (-656 (-419 (-971 *4)))) (|:| -4135 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -2704 (-656 (-1288 (-419 (-971 *4))))))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-3525 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -2704 (-656 (-1288 (-419 (-971 *4))))))) (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) (-4 *7 (-968 *4 *6 *5)) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7)))) (-3689 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| -4135 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *8))))) (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-783)))) (-1963 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-4 *7 (-968 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-317) (-148))) (-4 *2 (-968 *4 *6 *5)) (-5 *1 (-943 *4 *5 *6 *2)) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-2404 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)))) (-2404 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-701 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)))) (-2404 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-419 (-971 *4))) (-5 *1 (-943 *4 *5 *6 *3)) (-4 *3 (-968 *4 *6 *5)))) (-1695 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-971 *8)))) (-5 *5 (-783)) (-5 *6 (-1179)) (-4 *8 (-13 (-317) (-148))) (-4 *11 (-968 *8 *10 *9)) (-4 *9 (-13 (-861) (-626 (-1197)))) (-4 *10 (-805)) (-5 *2 (-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) (|:| |wcond| (-656 (-971 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *8)))) (|:| -2704 (-656 (-1288 (-419 (-971 *8)))))))))) (|:| |rgsz| (-576)))) (-5 *1 (-943 *8 *9 *10 *11)) (-5 *7 (-576)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-971 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -2704 (-656 (-1288 (-419 (-971 *4)))))))))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -2704 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *4 (-1179)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-968 *5 *7 *6)) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *5 *6 *7 *8)))) (-2406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-940)) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *6 *7 *8 *9)))) (-2406 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *7 *8 *9 *10)))) (-2406 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-940)) (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *7 *8 *9 *10)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-1179)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *5 *6 *7 *8)))) (-2406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *6 *7 *8 *9)))) (-2406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *6 *7 *8 *9)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-940)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -2704 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-2406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-971 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) (|:| -2704 (-656 (-1288 (-419 (-971 *6)))))))))) (-5 *1 (-943 *6 *7 *8 *9)))) (-2406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *5 (-940)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-971 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) (|:| -2704 (-656 (-1288 (-419 (-971 *6)))))))))) (-5 *1 (-943 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-971 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) (|:| -2704 (-656 (-1288 (-419 (-971 *4)))))))))) (-5 *1 (-943 *4 *5 *6 *7)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1197))) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -2704 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-971 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) (|:| -2704 (-656 (-1288 (-419 (-971 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(-10 -7 (-15 -2406 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -2406 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)))) (-15 -2406 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|))) (-15 -2406 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-940))) (-15 -2406 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-656 (-1197)) (-940))) (-15 -2406 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-701 |#4|) (-940))) (-15 -2406 ((-576) (-701 |#4|) (-656 |#4|) (-1179))) (-15 -2406 ((-576) (-701 |#4|) (-656 (-1197)) (-1179))) (-15 -2406 ((-576) (-701 |#4|) (-1179))) (-15 -2406 ((-576) (-701 |#4|) (-656 |#4|) (-940) (-1179))) (-15 -2406 ((-576) (-701 |#4|) (-656 (-1197)) (-940) (-1179))) (-15 -2406 ((-576) (-701 |#4|) (-940) (-1179))) (-15 -3820 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -2604 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|))))))))) (-1179))) (-15 -1695 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-783) (-1179) (-576))) (-15 -2404 ((-419 (-971 |#1|)) |#4|)) (-15 -2404 ((-701 (-419 (-971 |#1|))) (-701 |#4|))) (-15 -2404 ((-656 (-419 (-971 |#1|))) (-656 |#4|))) (-15 -2997 ((-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -3844 (|#4| (-971 |#1|))) (-15 -1963 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -3689 ((-656 (-2 (|:| -4135 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -3525 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))) (-656 |#4|))) (-15 -1329 ((-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))) (-2 (|:| -3563 (-701 (-419 (-971 |#1|)))) (|:| |vec| (-656 (-419 (-971 |#1|)))) (|:| -4135 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -1681 ((-656 |#4|) |#4|)) (-15 -4114 ((-783) (-656 (-2 (|:| -4135 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -3358 ((-783) (-656 (-2 (|:| -4135 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -1768 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -4172 ((-656 (-656 (-576))) (-576) (-576))) (-15 -2760 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2249 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -1956 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -3255 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-971 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-971 |#1|)))) (|:| -2704 (-656 (-1288 (-419 (-971 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-971 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -1536 (|#4| |#4|)) (-15 -2702 ((-112) (-656 |#4|))) (-15 -2702 ((-112) (-656 (-971 |#1|))))) -((-3470 (((-946) |#1| (-1197)) 17) (((-946) |#1| (-1197) (-1115 (-227))) 21)) (-2379 (((-946) |#1| |#1| (-1197) (-1115 (-227))) 19) (((-946) |#1| (-1197) (-1115 (-227))) 15))) -(((-944 |#1|) (-10 -7 (-15 -2379 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -2379 ((-946) |#1| |#1| (-1197) (-1115 (-227)))) (-15 -3470 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -3470 ((-946) |#1| (-1197)))) (-626 (-548))) (T -944)) -((-3470 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) (-3470 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) (-2379 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) (-5 *1 (-944 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -2379 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -2379 ((-946) |#1| |#1| (-1197) (-1115 (-227)))) (-15 -3470 ((-946) |#1| (-1197) (-1115 (-227)))) (-15 -3470 ((-946) |#1| (-1197)))) -((-2300 (($ $ (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 121)) (-3764 (((-1115 (-227)) $) 64)) (-3753 (((-1115 (-227)) $) 63)) (-3742 (((-1115 (-227)) $) 62)) (-2720 (((-656 (-656 (-227))) $) 69)) (-2433 (((-1115 (-227)) $) 65)) (-1624 (((-576) (-576)) 57)) (-2355 (((-576) (-576)) 52)) (-3993 (((-576) (-576)) 55)) (-3807 (((-112) (-112)) 59)) (-3986 (((-576)) 56)) (-1927 (($ $ (-1115 (-227))) 124) (($ $) 125)) (-3948 (($ (-1 (-962 (-227)) (-227)) (-1115 (-227))) 131) (($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 132)) (-2379 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 135) (($ $ (-1115 (-227))) 127)) (-4432 (((-576)) 60)) (-1502 (((-576)) 50)) (-2241 (((-576)) 53)) (-1373 (((-656 (-656 (-962 (-227)))) $) 151)) (-2439 (((-112) (-112)) 61)) (-4113 (((-876) $) 149)) (-1947 (((-112)) 58))) -(((-945) (-13 (-995) (-10 -8 (-15 -3948 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -3948 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2379 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2379 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2379 ($ $ (-1115 (-227)))) (-15 -2300 ($ $ (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -1927 ($ $ (-1115 (-227)))) (-15 -1927 ($ $)) (-15 -2433 ((-1115 (-227)) $)) (-15 -2720 ((-656 (-656 (-227))) $)) (-15 -1502 ((-576))) (-15 -2355 ((-576) (-576))) (-15 -2241 ((-576))) (-15 -3993 ((-576) (-576))) (-15 -3986 ((-576))) (-15 -1624 ((-576) (-576))) (-15 -1947 ((-112))) (-15 -3807 ((-112) (-112))) (-15 -4432 ((-576))) (-15 -2439 ((-112) (-112)))))) (T -945)) -((-3948 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-3948 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-2379 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-2379 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-945)))) (-2379 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-2300 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-1927 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-1927 (*1 *1 *1) (-5 *1 (-945))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-945)))) (-1502 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-2355 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-2241 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-3986 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-1947 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945)))) (-4432 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945)))) (-2439 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) -(-13 (-995) (-10 -8 (-15 -3948 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -3948 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2379 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2379 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2379 ($ $ (-1115 (-227)))) (-15 -2300 ($ $ (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -1927 ($ $ (-1115 (-227)))) (-15 -1927 ($ $)) (-15 -2433 ((-1115 (-227)) $)) (-15 -2720 ((-656 (-656 (-227))) $)) (-15 -1502 ((-576))) (-15 -2355 ((-576) (-576))) (-15 -2241 ((-576))) (-15 -3993 ((-576) (-576))) (-15 -3986 ((-576))) (-15 -1624 ((-576) (-576))) (-15 -1947 ((-112))) (-15 -3807 ((-112) (-112))) (-15 -4432 ((-576))) (-15 -2439 ((-112) (-112))))) -((-2300 (($ $ (-1115 (-227))) 122) (($ $ (-1115 (-227)) (-1115 (-227))) 123)) (-3753 (((-1115 (-227)) $) 73)) (-3742 (((-1115 (-227)) $) 72)) (-2433 (((-1115 (-227)) $) 74)) (-2743 (((-576) (-576)) 66)) (-3440 (((-576) (-576)) 61)) (-3814 (((-576) (-576)) 64)) (-2157 (((-112) (-112)) 68)) (-4236 (((-576)) 65)) (-1927 (($ $ (-1115 (-227))) 126) (($ $) 127)) (-3948 (($ (-1 (-962 (-227)) (-227)) (-1115 (-227))) 141) (($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 142)) (-3470 (($ (-1 (-227) (-227)) (-1115 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-2379 (($ (-1 (-227) (-227)) (-1115 (-227))) 137) (($ (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227))) 138) (($ (-656 (-1 (-227) (-227))) (-1115 (-227))) 146) (($ (-656 (-1 (-227) (-227))) (-1115 (-227)) (-1115 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227))) 140) (($ $ (-1115 (-227))) 128)) (-3987 (((-112) $) 69)) (-4233 (((-576)) 70)) (-3113 (((-576)) 59)) (-1864 (((-576)) 62)) (-1373 (((-656 (-656 (-962 (-227)))) $) 35)) (-3144 (((-112) (-112)) 71)) (-4113 (((-876) $) 167)) (-4430 (((-112)) 67))) -(((-946) (-13 (-974) (-10 -8 (-15 -2379 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2379 ($ (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2379 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)))) (-15 -2379 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -2379 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2379 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3948 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -3948 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3470 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3470 ($ (-1 (-227) (-227)))) (-15 -2379 ($ $ (-1115 (-227)))) (-15 -3987 ((-112) $)) (-15 -2300 ($ $ (-1115 (-227)))) (-15 -2300 ($ $ (-1115 (-227)) (-1115 (-227)))) (-15 -1927 ($ $ (-1115 (-227)))) (-15 -1927 ($ $)) (-15 -2433 ((-1115 (-227)) $)) (-15 -3113 ((-576))) (-15 -3440 ((-576) (-576))) (-15 -1864 ((-576))) (-15 -3814 ((-576) (-576))) (-15 -4236 ((-576))) (-15 -2743 ((-576) (-576))) (-15 -4430 ((-112))) (-15 -2157 ((-112) (-112))) (-15 -4233 ((-576))) (-15 -3144 ((-112) (-112)))))) (T -946)) -((-2379 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2379 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2379 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2379 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2379 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-2379 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3948 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3948 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3470 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) (-5 *1 (-946)))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-946)))) (-2379 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-2300 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-1927 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-1927 (*1 *1 *1) (-5 *1 (-946))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) (-3113 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-1864 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-4236 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2743 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-4430 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-2157 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-4233 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) -(-13 (-974) (-10 -8 (-15 -2379 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2379 ($ (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -2379 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)))) (-15 -2379 ($ (-656 (-1 (-227) (-227))) (-1115 (-227)) (-1115 (-227)))) (-15 -2379 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)))) (-15 -2379 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3948 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)))) (-15 -3948 ($ (-1 (-962 (-227)) (-227)) (-1115 (-227)) (-1115 (-227)) (-1115 (-227)))) (-15 -3470 ($ (-1 (-227) (-227)) (-1115 (-227)))) (-15 -3470 ($ (-1 (-227) (-227)))) (-15 -2379 ($ $ (-1115 (-227)))) (-15 -3987 ((-112) $)) (-15 -2300 ($ $ (-1115 (-227)))) (-15 -2300 ($ $ (-1115 (-227)) (-1115 (-227)))) (-15 -1927 ($ $ (-1115 (-227)))) (-15 -1927 ($ $)) (-15 -2433 ((-1115 (-227)) $)) (-15 -3113 ((-576))) (-15 -3440 ((-576) (-576))) (-15 -1864 ((-576))) (-15 -3814 ((-576) (-576))) (-15 -4236 ((-576))) (-15 -2743 ((-576) (-576))) (-15 -4430 ((-112))) (-15 -2157 ((-112) (-112))) (-15 -4233 ((-576))) (-15 -3144 ((-112) (-112))))) -((-2690 (((-656 (-1115 (-227))) (-656 (-656 (-962 (-227))))) 34))) -(((-947) (-10 -7 (-15 -2690 ((-656 (-1115 (-227))) (-656 (-656 (-962 (-227)))))))) (T -947)) -((-2690 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-656 (-1115 (-227)))) (-5 *1 (-947))))) -(-10 -7 (-15 -2690 ((-656 (-1115 (-227))) (-656 (-656 (-962 (-227))))))) -((-2014 ((|#2| |#2|) 28)) (-3692 ((|#2| |#2|) 29)) (-2666 ((|#2| |#2|) 27)) (-1718 ((|#2| |#2| (-518)) 26))) -(((-948 |#1| |#2|) (-10 -7 (-15 -1718 (|#2| |#2| (-518))) (-15 -2666 (|#2| |#2|)) (-15 -2014 (|#2| |#2|)) (-15 -3692 (|#2| |#2|))) (-1121) (-442 |#1|)) (T -948)) -((-3692 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) (-2014 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) (-2666 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) (-1718 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1121)) (-5 *1 (-948 *4 *2)) (-4 *2 (-442 *4))))) -(-10 -7 (-15 -1718 (|#2| |#2| (-518))) (-15 -2666 (|#2| |#2|)) (-15 -2014 (|#2| |#2|)) (-15 -3692 (|#2| |#2|))) -((-2014 (((-326 (-576)) (-1197)) 16)) (-3692 (((-326 (-576)) (-1197)) 14)) (-2666 (((-326 (-576)) (-1197)) 12)) (-1718 (((-326 (-576)) (-1197) (-518)) 19))) -(((-949) (-10 -7 (-15 -1718 ((-326 (-576)) (-1197) (-518))) (-15 -2666 ((-326 (-576)) (-1197))) (-15 -2014 ((-326 (-576)) (-1197))) (-15 -3692 ((-326 (-576)) (-1197))))) (T -949)) -((-3692 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) (-1718 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-949))))) -(-10 -7 (-15 -1718 ((-326 (-576)) (-1197) (-518))) (-15 -2666 ((-326 (-576)) (-1197))) (-15 -2014 ((-326 (-576)) (-1197))) (-15 -3692 ((-326 (-576)) (-1197)))) -((-2477 (((-904 |#1| |#3|) |#2| (-907 |#1|) (-904 |#1| |#3|)) 25)) (-3580 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -3580 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2477 ((-904 |#1| |#3|) |#2| (-907 |#1|) (-904 |#1| |#3|)))) (-1121) (-901 |#1|) (-13 (-1121) (-1059 |#2|))) (T -950)) -((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-13 (-1121) (-1059 *3))) (-4 *3 (-901 *5)) (-5 *1 (-950 *5 *3 *6)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1121) (-1059 *5))) (-4 *5 (-901 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-950 *4 *5 *6))))) -(-10 -7 (-15 -3580 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2477 ((-904 |#1| |#3|) |#2| (-907 |#1|) (-904 |#1| |#3|)))) -((-2477 (((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)) 30))) -(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-1121) (-13 (-568) (-901 |#1|)) (-13 (-442 |#2|) (-626 (-907 |#1|)) (-901 |#1|) (-1059 (-624 $)))) (T -951)) -((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-13 (-442 *6) (-626 *4) (-901 *5) (-1059 (-624 $)))) (-5 *4 (-907 *5)) (-4 *6 (-13 (-568) (-901 *5))) (-5 *1 (-951 *5 *6 *3))))) -(-10 -7 (-15 -2477 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) -((-2477 (((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|)) 13))) -(((-952 |#1|) (-10 -7 (-15 -2477 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|)))) (-557)) (T -952)) -((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 (-576) *3)) (-5 *4 (-907 (-576))) (-4 *3 (-557)) (-5 *1 (-952 *3))))) -(-10 -7 (-15 -2477 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|)))) -((-2477 (((-904 |#1| |#2|) (-624 |#2|) (-907 |#1|) (-904 |#1| |#2|)) 57))) -(((-953 |#1| |#2|) (-10 -7 (-15 -2477 ((-904 |#1| |#2|) (-624 |#2|) (-907 |#1|) (-904 |#1| |#2|)))) (-1121) (-13 (-1121) (-1059 (-624 $)) (-626 (-907 |#1|)) (-901 |#1|))) (T -953)) -((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1121)) (-4 *6 (-13 (-1121) (-1059 (-624 $)) (-626 *4) (-901 *5))) (-5 *4 (-907 *5)) (-5 *1 (-953 *5 *6))))) -(-10 -7 (-15 -2477 ((-904 |#1| |#2|) (-624 |#2|) (-907 |#1|) (-904 |#1| |#2|)))) -((-2477 (((-900 |#1| |#2| |#3|) |#3| (-907 |#1|) (-900 |#1| |#2| |#3|)) 17))) -(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-900 |#1| |#2| |#3|) |#3| (-907 |#1|) (-900 |#1| |#2| |#3|)))) (-1121) (-901 |#1|) (-678 |#2|)) (T -954)) -((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-4 *6 (-901 *5)) (-4 *3 (-678 *6)) (-5 *1 (-954 *5 *6 *3))))) -(-10 -7 (-15 -2477 ((-900 |#1| |#2| |#3|) |#3| (-907 |#1|) (-900 |#1| |#2| |#3|)))) -((-2477 (((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|)) 17 (|has| |#3| (-901 |#1|))) (((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|) (-1 (-904 |#1| |#5|) |#3| (-907 |#1|) (-904 |#1| |#5|))) 16))) -(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2477 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|) (-1 (-904 |#1| |#5|) |#3| (-907 |#1|) (-904 |#1| |#5|)))) (IF (|has| |#3| (-901 |#1|)) (-15 -2477 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|))) |%noBranch|)) (-1121) (-805) (-861) (-13 (-1070) (-901 |#1|)) (-13 (-968 |#4| |#2| |#3|) (-626 (-907 |#1|)))) (T -955)) -((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-13 (-968 *8 *6 *7) (-626 *4))) (-5 *4 (-907 *5)) (-4 *7 (-901 *5)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-13 (-1070) (-901 *5))) (-5 *1 (-955 *5 *6 *7 *8 *3)))) (-2477 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-904 *6 *3) *8 (-907 *6) (-904 *6 *3))) (-4 *8 (-861)) (-5 *2 (-904 *6 *3)) (-5 *4 (-907 *6)) (-4 *6 (-1121)) (-4 *3 (-13 (-968 *9 *7 *8) (-626 *4))) (-4 *7 (-805)) (-4 *9 (-13 (-1070) (-901 *6))) (-5 *1 (-955 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -2477 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|) (-1 (-904 |#1| |#5|) |#3| (-907 |#1|) (-904 |#1| |#5|)))) (IF (|has| |#3| (-901 |#1|)) (-15 -2477 ((-904 |#1| |#5|) |#5| (-907 |#1|) (-904 |#1| |#5|))) |%noBranch|)) -((-3767 ((|#2| |#2| (-656 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-956 |#1| |#2| |#3|) (-10 -7 (-15 -3767 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3767 (|#2| |#2| (-656 (-1 (-112) |#3|))))) (-1121) (-442 |#1|) (-1238)) (T -956)) -((-3767 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1238)) (-4 *4 (-1121)) (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-442 *4)))) (-3767 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1238)) (-4 *4 (-1121)) (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-442 *4))))) -(-10 -7 (-15 -3767 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3767 (|#2| |#2| (-656 (-1 (-112) |#3|))))) -((-3767 (((-326 (-576)) (-1197) (-656 (-1 (-112) |#1|))) 18) (((-326 (-576)) (-1197) (-1 (-112) |#1|)) 15))) -(((-957 |#1|) (-10 -7 (-15 -3767 ((-326 (-576)) (-1197) (-1 (-112) |#1|))) (-15 -3767 ((-326 (-576)) (-1197) (-656 (-1 (-112) |#1|))))) (-1238)) (T -957)) -((-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1238)) (-5 *2 (-326 (-576))) (-5 *1 (-957 *5)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1238)) (-5 *2 (-326 (-576))) (-5 *1 (-957 *5))))) -(-10 -7 (-15 -3767 ((-326 (-576)) (-1197) (-1 (-112) |#1|))) (-15 -3767 ((-326 (-576)) (-1197) (-656 (-1 (-112) |#1|))))) -((-2477 (((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)) 25))) -(((-958 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-1121) (-13 (-568) (-901 |#1|) (-626 (-907 |#1|))) (-1013 |#2|)) (T -958)) -((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-1013 *6)) (-4 *6 (-13 (-568) (-901 *5) (-626 *4))) (-5 *4 (-907 *5)) (-5 *1 (-958 *5 *6 *3))))) -(-10 -7 (-15 -2477 ((-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) -((-2477 (((-904 |#1| (-1197)) (-1197) (-907 |#1|) (-904 |#1| (-1197))) 18))) -(((-959 |#1|) (-10 -7 (-15 -2477 ((-904 |#1| (-1197)) (-1197) (-907 |#1|) (-904 |#1| (-1197))))) (-1121)) (T -959)) -((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 (-1197))) (-5 *3 (-1197)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-5 *1 (-959 *5))))) -(-10 -7 (-15 -2477 ((-904 |#1| (-1197)) (-1197) (-907 |#1|) (-904 |#1| (-1197))))) -((-2589 (((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) 34)) (-2477 (((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-1 |#3| (-656 |#3|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))) 33))) -(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-1 |#3| (-656 |#3|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-15 -2589 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))))) (-1121) (-1070) (-13 (-1070) (-626 (-907 |#1|)) (-1059 |#2|))) (T -960)) -((-2589 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-907 *6))) (-5 *5 (-1 (-904 *6 *8) *8 (-907 *6) (-904 *6 *8))) (-4 *6 (-1121)) (-4 *8 (-13 (-1070) (-626 (-907 *6)) (-1059 *7))) (-5 *2 (-904 *6 *8)) (-4 *7 (-1070)) (-5 *1 (-960 *6 *7 *8)))) (-2477 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-656 (-907 *7))) (-5 *5 (-1 *9 (-656 *9))) (-5 *6 (-1 (-904 *7 *9) *9 (-907 *7) (-904 *7 *9))) (-4 *7 (-1121)) (-4 *9 (-13 (-1070) (-626 (-907 *7)) (-1059 *8))) (-5 *2 (-904 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1070)) (-5 *1 (-960 *7 *8 *9))))) -(-10 -7 (-15 -2477 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-1 |#3| (-656 |#3|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|)))) (-15 -2589 ((-904 |#1| |#3|) (-656 |#3|) (-656 (-907 |#1|)) (-904 |#1| |#3|) (-1 (-904 |#1| |#3|) |#3| (-907 |#1|) (-904 |#1| |#3|))))) -((-1803 (((-1193 (-419 (-576))) (-576)) 79)) (-3482 (((-1193 (-576)) (-576)) 82)) (-2800 (((-1193 (-576)) (-576)) 76)) (-4203 (((-576) (-1193 (-576))) 72)) (-2450 (((-1193 (-419 (-576))) (-576)) 65)) (-3394 (((-1193 (-576)) (-576)) 49)) (-2432 (((-1193 (-576)) (-576)) 84)) (-4230 (((-1193 (-576)) (-576)) 83)) (-3346 (((-1193 (-419 (-576))) (-576)) 67))) -(((-961) (-10 -7 (-15 -3346 ((-1193 (-419 (-576))) (-576))) (-15 -4230 ((-1193 (-576)) (-576))) (-15 -2432 ((-1193 (-576)) (-576))) (-15 -3394 ((-1193 (-576)) (-576))) (-15 -2450 ((-1193 (-419 (-576))) (-576))) (-15 -4203 ((-576) (-1193 (-576)))) (-15 -2800 ((-1193 (-576)) (-576))) (-15 -3482 ((-1193 (-576)) (-576))) (-15 -1803 ((-1193 (-419 (-576))) (-576))))) (T -961)) -((-1803 (*1 *2 *3) (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576)))) (-3482 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-4203 (*1 *2 *3) (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-576)) (-5 *1 (-961)))) (-2450 (*1 *2 *3) (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576)))) (-3394 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-2432 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-4230 (*1 *2 *3) (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) (-3346 (*1 *2 *3) (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) -(-10 -7 (-15 -3346 ((-1193 (-419 (-576))) (-576))) (-15 -4230 ((-1193 (-576)) (-576))) (-15 -2432 ((-1193 (-576)) (-576))) (-15 -3394 ((-1193 (-576)) (-576))) (-15 -2450 ((-1193 (-419 (-576))) (-576))) (-15 -4203 ((-576) (-1193 (-576)))) (-15 -2800 ((-1193 (-576)) (-576))) (-15 -3482 ((-1193 (-576)) (-576))) (-15 -1803 ((-1193 (-419 (-576))) (-576)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2155 (($ (-783)) NIL (|has| |#1| (-23)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-2380 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) NIL)) (-3539 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-2819 (($ (-656 |#1|)) 9)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1665 (((-701 |#1|) $ $) NIL (|has| |#1| (-1070)))) (-1991 (($ (-783) |#1|) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-2748 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2396 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-1884 (((-112) $ (-783)) NIL)) (-3108 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1755 ((|#1| $) NIL (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4267 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-2419 (($ $ (-656 |#1|)) 25)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 18) (($ $ (-1255 (-576))) NIL)) (-1875 ((|#1| $ $) NIL (|has| |#1| (-1070)))) (-3181 (((-940) $) 13)) (-2335 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2900 (($ $ $) 23)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 14)) (-4125 (($ (-656 |#1|)) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-656 $)) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4037 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4026 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-1970 (((-783) $) 11 (|has| $ (-6 -4464))))) -(((-962 |#1|) (-1001 |#1|) (-1070)) (T -962)) -NIL -(-1001 |#1|) -((-1520 (((-493 |#1| |#2|) (-971 |#2|)) 22)) (-3081 (((-253 |#1| |#2|) (-971 |#2|)) 35)) (-4351 (((-971 |#2|) (-493 |#1| |#2|)) 27)) (-3517 (((-253 |#1| |#2|) (-493 |#1| |#2|)) 57)) (-1416 (((-971 |#2|) (-253 |#1| |#2|)) 32)) (-3897 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 48))) -(((-963 |#1| |#2|) (-10 -7 (-15 -3897 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3517 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -1520 ((-493 |#1| |#2|) (-971 |#2|))) (-15 -4351 ((-971 |#2|) (-493 |#1| |#2|))) (-15 -1416 ((-971 |#2|) (-253 |#1| |#2|))) (-15 -3081 ((-253 |#1| |#2|) (-971 |#2|)))) (-656 (-1197)) (-1070)) (T -963)) -((-3081 (*1 *2 *3) (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-253 *4 *5)) (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197))))) (-1416 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5)))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197))))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-253 *4 *5)) (-5 *1 (-963 *4 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5))))) -(-10 -7 (-15 -3897 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3517 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -1520 ((-493 |#1| |#2|) (-971 |#2|))) (-15 -4351 ((-971 |#2|) (-493 |#1| |#2|))) (-15 -1416 ((-971 |#2|) (-253 |#1| |#2|))) (-15 -3081 ((-253 |#1| |#2|) (-971 |#2|)))) -((-1381 (((-656 |#2|) |#2| |#2|) 10)) (-4189 (((-783) (-656 |#1|)) 48 (|has| |#1| (-860)))) (-1588 (((-656 |#2|) |#2|) 11)) (-2843 (((-783) (-656 |#1|) (-576) (-576)) 52 (|has| |#1| (-860)))) (-2053 ((|#1| |#2|) 38 (|has| |#1| (-860))))) -(((-964 |#1| |#2|) (-10 -7 (-15 -1381 ((-656 |#2|) |#2| |#2|)) (-15 -1588 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2053 (|#1| |#2|)) (-15 -4189 ((-783) (-656 |#1|))) (-15 -2843 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) (-374) (-1264 |#1|)) (T -964)) -((-2843 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-964 *5 *6)) (-4 *6 (-1264 *5)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-964 *4 *5)) (-4 *5 (-1264 *4)))) (-2053 (*1 *2 *3) (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1264 *2)))) (-1588 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) (-4 *3 (-1264 *4)))) (-1381 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -1381 ((-656 |#2|) |#2| |#2|)) (-15 -1588 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2053 (|#1| |#2|)) (-15 -4189 ((-783) (-656 |#1|))) (-15 -2843 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) -((-2423 (((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)) 19))) -(((-965 |#1| |#2|) (-10 -7 (-15 -2423 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) (-1070) (-1070)) (T -965)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-971 *6)) (-5 *1 (-965 *5 *6))))) -(-10 -7 (-15 -2423 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) -((-1421 (((-1261 |#1| (-971 |#2|)) (-971 |#2|) (-1284 |#1|)) 18))) -(((-966 |#1| |#2|) (-10 -7 (-15 -1421 ((-1261 |#1| (-971 |#2|)) (-971 |#2|) (-1284 |#1|)))) (-1197) (-1070)) (T -966)) -((-1421 (*1 *2 *3 *4) (-12 (-5 *4 (-1284 *5)) (-14 *5 (-1197)) (-4 *6 (-1070)) (-5 *2 (-1261 *5 (-971 *6))) (-5 *1 (-966 *5 *6)) (-5 *3 (-971 *6))))) -(-10 -7 (-15 -1421 ((-1261 |#1| (-971 |#2|)) (-971 |#2|) (-1284 |#1|)))) -((-2625 (((-783) $) 88) (((-783) $ (-656 |#4|)) 93)) (-2658 (($ $) 203)) (-3589 (((-430 $) $) 195)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 141)) (-2982 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) 73)) (-2970 (($ $ $ |#4|) 95)) (-1930 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 131) (((-701 |#2|) (-701 $)) 121)) (-1788 (($ $) 210) (($ $ |#4|) 213)) (-3297 (((-656 $) $) 77)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 229) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 222)) (-2683 (((-656 $) $) 34)) (-1564 (($ |#2| |#3|) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|) (-656 (-783))) 71)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ |#4|) 192)) (-4050 (((-3 (-656 $) "failed") $) 52)) (-2646 (((-3 (-656 $) "failed") $) 39)) (-1608 (((-3 (-2 (|:| |var| |#4|) (|:| -4080 (-783))) "failed") $) 57)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 134)) (-4112 (((-430 (-1193 $)) (-1193 $)) 147)) (-3680 (((-430 (-1193 $)) (-1193 $)) 145)) (-1452 (((-430 $) $) 165)) (-2145 (($ $ (-656 (-304 $))) 24) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL)) (-1790 (($ $ |#4|) 97)) (-1556 (((-907 (-390)) $) 243) (((-907 (-576)) $) 236) (((-548) $) 251)) (-1944 ((|#2| $) NIL) (($ $ |#4|) 205)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 184)) (-2707 ((|#2| $ |#3|) NIL) (($ $ |#4| (-783)) 62) (($ $ (-656 |#4|) (-656 (-783))) 69)) (-4276 (((-3 $ "failed") $) 186)) (-2950 (((-112) $ $) 216))) -(((-967 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2142 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3589 ((-430 |#1|) |#1|)) (-15 -2658 (|#1| |#1|)) (-15 -4276 ((-3 |#1| "failed") |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -1556 ((-907 (-576)) |#1|)) (-15 -1556 ((-907 (-390)) |#1|)) (-15 -2477 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -2477 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1452 ((-430 |#1|) |#1|)) (-15 -3680 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4112 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1626 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -4055 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -1788 (|#1| |#1| |#4|)) (-15 -1944 (|#1| |#1| |#4|)) (-15 -1790 (|#1| |#1| |#4|)) (-15 -2970 (|#1| |#1| |#1| |#4|)) (-15 -3297 ((-656 |#1|) |#1|)) (-15 -2625 ((-783) |#1| (-656 |#4|))) (-15 -2625 ((-783) |#1|)) (-15 -1608 ((-3 (-2 (|:| |var| |#4|) (|:| -4080 (-783))) "failed") |#1|)) (-15 -4050 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2646 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1564 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1564 (|#1| |#1| |#4| (-783))) (-15 -1758 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1| |#4|)) (-15 -2683 ((-656 |#1|) |#1|)) (-15 -2707 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2707 (|#1| |#1| |#4| (-783))) (-15 -1930 ((-701 |#2|) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-701 (-576)) (-701 |#1|))) (-15 -2982 ((-3 |#4| "failed") |#1|)) (-15 -2317 (|#4| |#1|)) (-15 -2145 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#4| |#1|)) (-15 -2145 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2145 (|#1| |#1| |#4| |#2|)) (-15 -2145 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#1| |#1|)) (-15 -2145 (|#1| |#1| (-304 |#1|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1564 (|#1| |#2| |#3|)) (-15 -2707 (|#2| |#1| |#3|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -1944 (|#2| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -2950 ((-112) |#1| |#1|))) (-968 |#2| |#3| |#4|) (-1070) (-805) (-861)) (T -967)) -NIL -(-10 -8 (-15 -2142 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -3589 ((-430 |#1|) |#1|)) (-15 -2658 (|#1| |#1|)) (-15 -4276 ((-3 |#1| "failed") |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -1556 ((-907 (-576)) |#1|)) (-15 -1556 ((-907 (-390)) |#1|)) (-15 -2477 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -2477 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1452 ((-430 |#1|) |#1|)) (-15 -3680 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4112 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1626 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -4055 ((-3 (-1288 |#1|) "failed") (-701 |#1|))) (-15 -1788 (|#1| |#1| |#4|)) (-15 -1944 (|#1| |#1| |#4|)) (-15 -1790 (|#1| |#1| |#4|)) (-15 -2970 (|#1| |#1| |#1| |#4|)) (-15 -3297 ((-656 |#1|) |#1|)) (-15 -2625 ((-783) |#1| (-656 |#4|))) (-15 -2625 ((-783) |#1|)) (-15 -1608 ((-3 (-2 (|:| |var| |#4|) (|:| -4080 (-783))) "failed") |#1|)) (-15 -4050 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2646 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1564 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1564 (|#1| |#1| |#4| (-783))) (-15 -1758 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1| |#4|)) (-15 -2683 ((-656 |#1|) |#1|)) (-15 -2707 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2707 (|#1| |#1| |#4| (-783))) (-15 -1930 ((-701 |#2|) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-701 (-576)) (-701 |#1|))) (-15 -2982 ((-3 |#4| "failed") |#1|)) (-15 -2317 (|#4| |#1|)) (-15 -2145 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#4| |#1|)) (-15 -2145 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2145 (|#1| |#1| |#4| |#2|)) (-15 -2145 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#1| |#1|)) (-15 -2145 (|#1| |#1| (-304 |#1|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1564 (|#1| |#2| |#3|)) (-15 -2707 (|#2| |#1| |#3|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -1944 (|#2| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -2950 ((-112) |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1585 (((-656 |#3|) $) 113)) (-1421 (((-1193 $) $ |#3|) 128) (((-1193 |#1|) $) 127)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2390 (($ $) 91 (|has| |#1| (-568)))) (-3302 (((-112) $) 93 (|has| |#1| (-568)))) (-2625 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-1765 (((-3 $ "failed") $ $) 20)) (-2725 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-2658 (($ $) 101 (|has| |#1| (-464)))) (-3589 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-3170 (($) 18 T CONST)) (-2982 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) 143)) (-2317 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) ((|#3| $) 144)) (-2970 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-3310 (($ $) 161)) (-1930 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-1851 (((-3 $ "failed") $) 37)) (-1788 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-3297 (((-656 $) $) 112)) (-2171 (((-112) $) 99 (|has| |#1| (-928)))) (-1975 (($ $ |#1| |#2| $) 179)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| |#3| (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| |#3| (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-2486 (((-112) $) 35)) (-2018 (((-783) $) 176)) (-1574 (($ (-1193 |#1|) |#3|) 120) (($ (-1193 $) |#3|) 119)) (-2683 (((-656 $) $) 129)) (-4101 (((-112) $) 159)) (-1564 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ |#3|) 123)) (-2192 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-3784 (($ (-1 |#2| |#2|) $) 178)) (-2423 (($ (-1 |#1| |#1|) $) 158)) (-3477 (((-3 |#3| "failed") $) 126)) (-2160 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-1700 (($ $) 156)) (-1711 ((|#1| $) 155)) (-3076 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2447 (((-1179) $) 10)) (-4050 (((-3 (-656 $) "failed") $) 117)) (-2646 (((-3 (-656 $) "failed") $) 118)) (-1608 (((-3 (-2 (|:| |var| |#3|) (|:| -4080 (-783))) "failed") $) 116)) (-3116 (((-1141) $) 11)) (-1678 (((-112) $) 173)) (-1686 ((|#1| $) 174)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3115 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1452 (((-430 $) $) 102 (|has| |#1| (-928)))) (-1946 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2145 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-1790 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-4107 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-2196 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-1556 (((-907 (-390)) $) 85 (-12 (|has| |#3| (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| |#3| (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1944 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2311 (|has| $ (-146)) (|has| |#1| (-928))))) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ $) 88 (|has| |#1| (-568))) (($ (-419 (-576))) 81 (-3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-3244 (((-656 |#1|) $) 175)) (-2707 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-4276 (((-3 $ "failed") $) 82 (-3795 (-2311 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) 32 T CONST)) (-1903 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 92 (|has| |#1| (-568)))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-968 |#1| |#2| |#3|) (-141) (-1070) (-805) (-861)) (T -968)) -((-1788 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-2196 (*1 *2 *1 *3) (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-783)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) (-2707 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *2 (-861)))) (-2707 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) (-2683 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-1421 (*1 *2 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-1193 *1)) (-4 *1 (-968 *4 *5 *3)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-1193 *3)))) (-3477 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2192 (*1 *2 *1 *3) (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-783)))) (-2192 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) (-1758 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-968 *4 *5 *3)))) (-1564 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *2 (-861)))) (-1564 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) (-1574 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *4)) (-4 *4 (-1070)) (-4 *1 (-968 *4 *5 *3)) (-4 *5 (-805)) (-4 *3 (-861)))) (-1574 (*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)))) (-2646 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-4050 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-1608 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -4080 (-783)))))) (-2625 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-783)))) (-2625 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)))) (-1585 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *5)))) (-3297 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) (-2970 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-174)))) (-1790 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-174)))) (-1944 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-464)))) (-1788 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *3 (-464)))) (-2658 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3589 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-430 *1)) (-4 *1 (-968 *3 *4 *5))))) -(-13 (-917 |t#3|) (-336 |t#1| |t#2|) (-319 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1059 |t#3|) (-388 |t#1|) (-10 -8 (-15 -2196 ((-783) $ |t#3|)) (-15 -2196 ((-656 (-783)) $ (-656 |t#3|))) (-15 -2707 ($ $ |t#3| (-783))) (-15 -2707 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -2683 ((-656 $) $)) (-15 -1421 ((-1193 $) $ |t#3|)) (-15 -1421 ((-1193 |t#1|) $)) (-15 -3477 ((-3 |t#3| "failed") $)) (-15 -2192 ((-783) $ |t#3|)) (-15 -2192 ((-656 (-783)) $ (-656 |t#3|))) (-15 -1758 ((-2 (|:| -2675 $) (|:| -3561 $)) $ $ |t#3|)) (-15 -1564 ($ $ |t#3| (-783))) (-15 -1564 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -1574 ($ (-1193 |t#1|) |t#3|)) (-15 -1574 ($ (-1193 $) |t#3|)) (-15 -2646 ((-3 (-656 $) "failed") $)) (-15 -4050 ((-3 (-656 $) "failed") $)) (-15 -1608 ((-3 (-2 (|:| |var| |t#3|) (|:| -4080 (-783))) "failed") $)) (-15 -2625 ((-783) $)) (-15 -2625 ((-783) $ (-656 |t#3|))) (-15 -1585 ((-656 |t#3|) $)) (-15 -3297 ((-656 $) $)) (IF (|has| |t#1| (-626 (-548))) (IF (|has| |t#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-907 (-576)))) (IF (|has| |t#3| (-626 (-907 (-576)))) (-6 (-626 (-907 (-576)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-907 (-390)))) (IF (|has| |t#3| (-626 (-907 (-390)))) (-6 (-626 (-907 (-390)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-901 (-576))) (IF (|has| |t#3| (-901 (-576))) (-6 (-901 (-576))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-901 (-390))) (IF (|has| |t#3| (-901 (-390))) (-6 (-901 (-390))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2970 ($ $ $ |t#3|)) (-15 -1790 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -1944 ($ $ |t#3|)) (-15 -1788 ($ $)) (-15 -1788 ($ $ |t#3|)) (-15 -3589 ((-430 $) $)) (-15 -2658 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4462)) (-6 -4462) |%noBranch|) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) ((-300) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3795 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-911 $ |#3|) . T) ((-917 |#3|) . T) ((-919 |#3|) . T) ((-901 (-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) ((-928) |has| |#1| (-928)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1059 |#3|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-928))) -((-1585 (((-656 |#2|) |#5|) 40)) (-1421 (((-1193 |#5|) |#5| |#2| (-1193 |#5|)) 23) (((-419 (-1193 |#5|)) |#5| |#2|) 16)) (-1574 ((|#5| (-419 (-1193 |#5|)) |#2|) 30)) (-3477 (((-3 |#2| "failed") |#5|) 71)) (-4050 (((-3 (-656 |#5|) "failed") |#5|) 65)) (-3838 (((-3 (-2 (|:| |val| |#5|) (|:| -4080 (-576))) "failed") |#5|) 53)) (-2646 (((-3 (-656 |#5|) "failed") |#5|) 67)) (-1608 (((-3 (-2 (|:| |var| |#2|) (|:| -4080 (-576))) "failed") |#5|) 57))) -(((-969 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1585 ((-656 |#2|) |#5|)) (-15 -3477 ((-3 |#2| "failed") |#5|)) (-15 -1421 ((-419 (-1193 |#5|)) |#5| |#2|)) (-15 -1574 (|#5| (-419 (-1193 |#5|)) |#2|)) (-15 -1421 ((-1193 |#5|) |#5| |#2| (-1193 |#5|))) (-15 -2646 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -4050 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1608 ((-3 (-2 (|:| |var| |#2|) (|:| -4080 (-576))) "failed") |#5|)) (-15 -3838 ((-3 (-2 (|:| |val| |#5|) (|:| -4080 (-576))) "failed") |#5|))) (-805) (-861) (-1070) (-968 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -4113 ($ |#4|)) (-15 -2687 (|#4| $)) (-15 -2697 (|#4| $))))) (T -969)) -((-3838 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4080 (-576)))) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $))))))) (-1608 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4080 (-576)))) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $))))))) (-4050 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $))))))) (-2646 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $))))))) (-1421 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $))))) (-4 *7 (-968 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-5 *1 (-969 *5 *4 *6 *7 *3)))) (-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1193 *2))) (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-4 *2 (-13 (-374) (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $))))) (-5 *1 (-969 *5 *4 *6 *7 *2)) (-4 *7 (-968 *6 *5 *4)))) (-1421 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-419 (-1193 *3))) (-5 *1 (-969 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $))))))) (-3477 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1070)) (-4 *6 (-968 *5 *4 *2)) (-4 *2 (-861)) (-5 *1 (-969 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4113 ($ *6)) (-15 -2687 (*6 $)) (-15 -2697 (*6 $))))))) (-1585 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *5)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $)))))))) -(-10 -7 (-15 -1585 ((-656 |#2|) |#5|)) (-15 -3477 ((-3 |#2| "failed") |#5|)) (-15 -1421 ((-419 (-1193 |#5|)) |#5| |#2|)) (-15 -1574 (|#5| (-419 (-1193 |#5|)) |#2|)) (-15 -1421 ((-1193 |#5|) |#5| |#2| (-1193 |#5|))) (-15 -2646 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -4050 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1608 ((-3 (-2 (|:| |var| |#2|) (|:| -4080 (-576))) "failed") |#5|)) (-15 -3838 ((-3 (-2 (|:| |val| |#5|) (|:| -4080 (-576))) "failed") |#5|))) -((-2423 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2423 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-805) (-861) (-1070) (-968 |#3| |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (T -970)) -((-2423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *6 (-805)) (-4 *2 (-13 (-1121) (-10 -8 (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (-5 *1 (-970 *6 *7 *8 *5 *2)) (-4 *5 (-968 *8 *6 *7))))) -(-10 -7 (-15 -2423 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1585 (((-656 (-1197)) $) 16)) (-1421 (((-1193 $) $ (-1197)) 21) (((-1193 |#1|) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 (-1197))) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2658 (($ $) NIL (|has| |#1| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) 8) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1197) "failed") $) NIL)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1197) $) NIL)) (-2970 (($ $ $ (-1197)) NIL (|has| |#1| (-174)))) (-3310 (($ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1197)) NIL (|has| |#1| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#1| (-928)))) (-1975 (($ $ |#1| (-543 (-1197)) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1197) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1197) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-1574 (($ (-1193 |#1|) (-1197)) NIL) (($ (-1193 $) (-1197)) NIL)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ (-1197)) NIL)) (-2192 (((-543 (-1197)) $) NIL) (((-783) $ (-1197)) NIL) (((-656 (-783)) $ (-656 (-1197))) NIL)) (-3784 (($ (-1 (-543 (-1197)) (-543 (-1197))) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-3477 (((-3 (-1197) "failed") $) 19)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2447 (((-1179) $) NIL)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| (-1197)) (|:| -4080 (-783))) "failed") $) NIL)) (-4412 (($ $ (-1197)) 29 (|has| |#1| (-38 (-419 (-576)))))) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) NIL)) (-1686 ((|#1| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-928)))) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1197) |#1|) NIL) (($ $ (-656 (-1197)) (-656 |#1|)) NIL) (($ $ (-1197) $) NIL) (($ $ (-656 (-1197)) (-656 $)) NIL)) (-1790 (($ $ (-1197)) NIL (|has| |#1| (-174)))) (-4107 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-2196 (((-543 (-1197)) $) NIL) (((-783) $ (-1197)) NIL) (((-656 (-783)) $ (-656 (-1197))) NIL)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| (-1197) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1197) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1197) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1944 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1197)) NIL (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-4113 (((-876) $) 25) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1197)) 27) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-971 |#1|) (-13 (-968 |#1| (-543 (-1197)) (-1197)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1197))) |%noBranch|))) (-1070)) (T -971)) -((-4412 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-971 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070))))) -(-13 (-968 |#1| (-543 (-1197)) (-1197)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1197))) |%noBranch|))) -((-3338 (((-2 (|:| -4080 (-783)) (|:| -2862 |#5|) (|:| |radicand| |#5|)) |#3| (-783)) 49)) (-1467 (((-2 (|:| -4080 (-783)) (|:| -2862 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783)) 44)) (-3025 (((-2 (|:| -4080 (-783)) (|:| -2862 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)) 65)) (-2723 (((-2 (|:| -4080 (-783)) (|:| -2862 |#5|) (|:| |radicand| |#5|)) |#5| (-783)) 74 (|has| |#3| (-464))))) -(((-972 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3338 ((-2 (|:| -4080 (-783)) (|:| -2862 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -1467 ((-2 (|:| -4080 (-783)) (|:| -2862 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -2723 ((-2 (|:| -4080 (-783)) (|:| -2862 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -3025 ((-2 (|:| -4080 (-783)) (|:| -2862 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) (-805) (-861) (-568) (-968 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -4113 ($ |#4|)) (-15 -2687 (|#4| $)) (-15 -2697 (|#4| $))))) (T -972)) -((-3025 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *3 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -4080 (-783)) (|:| -2862 *3) (|:| |radicand| (-656 *3)))) (-5 *1 (-972 *5 *6 *7 *3 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -4113 ($ *3)) (-15 -2687 (*3 $)) (-15 -2697 (*3 $))))))) (-2723 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *8 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -4080 (-783)) (|:| -2862 *3) (|:| |radicand| *3))) (-5 *1 (-972 *5 *6 *7 *8 *3)) (-5 *4 (-783)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4113 ($ *8)) (-15 -2687 (*8 $)) (-15 -2697 (*8 $))))))) (-1467 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) (-4 *8 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -4080 (-783)) (|:| -2862 *9) (|:| |radicand| *9))) (-5 *1 (-972 *5 *6 *7 *8 *9)) (-5 *4 (-783)) (-4 *9 (-13 (-374) (-10 -8 (-15 -4113 ($ *8)) (-15 -2687 (*8 $)) (-15 -2697 (*8 $))))))) (-3338 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-568)) (-4 *7 (-968 *3 *5 *6)) (-5 *2 (-2 (|:| -4080 (-783)) (|:| -2862 *8) (|:| |radicand| *8))) (-5 *1 (-972 *5 *6 *3 *7 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $)))))))) -(-10 -7 (-15 -3338 ((-2 (|:| -4080 (-783)) (|:| -2862 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -1467 ((-2 (|:| -4080 (-783)) (|:| -2862 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -2723 ((-2 (|:| -4080 (-783)) (|:| -2862 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -3025 ((-2 (|:| -4080 (-783)) (|:| -2862 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) -((-1957 (((-112) $ $) NIL)) (-4228 (($ (-1141)) 8)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 15) (((-1141) $) 12)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 11))) -(((-973) (-13 (-1121) (-625 (-1141)) (-10 -8 (-15 -4228 ($ (-1141)))))) (T -973)) -((-4228 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-973))))) -(-13 (-1121) (-625 (-1141)) (-10 -8 (-15 -4228 ($ (-1141))))) -((-3753 (((-1115 (-227)) $) 8)) (-3742 (((-1115 (-227)) $) 9)) (-1373 (((-656 (-656 (-962 (-227)))) $) 10)) (-4113 (((-876) $) 6))) -(((-974) (-141)) (T -974)) -((-1373 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-656 (-656 (-962 (-227))))))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227))))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227)))))) -(-13 (-625 (-876)) (-10 -8 (-15 -1373 ((-656 (-656 (-962 (-227)))) $)) (-15 -3742 ((-1115 (-227)) $)) (-15 -3753 ((-1115 (-227)) $)))) -(((-625 (-876)) . T)) -((-4354 (((-3 (-701 |#1|) "failed") |#2| (-940)) 18))) -(((-975 |#1| |#2|) (-10 -7 (-15 -4354 ((-3 (-701 |#1|) "failed") |#2| (-940)))) (-568) (-668 |#1|)) (T -975)) -((-4354 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-940)) (-4 *5 (-568)) (-5 *2 (-701 *5)) (-5 *1 (-975 *5 *3)) (-4 *3 (-668 *5))))) -(-10 -7 (-15 -4354 ((-3 (-701 |#1|) "failed") |#2| (-940)))) -((-4324 (((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|) 16)) (-2721 ((|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|) 18)) (-2423 (((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)) 13))) -(((-976 |#1| |#2|) (-10 -7 (-15 -4324 ((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -2423 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)))) (-1238) (-1238)) (T -976)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-977 *6)) (-5 *1 (-976 *5 *6)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-976 *5 *2)))) (-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-977 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-977 *5)) (-5 *1 (-976 *6 *5))))) -(-10 -7 (-15 -4324 ((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -2423 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-2380 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#1| $ (-576) |#1|) 19 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) 18 (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) 16)) (-3539 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1991 (($ (-783) |#1|) 15)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) 11 (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-2748 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1755 ((|#1| $) NIL (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4267 (($ $ |#1|) 20 (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) 12)) (-4369 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 17) (($ $ (-1255 (-576))) NIL)) (-2335 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) 21)) (-1556 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 14)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-1970 (((-783) $) 8 (|has| $ (-6 -4464))))) -(((-977 |#1|) (-19 |#1|) (-1238)) (T -977)) +((-1865 ((|#2| (-657 |#1|) (-657 |#1|)) 28))) +(((-942 |#1| |#2|) (-10 -7 (-15 -1865 (|#2| (-657 |#1|) (-657 |#1|)))) (-374) (-1265 |#1|)) (T -942)) +((-1865 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-374)) (-4 *2 (-1265 *4)) (-5 *1 (-942 *4 *2))))) +(-10 -7 (-15 -1865 (|#2| (-657 |#1|) (-657 |#1|)))) +((-1643 (((-1194 |#2|) (-657 |#2|) (-657 |#2|)) 17) (((-1262 |#1| |#2|) (-1262 |#1| |#2|) (-657 |#2|) (-657 |#2|)) 13))) +(((-943 |#1| |#2|) (-10 -7 (-15 -1643 ((-1262 |#1| |#2|) (-1262 |#1| |#2|) (-657 |#2|) (-657 |#2|))) (-15 -1643 ((-1194 |#2|) (-657 |#2|) (-657 |#2|)))) (-1198) (-374)) (T -943)) +((-1643 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *5)) (-4 *5 (-374)) (-5 *2 (-1194 *5)) (-5 *1 (-943 *4 *5)) (-14 *4 (-1198)))) (-1643 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1262 *4 *5)) (-5 *3 (-657 *5)) (-14 *4 (-1198)) (-4 *5 (-374)) (-5 *1 (-943 *4 *5))))) +(-10 -7 (-15 -1643 ((-1262 |#1| |#2|) (-1262 |#1| |#2|) (-657 |#2|) (-657 |#2|))) (-15 -1643 ((-1194 |#2|) (-657 |#2|) (-657 |#2|)))) +((-2601 (((-576) (-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-1180)) 174)) (-4007 ((|#4| |#4|) 193)) (-3311 (((-657 (-419 (-972 |#1|))) (-657 (-1198))) 146)) (-4100 (((-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))) (-702 |#4|) (-657 (-419 (-972 |#1|))) (-657 (-657 |#4|)) (-784) (-784) (-576)) 88)) (-1749 (((-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))) (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))) (-657 |#4|)) 69)) (-3747 (((-702 |#4|) (-702 |#4|) (-657 |#4|)) 65)) (-2691 (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-1180)) 186)) (-2511 (((-576) (-702 |#4|) (-941) (-1180)) 166) (((-576) (-702 |#4|) (-657 (-1198)) (-941) (-1180)) 165) (((-576) (-702 |#4|) (-657 |#4|) (-941) (-1180)) 164) (((-576) (-702 |#4|) (-1180)) 154) (((-576) (-702 |#4|) (-657 (-1198)) (-1180)) 153) (((-576) (-702 |#4|) (-657 |#4|) (-1180)) 152) (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-941)) 151) (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 (-1198)) (-941)) 150) (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 |#4|) (-941)) 149) (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|)) 148) (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 (-1198))) 147) (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 |#4|)) 143)) (-1652 ((|#4| (-972 |#1|)) 80)) (-1755 (((-112) (-657 |#4|) (-657 (-657 |#4|))) 190)) (-1770 (((-657 (-657 (-576))) (-576) (-576)) 159)) (-2454 (((-657 (-657 |#4|)) (-657 (-657 |#4|))) 106)) (-2640 (((-784) (-657 (-2 (|:| -4343 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|))))) 100)) (-2447 (((-784) (-657 (-2 (|:| -4343 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|))))) 99)) (-2451 (((-112) (-657 (-972 |#1|))) 19) (((-112) (-657 |#4|)) 15)) (-3803 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-657 |#4|)) (|:| |n0| (-657 |#4|))) (-657 |#4|) (-657 |#4|)) 84)) (-2810 (((-657 |#4|) |#4|) 57)) (-2492 (((-657 (-419 (-972 |#1|))) (-657 |#4|)) 142) (((-702 (-419 (-972 |#1|))) (-702 |#4|)) 66) (((-419 (-972 |#1|)) |#4|) 139)) (-2914 (((-2 (|:| |rgl| (-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))))))) (|:| |rgsz| (-576))) (-702 |#4|) (-657 (-419 (-972 |#1|))) (-784) (-1180) (-576)) 112)) (-3919 (((-657 (-2 (|:| -4343 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))) (-702 |#4|) (-784)) 98)) (-3462 (((-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) (-702 |#4|) (-784)) 121)) (-3482 (((-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))) (-2 (|:| -3962 (-702 (-419 (-972 |#1|)))) (|:| |vec| (-657 (-419 (-972 |#1|)))) (|:| -4343 (-784)) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) 56))) +(((-944 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2511 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 |#4|))) (-15 -2511 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 (-1198)))) (-15 -2511 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|))) (-15 -2511 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 |#4|) (-941))) (-15 -2511 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 (-1198)) (-941))) (-15 -2511 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-941))) (-15 -2511 ((-576) (-702 |#4|) (-657 |#4|) (-1180))) (-15 -2511 ((-576) (-702 |#4|) (-657 (-1198)) (-1180))) (-15 -2511 ((-576) (-702 |#4|) (-1180))) (-15 -2511 ((-576) (-702 |#4|) (-657 |#4|) (-941) (-1180))) (-15 -2511 ((-576) (-702 |#4|) (-657 (-1198)) (-941) (-1180))) (-15 -2511 ((-576) (-702 |#4|) (-941) (-1180))) (-15 -2601 ((-576) (-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-1180))) (-15 -2691 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-1180))) (-15 -2914 ((-2 (|:| |rgl| (-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))))))) (|:| |rgsz| (-576))) (-702 |#4|) (-657 (-419 (-972 |#1|))) (-784) (-1180) (-576))) (-15 -2492 ((-419 (-972 |#1|)) |#4|)) (-15 -2492 ((-702 (-419 (-972 |#1|))) (-702 |#4|))) (-15 -2492 ((-657 (-419 (-972 |#1|))) (-657 |#4|))) (-15 -3311 ((-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -1652 (|#4| (-972 |#1|))) (-15 -3803 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-657 |#4|)) (|:| |n0| (-657 |#4|))) (-657 |#4|) (-657 |#4|))) (-15 -3919 ((-657 (-2 (|:| -4343 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))) (-702 |#4|) (-784))) (-15 -1749 ((-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))) (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))) (-657 |#4|))) (-15 -3482 ((-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))) (-2 (|:| -3962 (-702 (-419 (-972 |#1|)))) (|:| |vec| (-657 (-419 (-972 |#1|)))) (|:| -4343 (-784)) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (-15 -2810 ((-657 |#4|) |#4|)) (-15 -2447 ((-784) (-657 (-2 (|:| -4343 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))))) (-15 -2640 ((-784) (-657 (-2 (|:| -4343 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))))) (-15 -2454 ((-657 (-657 |#4|)) (-657 (-657 |#4|)))) (-15 -1770 ((-657 (-657 (-576))) (-576) (-576))) (-15 -1755 ((-112) (-657 |#4|) (-657 (-657 |#4|)))) (-15 -3462 ((-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) (-702 |#4|) (-784))) (-15 -3747 ((-702 |#4|) (-702 |#4|) (-657 |#4|))) (-15 -4100 ((-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))) (-702 |#4|) (-657 (-419 (-972 |#1|))) (-657 (-657 |#4|)) (-784) (-784) (-576))) (-15 -4007 (|#4| |#4|)) (-15 -2451 ((-112) (-657 |#4|))) (-15 -2451 ((-112) (-657 (-972 |#1|))))) (-13 (-317) (-148)) (-13 (-862) (-626 (-1198))) (-806) (-969 |#1| |#3| |#2|)) (T -944)) +((-2451 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-112)) (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-112)) (-5 *1 (-944 *4 *5 *6 *7)))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1198)))) (-4 *5 (-806)) (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-969 *3 *5 *4)))) (-4100 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) (-5 *4 (-702 *12)) (-5 *5 (-657 (-419 (-972 *9)))) (-5 *6 (-657 (-657 *12))) (-5 *7 (-784)) (-5 *8 (-576)) (-4 *9 (-13 (-317) (-148))) (-4 *12 (-969 *9 *11 *10)) (-4 *10 (-13 (-862) (-626 (-1198)))) (-4 *11 (-806)) (-5 *2 (-2 (|:| |eqzro| (-657 *12)) (|:| |neqzro| (-657 *12)) (|:| |wcond| (-657 (-972 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *9)))) (|:| -2469 (-657 (-1289 (-419 (-972 *9))))))))) (-5 *1 (-944 *9 *10 *11 *12)))) (-3747 (*1 *2 *2 *3) (-12 (-5 *2 (-702 *7)) (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *1 (-944 *4 *5 *6 *7)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *8)) (-5 *4 (-784)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-657 (-2 (|:| |det| *8) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (-5 *1 (-944 *5 *6 *7 *8)))) (-1755 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-657 *8))) (-5 *3 (-657 *8)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-112)) (-5 *1 (-944 *5 *6 *7 *8)))) (-1770 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-657 (-657 (-576)))) (-5 *1 (-944 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-969 *4 *6 *5)))) (-2454 (*1 *2 *2) (-12 (-5 *2 (-657 (-657 *6))) (-4 *6 (-969 *3 *5 *4)) (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1198)))) (-4 *5 (-806)) (-5 *1 (-944 *3 *4 *5 *6)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -4343 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| *7) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 *7))))) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-784)) (-5 *1 (-944 *4 *5 *6 *7)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -4343 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| *7) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 *7))))) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-784)) (-5 *1 (-944 *4 *5 *6 *7)))) (-2810 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-657 *3)) (-5 *1 (-944 *4 *5 *6 *3)) (-4 *3 (-969 *4 *6 *5)))) (-3482 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3962 (-702 (-419 (-972 *4)))) (|:| |vec| (-657 (-419 (-972 *4)))) (|:| -4343 (-784)) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) (|:| -2469 (-657 (-1289 (-419 (-972 *4))))))) (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5)))) (-1749 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) (|:| -2469 (-657 (-1289 (-419 (-972 *4))))))) (-5 *3 (-657 *7)) (-4 *4 (-13 (-317) (-148))) (-4 *7 (-969 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *1 (-944 *4 *5 *6 *7)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *8)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-657 (-2 (|:| -4343 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| *8) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 *8))))) (-5 *1 (-944 *5 *6 *7 *8)) (-5 *4 (-784)))) (-3803 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-4 *7 (-969 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-657 *7)) (|:| |n0| (-657 *7)))) (-5 *1 (-944 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-972 *4)) (-4 *4 (-13 (-317) (-148))) (-4 *2 (-969 *4 *6 *5)) (-5 *1 (-944 *4 *5 *6 *2)) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-657 (-1198))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-657 (-419 (-972 *4)))) (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5)))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-657 (-419 (-972 *4)))) (-5 *1 (-944 *4 *5 *6 *7)))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-702 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-702 (-419 (-972 *4)))) (-5 *1 (-944 *4 *5 *6 *7)))) (-2492 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-419 (-972 *4))) (-5 *1 (-944 *4 *5 *6 *3)) (-4 *3 (-969 *4 *6 *5)))) (-2914 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-702 *11)) (-5 *4 (-657 (-419 (-972 *8)))) (-5 *5 (-784)) (-5 *6 (-1180)) (-4 *8 (-13 (-317) (-148))) (-4 *11 (-969 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1198)))) (-4 *10 (-806)) (-5 *2 (-2 (|:| |rgl| (-657 (-2 (|:| |eqzro| (-657 *11)) (|:| |neqzro| (-657 *11)) (|:| |wcond| (-657 (-972 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *8)))) (|:| -2469 (-657 (-1289 (-419 (-972 *8)))))))))) (|:| |rgsz| (-576)))) (-5 *1 (-944 *8 *9 *10 *11)) (-5 *7 (-576)))) (-2691 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *7)) (|:| |neqzro| (-657 *7)) (|:| |wcond| (-657 (-972 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) (|:| -2469 (-657 (-1289 (-419 (-972 *4)))))))))) (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5)))) (-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) (|:| |wcond| (-657 (-972 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) (|:| -2469 (-657 (-1289 (-419 (-972 *5)))))))))) (-5 *4 (-1180)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-969 *5 *7 *6)) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *5 *6 *7 *8)))) (-2511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *9)) (-5 *4 (-941)) (-5 *5 (-1180)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *6 *7 *8 *9)))) (-2511 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-702 *10)) (-5 *4 (-657 (-1198))) (-5 *5 (-941)) (-5 *6 (-1180)) (-4 *10 (-969 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1198)))) (-4 *9 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *7 *8 *9 *10)))) (-2511 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-702 *10)) (-5 *4 (-657 *10)) (-5 *5 (-941)) (-5 *6 (-1180)) (-4 *10 (-969 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1198)))) (-4 *9 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *7 *8 *9 *10)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *8)) (-5 *4 (-1180)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *5 *6 *7 *8)))) (-2511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *9)) (-5 *4 (-657 (-1198))) (-5 *5 (-1180)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *6 *7 *8 *9)))) (-2511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *9)) (-5 *4 (-657 *9)) (-5 *5 (-1180)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *6 *7 *8 *9)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *8)) (-5 *4 (-941)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) (|:| |wcond| (-657 (-972 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) (|:| -2469 (-657 (-1289 (-419 (-972 *5)))))))))) (-5 *1 (-944 *5 *6 *7 *8)))) (-2511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *9)) (-5 *4 (-657 (-1198))) (-5 *5 (-941)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *9)) (|:| |neqzro| (-657 *9)) (|:| |wcond| (-657 (-972 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *6)))) (|:| -2469 (-657 (-1289 (-419 (-972 *6)))))))))) (-5 *1 (-944 *6 *7 *8 *9)))) (-2511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *9)) (-5 *5 (-941)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *9)) (|:| |neqzro| (-657 *9)) (|:| |wcond| (-657 (-972 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *6)))) (|:| -2469 (-657 (-1289 (-419 (-972 *6)))))))))) (-5 *1 (-944 *6 *7 *8 *9)) (-5 *4 (-657 *9)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-702 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *7)) (|:| |neqzro| (-657 *7)) (|:| |wcond| (-657 (-972 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) (|:| -2469 (-657 (-1289 (-419 (-972 *4)))))))))) (-5 *1 (-944 *4 *5 *6 *7)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *8)) (-5 *4 (-657 (-1198))) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) (|:| |wcond| (-657 (-972 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) (|:| -2469 (-657 (-1289 (-419 (-972 *5)))))))))) (-5 *1 (-944 *5 *6 *7 *8)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *8)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) (|:| |wcond| (-657 (-972 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) (|:| -2469 (-657 (-1289 (-419 (-972 *5)))))))))) (-5 *1 (-944 *5 *6 *7 *8)) (-5 *4 (-657 *8))))) +(-10 -7 (-15 -2511 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 |#4|))) (-15 -2511 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 (-1198)))) (-15 -2511 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|))) (-15 -2511 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 |#4|) (-941))) (-15 -2511 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 (-1198)) (-941))) (-15 -2511 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-941))) (-15 -2511 ((-576) (-702 |#4|) (-657 |#4|) (-1180))) (-15 -2511 ((-576) (-702 |#4|) (-657 (-1198)) (-1180))) (-15 -2511 ((-576) (-702 |#4|) (-1180))) (-15 -2511 ((-576) (-702 |#4|) (-657 |#4|) (-941) (-1180))) (-15 -2511 ((-576) (-702 |#4|) (-657 (-1198)) (-941) (-1180))) (-15 -2511 ((-576) (-702 |#4|) (-941) (-1180))) (-15 -2601 ((-576) (-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-1180))) (-15 -2691 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|))))))))) (-1180))) (-15 -2914 ((-2 (|:| |rgl| (-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))))))) (|:| |rgsz| (-576))) (-702 |#4|) (-657 (-419 (-972 |#1|))) (-784) (-1180) (-576))) (-15 -2492 ((-419 (-972 |#1|)) |#4|)) (-15 -2492 ((-702 (-419 (-972 |#1|))) (-702 |#4|))) (-15 -2492 ((-657 (-419 (-972 |#1|))) (-657 |#4|))) (-15 -3311 ((-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -1652 (|#4| (-972 |#1|))) (-15 -3803 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-657 |#4|)) (|:| |n0| (-657 |#4|))) (-657 |#4|) (-657 |#4|))) (-15 -3919 ((-657 (-2 (|:| -4343 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))) (-702 |#4|) (-784))) (-15 -1749 ((-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))) (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))) (-657 |#4|))) (-15 -3482 ((-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))) (-2 (|:| -3962 (-702 (-419 (-972 |#1|)))) (|:| |vec| (-657 (-419 (-972 |#1|)))) (|:| -4343 (-784)) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (-15 -2810 ((-657 |#4|) |#4|)) (-15 -2447 ((-784) (-657 (-2 (|:| -4343 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))))) (-15 -2640 ((-784) (-657 (-2 (|:| -4343 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))))) (-15 -2454 ((-657 (-657 |#4|)) (-657 (-657 |#4|)))) (-15 -1770 ((-657 (-657 (-576))) (-576) (-576))) (-15 -1755 ((-112) (-657 |#4|) (-657 (-657 |#4|)))) (-15 -3462 ((-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) (-702 |#4|) (-784))) (-15 -3747 ((-702 |#4|) (-702 |#4|) (-657 |#4|))) (-15 -4100 ((-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -2469 (-657 (-1289 (-419 (-972 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))) (-702 |#4|) (-657 (-419 (-972 |#1|))) (-657 (-657 |#4|)) (-784) (-784) (-576))) (-15 -4007 (|#4| |#4|)) (-15 -2451 ((-112) (-657 |#4|))) (-15 -2451 ((-112) (-657 (-972 |#1|))))) +((-2456 (((-947) |#1| (-1198)) 17) (((-947) |#1| (-1198) (-1116 (-227))) 21)) (-2263 (((-947) |#1| |#1| (-1198) (-1116 (-227))) 19) (((-947) |#1| (-1198) (-1116 (-227))) 15))) +(((-945 |#1|) (-10 -7 (-15 -2263 ((-947) |#1| (-1198) (-1116 (-227)))) (-15 -2263 ((-947) |#1| |#1| (-1198) (-1116 (-227)))) (-15 -2456 ((-947) |#1| (-1198) (-1116 (-227)))) (-15 -2456 ((-947) |#1| (-1198)))) (-626 (-548))) (T -945)) +((-2456 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-947)) (-5 *1 (-945 *3)) (-4 *3 (-626 (-548))))) (-2456 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-1116 (-227))) (-5 *2 (-947)) (-5 *1 (-945 *3)) (-4 *3 (-626 (-548))))) (-2263 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-1116 (-227))) (-5 *2 (-947)) (-5 *1 (-945 *3)) (-4 *3 (-626 (-548))))) (-2263 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-1116 (-227))) (-5 *2 (-947)) (-5 *1 (-945 *3)) (-4 *3 (-626 (-548)))))) +(-10 -7 (-15 -2263 ((-947) |#1| (-1198) (-1116 (-227)))) (-15 -2263 ((-947) |#1| |#1| (-1198) (-1116 (-227)))) (-15 -2456 ((-947) |#1| (-1198) (-1116 (-227)))) (-15 -2456 ((-947) |#1| (-1198)))) +((-2707 (($ $ (-1116 (-227)) (-1116 (-227)) (-1116 (-227))) 121)) (-1788 (((-1116 (-227)) $) 64)) (-1777 (((-1116 (-227)) $) 63)) (-1763 (((-1116 (-227)) $) 62)) (-2602 (((-657 (-657 (-227))) $) 69)) (-1581 (((-1116 (-227)) $) 65)) (-3581 (((-576) (-576)) 57)) (-3192 (((-576) (-576)) 52)) (-3745 (((-576) (-576)) 55)) (-2497 (((-112) (-112)) 59)) (-3667 (((-576)) 56)) (-3397 (($ $ (-1116 (-227))) 124) (($ $) 125)) (-1474 (($ (-1 (-963 (-227)) (-227)) (-1116 (-227))) 131) (($ (-1 (-963 (-227)) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227))) 132)) (-2263 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227))) 135) (($ $ (-1116 (-227))) 127)) (-2519 (((-576)) 60)) (-1784 (((-576)) 50)) (-3378 (((-576)) 53)) (-1592 (((-657 (-657 (-963 (-227)))) $) 151)) (-1635 (((-112) (-112)) 61)) (-3515 (((-877) $) 149)) (-3641 (((-112)) 58))) +(((-946) (-13 (-996) (-10 -8 (-15 -1474 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)))) (-15 -1474 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -2263 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)))) (-15 -2263 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -2263 ($ $ (-1116 (-227)))) (-15 -2707 ($ $ (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -3397 ($ $ (-1116 (-227)))) (-15 -3397 ($ $)) (-15 -1581 ((-1116 (-227)) $)) (-15 -2602 ((-657 (-657 (-227))) $)) (-15 -1784 ((-576))) (-15 -3192 ((-576) (-576))) (-15 -3378 ((-576))) (-15 -3745 ((-576) (-576))) (-15 -3667 ((-576))) (-15 -3581 ((-576) (-576))) (-15 -3641 ((-112))) (-15 -2497 ((-112) (-112))) (-15 -2519 ((-576))) (-15 -1635 ((-112) (-112)))))) (T -946)) +((-1474 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-946)))) (-1474 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-946)))) (-2263 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-946)))) (-2263 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-946)))) (-2263 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) (-2707 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) (-3397 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) (-3397 (*1 *1 *1) (-5 *1 (-946))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-227)))) (-5 *1 (-946)))) (-1784 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3192 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3378 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3667 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3581 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3641 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-2497 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-2519 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-1635 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) +(-13 (-996) (-10 -8 (-15 -1474 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)))) (-15 -1474 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -2263 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)))) (-15 -2263 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -2263 ($ $ (-1116 (-227)))) (-15 -2707 ($ $ (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -3397 ($ $ (-1116 (-227)))) (-15 -3397 ($ $)) (-15 -1581 ((-1116 (-227)) $)) (-15 -2602 ((-657 (-657 (-227))) $)) (-15 -1784 ((-576))) (-15 -3192 ((-576) (-576))) (-15 -3378 ((-576))) (-15 -3745 ((-576) (-576))) (-15 -3667 ((-576))) (-15 -3581 ((-576) (-576))) (-15 -3641 ((-112))) (-15 -2497 ((-112) (-112))) (-15 -2519 ((-576))) (-15 -1635 ((-112) (-112))))) +((-2707 (($ $ (-1116 (-227))) 122) (($ $ (-1116 (-227)) (-1116 (-227))) 123)) (-1777 (((-1116 (-227)) $) 73)) (-1763 (((-1116 (-227)) $) 72)) (-1581 (((-1116 (-227)) $) 74)) (-1611 (((-576) (-576)) 66)) (-2210 (((-576) (-576)) 61)) (-2554 (((-576) (-576)) 64)) (-1959 (((-112) (-112)) 68)) (-4306 (((-576)) 65)) (-3397 (($ $ (-1116 (-227))) 126) (($ $) 127)) (-1474 (($ (-1 (-963 (-227)) (-227)) (-1116 (-227))) 141) (($ (-1 (-963 (-227)) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227))) 142)) (-2456 (($ (-1 (-227) (-227)) (-1116 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-2263 (($ (-1 (-227) (-227)) (-1116 (-227))) 137) (($ (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227))) 138) (($ (-657 (-1 (-227) (-227))) (-1116 (-227))) 146) (($ (-657 (-1 (-227) (-227))) (-1116 (-227)) (-1116 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227))) 140) (($ $ (-1116 (-227))) 128)) (-3678 (((-112) $) 69)) (-4273 (((-576)) 70)) (-2035 (((-576)) 59)) (-4106 (((-576)) 62)) (-1592 (((-657 (-657 (-963 (-227)))) $) 35)) (-2052 (((-112) (-112)) 71)) (-3515 (((-877) $) 167)) (-2499 (((-112)) 67))) +(((-947) (-13 (-975) (-10 -8 (-15 -2263 ($ (-1 (-227) (-227)) (-1116 (-227)))) (-15 -2263 ($ (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -2263 ($ (-657 (-1 (-227) (-227))) (-1116 (-227)))) (-15 -2263 ($ (-657 (-1 (-227) (-227))) (-1116 (-227)) (-1116 (-227)))) (-15 -2263 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)))) (-15 -2263 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -1474 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)))) (-15 -1474 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -2456 ($ (-1 (-227) (-227)) (-1116 (-227)))) (-15 -2456 ($ (-1 (-227) (-227)))) (-15 -2263 ($ $ (-1116 (-227)))) (-15 -3678 ((-112) $)) (-15 -2707 ($ $ (-1116 (-227)))) (-15 -2707 ($ $ (-1116 (-227)) (-1116 (-227)))) (-15 -3397 ($ $ (-1116 (-227)))) (-15 -3397 ($ $)) (-15 -1581 ((-1116 (-227)) $)) (-15 -2035 ((-576))) (-15 -2210 ((-576) (-576))) (-15 -4106 ((-576))) (-15 -2554 ((-576) (-576))) (-15 -4306 ((-576))) (-15 -1611 ((-576) (-576))) (-15 -2499 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -4273 ((-576))) (-15 -2052 ((-112) (-112)))))) (T -947)) +((-2263 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-2263 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-2263 (*1 *1 *2 *3) (-12 (-5 *2 (-657 (-1 (-227) (-227)))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-2263 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-657 (-1 (-227) (-227)))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-2263 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-2263 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-1474 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-1474 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-2456 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-2456 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-947)))) (-2263 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-947)))) (-2707 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) (-2707 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) (-3397 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) (-3397 (*1 *1 *1) (-5 *1 (-947))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) (-2035 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-2210 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-4106 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-2554 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-4306 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-1611 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-2499 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-947)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-947)))) (-4273 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-2052 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-947))))) +(-13 (-975) (-10 -8 (-15 -2263 ($ (-1 (-227) (-227)) (-1116 (-227)))) (-15 -2263 ($ (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -2263 ($ (-657 (-1 (-227) (-227))) (-1116 (-227)))) (-15 -2263 ($ (-657 (-1 (-227) (-227))) (-1116 (-227)) (-1116 (-227)))) (-15 -2263 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)))) (-15 -2263 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -1474 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)))) (-15 -1474 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -2456 ($ (-1 (-227) (-227)) (-1116 (-227)))) (-15 -2456 ($ (-1 (-227) (-227)))) (-15 -2263 ($ $ (-1116 (-227)))) (-15 -3678 ((-112) $)) (-15 -2707 ($ $ (-1116 (-227)))) (-15 -2707 ($ $ (-1116 (-227)) (-1116 (-227)))) (-15 -3397 ($ $ (-1116 (-227)))) (-15 -3397 ($ $)) (-15 -1581 ((-1116 (-227)) $)) (-15 -2035 ((-576))) (-15 -2210 ((-576) (-576))) (-15 -4106 ((-576))) (-15 -2554 ((-576) (-576))) (-15 -4306 ((-576))) (-15 -1611 ((-576) (-576))) (-15 -2499 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -4273 ((-576))) (-15 -2052 ((-112) (-112))))) +((-2337 (((-657 (-1116 (-227))) (-657 (-657 (-963 (-227))))) 34))) +(((-948) (-10 -7 (-15 -2337 ((-657 (-1116 (-227))) (-657 (-657 (-963 (-227)))))))) (T -948)) +((-2337 (*1 *2 *3) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *2 (-657 (-1116 (-227)))) (-5 *1 (-948))))) +(-10 -7 (-15 -2337 ((-657 (-1116 (-227))) (-657 (-657 (-963 (-227))))))) +((-2206 ((|#2| |#2|) 28)) (-4159 ((|#2| |#2|) 29)) (-1491 ((|#2| |#2|) 27)) (-2708 ((|#2| |#2| (-518)) 26))) +(((-949 |#1| |#2|) (-10 -7 (-15 -2708 (|#2| |#2| (-518))) (-15 -1491 (|#2| |#2|)) (-15 -2206 (|#2| |#2|)) (-15 -4159 (|#2| |#2|))) (-1122) (-442 |#1|)) (T -949)) +((-4159 (*1 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-442 *3)))) (-2206 (*1 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-442 *3)))) (-1491 (*1 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-442 *3)))) (-2708 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1122)) (-5 *1 (-949 *4 *2)) (-4 *2 (-442 *4))))) +(-10 -7 (-15 -2708 (|#2| |#2| (-518))) (-15 -1491 (|#2| |#2|)) (-15 -2206 (|#2| |#2|)) (-15 -4159 (|#2| |#2|))) +((-2206 (((-326 (-576)) (-1198)) 16)) (-4159 (((-326 (-576)) (-1198)) 14)) (-1491 (((-326 (-576)) (-1198)) 12)) (-2708 (((-326 (-576)) (-1198) (-518)) 19))) +(((-950) (-10 -7 (-15 -2708 ((-326 (-576)) (-1198) (-518))) (-15 -1491 ((-326 (-576)) (-1198))) (-15 -2206 ((-326 (-576)) (-1198))) (-15 -4159 ((-326 (-576)) (-1198))))) (T -950)) +((-4159 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-576))) (-5 *1 (-950)))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-576))) (-5 *1 (-950)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-576))) (-5 *1 (-950)))) (-2708 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-950))))) +(-10 -7 (-15 -2708 ((-326 (-576)) (-1198) (-518))) (-15 -1491 ((-326 (-576)) (-1198))) (-15 -2206 ((-326 (-576)) (-1198))) (-15 -4159 ((-326 (-576)) (-1198)))) +((-2008 (((-905 |#1| |#3|) |#2| (-908 |#1|) (-905 |#1| |#3|)) 25)) (-4121 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -4121 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2008 ((-905 |#1| |#3|) |#2| (-908 |#1|) (-905 |#1| |#3|)))) (-1122) (-902 |#1|) (-13 (-1122) (-1060 |#2|))) (T -951)) +((-2008 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 *6)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-4 *6 (-13 (-1122) (-1060 *3))) (-4 *3 (-902 *5)) (-5 *1 (-951 *5 *3 *6)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1122) (-1060 *5))) (-4 *5 (-902 *4)) (-4 *4 (-1122)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-951 *4 *5 *6))))) +(-10 -7 (-15 -4121 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2008 ((-905 |#1| |#3|) |#2| (-908 |#1|) (-905 |#1| |#3|)))) +((-2008 (((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)) 30))) +(((-952 |#1| |#2| |#3|) (-10 -7 (-15 -2008 ((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)))) (-1122) (-13 (-568) (-902 |#1|)) (-13 (-442 |#2|) (-626 (-908 |#1|)) (-902 |#1|) (-1060 (-624 $)))) (T -952)) +((-2008 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 *3)) (-4 *5 (-1122)) (-4 *3 (-13 (-442 *6) (-626 *4) (-902 *5) (-1060 (-624 $)))) (-5 *4 (-908 *5)) (-4 *6 (-13 (-568) (-902 *5))) (-5 *1 (-952 *5 *6 *3))))) +(-10 -7 (-15 -2008 ((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)))) +((-2008 (((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|)) 13))) +(((-953 |#1|) (-10 -7 (-15 -2008 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|)))) (-557)) (T -953)) +((-2008 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 (-576) *3)) (-5 *4 (-908 (-576))) (-4 *3 (-557)) (-5 *1 (-953 *3))))) +(-10 -7 (-15 -2008 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|)))) +((-2008 (((-905 |#1| |#2|) (-624 |#2|) (-908 |#1|) (-905 |#1| |#2|)) 57))) +(((-954 |#1| |#2|) (-10 -7 (-15 -2008 ((-905 |#1| |#2|) (-624 |#2|) (-908 |#1|) (-905 |#1| |#2|)))) (-1122) (-13 (-1122) (-1060 (-624 $)) (-626 (-908 |#1|)) (-902 |#1|))) (T -954)) +((-2008 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1122)) (-4 *6 (-13 (-1122) (-1060 (-624 $)) (-626 *4) (-902 *5))) (-5 *4 (-908 *5)) (-5 *1 (-954 *5 *6))))) +(-10 -7 (-15 -2008 ((-905 |#1| |#2|) (-624 |#2|) (-908 |#1|) (-905 |#1| |#2|)))) +((-2008 (((-901 |#1| |#2| |#3|) |#3| (-908 |#1|) (-901 |#1| |#2| |#3|)) 17))) +(((-955 |#1| |#2| |#3|) (-10 -7 (-15 -2008 ((-901 |#1| |#2| |#3|) |#3| (-908 |#1|) (-901 |#1| |#2| |#3|)))) (-1122) (-902 |#1|) (-679 |#2|)) (T -955)) +((-2008 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *6 *3)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-4 *6 (-902 *5)) (-4 *3 (-679 *6)) (-5 *1 (-955 *5 *6 *3))))) +(-10 -7 (-15 -2008 ((-901 |#1| |#2| |#3|) |#3| (-908 |#1|) (-901 |#1| |#2| |#3|)))) +((-2008 (((-905 |#1| |#5|) |#5| (-908 |#1|) (-905 |#1| |#5|)) 17 (|has| |#3| (-902 |#1|))) (((-905 |#1| |#5|) |#5| (-908 |#1|) (-905 |#1| |#5|) (-1 (-905 |#1| |#5|) |#3| (-908 |#1|) (-905 |#1| |#5|))) 16))) +(((-956 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2008 ((-905 |#1| |#5|) |#5| (-908 |#1|) (-905 |#1| |#5|) (-1 (-905 |#1| |#5|) |#3| (-908 |#1|) (-905 |#1| |#5|)))) (IF (|has| |#3| (-902 |#1|)) (-15 -2008 ((-905 |#1| |#5|) |#5| (-908 |#1|) (-905 |#1| |#5|))) |%noBranch|)) (-1122) (-806) (-862) (-13 (-1071) (-902 |#1|)) (-13 (-969 |#4| |#2| |#3|) (-626 (-908 |#1|)))) (T -956)) +((-2008 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 *3)) (-4 *5 (-1122)) (-4 *3 (-13 (-969 *8 *6 *7) (-626 *4))) (-5 *4 (-908 *5)) (-4 *7 (-902 *5)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-13 (-1071) (-902 *5))) (-5 *1 (-956 *5 *6 *7 *8 *3)))) (-2008 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-905 *6 *3) *8 (-908 *6) (-905 *6 *3))) (-4 *8 (-862)) (-5 *2 (-905 *6 *3)) (-5 *4 (-908 *6)) (-4 *6 (-1122)) (-4 *3 (-13 (-969 *9 *7 *8) (-626 *4))) (-4 *7 (-806)) (-4 *9 (-13 (-1071) (-902 *6))) (-5 *1 (-956 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -2008 ((-905 |#1| |#5|) |#5| (-908 |#1|) (-905 |#1| |#5|) (-1 (-905 |#1| |#5|) |#3| (-908 |#1|) (-905 |#1| |#5|)))) (IF (|has| |#3| (-902 |#1|)) (-15 -2008 ((-905 |#1| |#5|) |#5| (-908 |#1|) (-905 |#1| |#5|))) |%noBranch|)) +((-4239 ((|#2| |#2| (-657 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-957 |#1| |#2| |#3|) (-10 -7 (-15 -4239 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4239 (|#2| |#2| (-657 (-1 (-112) |#3|))))) (-1122) (-442 |#1|) (-1239)) (T -957)) +((-4239 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-1 (-112) *5))) (-4 *5 (-1239)) (-4 *4 (-1122)) (-5 *1 (-957 *4 *2 *5)) (-4 *2 (-442 *4)))) (-4239 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1239)) (-4 *4 (-1122)) (-5 *1 (-957 *4 *2 *5)) (-4 *2 (-442 *4))))) +(-10 -7 (-15 -4239 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4239 (|#2| |#2| (-657 (-1 (-112) |#3|))))) +((-4239 (((-326 (-576)) (-1198) (-657 (-1 (-112) |#1|))) 18) (((-326 (-576)) (-1198) (-1 (-112) |#1|)) 15))) +(((-958 |#1|) (-10 -7 (-15 -4239 ((-326 (-576)) (-1198) (-1 (-112) |#1|))) (-15 -4239 ((-326 (-576)) (-1198) (-657 (-1 (-112) |#1|))))) (-1239)) (T -958)) +((-4239 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-657 (-1 (-112) *5))) (-4 *5 (-1239)) (-5 *2 (-326 (-576))) (-5 *1 (-958 *5)))) (-4239 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1239)) (-5 *2 (-326 (-576))) (-5 *1 (-958 *5))))) +(-10 -7 (-15 -4239 ((-326 (-576)) (-1198) (-1 (-112) |#1|))) (-15 -4239 ((-326 (-576)) (-1198) (-657 (-1 (-112) |#1|))))) +((-2008 (((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)) 25))) +(((-959 |#1| |#2| |#3|) (-10 -7 (-15 -2008 ((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)))) (-1122) (-13 (-568) (-902 |#1|) (-626 (-908 |#1|))) (-1014 |#2|)) (T -959)) +((-2008 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 *3)) (-4 *5 (-1122)) (-4 *3 (-1014 *6)) (-4 *6 (-13 (-568) (-902 *5) (-626 *4))) (-5 *4 (-908 *5)) (-5 *1 (-959 *5 *6 *3))))) +(-10 -7 (-15 -2008 ((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)))) +((-2008 (((-905 |#1| (-1198)) (-1198) (-908 |#1|) (-905 |#1| (-1198))) 18))) +(((-960 |#1|) (-10 -7 (-15 -2008 ((-905 |#1| (-1198)) (-1198) (-908 |#1|) (-905 |#1| (-1198))))) (-1122)) (T -960)) +((-2008 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 (-1198))) (-5 *3 (-1198)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-5 *1 (-960 *5))))) +(-10 -7 (-15 -2008 ((-905 |#1| (-1198)) (-1198) (-908 |#1|) (-905 |#1| (-1198))))) +((-3805 (((-905 |#1| |#3|) (-657 |#3|) (-657 (-908 |#1|)) (-905 |#1| |#3|) (-1 (-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|))) 34)) (-2008 (((-905 |#1| |#3|) (-657 |#3|) (-657 (-908 |#1|)) (-1 |#3| (-657 |#3|)) (-905 |#1| |#3|) (-1 (-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|))) 33))) +(((-961 |#1| |#2| |#3|) (-10 -7 (-15 -2008 ((-905 |#1| |#3|) (-657 |#3|) (-657 (-908 |#1|)) (-1 |#3| (-657 |#3|)) (-905 |#1| |#3|) (-1 (-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)))) (-15 -3805 ((-905 |#1| |#3|) (-657 |#3|) (-657 (-908 |#1|)) (-905 |#1| |#3|) (-1 (-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|))))) (-1122) (-1071) (-13 (-1071) (-626 (-908 |#1|)) (-1060 |#2|))) (T -961)) +((-3805 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 (-908 *6))) (-5 *5 (-1 (-905 *6 *8) *8 (-908 *6) (-905 *6 *8))) (-4 *6 (-1122)) (-4 *8 (-13 (-1071) (-626 (-908 *6)) (-1060 *7))) (-5 *2 (-905 *6 *8)) (-4 *7 (-1071)) (-5 *1 (-961 *6 *7 *8)))) (-2008 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-657 (-908 *7))) (-5 *5 (-1 *9 (-657 *9))) (-5 *6 (-1 (-905 *7 *9) *9 (-908 *7) (-905 *7 *9))) (-4 *7 (-1122)) (-4 *9 (-13 (-1071) (-626 (-908 *7)) (-1060 *8))) (-5 *2 (-905 *7 *9)) (-5 *3 (-657 *9)) (-4 *8 (-1071)) (-5 *1 (-961 *7 *8 *9))))) +(-10 -7 (-15 -2008 ((-905 |#1| |#3|) (-657 |#3|) (-657 (-908 |#1|)) (-1 |#3| (-657 |#3|)) (-905 |#1| |#3|) (-1 (-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)))) (-15 -3805 ((-905 |#1| |#3|) (-657 |#3|) (-657 (-908 |#1|)) (-905 |#1| |#3|) (-1 (-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|))))) +((-1570 (((-1194 (-419 (-576))) (-576)) 79)) (-2540 (((-1194 (-576)) (-576)) 82)) (-4021 (((-1194 (-576)) (-576)) 76)) (-2081 (((-576) (-1194 (-576))) 72)) (-1727 (((-1194 (-419 (-576))) (-576)) 65)) (-2962 (((-1194 (-576)) (-576)) 49)) (-1571 (((-1194 (-576)) (-576)) 84)) (-4238 (((-1194 (-576)) (-576)) 83)) (-3786 (((-1194 (-419 (-576))) (-576)) 67))) +(((-962) (-10 -7 (-15 -3786 ((-1194 (-419 (-576))) (-576))) (-15 -4238 ((-1194 (-576)) (-576))) (-15 -1571 ((-1194 (-576)) (-576))) (-15 -2962 ((-1194 (-576)) (-576))) (-15 -1727 ((-1194 (-419 (-576))) (-576))) (-15 -2081 ((-576) (-1194 (-576)))) (-15 -4021 ((-1194 (-576)) (-576))) (-15 -2540 ((-1194 (-576)) (-576))) (-15 -1570 ((-1194 (-419 (-576))) (-576))))) (T -962)) +((-1570 (*1 *2 *3) (-12 (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-962)) (-5 *3 (-576)))) (-2540 (*1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576)))) (-4021 (*1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-1194 (-576))) (-5 *2 (-576)) (-5 *1 (-962)))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-962)) (-5 *3 (-576)))) (-2962 (*1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576)))) (-1571 (*1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576)))) (-4238 (*1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576)))) (-3786 (*1 *2 *3) (-12 (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-962)) (-5 *3 (-576))))) +(-10 -7 (-15 -3786 ((-1194 (-419 (-576))) (-576))) (-15 -4238 ((-1194 (-576)) (-576))) (-15 -1571 ((-1194 (-576)) (-576))) (-15 -2962 ((-1194 (-576)) (-576))) (-15 -1727 ((-1194 (-419 (-576))) (-576))) (-15 -2081 ((-576) (-1194 (-576)))) (-15 -4021 ((-1194 (-576)) (-576))) (-15 -2540 ((-1194 (-576)) (-576))) (-15 -1570 ((-1194 (-419 (-576))) (-576)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3793 (($ (-784)) NIL (|has| |#1| (-23)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1698 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1832 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3901 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) NIL)) (-3619 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-3664 (($ (-657 |#1|)) 9)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2386 (((-702 |#1|) $ $) NIL (|has| |#1| (-1071)))) (-4096 (($ (-784) |#1|) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2425 ((|#1| $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1071))))) (-4326 (((-112) $ (-784)) NIL)) (-3041 ((|#1| $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1071))))) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2225 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3528 ((|#1| $) NIL (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1495 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-1456 (($ $ (-657 |#1|)) 25)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 18) (($ $ (-1256 (-576))) NIL)) (-4224 ((|#1| $ $) NIL (|has| |#1| (-1071)))) (-1451 (((-941) $) 13)) (-3395 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-3756 (($ $ $) 23)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| |#1| (-626 (-548)))) (($ (-657 |#1|)) 14)) (-3529 (($ (-657 |#1|)) NIL)) (-1637 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-657 $)) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2982 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2971 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-739))) (($ $ |#1|) NIL (|has| |#1| (-739)))) (-3437 (((-784) $) 11 (|has| $ (-6 -4466))))) +(((-963 |#1|) (-1002 |#1|) (-1071)) (T -963)) +NIL +(-1002 |#1|) +((-3861 (((-493 |#1| |#2|) (-972 |#2|)) 22)) (-2907 (((-253 |#1| |#2|) (-972 |#2|)) 35)) (-2880 (((-972 |#2|) (-493 |#1| |#2|)) 27)) (-1676 (((-253 |#1| |#2|) (-493 |#1| |#2|)) 57)) (-3271 (((-972 |#2|) (-253 |#1| |#2|)) 32)) (-4065 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 48))) +(((-964 |#1| |#2|) (-10 -7 (-15 -4065 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1676 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -3861 ((-493 |#1| |#2|) (-972 |#2|))) (-15 -2880 ((-972 |#2|) (-493 |#1| |#2|))) (-15 -3271 ((-972 |#2|) (-253 |#1| |#2|))) (-15 -2907 ((-253 |#1| |#2|) (-972 |#2|)))) (-657 (-1198)) (-1071)) (T -964)) +((-2907 (*1 *2 *3) (-12 (-5 *3 (-972 *5)) (-4 *5 (-1071)) (-5 *2 (-253 *4 *5)) (-5 *1 (-964 *4 *5)) (-14 *4 (-657 (-1198))))) (-3271 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) (-5 *2 (-972 *5)) (-5 *1 (-964 *4 *5)))) (-2880 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) (-5 *2 (-972 *5)) (-5 *1 (-964 *4 *5)))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-972 *5)) (-4 *5 (-1071)) (-5 *2 (-493 *4 *5)) (-5 *1 (-964 *4 *5)) (-14 *4 (-657 (-1198))))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) (-5 *2 (-253 *4 *5)) (-5 *1 (-964 *4 *5)))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) (-5 *2 (-493 *4 *5)) (-5 *1 (-964 *4 *5))))) +(-10 -7 (-15 -4065 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1676 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -3861 ((-493 |#1| |#2|) (-972 |#2|))) (-15 -2880 ((-972 |#2|) (-493 |#1| |#2|))) (-15 -3271 ((-972 |#2|) (-253 |#1| |#2|))) (-15 -2907 ((-253 |#1| |#2|) (-972 |#2|)))) +((-2130 (((-657 |#2|) |#2| |#2|) 10)) (-1935 (((-784) (-657 |#1|)) 48 (|has| |#1| (-861)))) (-3190 (((-657 |#2|) |#2|) 11)) (-1350 (((-784) (-657 |#1|) (-576) (-576)) 52 (|has| |#1| (-861)))) (-2156 ((|#1| |#2|) 38 (|has| |#1| (-861))))) +(((-965 |#1| |#2|) (-10 -7 (-15 -2130 ((-657 |#2|) |#2| |#2|)) (-15 -3190 ((-657 |#2|) |#2|)) (IF (|has| |#1| (-861)) (PROGN (-15 -2156 (|#1| |#2|)) (-15 -1935 ((-784) (-657 |#1|))) (-15 -1350 ((-784) (-657 |#1|) (-576) (-576)))) |%noBranch|)) (-374) (-1265 |#1|)) (T -965)) +((-1350 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 *5)) (-5 *4 (-576)) (-4 *5 (-861)) (-4 *5 (-374)) (-5 *2 (-784)) (-5 *1 (-965 *5 *6)) (-4 *6 (-1265 *5)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-861)) (-4 *4 (-374)) (-5 *2 (-784)) (-5 *1 (-965 *4 *5)) (-4 *5 (-1265 *4)))) (-2156 (*1 *2 *3) (-12 (-4 *2 (-374)) (-4 *2 (-861)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1265 *2)))) (-3190 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-657 *3)) (-5 *1 (-965 *4 *3)) (-4 *3 (-1265 *4)))) (-2130 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-657 *3)) (-5 *1 (-965 *4 *3)) (-4 *3 (-1265 *4))))) +(-10 -7 (-15 -2130 ((-657 |#2|) |#2| |#2|)) (-15 -3190 ((-657 |#2|) |#2|)) (IF (|has| |#1| (-861)) (PROGN (-15 -2156 (|#1| |#2|)) (-15 -1935 ((-784) (-657 |#1|))) (-15 -1350 ((-784) (-657 |#1|) (-576) (-576)))) |%noBranch|)) +((-4071 (((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)) 19))) +(((-966 |#1| |#2|) (-10 -7 (-15 -4071 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)))) (-1071) (-1071)) (T -966)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-5 *2 (-972 *6)) (-5 *1 (-966 *5 *6))))) +(-10 -7 (-15 -4071 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)))) +((-1825 (((-1262 |#1| (-972 |#2|)) (-972 |#2|) (-1285 |#1|)) 18))) +(((-967 |#1| |#2|) (-10 -7 (-15 -1825 ((-1262 |#1| (-972 |#2|)) (-972 |#2|) (-1285 |#1|)))) (-1198) (-1071)) (T -967)) +((-1825 (*1 *2 *3 *4) (-12 (-5 *4 (-1285 *5)) (-14 *5 (-1198)) (-4 *6 (-1071)) (-5 *2 (-1262 *5 (-972 *6))) (-5 *1 (-967 *5 *6)) (-5 *3 (-972 *6))))) +(-10 -7 (-15 -1825 ((-1262 |#1| (-972 |#2|)) (-972 |#2|) (-1285 |#1|)))) +((-2889 (((-784) $) 88) (((-784) $ (-657 |#4|)) 93)) (-3188 (($ $) 203)) (-4215 (((-430 $) $) 195)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 141)) (-1593 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2830 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) 73)) (-4351 (($ $ $ |#4|) 95)) (-3439 (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) 131) (((-702 |#2|) (-702 $)) 121)) (-1445 (($ $) 210) (($ $ |#4|) 213)) (-2153 (((-657 $) $) 77)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 229) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 222)) (-2278 (((-657 $) $) 34)) (-1974 (($ |#2| |#3|) NIL) (($ $ |#4| (-784)) NIL) (($ $ (-657 |#4|) (-657 (-784))) 71)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ |#4|) 192)) (-2998 (((-3 (-657 $) "failed") $) 52)) (-3097 (((-3 (-657 $) "failed") $) 39)) (-3403 (((-3 (-2 (|:| |var| |#4|) (|:| -2128 (-784))) "failed") $) 57)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 134)) (-2436 (((-430 (-1194 $)) (-1194 $)) 147)) (-3828 (((-430 (-1194 $)) (-1194 $)) 145)) (-1856 (((-430 $) $) 165)) (-3205 (($ $ (-657 (-304 $))) 24) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-657 |#4|) (-657 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-657 |#4|) (-657 $)) NIL)) (-1465 (($ $ |#4|) 97)) (-4136 (((-908 (-390)) $) 243) (((-908 (-576)) $) 236) (((-548) $) 251)) (-3614 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 184)) (-2498 ((|#2| $ |#3|) NIL) (($ $ |#4| (-784)) 62) (($ $ (-657 |#4|) (-657 (-784))) 69)) (-3414 (((-3 $ "failed") $) 186)) (-4166 (((-112) $ $) 216))) +(((-968 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1828 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|))) (-15 -4215 ((-430 |#1|) |#1|)) (-15 -3188 (|#1| |#1|)) (-15 -3414 ((-3 |#1| "failed") |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -4136 ((-908 (-576)) |#1|)) (-15 -4136 ((-908 (-390)) |#1|)) (-15 -2008 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -2008 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -1856 ((-430 |#1|) |#1|)) (-15 -3828 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2436 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -3606 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -3036 ((-3 (-1289 |#1|) "failed") (-702 |#1|))) (-15 -1445 (|#1| |#1| |#4|)) (-15 -3614 (|#1| |#1| |#4|)) (-15 -1465 (|#1| |#1| |#4|)) (-15 -4351 (|#1| |#1| |#1| |#4|)) (-15 -2153 ((-657 |#1|) |#1|)) (-15 -2889 ((-784) |#1| (-657 |#4|))) (-15 -2889 ((-784) |#1|)) (-15 -3403 ((-3 (-2 (|:| |var| |#4|) (|:| -2128 (-784))) "failed") |#1|)) (-15 -2998 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -3097 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -1974 (|#1| |#1| (-657 |#4|) (-657 (-784)))) (-15 -1974 (|#1| |#1| |#4| (-784))) (-15 -2360 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1| |#4|)) (-15 -2278 ((-657 |#1|) |#1|)) (-15 -2498 (|#1| |#1| (-657 |#4|) (-657 (-784)))) (-15 -2498 (|#1| |#1| |#4| (-784))) (-15 -3439 ((-702 |#2|) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-702 (-576)) (-702 |#1|))) (-15 -1593 ((-3 |#4| "failed") |#1|)) (-15 -2830 (|#4| |#1|)) (-15 -3205 (|#1| |#1| (-657 |#4|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#4| |#1|)) (-15 -3205 (|#1| |#1| (-657 |#4|) (-657 |#2|))) (-15 -3205 (|#1| |#1| |#4| |#2|)) (-15 -3205 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#1| |#1|)) (-15 -3205 (|#1| |#1| (-304 |#1|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -1974 (|#1| |#2| |#3|)) (-15 -2498 (|#2| |#1| |#3|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -3614 (|#2| |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -4166 ((-112) |#1| |#1|))) (-969 |#2| |#3| |#4|) (-1071) (-806) (-862)) (T -968)) +NIL +(-10 -8 (-15 -1828 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|))) (-15 -4215 ((-430 |#1|) |#1|)) (-15 -3188 (|#1| |#1|)) (-15 -3414 ((-3 |#1| "failed") |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -4136 ((-908 (-576)) |#1|)) (-15 -4136 ((-908 (-390)) |#1|)) (-15 -2008 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -2008 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -1856 ((-430 |#1|) |#1|)) (-15 -3828 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2436 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -3606 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -3036 ((-3 (-1289 |#1|) "failed") (-702 |#1|))) (-15 -1445 (|#1| |#1| |#4|)) (-15 -3614 (|#1| |#1| |#4|)) (-15 -1465 (|#1| |#1| |#4|)) (-15 -4351 (|#1| |#1| |#1| |#4|)) (-15 -2153 ((-657 |#1|) |#1|)) (-15 -2889 ((-784) |#1| (-657 |#4|))) (-15 -2889 ((-784) |#1|)) (-15 -3403 ((-3 (-2 (|:| |var| |#4|) (|:| -2128 (-784))) "failed") |#1|)) (-15 -2998 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -3097 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -1974 (|#1| |#1| (-657 |#4|) (-657 (-784)))) (-15 -1974 (|#1| |#1| |#4| (-784))) (-15 -2360 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1| |#4|)) (-15 -2278 ((-657 |#1|) |#1|)) (-15 -2498 (|#1| |#1| (-657 |#4|) (-657 (-784)))) (-15 -2498 (|#1| |#1| |#4| (-784))) (-15 -3439 ((-702 |#2|) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-702 (-576)) (-702 |#1|))) (-15 -1593 ((-3 |#4| "failed") |#1|)) (-15 -2830 (|#4| |#1|)) (-15 -3205 (|#1| |#1| (-657 |#4|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#4| |#1|)) (-15 -3205 (|#1| |#1| (-657 |#4|) (-657 |#2|))) (-15 -3205 (|#1| |#1| |#4| |#2|)) (-15 -3205 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#1| |#1|)) (-15 -3205 (|#1| |#1| (-304 |#1|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -1974 (|#1| |#2| |#3|)) (-15 -2498 (|#2| |#1| |#3|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -3614 (|#2| |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -4166 ((-112) |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-1998 (((-657 |#3|) $) 113)) (-1825 (((-1194 $) $ |#3|) 128) (((-1194 |#1|) $) 127)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2361 (($ $) 91 (|has| |#1| (-568)))) (-3286 (((-112) $) 93 (|has| |#1| (-568)))) (-2889 (((-784) $) 115) (((-784) $ (-657 |#3|)) 114)) (-2423 (((-3 $ "failed") $ $) 20)) (-2628 (((-430 (-1194 $)) (-1194 $)) 103 (|has| |#1| (-929)))) (-3188 (($ $) 101 (|has| |#1| (-464)))) (-4215 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 106 (|has| |#1| (-929)))) (-2515 (($) 18 T CONST)) (-1593 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1060 (-576)))) (((-3 |#3| "failed") $) 143)) (-2830 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1060 (-576)))) ((|#3| $) 144)) (-4351 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2165 (($ $) 161)) (-3439 (((-702 (-576)) (-702 $)) 139 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 138 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 137) (((-702 |#1|) (-702 $)) 136)) (-3969 (((-3 $ "failed") $) 37)) (-1445 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2153 (((-657 $) $) 112)) (-4009 (((-112) $) 99 (|has| |#1| (-929)))) (-2643 (($ $ |#1| |#2| $) 179)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 87 (-12 (|has| |#3| (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 86 (-12 (|has| |#3| (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-3994 (((-112) $) 35)) (-2977 (((-784) $) 176)) (-1986 (($ (-1194 |#1|) |#3|) 120) (($ (-1194 $) |#3|) 119)) (-2278 (((-657 $) $) 129)) (-2343 (((-112) $) 159)) (-1974 (($ |#1| |#2|) 160) (($ $ |#3| (-784)) 122) (($ $ (-657 |#3|) (-657 (-784))) 121)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ |#3|) 123)) (-4219 ((|#2| $) 177) (((-784) $ |#3|) 125) (((-657 (-784)) $ (-657 |#3|)) 124)) (-2308 (($ (-1 |#2| |#2|) $) 178)) (-4071 (($ (-1 |#1| |#1|) $) 158)) (-2502 (((-3 |#3| "failed") $) 126)) (-1993 (((-702 (-576)) (-1289 $)) 141 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 140 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 135) (((-702 |#1|) (-1289 $)) 134)) (-2129 (($ $) 156)) (-2141 ((|#1| $) 155)) (-3388 (($ (-657 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-1708 (((-1180) $) 10)) (-2998 (((-3 (-657 $) "failed") $) 117)) (-3097 (((-3 (-657 $) "failed") $) 118)) (-3403 (((-3 (-2 (|:| |var| |#3|) (|:| -2128 (-784))) "failed") $) 116)) (-1460 (((-1142) $) 11)) (-2108 (((-112) $) 173)) (-2118 ((|#1| $) 174)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 98 (|has| |#1| (-464)))) (-3431 (($ (-657 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) 105 (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) 104 (|has| |#1| (-929)))) (-1856 (((-430 $) $) 102 (|has| |#1| (-929)))) (-3409 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3205 (($ $ (-657 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-657 $) (-657 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-657 |#3|) (-657 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-657 |#3|) (-657 $)) 145)) (-1465 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2209 (($ $ (-657 |#3|) (-657 (-784))) 44) (($ $ |#3| (-784)) 43) (($ $ (-657 |#3|)) 42) (($ $ |#3|) 40)) (-4265 ((|#2| $) 157) (((-784) $ |#3|) 133) (((-657 (-784)) $ (-657 |#3|)) 132)) (-4136 (((-908 (-390)) $) 85 (-12 (|has| |#3| (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) 84 (-12 (|has| |#3| (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3614 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 107 (-2675 (|has| $ (-146)) (|has| |#1| (-929))))) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ $) 88 (|has| |#1| (-568))) (($ (-419 (-576))) 81 (-2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-3987 (((-657 |#1|) $) 175)) (-2498 ((|#1| $ |#2|) 162) (($ $ |#3| (-784)) 131) (($ $ (-657 |#3|) (-657 (-784))) 130)) (-3414 (((-3 $ "failed") $) 82 (-2748 (-2675 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) 32 T CONST)) (-3194 (($ $ $ (-784)) 180 (|has| |#1| (-174)))) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-657 |#3|) (-657 (-784))) 47) (($ $ |#3| (-784)) 46) (($ $ (-657 |#3|)) 45) (($ $ |#3|) 41)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-969 |#1| |#2| |#3|) (-141) (-1071) (-806) (-862)) (T -969)) +((-1445 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464)))) (-4265 (*1 *2 *1 *3) (-12 (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-784)))) (-4265 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 (-784))))) (-2498 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-969 *4 *5 *2)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *2 (-862)))) (-2498 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *6)) (-5 *3 (-657 (-784))) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)))) (-2278 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-969 *3 *4 *5)))) (-1825 (*1 *2 *1 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-1194 *1)) (-4 *1 (-969 *4 *5 *3)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-1194 *3)))) (-2502 (*1 *2 *1) (|partial| -12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-4219 (*1 *2 *1 *3) (-12 (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-784)))) (-4219 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 (-784))))) (-2360 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-969 *4 *5 *3)))) (-1974 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-969 *4 *5 *2)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *2 (-862)))) (-1974 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *6)) (-5 *3 (-657 (-784))) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1194 *4)) (-4 *4 (-1071)) (-4 *1 (-969 *4 *5 *3)) (-4 *5 (-806)) (-4 *3 (-862)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)))) (-3097 (*1 *2 *1) (|partial| -12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-969 *3 *4 *5)))) (-2998 (*1 *2 *1) (|partial| -12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3403 (*1 *2 *1) (|partial| -12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -2128 (-784)))))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-784)))) (-2889 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-784)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *5)))) (-2153 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-969 *3 *4 *5)))) (-4351 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *3 (-174)))) (-1465 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3614 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *3 (-464)))) (-1445 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *3 (-464)))) (-3188 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464)))) (-4215 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-430 *1)) (-4 *1 (-969 *3 *4 *5))))) +(-13 (-918 |t#3|) (-336 |t#1| |t#2|) (-319 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1060 |t#3|) (-388 |t#1|) (-10 -8 (-15 -4265 ((-784) $ |t#3|)) (-15 -4265 ((-657 (-784)) $ (-657 |t#3|))) (-15 -2498 ($ $ |t#3| (-784))) (-15 -2498 ($ $ (-657 |t#3|) (-657 (-784)))) (-15 -2278 ((-657 $) $)) (-15 -1825 ((-1194 $) $ |t#3|)) (-15 -1825 ((-1194 |t#1|) $)) (-15 -2502 ((-3 |t#3| "failed") $)) (-15 -4219 ((-784) $ |t#3|)) (-15 -4219 ((-657 (-784)) $ (-657 |t#3|))) (-15 -2360 ((-2 (|:| -2192 $) (|:| -3951 $)) $ $ |t#3|)) (-15 -1974 ($ $ |t#3| (-784))) (-15 -1974 ($ $ (-657 |t#3|) (-657 (-784)))) (-15 -1986 ($ (-1194 |t#1|) |t#3|)) (-15 -1986 ($ (-1194 $) |t#3|)) (-15 -3097 ((-3 (-657 $) "failed") $)) (-15 -2998 ((-3 (-657 $) "failed") $)) (-15 -3403 ((-3 (-2 (|:| |var| |t#3|) (|:| -2128 (-784))) "failed") $)) (-15 -2889 ((-784) $)) (-15 -2889 ((-784) $ (-657 |t#3|))) (-15 -1998 ((-657 |t#3|) $)) (-15 -2153 ((-657 $) $)) (IF (|has| |t#1| (-626 (-548))) (IF (|has| |t#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-908 (-576)))) (IF (|has| |t#3| (-626 (-908 (-576)))) (-6 (-626 (-908 (-576)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-908 (-390)))) (IF (|has| |t#3| (-626 (-908 (-390)))) (-6 (-626 (-908 (-390)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-902 (-576))) (IF (|has| |t#3| (-902 (-576))) (-6 (-902 (-576))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-902 (-390))) (IF (|has| |t#3| (-902 (-390))) (-6 (-902 (-390))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -4351 ($ $ $ |t#3|)) (-15 -1465 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -3614 ($ $ |t#3|)) (-15 -1445 ($ $)) (-15 -1445 ($ $ |t#3|)) (-15 -4215 ((-430 $) $)) (-15 -3188 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4464)) (-6 -4464) |%noBranch|) (IF (|has| |t#1| (-929)) (-6 (-929)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-908 (-390))) -12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#3| (-626 (-908 (-390))))) ((-626 (-908 (-576))) -12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#3| (-626 (-908 (-576))))) ((-300) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2748 (|has| |#1| (-929)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 #1=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-652 #1#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-739) . T) ((-912 $ |#3|) . T) ((-918 |#3|) . T) ((-920 |#3|) . T) ((-902 (-390)) -12 (|has| |#1| (-902 (-390))) (|has| |#3| (-902 (-390)))) ((-902 (-576)) -12 (|has| |#1| (-902 (-576))) (|has| |#3| (-902 (-576)))) ((-929) |has| |#1| (-929)) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1060 |#3|) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) |has| |#1| (-929))) +((-1998 (((-657 |#2|) |#5|) 40)) (-1825 (((-1194 |#5|) |#5| |#2| (-1194 |#5|)) 23) (((-419 (-1194 |#5|)) |#5| |#2|) 16)) (-1986 ((|#5| (-419 (-1194 |#5|)) |#2|) 30)) (-2502 (((-3 |#2| "failed") |#5|) 71)) (-2998 (((-3 (-657 |#5|) "failed") |#5|) 65)) (-1588 (((-3 (-2 (|:| |val| |#5|) (|:| -2128 (-576))) "failed") |#5|) 53)) (-3097 (((-3 (-657 |#5|) "failed") |#5|) 67)) (-3403 (((-3 (-2 (|:| |var| |#2|) (|:| -2128 (-576))) "failed") |#5|) 57))) +(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1998 ((-657 |#2|) |#5|)) (-15 -2502 ((-3 |#2| "failed") |#5|)) (-15 -1825 ((-419 (-1194 |#5|)) |#5| |#2|)) (-15 -1986 (|#5| (-419 (-1194 |#5|)) |#2|)) (-15 -1825 ((-1194 |#5|) |#5| |#2| (-1194 |#5|))) (-15 -3097 ((-3 (-657 |#5|) "failed") |#5|)) (-15 -2998 ((-3 (-657 |#5|) "failed") |#5|)) (-15 -3403 ((-3 (-2 (|:| |var| |#2|) (|:| -2128 (-576))) "failed") |#5|)) (-15 -1588 ((-3 (-2 (|:| |val| |#5|) (|:| -2128 (-576))) "failed") |#5|))) (-806) (-862) (-1071) (-969 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -3515 ($ |#4|)) (-15 -1590 (|#4| $)) (-15 -1602 (|#4| $))))) (T -970)) +((-1588 (*1 *2 *3) (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2128 (-576)))) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $))))))) (-3403 (*1 *2 *3) (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2128 (-576)))) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $))))))) (-2998 (*1 *2 *3) (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-657 *3)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $))))))) (-3097 (*1 *2 *3) (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-657 *3)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $))))))) (-1825 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1194 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $))))) (-4 *7 (-969 *6 *5 *4)) (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-1071)) (-5 *1 (-970 *5 *4 *6 *7 *3)))) (-1986 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1194 *2))) (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-1071)) (-4 *2 (-13 (-374) (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $))))) (-5 *1 (-970 *5 *4 *6 *7 *2)) (-4 *7 (-969 *6 *5 *4)))) (-1825 (*1 *2 *3 *4) (-12 (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-1071)) (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-419 (-1194 *3))) (-5 *1 (-970 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $))))))) (-2502 (*1 *2 *3) (|partial| -12 (-4 *4 (-806)) (-4 *5 (-1071)) (-4 *6 (-969 *5 *4 *2)) (-4 *2 (-862)) (-5 *1 (-970 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3515 ($ *6)) (-15 -1590 (*6 $)) (-15 -1602 (*6 $))))))) (-1998 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-657 *5)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $)))))))) +(-10 -7 (-15 -1998 ((-657 |#2|) |#5|)) (-15 -2502 ((-3 |#2| "failed") |#5|)) (-15 -1825 ((-419 (-1194 |#5|)) |#5| |#2|)) (-15 -1986 (|#5| (-419 (-1194 |#5|)) |#2|)) (-15 -1825 ((-1194 |#5|) |#5| |#2| (-1194 |#5|))) (-15 -3097 ((-3 (-657 |#5|) "failed") |#5|)) (-15 -2998 ((-3 (-657 |#5|) "failed") |#5|)) (-15 -3403 ((-3 (-2 (|:| |var| |#2|) (|:| -2128 (-576))) "failed") |#5|)) (-15 -1588 ((-3 (-2 (|:| |val| |#5|) (|:| -2128 (-576))) "failed") |#5|))) +((-4071 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-971 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4071 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-806) (-862) (-1071) (-969 |#3| |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -2971 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-784)))))) (T -971)) +((-4071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-862)) (-4 *8 (-1071)) (-4 *6 (-806)) (-4 *2 (-13 (-1122) (-10 -8 (-15 -2971 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-784)))))) (-5 *1 (-971 *6 *7 *8 *5 *2)) (-4 *5 (-969 *8 *6 *7))))) +(-10 -7 (-15 -4071 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1998 (((-657 (-1198)) $) 16)) (-1825 (((-1194 $) $ (-1198)) 21) (((-1194 |#1|) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 (-1198))) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3188 (($ $) NIL (|has| |#1| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) 8) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-1198) "failed") $) NIL)) (-2830 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-1198) $) NIL)) (-4351 (($ $ $ (-1198)) NIL (|has| |#1| (-174)))) (-2165 (($ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1198)) NIL (|has| |#1| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#1| (-929)))) (-2643 (($ $ |#1| (-543 (-1198)) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1198) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1198) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-1986 (($ (-1194 |#1|) (-1198)) NIL) (($ (-1194 $) (-1198)) NIL)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-543 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ (-1198)) NIL)) (-4219 (((-543 (-1198)) $) NIL) (((-784) $ (-1198)) NIL) (((-657 (-784)) $ (-657 (-1198))) NIL)) (-2308 (($ (-1 (-543 (-1198)) (-543 (-1198))) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-2502 (((-3 (-1198) "failed") $) 19)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1708 (((-1180) $) NIL)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| (-1198)) (|:| -2128 (-784))) "failed") $) NIL)) (-2320 (($ $ (-1198)) 29 (|has| |#1| (-38 (-419 (-576)))))) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) NIL)) (-2118 ((|#1| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-929)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1198) |#1|) NIL) (($ $ (-657 (-1198)) (-657 |#1|)) NIL) (($ $ (-1198) $) NIL) (($ $ (-657 (-1198)) (-657 $)) NIL)) (-1465 (($ $ (-1198)) NIL (|has| |#1| (-174)))) (-2209 (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL)) (-4265 (((-543 (-1198)) $) NIL) (((-784) $ (-1198)) NIL) (((-657 (-784)) $ (-657 (-1198))) NIL)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| (-1198) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-1198) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-1198) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3614 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1198)) NIL (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3515 (((-877) $) 25) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1198)) 27) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-543 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-972 |#1|) (-13 (-969 |#1| (-543 (-1198)) (-1198)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1198))) |%noBranch|))) (-1071)) (T -972)) +((-2320 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-972 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071))))) +(-13 (-969 |#1| (-543 (-1198)) (-1198)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1198))) |%noBranch|))) +((-3698 (((-2 (|:| -2128 (-784)) (|:| -1735 |#5|) (|:| |radicand| |#5|)) |#3| (-784)) 49)) (-1470 (((-2 (|:| -2128 (-784)) (|:| -1735 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-784)) 44)) (-3628 (((-2 (|:| -2128 (-784)) (|:| -1735 |#4|) (|:| |radicand| (-657 |#4|))) |#4| (-784)) 65)) (-2610 (((-2 (|:| -2128 (-784)) (|:| -1735 |#5|) (|:| |radicand| |#5|)) |#5| (-784)) 74 (|has| |#3| (-464))))) +(((-973 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3698 ((-2 (|:| -2128 (-784)) (|:| -1735 |#5|) (|:| |radicand| |#5|)) |#3| (-784))) (-15 -1470 ((-2 (|:| -2128 (-784)) (|:| -1735 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-784))) (IF (|has| |#3| (-464)) (-15 -2610 ((-2 (|:| -2128 (-784)) (|:| -1735 |#5|) (|:| |radicand| |#5|)) |#5| (-784))) |%noBranch|) (-15 -3628 ((-2 (|:| -2128 (-784)) (|:| -1735 |#4|) (|:| |radicand| (-657 |#4|))) |#4| (-784)))) (-806) (-862) (-568) (-969 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -3515 ($ |#4|)) (-15 -1590 (|#4| $)) (-15 -1602 (|#4| $))))) (T -973)) +((-3628 (*1 *2 *3 *4) (-12 (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *3 (-969 *7 *5 *6)) (-5 *2 (-2 (|:| -2128 (-784)) (|:| -1735 *3) (|:| |radicand| (-657 *3)))) (-5 *1 (-973 *5 *6 *7 *3 *8)) (-5 *4 (-784)) (-4 *8 (-13 (-374) (-10 -8 (-15 -3515 ($ *3)) (-15 -1590 (*3 $)) (-15 -1602 (*3 $))))))) (-2610 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-969 *7 *5 *6)) (-5 *2 (-2 (|:| -2128 (-784)) (|:| -1735 *3) (|:| |radicand| *3))) (-5 *1 (-973 *5 *6 *7 *8 *3)) (-5 *4 (-784)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3515 ($ *8)) (-15 -1590 (*8 $)) (-15 -1602 (*8 $))))))) (-1470 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-969 *7 *5 *6)) (-5 *2 (-2 (|:| -2128 (-784)) (|:| -1735 *9) (|:| |radicand| *9))) (-5 *1 (-973 *5 *6 *7 *8 *9)) (-5 *4 (-784)) (-4 *9 (-13 (-374) (-10 -8 (-15 -3515 ($ *8)) (-15 -1590 (*8 $)) (-15 -1602 (*8 $))))))) (-3698 (*1 *2 *3 *4) (-12 (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-568)) (-4 *7 (-969 *3 *5 *6)) (-5 *2 (-2 (|:| -2128 (-784)) (|:| -1735 *8) (|:| |radicand| *8))) (-5 *1 (-973 *5 *6 *3 *7 *8)) (-5 *4 (-784)) (-4 *8 (-13 (-374) (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $)))))))) +(-10 -7 (-15 -3698 ((-2 (|:| -2128 (-784)) (|:| -1735 |#5|) (|:| |radicand| |#5|)) |#3| (-784))) (-15 -1470 ((-2 (|:| -2128 (-784)) (|:| -1735 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-784))) (IF (|has| |#3| (-464)) (-15 -2610 ((-2 (|:| -2128 (-784)) (|:| -1735 |#5|) (|:| |radicand| |#5|)) |#5| (-784))) |%noBranch|) (-15 -3628 ((-2 (|:| -2128 (-784)) (|:| -1735 |#4|) (|:| |radicand| (-657 |#4|))) |#4| (-784)))) +((-3423 (((-112) $ $) NIL)) (-2712 (($ (-1142)) 8)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 15) (((-1142) $) 12)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 11))) +(((-974) (-13 (-1122) (-625 (-1142)) (-10 -8 (-15 -2712 ($ (-1142)))))) (T -974)) +((-2712 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-974))))) +(-13 (-1122) (-625 (-1142)) (-10 -8 (-15 -2712 ($ (-1142))))) +((-1777 (((-1116 (-227)) $) 8)) (-1763 (((-1116 (-227)) $) 9)) (-1592 (((-657 (-657 (-963 (-227)))) $) 10)) (-3515 (((-877) $) 6))) +(((-975) (-141)) (T -975)) +((-1592 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-657 (-657 (-963 (-227))))))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1116 (-227))))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1116 (-227)))))) +(-13 (-625 (-877)) (-10 -8 (-15 -1592 ((-657 (-657 (-963 (-227)))) $)) (-15 -1763 ((-1116 (-227)) $)) (-15 -1777 ((-1116 (-227)) $)))) +(((-625 (-877)) . T)) +((-2911 (((-3 (-702 |#1|) "failed") |#2| (-941)) 18))) +(((-976 |#1| |#2|) (-10 -7 (-15 -2911 ((-3 (-702 |#1|) "failed") |#2| (-941)))) (-568) (-669 |#1|)) (T -976)) +((-2911 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-941)) (-4 *5 (-568)) (-5 *2 (-702 *5)) (-5 *1 (-976 *5 *3)) (-4 *3 (-669 *5))))) +(-10 -7 (-15 -2911 ((-3 (-702 |#1|) "failed") |#2| (-941)))) +((-3899 (((-978 |#2|) (-1 |#2| |#1| |#2|) (-978 |#1|) |#2|) 16)) (-3662 ((|#2| (-1 |#2| |#1| |#2|) (-978 |#1|) |#2|) 18)) (-4071 (((-978 |#2|) (-1 |#2| |#1|) (-978 |#1|)) 13))) +(((-977 |#1| |#2|) (-10 -7 (-15 -3899 ((-978 |#2|) (-1 |#2| |#1| |#2|) (-978 |#1|) |#2|)) (-15 -3662 (|#2| (-1 |#2| |#1| |#2|) (-978 |#1|) |#2|)) (-15 -4071 ((-978 |#2|) (-1 |#2| |#1|) (-978 |#1|)))) (-1239) (-1239)) (T -977)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-978 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-978 *6)) (-5 *1 (-977 *5 *6)))) (-3662 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-978 *5)) (-4 *5 (-1239)) (-4 *2 (-1239)) (-5 *1 (-977 *5 *2)))) (-3899 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-978 *6)) (-4 *6 (-1239)) (-4 *5 (-1239)) (-5 *2 (-978 *5)) (-5 *1 (-977 *6 *5))))) +(-10 -7 (-15 -3899 ((-978 |#2|) (-1 |#2| |#1| |#2|) (-978 |#1|) |#2|)) (-15 -3662 (|#2| (-1 |#2| |#1| |#2|) (-978 |#1|) |#2|)) (-15 -4071 ((-978 |#2|) (-1 |#2| |#1|) (-978 |#1|)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1698 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1832 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#1| $ (-576) |#1|) 19 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3901 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) 18 (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) 16)) (-3619 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-4096 (($ (-784) |#1|) 15)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) 11 (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2225 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3528 ((|#1| $) NIL (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1495 (($ $ |#1|) 20 (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) 12)) (-2780 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 17) (($ $ (-1256 (-576))) NIL)) (-3395 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) 21)) (-4136 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 14)) (-1637 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3437 (((-784) $) 8 (|has| $ (-6 -4466))))) +(((-978 |#1|) (-19 |#1|) (-1239)) (T -978)) NIL (-19 |#1|) -((-3930 (($ $ (-1113 $)) 7) (($ $ (-1197)) 6))) -(((-978) (-141)) (T -978)) -((-3930 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-978)))) (-3930 (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-1197))))) -(-13 (-10 -8 (-15 -3930 ($ $ (-1197))) (-15 -3930 ($ $ (-1113 $))))) -((-3712 (((-2 (|:| -2862 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)) (-1197)) 26) (((-2 (|:| -2862 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197))) 27) (((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 |#1|))) (-971 |#1|) (-1197) (-971 |#1|) (-1197)) 49))) -(((-979 |#1|) (-10 -7 (-15 -3712 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 |#1|))) (-971 |#1|) (-1197) (-971 |#1|) (-1197))) (-15 -3712 ((-2 (|:| -2862 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -3712 ((-2 (|:| -2862 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)) (-1197)))) (-13 (-374) (-148))) (T -979)) -((-3712 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-5 *5 (-1197)) (-4 *6 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -2862 (-656 (-576))) (|:| |poly| (-656 (-1193 *6))) (|:| |prim| (-1193 *6)))) (-5 *1 (-979 *6)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -2862 (-656 (-576))) (|:| |poly| (-656 (-1193 *5))) (|:| |prim| (-1193 *5)))) (-5 *1 (-979 *5)))) (-3712 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-971 *5)) (-5 *4 (-1197)) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 *5)))) (-5 *1 (-979 *5))))) -(-10 -7 (-15 -3712 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1193 |#1|))) (-971 |#1|) (-1197) (-971 |#1|) (-1197))) (-15 -3712 ((-2 (|:| -2862 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)))) (-15 -3712 ((-2 (|:| -2862 (-656 (-576))) (|:| |poly| (-656 (-1193 |#1|))) (|:| |prim| (-1193 |#1|))) (-656 (-971 |#1|)) (-656 (-1197)) (-1197)))) -((-1789 (((-656 |#1|) |#1| |#1|) 47)) (-2171 (((-112) |#1|) 44)) (-2607 ((|#1| |#1|) 79)) (-2542 ((|#1| |#1|) 78))) -(((-980 |#1|) (-10 -7 (-15 -2171 ((-112) |#1|)) (-15 -2542 (|#1| |#1|)) (-15 -2607 (|#1| |#1|)) (-15 -1789 ((-656 |#1|) |#1| |#1|))) (-557)) (T -980)) -((-1789 (*1 *2 *3 *3) (-12 (-5 *2 (-656 *3)) (-5 *1 (-980 *3)) (-4 *3 (-557)))) (-2607 (*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557)))) (-2542 (*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557)))) (-2171 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-980 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -2171 ((-112) |#1|)) (-15 -2542 (|#1| |#1|)) (-15 -2607 (|#1| |#1|)) (-15 -1789 ((-656 |#1|) |#1| |#1|))) -((-3252 (((-1293) (-876)) 9))) -(((-981) (-10 -7 (-15 -3252 ((-1293) (-876))))) (T -981)) -((-3252 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-981))))) -(-10 -7 (-15 -3252 ((-1293) (-876)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 78 (|has| |#1| (-568)))) (-2390 (($ $) 79 (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 34)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-3310 (($ $) 31)) (-1851 (((-3 $ "failed") $) 42)) (-1788 (($ $) NIL (|has| |#1| (-464)))) (-1975 (($ $ |#1| |#2| $) 62)) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) 17)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| |#2|) NIL)) (-2192 ((|#2| $) 24)) (-3784 (($ (-1 |#2| |#2|) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1700 (($ $) 28)) (-1711 ((|#1| $) 26)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) 51)) (-1686 ((|#1| $) NIL)) (-4179 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-568))))) (-1946 (((-3 $ "failed") $ $) 91 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-568)))) (-2196 ((|#2| $) 22)) (-1944 ((|#1| $) NIL (|has| |#1| (-464)))) (-4113 (((-876) $) NIL) (($ (-576)) 46) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 41) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ |#2|) 37)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) 15 T CONST)) (-1903 (($ $ $ (-783)) 74 (|has| |#1| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) 84 (|has| |#1| (-568)))) (-4313 (($) 27 T CONST)) (-4322 (($) 12 T CONST)) (-3939 (((-112) $ $) 83)) (-4047 (($ $ |#1|) 92 (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) 69) (($ $ (-783)) 67)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-982 |#1| |#2|) (-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -4179 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) (-1070) (-804)) (T -982)) -((-4179 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-982 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *2 (-804))))) -(-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -4179 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL (-3795 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2214 (($ $ $) 65 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (-1765 (((-3 $ "failed") $ $) 52 (-3795 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2201 (((-783)) 36 (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2074 ((|#2| $) 22)) (-3032 ((|#1| $) 21)) (-3170 (($) NIL (-3795 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-1851 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-4370 (($) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2486 (((-112) $) NIL (-3795 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-2907 (($ $ $) NIL (-3795 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3777 (($ $ $) NIL (-3795 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-2891 (($ |#1| |#2|) 20)) (-3787 (((-940) $) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2411 (($ (-940)) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3116 (((-1141) $) NIL)) (-2117 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3871 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-4113 (((-876) $) 14)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 42 (-3795 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-4322 (($) 25 (-3795 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-3995 (((-112) $ $) NIL (-3795 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3975 (((-112) $ $) NIL (-3795 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3939 (((-112) $ $) 19)) (-3984 (((-112) $ $) NIL (-3795 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3963 (((-112) $ $) 69 (-3795 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-4047 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-4037 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4026 (($ $ $) 45 (-3795 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (** (($ $ (-576)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485)))) (($ $ (-783)) 32 (-3795 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))) (($ $ (-940)) NIL (-3795 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (* (($ (-576) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-783) $) 48 (-3795 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ (-940) $) NIL (-3795 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ $ $) 28 (-3795 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))))) -(((-983 |#1| |#2|) (-13 (-1121) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -2891 ($ |#1| |#2|)) (-15 -3032 (|#1| $)) (-15 -2074 (|#2| $)))) (-1121) (-1121)) (T -983)) -((-2891 (*1 *1 *2 *3) (-12 (-5 *1 (-983 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3032 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-983 *2 *3)) (-4 *3 (-1121)))) (-2074 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-983 *3 *2)) (-4 *3 (-1121))))) -(-13 (-1121) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -2891 ($ |#1| |#2|)) (-15 -3032 (|#1| $)) (-15 -2074 (|#2| $)))) -((-1690 (((-1125) $) 12)) (-4298 (($ (-518) (-1125)) 14)) (-4149 (((-518) $) 9)) (-4113 (((-876) $) 24))) -(((-984) (-13 (-625 (-876)) (-10 -8 (-15 -4149 ((-518) $)) (-15 -1690 ((-1125) $)) (-15 -4298 ($ (-518) (-1125)))))) (T -984)) -((-4149 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-984)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-984)))) (-4298 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-984))))) -(-13 (-625 (-876)) (-10 -8 (-15 -4149 ((-518) $)) (-15 -1690 ((-1125) $)) (-15 -4298 ($ (-518) (-1125))))) -((-1957 (((-112) $ $) NIL)) (-4326 (($) NIL T CONST)) (-2324 (($ $ $) 30)) (-2299 (($ $) 24)) (-2447 (((-1179) $) NIL)) (-3202 (((-703 (-887 $ $)) $) 55)) (-4147 (((-703 $) $) 45)) (-3980 (((-703 (-887 $ $)) $) 56)) (-3011 (((-703 (-887 $ $)) $) 57)) (-2243 (((-703 |#1|) $) 36)) (-2716 (((-703 (-887 $ $)) $) 54)) (-3982 (($ $ $) 31)) (-3116 (((-1141) $) NIL)) (-3130 (($) NIL T CONST)) (-3866 (($ $ $) 32)) (-2711 (($ $ $) 29)) (-2206 (($ $ $) 27)) (-4113 (((-876) $) 59) (($ |#1|) 12)) (-2950 (((-112) $ $) NIL)) (-2311 (($ $ $) 28)) (-3939 (((-112) $ $) NIL))) -(((-985 |#1|) (-13 (-988) (-628 |#1|) (-10 -8 (-15 -2243 ((-703 |#1|) $)) (-15 -4147 ((-703 $) $)) (-15 -2716 ((-703 (-887 $ $)) $)) (-15 -3202 ((-703 (-887 $ $)) $)) (-15 -3980 ((-703 (-887 $ $)) $)) (-15 -3011 ((-703 (-887 $ $)) $)) (-15 -2206 ($ $ $)) (-15 -2711 ($ $ $)))) (-1121)) (T -985)) -((-2243 (*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-703 (-985 *3))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-2716 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1121)))) (-2206 (*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121)))) (-2711 (*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121))))) -(-13 (-988) (-628 |#1|) (-10 -8 (-15 -2243 ((-703 |#1|) $)) (-15 -4147 ((-703 $) $)) (-15 -2716 ((-703 (-887 $ $)) $)) (-15 -3202 ((-703 (-887 $ $)) $)) (-15 -3980 ((-703 (-887 $ $)) $)) (-15 -3011 ((-703 (-887 $ $)) $)) (-15 -2206 ($ $ $)) (-15 -2711 ($ $ $)))) -((-2845 (((-985 |#1|) (-985 |#1|)) 46)) (-1689 (((-985 |#1|) (-985 |#1|)) 22)) (-2024 (((-1123 |#1|) (-985 |#1|)) 41))) -(((-986 |#1|) (-13 (-1238) (-10 -7 (-15 -1689 ((-985 |#1|) (-985 |#1|))) (-15 -2024 ((-1123 |#1|) (-985 |#1|))) (-15 -2845 ((-985 |#1|) (-985 |#1|))))) (-1121)) (T -986)) -((-1689 (*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-985 *4)) (-4 *4 (-1121)) (-5 *2 (-1123 *4)) (-5 *1 (-986 *4)))) (-2845 (*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3))))) -(-13 (-1238) (-10 -7 (-15 -1689 ((-985 |#1|) (-985 |#1|))) (-15 -2024 ((-1123 |#1|) (-985 |#1|))) (-15 -2845 ((-985 |#1|) (-985 |#1|))))) -((-2423 (((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|)) 29))) -(((-987 |#1| |#2|) (-13 (-1238) (-10 -7 (-15 -2423 ((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|))))) (-1121) (-1121)) (T -987)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-985 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-985 *6)) (-5 *1 (-987 *5 *6))))) -(-13 (-1238) (-10 -7 (-15 -2423 ((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|))))) -((-1957 (((-112) $ $) 16)) (-4326 (($) 14 T CONST)) (-2324 (($ $ $) 6)) (-2299 (($ $) 8)) (-2447 (((-1179) $) 20)) (-3982 (($ $ $) 12)) (-3116 (((-1141) $) 19)) (-3130 (($) 13 T CONST)) (-3866 (($ $ $) 11)) (-4113 (((-876) $) 18)) (-2950 (((-112) $ $) 17)) (-2311 (($ $ $) 7)) (-3939 (((-112) $ $) 15))) -(((-988) (-141)) (T -988)) -((-4326 (*1 *1) (-4 *1 (-988))) (-3130 (*1 *1) (-4 *1 (-988))) (-3982 (*1 *1 *1 *1) (-4 *1 (-988))) (-3866 (*1 *1 *1 *1) (-4 *1 (-988)))) -(-13 (-113) (-1121) (-10 -8 (-15 -4326 ($) -2666) (-15 -3130 ($) -2666) (-15 -3982 ($ $ $)) (-15 -3866 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) 8)) (-3170 (($) 7 T CONST)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-2745 (($ $ $) 44)) (-2748 (($ $ $) 45)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3777 ((|#1| $) 46)) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3743 ((|#1| $) 40)) (-3695 (($ |#1| $) 41)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-2372 ((|#1| $) 42)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) 43)) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-989 |#1|) (-141) (-861)) (T -989)) -((-3777 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) (-2748 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) (-2745 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4464) (-15 -3777 (|t#1| $)) (-15 -2748 ($ $ $)) (-15 -2745 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-3911 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#2|)) |#2| |#2|) 105)) (-2163 ((|#2| |#2| |#2|) 103)) (-1931 (((-2 (|:| |coef2| |#2|) (|:| -3115 |#2|)) |#2| |#2|) 107)) (-1377 (((-2 (|:| |coef1| |#2|) (|:| -3115 |#2|)) |#2| |#2|) 109)) (-1746 (((-2 (|:| |coef2| |#2|) (|:| -3389 |#1|)) |#2| |#2|) 131 (|has| |#1| (-464)))) (-3141 (((-2 (|:| |coef2| |#2|) (|:| -2970 |#1|)) |#2| |#2|) 56)) (-2090 (((-2 (|:| |coef2| |#2|) (|:| -2970 |#1|)) |#2| |#2|) 80)) (-3758 (((-2 (|:| |coef1| |#2|) (|:| -2970 |#1|)) |#2| |#2|) 82)) (-3833 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-3179 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 89)) (-3729 (((-2 (|:| |coef2| |#2|) (|:| -1790 |#1|)) |#2|) 121)) (-4119 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 92)) (-4077 (((-656 (-783)) |#2| |#2|) 102)) (-3856 ((|#1| |#2| |#2|) 50)) (-3405 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3389 |#1|)) |#2| |#2|) 129 (|has| |#1| (-464)))) (-3389 ((|#1| |#2| |#2|) 127 (|has| |#1| (-464)))) (-2050 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2970 |#1|)) |#2| |#2|) 54)) (-3601 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2970 |#1|)) |#2| |#2|) 79)) (-2970 ((|#1| |#2| |#2|) 76)) (-2799 (((-2 (|:| -2862 |#1|) (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2|) 41)) (-2935 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-1906 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-4381 ((|#2| |#2| |#2|) 93)) (-3286 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 87)) (-3047 ((|#2| |#2| |#2| (-783)) 85)) (-3115 ((|#2| |#2| |#2|) 135 (|has| |#1| (-464)))) (-1946 (((-1288 |#2|) (-1288 |#2|) |#1|) 22)) (-3889 (((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2|) 46)) (-4342 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1790 |#1|)) |#2|) 119)) (-1790 ((|#1| |#2|) 116)) (-1559 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 91)) (-4278 ((|#2| |#2| |#2| (-783)) 90)) (-3014 (((-656 |#2|) |#2| |#2|) 99)) (-4440 ((|#2| |#2| |#1| |#1| (-783)) 62)) (-1750 ((|#1| |#1| |#1| (-783)) 61)) (* (((-1288 |#2|) |#1| (-1288 |#2|)) 17))) -(((-990 |#1| |#2|) (-10 -7 (-15 -2970 (|#1| |#2| |#2|)) (-15 -3601 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2970 |#1|)) |#2| |#2|)) (-15 -2090 ((-2 (|:| |coef2| |#2|) (|:| -2970 |#1|)) |#2| |#2|)) (-15 -3758 ((-2 (|:| |coef1| |#2|) (|:| -2970 |#1|)) |#2| |#2|)) (-15 -3047 (|#2| |#2| |#2| (-783))) (-15 -3286 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3179 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4278 (|#2| |#2| |#2| (-783))) (-15 -1559 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4119 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4381 (|#2| |#2| |#2|)) (-15 -1906 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3833 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2163 (|#2| |#2| |#2|)) (-15 -3911 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#2|)) |#2| |#2|)) (-15 -1931 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#2|)) |#2| |#2|)) (-15 -1377 ((-2 (|:| |coef1| |#2|) (|:| -3115 |#2|)) |#2| |#2|)) (-15 -1790 (|#1| |#2|)) (-15 -4342 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1790 |#1|)) |#2|)) (-15 -3729 ((-2 (|:| |coef2| |#2|) (|:| -1790 |#1|)) |#2|)) (-15 -3014 ((-656 |#2|) |#2| |#2|)) (-15 -4077 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3389 (|#1| |#2| |#2|)) (-15 -3405 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3389 |#1|)) |#2| |#2|)) (-15 -1746 ((-2 (|:| |coef2| |#2|) (|:| -3389 |#1|)) |#2| |#2|)) (-15 -3115 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1288 |#2|) |#1| (-1288 |#2|))) (-15 -1946 ((-1288 |#2|) (-1288 |#2|) |#1|)) (-15 -2799 ((-2 (|:| -2862 |#1|) (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2|)) (-15 -3889 ((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2|)) (-15 -1750 (|#1| |#1| |#1| (-783))) (-15 -4440 (|#2| |#2| |#1| |#1| (-783))) (-15 -2935 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3856 (|#1| |#2| |#2|)) (-15 -2050 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2970 |#1|)) |#2| |#2|)) (-15 -3141 ((-2 (|:| |coef2| |#2|) (|:| -2970 |#1|)) |#2| |#2|))) (-568) (-1264 |#1|)) (T -990)) -((-3141 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2970 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2050 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2970 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3856 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-2935 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-4440 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-1750 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-990 *2 *4)) (-4 *4 (-1264 *2)))) (-3889 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2799 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2862 *4) (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-1946 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-568)) (-5 *1 (-990 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-568)) (-5 *1 (-990 *3 *4)))) (-3115 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-1746 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3389 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3405 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3389 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3389 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-4077 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3014 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1790 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4342 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1790 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-1790 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-1377 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3115 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-1931 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3911 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2163 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-3833 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-1906 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4381 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-4119 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-1559 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-4278 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) (-4 *2 (-1264 *4)))) (-3179 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3286 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3047 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) (-4 *2 (-1264 *4)))) (-3758 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2970 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2090 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2970 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3601 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2970 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-2970 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2))))) -(-10 -7 (-15 -2970 (|#1| |#2| |#2|)) (-15 -3601 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2970 |#1|)) |#2| |#2|)) (-15 -2090 ((-2 (|:| |coef2| |#2|) (|:| -2970 |#1|)) |#2| |#2|)) (-15 -3758 ((-2 (|:| |coef1| |#2|) (|:| -2970 |#1|)) |#2| |#2|)) (-15 -3047 (|#2| |#2| |#2| (-783))) (-15 -3286 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3179 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4278 (|#2| |#2| |#2| (-783))) (-15 -1559 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4119 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4381 (|#2| |#2| |#2|)) (-15 -1906 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3833 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2163 (|#2| |#2| |#2|)) (-15 -3911 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#2|)) |#2| |#2|)) (-15 -1931 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#2|)) |#2| |#2|)) (-15 -1377 ((-2 (|:| |coef1| |#2|) (|:| -3115 |#2|)) |#2| |#2|)) (-15 -1790 (|#1| |#2|)) (-15 -4342 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1790 |#1|)) |#2|)) (-15 -3729 ((-2 (|:| |coef2| |#2|) (|:| -1790 |#1|)) |#2|)) (-15 -3014 ((-656 |#2|) |#2| |#2|)) (-15 -4077 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3389 (|#1| |#2| |#2|)) (-15 -3405 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3389 |#1|)) |#2| |#2|)) (-15 -1746 ((-2 (|:| |coef2| |#2|) (|:| -3389 |#1|)) |#2| |#2|)) (-15 -3115 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1288 |#2|) |#1| (-1288 |#2|))) (-15 -1946 ((-1288 |#2|) (-1288 |#2|) |#1|)) (-15 -2799 ((-2 (|:| -2862 |#1|) (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2|)) (-15 -3889 ((-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) |#2| |#2|)) (-15 -1750 (|#1| |#1| |#1| (-783))) (-15 -4440 (|#2| |#2| |#1| |#1| (-783))) (-15 -2935 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3856 (|#1| |#2| |#2|)) (-15 -2050 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2970 |#1|)) |#2| |#2|)) (-15 -3141 ((-2 (|:| |coef2| |#2|) (|:| -2970 |#1|)) |#2| |#2|))) -((-1957 (((-112) $ $) NIL)) (-4171 (((-1237) $) 13)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2230 (((-1156) $) 10)) (-4113 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-991) (-13 (-1104) (-10 -8 (-15 -2230 ((-1156) $)) (-15 -4171 ((-1237) $))))) (T -991)) -((-2230 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-991)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-991))))) -(-13 (-1104) (-10 -8 (-15 -2230 ((-1156) $)) (-15 -4171 ((-1237) $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 40)) (-1765 (((-3 $ "failed") $ $) 54)) (-3170 (($) NIL T CONST)) (-3686 (((-656 (-887 (-940) (-940))) $) 67)) (-3102 (((-940) $) 94)) (-3722 (((-656 (-940)) $) 17)) (-3997 (((-1178 $) (-783)) 39)) (-3655 (($ (-656 (-940))) 16)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2117 (($ $) 70)) (-4113 (((-876) $) 90) (((-656 (-940)) $) 11)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 8 T CONST)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 44)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 42)) (-4026 (($ $ $) 46)) (* (($ (-940) $) NIL) (($ (-783) $) 49)) (-1970 (((-783) $) 22))) -(((-992) (-13 (-807) (-625 (-656 (-940))) (-10 -8 (-15 -3655 ($ (-656 (-940)))) (-15 -3722 ((-656 (-940)) $)) (-15 -1970 ((-783) $)) (-15 -3997 ((-1178 $) (-783))) (-15 -3686 ((-656 (-887 (-940) (-940))) $)) (-15 -3102 ((-940) $)) (-15 -2117 ($ $))))) (T -992)) -((-3655 (*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992)))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-992)))) (-3997 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1178 (-992))) (-5 *1 (-992)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-940) (-940)))) (-5 *1 (-992)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-992)))) (-2117 (*1 *1 *1) (-5 *1 (-992)))) -(-13 (-807) (-625 (-656 (-940))) (-10 -8 (-15 -3655 ($ (-656 (-940)))) (-15 -3722 ((-656 (-940)) $)) (-15 -1970 ((-783) $)) (-15 -3997 ((-1178 $) (-783))) (-15 -3686 ((-656 (-887 (-940) (-940))) $)) (-15 -3102 ((-940) $)) (-15 -2117 ($ $)))) -((-4047 (($ $ |#2|) 31)) (-4037 (($ $) 23) (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) 29))) -(((-993 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4047 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) (-994 |#2| |#3| |#4|) (-1070) (-804) (-861)) (T -993)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4047 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-940) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1585 (((-656 |#3|) $) 86)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2390 (($ $) 64 (|has| |#1| (-568)))) (-3302 (((-112) $) 66 (|has| |#1| (-568)))) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-3310 (($ $) 72)) (-1851 (((-3 $ "failed") $) 37)) (-2654 (((-112) $) 85)) (-2486 (((-112) $) 35)) (-4101 (((-112) $) 74)) (-1564 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-656 |#3|) (-656 |#2|)) 87)) (-2423 (($ (-1 |#1| |#1|) $) 75)) (-1700 (($ $) 77)) (-1711 ((|#1| $) 78)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1946 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2196 ((|#2| $) 76)) (-3193 (($ $) 84)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2707 ((|#1| $ |#2|) 71)) (-4276 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-994 |#1| |#2| |#3|) (-141) (-1070) (-804) (-861)) (T -994)) -((-1711 (*1 *2 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-1070)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *4 (-861)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *2 *4)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *2 (-804)))) (-1564 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-994 *4 *3 *2)) (-4 *4 (-1070)) (-4 *3 (-804)) (-4 *2 (-861)))) (-1564 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-804)) (-4 *6 (-861)))) (-1585 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-656 *5)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3193 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) (-4 *4 (-861))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1564 ($ $ |t#3| |t#2|)) (-15 -1564 ($ $ (-656 |t#3|) (-656 |t#2|))) (-15 -1700 ($ $)) (-15 -1711 (|t#1| $)) (-15 -2196 (|t#2| $)) (-15 -1585 ((-656 |t#3|) $)) (-15 -2654 ((-112) $)) (-15 -3193 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-3764 (((-1115 (-227)) $) 8)) (-3753 (((-1115 (-227)) $) 9)) (-3742 (((-1115 (-227)) $) 10)) (-1373 (((-656 (-656 (-962 (-227)))) $) 11)) (-4113 (((-876) $) 6))) -(((-995) (-141)) (T -995)) -((-1373 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-656 (-656 (-962 (-227))))))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227))))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227))))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) -(-13 (-625 (-876)) (-10 -8 (-15 -1373 ((-656 (-656 (-962 (-227)))) $)) (-15 -3742 ((-1115 (-227)) $)) (-15 -3753 ((-1115 (-227)) $)) (-15 -3764 ((-1115 (-227)) $)))) -(((-625 (-876)) . T)) -((-1585 (((-656 |#4|) $) 23)) (-4404 (((-112) $) 55)) (-3921 (((-112) $) 54)) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |#4|) 42)) (-4016 (((-112) $) 56)) (-3403 (((-112) $ $) 62)) (-4357 (((-112) $ $) 65)) (-2159 (((-112) $) 60)) (-3496 (((-656 |#5|) (-656 |#5|) $) 98)) (-3588 (((-656 |#5|) (-656 |#5|) $) 95)) (-3561 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3240 (((-656 |#4|) $) 27)) (-3821 (((-112) |#4| $) 34)) (-2296 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-4023 (($ $ |#4|) 39)) (-2715 (($ $ |#4|) 38)) (-3142 (($ $ |#4|) 40)) (-3939 (((-112) $ $) 46))) -(((-996 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3921 ((-112) |#1|)) (-15 -3496 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3588 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3561 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2296 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4016 ((-112) |#1|)) (-15 -4357 ((-112) |#1| |#1|)) (-15 -3403 ((-112) |#1| |#1|)) (-15 -2159 ((-112) |#1|)) (-15 -4404 ((-112) |#1|)) (-15 -2380 ((-2 (|:| |under| |#1|) (|:| -3058 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4023 (|#1| |#1| |#4|)) (-15 -3142 (|#1| |#1| |#4|)) (-15 -2715 (|#1| |#1| |#4|)) (-15 -3821 ((-112) |#4| |#1|)) (-15 -3240 ((-656 |#4|) |#1|)) (-15 -1585 ((-656 |#4|) |#1|)) (-15 -3939 ((-112) |#1| |#1|))) (-997 |#2| |#3| |#4| |#5|) (-1070) (-805) (-861) (-1086 |#2| |#3| |#4|)) (T -996)) -NIL -(-10 -8 (-15 -3921 ((-112) |#1|)) (-15 -3496 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3588 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3561 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2296 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4016 ((-112) |#1|)) (-15 -4357 ((-112) |#1| |#1|)) (-15 -3403 ((-112) |#1| |#1|)) (-15 -2159 ((-112) |#1|)) (-15 -4404 ((-112) |#1|)) (-15 -2380 ((-2 (|:| |under| |#1|) (|:| -3058 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4023 (|#1| |#1| |#4|)) (-15 -3142 (|#1| |#1| |#4|)) (-15 -2715 (|#1| |#1| |#4|)) (-15 -3821 ((-112) |#4| |#1|)) (-15 -3240 ((-656 |#4|) |#1|)) (-15 -1585 ((-656 |#4|) |#1|)) (-15 -3939 ((-112) |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-1585 (((-656 |#3|) $) 34)) (-4404 (((-112) $) 27)) (-3921 (((-112) $) 18 (|has| |#1| (-568)))) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |#3|) 28)) (-4234 (((-112) $ (-783)) 45)) (-3603 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464)))) (-3170 (($) 46 T CONST)) (-4016 (((-112) $) 23 (|has| |#1| (-568)))) (-3403 (((-112) $ $) 25 (|has| |#1| (-568)))) (-4357 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2159 (((-112) $) 26 (|has| |#1| (-568)))) (-3496 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-3588 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2982 (((-3 $ "failed") (-656 |#4|)) 37)) (-2317 (($ (-656 |#4|)) 36)) (-3841 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3561 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464)))) (-3722 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-4260 ((|#3| $) 35)) (-3215 (((-112) $ (-783)) 44)) (-2911 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-1602 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#4| |#4|) $) 48)) (-3240 (((-656 |#3|) $) 33)) (-3821 (((-112) |#3| $) 32)) (-1884 (((-112) $ (-783)) 43)) (-2447 (((-1179) $) 10)) (-2296 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3116 (((-1141) $) 11)) (-4220 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1759 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-1645 (((-112) $ $) 39)) (-3617 (((-112) $) 42)) (-3307 (($) 41)) (-3127 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-4287 (($ $) 40)) (-1556 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4125 (($ (-656 |#4|)) 61)) (-4023 (($ $ |#3|) 29)) (-2715 (($ $ |#3|) 31)) (-3142 (($ $ |#3|) 30)) (-4113 (((-876) $) 12) (((-656 |#4|) $) 38)) (-2950 (((-112) $ $) 6)) (-2543 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 8)) (-1970 (((-783) $) 47 (|has| $ (-6 -4464))))) -(((-997 |#1| |#2| |#3| |#4|) (-141) (-1070) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -997)) -((-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) (-4260 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-1086 *3 *4 *2)) (-4 *2 (-861)))) (-1585 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) (-3821 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *3 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112)))) (-2715 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-3142 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-4023 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-2380 (*1 *2 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3058 *1) (|:| |upper| *1))) (-4 *1 (-997 *4 *5 *3 *6)))) (-4404 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-2159 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3403 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-4357 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-4016 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2296 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3561 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3588 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)))) (-3496 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112))))) -(-13 (-1121) (-152 |t#4|) (-625 (-656 |t#4|)) (-10 -8 (-6 -4464) (-15 -2982 ((-3 $ "failed") (-656 |t#4|))) (-15 -2317 ($ (-656 |t#4|))) (-15 -4260 (|t#3| $)) (-15 -1585 ((-656 |t#3|) $)) (-15 -3240 ((-656 |t#3|) $)) (-15 -3821 ((-112) |t#3| $)) (-15 -2715 ($ $ |t#3|)) (-15 -3142 ($ $ |t#3|)) (-15 -4023 ($ $ |t#3|)) (-15 -2380 ((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |t#3|)) (-15 -4404 ((-112) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -2159 ((-112) $)) (-15 -3403 ((-112) $ $)) (-15 -4357 ((-112) $ $)) (-15 -4016 ((-112) $)) (-15 -2296 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3561 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3588 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -3496 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -3921 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-1121) . T) ((-1238) . T)) -((-1434 (((-656 |#4|) |#4| |#4|) 136)) (-2927 (((-656 |#4|) (-656 |#4|) (-112)) 125 (|has| |#1| (-464))) (((-656 |#4|) (-656 |#4|)) 126 (|has| |#1| (-464)))) (-1442 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 44)) (-4018 (((-112) |#4|) 43)) (-4215 (((-656 |#4|) |#4|) 121 (|has| |#1| (-464)))) (-1649 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|)) 24)) (-4378 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 30)) (-2564 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 31)) (-1489 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|)) 90)) (-1925 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-4439 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2070 (((-656 |#4|) (-656 |#4|)) 128)) (-1349 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112)) 59) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 61)) (-2108 ((|#4| |#4| (-656 |#4|)) 60)) (-1858 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 132 (|has| |#1| (-464)))) (-2553 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 135 (|has| |#1| (-464)))) (-2098 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 134 (|has| |#1| (-464)))) (-2446 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|))) 105) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 107) (((-656 |#4|) (-656 |#4|) |#4|) 140) (((-656 |#4|) |#4| |#4|) 137) (((-656 |#4|) (-656 |#4|)) 106)) (-2930 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-4095 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 52)) (-2869 (((-112) (-656 |#4|)) 79)) (-2029 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 67)) (-3293 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 37)) (-4192 (((-112) |#4|) 36)) (-2985 (((-656 |#4|) (-656 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-1341 (((-656 |#4|) (-656 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-1862 (((-656 |#4|) (-656 |#4|)) 83)) (-3507 (((-656 |#4|) (-656 |#4|)) 97)) (-3357 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-3781 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 50)) (-3602 (((-112) |#4|) 45))) -(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2446 ((-656 |#4|) (-656 |#4|))) (-15 -2446 ((-656 |#4|) |#4| |#4|)) (-15 -2070 ((-656 |#4|) (-656 |#4|))) (-15 -1434 ((-656 |#4|) |#4| |#4|)) (-15 -2446 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -2446 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2446 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -3357 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2029 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2869 ((-112) (-656 |#4|))) (-15 -1649 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -4378 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -2564 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -4095 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4018 ((-112) |#4|)) (-15 -1442 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4192 ((-112) |#4|)) (-15 -3293 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3602 ((-112) |#4|)) (-15 -3781 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -1349 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1349 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -2108 (|#4| |#4| (-656 |#4|))) (-15 -1862 ((-656 |#4|) (-656 |#4|))) (-15 -1489 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -3507 ((-656 |#4|) (-656 |#4|))) (-15 -1925 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4439 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -4215 ((-656 |#4|) |#4|)) (-15 -2927 ((-656 |#4|) (-656 |#4|))) (-15 -2927 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -1858 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2098 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2553 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -1341 ((-656 |#4|) (-656 |#4|))) (-15 -2985 ((-656 |#4|) (-656 |#4|))) (-15 -2930 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -998)) -((-2930 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2985 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-1341 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2553 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2098 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-1858 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2927 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-2927 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-4215 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-4439 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-998 *5 *6 *7 *8)))) (-1925 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *1 (-998 *6 *7 *8 *9)))) (-3507 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-1489 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3015 (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2108 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *2)))) (-1349 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-1349 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3781 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3602 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3293 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4192 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-1442 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-4095 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-4378 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *7)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *5 *6 *7 *8)))) (-3357 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *4 *5 *6 *7)))) (-2446 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-2446 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2446 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *3)))) (-1434 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-2446 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-2446 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) -(-10 -7 (-15 -2446 ((-656 |#4|) (-656 |#4|))) (-15 -2446 ((-656 |#4|) |#4| |#4|)) (-15 -2070 ((-656 |#4|) (-656 |#4|))) (-15 -1434 ((-656 |#4|) |#4| |#4|)) (-15 -2446 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -2446 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2446 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -3357 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2029 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2869 ((-112) (-656 |#4|))) (-15 -1649 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -4378 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -2564 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -4095 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4018 ((-112) |#4|)) (-15 -1442 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4192 ((-112) |#4|)) (-15 -3293 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3602 ((-112) |#4|)) (-15 -3781 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -1349 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1349 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -2108 (|#4| |#4| (-656 |#4|))) (-15 -1862 ((-656 |#4|) (-656 |#4|))) (-15 -1489 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -3507 ((-656 |#4|) (-656 |#4|))) (-15 -1925 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4439 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -4215 ((-656 |#4|) |#4|)) (-15 -2927 ((-656 |#4|) (-656 |#4|))) (-15 -2927 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -1858 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2098 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2553 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -1341 ((-656 |#4|) (-656 |#4|))) (-15 -2985 ((-656 |#4|) (-656 |#4|))) (-15 -2930 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) -((-3217 (((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2676 (((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)) 46)) (-2001 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-999 |#1|) (-10 -7 (-15 -3217 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2001 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2676 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)))) (-374)) (T -999)) -((-2676 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5))))) (-5 *1 (-999 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)))) (-2001 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-999 *5)))) (-3217 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) (-5 *1 (-999 *6)) (-5 *3 (-701 *6))))) -(-10 -7 (-15 -3217 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2001 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2676 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1288 |#1|)))) (-701 |#1|) (-1288 |#1|)))) -((-3589 (((-430 |#4|) |#4|) 56))) -(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3589 ((-430 |#4|) |#4|))) (-861) (-805) (-464) (-968 |#3| |#2| |#1|)) (T -1000)) -((-3589 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) (-5 *1 (-1000 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) -(-10 -7 (-15 -3589 ((-430 |#4|) |#4|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2155 (($ (-783)) 115 (|has| |#1| (-23)))) (-3657 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465))))) (-2380 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-4234 (((-112) $ (-783)) 8)) (-4268 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-1542 (($ $) 93 (|has| $ (-6 -4465)))) (-4204 (($ $) 103)) (-3841 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) 52)) (-3539 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-2819 (($ (-656 |#1|)) 121)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1665 (((-701 |#1|) $ $) 108 (|has| |#1| (-1070)))) (-1991 (($ (-783) |#1|) 70)) (-3215 (((-112) $ (-783)) 9)) (-1605 (((-576) $) 44 (|has| (-576) (-861)))) (-2907 (($ $ $) 85 (|has| |#1| (-861)))) (-2748 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1829 (((-576) $) 45 (|has| (-576) (-861)))) (-3777 (($ $ $) 86 (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2396 ((|#1| $) 105 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-1884 (((-112) $ (-783)) 10)) (-3108 ((|#1| $) 106 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3386 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2863 (((-656 (-576)) $) 47)) (-1389 (((-112) (-576) $) 48)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1755 ((|#1| $) 43 (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4267 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-2419 (($ $ (-656 |#1|)) 119)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) 49)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-1875 ((|#1| $ $) 109 (|has| |#1| (-1070)))) (-3181 (((-940) $) 120)) (-2335 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-2900 (($ $ $) 107)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3218 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-4287 (($ $) 13)) (-1556 (((-548) $) 81 (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 122)) (-4125 (($ (-656 |#1|)) 72)) (-2767 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3975 (((-112) $ $) 89 (|has| |#1| (-861)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3984 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3963 (((-112) $ $) 90 (|has| |#1| (-861)))) (-4037 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4026 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-1001 |#1|) (-141) (-1070)) (T -1001)) -((-2819 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-1001 *3)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1070)) (-5 *2 (-940)))) (-2900 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1070)))) (-2419 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1001 *3)) (-4 *3 (-1070))))) -(-13 (-1286 |t#1|) (-630 (-656 |t#1|)) (-10 -8 (-15 -2819 ($ (-656 |t#1|))) (-15 -3181 ((-940) $)) (-15 -2900 ($ $ $)) (-15 -2419 ($ $ (-656 |t#1|))))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-630 (-656 |#1|)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T) ((-1286 |#1|) . T)) -((-2423 (((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)) 17))) -(((-1002 |#1| |#2|) (-10 -7 (-15 -2423 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) (-1070) (-1070)) (T -1002)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-962 *6)) (-5 *1 (-1002 *5 *6))))) -(-10 -7 (-15 -2423 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) -((-3522 ((|#1| (-962 |#1|)) 14)) (-4056 ((|#1| (-962 |#1|)) 13)) (-2442 ((|#1| (-962 |#1|)) 12)) (-3400 ((|#1| (-962 |#1|)) 16)) (-4302 ((|#1| (-962 |#1|)) 24)) (-4094 ((|#1| (-962 |#1|)) 15)) (-2895 ((|#1| (-962 |#1|)) 17)) (-4411 ((|#1| (-962 |#1|)) 23)) (-4131 ((|#1| (-962 |#1|)) 22))) -(((-1003 |#1|) (-10 -7 (-15 -2442 (|#1| (-962 |#1|))) (-15 -4056 (|#1| (-962 |#1|))) (-15 -3522 (|#1| (-962 |#1|))) (-15 -4094 (|#1| (-962 |#1|))) (-15 -3400 (|#1| (-962 |#1|))) (-15 -2895 (|#1| (-962 |#1|))) (-15 -4131 (|#1| (-962 |#1|))) (-15 -4411 (|#1| (-962 |#1|))) (-15 -4302 (|#1| (-962 |#1|)))) (-1070)) (T -1003)) -((-4302 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-4411 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-2895 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-4056 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(-10 -7 (-15 -2442 (|#1| (-962 |#1|))) (-15 -4056 (|#1| (-962 |#1|))) (-15 -3522 (|#1| (-962 |#1|))) (-15 -4094 (|#1| (-962 |#1|))) (-15 -3400 (|#1| (-962 |#1|))) (-15 -2895 (|#1| (-962 |#1|))) (-15 -4131 (|#1| (-962 |#1|))) (-15 -4411 (|#1| (-962 |#1|))) (-15 -4302 (|#1| (-962 |#1|)))) -((-3747 (((-3 |#1| "failed") |#1|) 18)) (-3203 (((-3 |#1| "failed") |#1|) 6)) (-2037 (((-3 |#1| "failed") |#1|) 16)) (-2953 (((-3 |#1| "failed") |#1|) 4)) (-3466 (((-3 |#1| "failed") |#1|) 20)) (-3078 (((-3 |#1| "failed") |#1|) 8)) (-3226 (((-3 |#1| "failed") |#1| (-783)) 1)) (-3925 (((-3 |#1| "failed") |#1|) 3)) (-2534 (((-3 |#1| "failed") |#1|) 2)) (-3875 (((-3 |#1| "failed") |#1|) 21)) (-3808 (((-3 |#1| "failed") |#1|) 9)) (-1596 (((-3 |#1| "failed") |#1|) 19)) (-2557 (((-3 |#1| "failed") |#1|) 7)) (-2647 (((-3 |#1| "failed") |#1|) 17)) (-1664 (((-3 |#1| "failed") |#1|) 5)) (-3640 (((-3 |#1| "failed") |#1|) 24)) (-1642 (((-3 |#1| "failed") |#1|) 12)) (-3366 (((-3 |#1| "failed") |#1|) 22)) (-2612 (((-3 |#1| "failed") |#1|) 10)) (-3064 (((-3 |#1| "failed") |#1|) 26)) (-4044 (((-3 |#1| "failed") |#1|) 14)) (-3180 (((-3 |#1| "failed") |#1|) 27)) (-2892 (((-3 |#1| "failed") |#1|) 15)) (-1483 (((-3 |#1| "failed") |#1|) 25)) (-1969 (((-3 |#1| "failed") |#1|) 13)) (-2893 (((-3 |#1| "failed") |#1|) 23)) (-2794 (((-3 |#1| "failed") |#1|) 11))) -(((-1004 |#1|) (-141) (-1223)) (T -1004)) -((-3180 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3064 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1483 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3640 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2893 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3366 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3875 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3466 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1596 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3747 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2647 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2037 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2892 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-4044 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1969 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1642 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2794 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2612 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3808 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3078 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2557 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3203 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-1664 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2953 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3925 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-2534 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223)))) (-3226 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(-13 (-10 -7 (-15 -3226 ((-3 |t#1| "failed") |t#1| (-783))) (-15 -2534 ((-3 |t#1| "failed") |t#1|)) (-15 -3925 ((-3 |t#1| "failed") |t#1|)) (-15 -2953 ((-3 |t#1| "failed") |t#1|)) (-15 -1664 ((-3 |t#1| "failed") |t#1|)) (-15 -3203 ((-3 |t#1| "failed") |t#1|)) (-15 -2557 ((-3 |t#1| "failed") |t#1|)) (-15 -3078 ((-3 |t#1| "failed") |t#1|)) (-15 -3808 ((-3 |t#1| "failed") |t#1|)) (-15 -2612 ((-3 |t#1| "failed") |t#1|)) (-15 -2794 ((-3 |t#1| "failed") |t#1|)) (-15 -1642 ((-3 |t#1| "failed") |t#1|)) (-15 -1969 ((-3 |t#1| "failed") |t#1|)) (-15 -4044 ((-3 |t#1| "failed") |t#1|)) (-15 -2892 ((-3 |t#1| "failed") |t#1|)) (-15 -2037 ((-3 |t#1| "failed") |t#1|)) (-15 -2647 ((-3 |t#1| "failed") |t#1|)) (-15 -3747 ((-3 |t#1| "failed") |t#1|)) (-15 -1596 ((-3 |t#1| "failed") |t#1|)) (-15 -3466 ((-3 |t#1| "failed") |t#1|)) (-15 -3875 ((-3 |t#1| "failed") |t#1|)) (-15 -3366 ((-3 |t#1| "failed") |t#1|)) (-15 -2893 ((-3 |t#1| "failed") |t#1|)) (-15 -3640 ((-3 |t#1| "failed") |t#1|)) (-15 -1483 ((-3 |t#1| "failed") |t#1|)) (-15 -3064 ((-3 |t#1| "failed") |t#1|)) (-15 -3180 ((-3 |t#1| "failed") |t#1|)))) -((-1443 ((|#4| |#4| (-656 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2440 ((|#4| |#4| (-656 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2423 ((|#4| (-1 |#4| (-971 |#1|)) |#4|) 31))) -(((-1005 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2440 (|#4| |#4| |#3|)) (-15 -2440 (|#4| |#4| (-656 |#3|))) (-15 -1443 (|#4| |#4| |#3|)) (-15 -1443 (|#4| |#4| (-656 |#3|))) (-15 -2423 (|#4| (-1 |#4| (-971 |#1|)) |#4|))) (-1070) (-805) (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)) (-15 -1654 ((-3 $ "failed") (-1197))))) (-968 (-971 |#1|) |#2| |#3|)) (T -1005)) -((-2423 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-971 *4))) (-4 *4 (-1070)) (-4 *2 (-968 (-971 *4) *5 *6)) (-4 *5 (-805)) (-4 *6 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)) (-15 -1654 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *6 *2)))) (-1443 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)) (-15 -1654 ((-3 $ "failed") (-1197)))))) (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) (-4 *2 (-968 (-971 *4) *5 *6)))) (-1443 (*1 *2 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)) (-15 -1654 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3)))) (-2440 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)) (-15 -1654 ((-3 $ "failed") (-1197)))))) (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) (-4 *2 (-968 (-971 *4) *5 *6)))) (-2440 (*1 *2 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)) (-15 -1654 ((-3 $ "failed") (-1197)))))) (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3))))) -(-10 -7 (-15 -2440 (|#4| |#4| |#3|)) (-15 -2440 (|#4| |#4| (-656 |#3|))) (-15 -1443 (|#4| |#4| |#3|)) (-15 -1443 (|#4| |#4| (-656 |#3|))) (-15 -2423 (|#4| (-1 |#4| (-971 |#1|)) |#4|))) -((-3489 ((|#2| |#3|) 35)) (-3876 (((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 79)) (-4329 (((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 100))) -(((-1006 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4329 ((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -3876 ((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -3489 (|#2| |#3|))) (-360) (-1264 |#1|) (-1264 |#2|) (-736 |#2| |#3|)) (T -1006)) -((-3489 (*1 *2 *3) (-12 (-4 *3 (-1264 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1006 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3)))) (-3876 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) (-5 *2 (-2 (|:| -2704 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1006 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) (-4329 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -2704 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5))))) -(-10 -7 (-15 -4329 ((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -3876 ((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -3489 (|#2| |#3|))) -((-1334 (((-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))) 82))) -(((-1007 |#1| |#2|) (-10 -7 (-15 -1334 ((-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) (-656 (-1197)) (-783)) (T -1007)) -((-1334 (*1 *2 *2) (-12 (-5 *2 (-1008 (-419 (-576)) (-878 *3) (-245 *4 (-783)) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-1007 *3 *4))))) -(-10 -7 (-15 -1334 ((-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1008 (-419 (-576)) (-878 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) -((-1957 (((-112) $ $) NIL)) (-3884 (((-3 (-112) "failed") $) 71)) (-2845 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3518 (($ $ (-3 (-112) "failed")) 72)) (-4283 (($ (-656 |#4|) |#4|) 25)) (-2447 (((-1179) $) NIL)) (-2228 (($ $) 69)) (-3116 (((-1141) $) NIL)) (-3617 (((-112) $) 70)) (-3307 (($) 30)) (-2774 ((|#4| $) 74)) (-2036 (((-656 |#4|) $) 73)) (-4113 (((-876) $) 68)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1008 |#1| |#2| |#3| |#4|) (-13 (-1121) (-625 (-876)) (-10 -8 (-15 -3307 ($)) (-15 -4283 ($ (-656 |#4|) |#4|)) (-15 -3884 ((-3 (-112) "failed") $)) (-15 -3518 ($ $ (-3 (-112) "failed"))) (-15 -3617 ((-112) $)) (-15 -2036 ((-656 |#4|) $)) (-15 -2774 (|#4| $)) (-15 -2228 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -2845 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-861) (-805) (-968 |#1| |#3| |#2|)) (T -1008)) -((-3307 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) (-4283 (*1 *1 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-968 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-861)) (-4 *6 (-805)) (-5 *1 (-1008 *4 *5 *6 *3)))) (-3884 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-3518 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-3617 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-2036 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-656 *6)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-2774 (*1 *2 *1) (-12 (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-1008 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)))) (-2228 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) (-2845 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3))))) -(-13 (-1121) (-625 (-876)) (-10 -8 (-15 -3307 ($)) (-15 -4283 ($ (-656 |#4|) |#4|)) (-15 -3884 ((-3 (-112) "failed") $)) (-15 -3518 ($ $ (-3 (-112) "failed"))) (-15 -3617 ((-112) $)) (-15 -2036 ((-656 |#4|) $)) (-15 -2774 (|#4| $)) (-15 -2228 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -2845 ($ $)) |%noBranch|) |%noBranch|))) -((-2969 (((-112) |#5| |#5|) 44)) (-1530 (((-112) |#5| |#5|) 59)) (-4257 (((-112) |#5| (-656 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-1352 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-3134 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) 70)) (-4299 (((-1293)) 32)) (-1657 (((-1293) (-1179) (-1179) (-1179)) 28)) (-1409 (((-656 |#5|) (-656 |#5|)) 100)) (-2667 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) 92)) (-1889 (((-656 (-2 (|:| -3379 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 122)) (-1920 (((-112) |#5| |#5|) 53)) (-3292 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2540 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-3560 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-2384 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-2943 (((-3 (-2 (|:| -3379 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-4270 (((-656 |#5|) (-656 |#5|)) 49))) -(((-1009 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1657 ((-1293) (-1179) (-1179) (-1179))) (-15 -4299 ((-1293))) (-15 -2969 ((-112) |#5| |#5|)) (-15 -4270 ((-656 |#5|) (-656 |#5|))) (-15 -1920 ((-112) |#5| |#5|)) (-15 -1530 ((-112) |#5| |#5|)) (-15 -1352 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2540 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3560 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2384 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3292 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4257 ((-112) |#5| |#5|)) (-15 -4257 ((-112) |#5| (-656 |#5|))) (-15 -1409 ((-656 |#5|) (-656 |#5|))) (-15 -3134 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -2667 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-15 -1889 ((-656 (-2 (|:| -3379 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2943 ((-3 (-2 (|:| -3379 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1009)) -((-2943 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| -3379 (-656 *9)) (|:| -4442 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1009 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1092 *6 *7 *8 *9)))) (-1889 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -3379 (-656 *9)) (|:| -4442 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1009 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-2667 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4442 *7)))) (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-3134 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1009 *5 *6 *7 *8 *3)))) (-4257 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3292 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-2384 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3560 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2540 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1352 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1530 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-1920 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-4270 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-2969 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-4299 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-1657 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(-10 -7 (-15 -1657 ((-1293) (-1179) (-1179) (-1179))) (-15 -4299 ((-1293))) (-15 -2969 ((-112) |#5| |#5|)) (-15 -4270 ((-656 |#5|) (-656 |#5|))) (-15 -1920 ((-112) |#5| |#5|)) (-15 -1530 ((-112) |#5| |#5|)) (-15 -1352 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2540 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3560 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2384 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3292 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4257 ((-112) |#5| |#5|)) (-15 -4257 ((-112) |#5| (-656 |#5|))) (-15 -1409 ((-656 |#5|) (-656 |#5|))) (-15 -3134 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -2667 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-15 -1889 ((-656 (-2 (|:| -3379 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2943 ((-3 (-2 (|:| -3379 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1654 (((-1197) $) 15)) (-1690 (((-1179) $) 16)) (-2441 (($ (-1197) (-1179)) 14)) (-4113 (((-876) $) 13))) -(((-1010) (-13 (-625 (-876)) (-10 -8 (-15 -2441 ($ (-1197) (-1179))) (-15 -1654 ((-1197) $)) (-15 -1690 ((-1179) $))))) (T -1010)) -((-2441 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-1010)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1010)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1010))))) -(-13 (-625 (-876)) (-10 -8 (-15 -2441 ($ (-1197) (-1179))) (-15 -1654 ((-1197) $)) (-15 -1690 ((-1179) $)))) -((-2423 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-1011 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2423 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1013 |#1|) (-1013 |#2|)) (T -1011)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1013 *6)) (-5 *1 (-1011 *5 *6 *4 *2)) (-4 *4 (-1013 *5))))) -(-10 -7 (-15 -2423 (|#4| (-1 |#2| |#1|) |#3|))) -((-2982 (((-3 |#2| "failed") $) NIL) (((-3 (-1197) "failed") $) 66) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) 96)) (-2317 ((|#2| $) NIL) (((-1197) $) 61) (((-419 (-576)) $) NIL) (((-576) $) 93)) (-1930 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 115) (((-701 |#2|) (-701 $)) 28)) (-4370 (($) 99)) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 76) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 85)) (-2252 (($ $) 10)) (-3552 (((-3 $ "failed") $) 20)) (-2423 (($ (-1 |#2| |#2|) $) 22)) (-3650 (($) 16)) (-2701 (($ $) 55)) (-4107 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-3591 (($ $) 12)) (-1556 (((-907 (-576)) $) 71) (((-907 (-390)) $) 80) (((-548) $) 40) (((-390) $) 44) (((-227) $) 48)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 91) (($ |#2|) NIL) (($ (-1197)) 58)) (-2910 (((-783)) 31)) (-3963 (((-112) $ $) 51))) -(((-1012 |#1| |#2|) (-10 -8 (-15 -3963 ((-112) |#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -3650 (|#1|)) (-15 -3552 ((-3 |#1| "failed") |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -1556 ((-227) |#1|)) (-15 -1556 ((-390) |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -4113 (|#1| (-1197))) (-15 -2982 ((-3 (-1197) "failed") |#1|)) (-15 -2317 ((-1197) |#1|)) (-15 -4370 (|#1|)) (-15 -2701 (|#1| |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2477 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -2477 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -1556 ((-907 (-390)) |#1|)) (-15 -1556 ((-907 (-576)) |#1|)) (-15 -1930 ((-701 |#2|) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-701 (-576)) (-701 |#1|))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -4113 (|#1| |#1|)) (-15 -2910 ((-783))) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) (-1013 |#2|) (-568)) (T -1012)) -((-2910 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1012 *3 *4)) (-4 *3 (-1013 *4))))) -(-10 -8 (-15 -3963 ((-112) |#1| |#1|)) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -3650 (|#1|)) (-15 -3552 ((-3 |#1| "failed") |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -1556 ((-227) |#1|)) (-15 -1556 ((-390) |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -4113 (|#1| (-1197))) (-15 -2982 ((-3 (-1197) "failed") |#1|)) (-15 -2317 ((-1197) |#1|)) (-15 -4370 (|#1|)) (-15 -2701 (|#1| |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2477 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -2477 ((-904 (-576) |#1|) |#1| (-907 (-576)) (-904 (-576) |#1|))) (-15 -1556 ((-907 (-390)) |#1|)) (-15 -1556 ((-907 (-576)) |#1|)) (-15 -1930 ((-701 |#2|) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-701 (-576)) (-701 |#1|))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -4113 (|#1| |#1|)) (-15 -2910 ((-783))) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-2628 ((|#1| $) 163 (|has| |#1| (-317)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-2725 (((-430 (-1193 $)) (-1193 $)) 154 (|has| |#1| (-928)))) (-2658 (($ $) 81)) (-3589 (((-430 $) $) 80)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 157 (|has| |#1| (-928)))) (-4386 (((-112) $ $) 65)) (-1527 (((-576) $) 144 (|has| |#1| (-832)))) (-3170 (($) 18 T CONST)) (-2982 (((-3 |#1| "failed") $) 193) (((-3 (-1197) "failed") $) 152 (|has| |#1| (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) 135 (|has| |#1| (-1059 (-576)))) (((-3 (-576) "failed") $) 133 (|has| |#1| (-1059 (-576))))) (-2317 ((|#1| $) 194) (((-1197) $) 153 (|has| |#1| (-1059 (-1197)))) (((-419 (-576)) $) 136 (|has| |#1| (-1059 (-576)))) (((-576) $) 134 (|has| |#1| (-1059 (-576))))) (-1895 (($ $ $) 61)) (-1930 (((-701 (-576)) (-701 $)) 178 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 176) (((-701 |#1|) (-701 $)) 175)) (-1851 (((-3 $ "failed") $) 37)) (-4370 (($) 161 (|has| |#1| (-557)))) (-1908 (($ $ $) 62)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-2171 (((-112) $) 79)) (-2279 (((-112) $) 146 (|has| |#1| (-832)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 170 (|has| |#1| (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 169 (|has| |#1| (-901 (-390))))) (-2486 (((-112) $) 35)) (-2252 (($ $) 165)) (-2687 ((|#1| $) 167)) (-3552 (((-3 $ "failed") $) 132 (|has| |#1| (-1173)))) (-3323 (((-112) $) 145 (|has| |#1| (-832)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2907 (($ $ $) 137 (|has| |#1| (-861)))) (-3777 (($ $ $) 138 (|has| |#1| (-861)))) (-2423 (($ (-1 |#1| |#1|) $) 185)) (-2160 (((-701 (-576)) (-1288 $)) 180 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 174) (((-701 |#1|) (-1288 $)) 173)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 78)) (-3650 (($) 131 (|has| |#1| (-1173)) CONST)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-2701 (($ $) 162 (|has| |#1| (-317)))) (-3058 ((|#1| $) 159 (|has| |#1| (-557)))) (-4112 (((-430 (-1193 $)) (-1193 $)) 156 (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) 155 (|has| |#1| (-928)))) (-1452 (((-430 $) $) 82)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2145 (($ $ (-656 |#1|) (-656 |#1|)) 191 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 190 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 189 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 188 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 187 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 186 (|has| |#1| (-526 (-1197) |#1|)))) (-2812 (((-783) $) 64)) (-4369 (($ $ |#1|) 192 (|has| |#1| (-296 |#1| |#1|)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63)) (-4107 (($ $ (-1 |#1| |#1|)) 184) (($ $ (-1 |#1| |#1|) (-783)) 183) (($ $) 130 (|has| |#1| (-237))) (($ $ (-783)) 128 (|has| |#1| (-237))) (($ $ (-1197)) 126 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 124 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 123 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 122 (|has| |#1| (-919 (-1197))))) (-3591 (($ $) 164)) (-2697 ((|#1| $) 166)) (-1556 (((-907 (-576)) $) 172 (|has| |#1| (-626 (-907 (-576))))) (((-907 (-390)) $) 171 (|has| |#1| (-626 (-907 (-390))))) (((-548) $) 149 (|has| |#1| (-626 (-548)))) (((-390) $) 148 (|has| |#1| (-1043))) (((-227) $) 147 (|has| |#1| (-1043)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 158 (-2311 (|has| $ (-146)) (|has| |#1| (-928))))) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 197) (($ (-1197)) 151 (|has| |#1| (-1059 (-1197))))) (-4276 (((-3 $ "failed") $) 150 (-3795 (|has| |#1| (-146)) (-2311 (|has| $ (-146)) (|has| |#1| (-928)))))) (-2910 (((-783)) 32 T CONST)) (-4081 ((|#1| $) 160 (|has| |#1| (-557)))) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-2366 (($ $) 143 (|has| |#1| (-832)))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-1 |#1| |#1|)) 182) (($ $ (-1 |#1| |#1|) (-783)) 181) (($ $) 129 (|has| |#1| (-237))) (($ $ (-783)) 127 (|has| |#1| (-237))) (($ $ (-1197)) 125 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 121 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 120 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 119 (|has| |#1| (-919 (-1197))))) (-3995 (((-112) $ $) 139 (|has| |#1| (-861)))) (-3975 (((-112) $ $) 141 (|has| |#1| (-861)))) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 140 (|has| |#1| (-861)))) (-3963 (((-112) $ $) 142 (|has| |#1| (-861)))) (-4047 (($ $ $) 73) (($ |#1| |#1|) 168)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ |#1| $) 196) (($ $ |#1|) 195))) -(((-1013 |#1|) (-141) (-568)) (T -1013)) -((-4047 (*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-2687 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-2252 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-2701 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-4370 (*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-557)) (-4 *2 (-568)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) (-3058 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557))))) -(-13 (-374) (-38 |t#1|) (-1059 |t#1|) (-349 |t#1|) (-232 |t#1|) (-388 |t#1|) (-899 |t#1|) (-412 |t#1|) (-10 -8 (-15 -4047 ($ |t#1| |t#1|)) (-15 -2687 (|t#1| $)) (-15 -2697 (|t#1| $)) (-15 -2252 ($ $)) (-15 -3591 ($ $)) (IF (|has| |t#1| (-1173)) (-6 (-1173)) |%noBranch|) (IF (|has| |t#1| (-1059 (-576))) (PROGN (-6 (-1059 (-576))) (-6 (-1059 (-419 (-576))))) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-1043)) (-6 (-1043)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1059 (-1197))) (-6 (-1059 (-1197))) |%noBranch|) (IF (|has| |t#1| (-317)) (PROGN (-15 -2628 (|t#1| $)) (-15 -2701 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -4370 ($)) (-15 -4081 (|t#1| $)) (-15 -3058 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 #1=(-1197)) |has| |#1| (-1059 (-1197))) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-227)) |has| |#1| (-1043)) ((-626 (-390)) |has| |#1| (-1043)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-907 (-390))) |has| |#1| (-626 (-907 (-390)))) ((-626 (-907 (-576))) |has| |#1| (-626 (-907 (-576)))) ((-234 $) -3795 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3795 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) . T) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) . T) ((-317) . T) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-803) |has| |#1| (-832)) ((-804) |has| |#1| (-832)) ((-806) |has| |#1| (-832)) ((-807) |has| |#1| (-832)) ((-832) |has| |#1| (-832)) ((-860) |has| |#1| (-832)) ((-861) -3795 (|has| |#1| (-861)) (|has| |#1| (-832))) ((-864) -3795 (|has| |#1| (-861)) (|has| |#1| (-832))) ((-911 $ #3=(-1197)) -3795 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #3#) -3795 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-901 (-390)) |has| |#1| (-901 (-390))) ((-901 (-576)) |has| |#1| (-901 (-576))) ((-899 |#1|) . T) ((-928) |has| |#1| (-928)) ((-939) . T) ((-1043) |has| |#1| (-1043)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-576))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #1#) |has| |#1| (-1059 (-1197))) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-1173)) ((-1238) . T) ((-1242) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-1350 (($ (-1163 |#1| |#2|)) 11)) (-3410 (((-1163 |#1| |#2|) $) 12)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4369 ((|#2| $ (-245 |#1| |#2|)) 16)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-4313 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL))) -(((-1014 |#1| |#2|) (-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -1350 ($ (-1163 |#1| |#2|))) (-15 -3410 ((-1163 |#1| |#2|) $)))) (-940) (-374)) (T -1014)) -((-1350 (*1 *1 *2) (-12 (-5 *2 (-1163 *3 *4)) (-14 *3 (-940)) (-4 *4 (-374)) (-5 *1 (-1014 *3 *4)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-1163 *3 *4)) (-5 *1 (-1014 *3 *4)) (-14 *3 (-940)) (-4 *4 (-374))))) -(-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -1350 ($ (-1163 |#1| |#2|))) (-15 -3410 ((-1163 |#1| |#2|) $)))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2230 (((-1156) $) 9)) (-4113 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1015) (-13 (-1104) (-10 -8 (-15 -2230 ((-1156) $))))) (T -1015)) -((-2230 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1015))))) -(-13 (-1104) (-10 -8 (-15 -2230 ((-1156) $)))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) 8)) (-3170 (($) 7 T CONST)) (-3190 (($ $) 47)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-3108 (((-783) $) 46)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3743 ((|#1| $) 40)) (-3695 (($ |#1| $) 41)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-3368 ((|#1| $) 45)) (-2372 ((|#1| $) 42)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-1391 ((|#1| |#1| $) 49)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-3331 ((|#1| $) 48)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) 43)) (-1419 ((|#1| $) 44)) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-1016 |#1|) (-141) (-1238)) (T -1016)) -((-1391 (*1 *2 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-3190 (*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4464) (-15 -1391 (|t#1| |t#1| $)) (-15 -3331 (|t#1| $)) (-15 -3190 ($ $)) (-15 -3108 ((-783) $)) (-15 -3368 (|t#1| $)) (-15 -1419 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-3114 (((-112) $) 43)) (-2982 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2317 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 44)) (-3526 (((-3 (-419 (-576)) "failed") $) 78)) (-4063 (((-112) $) 72)) (-1400 (((-419 (-576)) $) 76)) (-2486 (((-112) $) 42)) (-2595 ((|#2| $) 22)) (-2423 (($ (-1 |#2| |#2|) $) 19)) (-1669 (($ $) 58)) (-4107 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-1556 (((-548) $) 67)) (-2117 (($ $) 17)) (-4113 (((-876) $) 53) (($ (-576)) 39) (($ |#2|) 37) (($ (-419 (-576))) NIL)) (-2910 (((-783)) 10)) (-2366 ((|#2| $) 71)) (-3939 (((-112) $ $) 26)) (-3963 (((-112) $ $) 69)) (-4037 (($ $) 30) (($ $ $) 29)) (-4026 (($ $ $) 27)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-1017 |#1| |#2|) (-10 -8 (-15 -4113 (|#1| (-419 (-576)))) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -3963 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -1669 (|#1| |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -3526 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1400 ((-419 (-576)) |#1|)) (-15 -4063 ((-112) |#1|)) (-15 -2366 (|#2| |#1|)) (-15 -2595 (|#2| |#1|)) (-15 -2117 (|#1| |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -4113 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2910 ((-783))) (-15 -4113 (|#1| (-576))) (-15 -2486 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3114 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -3939 ((-112) |#1| |#1|))) (-1018 |#2|) (-174)) (T -1017)) -((-2910 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1017 *3 *4)) (-4 *3 (-1018 *4))))) -(-10 -8 (-15 -4113 (|#1| (-419 (-576)))) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -3963 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -1669 (|#1| |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -3526 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1400 ((-419 (-576)) |#1|)) (-15 -4063 ((-112) |#1|)) (-15 -2366 (|#2| |#1|)) (-15 -2595 (|#2| |#1|)) (-15 -2117 (|#1| |#1|)) (-15 -2423 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -4113 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2910 ((-783))) (-15 -4113 (|#1| (-576))) (-15 -2486 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3114 ((-112) |#1|)) (-15 * (|#1| (-940) |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -3939 ((-112) |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2982 (((-3 (-576) "failed") $) 135 (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 133 (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) 130)) (-2317 (((-576) $) 134 (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) 132 (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) 131)) (-1930 (((-701 (-576)) (-701 $)) 115 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 114 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 113) (((-701 |#1|) (-701 $)) 112)) (-1851 (((-3 $ "failed") $) 37)) (-1474 ((|#1| $) 103)) (-3526 (((-3 (-419 (-576)) "failed") $) 99 (|has| |#1| (-557)))) (-4063 (((-112) $) 101 (|has| |#1| (-557)))) (-1400 (((-419 (-576)) $) 100 (|has| |#1| (-557)))) (-3241 (($ |#1| |#1| |#1| |#1|) 104)) (-2486 (((-112) $) 35)) (-2595 ((|#1| $) 105)) (-2907 (($ $ $) 87 (|has| |#1| (-861)))) (-3777 (($ $ $) 88 (|has| |#1| (-861)))) (-2423 (($ (-1 |#1| |#1|) $) 118)) (-2160 (((-701 (-576)) (-1288 $)) 117 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 116 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 111) (((-701 |#1|) (-1288 $)) 110)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 96 (|has| |#1| (-374)))) (-4211 ((|#1| $) 106)) (-4375 ((|#1| $) 107)) (-1820 ((|#1| $) 108)) (-3116 (((-1141) $) 11)) (-2145 (($ $ (-656 |#1|) (-656 |#1|)) 124 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 123 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 122 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 121 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) 120 (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) 119 (|has| |#1| (-526 (-1197) |#1|)))) (-4369 (($ $ |#1|) 125 (|has| |#1| (-296 |#1| |#1|)))) (-4107 (($ $ (-1 |#1| |#1|)) 129) (($ $ (-1 |#1| |#1|) (-783)) 128) (($ $) 86 (|has| |#1| (-237))) (($ $ (-783)) 84 (|has| |#1| (-237))) (($ $ (-1197)) 82 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 80 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 79 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 78 (|has| |#1| (-919 (-1197))))) (-1556 (((-548) $) 97 (|has| |#1| (-626 (-548))))) (-2117 (($ $) 109)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 74 (-3795 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-4276 (((-3 $ "failed") $) 98 (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-2366 ((|#1| $) 102 (|has| |#1| (-1081)))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-1 |#1| |#1|)) 127) (($ $ (-1 |#1| |#1|) (-783)) 126) (($ $) 85 (|has| |#1| (-237))) (($ $ (-783)) 83 (|has| |#1| (-237))) (($ $ (-1197)) 81 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 77 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 76 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 75 (|has| |#1| (-919 (-1197))))) (-3995 (((-112) $ $) 89 (|has| |#1| (-861)))) (-3975 (((-112) $ $) 91 (|has| |#1| (-861)))) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 90 (|has| |#1| (-861)))) (-3963 (((-112) $ $) 92 (|has| |#1| (-861)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 95 (|has| |#1| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-419 (-576))) 94 (|has| |#1| (-374))) (($ (-419 (-576)) $) 93 (|has| |#1| (-374))))) -(((-1018 |#1|) (-141) (-174)) (T -1018)) -((-2117 (*1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-4375 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-4211 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-2595 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-3241 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3526 (*1 *2 *1) (|partial| -12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) -(-13 (-38 |t#1|) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-388 |t#1|) (-10 -8 (-15 -2117 ($ $)) (-15 -1820 (|t#1| $)) (-15 -4375 (|t#1| $)) (-15 -4211 (|t#1| $)) (-15 -2595 (|t#1| $)) (-15 -3241 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1474 (|t#1| $)) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -2366 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -4063 ((-112) $)) (-15 -1400 ((-419 (-576)) $)) (-15 -3526 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-374)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-374)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-234 $) -3795 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3795 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) |has| |#1| (-374)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -3795 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 #0#) |has| |#1| (-374)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-374)) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-374)) ((-652 |#1|) . T) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-374)) ((-729 |#1|) . T) ((-738) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-911 $ #2=(-1197)) -3795 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #2#) -3795 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1072 #0#) |has| |#1| (-374)) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1077 #0#) |has| |#1| (-374)) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2423 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-1019 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2423 (|#3| (-1 |#4| |#2|) |#1|))) (-1018 |#2|) (-174) (-1018 |#4|) (-174)) (T -1019)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1018 *6)) (-5 *1 (-1019 *4 *5 *2 *6)) (-4 *4 (-1018 *5))))) -(-10 -7 (-15 -2423 (|#3| (-1 |#4| |#2|) |#1|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1474 ((|#1| $) 12)) (-3526 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-4063 (((-112) $) NIL (|has| |#1| (-557)))) (-1400 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-3241 (($ |#1| |#1| |#1| |#1|) 16)) (-2486 (((-112) $) NIL)) (-2595 ((|#1| $) NIL)) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL (|has| |#1| (-374)))) (-4211 ((|#1| $) 15)) (-4375 ((|#1| $) 14)) (-1820 ((|#1| $) 13)) (-3116 (((-1141) $) NIL)) (-2145 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)))) (-4369 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-4107 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-1556 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2117 (($ $) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-2366 ((|#1| $) NIL (|has| |#1| (-1081)))) (-4313 (($) 8 T CONST)) (-4322 (($) 10 T CONST)) (-3157 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))))) -(((-1020 |#1|) (-1018 |#1|) (-174)) (T -1020)) -NIL -(-1018 |#1|) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4234 (((-112) $ (-783)) NIL)) (-3170 (($) NIL T CONST)) (-3190 (($ $) 23)) (-3883 (($ (-656 |#1|)) 33)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-3108 (((-783) $) 26)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3743 ((|#1| $) 28)) (-3695 (($ |#1| $) 17)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3368 ((|#1| $) 27)) (-2372 ((|#1| $) 22)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-1391 ((|#1| |#1| $) 16)) (-3617 (((-112) $) 18)) (-3307 (($) NIL)) (-3331 ((|#1| $) 21)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) NIL)) (-1419 ((|#1| $) 30)) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1021 |#1|) (-13 (-1016 |#1|) (-10 -8 (-15 -3883 ($ (-656 |#1|))))) (-1121)) (T -1021)) -((-3883 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1021 *3))))) -(-13 (-1016 |#1|) (-10 -8 (-15 -3883 ($ (-656 |#1|))))) -((-1462 (($ $) 12)) (-4005 (($ $ (-576)) 13))) -(((-1022 |#1|) (-10 -8 (-15 -1462 (|#1| |#1|)) (-15 -4005 (|#1| |#1| (-576)))) (-1023)) (T -1022)) -NIL -(-10 -8 (-15 -1462 (|#1| |#1|)) (-15 -4005 (|#1| |#1| (-576)))) -((-1462 (($ $) 6)) (-4005 (($ $ (-576)) 7)) (** (($ $ (-419 (-576))) 8))) -(((-1023) (-141)) (T -1023)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-419 (-576))))) (-4005 (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-576)))) (-1462 (*1 *1 *1) (-4 *1 (-1023)))) -(-13 (-10 -8 (-15 -1462 ($ $)) (-15 -4005 ($ $ (-576))) (-15 ** ($ $ (-419 (-576)))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-4407 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-2390 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3302 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-2637 (((-701 (-419 |#2|)) (-1288 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-3832 (((-419 |#2|) $) NIL)) (-2063 (((-1210 (-940) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3589 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4386 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2201 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-3974 (((-112)) NIL)) (-1374 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| (-419 |#2|) (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1059 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-2496 (($ (-1288 (-419 |#2|)) (-1288 $)) NIL) (($ (-1288 (-419 |#2|))) 79) (($ (-1288 |#2|) |#2|) NIL)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-1895 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1481 (((-701 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-701 $) (-1288 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL)) (-2938 (((-1288 $) (-1288 $)) NIL)) (-2721 (($ |#3|) 73) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-1851 (((-3 $ "failed") $) NIL)) (-2695 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-2473 (((-112) |#1| |#1|) NIL)) (-4135 (((-940)) NIL)) (-4370 (($) NIL (|has| (-419 |#2|) (-379)))) (-4198 (((-112)) NIL)) (-1656 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-1908 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-1788 (($ $) NIL)) (-3712 (($) NIL (|has| (-419 |#2|) (-360)))) (-2616 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-2824 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-2171 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3359 (((-940) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-940)) $) NIL (|has| (-419 |#2|) (-360)))) (-2486 (((-112) $) NIL)) (-2582 (((-783)) NIL)) (-4141 (((-1288 $) (-1288 $)) NIL)) (-2595 (((-419 |#2|) $) NIL)) (-2596 (((-656 (-971 |#1|)) (-1197)) NIL (|has| |#1| (-374)))) (-3552 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4293 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-3787 (((-940) $) NIL (|has| (-419 |#2|) (-379)))) (-2709 ((|#3| $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) NIL) (((-701 (-419 |#2|)) (-1288 $)) NIL)) (-3076 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2447 (((-1179) $) NIL)) (-2204 (((-701 (-419 |#2|))) 57)) (-1498 (((-701 (-419 |#2|))) 56)) (-1669 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2680 (($ (-1288 |#2|) |#2|) 80)) (-4011 (((-701 (-419 |#2|))) 55)) (-2205 (((-701 (-419 |#2|))) 54)) (-1417 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-2525 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 86)) (-3305 (((-1288 $)) 51)) (-4329 (((-1288 $)) 50)) (-2847 (((-112) $) NIL)) (-3126 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3650 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-2411 (($ (-940)) NIL (|has| (-419 |#2|) (-379)))) (-2330 (((-3 |#2| "failed")) 70)) (-3116 (((-1141) $) NIL)) (-3213 (((-783)) NIL)) (-2549 (($) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| (-419 |#2|) (-374)))) (-3115 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1452 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1946 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2812 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-4369 ((|#1| $ |#1| |#1|) NIL)) (-1544 (((-3 |#2| "failed")) 68)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1790 (((-419 |#2|) (-1288 $)) NIL) (((-419 |#2|)) 47)) (-3168 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-4107 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-3795 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3795 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2828 (((-701 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-3881 ((|#3|) 58)) (-4223 (($) NIL (|has| (-419 |#2|) (-360)))) (-4314 (((-1288 (-419 |#2|)) $ (-1288 $)) NIL) (((-701 (-419 |#2|)) (-1288 $) (-1288 $)) NIL) (((-1288 (-419 |#2|)) $) 81) (((-701 (-419 |#2|)) (-1288 $)) NIL)) (-1556 (((-1288 (-419 |#2|)) $) NIL) (($ (-1288 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2430 (((-1288 $) (-1288 $)) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-3795 (|has| (-419 |#2|) (-1059 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4276 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-4358 ((|#3| $) NIL)) (-2910 (((-783)) NIL T CONST)) (-4265 (((-112)) 65)) (-1964 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) NIL)) (-4134 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2495 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4013 (((-112)) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1197)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-919 (-1197)))))) (($ $ (-783)) NIL (-3795 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3795 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) -(((-1024 |#1| |#2| |#3| |#4| |#5|) (-353 |#1| |#2| |#3|) (-1242) (-1264 |#1|) (-1264 (-419 |#2|)) (-419 |#2|) (-783)) (T -1024)) +((-4426 (($ $ (-1114 $)) 7) (($ $ (-1198)) 6))) +(((-979) (-141)) (T -979)) +((-4426 (*1 *1 *1 *2) (-12 (-5 *2 (-1114 *1)) (-4 *1 (-979)))) (-4426 (*1 *1 *1 *2) (-12 (-4 *1 (-979)) (-5 *2 (-1198))))) +(-13 (-10 -8 (-15 -4426 ($ $ (-1198))) (-15 -4426 ($ $ (-1114 $))))) +((-2846 (((-2 (|:| -1735 (-657 (-576))) (|:| |poly| (-657 (-1194 |#1|))) (|:| |prim| (-1194 |#1|))) (-657 (-972 |#1|)) (-657 (-1198)) (-1198)) 26) (((-2 (|:| -1735 (-657 (-576))) (|:| |poly| (-657 (-1194 |#1|))) (|:| |prim| (-1194 |#1|))) (-657 (-972 |#1|)) (-657 (-1198))) 27) (((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1194 |#1|))) (-972 |#1|) (-1198) (-972 |#1|) (-1198)) 49))) +(((-980 |#1|) (-10 -7 (-15 -2846 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1194 |#1|))) (-972 |#1|) (-1198) (-972 |#1|) (-1198))) (-15 -2846 ((-2 (|:| -1735 (-657 (-576))) (|:| |poly| (-657 (-1194 |#1|))) (|:| |prim| (-1194 |#1|))) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -2846 ((-2 (|:| -1735 (-657 (-576))) (|:| |poly| (-657 (-1194 |#1|))) (|:| |prim| (-1194 |#1|))) (-657 (-972 |#1|)) (-657 (-1198)) (-1198)))) (-13 (-374) (-148))) (T -980)) +((-2846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-972 *6))) (-5 *4 (-657 (-1198))) (-5 *5 (-1198)) (-4 *6 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1735 (-657 (-576))) (|:| |poly| (-657 (-1194 *6))) (|:| |prim| (-1194 *6)))) (-5 *1 (-980 *6)))) (-2846 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-657 (-1198))) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1735 (-657 (-576))) (|:| |poly| (-657 (-1194 *5))) (|:| |prim| (-1194 *5)))) (-5 *1 (-980 *5)))) (-2846 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-972 *5)) (-5 *4 (-1198)) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1194 *5)))) (-5 *1 (-980 *5))))) +(-10 -7 (-15 -2846 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1194 |#1|))) (-972 |#1|) (-1198) (-972 |#1|) (-1198))) (-15 -2846 ((-2 (|:| -1735 (-657 (-576))) (|:| |poly| (-657 (-1194 |#1|))) (|:| |prim| (-1194 |#1|))) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -2846 ((-2 (|:| -1735 (-657 (-576))) (|:| |poly| (-657 (-1194 |#1|))) (|:| |prim| (-1194 |#1|))) (-657 (-972 |#1|)) (-657 (-1198)) (-1198)))) +((-1454 (((-657 |#1|) |#1| |#1|) 47)) (-4009 (((-112) |#1|) 44)) (-2713 ((|#1| |#1|) 79)) (-1437 ((|#1| |#1|) 78))) +(((-981 |#1|) (-10 -7 (-15 -4009 ((-112) |#1|)) (-15 -1437 (|#1| |#1|)) (-15 -2713 (|#1| |#1|)) (-15 -1454 ((-657 |#1|) |#1| |#1|))) (-557)) (T -981)) +((-1454 (*1 *2 *3 *3) (-12 (-5 *2 (-657 *3)) (-5 *1 (-981 *3)) (-4 *3 (-557)))) (-2713 (*1 *2 *2) (-12 (-5 *1 (-981 *2)) (-4 *2 (-557)))) (-1437 (*1 *2 *2) (-12 (-5 *1 (-981 *2)) (-4 *2 (-557)))) (-4009 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-981 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -4009 ((-112) |#1|)) (-15 -1437 (|#1| |#1|)) (-15 -2713 (|#1| |#1|)) (-15 -1454 ((-657 |#1|) |#1| |#1|))) +((-2164 (((-1294) (-877)) 9))) +(((-982) (-10 -7 (-15 -2164 ((-1294) (-877))))) (T -982)) +((-2164 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-982))))) +(-10 -7 (-15 -2164 ((-1294) (-877)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 78 (|has| |#1| (-568)))) (-2361 (($ $) 79 (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 34)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2165 (($ $) 31)) (-3969 (((-3 $ "failed") $) 42)) (-1445 (($ $) NIL (|has| |#1| (-464)))) (-2643 (($ $ |#1| |#2| $) 62)) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) 17)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| |#2|) NIL)) (-4219 ((|#2| $) 24)) (-2308 (($ (-1 |#2| |#2|) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-2129 (($ $) 28)) (-2141 ((|#1| $) 26)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) 51)) (-2118 ((|#1| $) NIL)) (-1836 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-568))))) (-3409 (((-3 $ "failed") $ $) 91 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-568)))) (-4265 ((|#2| $) 22)) (-3614 ((|#1| $) NIL (|has| |#1| (-464)))) (-3515 (((-877) $) NIL) (($ (-576)) 46) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 41) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ |#2|) 37)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) 15 T CONST)) (-3194 (($ $ $ (-784)) 74 (|has| |#1| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) 84 (|has| |#1| (-568)))) (-2716 (($) 27 T CONST)) (-2725 (($) 12 T CONST)) (-2881 (((-112) $ $) 83)) (-2995 (($ $ |#1|) 92 (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) 69) (($ $ (-784)) 67)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-983 |#1| |#2|) (-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -1836 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4464)) (-6 -4464) |%noBranch|))) (-1071) (-805)) (T -983)) +((-1836 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-983 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *2 (-805))))) +(-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -1836 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4464)) (-6 -4464) |%noBranch|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL (-2748 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))))) (-1323 (($ $ $) 65 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))))) (-2423 (((-3 $ "failed") $ $) 52 (-2748 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))))) (-2148 (((-784)) 36 (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2367 ((|#2| $) 22)) (-3702 ((|#1| $) 21)) (-2515 (($) NIL (-2748 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))) CONST)) (-3969 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))))) (-1876 (($) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3994 (((-112) $) NIL (-2748 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))))) (-3740 (($ $ $) NIL (-2748 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2249 (($ $ $) NIL (-2748 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3668 (($ |#1| |#2|) 20)) (-2327 (((-941) $) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3146 (($ (-941)) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1460 (((-1142) $) NIL)) (-1587 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-1911 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3515 (((-877) $) 14)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 42 (-2748 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))) CONST)) (-2725 (($) 25 (-2748 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))) CONST)) (-2938 (((-112) $ $) NIL (-2748 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2913 (((-112) $ $) NIL (-2748 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2881 (((-112) $ $) 19)) (-2925 (((-112) $ $) NIL (-2748 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2901 (((-112) $ $) 69 (-2748 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2995 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2982 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2971 (($ $ $) 45 (-2748 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))))) (** (($ $ (-576)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485)))) (($ $ (-784)) 32 (-2748 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739))))) (($ $ (-941)) NIL (-2748 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))))) (* (($ (-576) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-784) $) 48 (-2748 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806))))) (($ (-941) $) NIL (-2748 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806))))) (($ $ $) 28 (-2748 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739))))))) +(((-984 |#1| |#2|) (-13 (-1122) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-739)) (IF (|has| |#2| (-739)) (-6 (-739)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-806)) (IF (|has| |#2| (-806)) (-6 (-806)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -3668 ($ |#1| |#2|)) (-15 -3702 (|#1| $)) (-15 -2367 (|#2| $)))) (-1122) (-1122)) (T -984)) +((-3668 (*1 *1 *2 *3) (-12 (-5 *1 (-984 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-3702 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1122)))) (-2367 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-984 *3 *2)) (-4 *3 (-1122))))) +(-13 (-1122) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-739)) (IF (|has| |#2| (-739)) (-6 (-739)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-806)) (IF (|has| |#2| (-806)) (-6 (-806)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -3668 ($ |#1| |#2|)) (-15 -3702 (|#1| $)) (-15 -2367 (|#2| $)))) +((-3037 (((-1126) $) 12)) (-3659 (($ (-518) (-1126)) 14)) (-2634 (((-518) $) 9)) (-3515 (((-877) $) 24))) +(((-985) (-13 (-625 (-877)) (-10 -8 (-15 -2634 ((-518) $)) (-15 -3037 ((-1126) $)) (-15 -3659 ($ (-518) (-1126)))))) (T -985)) +((-2634 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-985)))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-985)))) (-3659 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1126)) (-5 *1 (-985))))) +(-13 (-625 (-877)) (-10 -8 (-15 -2634 ((-518) $)) (-15 -3037 ((-1126) $)) (-15 -3659 ($ (-518) (-1126))))) +((-3423 (((-112) $ $) NIL)) (-2190 (($) NIL T CONST)) (-2685 (($ $ $) 30)) (-2665 (($ $) 24)) (-1708 (((-1180) $) NIL)) (-1650 (((-704 (-888 $ $)) $) 55)) (-1554 (((-704 $) $) 45)) (-3597 (((-704 (-888 $ $)) $) 56)) (-3481 (((-704 (-888 $ $)) $) 57)) (-3404 (((-704 |#1|) $) 36)) (-2562 (((-704 (-888 $ $)) $) 54)) (-3624 (($ $ $) 31)) (-1460 (((-1142) $) NIL)) (-3447 (($) NIL T CONST)) (-1862 (($ $ $) 32)) (-2517 (($ $ $) 29)) (-4357 (($ $ $) 27)) (-3515 (((-877) $) 59) (($ |#1|) 12)) (-4166 (((-112) $ $) NIL)) (-2675 (($ $ $) 28)) (-2881 (((-112) $ $) NIL))) +(((-986 |#1|) (-13 (-989) (-628 |#1|) (-10 -8 (-15 -3404 ((-704 |#1|) $)) (-15 -1554 ((-704 $) $)) (-15 -2562 ((-704 (-888 $ $)) $)) (-15 -1650 ((-704 (-888 $ $)) $)) (-15 -3597 ((-704 (-888 $ $)) $)) (-15 -3481 ((-704 (-888 $ $)) $)) (-15 -4357 ($ $ $)) (-15 -2517 ($ $ $)))) (-1122)) (T -986)) +((-3404 (*1 *2 *1) (-12 (-5 *2 (-704 *3)) (-5 *1 (-986 *3)) (-4 *3 (-1122)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-704 (-986 *3))) (-5 *1 (-986 *3)) (-4 *3 (-1122)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) (-4 *3 (-1122)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) (-4 *3 (-1122)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) (-4 *3 (-1122)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) (-4 *3 (-1122)))) (-4357 (*1 *1 *1 *1) (-12 (-5 *1 (-986 *2)) (-4 *2 (-1122)))) (-2517 (*1 *1 *1 *1) (-12 (-5 *1 (-986 *2)) (-4 *2 (-1122))))) +(-13 (-989) (-628 |#1|) (-10 -8 (-15 -3404 ((-704 |#1|) $)) (-15 -1554 ((-704 $) $)) (-15 -2562 ((-704 (-888 $ $)) $)) (-15 -1650 ((-704 (-888 $ $)) $)) (-15 -3597 ((-704 (-888 $ $)) $)) (-15 -3481 ((-704 (-888 $ $)) $)) (-15 -4357 ($ $ $)) (-15 -2517 ($ $ $)))) +((-1362 (((-986 |#1|) (-986 |#1|)) 46)) (-2870 (((-986 |#1|) (-986 |#1|)) 22)) (-3028 (((-1124 |#1|) (-986 |#1|)) 41))) +(((-987 |#1|) (-13 (-1239) (-10 -7 (-15 -2870 ((-986 |#1|) (-986 |#1|))) (-15 -3028 ((-1124 |#1|) (-986 |#1|))) (-15 -1362 ((-986 |#1|) (-986 |#1|))))) (-1122)) (T -987)) +((-2870 (*1 *2 *2) (-12 (-5 *2 (-986 *3)) (-4 *3 (-1122)) (-5 *1 (-987 *3)))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-986 *4)) (-4 *4 (-1122)) (-5 *2 (-1124 *4)) (-5 *1 (-987 *4)))) (-1362 (*1 *2 *2) (-12 (-5 *2 (-986 *3)) (-4 *3 (-1122)) (-5 *1 (-987 *3))))) +(-13 (-1239) (-10 -7 (-15 -2870 ((-986 |#1|) (-986 |#1|))) (-15 -3028 ((-1124 |#1|) (-986 |#1|))) (-15 -1362 ((-986 |#1|) (-986 |#1|))))) +((-4071 (((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|)) 29))) +(((-988 |#1| |#2|) (-13 (-1239) (-10 -7 (-15 -4071 ((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|))))) (-1122) (-1122)) (T -988)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-986 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-986 *6)) (-5 *1 (-988 *5 *6))))) +(-13 (-1239) (-10 -7 (-15 -4071 ((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|))))) +((-3423 (((-112) $ $) 16)) (-2190 (($) 14 T CONST)) (-2685 (($ $ $) 6)) (-2665 (($ $) 8)) (-1708 (((-1180) $) 20)) (-3624 (($ $ $) 12)) (-1460 (((-1142) $) 19)) (-3447 (($) 13 T CONST)) (-1862 (($ $ $) 11)) (-3515 (((-877) $) 18)) (-4166 (((-112) $ $) 17)) (-2675 (($ $ $) 7)) (-2881 (((-112) $ $) 15))) +(((-989) (-141)) (T -989)) +((-2190 (*1 *1) (-4 *1 (-989))) (-3447 (*1 *1) (-4 *1 (-989))) (-3624 (*1 *1 *1 *1) (-4 *1 (-989))) (-1862 (*1 *1 *1 *1) (-4 *1 (-989)))) +(-13 (-113) (-1122) (-10 -8 (-15 -2190 ($) -1491) (-15 -3447 ($) -1491) (-15 -3624 ($ $ $)) (-15 -1862 ($ $ $)))) +(((-102) . T) ((-113) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) 8)) (-2515 (($) 7 T CONST)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-1631 (($ $ $) 44)) (-1661 (($ $ $) 45)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2249 ((|#1| $) 46)) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3107 ((|#1| $) 40)) (-2701 (($ |#1| $) 41)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2184 ((|#1| $) 42)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) 43)) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-990 |#1|) (-141) (-862)) (T -990)) +((-2249 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-862)))) (-1661 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-862)))) (-1631 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-862))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4466) (-15 -2249 (|t#1| $)) (-15 -1661 ($ $ $)) (-15 -1631 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-4221 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3431 |#2|)) |#2| |#2|) 105)) (-3924 ((|#2| |#2| |#2|) 103)) (-3454 (((-2 (|:| |coef2| |#2|) (|:| -3431 |#2|)) |#2| |#2|) 107)) (-4444 (((-2 (|:| |coef1| |#2|) (|:| -3431 |#2|)) |#2| |#2|) 109)) (-2252 (((-2 (|:| |coef2| |#2|) (|:| -2916 |#1|)) |#2| |#2|) 131 (|has| |#1| (-464)))) (-2257 (((-2 (|:| |coef2| |#2|) (|:| -4351 |#1|)) |#2| |#2|) 56)) (-2525 (((-2 (|:| |coef2| |#2|) (|:| -4351 |#1|)) |#2| |#2|) 80)) (-3216 (((-2 (|:| |coef1| |#2|) (|:| -4351 |#1|)) |#2| |#2|) 82)) (-1538 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-1431 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784)) 89)) (-2989 (((-2 (|:| |coef2| |#2|) (|:| -1465 |#1|)) |#2|) 121)) (-2485 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784)) 92)) (-3254 (((-657 (-784)) |#2| |#2|) 102)) (-1776 ((|#1| |#2| |#2|) 50)) (-3048 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2916 |#1|)) |#2| |#2|) 129 (|has| |#1| (-464)))) (-2916 ((|#1| |#2| |#2|) 127 (|has| |#1| (-464)))) (-2132 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4351 |#1|)) |#2| |#2|) 54)) (-4327 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4351 |#1|)) |#2| |#2|) 79)) (-4351 ((|#1| |#2| |#2|) 76)) (-4010 (((-2 (|:| -1735 |#1|) (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2|) 41)) (-3993 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3225 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3156 ((|#2| |#2| |#2|) 93)) (-4434 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784)) 87)) (-2600 ((|#2| |#2| |#2| (-784)) 85)) (-3431 ((|#2| |#2| |#2|) 135 (|has| |#1| (-464)))) (-3409 (((-1289 |#2|) (-1289 |#2|) |#1|) 22)) (-3977 (((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2|) 46)) (-2790 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1465 |#1|)) |#2|) 119)) (-1465 ((|#1| |#2|) 116)) (-4240 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784)) 91)) (-3442 ((|#2| |#2| |#2| (-784)) 90)) (-3507 (((-657 |#2|) |#2| |#2|) 99)) (-2583 ((|#2| |#2| |#1| |#1| (-784)) 62)) (-2291 ((|#1| |#1| |#1| (-784)) 61)) (* (((-1289 |#2|) |#1| (-1289 |#2|)) 17))) +(((-991 |#1| |#2|) (-10 -7 (-15 -4351 (|#1| |#2| |#2|)) (-15 -4327 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4351 |#1|)) |#2| |#2|)) (-15 -2525 ((-2 (|:| |coef2| |#2|) (|:| -4351 |#1|)) |#2| |#2|)) (-15 -3216 ((-2 (|:| |coef1| |#2|) (|:| -4351 |#1|)) |#2| |#2|)) (-15 -2600 (|#2| |#2| |#2| (-784))) (-15 -4434 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -1431 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -3442 (|#2| |#2| |#2| (-784))) (-15 -4240 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -2485 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -3156 (|#2| |#2| |#2|)) (-15 -3225 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1538 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3924 (|#2| |#2| |#2|)) (-15 -4221 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3431 |#2|)) |#2| |#2|)) (-15 -3454 ((-2 (|:| |coef2| |#2|) (|:| -3431 |#2|)) |#2| |#2|)) (-15 -4444 ((-2 (|:| |coef1| |#2|) (|:| -3431 |#2|)) |#2| |#2|)) (-15 -1465 (|#1| |#2|)) (-15 -2790 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1465 |#1|)) |#2|)) (-15 -2989 ((-2 (|:| |coef2| |#2|) (|:| -1465 |#1|)) |#2|)) (-15 -3507 ((-657 |#2|) |#2| |#2|)) (-15 -3254 ((-657 (-784)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -2916 (|#1| |#2| |#2|)) (-15 -3048 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2916 |#1|)) |#2| |#2|)) (-15 -2252 ((-2 (|:| |coef2| |#2|) (|:| -2916 |#1|)) |#2| |#2|)) (-15 -3431 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1289 |#2|) |#1| (-1289 |#2|))) (-15 -3409 ((-1289 |#2|) (-1289 |#2|) |#1|)) (-15 -4010 ((-2 (|:| -1735 |#1|) (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2|)) (-15 -3977 ((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2|)) (-15 -2291 (|#1| |#1| |#1| (-784))) (-15 -2583 (|#2| |#2| |#1| |#1| (-784))) (-15 -3993 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1776 (|#1| |#2| |#2|)) (-15 -2132 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4351 |#1|)) |#2| |#2|)) (-15 -2257 ((-2 (|:| |coef2| |#2|) (|:| -4351 |#1|)) |#2| |#2|))) (-568) (-1265 |#1|)) (T -991)) +((-2257 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4351 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-2132 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4351 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-1776 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2)))) (-3993 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) (-2583 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-784)) (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) (-2291 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *2 (-568)) (-5 *1 (-991 *2 *4)) (-4 *4 (-1265 *2)))) (-3977 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-4010 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1735 *4) (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-3409 (*1 *2 *2 *3) (-12 (-5 *2 (-1289 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-568)) (-5 *1 (-991 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1289 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-568)) (-5 *1 (-991 *3 *4)))) (-3431 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) (-2252 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2916 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-3048 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2916 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-2916 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2)))) (-3254 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 (-784))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-3507 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 *3)) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-2989 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1465 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-2790 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1465 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-1465 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2)))) (-4444 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3431 *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-3454 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3431 *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-4221 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3431 *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-3924 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) (-1538 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-3225 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-3156 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) (-2485 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5)))) (-4240 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5)))) (-3442 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-568)) (-5 *1 (-991 *4 *2)) (-4 *2 (-1265 *4)))) (-1431 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5)))) (-4434 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5)))) (-2600 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-568)) (-5 *1 (-991 *4 *2)) (-4 *2 (-1265 *4)))) (-3216 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4351 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-2525 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4351 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-4327 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4351 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-4351 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2))))) +(-10 -7 (-15 -4351 (|#1| |#2| |#2|)) (-15 -4327 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4351 |#1|)) |#2| |#2|)) (-15 -2525 ((-2 (|:| |coef2| |#2|) (|:| -4351 |#1|)) |#2| |#2|)) (-15 -3216 ((-2 (|:| |coef1| |#2|) (|:| -4351 |#1|)) |#2| |#2|)) (-15 -2600 (|#2| |#2| |#2| (-784))) (-15 -4434 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -1431 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -3442 (|#2| |#2| |#2| (-784))) (-15 -4240 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -2485 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -3156 (|#2| |#2| |#2|)) (-15 -3225 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1538 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3924 (|#2| |#2| |#2|)) (-15 -4221 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3431 |#2|)) |#2| |#2|)) (-15 -3454 ((-2 (|:| |coef2| |#2|) (|:| -3431 |#2|)) |#2| |#2|)) (-15 -4444 ((-2 (|:| |coef1| |#2|) (|:| -3431 |#2|)) |#2| |#2|)) (-15 -1465 (|#1| |#2|)) (-15 -2790 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1465 |#1|)) |#2|)) (-15 -2989 ((-2 (|:| |coef2| |#2|) (|:| -1465 |#1|)) |#2|)) (-15 -3507 ((-657 |#2|) |#2| |#2|)) (-15 -3254 ((-657 (-784)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -2916 (|#1| |#2| |#2|)) (-15 -3048 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2916 |#1|)) |#2| |#2|)) (-15 -2252 ((-2 (|:| |coef2| |#2|) (|:| -2916 |#1|)) |#2| |#2|)) (-15 -3431 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1289 |#2|) |#1| (-1289 |#2|))) (-15 -3409 ((-1289 |#2|) (-1289 |#2|) |#1|)) (-15 -4010 ((-2 (|:| -1735 |#1|) (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2|)) (-15 -3977 ((-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) |#2| |#2|)) (-15 -2291 (|#1| |#1| |#1| (-784))) (-15 -2583 (|#2| |#2| |#1| |#1| (-784))) (-15 -3993 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1776 (|#1| |#2| |#2|)) (-15 -2132 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4351 |#1|)) |#2| |#2|)) (-15 -2257 ((-2 (|:| |coef2| |#2|) (|:| -4351 |#1|)) |#2| |#2|))) +((-3423 (((-112) $ $) NIL)) (-2930 (((-1238) $) 13)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3054 (((-1157) $) 10)) (-3515 (((-877) $) 20) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-992) (-13 (-1105) (-10 -8 (-15 -3054 ((-1157) $)) (-15 -2930 ((-1238) $))))) (T -992)) +((-3054 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-992)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-992))))) +(-13 (-1105) (-10 -8 (-15 -3054 ((-1157) $)) (-15 -2930 ((-1238) $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 40)) (-2423 (((-3 $ "failed") $ $) 54)) (-2515 (($) NIL T CONST)) (-3889 (((-657 (-888 (-941) (-941))) $) 67)) (-3105 (((-941) $) 94)) (-1448 (((-657 (-941)) $) 17)) (-3777 (((-1179 $) (-784)) 39)) (-3566 (($ (-657 (-941))) 16)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1587 (($ $) 70)) (-3515 (((-877) $) 90) (((-657 (-941)) $) 11)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 8 T CONST)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 44)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 42)) (-2971 (($ $ $) 46)) (* (($ (-941) $) NIL) (($ (-784) $) 49)) (-3437 (((-784) $) 22))) +(((-993) (-13 (-808) (-625 (-657 (-941))) (-10 -8 (-15 -3566 ($ (-657 (-941)))) (-15 -1448 ((-657 (-941)) $)) (-15 -3437 ((-784) $)) (-15 -3777 ((-1179 $) (-784))) (-15 -3889 ((-657 (-888 (-941) (-941))) $)) (-15 -3105 ((-941) $)) (-15 -1587 ($ $))))) (T -993)) +((-3566 (*1 *1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-993)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-993)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-993)))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1179 (-993))) (-5 *1 (-993)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-657 (-888 (-941) (-941)))) (-5 *1 (-993)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-993)))) (-1587 (*1 *1 *1) (-5 *1 (-993)))) +(-13 (-808) (-625 (-657 (-941))) (-10 -8 (-15 -3566 ($ (-657 (-941)))) (-15 -1448 ((-657 (-941)) $)) (-15 -3437 ((-784) $)) (-15 -3777 ((-1179 $) (-784))) (-15 -3889 ((-657 (-888 (-941) (-941))) $)) (-15 -3105 ((-941) $)) (-15 -1587 ($ $)))) +((-2995 (($ $ |#2|) 31)) (-2982 (($ $) 23) (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) 29))) +(((-994 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2995 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) (-995 |#2| |#3| |#4|) (-1071) (-805) (-862)) (T -994)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2995 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-1998 (((-657 |#3|) $) 86)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2361 (($ $) 64 (|has| |#1| (-568)))) (-3286 (((-112) $) 66 (|has| |#1| (-568)))) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-2165 (($ $) 72)) (-3969 (((-3 $ "failed") $) 37)) (-3155 (((-112) $) 85)) (-3994 (((-112) $) 35)) (-2343 (((-112) $) 74)) (-1974 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-657 |#3|) (-657 |#2|)) 87)) (-4071 (($ (-1 |#1| |#1|) $) 75)) (-2129 (($ $) 77)) (-2141 ((|#1| $) 78)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3409 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4265 ((|#2| $) 76)) (-1557 (($ $) 84)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2498 ((|#1| $ |#2|) 71)) (-3414 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-995 |#1| |#2| |#3|) (-141) (-1071) (-805) (-862)) (T -995)) +((-2141 (*1 *2 *1) (-12 (-4 *1 (-995 *2 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-1071)))) (-2129 (*1 *1 *1) (-12 (-4 *1 (-995 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *2 *4)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *2 (-805)))) (-1974 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-995 *4 *3 *2)) (-4 *4 (-1071)) (-4 *3 (-805)) (-4 *2 (-862)))) (-1974 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *6)) (-5 *3 (-657 *5)) (-4 *1 (-995 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-805)) (-4 *6 (-862)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-657 *5)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1557 (*1 *1 *1) (-12 (-4 *1 (-995 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-805)) (-4 *4 (-862))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1974 ($ $ |t#3| |t#2|)) (-15 -1974 ($ $ (-657 |t#3|) (-657 |t#2|))) (-15 -2129 ($ $)) (-15 -2141 (|t#1| $)) (-15 -4265 (|t#2| $)) (-15 -1998 ((-657 |t#3|) $)) (-15 -3155 ((-112) $)) (-15 -1557 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-1788 (((-1116 (-227)) $) 8)) (-1777 (((-1116 (-227)) $) 9)) (-1763 (((-1116 (-227)) $) 10)) (-1592 (((-657 (-657 (-963 (-227)))) $) 11)) (-3515 (((-877) $) 6))) +(((-996) (-141)) (T -996)) +((-1592 (*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-657 (-657 (-963 (-227))))))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-1116 (-227))))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-1116 (-227))))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-1116 (-227)))))) +(-13 (-625 (-877)) (-10 -8 (-15 -1592 ((-657 (-657 (-963 (-227)))) $)) (-15 -1763 ((-1116 (-227)) $)) (-15 -1777 ((-1116 (-227)) $)) (-15 -1788 ((-1116 (-227)) $)))) +(((-625 (-877)) . T)) +((-1998 (((-657 |#4|) $) 23)) (-2250 (((-112) $) 55)) (-4334 (((-112) $) 54)) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |#4|) 42)) (-2697 (((-112) $) 56)) (-3025 (((-112) $ $) 62)) (-2936 (((-112) $ $) 65)) (-1978 (((-112) $) 60)) (-1494 (((-657 |#5|) (-657 |#5|) $) 98)) (-4203 (((-657 |#5|) (-657 |#5|) $) 95)) (-3951 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3944 (((-657 |#4|) $) 27)) (-2611 (((-112) |#4| $) 34)) (-2678 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2764 (($ $ |#4|) 39)) (-2555 (($ $ |#4|) 38)) (-2267 (($ $ |#4|) 40)) (-2881 (((-112) $ $) 46))) +(((-997 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4334 ((-112) |#1|)) (-15 -1494 ((-657 |#5|) (-657 |#5|) |#1|)) (-15 -4203 ((-657 |#5|) (-657 |#5|) |#1|)) (-15 -3951 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2678 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2697 ((-112) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -3025 ((-112) |#1| |#1|)) (-15 -1978 ((-112) |#1|)) (-15 -2250 ((-112) |#1|)) (-15 -1832 ((-2 (|:| |under| |#1|) (|:| -2681 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2764 (|#1| |#1| |#4|)) (-15 -2267 (|#1| |#1| |#4|)) (-15 -2555 (|#1| |#1| |#4|)) (-15 -2611 ((-112) |#4| |#1|)) (-15 -3944 ((-657 |#4|) |#1|)) (-15 -1998 ((-657 |#4|) |#1|)) (-15 -2881 ((-112) |#1| |#1|))) (-998 |#2| |#3| |#4| |#5|) (-1071) (-806) (-862) (-1087 |#2| |#3| |#4|)) (T -997)) +NIL +(-10 -8 (-15 -4334 ((-112) |#1|)) (-15 -1494 ((-657 |#5|) (-657 |#5|) |#1|)) (-15 -4203 ((-657 |#5|) (-657 |#5|) |#1|)) (-15 -3951 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2678 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2697 ((-112) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -3025 ((-112) |#1| |#1|)) (-15 -1978 ((-112) |#1|)) (-15 -2250 ((-112) |#1|)) (-15 -1832 ((-2 (|:| |under| |#1|) (|:| -2681 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2764 (|#1| |#1| |#4|)) (-15 -2267 (|#1| |#1| |#4|)) (-15 -2555 (|#1| |#1| |#4|)) (-15 -2611 ((-112) |#4| |#1|)) (-15 -3944 ((-657 |#4|) |#1|)) (-15 -1998 ((-657 |#4|) |#1|)) (-15 -2881 ((-112) |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-1998 (((-657 |#3|) $) 34)) (-2250 (((-112) $) 27)) (-4334 (((-112) $) 18 (|has| |#1| (-568)))) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |#3|) 28)) (-4284 (((-112) $ (-784)) 45)) (-2007 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4466)))) (-2515 (($) 46 T CONST)) (-2697 (((-112) $) 23 (|has| |#1| (-568)))) (-3025 (((-112) $ $) 25 (|has| |#1| (-568)))) (-2936 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1978 (((-112) $) 26 (|has| |#1| (-568)))) (-1494 (((-657 |#4|) (-657 |#4|) $) 19 (|has| |#1| (-568)))) (-4203 (((-657 |#4|) (-657 |#4|) $) 20 (|has| |#1| (-568)))) (-1593 (((-3 $ "failed") (-657 |#4|)) 37)) (-2830 (($ (-657 |#4|)) 36)) (-1620 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4466)))) (-3951 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3662 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4466)))) (-1448 (((-657 |#4|) $) 53 (|has| $ (-6 -4466)))) (-1428 ((|#3| $) 35)) (-1786 (((-112) $ (-784)) 44)) (-3855 (((-657 |#4|) $) 54 (|has| $ (-6 -4466)))) (-3326 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#4| |#4|) $) 48)) (-3944 (((-657 |#3|) $) 33)) (-2611 (((-112) |#3| $) 32)) (-4326 (((-112) $ (-784)) 43)) (-1708 (((-1180) $) 10)) (-2678 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1460 (((-1142) $) 11)) (-4135 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2372 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#4|) (-657 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-3807 (((-112) $ $) 39)) (-1368 (((-112) $) 42)) (-3340 (($) 41)) (-1469 (((-784) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4466)))) (-1899 (($ $) 40)) (-4136 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3529 (($ (-657 |#4|)) 61)) (-2764 (($ $ |#3|) 29)) (-2555 (($ $ |#3|) 31)) (-2267 (($ $ |#3|) 30)) (-3515 (((-877) $) 12) (((-657 |#4|) $) 38)) (-4166 (((-112) $ $) 6)) (-3258 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 8)) (-3437 (((-784) $) 47 (|has| $ (-6 -4466))))) +(((-998 |#1| |#2| |#3| |#4|) (-141) (-1071) (-806) (-862) (-1087 |t#1| |t#2| |t#3|)) (T -998)) +((-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *1 (-998 *3 *4 *5 *6)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *1 (-998 *3 *4 *5 *6)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-1087 *3 *4 *2)) (-4 *2 (-862)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *5)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *5)))) (-2611 (*1 *2 *3 *1) (-12 (-4 *1 (-998 *4 *5 *3 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-4 *6 (-1087 *4 *5 *3)) (-5 *2 (-112)))) (-2555 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *5 (-1087 *3 *4 *2)))) (-2267 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *5 (-1087 *3 *4 *2)))) (-2764 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *5 (-1087 *3 *4 *2)))) (-1832 (*1 *2 *1 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-4 *6 (-1087 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2681 *1) (|:| |upper| *1))) (-4 *1 (-998 *4 *5 *3 *6)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-1978 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3025 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2936 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2678 (*1 *2 *3 *1) (-12 (-4 *1 (-998 *4 *5 *6 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3951 (*1 *2 *3 *1) (-12 (-4 *1 (-998 *4 *5 *6 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4203 (*1 *2 *2 *1) (-12 (-5 *2 (-657 *6)) (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)))) (-1494 (*1 *2 *2 *1) (-12 (-5 *2 (-657 *6)) (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112))))) +(-13 (-1122) (-152 |t#4|) (-625 (-657 |t#4|)) (-10 -8 (-6 -4466) (-15 -1593 ((-3 $ "failed") (-657 |t#4|))) (-15 -2830 ($ (-657 |t#4|))) (-15 -1428 (|t#3| $)) (-15 -1998 ((-657 |t#3|) $)) (-15 -3944 ((-657 |t#3|) $)) (-15 -2611 ((-112) |t#3| $)) (-15 -2555 ($ $ |t#3|)) (-15 -2267 ($ $ |t#3|)) (-15 -2764 ($ $ |t#3|)) (-15 -1832 ((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |t#3|)) (-15 -2250 ((-112) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -1978 ((-112) $)) (-15 -3025 ((-112) $ $)) (-15 -2936 ((-112) $ $)) (-15 -2697 ((-112) $)) (-15 -2678 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3951 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4203 ((-657 |t#4|) (-657 |t#4|) $)) (-15 -1494 ((-657 |t#4|) (-657 |t#4|) $)) (-15 -4334 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-625 (-657 |#4|)) . T) ((-625 (-877)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-1122) . T) ((-1239) . T)) +((-3443 (((-657 |#4|) |#4| |#4|) 136)) (-3907 (((-657 |#4|) (-657 |#4|) (-112)) 125 (|has| |#1| (-464))) (((-657 |#4|) (-657 |#4|)) 126 (|has| |#1| (-464)))) (-3541 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|)) 44)) (-2720 (((-112) |#4|) 43)) (-4081 (((-657 |#4|) |#4|) 121 (|has| |#1| (-464)))) (-2574 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-1 (-112) |#4|) (-657 |#4|)) 24)) (-3127 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 (-1 (-112) |#4|)) (-657 |#4|)) 30)) (-3496 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 (-1 (-112) |#4|)) (-657 |#4|)) 31)) (-1657 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|)) 90)) (-3371 (((-657 |#4|) (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2573 (((-657 |#4|) (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2336 (((-657 |#4|) (-657 |#4|)) 128)) (-1948 (((-657 |#4|) (-657 |#4|) (-657 |#4|) (-112)) 59) (((-657 |#4|) (-657 |#4|) (-657 |#4|)) 61)) (-1507 ((|#4| |#4| (-657 |#4|)) 60)) (-4033 (((-657 |#4|) (-657 |#4|) (-657 |#4|)) 132 (|has| |#1| (-464)))) (-3347 (((-657 |#4|) (-657 |#4|) (-657 |#4|)) 135 (|has| |#1| (-464)))) (-1432 (((-657 |#4|) (-657 |#4|) (-657 |#4|)) 134 (|has| |#1| (-464)))) (-1699 (((-657 |#4|) (-657 |#4|) (-657 |#4|) (-1 (-657 |#4|) (-657 |#4|))) 105) (((-657 |#4|) (-657 |#4|) (-657 |#4|)) 107) (((-657 |#4|) (-657 |#4|) |#4|) 140) (((-657 |#4|) |#4| |#4|) 137) (((-657 |#4|) (-657 |#4|)) 106)) (-3937 (((-657 |#4|) (-657 |#4|) (-657 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2294 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|)) 52)) (-3367 (((-112) (-657 |#4|)) 79)) (-3084 (((-112) (-657 |#4|) (-657 (-657 |#4|))) 67)) (-1392 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|)) 37)) (-1964 (((-112) |#4|) 36)) (-3195 (((-657 |#4|) (-657 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3643 (((-657 |#4|) (-657 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-4077 (((-657 |#4|) (-657 |#4|)) 83)) (-1594 (((-657 |#4|) (-657 |#4|)) 97)) (-2631 (((-112) (-657 |#4|) (-657 |#4|)) 65)) (-2279 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|)) 50)) (-4341 (((-112) |#4|) 45))) +(((-999 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1699 ((-657 |#4|) (-657 |#4|))) (-15 -1699 ((-657 |#4|) |#4| |#4|)) (-15 -2336 ((-657 |#4|) (-657 |#4|))) (-15 -3443 ((-657 |#4|) |#4| |#4|)) (-15 -1699 ((-657 |#4|) (-657 |#4|) |#4|)) (-15 -1699 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -1699 ((-657 |#4|) (-657 |#4|) (-657 |#4|) (-1 (-657 |#4|) (-657 |#4|)))) (-15 -2631 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -3084 ((-112) (-657 |#4|) (-657 (-657 |#4|)))) (-15 -3367 ((-112) (-657 |#4|))) (-15 -2574 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-1 (-112) |#4|) (-657 |#4|))) (-15 -3127 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 (-1 (-112) |#4|)) (-657 |#4|))) (-15 -3496 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 (-1 (-112) |#4|)) (-657 |#4|))) (-15 -2294 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -2720 ((-112) |#4|)) (-15 -3541 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -1964 ((-112) |#4|)) (-15 -1392 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -4341 ((-112) |#4|)) (-15 -2279 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -1948 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -1948 ((-657 |#4|) (-657 |#4|) (-657 |#4|) (-112))) (-15 -1507 (|#4| |#4| (-657 |#4|))) (-15 -4077 ((-657 |#4|) (-657 |#4|))) (-15 -1657 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|))) (-15 -1594 ((-657 |#4|) (-657 |#4|))) (-15 -3371 ((-657 |#4|) (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2573 ((-657 |#4|) (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -4081 ((-657 |#4|) |#4|)) (-15 -3907 ((-657 |#4|) (-657 |#4|))) (-15 -3907 ((-657 |#4|) (-657 |#4|) (-112))) (-15 -4033 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -1432 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -3347 ((-657 |#4|) (-657 |#4|) (-657 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -3643 ((-657 |#4|) (-657 |#4|))) (-15 -3195 ((-657 |#4|) (-657 |#4|))) (-15 -3937 ((-657 |#4|) (-657 |#4|) (-657 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-806) (-862) (-1087 |#1| |#2| |#3|)) (T -999)) +((-3937 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-3195 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-3643 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-3347 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-1432 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-4033 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-3907 (*1 *2 *2 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-112)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *7)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-4081 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *3)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) (-2573 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-657 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-999 *5 *6 *7 *8)))) (-3371 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-657 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1087 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-806)) (-4 *8 (-862)) (-5 *1 (-999 *6 *7 *8 *9)))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-1657 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -1425 (-657 *7)))) (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-4077 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-1507 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *2)))) (-1948 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-112)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *7)))) (-1948 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-2279 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-4341 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) (-1392 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) (-3541 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) (-2294 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-3496 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-1 (-112) *8))) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-657 *8)) (|:| |badPols| (-657 *8)))) (-5 *1 (-999 *5 *6 *7 *8)) (-5 *4 (-657 *8)))) (-3127 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-1 (-112) *8))) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-657 *8)) (|:| |badPols| (-657 *8)))) (-5 *1 (-999 *5 *6 *7 *8)) (-5 *4 (-657 *8)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-657 *8)) (|:| |badPols| (-657 *8)))) (-5 *1 (-999 *5 *6 *7 *8)) (-5 *4 (-657 *8)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-657 *8))) (-5 *3 (-657 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *5 *6 *7 *8)))) (-2631 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7)))) (-1699 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-657 *7) (-657 *7))) (-5 *2 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *7)))) (-1699 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-1699 (*1 *2 *2 *3) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *3)))) (-3443 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *3)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) (-2336 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-1699 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *3)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) (-1699 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6))))) +(-10 -7 (-15 -1699 ((-657 |#4|) (-657 |#4|))) (-15 -1699 ((-657 |#4|) |#4| |#4|)) (-15 -2336 ((-657 |#4|) (-657 |#4|))) (-15 -3443 ((-657 |#4|) |#4| |#4|)) (-15 -1699 ((-657 |#4|) (-657 |#4|) |#4|)) (-15 -1699 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -1699 ((-657 |#4|) (-657 |#4|) (-657 |#4|) (-1 (-657 |#4|) (-657 |#4|)))) (-15 -2631 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -3084 ((-112) (-657 |#4|) (-657 (-657 |#4|)))) (-15 -3367 ((-112) (-657 |#4|))) (-15 -2574 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-1 (-112) |#4|) (-657 |#4|))) (-15 -3127 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 (-1 (-112) |#4|)) (-657 |#4|))) (-15 -3496 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 (-1 (-112) |#4|)) (-657 |#4|))) (-15 -2294 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -2720 ((-112) |#4|)) (-15 -3541 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -1964 ((-112) |#4|)) (-15 -1392 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -4341 ((-112) |#4|)) (-15 -2279 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -1948 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -1948 ((-657 |#4|) (-657 |#4|) (-657 |#4|) (-112))) (-15 -1507 (|#4| |#4| (-657 |#4|))) (-15 -4077 ((-657 |#4|) (-657 |#4|))) (-15 -1657 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|))) (-15 -1594 ((-657 |#4|) (-657 |#4|))) (-15 -3371 ((-657 |#4|) (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2573 ((-657 |#4|) (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -4081 ((-657 |#4|) |#4|)) (-15 -3907 ((-657 |#4|) (-657 |#4|))) (-15 -3907 ((-657 |#4|) (-657 |#4|) (-112))) (-15 -4033 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -1432 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -3347 ((-657 |#4|) (-657 |#4|) (-657 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -3643 ((-657 |#4|) (-657 |#4|))) (-15 -3195 ((-657 |#4|) (-657 |#4|))) (-15 -3937 ((-657 |#4|) (-657 |#4|) (-657 |#4|)))) |%noBranch|) |%noBranch|)) +((-1809 (((-2 (|:| R (-702 |#1|)) (|:| A (-702 |#1|)) (|:| |Ainv| (-702 |#1|))) (-702 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2205 (((-657 (-2 (|:| C (-702 |#1|)) (|:| |g| (-1289 |#1|)))) (-702 |#1|) (-1289 |#1|)) 46)) (-2826 (((-702 |#1|) (-702 |#1|) (-702 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-1000 |#1|) (-10 -7 (-15 -1809 ((-2 (|:| R (-702 |#1|)) (|:| A (-702 |#1|)) (|:| |Ainv| (-702 |#1|))) (-702 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2826 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2205 ((-657 (-2 (|:| C (-702 |#1|)) (|:| |g| (-1289 |#1|)))) (-702 |#1|) (-1289 |#1|)))) (-374)) (T -1000)) +((-2205 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-657 (-2 (|:| C (-702 *5)) (|:| |g| (-1289 *5))))) (-5 *1 (-1000 *5)) (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)))) (-2826 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-702 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-1000 *5)))) (-1809 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 (-2 (|:| R (-702 *6)) (|:| A (-702 *6)) (|:| |Ainv| (-702 *6)))) (-5 *1 (-1000 *6)) (-5 *3 (-702 *6))))) +(-10 -7 (-15 -1809 ((-2 (|:| R (-702 |#1|)) (|:| A (-702 |#1|)) (|:| |Ainv| (-702 |#1|))) (-702 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2826 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2205 ((-657 (-2 (|:| C (-702 |#1|)) (|:| |g| (-1289 |#1|)))) (-702 |#1|) (-1289 |#1|)))) +((-4215 (((-430 |#4|) |#4|) 56))) +(((-1001 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4215 ((-430 |#4|) |#4|))) (-862) (-806) (-464) (-969 |#3| |#2| |#1|)) (T -1001)) +((-4215 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-464)) (-5 *2 (-430 *3)) (-5 *1 (-1001 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4))))) +(-10 -7 (-15 -4215 ((-430 |#4|) |#4|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3793 (($ (-784)) 115 (|has| |#1| (-23)))) (-3590 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-1698 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4467))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4467))))) (-1832 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-4284 (((-112) $ (-784)) 8)) (-3719 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 60 (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-4072 (($ $) 93 (|has| $ (-6 -4467)))) (-3796 (($ $) 103)) (-1620 (($ $) 80 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#1| $) 79 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) 52)) (-3619 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1122)))) (-3664 (($ (-657 |#1|)) 121)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2386 (((-702 |#1|) $ $) 108 (|has| |#1| (-1071)))) (-4096 (($ (-784) |#1|) 70)) (-1786 (((-112) $ (-784)) 9)) (-3363 (((-576) $) 44 (|has| (-576) (-862)))) (-3740 (($ $ $) 85 (|has| |#1| (-862)))) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1833 (((-576) $) 45 (|has| (-576) (-862)))) (-2249 (($ $ $) 86 (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2425 ((|#1| $) 105 (-12 (|has| |#1| (-1071)) (|has| |#1| (-1024))))) (-4326 (((-112) $ (-784)) 10)) (-3041 ((|#1| $) 106 (-12 (|has| |#1| (-1071)) (|has| |#1| (-1024))))) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-2225 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3309 (((-657 (-576)) $) 47)) (-4324 (((-112) (-576) $) 48)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3528 ((|#1| $) 43 (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1495 (($ $ |#1|) 42 (|has| $ (-6 -4467)))) (-1456 (($ $ (-657 |#1|)) 119)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) 49)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1256 (-576))) 71)) (-4224 ((|#1| $ $) 109 (|has| |#1| (-1071)))) (-1451 (((-941) $) 120)) (-3395 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-3756 (($ $ $) 107)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1818 (($ $ $ (-576)) 94 (|has| $ (-6 -4467)))) (-1899 (($ $) 13)) (-4136 (((-548) $) 81 (|has| |#1| (-626 (-548)))) (($ (-657 |#1|)) 122)) (-3529 (($ (-657 |#1|)) 72)) (-1637 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) 87 (|has| |#1| (-862)))) (-2913 (((-112) $ $) 89 (|has| |#1| (-862)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2925 (((-112) $ $) 88 (|has| |#1| (-862)))) (-2901 (((-112) $ $) 90 (|has| |#1| (-862)))) (-2982 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-2971 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-739))) (($ $ |#1|) 110 (|has| |#1| (-739)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-1002 |#1|) (-141) (-1071)) (T -1002)) +((-3664 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1071)) (-4 *1 (-1002 *3)))) (-1451 (*1 *2 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1071)) (-5 *2 (-941)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1071)))) (-1456 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *1 (-1002 *3)) (-4 *3 (-1071))))) +(-13 (-1287 |t#1|) (-630 (-657 |t#1|)) (-10 -8 (-15 -3664 ($ (-657 |t#1|))) (-15 -1451 ((-941) $)) (-15 -3756 ($ $ $)) (-15 -1456 ($ $ (-657 |t#1|))))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-630 (-657 |#1|)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1122) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862))) ((-1239) . T) ((-1287 |#1|) . T)) +((-4071 (((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)) 17))) +(((-1003 |#1| |#2|) (-10 -7 (-15 -4071 ((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)))) (-1071) (-1071)) (T -1003)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-963 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-5 *2 (-963 *6)) (-5 *1 (-1003 *5 *6))))) +(-10 -7 (-15 -4071 ((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)))) +((-1728 ((|#1| (-963 |#1|)) 14)) (-3049 ((|#1| (-963 |#1|)) 13)) (-1654 ((|#1| (-963 |#1|)) 12)) (-3006 ((|#1| (-963 |#1|)) 16)) (-3705 ((|#1| (-963 |#1|)) 24)) (-2284 ((|#1| (-963 |#1|)) 15)) (-3711 ((|#1| (-963 |#1|)) 17)) (-2310 ((|#1| (-963 |#1|)) 23)) (-2587 ((|#1| (-963 |#1|)) 22))) +(((-1004 |#1|) (-10 -7 (-15 -1654 (|#1| (-963 |#1|))) (-15 -3049 (|#1| (-963 |#1|))) (-15 -1728 (|#1| (-963 |#1|))) (-15 -2284 (|#1| (-963 |#1|))) (-15 -3006 (|#1| (-963 |#1|))) (-15 -3711 (|#1| (-963 |#1|))) (-15 -2587 (|#1| (-963 |#1|))) (-15 -2310 (|#1| (-963 |#1|))) (-15 -3705 (|#1| (-963 |#1|)))) (-1071)) (T -1004)) +((-3705 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-2310 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-2587 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) +(-10 -7 (-15 -1654 (|#1| (-963 |#1|))) (-15 -3049 (|#1| (-963 |#1|))) (-15 -1728 (|#1| (-963 |#1|))) (-15 -2284 (|#1| (-963 |#1|))) (-15 -3006 (|#1| (-963 |#1|))) (-15 -3711 (|#1| (-963 |#1|))) (-15 -2587 (|#1| (-963 |#1|))) (-15 -2310 (|#1| (-963 |#1|))) (-15 -3705 (|#1| (-963 |#1|)))) +((-3143 (((-3 |#1| "failed") |#1|) 18)) (-1659 (((-3 |#1| "failed") |#1|) 6)) (-3153 (((-3 |#1| "failed") |#1|) 16)) (-4189 (((-3 |#1| "failed") |#1|) 4)) (-2414 (((-3 |#1| "failed") |#1|) 20)) (-2877 (((-3 |#1| "failed") |#1|) 8)) (-1896 (((-3 |#1| "failed") |#1| (-784)) 1)) (-4380 (((-3 |#1| "failed") |#1|) 3)) (-1366 (((-3 |#1| "failed") |#1|) 2)) (-1938 (((-3 |#1| "failed") |#1|) 21)) (-2507 (((-3 |#1| "failed") |#1|) 9)) (-3273 (((-3 |#1| "failed") |#1|) 19)) (-3400 (((-3 |#1| "failed") |#1|) 7)) (-3108 (((-3 |#1| "failed") |#1|) 17)) (-2686 (((-3 |#1| "failed") |#1|) 5)) (-3413 (((-3 |#1| "failed") |#1|) 24)) (-3773 (((-3 |#1| "failed") |#1|) 12)) (-2706 (((-3 |#1| "failed") |#1|) 22)) (-2755 (((-3 |#1| "failed") |#1|) 10)) (-2744 (((-3 |#1| "failed") |#1|) 26)) (-2941 (((-3 |#1| "failed") |#1|) 14)) (-1442 (((-3 |#1| "failed") |#1|) 27)) (-3679 (((-3 |#1| "failed") |#1|) 15)) (-1608 (((-3 |#1| "failed") |#1|) 25)) (-2608 (((-3 |#1| "failed") |#1|) 13)) (-3689 (((-3 |#1| "failed") |#1|) 23)) (-2073 (((-3 |#1| "failed") |#1|) 11))) +(((-1005 |#1|) (-141) (-1224)) (T -1005)) +((-1442 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2744 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-1608 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3413 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3689 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2706 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-1938 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2414 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3273 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3143 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3108 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3153 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3679 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2941 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2608 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3773 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2073 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2755 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2507 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2877 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3400 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-1659 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2686 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-4189 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-4380 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-1366 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-1896 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-784)) (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(-13 (-10 -7 (-15 -1896 ((-3 |t#1| "failed") |t#1| (-784))) (-15 -1366 ((-3 |t#1| "failed") |t#1|)) (-15 -4380 ((-3 |t#1| "failed") |t#1|)) (-15 -4189 ((-3 |t#1| "failed") |t#1|)) (-15 -2686 ((-3 |t#1| "failed") |t#1|)) (-15 -1659 ((-3 |t#1| "failed") |t#1|)) (-15 -3400 ((-3 |t#1| "failed") |t#1|)) (-15 -2877 ((-3 |t#1| "failed") |t#1|)) (-15 -2507 ((-3 |t#1| "failed") |t#1|)) (-15 -2755 ((-3 |t#1| "failed") |t#1|)) (-15 -2073 ((-3 |t#1| "failed") |t#1|)) (-15 -3773 ((-3 |t#1| "failed") |t#1|)) (-15 -2608 ((-3 |t#1| "failed") |t#1|)) (-15 -2941 ((-3 |t#1| "failed") |t#1|)) (-15 -3679 ((-3 |t#1| "failed") |t#1|)) (-15 -3153 ((-3 |t#1| "failed") |t#1|)) (-15 -3108 ((-3 |t#1| "failed") |t#1|)) (-15 -3143 ((-3 |t#1| "failed") |t#1|)) (-15 -3273 ((-3 |t#1| "failed") |t#1|)) (-15 -2414 ((-3 |t#1| "failed") |t#1|)) (-15 -1938 ((-3 |t#1| "failed") |t#1|)) (-15 -2706 ((-3 |t#1| "failed") |t#1|)) (-15 -3689 ((-3 |t#1| "failed") |t#1|)) (-15 -3413 ((-3 |t#1| "failed") |t#1|)) (-15 -1608 ((-3 |t#1| "failed") |t#1|)) (-15 -2744 ((-3 |t#1| "failed") |t#1|)) (-15 -1442 ((-3 |t#1| "failed") |t#1|)))) +((-3556 ((|#4| |#4| (-657 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1646 ((|#4| |#4| (-657 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4071 ((|#4| (-1 |#4| (-972 |#1|)) |#4|) 31))) +(((-1006 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1646 (|#4| |#4| |#3|)) (-15 -1646 (|#4| |#4| (-657 |#3|))) (-15 -3556 (|#4| |#4| |#3|)) (-15 -3556 (|#4| |#4| (-657 |#3|))) (-15 -4071 (|#4| (-1 |#4| (-972 |#1|)) |#4|))) (-1071) (-806) (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)) (-15 -2993 ((-3 $ "failed") (-1198))))) (-969 (-972 |#1|) |#2| |#3|)) (T -1006)) +((-4071 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-972 *4))) (-4 *4 (-1071)) (-4 *2 (-969 (-972 *4) *5 *6)) (-4 *5 (-806)) (-4 *6 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)) (-15 -2993 ((-3 $ "failed") (-1198)))))) (-5 *1 (-1006 *4 *5 *6 *2)))) (-3556 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)) (-15 -2993 ((-3 $ "failed") (-1198)))))) (-4 *4 (-1071)) (-4 *5 (-806)) (-5 *1 (-1006 *4 *5 *6 *2)) (-4 *2 (-969 (-972 *4) *5 *6)))) (-3556 (*1 *2 *2 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)) (-15 -2993 ((-3 $ "failed") (-1198)))))) (-5 *1 (-1006 *4 *5 *3 *2)) (-4 *2 (-969 (-972 *4) *5 *3)))) (-1646 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)) (-15 -2993 ((-3 $ "failed") (-1198)))))) (-4 *4 (-1071)) (-4 *5 (-806)) (-5 *1 (-1006 *4 *5 *6 *2)) (-4 *2 (-969 (-972 *4) *5 *6)))) (-1646 (*1 *2 *2 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)) (-15 -2993 ((-3 $ "failed") (-1198)))))) (-5 *1 (-1006 *4 *5 *3 *2)) (-4 *2 (-969 (-972 *4) *5 *3))))) +(-10 -7 (-15 -1646 (|#4| |#4| |#3|)) (-15 -1646 (|#4| |#4| (-657 |#3|))) (-15 -3556 (|#4| |#4| |#3|)) (-15 -3556 (|#4| |#4| (-657 |#3|))) (-15 -4071 (|#4| (-1 |#4| (-972 |#1|)) |#4|))) +((-2596 ((|#2| |#3|) 35)) (-1951 (((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) |#2|) 79)) (-3929 (((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) 100))) +(((-1007 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3929 ((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))))) (-15 -1951 ((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) |#2|)) (-15 -2596 (|#2| |#3|))) (-360) (-1265 |#1|) (-1265 |#2|) (-737 |#2| |#3|)) (T -1007)) +((-2596 (*1 *2 *3) (-12 (-4 *3 (-1265 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-1007 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-737 *2 *3)))) (-1951 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 *3)) (-5 *2 (-2 (|:| -2469 (-702 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-702 *3)))) (-5 *1 (-1007 *4 *3 *5 *6)) (-4 *6 (-737 *3 *5)))) (-3929 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| -2469 (-702 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-702 *4)))) (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-737 *4 *5))))) +(-10 -7 (-15 -3929 ((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))))) (-15 -1951 ((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) |#2|)) (-15 -2596 (|#2| |#3|))) +((-3551 (((-1009 (-419 (-576)) (-879 |#1|) (-245 |#2| (-784)) (-253 |#1| (-419 (-576)))) (-1009 (-419 (-576)) (-879 |#1|) (-245 |#2| (-784)) (-253 |#1| (-419 (-576))))) 82))) +(((-1008 |#1| |#2|) (-10 -7 (-15 -3551 ((-1009 (-419 (-576)) (-879 |#1|) (-245 |#2| (-784)) (-253 |#1| (-419 (-576)))) (-1009 (-419 (-576)) (-879 |#1|) (-245 |#2| (-784)) (-253 |#1| (-419 (-576))))))) (-657 (-1198)) (-784)) (T -1008)) +((-3551 (*1 *2 *2) (-12 (-5 *2 (-1009 (-419 (-576)) (-879 *3) (-245 *4 (-784)) (-253 *3 (-419 (-576))))) (-14 *3 (-657 (-1198))) (-14 *4 (-784)) (-5 *1 (-1008 *3 *4))))) +(-10 -7 (-15 -3551 ((-1009 (-419 (-576)) (-879 |#1|) (-245 |#2| (-784)) (-253 |#1| (-419 (-576)))) (-1009 (-419 (-576)) (-879 |#1|) (-245 |#2| (-784)) (-253 |#1| (-419 (-576))))))) +((-3423 (((-112) $ $) NIL)) (-2037 (((-3 (-112) "failed") $) 71)) (-1362 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-1688 (($ $ (-3 (-112) "failed")) 72)) (-3498 (($ (-657 |#4|) |#4|) 25)) (-1708 (((-1180) $) NIL)) (-3275 (($ $) 69)) (-1460 (((-1142) $) NIL)) (-1368 (((-112) $) 70)) (-3340 (($) 30)) (-1863 ((|#4| $) 74)) (-3141 (((-657 |#4|) $) 73)) (-3515 (((-877) $) 68)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1009 |#1| |#2| |#3| |#4|) (-13 (-1122) (-625 (-877)) (-10 -8 (-15 -3340 ($)) (-15 -3498 ($ (-657 |#4|) |#4|)) (-15 -2037 ((-3 (-112) "failed") $)) (-15 -1688 ($ $ (-3 (-112) "failed"))) (-15 -1368 ((-112) $)) (-15 -3141 ((-657 |#4|) $)) (-15 -1863 (|#4| $)) (-15 -3275 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -1362 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-862) (-806) (-969 |#1| |#3| |#2|)) (T -1009)) +((-3340 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-806)) (-5 *1 (-1009 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3)))) (-3498 (*1 *1 *2 *3) (-12 (-5 *2 (-657 *3)) (-4 *3 (-969 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-4 *6 (-806)) (-5 *1 (-1009 *4 *5 *6 *3)))) (-2037 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) (-5 *2 (-112)) (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) (-1688 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) (-1368 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) (-5 *2 (-112)) (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) (-3141 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) (-5 *2 (-657 *6)) (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) (-1863 (*1 *2 *1) (-12 (-4 *2 (-969 *3 *5 *4)) (-5 *1 (-1009 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)))) (-3275 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-806)) (-5 *1 (-1009 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3)))) (-1362 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-806)) (-5 *1 (-1009 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3))))) +(-13 (-1122) (-625 (-877)) (-10 -8 (-15 -3340 ($)) (-15 -3498 ($ (-657 |#4|) |#4|)) (-15 -2037 ((-3 (-112) "failed") $)) (-15 -1688 ($ $ (-3 (-112) "failed"))) (-15 -1368 ((-112) $)) (-15 -3141 ((-657 |#4|) $)) (-15 -1863 (|#4| $)) (-15 -3275 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -1362 ($ $)) |%noBranch|) |%noBranch|))) +((-4339 (((-112) |#5| |#5|) 44)) (-3954 (((-112) |#5| |#5|) 59)) (-1401 (((-112) |#5| (-657 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-1981 (((-112) (-657 |#4|) (-657 |#4|)) 65)) (-2179 (((-112) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) 70)) (-3673 (((-1294)) 32)) (-2638 (((-1294) (-1180) (-1180) (-1180)) 28)) (-3196 (((-657 |#5|) (-657 |#5|)) 100)) (-2113 (((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)))) 92)) (-4382 (((-657 (-2 (|:| -3981 (-657 |#4|)) (|:| -3941 |#5|) (|:| |ineq| (-657 |#4|)))) (-657 |#4|) (-657 |#5|) (-112) (-112)) 122)) (-3345 (((-112) |#5| |#5|) 53)) (-1382 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1417 (((-112) (-657 |#4|) (-657 |#4|)) 64)) (-3938 (((-112) (-657 |#4|) (-657 |#4|)) 66)) (-2304 (((-112) (-657 |#4|) (-657 |#4|)) 67)) (-4078 (((-3 (-2 (|:| -3981 (-657 |#4|)) (|:| -3941 |#5|) (|:| |ineq| (-657 |#4|))) "failed") (-657 |#4|) |#5| (-657 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3337 (((-657 |#5|) (-657 |#5|)) 49))) +(((-1010 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2638 ((-1294) (-1180) (-1180) (-1180))) (-15 -3673 ((-1294))) (-15 -4339 ((-112) |#5| |#5|)) (-15 -3337 ((-657 |#5|) (-657 |#5|))) (-15 -3345 ((-112) |#5| |#5|)) (-15 -3954 ((-112) |#5| |#5|)) (-15 -1981 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -1417 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -3938 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -2304 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -1382 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1401 ((-112) |#5| |#5|)) (-15 -1401 ((-112) |#5| (-657 |#5|))) (-15 -3196 ((-657 |#5|) (-657 |#5|))) (-15 -2179 ((-112) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)))) (-15 -2113 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) (-15 -4382 ((-657 (-2 (|:| -3981 (-657 |#4|)) (|:| -3941 |#5|) (|:| |ineq| (-657 |#4|)))) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -4078 ((-3 (-2 (|:| -3981 (-657 |#4|)) (|:| -3941 |#5|) (|:| |ineq| (-657 |#4|))) "failed") (-657 |#4|) |#5| (-657 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|)) (T -1010)) +((-4078 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *9 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| -3981 (-657 *9)) (|:| -3941 *4) (|:| |ineq| (-657 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-657 *9)) (-4 *4 (-1093 *6 *7 *8 *9)))) (-4382 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-657 *10)) (-5 *5 (-112)) (-4 *10 (-1093 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *9 (-1087 *6 *7 *8)) (-5 *2 (-657 (-2 (|:| -3981 (-657 *9)) (|:| -3941 *10) (|:| |ineq| (-657 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-657 *9)))) (-2113 (*1 *2 *2) (-12 (-5 *2 (-657 (-2 (|:| |val| (-657 *6)) (|:| -3941 *7)))) (-4 *6 (-1087 *3 *4 *5)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-2179 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3941 *8))) (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *8)))) (-3196 (*1 *2 *2) (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))) (-1401 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-1382 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-2304 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-3938 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-1417 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-1981 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-3954 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-3345 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-4339 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-3673 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) (-2638 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) +(-10 -7 (-15 -2638 ((-1294) (-1180) (-1180) (-1180))) (-15 -3673 ((-1294))) (-15 -4339 ((-112) |#5| |#5|)) (-15 -3337 ((-657 |#5|) (-657 |#5|))) (-15 -3345 ((-112) |#5| |#5|)) (-15 -3954 ((-112) |#5| |#5|)) (-15 -1981 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -1417 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -3938 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -2304 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -1382 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1401 ((-112) |#5| |#5|)) (-15 -1401 ((-112) |#5| (-657 |#5|))) (-15 -3196 ((-657 |#5|) (-657 |#5|))) (-15 -2179 ((-112) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)))) (-15 -2113 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) (-15 -4382 ((-657 (-2 (|:| -3981 (-657 |#4|)) (|:| -3941 |#5|) (|:| |ineq| (-657 |#4|)))) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -4078 ((-3 (-2 (|:| -3981 (-657 |#4|)) (|:| -3941 |#5|) (|:| |ineq| (-657 |#4|))) "failed") (-657 |#4|) |#5| (-657 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2993 (((-1198) $) 15)) (-3037 (((-1180) $) 16)) (-2371 (($ (-1198) (-1180)) 14)) (-3515 (((-877) $) 13))) +(((-1011) (-13 (-625 (-877)) (-10 -8 (-15 -2371 ($ (-1198) (-1180))) (-15 -2993 ((-1198) $)) (-15 -3037 ((-1180) $))))) (T -1011)) +((-2371 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1180)) (-5 *1 (-1011)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1011)))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1011))))) +(-13 (-625 (-877)) (-10 -8 (-15 -2371 ($ (-1198) (-1180))) (-15 -2993 ((-1198) $)) (-15 -3037 ((-1180) $)))) +((-4071 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-1012 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1014 |#1|) (-1014 |#2|)) (T -1012)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1014 *6)) (-5 *1 (-1012 *5 *6 *4 *2)) (-4 *4 (-1014 *5))))) +(-10 -7 (-15 -4071 (|#4| (-1 |#2| |#1|) |#3|))) +((-1593 (((-3 |#2| "failed") $) NIL) (((-3 (-1198) "failed") $) 66) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) 96)) (-2830 ((|#2| $) NIL) (((-1198) $) 61) (((-419 (-576)) $) NIL) (((-576) $) 93)) (-3439 (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) 115) (((-702 |#2|) (-702 $)) 28)) (-1876 (($) 99)) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 76) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 85)) (-3502 (($ $) 10)) (-1955 (((-3 $ "failed") $) 20)) (-4071 (($ (-1 |#2| |#2|) $) 22)) (-1679 (($) 16)) (-2440 (($ $) 55)) (-2209 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $) NIL) (($ $ (-784)) NIL)) (-4226 (($ $) 12)) (-4136 (((-908 (-576)) $) 71) (((-908 (-390)) $) 80) (((-548) $) 40) (((-390) $) 44) (((-227) $) 48)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 91) (($ |#2|) NIL) (($ (-1198)) 58)) (-3845 (((-784)) 31)) (-2901 (((-112) $ $) 51))) +(((-1013 |#1| |#2|) (-10 -8 (-15 -2901 ((-112) |#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -1679 (|#1|)) (-15 -1955 ((-3 |#1| "failed") |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -4136 ((-227) |#1|)) (-15 -4136 ((-390) |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -3515 (|#1| (-1198))) (-15 -1593 ((-3 (-1198) "failed") |#1|)) (-15 -2830 ((-1198) |#1|)) (-15 -1876 (|#1|)) (-15 -2440 (|#1| |#1|)) (-15 -4226 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -2008 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -2008 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -4136 ((-908 (-390)) |#1|)) (-15 -4136 ((-908 (-576)) |#1|)) (-15 -3439 ((-702 |#2|) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-702 (-576)) (-702 |#1|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -3515 (|#1| |#1|)) (-15 -3845 ((-784))) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) (-1014 |#2|) (-568)) (T -1013)) +((-3845 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-1013 *3 *4)) (-4 *3 (-1014 *4))))) +(-10 -8 (-15 -2901 ((-112) |#1| |#1|)) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -1679 (|#1|)) (-15 -1955 ((-3 |#1| "failed") |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -4136 ((-227) |#1|)) (-15 -4136 ((-390) |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -3515 (|#1| (-1198))) (-15 -1593 ((-3 (-1198) "failed") |#1|)) (-15 -2830 ((-1198) |#1|)) (-15 -1876 (|#1|)) (-15 -2440 (|#1| |#1|)) (-15 -4226 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -2008 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -2008 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -4136 ((-908 (-390)) |#1|)) (-15 -4136 ((-908 (-576)) |#1|)) (-15 -3439 ((-702 |#2|) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-702 (-576)) (-702 |#1|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -3515 (|#1| |#1|)) (-15 -3845 ((-784))) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2923 ((|#1| $) 163 (|has| |#1| (-317)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-2628 (((-430 (-1194 $)) (-1194 $)) 154 (|has| |#1| (-929)))) (-3188 (($ $) 81)) (-4215 (((-430 $) $) 80)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 157 (|has| |#1| (-929)))) (-3210 (((-112) $ $) 65)) (-3922 (((-576) $) 144 (|has| |#1| (-833)))) (-2515 (($) 18 T CONST)) (-1593 (((-3 |#1| "failed") $) 193) (((-3 (-1198) "failed") $) 152 (|has| |#1| (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) 135 (|has| |#1| (-1060 (-576)))) (((-3 (-576) "failed") $) 133 (|has| |#1| (-1060 (-576))))) (-2830 ((|#1| $) 194) (((-1198) $) 153 (|has| |#1| (-1060 (-1198)))) (((-419 (-576)) $) 136 (|has| |#1| (-1060 (-576)))) (((-576) $) 134 (|has| |#1| (-1060 (-576))))) (-3355 (($ $ $) 61)) (-3439 (((-702 (-576)) (-702 $)) 178 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 177 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 176) (((-702 |#1|) (-702 $)) 175)) (-3969 (((-3 $ "failed") $) 37)) (-1876 (($) 161 (|has| |#1| (-557)))) (-3369 (($ $ $) 62)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-4009 (((-112) $) 79)) (-3810 (((-112) $) 146 (|has| |#1| (-833)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 170 (|has| |#1| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 169 (|has| |#1| (-902 (-390))))) (-3994 (((-112) $) 35)) (-3502 (($ $) 165)) (-1590 ((|#1| $) 167)) (-1955 (((-3 $ "failed") $) 132 (|has| |#1| (-1174)))) (-3517 (((-112) $) 145 (|has| |#1| (-833)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3740 (($ $ $) 137 (|has| |#1| (-862)))) (-2249 (($ $ $) 138 (|has| |#1| (-862)))) (-4071 (($ (-1 |#1| |#1|) $) 185)) (-1993 (((-702 (-576)) (-1289 $)) 180 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 179 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 174) (((-702 |#1|) (-1289 $)) 173)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 78)) (-1679 (($) 131 (|has| |#1| (-1174)) CONST)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-2440 (($ $) 162 (|has| |#1| (-317)))) (-2681 ((|#1| $) 159 (|has| |#1| (-557)))) (-2436 (((-430 (-1194 $)) (-1194 $)) 156 (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) 155 (|has| |#1| (-929)))) (-1856 (((-430 $) $) 82)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-3205 (($ $ (-657 |#1|) (-657 |#1|)) 191 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 190 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 189 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) 188 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 187 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) 186 (|has| |#1| (-526 (-1198) |#1|)))) (-4164 (((-784) $) 64)) (-2780 (($ $ |#1|) 192 (|has| |#1| (-296 |#1| |#1|)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63)) (-2209 (($ $ (-1 |#1| |#1|)) 184) (($ $ (-1 |#1| |#1|) (-784)) 183) (($ $) 130 (|has| |#1| (-237))) (($ $ (-784)) 128 (|has| |#1| (-237))) (($ $ (-1198)) 126 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 124 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 123 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 122 (|has| |#1| (-920 (-1198))))) (-4226 (($ $) 164)) (-1602 ((|#1| $) 166)) (-4136 (((-908 (-576)) $) 172 (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) 171 (|has| |#1| (-626 (-908 (-390))))) (((-548) $) 149 (|has| |#1| (-626 (-548)))) (((-390) $) 148 (|has| |#1| (-1044))) (((-227) $) 147 (|has| |#1| (-1044)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 158 (-2675 (|has| $ (-146)) (|has| |#1| (-929))))) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 197) (($ (-1198)) 151 (|has| |#1| (-1060 (-1198))))) (-3414 (((-3 $ "failed") $) 150 (-2748 (|has| |#1| (-146)) (-2675 (|has| $ (-146)) (|has| |#1| (-929)))))) (-3845 (((-784)) 32 T CONST)) (-2140 ((|#1| $) 160 (|has| |#1| (-557)))) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2127 (($ $) 143 (|has| |#1| (-833)))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-1 |#1| |#1|)) 182) (($ $ (-1 |#1| |#1|) (-784)) 181) (($ $) 129 (|has| |#1| (-237))) (($ $ (-784)) 127 (|has| |#1| (-237))) (($ $ (-1198)) 125 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 121 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 120 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 119 (|has| |#1| (-920 (-1198))))) (-2938 (((-112) $ $) 139 (|has| |#1| (-862)))) (-2913 (((-112) $ $) 141 (|has| |#1| (-862)))) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 140 (|has| |#1| (-862)))) (-2901 (((-112) $ $) 142 (|has| |#1| (-862)))) (-2995 (($ $ $) 73) (($ |#1| |#1|) 168)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ |#1| $) 196) (($ $ |#1|) 195))) +(((-1014 |#1|) (-141) (-568)) (T -1014)) +((-2995 (*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)))) (-1602 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)))) (-3502 (*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)))) (-4226 (*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-2440 (*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-1876 (*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-557)) (-4 *2 (-568)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-557))))) +(-13 (-374) (-38 |t#1|) (-1060 |t#1|) (-349 |t#1|) (-232 |t#1|) (-388 |t#1|) (-900 |t#1|) (-412 |t#1|) (-10 -8 (-15 -2995 ($ |t#1| |t#1|)) (-15 -1590 (|t#1| $)) (-15 -1602 (|t#1| $)) (-15 -3502 ($ $)) (-15 -4226 ($ $)) (IF (|has| |t#1| (-1174)) (-6 (-1174)) |%noBranch|) (IF (|has| |t#1| (-1060 (-576))) (PROGN (-6 (-1060 (-576))) (-6 (-1060 (-419 (-576))))) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-833)) (-6 (-833)) |%noBranch|) (IF (|has| |t#1| (-1044)) (-6 (-1044)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1060 (-1198))) (-6 (-1060 (-1198))) |%noBranch|) (IF (|has| |t#1| (-317)) (PROGN (-15 -2923 (|t#1| $)) (-15 -2440 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -1876 ($)) (-15 -2140 (|t#1| $)) (-15 -2681 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-929)) (-6 (-929)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 #1=(-1198)) |has| |#1| (-1060 (-1198))) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-626 (-227)) |has| |#1| (-1044)) ((-626 (-390)) |has| |#1| (-1044)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-908 (-390))) |has| |#1| (-626 (-908 (-390)))) ((-626 (-908 (-576))) |has| |#1| (-626 (-908 (-576)))) ((-234 $) -2748 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2748 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) . T) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) . T) ((-317) . T) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 #2=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-652 #2#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) . T) ((-730 |#1|) . T) ((-730 $) . T) ((-739) . T) ((-804) |has| |#1| (-833)) ((-805) |has| |#1| (-833)) ((-807) |has| |#1| (-833)) ((-808) |has| |#1| (-833)) ((-833) |has| |#1| (-833)) ((-861) |has| |#1| (-833)) ((-862) -2748 (|has| |#1| (-862)) (|has| |#1| (-833))) ((-865) -2748 (|has| |#1| (-862)) (|has| |#1| (-833))) ((-912 $ #3=(-1198)) -2748 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-918 (-1198)) |has| |#1| (-918 (-1198))) ((-920 #3#) -2748 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-902 (-390)) |has| |#1| (-902 (-390))) ((-902 (-576)) |has| |#1| (-902 (-576))) ((-900 |#1|) . T) ((-929) |has| |#1| (-929)) ((-940) . T) ((-1044) |has| |#1| (-1044)) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-576))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 #1#) |has| |#1| (-1060 (-1198))) ((-1060 |#1|) . T) ((-1073 #0#) . T) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 |#1|) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) |has| |#1| (-1174)) ((-1239) . T) ((-1243) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-1960 (($ (-1164 |#1| |#2|)) 11)) (-2484 (((-1164 |#1| |#2|) $) 12)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2780 ((|#2| $ (-245 |#1| |#2|)) 16)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2716 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL))) +(((-1015 |#1| |#2|) (-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -1960 ($ (-1164 |#1| |#2|))) (-15 -2484 ((-1164 |#1| |#2|) $)))) (-941) (-374)) (T -1015)) +((-1960 (*1 *1 *2) (-12 (-5 *2 (-1164 *3 *4)) (-14 *3 (-941)) (-4 *4 (-374)) (-5 *1 (-1015 *3 *4)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1164 *3 *4)) (-5 *1 (-1015 *3 *4)) (-14 *3 (-941)) (-4 *4 (-374))))) +(-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -1960 ($ (-1164 |#1| |#2|))) (-15 -2484 ((-1164 |#1| |#2|) $)))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3054 (((-1157) $) 9)) (-3515 (((-877) $) 15) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1016) (-13 (-1105) (-10 -8 (-15 -3054 ((-1157) $))))) (T -1016)) +((-3054 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1016))))) +(-13 (-1105) (-10 -8 (-15 -3054 ((-1157) $)))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) 8)) (-2515 (($) 7 T CONST)) (-1528 (($ $) 47)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-3041 (((-784) $) 46)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3107 ((|#1| $) 40)) (-2701 (($ |#1| $) 41)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2727 ((|#1| $) 45)) (-2184 ((|#1| $) 42)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-3513 ((|#1| |#1| $) 49)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-3608 ((|#1| $) 48)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) 43)) (-3292 ((|#1| $) 44)) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-1017 |#1|) (-141) (-1239)) (T -1017)) +((-3513 (*1 *2 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239)))) (-1528 (*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239)))) (-3041 (*1 *2 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1239)) (-5 *2 (-784)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239)))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4466) (-15 -3513 (|t#1| |t#1| $)) (-15 -3608 (|t#1| $)) (-15 -1528 ($ $)) (-15 -3041 ((-784) $)) (-15 -2727 (|t#1| $)) (-15 -3292 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-2044 (((-112) $) 43)) (-1593 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2830 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 44)) (-1758 (((-3 (-419 (-576)) "failed") $) 78)) (-3113 (((-112) $) 72)) (-1842 (((-419 (-576)) $) 76)) (-3994 (((-112) $) 42)) (-3869 ((|#2| $) 22)) (-4071 (($ (-1 |#2| |#2|) $) 19)) (-2098 (($ $) 58)) (-2209 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $) NIL) (($ $ (-784)) NIL)) (-4136 (((-548) $) 67)) (-1587 (($ $) 17)) (-3515 (((-877) $) 53) (($ (-576)) 39) (($ |#2|) 37) (($ (-419 (-576))) NIL)) (-3845 (((-784)) 10)) (-2127 ((|#2| $) 71)) (-2881 (((-112) $ $) 26)) (-2901 (((-112) $ $) 69)) (-2982 (($ $) 30) (($ $ $) 29)) (-2971 (($ $ $) 27)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-1018 |#1| |#2|) (-10 -8 (-15 -3515 (|#1| (-419 (-576)))) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2901 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -2098 (|#1| |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -1758 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1842 ((-419 (-576)) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -2127 (|#2| |#1|)) (-15 -3869 (|#2| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -3515 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 ((-784))) (-15 -3515 (|#1| (-576))) (-15 -3994 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 -2044 ((-112) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -2881 ((-112) |#1| |#1|))) (-1019 |#2|) (-174)) (T -1018)) +((-3845 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-784)) (-5 *1 (-1018 *3 *4)) (-4 *3 (-1019 *4))))) +(-10 -8 (-15 -3515 (|#1| (-419 (-576)))) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2901 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -2098 (|#1| |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -1758 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1842 ((-419 (-576)) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -2127 (|#2| |#1|)) (-15 -3869 (|#2| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -4071 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -3515 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 ((-784))) (-15 -3515 (|#1| (-576))) (-15 -3994 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 -2044 ((-112) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -2881 ((-112) |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1593 (((-3 (-576) "failed") $) 135 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 133 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 130)) (-2830 (((-576) $) 134 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 132 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 131)) (-3439 (((-702 (-576)) (-702 $)) 115 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 114 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 113) (((-702 |#1|) (-702 $)) 112)) (-3969 (((-3 $ "failed") $) 37)) (-1880 ((|#1| $) 103)) (-1758 (((-3 (-419 (-576)) "failed") $) 99 (|has| |#1| (-557)))) (-3113 (((-112) $) 101 (|has| |#1| (-557)))) (-1842 (((-419 (-576)) $) 100 (|has| |#1| (-557)))) (-3956 (($ |#1| |#1| |#1| |#1|) 104)) (-3994 (((-112) $) 35)) (-3869 ((|#1| $) 105)) (-3740 (($ $ $) 87 (|has| |#1| (-862)))) (-2249 (($ $ $) 88 (|has| |#1| (-862)))) (-4071 (($ (-1 |#1| |#1|) $) 118)) (-1993 (((-702 (-576)) (-1289 $)) 117 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 116 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 111) (((-702 |#1|) (-1289 $)) 110)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 96 (|has| |#1| (-374)))) (-4036 ((|#1| $) 106)) (-3098 ((|#1| $) 107)) (-1747 ((|#1| $) 108)) (-1460 (((-1142) $) 11)) (-3205 (($ $ (-657 |#1|) (-657 |#1|)) 124 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 123 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 122 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) 121 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 120 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) 119 (|has| |#1| (-526 (-1198) |#1|)))) (-2780 (($ $ |#1|) 125 (|has| |#1| (-296 |#1| |#1|)))) (-2209 (($ $ (-1 |#1| |#1|)) 129) (($ $ (-1 |#1| |#1|) (-784)) 128) (($ $) 86 (|has| |#1| (-237))) (($ $ (-784)) 84 (|has| |#1| (-237))) (($ $ (-1198)) 82 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 80 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 79 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 78 (|has| |#1| (-920 (-1198))))) (-4136 (((-548) $) 97 (|has| |#1| (-626 (-548))))) (-1587 (($ $) 109)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 74 (-2748 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576))))))) (-3414 (((-3 $ "failed") $) 98 (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2127 ((|#1| $) 102 (|has| |#1| (-1082)))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-1 |#1| |#1|)) 127) (($ $ (-1 |#1| |#1|) (-784)) 126) (($ $) 85 (|has| |#1| (-237))) (($ $ (-784)) 83 (|has| |#1| (-237))) (($ $ (-1198)) 81 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 77 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 76 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 75 (|has| |#1| (-920 (-1198))))) (-2938 (((-112) $ $) 89 (|has| |#1| (-862)))) (-2913 (((-112) $ $) 91 (|has| |#1| (-862)))) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 90 (|has| |#1| (-862)))) (-2901 (((-112) $ $) 92 (|has| |#1| (-862)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 95 (|has| |#1| (-374)))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-419 (-576))) 94 (|has| |#1| (-374))) (($ (-419 (-576)) $) 93 (|has| |#1| (-374))))) +(((-1019 |#1|) (-141) (-174)) (T -1019)) +((-1587 (*1 *1 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-3869 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-3956 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)) (-4 *2 (-1082)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-1758 (*1 *2 *1) (|partial| -12 (-4 *1 (-1019 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) +(-13 (-38 |t#1|) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-388 |t#1|) (-10 -8 (-15 -1587 ($ $)) (-15 -1747 (|t#1| $)) (-15 -3098 (|t#1| $)) (-15 -4036 (|t#1| $)) (-15 -3869 (|t#1| $)) (-15 -3956 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1880 (|t#1| $)) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1082)) (-15 -2127 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3113 ((-112) $)) (-15 -1842 ((-419 (-576)) $)) (-15 -1758 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-374)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-374)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-234 $) -2748 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2748 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) |has| |#1| (-374)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2748 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-659 #0#) |has| |#1| (-374)) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-374)) ((-661 #1=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-374)) ((-653 |#1|) . T) ((-652 #1#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) |has| |#1| (-374)) ((-730 |#1|) . T) ((-739) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-912 $ #2=(-1198)) -2748 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-918 (-1198)) |has| |#1| (-918 (-1198))) ((-920 #2#) -2748 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 #0#) |has| |#1| (-374)) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1078 #0#) |has| |#1| (-374)) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-4071 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1020 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 (|#3| (-1 |#4| |#2|) |#1|))) (-1019 |#2|) (-174) (-1019 |#4|) (-174)) (T -1020)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1019 *6)) (-5 *1 (-1020 *4 *5 *2 *6)) (-4 *4 (-1019 *5))))) +(-10 -7 (-15 -4071 (|#3| (-1 |#4| |#2|) |#1|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1880 ((|#1| $) 12)) (-1758 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3113 (((-112) $) NIL (|has| |#1| (-557)))) (-1842 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-3956 (($ |#1| |#1| |#1| |#1|) 16)) (-3994 (((-112) $) NIL)) (-3869 ((|#1| $) NIL)) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL (|has| |#1| (-374)))) (-4036 ((|#1| $) 15)) (-3098 ((|#1| $) 14)) (-1747 ((|#1| $) 13)) (-1460 (((-1142) $) NIL)) (-3205 (($ $ (-657 |#1|) (-657 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) NIL (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)))) (-2780 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2209 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237))) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-4136 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-1587 (($ $) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576))))))) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2127 ((|#1| $) NIL (|has| |#1| (-1082)))) (-2716 (($) 8 T CONST)) (-2725 (($) 10 T CONST)) (-2066 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237))) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))))) +(((-1021 |#1|) (-1019 |#1|) (-174)) (T -1021)) +NIL +(-1019 |#1|) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4284 (((-112) $ (-784)) NIL)) (-2515 (($) NIL T CONST)) (-1528 (($ $) 23)) (-2027 (($ (-657 |#1|)) 33)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-3041 (((-784) $) 26)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3107 ((|#1| $) 28)) (-2701 (($ |#1| $) 17)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2727 ((|#1| $) 27)) (-2184 ((|#1| $) 22)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3513 ((|#1| |#1| $) 16)) (-1368 (((-112) $) 18)) (-3340 (($) NIL)) (-3608 ((|#1| $) 21)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) NIL)) (-3292 ((|#1| $) 30)) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1022 |#1|) (-13 (-1017 |#1|) (-10 -8 (-15 -2027 ($ (-657 |#1|))))) (-1122)) (T -1022)) +((-2027 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-1022 *3))))) +(-13 (-1017 |#1|) (-10 -8 (-15 -2027 ($ (-657 |#1|))))) +((-1866 (($ $) 12)) (-3856 (($ $ (-576)) 13))) +(((-1023 |#1|) (-10 -8 (-15 -1866 (|#1| |#1|)) (-15 -3856 (|#1| |#1| (-576)))) (-1024)) (T -1023)) +NIL +(-10 -8 (-15 -1866 (|#1| |#1|)) (-15 -3856 (|#1| |#1| (-576)))) +((-1866 (($ $) 6)) (-3856 (($ $ (-576)) 7)) (** (($ $ (-419 (-576))) 8))) +(((-1024) (-141)) (T -1024)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-419 (-576))))) (-3856 (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-576)))) (-1866 (*1 *1 *1) (-4 *1 (-1024)))) +(-13 (-10 -8 (-15 -1866 ($ $)) (-15 -3856 ($ $ (-576))) (-15 ** ($ $ (-419 (-576)))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2270 (((-2 (|:| |num| (-1289 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-2361 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3286 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3011 (((-702 (-419 |#2|)) (-1289 $)) NIL) (((-702 (-419 |#2|))) NIL)) (-2256 (((-419 |#2|) $) NIL)) (-2266 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4215 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3210 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2148 (((-784)) NIL (|has| (-419 |#2|) (-379)))) (-3534 (((-112)) NIL)) (-1603 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1060 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| (-419 |#2|) (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1060 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-4093 (($ (-1289 (-419 |#2|)) (-1289 $)) NIL) (($ (-1289 (-419 |#2|))) 79) (($ (-1289 |#2|) |#2|) NIL)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-3355 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1584 (((-702 (-419 |#2|)) $ (-1289 $)) NIL) (((-702 (-419 |#2|)) $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-419 |#2|))) (|:| |vec| (-1289 (-419 |#2|)))) (-702 $) (-1289 $)) NIL) (((-702 (-419 |#2|)) (-702 $)) NIL)) (-4022 (((-1289 $) (-1289 $)) NIL)) (-3662 (($ |#3|) 73) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-3969 (((-3 $ "failed") $) NIL)) (-2390 (((-657 (-657 |#1|))) NIL (|has| |#1| (-379)))) (-1972 (((-112) |#1| |#1|) NIL)) (-4343 (((-941)) NIL)) (-1876 (($) NIL (|has| (-419 |#2|) (-379)))) (-2022 (((-112)) NIL)) (-2629 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-3369 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| (-419 |#2|) (-374)))) (-1445 (($ $) NIL)) (-2846 (($) NIL (|has| (-419 |#2|) (-360)))) (-2798 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-4266 (($ $ (-784)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-4009 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-2650 (((-941) $) NIL (|has| (-419 |#2|) (-360))) (((-846 (-941)) $) NIL (|has| (-419 |#2|) (-360)))) (-3994 (((-112) $) NIL)) (-3728 (((-784)) NIL)) (-2659 (((-1289 $) (-1289 $)) NIL)) (-3869 (((-419 |#2|) $) NIL)) (-3878 (((-657 (-972 |#1|)) (-1198)) NIL (|has| |#1| (-374)))) (-1955 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3604 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-2327 (((-941) $) NIL (|has| (-419 |#2|) (-379)))) (-3647 ((|#3| $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-419 |#2|))) (|:| |vec| (-1289 (-419 |#2|)))) (-1289 $) $) NIL) (((-702 (-419 |#2|)) (-1289 $)) NIL)) (-3388 (($ (-657 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1708 (((-1180) $) NIL)) (-4332 (((-702 (-419 |#2|))) 57)) (-1740 (((-702 (-419 |#2|))) 56)) (-2098 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2248 (($ (-1289 |#2|) |#2|) 80)) (-3914 (((-702 (-419 |#2|))) 55)) (-4346 (((-702 (-419 |#2|))) 54)) (-3281 (((-2 (|:| |num| (-702 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-4393 (((-2 (|:| |num| (-1289 |#2|)) (|:| |den| |#2|)) $) 86)) (-3317 (((-1289 $)) 51)) (-3929 (((-1289 $)) 50)) (-1384 (((-112) $) NIL)) (-2122 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1679 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-3146 (($ (-941)) NIL (|has| (-419 |#2|) (-379)))) (-2972 (((-3 |#2| "failed")) 70)) (-1460 (((-1142) $) NIL)) (-1762 (((-784)) NIL)) (-4083 (($) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| (-419 |#2|) (-374)))) (-3431 (($ (-657 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1856 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3409 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4164 (((-784) $) NIL (|has| (-419 |#2|) (-374)))) (-2780 ((|#1| $ |#1| |#1|) NIL)) (-4099 (((-3 |#2| "failed")) 68)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1465 (((-419 |#2|) (-1289 $)) NIL) (((-419 |#2|)) 47)) (-2495 (((-784) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-784) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2209 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-784)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-784)) NIL (-2748 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2748 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4301 (((-702 (-419 |#2|)) (-1289 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-2005 ((|#3|) 58)) (-4170 (($) NIL (|has| (-419 |#2|) (-360)))) (-3806 (((-1289 (-419 |#2|)) $ (-1289 $)) NIL) (((-702 (-419 |#2|)) (-1289 $) (-1289 $)) NIL) (((-1289 (-419 |#2|)) $) 81) (((-702 (-419 |#2|)) (-1289 $)) NIL)) (-4136 (((-1289 (-419 |#2|)) $) NIL) (($ (-1289 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| (-419 |#2|) (-360)))) (-1551 (((-1289 $) (-1289 $)) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2748 (|has| (-419 |#2|) (-1060 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3414 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-2948 ((|#3| $) NIL)) (-3845 (((-784)) NIL T CONST)) (-1478 (((-112)) 65)) (-3814 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) NIL)) (-2607 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-4079 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3934 (((-112)) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-784)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-784)) NIL (-2748 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2748 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) +(((-1025 |#1| |#2| |#3| |#4| |#5|) (-353 |#1| |#2| |#3|) (-1243) (-1265 |#1|) (-1265 (-419 |#2|)) (-419 |#2|) (-784)) (T -1025)) NIL (-353 |#1| |#2| |#3|) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2803 (((-656 (-576)) $) 73)) (-3915 (($ (-656 (-576))) 81)) (-2628 (((-576) $) 48 (|has| (-576) (-317)))) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL (|has| (-576) (-832)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) 60) (((-3 (-1197) "failed") $) NIL (|has| (-576) (-1059 (-1197)))) (((-3 (-419 (-576)) "failed") $) 57 (|has| (-576) (-1059 (-576)))) (((-3 (-576) "failed") $) 60 (|has| (-576) (-1059 (-576))))) (-2317 (((-576) $) NIL) (((-1197) $) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) NIL (|has| (-576) (-1059 (-576)))) (((-576) $) NIL (|has| (-576) (-1059 (-576))))) (-1895 (($ $ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-4370 (($) NIL (|has| (-576) (-557)))) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-4253 (((-656 (-576)) $) 79)) (-2279 (((-112) $) NIL (|has| (-576) (-832)))) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (|has| (-576) (-901 (-576)))) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (|has| (-576) (-901 (-390))))) (-2486 (((-112) $) NIL)) (-2252 (($ $) NIL)) (-2687 (((-576) $) 45)) (-3552 (((-3 $ "failed") $) NIL (|has| (-576) (-1173)))) (-3323 (((-112) $) NIL (|has| (-576) (-832)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2907 (($ $ $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| (-576) (-861)))) (-2423 (($ (-1 (-576) (-576)) $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL)) (-3650 (($) NIL (|has| (-576) (-1173)) CONST)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2701 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) 50)) (-4318 (((-1178 (-576)) $) 78)) (-1535 (($ (-656 (-576)) (-656 (-576))) 82)) (-3058 (((-576) $) 64 (|has| (-576) (-557)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| (-576) (-928)))) (-1452 (((-430 $) $) NIL)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2145 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1197)) (-656 (-576))) NIL (|has| (-576) (-526 (-1197) (-576)))) (($ $ (-1197) (-576)) NIL (|has| (-576) (-526 (-1197) (-576))))) (-2812 (((-783) $) NIL)) (-4369 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4107 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) 15 (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3591 (($ $) NIL)) (-2697 (((-576) $) 47)) (-1813 (((-656 (-576)) $) 80)) (-1556 (((-907 (-576)) $) NIL (|has| (-576) (-626 (-907 (-576))))) (((-907 (-390)) $) NIL (|has| (-576) (-626 (-907 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1043))) (((-227) $) NIL (|has| (-576) (-1043)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-928))))) (-4113 (((-876) $) 107) (($ (-576)) 51) (($ $) NIL) (($ (-419 (-576))) 27) (($ (-576)) 51) (($ (-1197)) NIL (|has| (-576) (-1059 (-1197)))) (((-419 (-576)) $) 25)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| (-576) (-928))) (|has| (-576) (-146))))) (-2910 (((-783)) 13 T CONST)) (-4081 (((-576) $) 62 (|has| (-576) (-557)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| (-576) (-832)))) (-4313 (($) 14 T CONST)) (-4322 (($) 17 T CONST)) (-3157 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1197)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| (-576) (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| (-576) (-919 (-1197)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3995 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3975 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3939 (((-112) $ $) 21)) (-3984 (((-112) $ $) NIL (|has| (-576) (-861)))) (-3963 (((-112) $ $) 40 (|has| (-576) (-861)))) (-4047 (($ $ $) 36) (($ (-576) (-576)) 38)) (-4037 (($ $) 23) (($ $ $) 30)) (-4026 (($ $ $) 28)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ $ $) 34) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) 32) (($ $ (-576)) NIL))) -(((-1025 |#1|) (-13 (-1013 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -2701 ((-419 (-576)) $)) (-15 -2803 ((-656 (-576)) $)) (-15 -4318 ((-1178 (-576)) $)) (-15 -4253 ((-656 (-576)) $)) (-15 -1813 ((-656 (-576)) $)) (-15 -3915 ($ (-656 (-576)))) (-15 -1535 ($ (-656 (-576)) (-656 (-576)))))) (-576)) (T -1025)) -((-2701 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-4318 (*1 *2 *1) (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-4253 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-3915 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) (-1535 (*1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) -(-13 (-1013 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -2701 ((-419 (-576)) $)) (-15 -2803 ((-656 (-576)) $)) (-15 -4318 ((-1178 (-576)) $)) (-15 -4253 ((-656 (-576)) $)) (-15 -1813 ((-656 (-576)) $)) (-15 -3915 ($ (-656 (-576)))) (-15 -1535 ($ (-656 (-576)) (-656 (-576)))))) -((-1518 (((-52) (-419 (-576)) (-576)) 9))) -(((-1026) (-10 -7 (-15 -1518 ((-52) (-419 (-576)) (-576))))) (T -1026)) -((-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) (-5 *1 (-1026))))) -(-10 -7 (-15 -1518 ((-52) (-419 (-576)) (-576)))) -((-2201 (((-576)) 23)) (-2189 (((-576)) 28)) (-3381 (((-1293) (-576)) 26)) (-3418 (((-576) (-576)) 29) (((-576)) 22))) -(((-1027) (-10 -7 (-15 -3418 ((-576))) (-15 -2201 ((-576))) (-15 -3418 ((-576) (-576))) (-15 -3381 ((-1293) (-576))) (-15 -2189 ((-576))))) (T -1027)) -((-2189 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1027)))) (-3418 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) (-2201 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) (-3418 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027))))) -(-10 -7 (-15 -3418 ((-576))) (-15 -2201 ((-576))) (-15 -3418 ((-576) (-576))) (-15 -3381 ((-1293) (-576))) (-15 -2189 ((-576)))) -((-4437 (((-430 |#1|) |#1|) 43)) (-1452 (((-430 |#1|) |#1|) 41))) -(((-1028 |#1|) (-10 -7 (-15 -1452 ((-430 |#1|) |#1|)) (-15 -4437 ((-430 |#1|) |#1|))) (-1264 (-419 (-576)))) (T -1028)) -((-4437 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) (-4 *3 (-1264 (-419 (-576)))))) (-1452 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) (-4 *3 (-1264 (-419 (-576))))))) -(-10 -7 (-15 -1452 ((-430 |#1|) |#1|)) (-15 -4437 ((-430 |#1|) |#1|))) -((-3526 (((-3 (-419 (-576)) "failed") |#1|) 15)) (-4063 (((-112) |#1|) 14)) (-1400 (((-419 (-576)) |#1|) 10))) -(((-1029 |#1|) (-10 -7 (-15 -1400 ((-419 (-576)) |#1|)) (-15 -4063 ((-112) |#1|)) (-15 -3526 ((-3 (-419 (-576)) "failed") |#1|))) (-1059 (-419 (-576)))) (T -1029)) -((-3526 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2)))) (-4063 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1029 *3)) (-4 *3 (-1059 (-419 (-576)))))) (-1400 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2))))) -(-10 -7 (-15 -1400 ((-419 (-576)) |#1|)) (-15 -4063 ((-112) |#1|)) (-15 -3526 ((-3 (-419 (-576)) "failed") |#1|))) -((-4268 ((|#2| $ "value" |#2|) 12)) (-4369 ((|#2| $ "value") 10)) (-4295 (((-112) $ $) 18))) -(((-1030 |#1| |#2|) (-10 -8 (-15 -4268 (|#2| |#1| "value" |#2|)) (-15 -4295 ((-112) |#1| |#1|)) (-15 -4369 (|#2| |#1| "value"))) (-1031 |#2|) (-1238)) (T -1030)) -NIL -(-10 -8 (-15 -4268 (|#2| |#1| "value" |#2|)) (-15 -4295 ((-112) |#1| |#1|)) (-15 -4369 (|#2| |#1| "value"))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1690 ((|#1| $) 49)) (-4234 (((-112) $ (-783)) 8)) (-4261 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3170 (($) 7 T CONST)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) 51)) (-1878 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-4186 (((-656 |#1|) $) 46)) (-3211 (((-112) $) 50)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ "value") 48)) (-2027 (((-576) $ $) 45)) (-2974 (((-112) $) 47)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) 52)) (-4295 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-1031 |#1|) (-141) (-1238)) (T -1031)) -((-1549 (*1 *2 *1) (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3)))) (-3065 (*1 *2 *1) (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3)))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-1690 (*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3)))) (-2027 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-576)))) (-4295 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-1878 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4465)) (-4 *1 (-1031 *3)) (-4 *3 (-1238)))) (-4268 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4465)) (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-4261 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1031 *2)) (-4 *2 (-1238))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -1549 ((-656 $) $)) (-15 -3065 ((-656 $) $)) (-15 -3211 ((-112) $)) (-15 -1690 (|t#1| $)) (-15 -4369 (|t#1| $ "value")) (-15 -2974 ((-112) $)) (-15 -4186 ((-656 |t#1|) $)) (-15 -2027 ((-576) $ $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -4295 ((-112) $ $)) (-15 -1878 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4465)) (PROGN (-15 -2184 ($ $ (-656 $))) (-15 -4268 (|t#1| $ "value" |t#1|)) (-15 -4261 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-1462 (($ $) 9) (($ $ (-940)) 49) (($ (-419 (-576))) 13) (($ (-576)) 15)) (-2467 (((-3 $ "failed") (-1193 $) (-940) (-876)) 24) (((-3 $ "failed") (-1193 $) (-940)) 32)) (-4005 (($ $ (-576)) 58)) (-2910 (((-783)) 18)) (-2820 (((-656 $) (-1193 $)) NIL) (((-656 $) (-1193 (-419 (-576)))) 63) (((-656 $) (-1193 (-576))) 68) (((-656 $) (-971 $)) 72) (((-656 $) (-971 (-419 (-576)))) 76) (((-656 $) (-971 (-576))) 80)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 53))) -(((-1032 |#1|) (-10 -8 (-15 -1462 (|#1| (-576))) (-15 -1462 (|#1| (-419 (-576)))) (-15 -1462 (|#1| |#1| (-940))) (-15 -2820 ((-656 |#1|) (-971 (-576)))) (-15 -2820 ((-656 |#1|) (-971 (-419 (-576))))) (-15 -2820 ((-656 |#1|) (-971 |#1|))) (-15 -2820 ((-656 |#1|) (-1193 (-576)))) (-15 -2820 ((-656 |#1|) (-1193 (-419 (-576))))) (-15 -2820 ((-656 |#1|) (-1193 |#1|))) (-15 -2467 ((-3 |#1| "failed") (-1193 |#1|) (-940))) (-15 -2467 ((-3 |#1| "failed") (-1193 |#1|) (-940) (-876))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -4005 (|#1| |#1| (-576))) (-15 -1462 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2910 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) (-1033)) (T -1032)) -((-2910 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1032 *3)) (-4 *3 (-1033))))) -(-10 -8 (-15 -1462 (|#1| (-576))) (-15 -1462 (|#1| (-419 (-576)))) (-15 -1462 (|#1| |#1| (-940))) (-15 -2820 ((-656 |#1|) (-971 (-576)))) (-15 -2820 ((-656 |#1|) (-971 (-419 (-576))))) (-15 -2820 ((-656 |#1|) (-971 |#1|))) (-15 -2820 ((-656 |#1|) (-1193 (-576)))) (-15 -2820 ((-656 |#1|) (-1193 (-419 (-576))))) (-15 -2820 ((-656 |#1|) (-1193 |#1|))) (-15 -2467 ((-3 |#1| "failed") (-1193 |#1|) (-940))) (-15 -2467 ((-3 |#1| "failed") (-1193 |#1|) (-940) (-876))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -4005 (|#1| |#1| (-576))) (-15 -1462 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2910 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 103)) (-2390 (($ $) 104)) (-3302 (((-112) $) 106)) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 123)) (-3589 (((-430 $) $) 124)) (-1462 (($ $) 87) (($ $ (-940)) 73) (($ (-419 (-576))) 72) (($ (-576)) 71)) (-4386 (((-112) $ $) 114)) (-1527 (((-576) $) 140)) (-3170 (($) 18 T CONST)) (-2467 (((-3 $ "failed") (-1193 $) (-940) (-876)) 81) (((-3 $ "failed") (-1193 $) (-940)) 80)) (-2982 (((-3 (-576) "failed") $) 100 (|has| (-419 (-576)) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) 95)) (-2317 (((-576) $) 99 (|has| (-419 (-576)) (-1059 (-576)))) (((-419 (-576)) $) 97 (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-419 (-576)) $) 96)) (-3383 (($ $ (-876)) 70)) (-3269 (($ $ (-876)) 69)) (-1895 (($ $ $) 118)) (-1851 (((-3 $ "failed") $) 37)) (-1908 (($ $ $) 117)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 112)) (-2171 (((-112) $) 125)) (-2279 (((-112) $) 138)) (-2486 (((-112) $) 35)) (-4005 (($ $ (-576)) 86)) (-3323 (((-112) $) 139)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 121)) (-2907 (($ $ $) 132)) (-3777 (($ $ $) 133)) (-2841 (((-3 (-1193 $) "failed") $) 82)) (-1982 (((-3 (-876) "failed") $) 84)) (-2180 (((-3 (-1193 $) "failed") $) 83)) (-3076 (($ (-656 $)) 110) (($ $ $) 109)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 126)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 111)) (-3115 (($ (-656 $)) 108) (($ $ $) 107)) (-1452 (((-430 $) $) 122)) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 119)) (-1946 (((-3 $ "failed") $ $) 102)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 113)) (-2812 (((-783) $) 115)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 116)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 130) (($ $) 101) (($ (-419 (-576))) 94) (($ (-576)) 93) (($ (-419 (-576))) 90)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 105)) (-2642 (((-419 (-576)) $ $) 68)) (-2820 (((-656 $) (-1193 $)) 79) (((-656 $) (-1193 (-419 (-576)))) 78) (((-656 $) (-1193 (-576))) 77) (((-656 $) (-971 $)) 76) (((-656 $) (-971 (-419 (-576)))) 75) (((-656 $) (-971 (-576))) 74)) (-2366 (($ $) 141)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3995 (((-112) $ $) 134)) (-3975 (((-112) $ $) 136)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 135)) (-3963 (((-112) $ $) 137)) (-4047 (($ $ $) 131)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 127) (($ $ (-419 (-576))) 85)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 129) (($ $ (-419 (-576))) 128) (($ (-576) $) 92) (($ $ (-576)) 91) (($ (-419 (-576)) $) 89) (($ $ (-419 (-576))) 88))) -(((-1033) (-141)) (T -1033)) -((-1462 (*1 *1 *1) (-4 *1 (-1033))) (-1982 (*1 *2 *1) (|partial| -12 (-4 *1 (-1033)) (-5 *2 (-876)))) (-2180 (*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033)))) (-2841 (*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033)))) (-2467 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-5 *4 (-876)) (-4 *1 (-1033)))) (-2467 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-4 *1 (-1033)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-1193 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) (-1462 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-940)))) (-1462 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1033)))) (-1462 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1033)))) (-3383 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876)))) (-3269 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876)))) (-2642 (*1 *2 *1 *1) (-12 (-4 *1 (-1033)) (-5 *2 (-419 (-576)))))) -(-13 (-148) (-860) (-174) (-374) (-423 (-419 (-576))) (-38 (-576)) (-38 (-419 (-576))) (-1023) (-10 -8 (-15 -1982 ((-3 (-876) "failed") $)) (-15 -2180 ((-3 (-1193 $) "failed") $)) (-15 -2841 ((-3 (-1193 $) "failed") $)) (-15 -2467 ((-3 $ "failed") (-1193 $) (-940) (-876))) (-15 -2467 ((-3 $ "failed") (-1193 $) (-940))) (-15 -2820 ((-656 $) (-1193 $))) (-15 -2820 ((-656 $) (-1193 (-419 (-576))))) (-15 -2820 ((-656 $) (-1193 (-576)))) (-15 -2820 ((-656 $) (-971 $))) (-15 -2820 ((-656 $) (-971 (-419 (-576))))) (-15 -2820 ((-656 $) (-971 (-576)))) (-15 -1462 ($ $ (-940))) (-15 -1462 ($ $)) (-15 -1462 ($ (-419 (-576)))) (-15 -1462 ($ (-576))) (-15 -3383 ($ $ (-876))) (-15 -3269 ($ $ (-876))) (-15 -2642 ((-419 (-576)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 #1=(-576)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-423 (-419 (-576))) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 #1#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 #1#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-939) . T) ((-1023) . T) ((-1059 (-419 (-576))) . T) ((-1059 (-576)) |has| (-419 (-576)) (-1059 (-576))) ((-1072 #0#) . T) ((-1072 #1#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 #1#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-2123 (((-2 (|:| |ans| |#2|) (|:| -2113 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1034 |#1| |#2|) (-10 -7 (-15 -2123 ((-2 (|:| |ans| |#2|) (|:| -2113 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-27) (-442 |#1|))) (T -1034)) -((-2123 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1197)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4291 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1223) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2113 *4) (|:| |sol?| (-112)))) (-5 *1 (-1034 *8 *4))))) -(-10 -7 (-15 -2123 ((-2 (|:| |ans| |#2|) (|:| -2113 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2733 (((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1035 |#1| |#2|) (-10 -7 (-15 -2733 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1059 (-576)) (-651 (-576))) (-13 (-1223) (-27) (-442 |#1|))) (T -1035)) -((-2733 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1197)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4291 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1223) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-656 *4)) (-5 *1 (-1035 *8 *4))))) -(-10 -7 (-15 -2733 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4291 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3493 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3379 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)) 38)) (-3246 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -4245 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 69)) (-2688 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|)) 74))) -(((-1036 |#1| |#2|) (-10 -7 (-15 -3246 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -4245 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2688 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -3493 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3379 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) (-13 (-374) (-148) (-1059 (-576))) (-1264 |#1|)) (T -1036)) -((-3493 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1264 *6)) (-4 *6 (-13 (-374) (-148) (-1059 *4))) (-5 *4 (-576)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3379 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1036 *6 *3)))) (-2688 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5)))) (-3246 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -4245 *6))) (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -3246 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -4245 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2688 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -3493 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3379 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) -((-3149 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -4245 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22)) (-4379 (((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34))) -(((-1037 |#1| |#2|) (-10 -7 (-15 -3149 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -4245 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -4379 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-374) (-148) (-1059 (-576))) (-1264 |#1|)) (T -1037)) -((-4379 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1037 *4 *5)) (-5 *3 (-419 *5)))) (-3149 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -4245 *6))) (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -3149 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -4245 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -4379 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) -((-3782 (((-1 |#1|) (-656 (-2 (|:| -1690 |#1|) (|:| -2028 (-576))))) 34)) (-2782 (((-1 |#1|) (-1123 |#1|)) 42)) (-2878 (((-1 |#1|) (-1288 |#1|) (-1288 (-576)) (-576)) 31))) -(((-1038 |#1|) (-10 -7 (-15 -2782 ((-1 |#1|) (-1123 |#1|))) (-15 -3782 ((-1 |#1|) (-656 (-2 (|:| -1690 |#1|) (|:| -2028 (-576)))))) (-15 -2878 ((-1 |#1|) (-1288 |#1|) (-1288 (-576)) (-576)))) (-1121)) (T -1038)) -((-2878 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1288 *6)) (-5 *4 (-1288 (-576))) (-5 *5 (-576)) (-4 *6 (-1121)) (-5 *2 (-1 *6)) (-5 *1 (-1038 *6)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1690 *4) (|:| -2028 (-576))))) (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-1123 *4)) (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4))))) -(-10 -7 (-15 -2782 ((-1 |#1|) (-1123 |#1|))) (-15 -3782 ((-1 |#1|) (-656 (-2 (|:| -1690 |#1|) (|:| -2028 (-576)))))) (-15 -2878 ((-1 |#1|) (-1288 |#1|) (-1288 (-576)) (-576)))) -((-3359 (((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3359 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-374) (-1264 |#1|) (-1264 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-13 (-379) (-374))) (T -1039)) -((-3359 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) (-4 *7 (-1264 *6)) (-4 *4 (-1264 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) (-5 *1 (-1039 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3359 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-1957 (((-112) $ $) NIL)) (-1401 (((-1156) $) 9)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4159 (((-1156) $) 11)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1040) (-13 (-1104) (-10 -8 (-15 -1401 ((-1156) $)) (-15 -4159 ((-1156) $))))) (T -1040)) -((-1401 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040))))) -(-13 (-1104) (-10 -8 (-15 -1401 ((-1156) $)) (-15 -4159 ((-1156) $)))) -((-1927 (((-3 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) "failed") |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) 32) (((-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-419 (-576))) 29)) (-2781 (((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-419 (-576))) 34) (((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-419 (-576))) 30) (((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) 33) (((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1|) 28)) (-1814 (((-656 (-419 (-576))) (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) 20)) (-2199 (((-419 (-576)) (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) 17))) -(((-1041 |#1|) (-10 -7 (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1|)) (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-419 (-576)))) (-15 -1927 ((-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-419 (-576)))) (-15 -1927 ((-3 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) "failed") |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-15 -2199 ((-419 (-576)) (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-15 -1814 ((-656 (-419 (-576))) (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))))) (-1264 (-576))) (T -1041)) -((-1814 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1041 *4)) (-4 *4 (-1264 (-576))))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) (-5 *2 (-419 (-576))) (-5 *1 (-1041 *4)) (-4 *4 (-1264 (-576))))) (-1927 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) (-1927 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) (-2781 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2102 *5) (|:| -2113 *5)))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-2 (|:| -2102 *5) (|:| -2113 *5))))) (-2781 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-419 (-576))))) (-2781 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))))) (-2781 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576)))))) -(-10 -7 (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1|)) (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-419 (-576)))) (-15 -1927 ((-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-419 (-576)))) (-15 -1927 ((-3 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) "failed") |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-15 -2199 ((-419 (-576)) (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-15 -1814 ((-656 (-419 (-576))) (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))))) -((-1927 (((-3 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) "failed") |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) 35) (((-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-419 (-576))) 32)) (-2781 (((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-419 (-576))) 30) (((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-419 (-576))) 26) (((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) 28) (((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1|) 24))) -(((-1042 |#1|) (-10 -7 (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1|)) (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-419 (-576)))) (-15 -1927 ((-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-419 (-576)))) (-15 -1927 ((-3 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) "failed") |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))))) (-1264 (-419 (-576)))) (T -1042)) -((-1927 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))))) (-1927 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *4)))) (-2781 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2102 *5) (|:| -2113 *5)))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *5)) (-5 *4 (-2 (|:| -2102 *5) (|:| -2113 *5))))) (-2781 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2102 *4) (|:| -2113 *4)))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *4)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))) (-5 *4 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))))) (-2781 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576))))))) -(-10 -7 (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1|)) (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -2781 ((-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-419 (-576)))) (-15 -1927 ((-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-419 (-576)))) (-15 -1927 ((-3 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) "failed") |#1| (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))) (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))))) -((-1556 (((-227) $) 6) (((-390) $) 9))) -(((-1043) (-141)) (T -1043)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-4053 (((-657 (-576)) $) 73)) (-4267 (($ (-657 (-576))) 81)) (-2923 (((-576) $) 48 (|has| (-576) (-317)))) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL (|has| (-576) (-833)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) 60) (((-3 (-1198) "failed") $) NIL (|has| (-576) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) 57 (|has| (-576) (-1060 (-576)))) (((-3 (-576) "failed") $) 60 (|has| (-576) (-1060 (-576))))) (-2830 (((-576) $) NIL) (((-1198) $) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-576) (-1060 (-576)))) (((-576) $) NIL (|has| (-576) (-1060 (-576))))) (-3355 (($ $ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1876 (($) NIL (|has| (-576) (-557)))) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-1356 (((-657 (-576)) $) 79)) (-3810 (((-112) $) NIL (|has| (-576) (-833)))) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-576) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-576) (-902 (-390))))) (-3994 (((-112) $) NIL)) (-3502 (($ $) NIL)) (-1590 (((-576) $) 45)) (-1955 (((-3 $ "failed") $) NIL (|has| (-576) (-1174)))) (-3517 (((-112) $) NIL (|has| (-576) (-833)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3740 (($ $ $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| (-576) (-862)))) (-4071 (($ (-1 (-576) (-576)) $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL)) (-1679 (($) NIL (|has| (-576) (-1174)) CONST)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2440 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) 50)) (-3851 (((-1179 (-576)) $) 78)) (-3998 (($ (-657 (-576)) (-657 (-576))) 82)) (-2681 (((-576) $) 64 (|has| (-576) (-557)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-1856 (((-430 $) $) NIL)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3205 (($ $ (-657 (-576)) (-657 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-1198)) (-657 (-576))) NIL (|has| (-576) (-526 (-1198) (-576)))) (($ $ (-1198) (-576)) NIL (|has| (-576) (-526 (-1198) (-576))))) (-4164 (((-784) $) NIL)) (-2780 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2209 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) 15 (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-4226 (($ $) NIL)) (-1602 (((-576) $) 47)) (-1674 (((-657 (-576)) $) 80)) (-4136 (((-908 (-576)) $) NIL (|has| (-576) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-576) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1044))) (((-227) $) NIL (|has| (-576) (-1044)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-929))))) (-3515 (((-877) $) 107) (($ (-576)) 51) (($ $) NIL) (($ (-419 (-576))) 27) (($ (-576)) 51) (($ (-1198)) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) 25)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| (-576) (-929))) (|has| (-576) (-146))))) (-3845 (((-784)) 13 T CONST)) (-2140 (((-576) $) 62 (|has| (-576) (-557)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2127 (($ $) NIL (|has| (-576) (-833)))) (-2716 (($) 14 T CONST)) (-2725 (($) 17 T CONST)) (-2066 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-2938 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2913 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2881 (((-112) $ $) 21)) (-2925 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2901 (((-112) $ $) 40 (|has| (-576) (-862)))) (-2995 (($ $ $) 36) (($ (-576) (-576)) 38)) (-2982 (($ $) 23) (($ $ $) 30)) (-2971 (($ $ $) 28)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 32) (($ $ $) 34) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) 32) (($ $ (-576)) NIL))) +(((-1026 |#1|) (-13 (-1014 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -2440 ((-419 (-576)) $)) (-15 -4053 ((-657 (-576)) $)) (-15 -3851 ((-1179 (-576)) $)) (-15 -1356 ((-657 (-576)) $)) (-15 -1674 ((-657 (-576)) $)) (-15 -4267 ($ (-657 (-576)))) (-15 -3998 ($ (-657 (-576)) (-657 (-576)))))) (-576)) (T -1026)) +((-2440 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-1179 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) (-1674 (*1 *2 *1) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) (-4267 (*1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) (-3998 (*1 *1 *2 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) +(-13 (-1014 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -2440 ((-419 (-576)) $)) (-15 -4053 ((-657 (-576)) $)) (-15 -3851 ((-1179 (-576)) $)) (-15 -1356 ((-657 (-576)) $)) (-15 -1674 ((-657 (-576)) $)) (-15 -4267 ($ (-657 (-576)))) (-15 -3998 ($ (-657 (-576)) (-657 (-576)))))) +((-3842 (((-52) (-419 (-576)) (-576)) 9))) +(((-1027) (-10 -7 (-15 -3842 ((-52) (-419 (-576)) (-576))))) (T -1027)) +((-3842 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) (-5 *1 (-1027))))) +(-10 -7 (-15 -3842 ((-52) (-419 (-576)) (-576)))) +((-2148 (((-576)) 23)) (-4184 (((-576)) 28)) (-2853 (((-1294) (-576)) 26)) (-3149 (((-576) (-576)) 29) (((-576)) 22))) +(((-1028) (-10 -7 (-15 -3149 ((-576))) (-15 -2148 ((-576))) (-15 -3149 ((-576) (-576))) (-15 -2853 ((-1294) (-576))) (-15 -4184 ((-576))))) (T -1028)) +((-4184 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1028)))) (-3149 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028)))) (-2148 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028)))) (-3149 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028))))) +(-10 -7 (-15 -3149 ((-576))) (-15 -2148 ((-576))) (-15 -3149 ((-576) (-576))) (-15 -2853 ((-1294) (-576))) (-15 -4184 ((-576)))) +((-2556 (((-430 |#1|) |#1|) 43)) (-1856 (((-430 |#1|) |#1|) 41))) +(((-1029 |#1|) (-10 -7 (-15 -1856 ((-430 |#1|) |#1|)) (-15 -2556 ((-430 |#1|) |#1|))) (-1265 (-419 (-576)))) (T -1029)) +((-2556 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1029 *3)) (-4 *3 (-1265 (-419 (-576)))))) (-1856 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1029 *3)) (-4 *3 (-1265 (-419 (-576))))))) +(-10 -7 (-15 -1856 ((-430 |#1|) |#1|)) (-15 -2556 ((-430 |#1|) |#1|))) +((-1758 (((-3 (-419 (-576)) "failed") |#1|) 15)) (-3113 (((-112) |#1|) 14)) (-1842 (((-419 (-576)) |#1|) 10))) +(((-1030 |#1|) (-10 -7 (-15 -1842 ((-419 (-576)) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -1758 ((-3 (-419 (-576)) "failed") |#1|))) (-1060 (-419 (-576)))) (T -1030)) +((-1758 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1030 *3)) (-4 *3 (-1060 *2)))) (-3113 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1030 *3)) (-4 *3 (-1060 (-419 (-576)))))) (-1842 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1030 *3)) (-4 *3 (-1060 *2))))) +(-10 -7 (-15 -1842 ((-419 (-576)) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -1758 ((-3 (-419 (-576)) "failed") |#1|))) +((-3719 ((|#2| $ "value" |#2|) 12)) (-2780 ((|#2| $ "value") 10)) (-3631 (((-112) $ $) 18))) +(((-1031 |#1| |#2|) (-10 -8 (-15 -3719 (|#2| |#1| "value" |#2|)) (-15 -3631 ((-112) |#1| |#1|)) (-15 -2780 (|#2| |#1| "value"))) (-1032 |#2|) (-1239)) (T -1031)) +NIL +(-10 -8 (-15 -3719 (|#2| |#1| "value" |#2|)) (-15 -3631 ((-112) |#1| |#1|)) (-15 -2780 (|#2| |#1| "value"))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3037 ((|#1| $) 49)) (-4284 (((-112) $ (-784)) 8)) (-1439 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-2515 (($) 7 T CONST)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) 51)) (-4257 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-2397 (((-657 |#1|) $) 46)) (-1743 (((-112) $) 50)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ "value") 48)) (-3064 (((-576) $ $) 45)) (-4392 (((-112) $) 47)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) 52)) (-3631 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-1032 |#1|) (-141) (-1239)) (T -1032)) +((-4160 (*1 *2 *1) (-12 (-4 *3 (-1239)) (-5 *2 (-657 *1)) (-4 *1 (-1032 *3)))) (-2754 (*1 *2 *1) (-12 (-4 *3 (-1239)) (-5 *2 (-657 *1)) (-4 *1 (-1032 *3)))) (-1743 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1239)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1032 *2)) (-4 *2 (-1239)))) (-4392 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-657 *3)))) (-3064 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-576)))) (-3631 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-112)))) (-4257 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-112)))) (-4140 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *1)) (|has| *1 (-6 -4467)) (-4 *1 (-1032 *3)) (-4 *3 (-1239)))) (-3719 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4467)) (-4 *1 (-1032 *2)) (-4 *2 (-1239)))) (-1439 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1032 *2)) (-4 *2 (-1239))))) +(-13 (-501 |t#1|) (-10 -8 (-15 -4160 ((-657 $) $)) (-15 -2754 ((-657 $) $)) (-15 -1743 ((-112) $)) (-15 -3037 (|t#1| $)) (-15 -2780 (|t#1| $ "value")) (-15 -4392 ((-112) $)) (-15 -2397 ((-657 |t#1|) $)) (-15 -3064 ((-576) $ $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -3631 ((-112) $ $)) (-15 -4257 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4467)) (PROGN (-15 -4140 ($ $ (-657 $))) (-15 -3719 (|t#1| $ "value" |t#1|)) (-15 -1439 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-1866 (($ $) 9) (($ $ (-941)) 49) (($ (-419 (-576))) 13) (($ (-576)) 15)) (-1913 (((-3 $ "failed") (-1194 $) (-941) (-877)) 24) (((-3 $ "failed") (-1194 $) (-941)) 32)) (-3856 (($ $ (-576)) 58)) (-3845 (((-784)) 18)) (-4222 (((-657 $) (-1194 $)) NIL) (((-657 $) (-1194 (-419 (-576)))) 63) (((-657 $) (-1194 (-576))) 68) (((-657 $) (-972 $)) 72) (((-657 $) (-972 (-419 (-576)))) 76) (((-657 $) (-972 (-576))) 80)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 53))) +(((-1033 |#1|) (-10 -8 (-15 -1866 (|#1| (-576))) (-15 -1866 (|#1| (-419 (-576)))) (-15 -1866 (|#1| |#1| (-941))) (-15 -4222 ((-657 |#1|) (-972 (-576)))) (-15 -4222 ((-657 |#1|) (-972 (-419 (-576))))) (-15 -4222 ((-657 |#1|) (-972 |#1|))) (-15 -4222 ((-657 |#1|) (-1194 (-576)))) (-15 -4222 ((-657 |#1|) (-1194 (-419 (-576))))) (-15 -4222 ((-657 |#1|) (-1194 |#1|))) (-15 -1913 ((-3 |#1| "failed") (-1194 |#1|) (-941))) (-15 -1913 ((-3 |#1| "failed") (-1194 |#1|) (-941) (-877))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3856 (|#1| |#1| (-576))) (-15 -1866 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3845 ((-784))) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941)))) (-1034)) (T -1033)) +((-3845 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1033 *3)) (-4 *3 (-1034))))) +(-10 -8 (-15 -1866 (|#1| (-576))) (-15 -1866 (|#1| (-419 (-576)))) (-15 -1866 (|#1| |#1| (-941))) (-15 -4222 ((-657 |#1|) (-972 (-576)))) (-15 -4222 ((-657 |#1|) (-972 (-419 (-576))))) (-15 -4222 ((-657 |#1|) (-972 |#1|))) (-15 -4222 ((-657 |#1|) (-1194 (-576)))) (-15 -4222 ((-657 |#1|) (-1194 (-419 (-576))))) (-15 -4222 ((-657 |#1|) (-1194 |#1|))) (-15 -1913 ((-3 |#1| "failed") (-1194 |#1|) (-941))) (-15 -1913 ((-3 |#1| "failed") (-1194 |#1|) (-941) (-877))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3856 (|#1| |#1| (-576))) (-15 -1866 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3845 ((-784))) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 103)) (-2361 (($ $) 104)) (-3286 (((-112) $) 106)) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 123)) (-4215 (((-430 $) $) 124)) (-1866 (($ $) 87) (($ $ (-941)) 73) (($ (-419 (-576))) 72) (($ (-576)) 71)) (-3210 (((-112) $ $) 114)) (-3922 (((-576) $) 140)) (-2515 (($) 18 T CONST)) (-1913 (((-3 $ "failed") (-1194 $) (-941) (-877)) 81) (((-3 $ "failed") (-1194 $) (-941)) 80)) (-1593 (((-3 (-576) "failed") $) 100 (|has| (-419 (-576)) (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| (-419 (-576)) (-1060 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) 95)) (-2830 (((-576) $) 99 (|has| (-419 (-576)) (-1060 (-576)))) (((-419 (-576)) $) 97 (|has| (-419 (-576)) (-1060 (-419 (-576))))) (((-419 (-576)) $) 96)) (-2871 (($ $ (-877)) 70)) (-4252 (($ $ (-877)) 69)) (-3355 (($ $ $) 118)) (-3969 (((-3 $ "failed") $) 37)) (-3369 (($ $ $) 117)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 112)) (-4009 (((-112) $) 125)) (-3810 (((-112) $) 138)) (-3994 (((-112) $) 35)) (-3856 (($ $ (-576)) 86)) (-3517 (((-112) $) 139)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 121)) (-3740 (($ $ $) 132)) (-2249 (($ $ $) 133)) (-1326 (((-3 (-1194 $) "failed") $) 82)) (-2690 (((-3 (-877) "failed") $) 84)) (-4086 (((-3 (-1194 $) "failed") $) 83)) (-3388 (($ (-657 $)) 110) (($ $ $) 109)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 126)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 111)) (-3431 (($ (-657 $)) 108) (($ $ $) 107)) (-1856 (((-430 $) $) 122)) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 119)) (-3409 (((-3 $ "failed") $ $) 102)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 113)) (-4164 (((-784) $) 115)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 116)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 130) (($ $) 101) (($ (-419 (-576))) 94) (($ (-576)) 93) (($ (-419 (-576))) 90)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 105)) (-4130 (((-419 (-576)) $ $) 68)) (-4222 (((-657 $) (-1194 $)) 79) (((-657 $) (-1194 (-419 (-576)))) 78) (((-657 $) (-1194 (-576))) 77) (((-657 $) (-972 $)) 76) (((-657 $) (-972 (-419 (-576)))) 75) (((-657 $) (-972 (-576))) 74)) (-2127 (($ $) 141)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2938 (((-112) $ $) 134)) (-2913 (((-112) $ $) 136)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 135)) (-2901 (((-112) $ $) 137)) (-2995 (($ $ $) 131)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 127) (($ $ (-419 (-576))) 85)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 129) (($ $ (-419 (-576))) 128) (($ (-576) $) 92) (($ $ (-576)) 91) (($ (-419 (-576)) $) 89) (($ $ (-419 (-576))) 88))) +(((-1034) (-141)) (T -1034)) +((-1866 (*1 *1 *1) (-4 *1 (-1034))) (-2690 (*1 *2 *1) (|partial| -12 (-4 *1 (-1034)) (-5 *2 (-877)))) (-4086 (*1 *2 *1) (|partial| -12 (-5 *2 (-1194 *1)) (-4 *1 (-1034)))) (-1326 (*1 *2 *1) (|partial| -12 (-5 *2 (-1194 *1)) (-4 *1 (-1034)))) (-1913 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1194 *1)) (-5 *3 (-941)) (-5 *4 (-877)) (-4 *1 (-1034)))) (-1913 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1194 *1)) (-5 *3 (-941)) (-4 *1 (-1034)))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-1194 *1)) (-4 *1 (-1034)) (-5 *2 (-657 *1)))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-1194 (-419 (-576)))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-1194 (-576))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-972 *1)) (-4 *1 (-1034)) (-5 *2 (-657 *1)))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-972 (-419 (-576)))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-972 (-576))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) (-1866 (*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-941)))) (-1866 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1034)))) (-1866 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1034)))) (-2871 (*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-877)))) (-4252 (*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-877)))) (-4130 (*1 *2 *1 *1) (-12 (-4 *1 (-1034)) (-5 *2 (-419 (-576)))))) +(-13 (-148) (-861) (-174) (-374) (-423 (-419 (-576))) (-38 (-576)) (-38 (-419 (-576))) (-1024) (-10 -8 (-15 -2690 ((-3 (-877) "failed") $)) (-15 -4086 ((-3 (-1194 $) "failed") $)) (-15 -1326 ((-3 (-1194 $) "failed") $)) (-15 -1913 ((-3 $ "failed") (-1194 $) (-941) (-877))) (-15 -1913 ((-3 $ "failed") (-1194 $) (-941))) (-15 -4222 ((-657 $) (-1194 $))) (-15 -4222 ((-657 $) (-1194 (-419 (-576))))) (-15 -4222 ((-657 $) (-1194 (-576)))) (-15 -4222 ((-657 $) (-972 $))) (-15 -4222 ((-657 $) (-972 (-419 (-576))))) (-15 -4222 ((-657 $) (-972 (-576)))) (-15 -1866 ($ $ (-941))) (-15 -1866 ($ $)) (-15 -1866 ($ (-419 (-576)))) (-15 -1866 ($ (-576))) (-15 -2871 ($ $ (-877))) (-15 -4252 ($ $ (-877))) (-15 -4130 ((-419 (-576)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 #1=(-576)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-423 (-419 (-576))) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 #1#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 #1#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 #1#) . T) ((-730 $) . T) ((-739) . T) ((-804) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-861) . T) ((-862) . T) ((-865) . T) ((-940) . T) ((-1024) . T) ((-1060 (-419 (-576))) . T) ((-1060 (-576)) |has| (-419 (-576)) (-1060 (-576))) ((-1073 #0#) . T) ((-1073 #1#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 #1#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) +((-1641 (((-2 (|:| |ans| |#2|) (|:| -4228 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-657 |#2|)) (-1 (-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1035 |#1| |#2|) (-10 -7 (-15 -1641 ((-2 (|:| |ans| |#2|) (|:| -4228 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-657 |#2|)) (-1 (-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-27) (-442 |#1|))) (T -1035)) +((-1641 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1198)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-657 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3579 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1224) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1060 *3) (-652 *3))) (-5 *3 (-576)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4228 *4) (|:| |sol?| (-112)))) (-5 *1 (-1035 *8 *4))))) +(-10 -7 (-15 -1641 ((-2 (|:| |ans| |#2|) (|:| -4228 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-657 |#2|)) (-1 (-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1529 (((-3 (-657 |#2|) "failed") (-576) |#2| |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-657 |#2|)) (-1 (-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1036 |#1| |#2|) (-10 -7 (-15 -1529 ((-3 (-657 |#2|) "failed") (-576) |#2| |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-657 |#2|)) (-1 (-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-27) (-442 |#1|))) (T -1036)) +((-1529 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1198)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-657 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3579 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1224) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1060 *3) (-652 *3))) (-5 *3 (-576)) (-5 *2 (-657 *4)) (-5 *1 (-1036 *8 *4))))) +(-10 -7 (-15 -1529 ((-3 (-657 |#2|) "failed") (-576) |#2| |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-657 |#2|)) (-1 (-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1467 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3981 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)) 38)) (-4008 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2732 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 69)) (-2319 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|)) 74))) +(((-1037 |#1| |#2|) (-10 -7 (-15 -4008 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2732 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2319 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -1467 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3981 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) (-13 (-374) (-148) (-1060 (-576))) (-1265 |#1|)) (T -1037)) +((-1467 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1265 *6)) (-4 *6 (-13 (-374) (-148) (-1060 *4))) (-5 *4 (-576)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3981 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1037 *6 *3)))) (-2319 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1037 *4 *5)) (-5 *3 (-419 *5)))) (-4008 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -2732 *6))) (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -4008 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2732 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2319 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -1467 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3981 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) +((-2317 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2732 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22)) (-3137 (((-3 (-657 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34))) +(((-1038 |#1| |#2|) (-10 -7 (-15 -2317 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2732 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3137 ((-3 (-657 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-374) (-148) (-1060 (-576))) (-1265 |#1|)) (T -1038)) +((-3137 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) (-4 *5 (-1265 *4)) (-5 *2 (-657 (-419 *5))) (-5 *1 (-1038 *4 *5)) (-5 *3 (-419 *5)))) (-2317 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2732 *6))) (-5 *1 (-1038 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -2317 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2732 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3137 ((-3 (-657 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) +((-2287 (((-1 |#1|) (-657 (-2 (|:| -3037 |#1|) (|:| -3074 (-576))))) 34)) (-1950 (((-1 |#1|) (-1124 |#1|)) 42)) (-3490 (((-1 |#1|) (-1289 |#1|) (-1289 (-576)) (-576)) 31))) +(((-1039 |#1|) (-10 -7 (-15 -1950 ((-1 |#1|) (-1124 |#1|))) (-15 -2287 ((-1 |#1|) (-657 (-2 (|:| -3037 |#1|) (|:| -3074 (-576)))))) (-15 -3490 ((-1 |#1|) (-1289 |#1|) (-1289 (-576)) (-576)))) (-1122)) (T -1039)) +((-3490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1289 *6)) (-5 *4 (-1289 (-576))) (-5 *5 (-576)) (-4 *6 (-1122)) (-5 *2 (-1 *6)) (-5 *1 (-1039 *6)))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -3037 *4) (|:| -3074 (-576))))) (-4 *4 (-1122)) (-5 *2 (-1 *4)) (-5 *1 (-1039 *4)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-1124 *4)) (-4 *4 (-1122)) (-5 *2 (-1 *4)) (-5 *1 (-1039 *4))))) +(-10 -7 (-15 -1950 ((-1 |#1|) (-1124 |#1|))) (-15 -2287 ((-1 |#1|) (-657 (-2 (|:| -3037 |#1|) (|:| -3074 (-576)))))) (-15 -3490 ((-1 |#1|) (-1289 |#1|) (-1289 (-576)) (-576)))) +((-2650 (((-784) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1040 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2650 ((-784) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-13 (-379) (-374))) (T -1040)) +((-2650 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) (-4 *7 (-1265 *6)) (-4 *4 (-1265 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) (-4 *9 (-13 (-379) (-374))) (-5 *2 (-784)) (-5 *1 (-1040 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -2650 ((-784) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3423 (((-112) $ $) NIL)) (-1803 (((-1157) $) 9)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2645 (((-1157) $) 11)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1041) (-13 (-1105) (-10 -8 (-15 -1803 ((-1157) $)) (-15 -2645 ((-1157) $))))) (T -1041)) +((-1803 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1041)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1041))))) +(-13 (-1105) (-10 -8 (-15 -1803 ((-1157) $)) (-15 -2645 ((-1157) $)))) +((-3397 (((-3 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) "failed") |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) 32) (((-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-419 (-576))) 29)) (-1939 (((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-419 (-576))) 34) (((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-419 (-576))) 30) (((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) 33) (((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1|) 28)) (-1686 (((-657 (-419 (-576))) (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) 20)) (-4289 (((-419 (-576)) (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) 17))) +(((-1042 |#1|) (-10 -7 (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1|)) (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-419 (-576)))) (-15 -3397 ((-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-419 (-576)))) (-15 -3397 ((-3 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) "failed") |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-15 -4289 ((-419 (-576)) (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-15 -1686 ((-657 (-419 (-576))) (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))))) (-1265 (-576))) (T -1042)) +((-1686 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-5 *2 (-657 (-419 (-576)))) (-5 *1 (-1042 *4)) (-4 *4 (-1265 (-576))))) (-4289 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) (-5 *2 (-419 (-576))) (-5 *1 (-1042 *4)) (-4 *4 (-1265 (-576))))) (-3397 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))))) (-3397 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))))) (-1939 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-657 (-2 (|:| -4217 *5) (|:| -4228 *5)))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))) (-5 *4 (-2 (|:| -4217 *5) (|:| -4228 *5))))) (-1939 (*1 *2 *3 *4) (-12 (-5 *2 (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))) (-5 *4 (-419 (-576))))) (-1939 (*1 *2 *3 *4) (-12 (-5 *2 (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))) (-5 *4 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))))) (-1939 (*1 *2 *3) (-12 (-5 *2 (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576)))))) +(-10 -7 (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1|)) (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-419 (-576)))) (-15 -3397 ((-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-419 (-576)))) (-15 -3397 ((-3 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) "failed") |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-15 -4289 ((-419 (-576)) (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-15 -1686 ((-657 (-419 (-576))) (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))))) +((-3397 (((-3 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) "failed") |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) 35) (((-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-419 (-576))) 32)) (-1939 (((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-419 (-576))) 30) (((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-419 (-576))) 26) (((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) 28) (((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1|) 24))) +(((-1043 |#1|) (-10 -7 (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1|)) (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-419 (-576)))) (-15 -3397 ((-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-419 (-576)))) (-15 -3397 ((-3 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) "failed") |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))))) (-1265 (-419 (-576)))) (T -1043)) +((-3397 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 (-419 (-576)))))) (-3397 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 *4)))) (-1939 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-657 (-2 (|:| -4217 *5) (|:| -4228 *5)))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 *5)) (-5 *4 (-2 (|:| -4217 *5) (|:| -4228 *5))))) (-1939 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-5 *2 (-657 (-2 (|:| -4217 *4) (|:| -4228 *4)))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 *4)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *2 (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 (-419 (-576)))) (-5 *4 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))))) (-1939 (*1 *2 *3) (-12 (-5 *2 (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 (-419 (-576))))))) +(-10 -7 (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1|)) (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -1939 ((-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-419 (-576)))) (-15 -3397 ((-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-419 (-576)))) (-15 -3397 ((-3 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) "failed") |#1| (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))) (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))))) +((-4136 (((-227) $) 6) (((-390) $) 9))) +(((-1044) (-141)) (T -1044)) NIL (-13 (-626 (-227)) (-626 (-390))) (((-626 (-227)) . T) ((-626 (-390)) . T)) -((-4138 (((-656 (-390)) (-971 (-576)) (-390)) 28) (((-656 (-390)) (-971 (-419 (-576))) (-390)) 27)) (-2588 (((-656 (-656 (-390))) (-656 (-971 (-576))) (-656 (-1197)) (-390)) 37))) -(((-1044) (-10 -7 (-15 -4138 ((-656 (-390)) (-971 (-419 (-576))) (-390))) (-15 -4138 ((-656 (-390)) (-971 (-576)) (-390))) (-15 -2588 ((-656 (-656 (-390))) (-656 (-971 (-576))) (-656 (-1197)) (-390))))) (T -1044)) -((-2588 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1044)) (-5 *5 (-390)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1044)) (-5 *4 (-390)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 (-390))) (-5 *1 (-1044)) (-5 *4 (-390))))) -(-10 -7 (-15 -4138 ((-656 (-390)) (-971 (-419 (-576))) (-390))) (-15 -4138 ((-656 (-390)) (-971 (-576)) (-390))) (-15 -2588 ((-656 (-656 (-390))) (-656 (-971 (-576))) (-656 (-1197)) (-390)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 75)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-1462 (($ $) NIL) (($ $ (-940)) NIL) (($ (-419 (-576))) NIL) (($ (-576)) NIL)) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) 70)) (-3170 (($) NIL T CONST)) (-2467 (((-3 $ "failed") (-1193 $) (-940) (-876)) NIL) (((-3 $ "failed") (-1193 $) (-940)) 55)) (-2982 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-576) "failed") $) NIL (-3795 (|has| (-419 (-576)) (-1059 (-576))) (|has| |#1| (-1059 (-576)))))) (-2317 (((-419 (-576)) $) 17 (|has| (-419 (-576)) (-1059 (-419 (-576))))) (((-419 (-576)) $) 17) ((|#1| $) 117) (((-576) $) NIL (-3795 (|has| (-419 (-576)) (-1059 (-576))) (|has| |#1| (-1059 (-576)))))) (-3383 (($ $ (-876)) 47)) (-3269 (($ $ (-876)) 48)) (-1895 (($ $ $) NIL)) (-3207 (((-419 (-576)) $ $) 21)) (-1851 (((-3 $ "failed") $) 88)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-2279 (((-112) $) 66)) (-2486 (((-112) $) NIL)) (-4005 (($ $ (-576)) NIL)) (-3323 (((-112) $) 69)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2841 (((-3 (-1193 $) "failed") $) 83)) (-1982 (((-3 (-876) "failed") $) 82)) (-2180 (((-3 (-1193 $) "failed") $) 80)) (-1683 (((-3 (-1082 $ (-1193 $)) "failed") $) 78)) (-3076 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 89)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1452 (((-430 $) $) NIL)) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4113 (((-876) $) 87) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) 63) (($ (-419 (-576))) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 119)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-2642 (((-419 (-576)) $ $) 27)) (-2820 (((-656 $) (-1193 $)) 61) (((-656 $) (-1193 (-419 (-576)))) NIL) (((-656 $) (-1193 (-576))) NIL) (((-656 $) (-971 $)) NIL) (((-656 $) (-971 (-419 (-576)))) NIL) (((-656 $) (-971 (-576))) NIL)) (-2445 (($ (-1082 $ (-1193 $)) (-876)) 46)) (-2366 (($ $) 22)) (-4313 (($) 32 T CONST)) (-4322 (($) 39 T CONST)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 76)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 24)) (-4047 (($ $ $) 37)) (-4037 (($ $) 38) (($ $ $) 74)) (-4026 (($ $ $) 112)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 98) (($ $ $) 104) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ (-576) $) 98) (($ $ (-576)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1045 |#1|) (-13 (-1033) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -2445 ($ (-1082 $ (-1193 $)) (-876))) (-15 -1683 ((-3 (-1082 $ (-1193 $)) "failed") $)) (-15 -3207 ((-419 (-576)) $ $)))) (-13 (-860) (-374) (-1043))) (T -1045)) -((-2445 (*1 *1 *2 *3) (-12 (-5 *2 (-1082 (-1045 *4) (-1193 (-1045 *4)))) (-5 *3 (-876)) (-5 *1 (-1045 *4)) (-4 *4 (-13 (-860) (-374) (-1043))))) (-1683 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082 (-1045 *3) (-1193 (-1045 *3)))) (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-374) (-1043))))) (-3207 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-374) (-1043)))))) -(-13 (-1033) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -2445 ($ (-1082 $ (-1193 $)) (-876))) (-15 -1683 ((-3 (-1082 $ (-1193 $)) "failed") $)) (-15 -3207 ((-419 (-576)) $ $)))) -((-1808 (((-2 (|:| -3379 |#2|) (|:| -3961 (-656 |#1|))) |#2| (-656 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1046 |#1| |#2|) (-10 -7 (-15 -1808 (|#2| |#2| |#1|)) (-15 -1808 ((-2 (|:| -3379 |#2|) (|:| -3961 (-656 |#1|))) |#2| (-656 |#1|)))) (-374) (-668 |#1|)) (T -1046)) -((-1808 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -3379 *3) (|:| -3961 (-656 *5)))) (-5 *1 (-1046 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5)))) (-1808 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-668 *3))))) -(-10 -7 (-15 -1808 (|#2| |#2| |#1|)) (-15 -1808 ((-2 (|:| -3379 |#2|) (|:| -3961 (-656 |#1|))) |#2| (-656 |#1|)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2482 ((|#1| $ |#1|) 14)) (-4268 ((|#1| $ |#1|) 12)) (-2833 (($ |#1|) 10)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4369 ((|#1| $) 11)) (-2302 ((|#1| $) 13)) (-4113 (((-876) $) 21 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3939 (((-112) $ $) 9))) -(((-1047 |#1|) (-13 (-1238) (-10 -8 (-15 -2833 ($ |#1|)) (-15 -4369 (|#1| $)) (-15 -4268 (|#1| $ |#1|)) (-15 -2302 (|#1| $)) (-15 -2482 (|#1| $ |#1|)) (-15 -3939 ((-112) $ $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1238)) (T -1047)) -((-2833 (*1 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-4369 (*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-4268 (*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-2302 (*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-2482 (*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-3939 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1047 *3)) (-4 *3 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -2833 ($ |#1|)) (-15 -4369 (|#1| $)) (-15 -4268 (|#1| $ |#1|)) (-15 -2302 (|#1| $)) (-15 -2482 (|#1| $ |#1|)) (-15 -3939 ((-112) $ $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) -((-1957 (((-112) $ $) NIL)) (-2048 (((-656 (-2 (|:| -1597 $) (|:| -3823 (-656 |#4|)))) (-656 |#4|)) NIL)) (-2739 (((-656 $) (-656 |#4|)) 118) (((-656 $) (-656 |#4|) (-112)) 119) (((-656 $) (-656 |#4|) (-112) (-112)) 117) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1585 (((-656 |#3|) $) NIL)) (-4404 (((-112) $) NIL)) (-3921 (((-112) $) NIL (|has| |#1| (-568)))) (-2417 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1916 ((|#4| |#4| $) NIL)) (-2658 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| $) 112)) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |#3|) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-3603 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 66)) (-3170 (($) NIL T CONST)) (-4016 (((-112) $) 29 (|has| |#1| (-568)))) (-3403 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4357 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2159 (((-112) $) NIL (|has| |#1| (-568)))) (-2460 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3496 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-3588 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2982 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2317 (($ (-656 |#4|)) NIL)) (-1764 (((-3 $ "failed") $) 45)) (-2458 ((|#4| |#4| $) 69)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-2825 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3561 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-568)))) (-2559 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3234 ((|#4| |#4| $) NIL)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1794 (((-2 (|:| -1597 (-656 |#4|)) (|:| -3823 (-656 |#4|))) $) NIL)) (-2220 (((-112) |#4| $) NIL)) (-1473 (((-112) |#4| $) NIL)) (-2289 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2602 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 133)) (-3722 (((-656 |#4|) $) 18 (|has| $ (-6 -4464)))) (-1938 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4260 ((|#3| $) 38)) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#4|) $) 19 (|has| $ (-6 -4464)))) (-1602 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-1898 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#4| |#4|) $) 23)) (-3240 (((-656 |#3|) $) NIL)) (-3821 (((-112) |#3| $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-2890 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-4381 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| |#4| $) 110)) (-2850 (((-3 |#4| "failed") $) 42)) (-2489 (((-656 $) |#4| $) 93)) (-4003 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-3891 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-1431 (((-656 $) |#4| $) 115) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 116) (((-656 $) |#4| (-656 $)) NIL)) (-3927 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 128)) (-2341 (($ |#4| $) 82) (($ (-656 |#4|) $) 83) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4387 (((-656 |#4|) $) NIL)) (-2915 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3648 ((|#4| |#4| $) NIL)) (-2384 (((-112) $ $) NIL)) (-2296 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2200 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2565 ((|#4| |#4| $) NIL)) (-3116 (((-1141) $) NIL)) (-1755 (((-3 |#4| "failed") $) 40)) (-4220 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3238 (((-3 $ "failed") $ |#4|) 59)) (-2419 (($ $ |#4|) NIL) (((-656 $) |#4| $) 95) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 89)) (-1759 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 17)) (-3307 (($) 14)) (-2196 (((-783) $) NIL)) (-3127 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) 13)) (-1556 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-4125 (($ (-656 |#4|)) 22)) (-4023 (($ $ |#3|) 52)) (-2715 (($ $ |#3|) 54)) (-1357 (($ $) NIL)) (-3142 (($ $ |#3|) NIL)) (-4113 (((-876) $) 35) (((-656 |#4|) $) 46)) (-2524 (((-783) $) NIL (|has| |#3| (-379)))) (-2950 (((-112) $ $) NIL)) (-1671 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1638 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-3290 (((-656 $) |#4| $) 92) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2543 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1754 (((-656 |#3|) $) NIL)) (-3462 (((-112) |#4| $) NIL)) (-1736 (((-112) |#3| $) 65)) (-3939 (((-112) $ $) NIL)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1048 |#1| |#2| |#3| |#4|) (-13 (-1092 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2341 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2739 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -2739 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3927 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -2602 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -1048)) -((-2341 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) (-4 *3 (-1086 *5 *6 *7)))) (-2739 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-2739 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-3927 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-2602 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1048 *5 *6 *7 *8))))) (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(-13 (-1092 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2341 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2739 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -2739 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3927 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -2602 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) -((-4029 (((-656 (-701 |#1|)) (-656 (-701 |#1|))) 70) (((-701 |#1|) (-701 |#1|)) 69) (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 68) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 65)) (-4392 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940)) 63) (((-701 |#1|) (-701 |#1|) (-940)) 62)) (-1635 (((-656 (-701 (-576))) (-656 (-656 (-576)))) 81) (((-656 (-701 (-576))) (-656 (-924 (-576))) (-576)) 80) (((-701 (-576)) (-656 (-576))) 77) (((-701 (-576)) (-924 (-576)) (-576)) 75)) (-3803 (((-701 (-971 |#1|)) (-783)) 95)) (-2662 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940)) 49 (|has| |#1| (-6 (-4466 "*")))) (((-701 |#1|) (-701 |#1|) (-940)) 47 (|has| |#1| (-6 (-4466 "*")))))) -(((-1049 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4466 "*"))) (-15 -2662 ((-701 |#1|) (-701 |#1|) (-940))) |%noBranch|) (IF (|has| |#1| (-6 (-4466 "*"))) (-15 -2662 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) |%noBranch|) (-15 -3803 ((-701 (-971 |#1|)) (-783))) (-15 -4392 ((-701 |#1|) (-701 |#1|) (-940))) (-15 -4392 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) (-15 -4029 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4029 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -4029 ((-701 |#1|) (-701 |#1|))) (-15 -4029 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -1635 ((-701 (-576)) (-924 (-576)) (-576))) (-15 -1635 ((-701 (-576)) (-656 (-576)))) (-15 -1635 ((-656 (-701 (-576))) (-656 (-924 (-576))) (-576))) (-15 -1635 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) (-1070)) (T -1049)) -((-1635 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1049 *4)) (-4 *4 (-1070)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-924 (-576)))) (-5 *4 (-576)) (-5 *2 (-656 (-701 *4))) (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1049 *4)) (-4 *4 (-1070)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-924 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) (-4029 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-4029 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-4029 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-4029 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) (-4392 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) (-4392 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-701 (-971 *4))) (-5 *1 (-1049 *4)) (-4 *4 (-1070)))) (-2662 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) (|has| *4 (-6 (-4466 "*"))) (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) (-2662 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (|has| *4 (-6 (-4466 "*"))) (-4 *4 (-1070)) (-5 *1 (-1049 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4466 "*"))) (-15 -2662 ((-701 |#1|) (-701 |#1|) (-940))) |%noBranch|) (IF (|has| |#1| (-6 (-4466 "*"))) (-15 -2662 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) |%noBranch|) (-15 -3803 ((-701 (-971 |#1|)) (-783))) (-15 -4392 ((-701 |#1|) (-701 |#1|) (-940))) (-15 -4392 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-940))) (-15 -4029 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4029 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -4029 ((-701 |#1|) (-701 |#1|))) (-15 -4029 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -1635 ((-701 (-576)) (-924 (-576)) (-576))) (-15 -1635 ((-701 (-576)) (-656 (-576)))) (-15 -1635 ((-656 (-701 (-576))) (-656 (-924 (-576))) (-576))) (-15 -1635 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) -((-3923 (((-701 |#1|) (-656 (-701 |#1|)) (-1288 |#1|)) 70 (|has| |#1| (-317)))) (-2887 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 (-1288 |#1|))) 110 (|has| |#1| (-374))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 |#1|)) 117 (|has| |#1| (-374)))) (-3559 (((-1288 |#1|) (-656 (-1288 |#1|)) (-576)) 135 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-3932 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-940)) 123 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112)) 122 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|))) 121 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576)) 120 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-1714 (((-112) (-656 (-701 |#1|))) 103 (|has| |#1| (-374))) (((-112) (-656 (-701 |#1|)) (-576)) 106 (|has| |#1| (-374)))) (-2744 (((-1288 (-1288 |#1|)) (-656 (-701 |#1|)) (-1288 |#1|)) 67 (|has| |#1| (-317)))) (-1490 (((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|)) 47)) (-2005 (((-701 |#1|) (-1288 (-1288 |#1|))) 40)) (-4152 (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576)) 94 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 93 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576)) 101 (|has| |#1| (-374))))) -(((-1050 |#1|) (-10 -7 (-15 -2005 ((-701 |#1|) (-1288 (-1288 |#1|)))) (-15 -1490 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -2744 ((-1288 (-1288 |#1|)) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -3923 ((-701 |#1|) (-656 (-701 |#1|)) (-1288 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -4152 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -4152 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -4152 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -1714 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -1714 ((-112) (-656 (-701 |#1|)))) (-15 -2887 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -2887 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 (-1288 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -3932 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -3932 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -3932 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -3932 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-940))) (-15 -3559 ((-1288 |#1|) (-656 (-1288 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) (-1070)) (T -1050)) -((-3559 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1288 *5))) (-5 *4 (-576)) (-5 *2 (-1288 *5)) (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-3932 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1070)) (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1050 *4)) (-5 *3 (-656 (-701 *4))))) (-3932 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) (-4 *6 (-1070)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1050 *6)) (-5 *3 (-656 (-701 *6))))) (-2887 (*1 *2 *3 *4) (-12 (-5 *4 (-1288 (-1288 *5))) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-2887 (*1 *2 *3 *4) (-12 (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-656 (-701 *5))))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1070)) (-5 *2 (-112)) (-5 *1 (-1050 *4)))) (-1714 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) (-4 *5 (-1070)) (-5 *2 (-112)) (-5 *1 (-1050 *5)))) (-4152 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-1070)))) (-4152 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1050 *4)) (-4 *4 (-374)) (-4 *4 (-1070)))) (-4152 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) (-5 *2 (-701 *6)) (-5 *1 (-1050 *6)) (-4 *6 (-374)) (-4 *6 (-1070)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1288 *5)) (-4 *5 (-317)) (-4 *5 (-1070)) (-5 *2 (-701 *5)) (-5 *1 (-1050 *5)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1070)) (-5 *2 (-1288 (-1288 *5))) (-5 *1 (-1050 *5)) (-5 *4 (-1288 *5)))) (-1490 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1070)) (-5 *1 (-1050 *4)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-1288 (-1288 *4))) (-4 *4 (-1070)) (-5 *2 (-701 *4)) (-5 *1 (-1050 *4))))) -(-10 -7 (-15 -2005 ((-701 |#1|) (-1288 (-1288 |#1|)))) (-15 -1490 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -2744 ((-1288 (-1288 |#1|)) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -3923 ((-701 |#1|) (-656 (-701 |#1|)) (-1288 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -4152 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -4152 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -4152 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -1714 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -1714 ((-112) (-656 (-701 |#1|)))) (-15 -2887 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 |#1|))) (-15 -2887 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1288 (-1288 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -3932 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -3932 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -3932 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -3932 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-940))) (-15 -3559 ((-1288 |#1|) (-656 (-1288 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) -((-2245 ((|#1| (-940) |#1|) 18))) -(((-1051 |#1|) (-10 -7 (-15 -2245 (|#1| (-940) |#1|))) (-13 (-1121) (-10 -8 (-15 -4026 ($ $ $))))) (T -1051)) -((-2245 (*1 *2 *3 *2) (-12 (-5 *3 (-940)) (-5 *1 (-1051 *2)) (-4 *2 (-13 (-1121) (-10 -8 (-15 -4026 ($ $ $)))))))) -(-10 -7 (-15 -2245 (|#1| (-940) |#1|))) -((-1793 (((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-971 (-576))))) 67)) (-3408 (((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-971 (-576))))) 52)) (-3775 (((-656 (-326 (-576))) (-701 (-419 (-971 (-576))))) 45)) (-3123 (((-656 (-701 (-326 (-576)))) (-701 (-419 (-971 (-576))))) 85)) (-1343 (((-701 (-326 (-576))) (-701 (-326 (-576)))) 38)) (-4014 (((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576))))) 74)) (-1516 (((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-971 (-576))))) 82))) -(((-1052) (-10 -7 (-15 -1793 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-971 (-576)))))) (-15 -3408 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-971 (-576)))))) (-15 -3775 ((-656 (-326 (-576))) (-701 (-419 (-971 (-576)))))) (-15 -1516 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-971 (-576)))))) (-15 -1343 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -4014 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -3123 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-971 (-576)))))))) (T -1052)) -((-3123 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)))) (-4014 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)))) (-1343 (*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052)))) (-1516 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052)))) (-3775 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-326 (-576)))) (-5 *1 (-1052)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)) (-5 *3 (-326 (-576))))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576)))))))) (-5 *1 (-1052))))) -(-10 -7 (-15 -1793 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-971 (-576)))))) (-15 -3408 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-971 (-576)))))) (-15 -3775 ((-656 (-326 (-576))) (-701 (-419 (-971 (-576)))))) (-15 -1516 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-971 (-576)))))) (-15 -1343 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -4014 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -3123 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-971 (-576))))))) -((-3299 ((|#1| |#1| (-940)) 18))) -(((-1053 |#1|) (-10 -7 (-15 -3299 (|#1| |#1| (-940)))) (-13 (-1121) (-10 -8 (-15 * ($ $ $))))) (T -1053)) -((-3299 (*1 *2 *2 *3) (-12 (-5 *3 (-940)) (-5 *1 (-1053 *2)) (-4 *2 (-13 (-1121) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3299 (|#1| |#1| (-940)))) -((-4113 ((|#1| (-322)) 11) (((-1293) |#1|) 9))) -(((-1054 |#1|) (-10 -7 (-15 -4113 ((-1293) |#1|)) (-15 -4113 (|#1| (-322)))) (-1238)) (T -1054)) -((-4113 (*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1054 *2)) (-4 *2 (-1238)))) (-4113 (*1 *2 *3) (-12 (-5 *2 (-1293)) (-5 *1 (-1054 *3)) (-4 *3 (-1238))))) -(-10 -7 (-15 -4113 ((-1293) |#1|)) (-15 -4113 (|#1| (-322)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2721 (($ |#4|) 25)) (-1851 (((-3 $ "failed") $) NIL)) (-2486 (((-112) $) NIL)) (-2709 ((|#4| $) 27)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 46) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2910 (((-783)) 43 T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 21 T CONST)) (-4322 (($) 23 T CONST)) (-3939 (((-112) $ $) 40)) (-4037 (($ $) 31) (($ $ $) NIL)) (-4026 (($ $ $) 29)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1055 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2721 ($ |#4|)) (-15 -4113 ($ |#4|)) (-15 -2709 (|#4| $)))) (-374) (-805) (-861) (-968 |#1| |#2| |#3|) (-656 |#4|)) (T -1055)) -((-2721 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) (-14 *6 (-656 *2)))) (-4113 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) (-14 *6 (-656 *2)))) (-2709 (*1 *2 *1) (-12 (-4 *2 (-968 *3 *4 *5)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-14 *6 (-656 *2))))) -(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2721 ($ |#4|)) (-15 -4113 ($ |#4|)) (-15 -2709 (|#4| $)))) -((-1957 (((-112) $ $) NIL (-3795 (|has| (-52) (-102)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-102))))) (-1978 (($) NIL) (($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) NIL)) (-3657 (((-1293) $ (-1197) (-1197)) NIL (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) NIL)) (-3874 (((-112) (-112)) 43)) (-3607 (((-112) (-112)) 42)) (-4268 (((-52) $ (-1197) (-52)) NIL)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-2051 (((-3 (-52) "failed") (-1197) $) NIL)) (-3170 (($) NIL T CONST)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121))))) (-3872 (($ (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-3 (-52) "failed") (-1197) $) NIL)) (-2825 (($ (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (($ (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $ (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (((-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $ (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-1910 (((-52) $ (-1197) (-52)) NIL (|has| $ (-6 -4465)))) (-3721 (((-52) $ (-1197)) NIL)) (-3722 (((-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-1197) $) NIL (|has| (-1197) (-861)))) (-2911 (((-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-1829 (((-1197) $) NIL (|has| (-1197) (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (-3795 (|has| (-52) (-1121)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121))))) (-2353 (((-656 (-1197)) $) 37)) (-4128 (((-112) (-1197) $) NIL)) (-3743 (((-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) NIL)) (-3695 (($ (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) NIL)) (-2863 (((-656 (-1197)) $) NIL)) (-1389 (((-112) (-1197) $) NIL)) (-3116 (((-1141) $) NIL (-3795 (|has| (-52) (-1121)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121))))) (-1755 (((-52) $) NIL (|has| (-1197) (-861)))) (-4220 (((-3 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) "failed") (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL)) (-4267 (($ $ (-52)) NIL (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) NIL)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))))) NIL (-12 (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (($ $ (-304 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) NIL (-12 (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (($ $ (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) NIL (-12 (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (($ $ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) NIL (-12 (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-2885 (((-656 (-52)) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 (((-52) $ (-1197)) 39) (((-52) $ (-1197) (-52)) NIL)) (-3091 (($) NIL) (($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) NIL)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) NIL)) (-4113 (((-876) $) 41 (-3795 (|has| (-52) (-625 (-876))) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-625 (-876)))))) (-2950 (((-112) $ $) NIL (-3795 (|has| (-52) (-102)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) NIL)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (-3795 (|has| (-52) (-102)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-102))))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1056) (-13 (-1214 (-1197) (-52)) (-10 -7 (-15 -3874 ((-112) (-112))) (-15 -3607 ((-112) (-112))) (-6 -4464)))) (T -1056)) -((-3874 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056)))) (-3607 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056))))) -(-13 (-1214 (-1197) (-52)) (-10 -7 (-15 -3874 ((-112) (-112))) (-15 -3607 ((-112) (-112))) (-6 -4464))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2230 (((-1156) $) 9)) (-4113 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1057) (-13 (-1104) (-10 -8 (-15 -2230 ((-1156) $))))) (T -1057)) -((-2230 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1057))))) -(-13 (-1104) (-10 -8 (-15 -2230 ((-1156) $)))) -((-2317 ((|#2| $) 10))) -(((-1058 |#1| |#2|) (-10 -8 (-15 -2317 (|#2| |#1|))) (-1059 |#2|) (-1238)) (T -1058)) -NIL -(-10 -8 (-15 -2317 (|#2| |#1|))) -((-2982 (((-3 |#1| "failed") $) 9)) (-2317 ((|#1| $) 8)) (-4113 (($ |#1|) 6))) -(((-1059 |#1|) (-141) (-1238)) (T -1059)) -((-2982 (*1 *2 *1) (|partial| -12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1238))))) -(-13 (-628 |t#1|) (-10 -8 (-15 -2982 ((-3 |t#1| "failed") $)) (-15 -2317 (|t#1| $)))) +((-2632 (((-657 (-390)) (-972 (-576)) (-390)) 28) (((-657 (-390)) (-972 (-419 (-576))) (-390)) 27)) (-3792 (((-657 (-657 (-390))) (-657 (-972 (-576))) (-657 (-1198)) (-390)) 37))) +(((-1045) (-10 -7 (-15 -2632 ((-657 (-390)) (-972 (-419 (-576))) (-390))) (-15 -2632 ((-657 (-390)) (-972 (-576)) (-390))) (-15 -3792 ((-657 (-657 (-390))) (-657 (-972 (-576))) (-657 (-1198)) (-390))))) (T -1045)) +((-3792 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-657 (-1198))) (-5 *2 (-657 (-657 (-390)))) (-5 *1 (-1045)) (-5 *5 (-390)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-972 (-576))) (-5 *2 (-657 (-390))) (-5 *1 (-1045)) (-5 *4 (-390)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-972 (-419 (-576)))) (-5 *2 (-657 (-390))) (-5 *1 (-1045)) (-5 *4 (-390))))) +(-10 -7 (-15 -2632 ((-657 (-390)) (-972 (-419 (-576))) (-390))) (-15 -2632 ((-657 (-390)) (-972 (-576)) (-390))) (-15 -3792 ((-657 (-657 (-390))) (-657 (-972 (-576))) (-657 (-1198)) (-390)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 75)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-1866 (($ $) NIL) (($ $ (-941)) NIL) (($ (-419 (-576))) NIL) (($ (-576)) NIL)) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) 70)) (-2515 (($) NIL T CONST)) (-1913 (((-3 $ "failed") (-1194 $) (-941) (-877)) NIL) (((-3 $ "failed") (-1194 $) (-941)) 55)) (-1593 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 (-576)) (-1060 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-576) "failed") $) NIL (-2748 (|has| (-419 (-576)) (-1060 (-576))) (|has| |#1| (-1060 (-576)))))) (-2830 (((-419 (-576)) $) 17 (|has| (-419 (-576)) (-1060 (-419 (-576))))) (((-419 (-576)) $) 17) ((|#1| $) 117) (((-576) $) NIL (-2748 (|has| (-419 (-576)) (-1060 (-576))) (|has| |#1| (-1060 (-576)))))) (-2871 (($ $ (-877)) 47)) (-4252 (($ $ (-877)) 48)) (-3355 (($ $ $) NIL)) (-1703 (((-419 (-576)) $ $) 21)) (-3969 (((-3 $ "failed") $) 88)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-3810 (((-112) $) 66)) (-3994 (((-112) $) NIL)) (-3856 (($ $ (-576)) NIL)) (-3517 (((-112) $) 69)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-1326 (((-3 (-1194 $) "failed") $) 83)) (-2690 (((-3 (-877) "failed") $) 82)) (-4086 (((-3 (-1194 $) "failed") $) 80)) (-2831 (((-3 (-1083 $ (-1194 $)) "failed") $) 78)) (-3388 (($ (-657 $)) NIL) (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 89)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ (-657 $)) NIL) (($ $ $) NIL)) (-1856 (((-430 $) $) NIL)) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-3515 (((-877) $) 87) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) 63) (($ (-419 (-576))) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 119)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-4130 (((-419 (-576)) $ $) 27)) (-4222 (((-657 $) (-1194 $)) 61) (((-657 $) (-1194 (-419 (-576)))) NIL) (((-657 $) (-1194 (-576))) NIL) (((-657 $) (-972 $)) NIL) (((-657 $) (-972 (-419 (-576)))) NIL) (((-657 $) (-972 (-576))) NIL)) (-1689 (($ (-1083 $ (-1194 $)) (-877)) 46)) (-2127 (($ $) 22)) (-2716 (($) 32 T CONST)) (-2725 (($) 39 T CONST)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 76)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 24)) (-2995 (($ $ $) 37)) (-2982 (($ $) 38) (($ $ $) 74)) (-2971 (($ $ $) 112)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 98) (($ $ $) 104) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ (-576) $) 98) (($ $ (-576)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1046 |#1|) (-13 (-1034) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -1689 ($ (-1083 $ (-1194 $)) (-877))) (-15 -2831 ((-3 (-1083 $ (-1194 $)) "failed") $)) (-15 -1703 ((-419 (-576)) $ $)))) (-13 (-861) (-374) (-1044))) (T -1046)) +((-1689 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-1046 *4) (-1194 (-1046 *4)))) (-5 *3 (-877)) (-5 *1 (-1046 *4)) (-4 *4 (-13 (-861) (-374) (-1044))))) (-2831 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 (-1046 *3) (-1194 (-1046 *3)))) (-5 *1 (-1046 *3)) (-4 *3 (-13 (-861) (-374) (-1044))))) (-1703 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1046 *3)) (-4 *3 (-13 (-861) (-374) (-1044)))))) +(-13 (-1034) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -1689 ($ (-1083 $ (-1194 $)) (-877))) (-15 -2831 ((-3 (-1083 $ (-1194 $)) "failed") $)) (-15 -1703 ((-419 (-576)) $ $)))) +((-1623 (((-2 (|:| -3981 |#2|) (|:| -1782 (-657 |#1|))) |#2| (-657 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1047 |#1| |#2|) (-10 -7 (-15 -1623 (|#2| |#2| |#1|)) (-15 -1623 ((-2 (|:| -3981 |#2|) (|:| -1782 (-657 |#1|))) |#2| (-657 |#1|)))) (-374) (-669 |#1|)) (T -1047)) +((-1623 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -3981 *3) (|:| -1782 (-657 *5)))) (-5 *1 (-1047 *5 *3)) (-5 *4 (-657 *5)) (-4 *3 (-669 *5)))) (-1623 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-669 *3))))) +(-10 -7 (-15 -1623 (|#2| |#2| |#1|)) (-15 -1623 ((-2 (|:| -3981 |#2|) (|:| -1782 (-657 |#1|))) |#2| (-657 |#1|)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-3963 ((|#1| $ |#1|) 14)) (-3719 ((|#1| $ |#1|) 12)) (-4358 (($ |#1|) 10)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2780 ((|#1| $) 11)) (-2728 ((|#1| $) 13)) (-3515 (((-877) $) 21 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2881 (((-112) $ $) 9))) +(((-1048 |#1|) (-13 (-1239) (-10 -8 (-15 -4358 ($ |#1|)) (-15 -2780 (|#1| $)) (-15 -3719 (|#1| $ |#1|)) (-15 -2728 (|#1| $)) (-15 -3963 (|#1| $ |#1|)) (-15 -2881 ((-112) $ $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) (-1239)) (T -1048)) +((-4358 (*1 *1 *2) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) (-2780 (*1 *2 *1) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) (-3719 (*1 *2 *1 *2) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) (-2728 (*1 *2 *1) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) (-3963 (*1 *2 *1 *2) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) (-2881 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1048 *3)) (-4 *3 (-1239))))) +(-13 (-1239) (-10 -8 (-15 -4358 ($ |#1|)) (-15 -2780 (|#1| $)) (-15 -3719 (|#1| $ |#1|)) (-15 -2728 (|#1| $)) (-15 -3963 (|#1| $ |#1|)) (-15 -2881 ((-112) $ $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) +((-3423 (((-112) $ $) NIL)) (-2112 (((-657 (-2 (|:| -1988 $) (|:| -3179 (-657 |#4|)))) (-657 |#4|)) NIL)) (-1578 (((-657 $) (-657 |#4|)) 118) (((-657 $) (-657 |#4|) (-112)) 119) (((-657 $) (-657 |#4|) (-112) (-112)) 117) (((-657 $) (-657 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1998 (((-657 |#3|) $) NIL)) (-2250 (((-112) $) NIL)) (-4334 (((-112) $) NIL (|has| |#1| (-568)))) (-2605 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3300 ((|#4| |#4| $) NIL)) (-3188 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 $))) |#4| $) 112)) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |#3|) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-2007 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 66)) (-2515 (($) NIL T CONST)) (-2697 (((-112) $) 29 (|has| |#1| (-568)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1978 (((-112) $) NIL (|has| |#1| (-568)))) (-1835 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1494 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-4203 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-1593 (((-3 $ "failed") (-657 |#4|)) NIL)) (-2830 (($ (-657 |#4|)) NIL)) (-3542 (((-3 $ "failed") $) 45)) (-1815 ((|#4| |#4| $) 69)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-3901 (($ |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3951 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-568)))) (-3427 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1979 ((|#4| |#4| $) NIL)) (-3662 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1492 (((-2 (|:| -1988 (-657 |#4|)) (|:| -3179 (-657 |#4|))) $) NIL)) (-1381 (((-112) |#4| $) NIL)) (-1526 (((-112) |#4| $) NIL)) (-3883 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2674 (((-2 (|:| |val| (-657 |#4|)) (|:| |towers| (-657 $))) (-657 |#4|) (-112) (-112)) 133)) (-1448 (((-657 |#4|) $) 18 (|has| $ (-6 -4466)))) (-3537 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1428 ((|#3| $) 38)) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#4|) $) 19 (|has| $ (-6 -4466)))) (-3326 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-1799 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#4| |#4|) $) 23)) (-3944 (((-657 |#3|) $) NIL)) (-2611 (((-112) |#3| $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-3653 (((-3 |#4| (-657 $)) |#4| |#4| $) NIL)) (-3156 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 $))) |#4| |#4| $) 110)) (-3921 (((-3 |#4| "failed") $) 42)) (-4024 (((-657 $) |#4| $) 93)) (-3846 (((-3 (-112) (-657 $)) |#4| $) NIL)) (-4002 (((-657 (-2 (|:| |val| (-112)) (|:| -3941 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3415 (((-657 $) |#4| $) 115) (((-657 $) (-657 |#4|) $) NIL) (((-657 $) (-657 |#4|) (-657 $)) 116) (((-657 $) |#4| (-657 $)) NIL)) (-4390 (((-657 $) (-657 |#4|) (-112) (-112) (-112)) 128)) (-3082 (($ |#4| $) 82) (($ (-657 |#4|) $) 83) (((-657 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-3218 (((-657 |#4|) $) NIL)) (-3893 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3510 ((|#4| |#4| $) NIL)) (-2304 (((-112) $ $) NIL)) (-2678 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-4299 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3511 ((|#4| |#4| $) NIL)) (-1460 (((-1142) $) NIL)) (-3528 (((-3 |#4| "failed") $) 40)) (-4135 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3923 (((-3 $ "failed") $ |#4|) 59)) (-1456 (($ $ |#4|) NIL) (((-657 $) |#4| $) 95) (((-657 $) |#4| (-657 $)) NIL) (((-657 $) (-657 |#4|) $) NIL) (((-657 $) (-657 |#4|) (-657 $)) 89)) (-2372 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#4|) (-657 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 17)) (-3340 (($) 14)) (-4265 (((-784) $) NIL)) (-1469 (((-784) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (((-784) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) 13)) (-4136 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3529 (($ (-657 |#4|)) 22)) (-2764 (($ $ |#3|) 52)) (-2555 (($ $ |#3|) 54)) (-2038 (($ $) NIL)) (-2267 (($ $ |#3|) NIL)) (-3515 (((-877) $) 35) (((-657 |#4|) $) 46)) (-4384 (((-784) $) NIL (|has| |#3| (-379)))) (-4166 (((-112) $ $) NIL)) (-2726 (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3741 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) NIL)) (-1360 (((-657 $) |#4| $) 92) (((-657 $) |#4| (-657 $)) NIL) (((-657 $) (-657 |#4|) $) NIL) (((-657 $) (-657 |#4|) (-657 $)) NIL)) (-3258 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-2330 (((-657 |#3|) $) NIL)) (-2374 (((-112) |#4| $) NIL)) (-2137 (((-112) |#3| $) 65)) (-2881 (((-112) $ $) NIL)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1049 |#1| |#2| |#3| |#4|) (-13 (-1093 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3082 ((-657 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1578 ((-657 $) (-657 |#4|) (-112) (-112))) (-15 -1578 ((-657 $) (-657 |#4|) (-112) (-112) (-112) (-112))) (-15 -4390 ((-657 $) (-657 |#4|) (-112) (-112) (-112))) (-15 -2674 ((-2 (|:| |val| (-657 |#4|)) (|:| |towers| (-657 $))) (-657 |#4|) (-112) (-112))))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|)) (T -1049)) +((-3082 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1049 *5 *6 *7 *3))) (-5 *1 (-1049 *5 *6 *7 *3)) (-4 *3 (-1087 *5 *6 *7)))) (-1578 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) (-1578 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) (-4390 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) (-2674 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-657 *8)) (|:| |towers| (-657 (-1049 *5 *6 *7 *8))))) (-5 *1 (-1049 *5 *6 *7 *8)) (-5 *3 (-657 *8))))) +(-13 (-1093 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3082 ((-657 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1578 ((-657 $) (-657 |#4|) (-112) (-112))) (-15 -1578 ((-657 $) (-657 |#4|) (-112) (-112) (-112) (-112))) (-15 -4390 ((-657 $) (-657 |#4|) (-112) (-112) (-112))) (-15 -2674 ((-2 (|:| |val| (-657 |#4|)) (|:| |towers| (-657 $))) (-657 |#4|) (-112) (-112))))) +((-2794 (((-657 (-702 |#1|)) (-657 (-702 |#1|))) 70) (((-702 |#1|) (-702 |#1|)) 69) (((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-657 (-702 |#1|))) 68) (((-702 |#1|) (-702 |#1|) (-702 |#1|)) 65)) (-3272 (((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-941)) 63) (((-702 |#1|) (-702 |#1|) (-941)) 62)) (-3708 (((-657 (-702 (-576))) (-657 (-657 (-576)))) 81) (((-657 (-702 (-576))) (-657 (-925 (-576))) (-576)) 80) (((-702 (-576)) (-657 (-576))) 77) (((-702 (-576)) (-925 (-576)) (-576)) 75)) (-2478 (((-702 (-972 |#1|)) (-784)) 95)) (-3228 (((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-941)) 49 (|has| |#1| (-6 (-4468 "*")))) (((-702 |#1|) (-702 |#1|) (-941)) 47 (|has| |#1| (-6 (-4468 "*")))))) +(((-1050 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4468 "*"))) (-15 -3228 ((-702 |#1|) (-702 |#1|) (-941))) |%noBranch|) (IF (|has| |#1| (-6 (-4468 "*"))) (-15 -3228 ((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-941))) |%noBranch|) (-15 -2478 ((-702 (-972 |#1|)) (-784))) (-15 -3272 ((-702 |#1|) (-702 |#1|) (-941))) (-15 -3272 ((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-941))) (-15 -2794 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2794 ((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -2794 ((-702 |#1|) (-702 |#1|))) (-15 -2794 ((-657 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -3708 ((-702 (-576)) (-925 (-576)) (-576))) (-15 -3708 ((-702 (-576)) (-657 (-576)))) (-15 -3708 ((-657 (-702 (-576))) (-657 (-925 (-576))) (-576))) (-15 -3708 ((-657 (-702 (-576))) (-657 (-657 (-576)))))) (-1071)) (T -1050)) +((-3708 (*1 *2 *3) (-12 (-5 *3 (-657 (-657 (-576)))) (-5 *2 (-657 (-702 (-576)))) (-5 *1 (-1050 *4)) (-4 *4 (-1071)))) (-3708 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-925 (-576)))) (-5 *4 (-576)) (-5 *2 (-657 (-702 *4))) (-5 *1 (-1050 *5)) (-4 *5 (-1071)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-702 (-576))) (-5 *1 (-1050 *4)) (-4 *4 (-1071)))) (-3708 (*1 *2 *3 *4) (-12 (-5 *3 (-925 (-576))) (-5 *4 (-576)) (-5 *2 (-702 *4)) (-5 *1 (-1050 *5)) (-4 *5 (-1071)))) (-2794 (*1 *2 *2) (-12 (-5 *2 (-657 (-702 *3))) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) (-2794 (*1 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) (-2794 (*1 *2 *2 *2) (-12 (-5 *2 (-657 (-702 *3))) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) (-2794 (*1 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) (-3272 (*1 *2 *2 *3) (-12 (-5 *2 (-657 (-702 *4))) (-5 *3 (-941)) (-4 *4 (-1071)) (-5 *1 (-1050 *4)))) (-3272 (*1 *2 *2 *3) (-12 (-5 *2 (-702 *4)) (-5 *3 (-941)) (-4 *4 (-1071)) (-5 *1 (-1050 *4)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-702 (-972 *4))) (-5 *1 (-1050 *4)) (-4 *4 (-1071)))) (-3228 (*1 *2 *2 *3) (-12 (-5 *2 (-657 (-702 *4))) (-5 *3 (-941)) (|has| *4 (-6 (-4468 "*"))) (-4 *4 (-1071)) (-5 *1 (-1050 *4)))) (-3228 (*1 *2 *2 *3) (-12 (-5 *2 (-702 *4)) (-5 *3 (-941)) (|has| *4 (-6 (-4468 "*"))) (-4 *4 (-1071)) (-5 *1 (-1050 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4468 "*"))) (-15 -3228 ((-702 |#1|) (-702 |#1|) (-941))) |%noBranch|) (IF (|has| |#1| (-6 (-4468 "*"))) (-15 -3228 ((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-941))) |%noBranch|) (-15 -2478 ((-702 (-972 |#1|)) (-784))) (-15 -3272 ((-702 |#1|) (-702 |#1|) (-941))) (-15 -3272 ((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-941))) (-15 -2794 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2794 ((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -2794 ((-702 |#1|) (-702 |#1|))) (-15 -2794 ((-657 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -3708 ((-702 (-576)) (-925 (-576)) (-576))) (-15 -3708 ((-702 (-576)) (-657 (-576)))) (-15 -3708 ((-657 (-702 (-576))) (-657 (-925 (-576))) (-576))) (-15 -3708 ((-657 (-702 (-576))) (-657 (-657 (-576)))))) +((-4359 (((-702 |#1|) (-657 (-702 |#1|)) (-1289 |#1|)) 70 (|has| |#1| (-317)))) (-3610 (((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-1289 (-1289 |#1|))) 110 (|has| |#1| (-374))) (((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-1289 |#1|)) 117 (|has| |#1| (-374)))) (-2030 (((-1289 |#1|) (-657 (-1289 |#1|)) (-576)) 135 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-1325 (((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-941)) 123 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-112)) 122 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|))) 121 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-112) (-576) (-576)) 120 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-3079 (((-112) (-657 (-702 |#1|))) 103 (|has| |#1| (-374))) (((-112) (-657 (-702 |#1|)) (-576)) 106 (|has| |#1| (-374)))) (-1621 (((-1289 (-1289 |#1|)) (-657 (-702 |#1|)) (-1289 |#1|)) 67 (|has| |#1| (-317)))) (-1667 (((-702 |#1|) (-657 (-702 |#1|)) (-702 |#1|)) 47)) (-2866 (((-702 |#1|) (-1289 (-1289 |#1|))) 40)) (-1596 (((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)) (-576)) 94 (|has| |#1| (-374))) (((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|))) 93 (|has| |#1| (-374))) (((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)) (-112) (-576)) 101 (|has| |#1| (-374))))) +(((-1051 |#1|) (-10 -7 (-15 -2866 ((-702 |#1|) (-1289 (-1289 |#1|)))) (-15 -1667 ((-702 |#1|) (-657 (-702 |#1|)) (-702 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -1621 ((-1289 (-1289 |#1|)) (-657 (-702 |#1|)) (-1289 |#1|))) (-15 -4359 ((-702 |#1|) (-657 (-702 |#1|)) (-1289 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -1596 ((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)) (-112) (-576))) (-15 -1596 ((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -1596 ((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)) (-576))) (-15 -3079 ((-112) (-657 (-702 |#1|)) (-576))) (-15 -3079 ((-112) (-657 (-702 |#1|)))) (-15 -3610 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-1289 |#1|))) (-15 -3610 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-1289 (-1289 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -1325 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-112) (-576) (-576))) (-15 -1325 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)))) (-15 -1325 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-112))) (-15 -1325 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-941))) (-15 -2030 ((-1289 |#1|) (-657 (-1289 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) (-1071)) (T -1051)) +((-2030 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-1289 *5))) (-5 *4 (-576)) (-5 *2 (-1289 *5)) (-5 *1 (-1051 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1071)))) (-1325 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1071)) (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) (-5 *3 (-657 (-702 *5))))) (-1325 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1071)) (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) (-5 *3 (-657 (-702 *5))))) (-1325 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1071)) (-5 *2 (-657 (-657 (-702 *4)))) (-5 *1 (-1051 *4)) (-5 *3 (-657 (-702 *4))))) (-1325 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) (-4 *6 (-1071)) (-5 *2 (-657 (-657 (-702 *6)))) (-5 *1 (-1051 *6)) (-5 *3 (-657 (-702 *6))))) (-3610 (*1 *2 *3 *4) (-12 (-5 *4 (-1289 (-1289 *5))) (-4 *5 (-374)) (-4 *5 (-1071)) (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) (-5 *3 (-657 (-702 *5))))) (-3610 (*1 *2 *3 *4) (-12 (-5 *4 (-1289 *5)) (-4 *5 (-374)) (-4 *5 (-1071)) (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) (-5 *3 (-657 (-702 *5))))) (-3079 (*1 *2 *3) (-12 (-5 *3 (-657 (-702 *4))) (-4 *4 (-374)) (-4 *4 (-1071)) (-5 *2 (-112)) (-5 *1 (-1051 *4)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-702 *5))) (-5 *4 (-576)) (-4 *5 (-374)) (-4 *5 (-1071)) (-5 *2 (-112)) (-5 *1 (-1051 *5)))) (-1596 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-657 (-702 *5))) (-5 *4 (-576)) (-5 *2 (-702 *5)) (-5 *1 (-1051 *5)) (-4 *5 (-374)) (-4 *5 (-1071)))) (-1596 (*1 *2 *3 *3) (-12 (-5 *3 (-657 (-702 *4))) (-5 *2 (-702 *4)) (-5 *1 (-1051 *4)) (-4 *4 (-374)) (-4 *4 (-1071)))) (-1596 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-657 (-702 *6))) (-5 *4 (-112)) (-5 *5 (-576)) (-5 *2 (-702 *6)) (-5 *1 (-1051 *6)) (-4 *6 (-374)) (-4 *6 (-1071)))) (-4359 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-702 *5))) (-5 *4 (-1289 *5)) (-4 *5 (-317)) (-4 *5 (-1071)) (-5 *2 (-702 *5)) (-5 *1 (-1051 *5)))) (-1621 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-702 *5))) (-4 *5 (-317)) (-4 *5 (-1071)) (-5 *2 (-1289 (-1289 *5))) (-5 *1 (-1051 *5)) (-5 *4 (-1289 *5)))) (-1667 (*1 *2 *3 *2) (-12 (-5 *3 (-657 (-702 *4))) (-5 *2 (-702 *4)) (-4 *4 (-1071)) (-5 *1 (-1051 *4)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-1289 (-1289 *4))) (-4 *4 (-1071)) (-5 *2 (-702 *4)) (-5 *1 (-1051 *4))))) +(-10 -7 (-15 -2866 ((-702 |#1|) (-1289 (-1289 |#1|)))) (-15 -1667 ((-702 |#1|) (-657 (-702 |#1|)) (-702 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -1621 ((-1289 (-1289 |#1|)) (-657 (-702 |#1|)) (-1289 |#1|))) (-15 -4359 ((-702 |#1|) (-657 (-702 |#1|)) (-1289 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -1596 ((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)) (-112) (-576))) (-15 -1596 ((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -1596 ((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)) (-576))) (-15 -3079 ((-112) (-657 (-702 |#1|)) (-576))) (-15 -3079 ((-112) (-657 (-702 |#1|)))) (-15 -3610 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-1289 |#1|))) (-15 -3610 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-1289 (-1289 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -1325 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-112) (-576) (-576))) (-15 -1325 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)))) (-15 -1325 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-112))) (-15 -1325 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-941))) (-15 -2030 ((-1289 |#1|) (-657 (-1289 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) +((-2136 ((|#1| (-941) |#1|) 18))) +(((-1052 |#1|) (-10 -7 (-15 -2136 (|#1| (-941) |#1|))) (-13 (-1122) (-10 -8 (-15 -2971 ($ $ $))))) (T -1052)) +((-2136 (*1 *2 *3 *2) (-12 (-5 *3 (-941)) (-5 *1 (-1052 *2)) (-4 *2 (-13 (-1122) (-10 -8 (-15 -2971 ($ $ $)))))))) +(-10 -7 (-15 -2136 (|#1| (-941) |#1|))) +((-1482 (((-657 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-657 (-702 (-326 (-576))))))) (-702 (-419 (-972 (-576))))) 67)) (-3081 (((-657 (-702 (-326 (-576)))) (-326 (-576)) (-702 (-419 (-972 (-576))))) 52)) (-2229 (((-657 (-326 (-576))) (-702 (-419 (-972 (-576))))) 45)) (-2102 (((-657 (-702 (-326 (-576)))) (-702 (-419 (-972 (-576))))) 85)) (-3751 (((-702 (-326 (-576))) (-702 (-326 (-576)))) 38)) (-3946 (((-657 (-702 (-326 (-576)))) (-657 (-702 (-326 (-576))))) 74)) (-1916 (((-3 (-702 (-326 (-576))) "failed") (-702 (-419 (-972 (-576))))) 82))) +(((-1053) (-10 -7 (-15 -1482 ((-657 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-657 (-702 (-326 (-576))))))) (-702 (-419 (-972 (-576)))))) (-15 -3081 ((-657 (-702 (-326 (-576)))) (-326 (-576)) (-702 (-419 (-972 (-576)))))) (-15 -2229 ((-657 (-326 (-576))) (-702 (-419 (-972 (-576)))))) (-15 -1916 ((-3 (-702 (-326 (-576))) "failed") (-702 (-419 (-972 (-576)))))) (-15 -3751 ((-702 (-326 (-576))) (-702 (-326 (-576))))) (-15 -3946 ((-657 (-702 (-326 (-576)))) (-657 (-702 (-326 (-576)))))) (-15 -2102 ((-657 (-702 (-326 (-576)))) (-702 (-419 (-972 (-576)))))))) (T -1053)) +((-2102 (*1 *2 *3) (-12 (-5 *3 (-702 (-419 (-972 (-576))))) (-5 *2 (-657 (-702 (-326 (-576))))) (-5 *1 (-1053)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-657 (-702 (-326 (-576))))) (-5 *1 (-1053)))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-702 (-326 (-576)))) (-5 *1 (-1053)))) (-1916 (*1 *2 *3) (|partial| -12 (-5 *3 (-702 (-419 (-972 (-576))))) (-5 *2 (-702 (-326 (-576)))) (-5 *1 (-1053)))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-702 (-419 (-972 (-576))))) (-5 *2 (-657 (-326 (-576)))) (-5 *1 (-1053)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-702 (-419 (-972 (-576))))) (-5 *2 (-657 (-702 (-326 (-576))))) (-5 *1 (-1053)) (-5 *3 (-326 (-576))))) (-1482 (*1 *2 *3) (-12 (-5 *3 (-702 (-419 (-972 (-576))))) (-5 *2 (-657 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-657 (-702 (-326 (-576)))))))) (-5 *1 (-1053))))) +(-10 -7 (-15 -1482 ((-657 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-657 (-702 (-326 (-576))))))) (-702 (-419 (-972 (-576)))))) (-15 -3081 ((-657 (-702 (-326 (-576)))) (-326 (-576)) (-702 (-419 (-972 (-576)))))) (-15 -2229 ((-657 (-326 (-576))) (-702 (-419 (-972 (-576)))))) (-15 -1916 ((-3 (-702 (-326 (-576))) "failed") (-702 (-419 (-972 (-576)))))) (-15 -3751 ((-702 (-326 (-576))) (-702 (-326 (-576))))) (-15 -3946 ((-657 (-702 (-326 (-576)))) (-657 (-702 (-326 (-576)))))) (-15 -2102 ((-657 (-702 (-326 (-576)))) (-702 (-419 (-972 (-576))))))) +((-3253 ((|#1| |#1| (-941)) 18))) +(((-1054 |#1|) (-10 -7 (-15 -3253 (|#1| |#1| (-941)))) (-13 (-1122) (-10 -8 (-15 * ($ $ $))))) (T -1054)) +((-3253 (*1 *2 *2 *3) (-12 (-5 *3 (-941)) (-5 *1 (-1054 *2)) (-4 *2 (-13 (-1122) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3253 (|#1| |#1| (-941)))) +((-3515 ((|#1| (-322)) 11) (((-1294) |#1|) 9))) +(((-1055 |#1|) (-10 -7 (-15 -3515 ((-1294) |#1|)) (-15 -3515 (|#1| (-322)))) (-1239)) (T -1055)) +((-3515 (*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1055 *2)) (-4 *2 (-1239)))) (-3515 (*1 *2 *3) (-12 (-5 *2 (-1294)) (-5 *1 (-1055 *3)) (-4 *3 (-1239))))) +(-10 -7 (-15 -3515 ((-1294) |#1|)) (-15 -3515 (|#1| (-322)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3662 (($ |#4|) 25)) (-3969 (((-3 $ "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-3647 ((|#4| $) 27)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 46) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3845 (((-784)) 43 T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 21 T CONST)) (-2725 (($) 23 T CONST)) (-2881 (((-112) $ $) 40)) (-2982 (($ $) 31) (($ $ $) NIL)) (-2971 (($ $ $) 29)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1056 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -3662 ($ |#4|)) (-15 -3515 ($ |#4|)) (-15 -3647 (|#4| $)))) (-374) (-806) (-862) (-969 |#1| |#2| |#3|) (-657 |#4|)) (T -1056)) +((-3662 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1056 *3 *4 *5 *2 *6)) (-4 *2 (-969 *3 *4 *5)) (-14 *6 (-657 *2)))) (-3515 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1056 *3 *4 *5 *2 *6)) (-4 *2 (-969 *3 *4 *5)) (-14 *6 (-657 *2)))) (-3647 (*1 *2 *1) (-12 (-4 *2 (-969 *3 *4 *5)) (-5 *1 (-1056 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-14 *6 (-657 *2))))) +(-13 (-174) (-38 |#1|) (-10 -8 (-15 -3662 ($ |#4|)) (-15 -3515 ($ |#4|)) (-15 -3647 (|#4| $)))) +((-3423 (((-112) $ $) NIL (-2748 (|has| (-52) (-102)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-102))))) (-4082 (($) NIL) (($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) NIL)) (-3590 (((-1294) $ (-1198) (-1198)) NIL (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) NIL)) (-1930 (((-112) (-112)) 43)) (-4383 (((-112) (-112)) 42)) (-3719 (((-52) $ (-1198) (-52)) NIL)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2244 (((-3 (-52) "failed") (-1198) $) NIL)) (-2515 (($) NIL T CONST)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122))))) (-1920 (($ (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-3 (-52) "failed") (-1198) $) NIL)) (-3901 (($ (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $ (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (((-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $ (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-1810 (((-52) $ (-1198) (-52)) NIL (|has| $ (-6 -4467)))) (-1741 (((-52) $ (-1198)) NIL)) (-1448 (((-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-657 (-52)) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-1198) $) NIL (|has| (-1198) (-862)))) (-3855 (((-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-657 (-52)) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122))))) (-1833 (((-1198) $) NIL (|has| (-1198) (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4467))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (-2748 (|has| (-52) (-1122)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122))))) (-3135 (((-657 (-1198)) $) 37)) (-2559 (((-112) (-1198) $) NIL)) (-3107 (((-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) NIL)) (-2701 (($ (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) NIL)) (-3309 (((-657 (-1198)) $) NIL)) (-4324 (((-112) (-1198) $) NIL)) (-1460 (((-1142) $) NIL (-2748 (|has| (-52) (-1122)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122))))) (-3528 (((-52) $) NIL (|has| (-1198) (-862)))) (-4135 (((-3 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) "failed") (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL)) (-1495 (($ $ (-52)) NIL (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) NIL)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))))) NIL (-12 (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-304 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) NIL (-12 (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-657 (-52)) (-657 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-657 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122))))) (-3585 (((-657 (-52)) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 (((-52) $ (-1198)) 39) (((-52) $ (-1198) (-52)) NIL)) (-3009 (($) NIL) (($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) NIL)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (((-784) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122)))) (((-784) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) NIL)) (-3515 (((-877) $) 41 (-2748 (|has| (-52) (-625 (-877))) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-625 (-877)))))) (-4166 (((-112) $ $) NIL (-2748 (|has| (-52) (-102)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) NIL)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (-2748 (|has| (-52) (-102)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-102))))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1057) (-13 (-1215 (-1198) (-52)) (-10 -7 (-15 -1930 ((-112) (-112))) (-15 -4383 ((-112) (-112))) (-6 -4466)))) (T -1057)) +((-1930 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1057)))) (-4383 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1057))))) +(-13 (-1215 (-1198) (-52)) (-10 -7 (-15 -1930 ((-112) (-112))) (-15 -4383 ((-112) (-112))) (-6 -4466))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3054 (((-1157) $) 9)) (-3515 (((-877) $) 15) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1058) (-13 (-1105) (-10 -8 (-15 -3054 ((-1157) $))))) (T -1058)) +((-3054 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1058))))) +(-13 (-1105) (-10 -8 (-15 -3054 ((-1157) $)))) +((-2830 ((|#2| $) 10))) +(((-1059 |#1| |#2|) (-10 -8 (-15 -2830 (|#2| |#1|))) (-1060 |#2|) (-1239)) (T -1059)) +NIL +(-10 -8 (-15 -2830 (|#2| |#1|))) +((-1593 (((-3 |#1| "failed") $) 9)) (-2830 ((|#1| $) 8)) (-3515 (($ |#1|) 6))) +(((-1060 |#1|) (-141) (-1239)) (T -1060)) +((-1593 (*1 *2 *1) (|partial| -12 (-4 *1 (-1060 *2)) (-4 *2 (-1239)))) (-2830 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1239))))) +(-13 (-628 |t#1|) (-10 -8 (-15 -1593 ((-3 |t#1| "failed") $)) (-15 -2830 (|t#1| $)))) (((-628 |#1|) . T)) -((-3765 (((-656 (-656 (-304 (-419 (-971 |#2|))))) (-656 (-971 |#2|)) (-656 (-1197))) 38))) -(((-1060 |#1| |#2|) (-10 -7 (-15 -3765 ((-656 (-656 (-304 (-419 (-971 |#2|))))) (-656 (-971 |#2|)) (-656 (-1197))))) (-568) (-13 (-568) (-1059 |#1|))) (T -1060)) -((-3765 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-4 *6 (-13 (-568) (-1059 *5))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *6)))))) (-5 *1 (-1060 *5 *6))))) -(-10 -7 (-15 -3765 ((-656 (-656 (-304 (-419 (-971 |#2|))))) (-656 (-971 |#2|)) (-656 (-1197))))) -((-2479 (((-390)) 17)) (-2782 (((-1 (-390)) (-390) (-390)) 22)) (-4245 (((-1 (-390)) (-783)) 48)) (-2086 (((-390)) 37)) (-4251 (((-1 (-390)) (-390) (-390)) 38)) (-2003 (((-390)) 29)) (-1836 (((-1 (-390)) (-390)) 30)) (-3869 (((-390) (-783)) 43)) (-2923 (((-1 (-390)) (-783)) 44)) (-2119 (((-1 (-390)) (-783) (-783)) 47)) (-2480 (((-1 (-390)) (-783) (-783)) 45))) -(((-1061) (-10 -7 (-15 -2479 ((-390))) (-15 -2086 ((-390))) (-15 -2003 ((-390))) (-15 -3869 ((-390) (-783))) (-15 -2782 ((-1 (-390)) (-390) (-390))) (-15 -4251 ((-1 (-390)) (-390) (-390))) (-15 -1836 ((-1 (-390)) (-390))) (-15 -2923 ((-1 (-390)) (-783))) (-15 -2480 ((-1 (-390)) (-783) (-783))) (-15 -2119 ((-1 (-390)) (-783) (-783))) (-15 -4245 ((-1 (-390)) (-783))))) (T -1061)) -((-4245 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-2119 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-2480 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) (-1836 (*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) (-4251 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) (-2782 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1061)))) (-2003 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061)))) (-2086 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061)))) (-2479 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) -(-10 -7 (-15 -2479 ((-390))) (-15 -2086 ((-390))) (-15 -2003 ((-390))) (-15 -3869 ((-390) (-783))) (-15 -2782 ((-1 (-390)) (-390) (-390))) (-15 -4251 ((-1 (-390)) (-390) (-390))) (-15 -1836 ((-1 (-390)) (-390))) (-15 -2923 ((-1 (-390)) (-783))) (-15 -2480 ((-1 (-390)) (-783) (-783))) (-15 -2119 ((-1 (-390)) (-783) (-783))) (-15 -4245 ((-1 (-390)) (-783)))) -((-1452 (((-430 |#1|) |#1|) 33))) -(((-1062 |#1|) (-10 -7 (-15 -1452 ((-430 |#1|) |#1|))) (-1264 (-419 (-971 (-576))))) (T -1062)) -((-1452 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-1264 (-419 (-971 (-576)))))))) -(-10 -7 (-15 -1452 ((-430 |#1|) |#1|))) -((-3509 (((-419 (-430 (-971 |#1|))) (-419 (-971 |#1|))) 14))) -(((-1063 |#1|) (-10 -7 (-15 -3509 ((-419 (-430 (-971 |#1|))) (-419 (-971 |#1|))))) (-317)) (T -1063)) -((-3509 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-317)) (-5 *2 (-419 (-430 (-971 *4)))) (-5 *1 (-1063 *4))))) -(-10 -7 (-15 -3509 ((-419 (-430 (-971 |#1|))) (-419 (-971 |#1|))))) -((-1585 (((-656 (-1197)) (-419 (-971 |#1|))) 17)) (-1421 (((-419 (-1193 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197)) 24)) (-1574 (((-419 (-971 |#1|)) (-419 (-1193 (-419 (-971 |#1|)))) (-1197)) 26)) (-3477 (((-3 (-1197) "failed") (-419 (-971 |#1|))) 20)) (-2145 (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-304 (-419 (-971 |#1|))))) 32) (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|)))) 33) (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-1197)) (-656 (-419 (-971 |#1|)))) 28) (((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|))) 29)) (-4113 (((-419 (-971 |#1|)) |#1|) 11))) -(((-1064 |#1|) (-10 -7 (-15 -1585 ((-656 (-1197)) (-419 (-971 |#1|)))) (-15 -3477 ((-3 (-1197) "failed") (-419 (-971 |#1|)))) (-15 -1421 ((-419 (-1193 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -1574 ((-419 (-971 |#1|)) (-419 (-1193 (-419 (-971 |#1|)))) (-1197))) (-15 -2145 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)))) (-15 -2145 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-1197)) (-656 (-419 (-971 |#1|))))) (-15 -2145 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -2145 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -4113 ((-419 (-971 |#1|)) |#1|))) (-568)) (T -1064)) -((-4113 (*1 *2 *3) (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-1064 *3)) (-4 *3 (-568)))) (-2145 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) (-5 *2 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *1 (-1064 *4)))) (-2145 (*1 *2 *2 *3) (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-5 *2 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *1 (-1064 *4)))) (-2145 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-1197))) (-5 *4 (-656 (-419 (-971 *5)))) (-5 *2 (-419 (-971 *5))) (-4 *5 (-568)) (-5 *1 (-1064 *5)))) (-2145 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-1064 *4)))) (-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1193 (-419 (-971 *5))))) (-5 *4 (-1197)) (-5 *2 (-419 (-971 *5))) (-5 *1 (-1064 *5)) (-4 *5 (-568)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-419 (-1193 (-419 (-971 *5))))) (-5 *1 (-1064 *5)) (-5 *3 (-419 (-971 *5))))) (-3477 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-1197)) (-5 *1 (-1064 *4)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1197))) (-5 *1 (-1064 *4))))) -(-10 -7 (-15 -1585 ((-656 (-1197)) (-419 (-971 |#1|)))) (-15 -3477 ((-3 (-1197) "failed") (-419 (-971 |#1|)))) (-15 -1421 ((-419 (-1193 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -1574 ((-419 (-971 |#1|)) (-419 (-1193 (-419 (-971 |#1|)))) (-1197))) (-15 -2145 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)))) (-15 -2145 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-1197)) (-656 (-419 (-971 |#1|))))) (-15 -2145 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-304 (-419 (-971 |#1|))))) (-15 -2145 ((-419 (-971 |#1|)) (-419 (-971 |#1|)) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -4113 ((-419 (-971 |#1|)) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-3170 (($) 18 T CONST)) (-1918 ((|#1| $) 23)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1601 ((|#1| $) 22)) (-1747 ((|#1|) 20 T CONST)) (-4113 (((-876) $) 12)) (-1560 ((|#1| $) 21)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) -(((-1065 |#1|) (-141) (-23)) (T -1065)) -((-1918 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-1747 (*1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -1918 (|t#1| $)) (-15 -1601 (|t#1| $)) (-15 -1560 (|t#1| $)) (-15 -1747 (|t#1|) -2666))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-3783 (($) 25 T CONST)) (-3170 (($) 18 T CONST)) (-1918 ((|#1| $) 23)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1601 ((|#1| $) 22)) (-1747 ((|#1|) 20 T CONST)) (-4113 (((-876) $) 12)) (-1560 ((|#1| $) 21)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16))) +((-2124 (((-657 (-657 (-304 (-419 (-972 |#2|))))) (-657 (-972 |#2|)) (-657 (-1198))) 38))) +(((-1061 |#1| |#2|) (-10 -7 (-15 -2124 ((-657 (-657 (-304 (-419 (-972 |#2|))))) (-657 (-972 |#2|)) (-657 (-1198))))) (-568) (-13 (-568) (-1060 |#1|))) (T -1061)) +((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *6))) (-5 *4 (-657 (-1198))) (-4 *6 (-13 (-568) (-1060 *5))) (-4 *5 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *6)))))) (-5 *1 (-1061 *5 *6))))) +(-10 -7 (-15 -2124 ((-657 (-657 (-304 (-419 (-972 |#2|))))) (-657 (-972 |#2|)) (-657 (-1198))))) +((-2031 (((-390)) 17)) (-1950 (((-1 (-390)) (-390) (-390)) 22)) (-2732 (((-1 (-390)) (-784)) 48)) (-2487 (((-390)) 37)) (-2958 (((-1 (-390)) (-390) (-390)) 38)) (-2845 (((-390)) 29)) (-1912 (((-1 (-390)) (-390)) 30)) (-1887 (((-390) (-784)) 43)) (-3867 (((-1 (-390)) (-784)) 44)) (-1995 (((-1 (-390)) (-784) (-784)) 47)) (-3939 (((-1 (-390)) (-784) (-784)) 45))) +(((-1062) (-10 -7 (-15 -2031 ((-390))) (-15 -2487 ((-390))) (-15 -2845 ((-390))) (-15 -1887 ((-390) (-784))) (-15 -1950 ((-1 (-390)) (-390) (-390))) (-15 -2958 ((-1 (-390)) (-390) (-390))) (-15 -1912 ((-1 (-390)) (-390))) (-15 -3867 ((-1 (-390)) (-784))) (-15 -3939 ((-1 (-390)) (-784) (-784))) (-15 -1995 ((-1 (-390)) (-784) (-784))) (-15 -2732 ((-1 (-390)) (-784))))) (T -1062)) +((-2732 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062)))) (-1995 (*1 *2 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062)))) (-3939 (*1 *2 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062)))) (-1912 (*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1062)) (-5 *3 (-390)))) (-2958 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1062)) (-5 *3 (-390)))) (-1950 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1062)) (-5 *3 (-390)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-390)) (-5 *1 (-1062)))) (-2845 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1062)))) (-2487 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1062)))) (-2031 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1062))))) +(-10 -7 (-15 -2031 ((-390))) (-15 -2487 ((-390))) (-15 -2845 ((-390))) (-15 -1887 ((-390) (-784))) (-15 -1950 ((-1 (-390)) (-390) (-390))) (-15 -2958 ((-1 (-390)) (-390) (-390))) (-15 -1912 ((-1 (-390)) (-390))) (-15 -3867 ((-1 (-390)) (-784))) (-15 -3939 ((-1 (-390)) (-784) (-784))) (-15 -1995 ((-1 (-390)) (-784) (-784))) (-15 -2732 ((-1 (-390)) (-784)))) +((-1856 (((-430 |#1|) |#1|) 33))) +(((-1063 |#1|) (-10 -7 (-15 -1856 ((-430 |#1|) |#1|))) (-1265 (-419 (-972 (-576))))) (T -1063)) +((-1856 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1063 *3)) (-4 *3 (-1265 (-419 (-972 (-576)))))))) +(-10 -7 (-15 -1856 ((-430 |#1|) |#1|))) +((-1615 (((-419 (-430 (-972 |#1|))) (-419 (-972 |#1|))) 14))) +(((-1064 |#1|) (-10 -7 (-15 -1615 ((-419 (-430 (-972 |#1|))) (-419 (-972 |#1|))))) (-317)) (T -1064)) +((-1615 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-317)) (-5 *2 (-419 (-430 (-972 *4)))) (-5 *1 (-1064 *4))))) +(-10 -7 (-15 -1615 ((-419 (-430 (-972 |#1|))) (-419 (-972 |#1|))))) +((-1998 (((-657 (-1198)) (-419 (-972 |#1|))) 17)) (-1825 (((-419 (-1194 (-419 (-972 |#1|)))) (-419 (-972 |#1|)) (-1198)) 24)) (-1986 (((-419 (-972 |#1|)) (-419 (-1194 (-419 (-972 |#1|)))) (-1198)) 26)) (-2502 (((-3 (-1198) "failed") (-419 (-972 |#1|))) 20)) (-3205 (((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-657 (-304 (-419 (-972 |#1|))))) 32) (((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|)))) 33) (((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-657 (-1198)) (-657 (-419 (-972 |#1|)))) 28) (((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|))) 29)) (-3515 (((-419 (-972 |#1|)) |#1|) 11))) +(((-1065 |#1|) (-10 -7 (-15 -1998 ((-657 (-1198)) (-419 (-972 |#1|)))) (-15 -2502 ((-3 (-1198) "failed") (-419 (-972 |#1|)))) (-15 -1825 ((-419 (-1194 (-419 (-972 |#1|)))) (-419 (-972 |#1|)) (-1198))) (-15 -1986 ((-419 (-972 |#1|)) (-419 (-1194 (-419 (-972 |#1|)))) (-1198))) (-15 -3205 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|)))) (-15 -3205 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-657 (-1198)) (-657 (-419 (-972 |#1|))))) (-15 -3205 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))))) (-15 -3205 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-657 (-304 (-419 (-972 |#1|)))))) (-15 -3515 ((-419 (-972 |#1|)) |#1|))) (-568)) (T -1065)) +((-3515 (*1 *2 *3) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-1065 *3)) (-4 *3 (-568)))) (-3205 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-304 (-419 (-972 *4))))) (-5 *2 (-419 (-972 *4))) (-4 *4 (-568)) (-5 *1 (-1065 *4)))) (-3205 (*1 *2 *2 *3) (-12 (-5 *3 (-304 (-419 (-972 *4)))) (-5 *2 (-419 (-972 *4))) (-4 *4 (-568)) (-5 *1 (-1065 *4)))) (-3205 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-657 (-1198))) (-5 *4 (-657 (-419 (-972 *5)))) (-5 *2 (-419 (-972 *5))) (-4 *5 (-568)) (-5 *1 (-1065 *5)))) (-3205 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-972 *4))) (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-1065 *4)))) (-1986 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1194 (-419 (-972 *5))))) (-5 *4 (-1198)) (-5 *2 (-419 (-972 *5))) (-5 *1 (-1065 *5)) (-4 *5 (-568)))) (-1825 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-568)) (-5 *2 (-419 (-1194 (-419 (-972 *5))))) (-5 *1 (-1065 *5)) (-5 *3 (-419 (-972 *5))))) (-2502 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-5 *2 (-1198)) (-5 *1 (-1065 *4)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-5 *2 (-657 (-1198))) (-5 *1 (-1065 *4))))) +(-10 -7 (-15 -1998 ((-657 (-1198)) (-419 (-972 |#1|)))) (-15 -2502 ((-3 (-1198) "failed") (-419 (-972 |#1|)))) (-15 -1825 ((-419 (-1194 (-419 (-972 |#1|)))) (-419 (-972 |#1|)) (-1198))) (-15 -1986 ((-419 (-972 |#1|)) (-419 (-1194 (-419 (-972 |#1|)))) (-1198))) (-15 -3205 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|)))) (-15 -3205 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-657 (-1198)) (-657 (-419 (-972 |#1|))))) (-15 -3205 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))))) (-15 -3205 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-657 (-304 (-419 (-972 |#1|)))))) (-15 -3515 ((-419 (-972 |#1|)) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2515 (($) 18 T CONST)) (-3322 ((|#1| $) 23)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3316 ((|#1| $) 22)) (-2262 ((|#1|) 20 T CONST)) (-3515 (((-877) $) 12)) (-4250 ((|#1| $) 21)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16))) (((-1066 |#1|) (-141) (-23)) (T -1066)) -((-3783 (*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) -(-13 (-1065 |t#1|) (-10 -8 (-15 -3783 ($) -2666))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-876)) . T) ((-1065 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-2048 (((-656 (-2 (|:| -1597 $) (|:| -3823 (-656 (-792 |#1| (-878 |#2|)))))) (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-2739 (((-656 $) (-656 (-792 |#1| (-878 |#2|)))) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112)) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112) (-112)) NIL)) (-1585 (((-656 (-878 |#2|)) $) NIL)) (-4404 (((-112) $) NIL)) (-3921 (((-112) $) NIL (|has| |#1| (-568)))) (-2417 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-1916 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-2658 (((-656 (-2 (|:| |val| (-792 |#1| (-878 |#2|))) (|:| -4442 $))) (-792 |#1| (-878 |#2|)) $) NIL)) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ (-878 |#2|)) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-3603 (($ (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 (-792 |#1| (-878 |#2|)) "failed") $ (-878 |#2|)) NIL)) (-3170 (($) NIL T CONST)) (-4016 (((-112) $) NIL (|has| |#1| (-568)))) (-3403 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4357 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2159 (((-112) $) NIL (|has| |#1| (-568)))) (-2460 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))) $ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-3496 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| |#1| (-568)))) (-3588 (((-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| |#1| (-568)))) (-2982 (((-3 $ "failed") (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-2317 (($ (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-1764 (((-3 $ "failed") $) NIL)) (-2458 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121))))) (-2825 (($ (-792 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3561 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-792 |#1| (-878 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-878 |#2|)) $) NIL (|has| |#1| (-568)))) (-2559 (((-112) (-792 |#1| (-878 |#2|)) $ (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-3234 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-2721 (((-792 |#1| (-878 |#2|)) (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $ (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (((-792 |#1| (-878 |#2|)) (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $ (-792 |#1| (-878 |#2|))) NIL (|has| $ (-6 -4464))) (((-792 |#1| (-878 |#2|)) (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-1794 (((-2 (|:| -1597 (-656 (-792 |#1| (-878 |#2|)))) (|:| -3823 (-656 (-792 |#1| (-878 |#2|))))) $) NIL)) (-2220 (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-1473 (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-2289 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-3722 (((-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1938 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-4260 (((-878 |#2|) $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-792 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121))))) (-1898 (($ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) $) NIL)) (-3240 (((-656 (-878 |#2|)) $) NIL)) (-3821 (((-112) (-878 |#2|) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-2890 (((-3 (-792 |#1| (-878 |#2|)) (-656 $)) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-4381 (((-656 (-2 (|:| |val| (-792 |#1| (-878 |#2|))) (|:| -4442 $))) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-2850 (((-3 (-792 |#1| (-878 |#2|)) "failed") $) NIL)) (-2489 (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL)) (-4003 (((-3 (-112) (-656 $)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3891 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-1431 (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-656 $)) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) (-656 $)) NIL)) (-2341 (($ (-792 |#1| (-878 |#2|)) $) NIL) (($ (-656 (-792 |#1| (-878 |#2|))) $) NIL)) (-4387 (((-656 (-792 |#1| (-878 |#2|))) $) NIL)) (-2915 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-3648 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-2384 (((-112) $ $) NIL)) (-2296 (((-2 (|:| |num| (-792 |#1| (-878 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-878 |#2|)) $) NIL (|has| |#1| (-568)))) (-2200 (((-112) (-792 |#1| (-878 |#2|)) $) NIL) (((-112) $) NIL)) (-2565 (((-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)) $) NIL)) (-3116 (((-1141) $) NIL)) (-1755 (((-3 (-792 |#1| (-878 |#2|)) "failed") $) NIL)) (-4220 (((-3 (-792 |#1| (-878 |#2|)) "failed") (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL)) (-3238 (((-3 $ "failed") $ (-792 |#1| (-878 |#2|))) NIL)) (-2419 (($ $ (-792 |#1| (-878 |#2|))) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-656 $)) NIL)) (-1759 (((-112) (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-792 |#1| (-878 |#2|))) (-656 (-792 |#1| (-878 |#2|)))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ $ (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ $ (-304 (-792 |#1| (-878 |#2|)))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (($ $ (-656 (-304 (-792 |#1| (-878 |#2|))))) NIL (-12 (|has| (-792 |#1| (-878 |#2|)) (-319 (-792 |#1| (-878 |#2|)))) (|has| (-792 |#1| (-878 |#2|)) (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-2196 (((-783) $) NIL)) (-3127 (((-783) (-792 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-792 |#1| (-878 |#2|)) (-1121)))) (((-783) (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-792 |#1| (-878 |#2|)) (-626 (-548))))) (-4125 (($ (-656 (-792 |#1| (-878 |#2|)))) NIL)) (-4023 (($ $ (-878 |#2|)) NIL)) (-2715 (($ $ (-878 |#2|)) NIL)) (-1357 (($ $) NIL)) (-3142 (($ $ (-878 |#2|)) NIL)) (-4113 (((-876) $) NIL) (((-656 (-792 |#1| (-878 |#2|))) $) NIL)) (-2524 (((-783) $) NIL (|has| (-878 |#2|) (-379)))) (-2950 (((-112) $ $) NIL)) (-1671 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 (-792 |#1| (-878 |#2|))))) "failed") (-656 (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 (-792 |#1| (-878 |#2|))))) "failed") (-656 (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|))) (-1 (-112) (-792 |#1| (-878 |#2|)) (-792 |#1| (-878 |#2|)))) NIL)) (-1638 (((-112) $ (-1 (-112) (-792 |#1| (-878 |#2|)) (-656 (-792 |#1| (-878 |#2|))))) NIL)) (-3290 (((-656 $) (-792 |#1| (-878 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-878 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-656 $)) NIL)) (-2543 (((-112) (-1 (-112) (-792 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1754 (((-656 (-878 |#2|)) $) NIL)) (-3462 (((-112) (-792 |#1| (-878 |#2|)) $) NIL)) (-1736 (((-112) (-878 |#2|) $) NIL)) (-3939 (((-112) $ $) NIL)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1067 |#1| |#2|) (-13 (-1092 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) (-10 -8 (-15 -2739 ((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112) (-112))))) (-464) (-656 (-1197))) (T -1067)) -((-2739 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1067 *5 *6))))) -(-13 (-1092 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-792 |#1| (-878 |#2|))) (-10 -8 (-15 -2739 ((-656 $) (-656 (-792 |#1| (-878 |#2|))) (-112) (-112))))) -((-2782 (((-1 (-576)) (-1115 (-576))) 32)) (-1810 (((-576) (-576) (-576) (-576) (-576)) 29)) (-2361 (((-1 (-576)) |RationalNumber|) NIL)) (-2855 (((-1 (-576)) |RationalNumber|) NIL)) (-1348 (((-1 (-576)) (-576) |RationalNumber|) NIL))) -(((-1068) (-10 -7 (-15 -2782 ((-1 (-576)) (-1115 (-576)))) (-15 -1348 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -2361 ((-1 (-576)) |RationalNumber|)) (-15 -2855 ((-1 (-576)) |RationalNumber|)) (-15 -1810 ((-576) (-576) (-576) (-576) (-576))))) (T -1068)) -((-1810 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1068)))) (-2855 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)))) (-2361 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)))) (-1348 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)) (-5 *3 (-576)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-1115 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) -(-10 -7 (-15 -2782 ((-1 (-576)) (-1115 (-576)))) (-15 -1348 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -2361 ((-1 (-576)) |RationalNumber|)) (-15 -2855 ((-1 (-576)) |RationalNumber|)) (-15 -1810 ((-576) (-576) (-576) (-576) (-576)))) -((-4113 (((-876) $) NIL) (($ (-576)) 10))) -(((-1069 |#1|) (-10 -8 (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) (-1070)) (T -1069)) -NIL -(-10 -8 (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-576)) 33)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1070) (-141)) (T -1070)) -((-2910 (*1 *2) (-12 (-4 *1 (-1070)) (-5 *2 (-783))))) -(-13 (-1079) (-738) (-660 $) (-628 (-576)) (-10 -7 (-15 -2910 ((-783)) -2666) (-6 -4461))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2746 (((-419 (-971 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)) 54))) -(((-1071 |#1| |#2|) (-10 -7 (-15 -2746 ((-419 (-971 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) (-1197) (-374)) (T -1071)) -((-2746 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) (-5 *2 (-419 (-971 *6))) (-5 *1 (-1071 *5 *6)) (-14 *5 (-1197))))) -(-10 -7 (-15 -2746 ((-419 (-971 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) -((-1957 (((-112) $ $) 7)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8)) (* (($ $ |#1|) 14))) -(((-1072 |#1|) (-141) (-1133)) (T -1072)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1133))))) -(-13 (-1121) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-4154 (((-112) $) 38)) (-1929 (((-112) $) 17)) (-2759 (((-783) $) 13)) (-2773 (((-783) $) 14)) (-1414 (((-112) $) 30)) (-2057 (((-112) $) 40))) -(((-1073 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2773 ((-783) |#1|)) (-15 -2759 ((-783) |#1|)) (-15 -2057 ((-112) |#1|)) (-15 -4154 ((-112) |#1|)) (-15 -1414 ((-112) |#1|)) (-15 -1929 ((-112) |#1|))) (-1074 |#2| |#3| |#4| |#5| |#6|) (-783) (-783) (-1070) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1073)) -NIL -(-10 -8 (-15 -2773 ((-783) |#1|)) (-15 -2759 ((-783) |#1|)) (-15 -2057 ((-112) |#1|)) (-15 -4154 ((-112) |#1|)) (-15 -1414 ((-112) |#1|)) (-15 -1929 ((-112) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-4154 (((-112) $) 56)) (-1765 (((-3 $ "failed") $ $) 20)) (-1929 (((-112) $) 58)) (-4234 (((-112) $ (-783)) 66)) (-3170 (($) 18 T CONST)) (-2836 (($ $) 39 (|has| |#3| (-317)))) (-2880 ((|#4| $ (-576)) 44)) (-4135 (((-783) $) 38 (|has| |#3| (-568)))) (-3721 ((|#3| $ (-576) (-576)) 46)) (-3722 (((-656 |#3|) $) 73 (|has| $ (-6 -4464)))) (-3985 (((-783) $) 37 (|has| |#3| (-568)))) (-4362 (((-656 |#5|) $) 36 (|has| |#3| (-568)))) (-2759 (((-783) $) 50)) (-2773 (((-783) $) 49)) (-3215 (((-112) $ (-783)) 65)) (-2805 (((-576) $) 54)) (-2718 (((-576) $) 52)) (-2911 (((-656 |#3|) $) 74 (|has| $ (-6 -4464)))) (-1602 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1121)) (|has| $ (-6 -4464))))) (-2626 (((-576) $) 53)) (-3267 (((-576) $) 51)) (-3410 (($ (-656 (-656 |#3|))) 59)) (-1898 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-4345 (((-656 (-656 |#3|)) $) 48)) (-1884 (((-112) $ (-783)) 64)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1946 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-568)))) (-1759 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#3|) (-656 |#3|)) 80 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) 78 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 (-304 |#3|))) 77 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-1645 (((-112) $ $) 60)) (-3617 (((-112) $) 63)) (-3307 (($) 62)) (-4369 ((|#3| $ (-576) (-576)) 47) ((|#3| $ (-576) (-576) |#3|) 45)) (-1414 (((-112) $) 57)) (-3127 (((-783) |#3| $) 75 (-12 (|has| |#3| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4464)))) (-4287 (($ $) 61)) (-3840 ((|#5| $ (-576)) 43)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-2543 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4464)))) (-2057 (((-112) $) 55)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#3|) 40 (|has| |#3| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-1970 (((-783) $) 67 (|has| $ (-6 -4464))))) -(((-1074 |#1| |#2| |#3| |#4| |#5|) (-141) (-783) (-783) (-1070) (-243 |t#2| |t#3|) (-243 |t#1| |t#3|)) (T -1074)) -((-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-3410 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1070)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1414 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2759 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-2773 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-4345 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) (-4369 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070)))) (-3721 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070)))) (-4369 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *2 (-1070)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-2880 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *2 *7)) (-4 *6 (-1070)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-3840 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *7 *2)) (-4 *6 (-1070)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-2423 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-1946 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) (-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) (-2836 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-656 *7))))) -(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4464) (IF (|has| |t#3| (-174)) (-6 (-729 |t#3|)) |%noBranch|) (-15 -3410 ($ (-656 (-656 |t#3|)))) (-15 -1929 ((-112) $)) (-15 -1414 ((-112) $)) (-15 -4154 ((-112) $)) (-15 -2057 ((-112) $)) (-15 -2805 ((-576) $)) (-15 -2626 ((-576) $)) (-15 -2718 ((-576) $)) (-15 -3267 ((-576) $)) (-15 -2759 ((-783) $)) (-15 -2773 ((-783) $)) (-15 -4345 ((-656 (-656 |t#3|)) $)) (-15 -4369 (|t#3| $ (-576) (-576))) (-15 -3721 (|t#3| $ (-576) (-576))) (-15 -4369 (|t#3| $ (-576) (-576) |t#3|)) (-15 -2880 (|t#4| $ (-576))) (-15 -3840 (|t#5| $ (-576))) (-15 -2423 ($ (-1 |t#3| |t#3|) $)) (-15 -2423 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -1946 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-374)) (-15 -4047 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-317)) (-15 -2836 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -4135 ((-783) $)) (-15 -3985 ((-783) $)) (-15 -4362 ((-656 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-625 (-876)) . T) ((-319 |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))) ((-658 (-576)) . T) ((-658 |#3|) . T) ((-660 |#3|) . T) ((-652 |#3|) |has| |#3| (-174)) ((-729 |#3|) |has| |#3| (-174)) ((-1072 |#3|) . T) ((-1077 |#3|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-4154 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-1929 (((-112) $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-3170 (($) NIL T CONST)) (-2836 (($ $) 47 (|has| |#3| (-317)))) (-2880 (((-245 |#2| |#3|) $ (-576)) 36)) (-2295 (($ (-701 |#3|)) 45)) (-4135 (((-783) $) 49 (|has| |#3| (-568)))) (-3721 ((|#3| $ (-576) (-576)) NIL)) (-3722 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-3985 (((-783) $) 51 (|has| |#3| (-568)))) (-4362 (((-656 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-568)))) (-2759 (((-783) $) NIL)) (-2773 (((-783) $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-2805 (((-576) $) NIL)) (-2718 (((-576) $) NIL)) (-2911 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-2626 (((-576) $) NIL)) (-3267 (((-576) $) NIL)) (-3410 (($ (-656 (-656 |#3|))) 31)) (-1898 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4345 (((-656 (-656 |#3|)) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1946 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-568)))) (-1759 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#3| $ (-576) (-576)) NIL) ((|#3| $ (-576) (-576) |#3|) NIL)) (-3181 (((-135)) 59 (|has| |#3| (-374)))) (-1414 (((-112) $) NIL)) (-3127 (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121)))) (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) 65 (|has| |#3| (-626 (-548))))) (-3840 (((-245 |#1| |#3|) $ (-576)) 40)) (-4113 (((-876) $) 19) (((-701 |#3|) $) 42)) (-2950 (((-112) $ $) NIL)) (-2543 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-2057 (((-112) $) NIL)) (-4313 (($) 16 T CONST)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1075 |#1| |#2| |#3|) (-13 (-1074 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1295 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -2295 ($ (-701 |#3|))))) (-783) (-783) (-1070)) (T -1075)) -((-2295 (*1 *1 *2) (-12 (-5 *2 (-701 *5)) (-4 *5 (-1070)) (-5 *1 (-1075 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783))))) -(-13 (-1074 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1295 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -2295 ($ (-701 |#3|))))) -((-2721 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2423 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1076 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2423 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2721 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-783) (-783) (-1070) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1074 |#1| |#2| |#3| |#4| |#5|) (-1070) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1074 |#1| |#2| |#7| |#8| |#9|)) (T -1076)) -((-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1070)) (-4 *2 (-1070)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *12 (-1074 *5 *6 *2 *10 *11)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1070)) (-4 *10 (-1070)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1074 *5 *6 *10 *11 *12)) (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10))))) -(-10 -7 (-15 -2423 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2721 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ |#1|) 27))) -(((-1077 |#1|) (-141) (-1079)) (T -1077)) -NIL -(-13 (-21) (-1072 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-1072 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1654 (((-1197) $) 11)) (-2402 ((|#1| $) 12)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2441 (($ (-1197) |#1|) 10)) (-4113 (((-876) $) 22 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3939 (((-112) $ $) 17 (|has| |#1| (-1121))))) -(((-1078 |#1| |#2|) (-13 (-1238) (-10 -8 (-15 -2441 ($ (-1197) |#1|)) (-15 -1654 ((-1197) $)) (-15 -2402 (|#1| $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1114 |#2|) (-1238)) (T -1078)) -((-2441 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-4 *4 (-1238)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1114 *4)))) (-1654 (*1 *2 *1) (-12 (-4 *4 (-1238)) (-5 *2 (-1197)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1114 *4)))) (-2402 (*1 *2 *1) (-12 (-4 *2 (-1114 *3)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -2441 ($ (-1197) |#1|)) (-15 -1654 ((-1197) $)) (-15 -2402 (|#1| $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1079) (-141)) (T -1079)) -NIL -(-13 (-21) (-1133)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-4087 (($ $) 17)) (-4174 (($ $) 25)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 55)) (-2595 (($ $) 27)) (-2701 (($ $) 12)) (-3058 (($ $) 43)) (-1556 (((-390) $) NIL) (((-227) $) NIL) (((-907 (-390)) $) 36)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 31) (($ (-576)) NIL) (($ (-419 (-576))) 31)) (-2910 (((-783)) 9)) (-4081 (($ $) 45))) -(((-1080 |#1|) (-10 -8 (-15 -4174 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -3058 (|#1| |#1|)) (-15 -4081 (|#1| |#1|)) (-15 -2595 (|#1| |#1|)) (-15 -2477 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1556 ((-907 (-390)) |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -4113 (|#1| (-576))) (-15 -1556 ((-227) |#1|)) (-15 -1556 ((-390) |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -4113 (|#1| |#1|)) (-15 -2910 ((-783))) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) (-1081)) (T -1080)) -((-2910 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1080 *3)) (-4 *3 (-1081))))) -(-10 -8 (-15 -4174 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -3058 (|#1| |#1|)) (-15 -4081 (|#1| |#1|)) (-15 -2595 (|#1| |#1|)) (-15 -2477 ((-904 (-390) |#1|) |#1| (-907 (-390)) (-904 (-390) |#1|))) (-15 -1556 ((-907 (-390)) |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -4113 (|#1| (-576))) (-15 -1556 ((-227) |#1|)) (-15 -1556 ((-390) |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -4113 (|#1| |#1|)) (-15 -2910 ((-783))) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-2628 (((-576) $) 98)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-4087 (($ $) 96)) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 81)) (-3589 (((-430 $) $) 80)) (-1462 (($ $) 106)) (-4386 (((-112) $ $) 65)) (-1527 (((-576) $) 123)) (-3170 (($) 18 T CONST)) (-4174 (($ $) 95)) (-2982 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2317 (((-576) $) 112) (((-419 (-576)) $) 109)) (-1895 (($ $ $) 61)) (-1851 (((-3 $ "failed") $) 37)) (-1908 (($ $ $) 62)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-2171 (((-112) $) 79)) (-2279 (((-112) $) 121)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 102)) (-2486 (((-112) $) 35)) (-4005 (($ $ (-576)) 105)) (-2595 (($ $) 101)) (-3323 (((-112) $) 122)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2907 (($ $ $) 115)) (-3777 (($ $ $) 116)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 78)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-2701 (($ $) 97)) (-3058 (($ $) 99)) (-1452 (((-430 $) $) 82)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2812 (((-783) $) 64)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63)) (-1556 (((-390) $) 114) (((-227) $) 113) (((-907 (-390)) $) 103)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-2910 (((-783)) 32 T CONST)) (-4081 (($ $) 100)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-2366 (($ $) 124)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3995 (((-112) $ $) 117)) (-3975 (((-112) $ $) 119)) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 118)) (-3963 (((-112) $ $) 120)) (-4047 (($ $ $) 73)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) -(((-1081) (-141)) (T -1081)) -((-2366 (*1 *1 *1) (-4 *1 (-1081))) (-2595 (*1 *1 *1) (-4 *1 (-1081))) (-4081 (*1 *1 *1) (-4 *1 (-1081))) (-3058 (*1 *1 *1) (-4 *1 (-1081))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-1081)) (-5 *2 (-576)))) (-2701 (*1 *1 *1) (-4 *1 (-1081))) (-4087 (*1 *1 *1) (-4 *1 (-1081))) (-4174 (*1 *1 *1) (-4 *1 (-1081)))) -(-13 (-374) (-860) (-1043) (-1059 (-576)) (-1059 (-419 (-576))) (-1023) (-626 (-907 (-390))) (-901 (-390)) (-148) (-10 -8 (-15 -2595 ($ $)) (-15 -4081 ($ $)) (-15 -3058 ($ $)) (-15 -2628 ((-576) $)) (-15 -2701 ($ $)) (-15 -4087 ($ $)) (-15 -4174 ($ $)) (-15 -2366 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-907 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-901 (-390)) . T) ((-939) . T) ((-1023) . T) ((-1043) . T) ((-1059 (-419 (-576))) . T) ((-1059 (-576)) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) |#2| $) 26)) (-2201 ((|#1| $) 10)) (-1527 (((-576) |#2| $) 116)) (-2467 (((-3 $ "failed") |#2| (-940)) 75)) (-2113 ((|#1| $) 31)) (-3207 ((|#1| |#2| $ |#1|) 40)) (-1927 (($ $) 28)) (-1851 (((-3 |#2| "failed") |#2| $) 111)) (-2279 (((-112) |#2| $) NIL)) (-3323 (((-112) |#2| $) NIL)) (-3845 (((-112) |#2| $) 27)) (-1823 ((|#1| $) 117)) (-2102 ((|#1| $) 30)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3881 ((|#2| $) 102)) (-4113 (((-876) $) 92)) (-2950 (((-112) $ $) NIL)) (-2642 ((|#1| |#2| $ |#1|) 41)) (-2820 (((-656 $) |#2|) 77)) (-3939 (((-112) $ $) 97))) -(((-1082 |#1| |#2|) (-13 (-1089 |#1| |#2|) (-10 -8 (-15 -2102 (|#1| $)) (-15 -2113 (|#1| $)) (-15 -2201 (|#1| $)) (-15 -1823 (|#1| $)) (-15 -1927 ($ $)) (-15 -3845 ((-112) |#2| $)) (-15 -3207 (|#1| |#2| $ |#1|)))) (-13 (-860) (-374)) (-1264 |#1|)) (T -1082)) -((-3207 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-2102 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-2113 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-2201 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-1823 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-1927 (*1 *1 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-3845 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1082 *4 *3)) (-4 *3 (-1264 *4))))) -(-13 (-1089 |#1| |#2|) (-10 -8 (-15 -2102 (|#1| $)) (-15 -2113 (|#1| $)) (-15 -2201 (|#1| $)) (-15 -1823 (|#1| $)) (-15 -1927 ($ $)) (-15 -3845 ((-112) |#2| $)) (-15 -3207 (|#1| |#2| $ |#1|)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-3374 (($ $ $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3282 (($ $ $ $) NIL)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-1527 (((-576) $) NIL)) (-3385 (($ $ $) NIL)) (-3170 (($) NIL T CONST)) (-2694 (($ (-1197)) 10) (($ (-576)) 7)) (-2982 (((-3 (-576) "failed") $) NIL)) (-2317 (((-576) $) NIL)) (-1895 (($ $ $) NIL)) (-1930 (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-701 (-576)) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-3526 (((-3 (-419 (-576)) "failed") $) NIL)) (-4063 (((-112) $) NIL)) (-1400 (((-419 (-576)) $) NIL)) (-4370 (($) NIL) (($ $) NIL)) (-1908 (($ $ $) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-4170 (($ $ $ $) NIL)) (-3104 (($ $ $) NIL)) (-2279 (((-112) $) NIL)) (-1595 (($ $ $) NIL)) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-2486 (((-112) $) NIL)) (-3616 (((-112) $) NIL)) (-3552 (((-3 $ "failed") $) NIL)) (-3323 (((-112) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3547 (($ $ $ $) NIL)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2362 (($ $) NIL)) (-3108 (($ $) NIL)) (-2160 (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-2617 (($ $ $) NIL)) (-3650 (($) NIL T CONST)) (-1921 (($ $) NIL)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4372 (($ $) NIL)) (-1452 (((-430 $) $) NIL)) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3955 (((-112) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-4107 (($ $) NIL) (($ $ (-783)) NIL)) (-3756 (($ $) NIL)) (-4287 (($ $) NIL)) (-1556 (((-576) $) 16) (((-548) $) NIL) (((-907 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL) (($ (-1197)) 9)) (-4113 (((-876) $) 23) (($ (-576)) 6) (($ $) NIL) (($ (-576)) 6)) (-2910 (((-783)) NIL T CONST)) (-2291 (((-112) $ $) NIL)) (-1348 (($ $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-1869 (($) NIL)) (-4134 (((-112) $ $) NIL)) (-1555 (($ $ $ $) NIL)) (-2366 (($ $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $) NIL) (($ $ (-783)) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL)) (-4037 (($ $) 22) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-576) $) NIL))) -(((-1083) (-13 (-557) (-630 (-1197)) (-10 -8 (-6 -4451) (-6 -4456) (-6 -4452) (-15 -2694 ($ (-1197))) (-15 -2694 ($ (-576)))))) (T -1083)) -((-2694 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1083)))) (-2694 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1083))))) -(-13 (-557) (-630 (-1197)) (-10 -8 (-6 -4451) (-6 -4456) (-6 -4452) (-15 -2694 ($ (-1197))) (-15 -2694 ($ (-576))))) -((-1957 (((-112) $ $) NIL (-3795 (|has| (-52) (-102)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-102))))) (-1978 (($) NIL) (($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) NIL)) (-3657 (((-1293) $ (-1197) (-1197)) NIL (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) NIL)) (-3268 (($) 9)) (-4268 (((-52) $ (-1197) (-52)) NIL)) (-2740 (($ $) 32)) (-3672 (($ $) 30)) (-2454 (($ $) 29)) (-1435 (($ $) 31)) (-2453 (($ $) 35)) (-1861 (($ $) 36)) (-3153 (($ $) 28)) (-2023 (($ $) 33)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) 27 (|has| $ (-6 -4464)))) (-2051 (((-3 (-52) "failed") (-1197) $) 43)) (-3170 (($) NIL T CONST)) (-2422 (($) 7)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121))))) (-3872 (($ (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) 53 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-3 (-52) "failed") (-1197) $) NIL)) (-2825 (($ (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (($ (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $ (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (((-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $ (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464)))) (-2312 (((-3 (-1179) "failed") $ (-1179) (-576)) 72)) (-1910 (((-52) $ (-1197) (-52)) NIL (|has| $ (-6 -4465)))) (-3721 (((-52) $ (-1197)) NIL)) (-3722 (((-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-1197) $) NIL (|has| (-1197) (-861)))) (-2911 (((-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) 38 (|has| $ (-6 -4464))) (((-656 (-52)) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-1829 (((-1197) $) NIL (|has| (-1197) (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4465))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (-3795 (|has| (-52) (-1121)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121))))) (-2353 (((-656 (-1197)) $) NIL)) (-4128 (((-112) (-1197) $) NIL)) (-3743 (((-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) NIL)) (-3695 (($ (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) 46)) (-2863 (((-656 (-1197)) $) NIL)) (-1389 (((-112) (-1197) $) NIL)) (-3116 (((-1141) $) NIL (-3795 (|has| (-52) (-1121)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121))))) (-2434 (((-390) $ (-1197)) 52)) (-3100 (((-656 (-1179)) $ (-1179)) 74)) (-1755 (((-52) $) NIL (|has| (-1197) (-861)))) (-4220 (((-3 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) "failed") (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL)) (-4267 (($ $ (-52)) NIL (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) NIL)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))))) NIL (-12 (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (($ $ (-304 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) NIL (-12 (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (($ $ (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) NIL (-12 (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (($ $ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) NIL (-12 (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-319 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121))))) (-2885 (((-656 (-52)) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 (((-52) $ (-1197)) NIL) (((-52) $ (-1197) (-52)) NIL)) (-3091 (($) NIL) (($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) NIL)) (-1529 (($ $ (-1197)) 54)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-1121)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-52) (-1121)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) 40)) (-2767 (($ $ $) 41)) (-4113 (((-876) $) NIL (-3795 (|has| (-52) (-625 (-876))) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-625 (-876)))))) (-4066 (($ $ (-1197) (-390)) 50)) (-3870 (($ $ (-1197) (-390)) 51)) (-2950 (((-112) $ $) NIL (-3795 (|has| (-52) (-102)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))))) NIL)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 (-1197)) (|:| -2905 (-52)))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (-3795 (|has| (-52) (-102)) (|has| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (-102))))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1084) (-13 (-1214 (-1197) (-52)) (-10 -8 (-15 -2767 ($ $ $)) (-15 -2422 ($)) (-15 -3153 ($ $)) (-15 -2454 ($ $)) (-15 -3672 ($ $)) (-15 -1435 ($ $)) (-15 -2023 ($ $)) (-15 -2740 ($ $)) (-15 -2453 ($ $)) (-15 -1861 ($ $)) (-15 -4066 ($ $ (-1197) (-390))) (-15 -3870 ($ $ (-1197) (-390))) (-15 -2434 ((-390) $ (-1197))) (-15 -3100 ((-656 (-1179)) $ (-1179))) (-15 -1529 ($ $ (-1197))) (-15 -3268 ($)) (-15 -2312 ((-3 (-1179) "failed") $ (-1179) (-576))) (-6 -4464)))) (T -1084)) -((-2767 (*1 *1 *1 *1) (-5 *1 (-1084))) (-2422 (*1 *1) (-5 *1 (-1084))) (-3153 (*1 *1 *1) (-5 *1 (-1084))) (-2454 (*1 *1 *1) (-5 *1 (-1084))) (-3672 (*1 *1 *1) (-5 *1 (-1084))) (-1435 (*1 *1 *1) (-5 *1 (-1084))) (-2023 (*1 *1 *1) (-5 *1 (-1084))) (-2740 (*1 *1 *1) (-5 *1 (-1084))) (-2453 (*1 *1 *1) (-5 *1 (-1084))) (-1861 (*1 *1 *1) (-5 *1 (-1084))) (-4066 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084)))) (-3870 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084)))) (-2434 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-390)) (-5 *1 (-1084)))) (-3100 (*1 *2 *1 *3) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1084)) (-5 *3 (-1179)))) (-1529 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1084)))) (-3268 (*1 *1) (-5 *1 (-1084))) (-2312 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-1084))))) -(-13 (-1214 (-1197) (-52)) (-10 -8 (-15 -2767 ($ $ $)) (-15 -2422 ($)) (-15 -3153 ($ $)) (-15 -2454 ($ $)) (-15 -3672 ($ $)) (-15 -1435 ($ $)) (-15 -2023 ($ $)) (-15 -2740 ($ $)) (-15 -2453 ($ $)) (-15 -1861 ($ $)) (-15 -4066 ($ $ (-1197) (-390))) (-15 -3870 ($ $ (-1197) (-390))) (-15 -2434 ((-390) $ (-1197))) (-15 -3100 ((-656 (-1179)) $ (-1179))) (-15 -1529 ($ $ (-1197))) (-15 -3268 ($)) (-15 -2312 ((-3 (-1179) "failed") $ (-1179) (-576))) (-6 -4464))) -((-3095 (($ $) 46)) (-2577 (((-112) $ $) 82)) (-2982 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-971 (-419 (-576)))) 247) (((-3 $ "failed") (-971 (-576))) 246) (((-3 $ "failed") (-971 |#2|)) 249)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) NIL) (($ (-971 (-419 (-576)))) 235) (($ (-971 (-576))) 231) (($ (-971 |#2|)) 255)) (-3310 (($ $) NIL) (($ $ |#4|) 44)) (-2559 (((-112) $ $) 131) (((-112) $ (-656 $)) 135)) (-3454 (((-112) $) 60)) (-2799 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 125)) (-2673 (($ $) 160)) (-3494 (($ $) 156)) (-3557 (($ $) 155)) (-3924 (($ $ $) 87) (($ $ $ |#4|) 92)) (-1692 (($ $ $) 90) (($ $ $ |#4|) 94)) (-1938 (((-112) $ $) 143) (((-112) $ (-656 $)) 144)) (-4260 ((|#4| $) 32)) (-3822 (($ $ $) 128)) (-3048 (((-112) $) 59)) (-1802 (((-783) $) 35)) (-2761 (($ $) 174)) (-2823 (($ $) 171)) (-4272 (((-656 $) $) 72)) (-1729 (($ $) 62)) (-4395 (($ $) 167)) (-1787 (((-656 $) $) 69)) (-3084 (($ $) 64)) (-1711 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1482 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3738 (-783))) $ $) 130)) (-3762 (((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -2675 $) (|:| -3561 $)) $ $) 126) (((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -2675 $) (|:| -3561 $)) $ $ |#4|) 127)) (-4031 (((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -3561 $)) $ $) 121) (((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -3561 $)) $ $ |#4|) 123)) (-2914 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2364 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3175 (((-656 $) $) 54)) (-2915 (((-112) $ $) 140) (((-112) $ (-656 $)) 141)) (-3648 (($ $ $) 116)) (-3650 (($ $) 37)) (-2384 (((-112) $ $) 80)) (-2200 (((-112) $ $) 136) (((-112) $ (-656 $)) 138)) (-2565 (($ $ $) 112)) (-3050 (($ $) 41)) (-3115 ((|#2| |#2| $) 164) (($ (-656 $)) NIL) (($ $ $) NIL)) (-3314 (($ $ |#2|) NIL) (($ $ $) 153)) (-1591 (($ $ |#2|) 148) (($ $ $) 151)) (-3769 (($ $) 49)) (-3830 (($ $) 55)) (-1556 (((-907 (-390)) $) NIL) (((-907 (-576)) $) NIL) (((-548) $) NIL) (($ (-971 (-419 (-576)))) 237) (($ (-971 (-576))) 233) (($ (-971 |#2|)) 248) (((-1179) $) 279) (((-971 |#2|) $) 184)) (-4113 (((-876) $) 29) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-971 |#2|) $) 185) (($ (-419 (-576))) NIL) (($ $) NIL)) (-2738 (((-3 (-112) "failed") $ $) 79))) -(((-1085 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4113 (|#1| |#1|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -3115 (|#1| (-656 |#1|))) (-15 -4113 (|#1| (-419 (-576)))) (-15 -4113 ((-971 |#2|) |#1|)) (-15 -1556 ((-971 |#2|) |#1|)) (-15 -1556 ((-1179) |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2823 (|#1| |#1|)) (-15 -4395 (|#1| |#1|)) (-15 -2673 (|#1| |#1|)) (-15 -3115 (|#2| |#2| |#1|)) (-15 -3314 (|#1| |#1| |#1|)) (-15 -1591 (|#1| |#1| |#1|)) (-15 -3314 (|#1| |#1| |#2|)) (-15 -1591 (|#1| |#1| |#2|)) (-15 -3494 (|#1| |#1|)) (-15 -3557 (|#1| |#1|)) (-15 -1556 (|#1| (-971 |#2|))) (-15 -2317 (|#1| (-971 |#2|))) (-15 -2982 ((-3 |#1| "failed") (-971 |#2|))) (-15 -1556 (|#1| (-971 (-576)))) (-15 -2317 (|#1| (-971 (-576)))) (-15 -2982 ((-3 |#1| "failed") (-971 (-576)))) (-15 -1556 (|#1| (-971 (-419 (-576))))) (-15 -2317 (|#1| (-971 (-419 (-576))))) (-15 -2982 ((-3 |#1| "failed") (-971 (-419 (-576))))) (-15 -3648 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -1482 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3738 (-783))) |#1| |#1|)) (-15 -3822 (|#1| |#1| |#1|)) (-15 -2799 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -3762 ((-2 (|:| -2862 |#1|) (|:| |gap| (-783)) (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1| |#4|)) (-15 -3762 ((-2 (|:| -2862 |#1|) (|:| |gap| (-783)) (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -4031 ((-2 (|:| -2862 |#1|) (|:| |gap| (-783)) (|:| -3561 |#1|)) |#1| |#1| |#4|)) (-15 -4031 ((-2 (|:| -2862 |#1|) (|:| |gap| (-783)) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -2364 (|#1| |#1| |#1| |#4|)) (-15 -2914 (|#1| |#1| |#1| |#4|)) (-15 -2364 (|#1| |#1| |#1|)) (-15 -2914 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1| |#1| |#4|)) (-15 -3924 (|#1| |#1| |#1| |#4|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -3924 (|#1| |#1| |#1|)) (-15 -1938 ((-112) |#1| (-656 |#1|))) (-15 -1938 ((-112) |#1| |#1|)) (-15 -2915 ((-112) |#1| (-656 |#1|))) (-15 -2915 ((-112) |#1| |#1|)) (-15 -2200 ((-112) |#1| (-656 |#1|))) (-15 -2200 ((-112) |#1| |#1|)) (-15 -2559 ((-112) |#1| (-656 |#1|))) (-15 -2559 ((-112) |#1| |#1|)) (-15 -2577 ((-112) |#1| |#1|)) (-15 -2384 ((-112) |#1| |#1|)) (-15 -2738 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4272 ((-656 |#1|) |#1|)) (-15 -1787 ((-656 |#1|) |#1|)) (-15 -3084 (|#1| |#1|)) (-15 -1729 (|#1| |#1|)) (-15 -3454 ((-112) |#1|)) (-15 -3048 ((-112) |#1|)) (-15 -3310 (|#1| |#1| |#4|)) (-15 -1711 (|#1| |#1| |#4|)) (-15 -3830 (|#1| |#1|)) (-15 -3175 ((-656 |#1|) |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3050 (|#1| |#1|)) (-15 -3650 (|#1| |#1|)) (-15 -1802 ((-783) |#1|)) (-15 -4260 (|#4| |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -1556 ((-907 (-576)) |#1|)) (-15 -1556 ((-907 (-390)) |#1|)) (-15 -4113 (|#1| |#4|)) (-15 -2982 ((-3 |#4| "failed") |#1|)) (-15 -2317 (|#4| |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -3310 (|#1| |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) (-1086 |#2| |#3| |#4|) (-1070) (-805) (-861)) (T -1085)) -NIL -(-10 -8 (-15 -4113 (|#1| |#1|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -3115 (|#1| (-656 |#1|))) (-15 -4113 (|#1| (-419 (-576)))) (-15 -4113 ((-971 |#2|) |#1|)) (-15 -1556 ((-971 |#2|) |#1|)) (-15 -1556 ((-1179) |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2823 (|#1| |#1|)) (-15 -4395 (|#1| |#1|)) (-15 -2673 (|#1| |#1|)) (-15 -3115 (|#2| |#2| |#1|)) (-15 -3314 (|#1| |#1| |#1|)) (-15 -1591 (|#1| |#1| |#1|)) (-15 -3314 (|#1| |#1| |#2|)) (-15 -1591 (|#1| |#1| |#2|)) (-15 -3494 (|#1| |#1|)) (-15 -3557 (|#1| |#1|)) (-15 -1556 (|#1| (-971 |#2|))) (-15 -2317 (|#1| (-971 |#2|))) (-15 -2982 ((-3 |#1| "failed") (-971 |#2|))) (-15 -1556 (|#1| (-971 (-576)))) (-15 -2317 (|#1| (-971 (-576)))) (-15 -2982 ((-3 |#1| "failed") (-971 (-576)))) (-15 -1556 (|#1| (-971 (-419 (-576))))) (-15 -2317 (|#1| (-971 (-419 (-576))))) (-15 -2982 ((-3 |#1| "failed") (-971 (-419 (-576))))) (-15 -3648 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -1482 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3738 (-783))) |#1| |#1|)) (-15 -3822 (|#1| |#1| |#1|)) (-15 -2799 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -3762 ((-2 (|:| -2862 |#1|) (|:| |gap| (-783)) (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1| |#4|)) (-15 -3762 ((-2 (|:| -2862 |#1|) (|:| |gap| (-783)) (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -4031 ((-2 (|:| -2862 |#1|) (|:| |gap| (-783)) (|:| -3561 |#1|)) |#1| |#1| |#4|)) (-15 -4031 ((-2 (|:| -2862 |#1|) (|:| |gap| (-783)) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -2364 (|#1| |#1| |#1| |#4|)) (-15 -2914 (|#1| |#1| |#1| |#4|)) (-15 -2364 (|#1| |#1| |#1|)) (-15 -2914 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1| |#1| |#4|)) (-15 -3924 (|#1| |#1| |#1| |#4|)) (-15 -1692 (|#1| |#1| |#1|)) (-15 -3924 (|#1| |#1| |#1|)) (-15 -1938 ((-112) |#1| (-656 |#1|))) (-15 -1938 ((-112) |#1| |#1|)) (-15 -2915 ((-112) |#1| (-656 |#1|))) (-15 -2915 ((-112) |#1| |#1|)) (-15 -2200 ((-112) |#1| (-656 |#1|))) (-15 -2200 ((-112) |#1| |#1|)) (-15 -2559 ((-112) |#1| (-656 |#1|))) (-15 -2559 ((-112) |#1| |#1|)) (-15 -2577 ((-112) |#1| |#1|)) (-15 -2384 ((-112) |#1| |#1|)) (-15 -2738 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4272 ((-656 |#1|) |#1|)) (-15 -1787 ((-656 |#1|) |#1|)) (-15 -3084 (|#1| |#1|)) (-15 -1729 (|#1| |#1|)) (-15 -3454 ((-112) |#1|)) (-15 -3048 ((-112) |#1|)) (-15 -3310 (|#1| |#1| |#4|)) (-15 -1711 (|#1| |#1| |#4|)) (-15 -3830 (|#1| |#1|)) (-15 -3175 ((-656 |#1|) |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3050 (|#1| |#1|)) (-15 -3650 (|#1| |#1|)) (-15 -1802 ((-783) |#1|)) (-15 -4260 (|#4| |#1|)) (-15 -1556 ((-548) |#1|)) (-15 -1556 ((-907 (-576)) |#1|)) (-15 -1556 ((-907 (-390)) |#1|)) (-15 -4113 (|#1| |#4|)) (-15 -2982 ((-3 |#4| "failed") |#1|)) (-15 -2317 (|#4| |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -3310 (|#1| |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1585 (((-656 |#3|) $) 113)) (-1421 (((-1193 $) $ |#3|) 128) (((-1193 |#1|) $) 127)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2390 (($ $) 91 (|has| |#1| (-568)))) (-3302 (((-112) $) 93 (|has| |#1| (-568)))) (-2625 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-3095 (($ $) 278)) (-2577 (((-112) $ $) 264)) (-1765 (((-3 $ "failed") $ $) 20)) (-2163 (($ $ $) 223 (|has| |#1| (-568)))) (-3913 (((-656 $) $ $) 218 (|has| |#1| (-568)))) (-2725 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-2658 (($ $) 101 (|has| |#1| (-464)))) (-3589 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-3170 (($) 18 T CONST)) (-2982 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 $ "failed") (-971 (-419 (-576)))) 238 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))) (((-3 $ "failed") (-971 (-576))) 235 (-3795 (-12 (-2299 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197)))))) (((-3 $ "failed") (-971 |#1|)) 232 (-3795 (-12 (-2299 (|has| |#1| (-38 (-419 (-576))))) (-2299 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1197)))) (-12 (-2299 (|has| |#1| (-557))) (-2299 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (-2299 (|has| |#1| (-1013 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))))) (-2317 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) ((|#3| $) 144) (($ (-971 (-419 (-576)))) 237 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))) (($ (-971 (-576))) 234 (-3795 (-12 (-2299 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197)))))) (($ (-971 |#1|)) 231 (-3795 (-12 (-2299 (|has| |#1| (-38 (-419 (-576))))) (-2299 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1197)))) (-12 (-2299 (|has| |#1| (-557))) (-2299 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (-2299 (|has| |#1| (-1013 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))))) (-2970 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 219 (|has| |#1| (-568)))) (-3310 (($ $) 161) (($ $ |#3|) 273)) (-1930 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-2559 (((-112) $ $) 263) (((-112) $ (-656 $)) 262)) (-1851 (((-3 $ "failed") $) 37)) (-3454 (((-112) $) 271)) (-2799 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 243)) (-2673 (($ $) 212 (|has| |#1| (-464)))) (-1788 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-3297 (((-656 $) $) 112)) (-2171 (((-112) $) 99 (|has| |#1| (-928)))) (-3494 (($ $) 228 (|has| |#1| (-568)))) (-3557 (($ $) 229 (|has| |#1| (-568)))) (-3924 (($ $ $) 255) (($ $ $ |#3|) 253)) (-1692 (($ $ $) 254) (($ $ $ |#3|) 252)) (-1975 (($ $ |#1| |#2| $) 179)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| |#3| (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| |#3| (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-2486 (((-112) $) 35)) (-2018 (((-783) $) 176)) (-1938 (((-112) $ $) 257) (((-112) $ (-656 $)) 256)) (-1830 (($ $ $ $ $) 214 (|has| |#1| (-568)))) (-4260 ((|#3| $) 282)) (-1574 (($ (-1193 |#1|) |#3|) 120) (($ (-1193 $) |#3|) 119)) (-2683 (((-656 $) $) 129)) (-4101 (((-112) $) 159)) (-1564 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-3822 (($ $ $) 242)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ |#3|) 123)) (-3048 (((-112) $) 272)) (-2192 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-1802 (((-783) $) 281)) (-3784 (($ (-1 |#2| |#2|) $) 178)) (-2423 (($ (-1 |#1| |#1|) $) 158)) (-3477 (((-3 |#3| "failed") $) 126)) (-2761 (($ $) 209 (|has| |#1| (-464)))) (-2823 (($ $) 210 (|has| |#1| (-464)))) (-4272 (((-656 $) $) 267)) (-1729 (($ $) 270)) (-4395 (($ $) 211 (|has| |#1| (-464)))) (-1787 (((-656 $) $) 268)) (-2160 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-3084 (($ $) 269)) (-1700 (($ $) 156)) (-1711 ((|#1| $) 155) (($ $ |#3|) 274)) (-3076 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-1482 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3738 (-783))) $ $) 241)) (-3762 (((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -2675 $) (|:| -3561 $)) $ $) 245) (((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -2675 $) (|:| -3561 $)) $ $ |#3|) 244)) (-4031 (((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -3561 $)) $ $) 247) (((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -3561 $)) $ $ |#3|) 246)) (-2914 (($ $ $) 251) (($ $ $ |#3|) 249)) (-2364 (($ $ $) 250) (($ $ $ |#3|) 248)) (-2447 (((-1179) $) 10)) (-4381 (($ $ $) 217 (|has| |#1| (-568)))) (-3175 (((-656 $) $) 276)) (-4050 (((-3 (-656 $) "failed") $) 117)) (-2646 (((-3 (-656 $) "failed") $) 118)) (-1608 (((-3 (-2 (|:| |var| |#3|) (|:| -4080 (-783))) "failed") $) 116)) (-2915 (((-112) $ $) 259) (((-112) $ (-656 $)) 258)) (-3648 (($ $ $) 239)) (-3650 (($ $) 280)) (-2384 (((-112) $ $) 265)) (-2200 (((-112) $ $) 261) (((-112) $ (-656 $)) 260)) (-2565 (($ $ $) 240)) (-3050 (($ $) 279)) (-3116 (((-1141) $) 11)) (-2674 (((-2 (|:| -3115 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-568)))) (-4136 (((-2 (|:| -3115 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-568)))) (-1678 (((-112) $) 173)) (-1686 ((|#1| $) 174)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3115 ((|#1| |#1| $) 213 (|has| |#1| (-464))) (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1452 (((-430 $) $) 102 (|has| |#1| (-928)))) (-4104 (((-2 (|:| -3115 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-568)))) (-1946 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3314 (($ $ |#1|) 226 (|has| |#1| (-568))) (($ $ $) 224 (|has| |#1| (-568)))) (-1591 (($ $ |#1|) 227 (|has| |#1| (-568))) (($ $ $) 225 (|has| |#1| (-568)))) (-2145 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-1790 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-4107 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-2196 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-3769 (($ $) 277)) (-3830 (($ $) 275)) (-1556 (((-907 (-390)) $) 85 (-12 (|has| |#3| (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| |#3| (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548))))) (($ (-971 (-419 (-576)))) 236 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197))))) (($ (-971 (-576))) 233 (-3795 (-12 (-2299 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1197)))))) (($ (-971 |#1|)) 230 (|has| |#3| (-626 (-1197)))) (((-1179) $) 208 (-12 (|has| |#1| (-1059 (-576))) (|has| |#3| (-626 (-1197))))) (((-971 |#1|) $) 207 (|has| |#3| (-626 (-1197))))) (-1944 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2311 (|has| $ (-146)) (|has| |#1| (-928))))) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (((-971 |#1|) $) 206 (|has| |#3| (-626 (-1197)))) (($ (-419 (-576))) 81 (-3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-3244 (((-656 |#1|) $) 175)) (-2707 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-4276 (((-3 $ "failed") $) 82 (-3795 (-2311 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) 32 T CONST)) (-1903 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 92 (|has| |#1| (-568)))) (-4313 (($) 19 T CONST)) (-2738 (((-3 (-112) "failed") $ $) 266)) (-4322 (($) 34 T CONST)) (-1676 (($ $ $ $ (-783)) 215 (|has| |#1| (-568)))) (-2580 (($ $ $ (-783)) 216 (|has| |#1| (-568)))) (-3157 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-1086 |#1| |#2| |#3|) (-141) (-1070) (-805) (-861)) (T -1086)) -((-4260 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-1802 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-783)))) (-3650 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3050 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3095 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3769 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3175 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-3830 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1711 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-3310 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1729 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3084 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-4272 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-2738 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2384 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2577 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2559 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2559 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-2200 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-2915 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-1938 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1938 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) (-3924 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1692 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3924 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-1692 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2914 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2364 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2914 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-2364 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *2 (-861)))) (-4031 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -2862 *1) (|:| |gap| (-783)) (|:| -3561 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-4031 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -2862 *1) (|:| |gap| (-783)) (|:| -3561 *1))) (-4 *1 (-1086 *4 *5 *3)))) (-3762 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -2862 *1) (|:| |gap| (-783)) (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-3762 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -2862 *1) (|:| |gap| (-783)) (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-1086 *4 *5 *3)))) (-2799 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-3822 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-1482 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3738 (-783)))) (-4 *1 (-1086 *3 *4 *5)))) (-2565 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-3648 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)))) (-2982 (*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)))) (-2982 (*1 *1 *2) (|partial| -3795 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2299 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) (-2317 (*1 *1 *2) (-3795 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2299 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) (-1556 (*1 *1 *2) (-3795 (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2299 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) (-2982 (*1 *1 *2) (|partial| -3795 (-12 (-5 *2 (-971 *3)) (-12 (-2299 (-4 *3 (-38 (-419 (-576))))) (-2299 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2299 (-4 *3 (-557))) (-2299 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2299 (-4 *3 (-1013 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))))) (-2317 (*1 *1 *2) (-3795 (-12 (-5 *2 (-971 *3)) (-12 (-2299 (-4 *3 (-38 (-419 (-576))))) (-2299 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2299 (-4 *3 (-557))) (-2299 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))) (-12 (-5 *2 (-971 *3)) (-12 (-2299 (-4 *3 (-1013 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-861))))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *5 (-626 (-1197))) (-4 *4 (-805)) (-4 *5 (-861)))) (-3557 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3494 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-1591 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3314 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-1591 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3314 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-2163 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-4104 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3115 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-4136 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3115 *1) (|:| |coef1| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-2674 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3115 *1) (|:| |coef2| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-2970 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3913 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-4381 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-2580 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568)))) (-1676 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568)))) (-1830 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-568)))) (-3115 (*1 *2 *2 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-2673 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-4395 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-2823 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464)))) (-2761 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-464))))) -(-13 (-968 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4260 (|t#3| $)) (-15 -1802 ((-783) $)) (-15 -3650 ($ $)) (-15 -3050 ($ $)) (-15 -3095 ($ $)) (-15 -3769 ($ $)) (-15 -3175 ((-656 $) $)) (-15 -3830 ($ $)) (-15 -1711 ($ $ |t#3|)) (-15 -3310 ($ $ |t#3|)) (-15 -3048 ((-112) $)) (-15 -3454 ((-112) $)) (-15 -1729 ($ $)) (-15 -3084 ($ $)) (-15 -1787 ((-656 $) $)) (-15 -4272 ((-656 $) $)) (-15 -2738 ((-3 (-112) "failed") $ $)) (-15 -2384 ((-112) $ $)) (-15 -2577 ((-112) $ $)) (-15 -2559 ((-112) $ $)) (-15 -2559 ((-112) $ (-656 $))) (-15 -2200 ((-112) $ $)) (-15 -2200 ((-112) $ (-656 $))) (-15 -2915 ((-112) $ $)) (-15 -2915 ((-112) $ (-656 $))) (-15 -1938 ((-112) $ $)) (-15 -1938 ((-112) $ (-656 $))) (-15 -3924 ($ $ $)) (-15 -1692 ($ $ $)) (-15 -3924 ($ $ $ |t#3|)) (-15 -1692 ($ $ $ |t#3|)) (-15 -2914 ($ $ $)) (-15 -2364 ($ $ $)) (-15 -2914 ($ $ $ |t#3|)) (-15 -2364 ($ $ $ |t#3|)) (-15 -4031 ((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -3561 $)) $ $)) (-15 -4031 ((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -3561 $)) $ $ |t#3|)) (-15 -3762 ((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -2675 $) (|:| -3561 $)) $ $)) (-15 -3762 ((-2 (|:| -2862 $) (|:| |gap| (-783)) (|:| -2675 $) (|:| -3561 $)) $ $ |t#3|)) (-15 -2799 ((-2 (|:| -2675 $) (|:| -3561 $)) $ $)) (-15 -3822 ($ $ $)) (-15 -1482 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3738 (-783))) $ $)) (-15 -2565 ($ $ $)) (-15 -3648 ($ $ $)) (IF (|has| |t#3| (-626 (-1197))) (PROGN (-6 (-625 (-971 |t#1|))) (-6 (-626 (-971 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2982 ((-3 $ "failed") (-971 (-419 (-576))))) (-15 -2317 ($ (-971 (-419 (-576))))) (-15 -1556 ($ (-971 (-419 (-576))))) (-15 -2982 ((-3 $ "failed") (-971 (-576)))) (-15 -2317 ($ (-971 (-576)))) (-15 -1556 ($ (-971 (-576)))) (IF (|has| |t#1| (-1013 (-576))) |%noBranch| (PROGN (-15 -2982 ((-3 $ "failed") (-971 |t#1|))) (-15 -2317 ($ (-971 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -2982 ((-3 $ "failed") (-971 (-576)))) (-15 -2317 ($ (-971 (-576)))) (-15 -1556 ($ (-971 (-576)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -2982 ((-3 $ "failed") (-971 |t#1|))) (-15 -2317 ($ (-971 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -2982 ((-3 $ "failed") (-971 |t#1|))) (-15 -2317 ($ (-971 |t#1|)))))) (-15 -1556 ($ (-971 |t#1|))) (IF (|has| |t#1| (-1059 (-576))) (-6 (-626 (-1179))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3557 ($ $)) (-15 -3494 ($ $)) (-15 -1591 ($ $ |t#1|)) (-15 -3314 ($ $ |t#1|)) (-15 -1591 ($ $ $)) (-15 -3314 ($ $ $)) (-15 -2163 ($ $ $)) (-15 -4104 ((-2 (|:| -3115 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4136 ((-2 (|:| -3115 $) (|:| |coef1| $)) $ $)) (-15 -2674 ((-2 (|:| -3115 $) (|:| |coef2| $)) $ $)) (-15 -2970 ($ $ $)) (-15 -3913 ((-656 $) $ $)) (-15 -4381 ($ $ $)) (-15 -2580 ($ $ $ (-783))) (-15 -1676 ($ $ $ $ (-783))) (-15 -1830 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3115 (|t#1| |t#1| $)) (-15 -2673 ($ $)) (-15 -4395 ($ $)) (-15 -2823 ($ $)) (-15 -2761 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-876)) . T) ((-625 (-971 |#1|)) |has| |#3| (-626 (-1197))) ((-174) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#3| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#3| (-626 (-907 (-576))))) ((-626 (-971 |#1|)) |has| |#3| (-626 (-1197))) ((-626 (-1179)) -12 (|has| |#1| (-1059 (-576))) (|has| |#3| (-626 (-1197)))) ((-300) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3795 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-911 $ |#3|) . T) ((-917 |#3|) . T) ((-919 |#3|) . T) ((-901 (-390)) -12 (|has| |#1| (-901 (-390))) (|has| |#3| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-901 (-576))) (|has| |#3| (-901 (-576)))) ((-968 |#1| |#2| |#3|) . T) ((-928) |has| |#1| (-928)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 |#1|) . T) ((-1059 |#3|) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) |has| |#1| (-928))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-1666 (((-656 (-1156)) $) 18)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 27) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4159 (((-1156) $) 20)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1087) (-13 (-1104) (-10 -8 (-15 -1666 ((-656 (-1156)) $)) (-15 -4159 ((-1156) $))))) (T -1087)) -((-1666 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1087)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1087))))) -(-13 (-1104) (-10 -8 (-15 -1666 ((-656 (-1156)) $)) (-15 -4159 ((-1156) $)))) -((-3114 (((-112) |#3| $) 15)) (-2467 (((-3 $ "failed") |#3| (-940)) 29)) (-1851 (((-3 |#3| "failed") |#3| $) 45)) (-2279 (((-112) |#3| $) 19)) (-3323 (((-112) |#3| $) 17))) -(((-1088 |#1| |#2| |#3|) (-10 -8 (-15 -2467 ((-3 |#1| "failed") |#3| (-940))) (-15 -1851 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2279 ((-112) |#3| |#1|)) (-15 -3323 ((-112) |#3| |#1|)) (-15 -3114 ((-112) |#3| |#1|))) (-1089 |#2| |#3|) (-13 (-860) (-374)) (-1264 |#2|)) (T -1088)) -NIL -(-10 -8 (-15 -2467 ((-3 |#1| "failed") |#3| (-940))) (-15 -1851 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2279 ((-112) |#3| |#1|)) (-15 -3323 ((-112) |#3| |#1|)) (-15 -3114 ((-112) |#3| |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) |#2| $) 22)) (-1527 (((-576) |#2| $) 23)) (-2467 (((-3 $ "failed") |#2| (-940)) 16)) (-3207 ((|#1| |#2| $ |#1|) 14)) (-1851 (((-3 |#2| "failed") |#2| $) 19)) (-2279 (((-112) |#2| $) 20)) (-3323 (((-112) |#2| $) 21)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-3881 ((|#2| $) 18)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-2642 ((|#1| |#2| $ |#1|) 15)) (-2820 (((-656 $) |#2|) 17)) (-3939 (((-112) $ $) 8))) -(((-1089 |#1| |#2|) (-141) (-13 (-860) (-374)) (-1264 |t#1|)) (T -1089)) -((-1527 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-576)))) (-3114 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-112)))) (-3323 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-112)))) (-2279 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-112)))) (-1851 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1264 *3)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1264 *3)))) (-2820 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *3)))) (-2467 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-940)) (-4 *4 (-13 (-860) (-374))) (-4 *1 (-1089 *4 *2)) (-4 *2 (-1264 *4)))) (-2642 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1264 *2)))) (-3207 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1264 *2))))) -(-13 (-1121) (-10 -8 (-15 -1527 ((-576) |t#2| $)) (-15 -3114 ((-112) |t#2| $)) (-15 -3323 ((-112) |t#2| $)) (-15 -2279 ((-112) |t#2| $)) (-15 -1851 ((-3 |t#2| "failed") |t#2| $)) (-15 -3881 (|t#2| $)) (-15 -2820 ((-656 $) |t#2|)) (-15 -2467 ((-3 $ "failed") |t#2| (-940))) (-15 -2642 (|t#1| |t#2| $ |t#1|)) (-15 -3207 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-2834 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-783)) 114)) (-3177 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783)) 63)) (-3086 (((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-783)) 99)) (-1983 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-3316 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783)) 65) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783) (-112)) 67)) (-3325 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 87)) (-1556 (((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) 92)) (-1404 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-112)) 62)) (-4371 (((-783) (-656 |#4|) (-656 |#5|)) 21))) -(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4371 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1983 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1404 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-112))) (-15 -3177 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -3177 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -3316 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -3316 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -3316 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -3325 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3325 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2834 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-783))) (-15 -1556 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -3086 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-783)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1090)) -((-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) (-5 *1 (-1090 *4 *5 *6 *7 *8)))) (-2834 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4442 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4442 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) (-4 *11 (-1092 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-5 *1 (-1090 *7 *8 *9 *10 *11)))) (-3325 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-3325 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-3316 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3316 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3316 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1090 *7 *8 *9 *3 *4)) (-4 *4 (-1092 *7 *8 *9 *3)))) (-3177 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3177 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -4371 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1983 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1404 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-112))) (-15 -3177 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -3177 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -3316 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -3316 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -3316 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -3325 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3325 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2834 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-783))) (-15 -1556 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -3086 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-783)))) -((-2220 (((-112) |#5| $) 26)) (-1473 (((-112) |#5| $) 29)) (-2289 (((-112) |#5| $) 18) (((-112) $) 52)) (-1431 (((-656 $) |#5| $) NIL) (((-656 $) (-656 |#5|) $) 94) (((-656 $) (-656 |#5|) (-656 $)) 92) (((-656 $) |#5| (-656 $)) 95)) (-2419 (($ $ |#5|) NIL) (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 73) (((-656 $) (-656 |#5|) $) 75) (((-656 $) (-656 |#5|) (-656 $)) 77)) (-3290 (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 64) (((-656 $) (-656 |#5|) $) 69) (((-656 $) (-656 |#5|) (-656 $)) 71)) (-3462 (((-112) |#5| $) 32))) -(((-1091 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2419 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2419 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2419 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2419 ((-656 |#1|) |#5| |#1|)) (-15 -3290 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3290 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3290 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3290 ((-656 |#1|) |#5| |#1|)) (-15 -1431 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1431 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1431 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1431 ((-656 |#1|) |#5| |#1|)) (-15 -1473 ((-112) |#5| |#1|)) (-15 -2289 ((-112) |#1|)) (-15 -3462 ((-112) |#5| |#1|)) (-15 -2220 ((-112) |#5| |#1|)) (-15 -2289 ((-112) |#5| |#1|)) (-15 -2419 (|#1| |#1| |#5|))) (-1092 |#2| |#3| |#4| |#5|) (-464) (-805) (-861) (-1086 |#2| |#3| |#4|)) (T -1091)) -NIL -(-10 -8 (-15 -2419 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2419 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2419 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2419 ((-656 |#1|) |#5| |#1|)) (-15 -3290 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3290 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3290 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3290 ((-656 |#1|) |#5| |#1|)) (-15 -1431 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1431 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1431 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1431 ((-656 |#1|) |#5| |#1|)) (-15 -1473 ((-112) |#5| |#1|)) (-15 -2289 ((-112) |#1|)) (-15 -3462 ((-112) |#5| |#1|)) (-15 -2220 ((-112) |#5| |#1|)) (-15 -2289 ((-112) |#5| |#1|)) (-15 -2419 (|#1| |#1| |#5|))) -((-1957 (((-112) $ $) 7)) (-2048 (((-656 (-2 (|:| -1597 $) (|:| -3823 (-656 |#4|)))) (-656 |#4|)) 86)) (-2739 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1585 (((-656 |#3|) $) 34)) (-4404 (((-112) $) 27)) (-3921 (((-112) $) 18 (|has| |#1| (-568)))) (-2417 (((-112) |#4| $) 102) (((-112) $) 98)) (-1916 ((|#4| |#4| $) 93)) (-2658 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| $) 127)) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |#3|) 28)) (-4234 (((-112) $ (-783)) 45)) (-3603 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3170 (($) 46 T CONST)) (-4016 (((-112) $) 23 (|has| |#1| (-568)))) (-3403 (((-112) $ $) 25 (|has| |#1| (-568)))) (-4357 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2159 (((-112) $) 26 (|has| |#1| (-568)))) (-2460 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3496 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-3588 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2982 (((-3 $ "failed") (-656 |#4|)) 37)) (-2317 (($ (-656 |#4|)) 36)) (-1764 (((-3 $ "failed") $) 83)) (-2458 ((|#4| |#4| $) 90)) (-3841 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3561 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2559 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3234 ((|#4| |#4| $) 88)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1794 (((-2 (|:| -1597 (-656 |#4|)) (|:| -3823 (-656 |#4|))) $) 106)) (-2220 (((-112) |#4| $) 137)) (-1473 (((-112) |#4| $) 134)) (-2289 (((-112) |#4| $) 138) (((-112) $) 135)) (-3722 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-1938 (((-112) |#4| $) 105) (((-112) $) 104)) (-4260 ((|#3| $) 35)) (-3215 (((-112) $ (-783)) 44)) (-2911 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-1602 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#4| |#4|) $) 48)) (-3240 (((-656 |#3|) $) 33)) (-3821 (((-112) |#3| $) 32)) (-1884 (((-112) $ (-783)) 43)) (-2447 (((-1179) $) 10)) (-2890 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4381 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| |#4| $) 128)) (-2850 (((-3 |#4| "failed") $) 84)) (-2489 (((-656 $) |#4| $) 130)) (-4003 (((-3 (-112) (-656 $)) |#4| $) 133)) (-3891 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1431 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2341 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-4387 (((-656 |#4|) $) 108)) (-2915 (((-112) |#4| $) 100) (((-112) $) 96)) (-3648 ((|#4| |#4| $) 91)) (-2384 (((-112) $ $) 111)) (-2296 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-2200 (((-112) |#4| $) 101) (((-112) $) 97)) (-2565 ((|#4| |#4| $) 92)) (-3116 (((-1141) $) 11)) (-1755 (((-3 |#4| "failed") $) 85)) (-4220 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3238 (((-3 $ "failed") $ |#4|) 79)) (-2419 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-1759 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-1645 (((-112) $ $) 39)) (-3617 (((-112) $) 42)) (-3307 (($) 41)) (-2196 (((-783) $) 107)) (-3127 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-4287 (($ $) 40)) (-1556 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4125 (($ (-656 |#4|)) 61)) (-4023 (($ $ |#3|) 29)) (-2715 (($ $ |#3|) 31)) (-1357 (($ $) 89)) (-3142 (($ $ |#3|) 30)) (-4113 (((-876) $) 12) (((-656 |#4|) $) 38)) (-2524 (((-783) $) 77 (|has| |#3| (-379)))) (-2950 (((-112) $ $) 6)) (-1671 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1638 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3290 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2543 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-1754 (((-656 |#3|) $) 82)) (-3462 (((-112) |#4| $) 136)) (-1736 (((-112) |#3| $) 81)) (-3939 (((-112) $ $) 8)) (-1970 (((-783) $) 47 (|has| $ (-6 -4464))))) -(((-1092 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1092)) -((-2289 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2220 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-3462 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-1473 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-4003 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3891 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3891 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2489 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-2890 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-4381 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-2658 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-1431 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-1431 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-1431 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-1431 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-3290 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3290 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-3290 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-3290 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-2341 (*1 *1 *2 *1) (-12 (-4 *1 (-1092 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-2341 (*1 *1 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)))) (-2419 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-2419 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-2419 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-2419 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1092 *5 *6 *7 *8))))) -(-13 (-1231 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2289 ((-112) |t#4| $)) (-15 -2220 ((-112) |t#4| $)) (-15 -3462 ((-112) |t#4| $)) (-15 -2289 ((-112) $)) (-15 -1473 ((-112) |t#4| $)) (-15 -4003 ((-3 (-112) (-656 $)) |t#4| $)) (-15 -3891 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |t#4| $)) (-15 -3891 ((-112) |t#4| $)) (-15 -2489 ((-656 $) |t#4| $)) (-15 -2890 ((-3 |t#4| (-656 $)) |t#4| |t#4| $)) (-15 -4381 ((-656 (-2 (|:| |val| |t#4|) (|:| -4442 $))) |t#4| |t#4| $)) (-15 -2658 ((-656 (-2 (|:| |val| |t#4|) (|:| -4442 $))) |t#4| $)) (-15 -1431 ((-656 $) |t#4| $)) (-15 -1431 ((-656 $) (-656 |t#4|) $)) (-15 -1431 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -1431 ((-656 $) |t#4| (-656 $))) (-15 -3290 ((-656 $) |t#4| $)) (-15 -3290 ((-656 $) |t#4| (-656 $))) (-15 -3290 ((-656 $) (-656 |t#4|) $)) (-15 -3290 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -2341 ($ |t#4| $)) (-15 -2341 ($ (-656 |t#4|) $)) (-15 -2419 ((-656 $) |t#4| $)) (-15 -2419 ((-656 $) |t#4| (-656 $))) (-15 -2419 ((-656 $) (-656 |t#4|) $)) (-15 -2419 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -2739 ((-656 $) (-656 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) -((-2568 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|) 86)) (-1628 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|) 127)) (-1375 (((-656 |#5|) |#4| |#5|) 74)) (-4165 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2087 (((-1293)) 36)) (-2297 (((-1293)) 25)) (-3733 (((-1293) (-1179) (-1179) (-1179)) 32)) (-3675 (((-1293) (-1179) (-1179) (-1179)) 21)) (-1475 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#4| |#4| |#5|) 107)) (-1360 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#3| (-112)) 118) (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3566 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|) 113))) -(((-1093 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3675 ((-1293) (-1179) (-1179) (-1179))) (-15 -2297 ((-1293))) (-15 -3733 ((-1293) (-1179) (-1179) (-1179))) (-15 -2087 ((-1293))) (-15 -1475 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -1360 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1360 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#3| (-112))) (-15 -3566 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -1628 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -4165 ((-112) |#4| |#5|)) (-15 -4165 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -1375 ((-656 |#5|) |#4| |#5|)) (-15 -2568 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1093)) -((-2568 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1375 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4165 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4165 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1628 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3566 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-1360 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4442 *9)))) (-5 *1 (-1093 *6 *7 *4 *8 *9)))) (-1360 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-1475 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2087 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3733 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2297 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3675 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(-10 -7 (-15 -3675 ((-1293) (-1179) (-1179) (-1179))) (-15 -2297 ((-1293))) (-15 -3733 ((-1293) (-1179) (-1179) (-1179))) (-15 -2087 ((-1293))) (-15 -1475 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -1360 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1360 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#3| (-112))) (-15 -3566 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -1628 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -4165 ((-112) |#4| |#5|)) (-15 -4165 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -1375 ((-656 |#5|) |#4| |#5|)) (-15 -2568 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|))) -((-1957 (((-112) $ $) NIL)) (-4171 (((-1237) $) 13)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2230 (((-1156) $) 10)) (-4113 (((-876) $) 20) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1094) (-13 (-1104) (-10 -8 (-15 -2230 ((-1156) $)) (-15 -4171 ((-1237) $))))) (T -1094)) -((-2230 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1094)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1094))))) -(-13 (-1104) (-10 -8 (-15 -2230 ((-1156) $)) (-15 -4171 ((-1237) $)))) -((-3379 (((-112) $ $) 7))) -(((-1095) (-13 (-1238) (-10 -8 (-15 -3379 ((-112) $ $))))) (T -1095)) -((-3379 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1095))))) -(-13 (-1238) (-10 -8 (-15 -3379 ((-112) $ $)))) -((-1957 (((-112) $ $) NIL)) (-4149 (((-1197) $) 8)) (-2447 (((-1179) $) 17)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 11)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 14))) -(((-1096 |#1|) (-13 (-1121) (-10 -8 (-15 -4149 ((-1197) $)))) (-1197)) (T -1096)) -((-4149 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1096 *3)) (-14 *3 *2)))) -(-13 (-1121) (-10 -8 (-15 -4149 ((-1197) $)))) -((-1957 (((-112) $ $) NIL)) (-3767 (($ $ (-656 (-1197)) (-1 (-112) (-656 |#3|))) 34)) (-4279 (($ |#3| |#3|) 23) (($ |#3| |#3| (-656 (-1197))) 21)) (-1784 ((|#3| $) 13)) (-2982 (((-3 (-304 |#3|) "failed") $) 60)) (-2317 (((-304 |#3|) $) NIL)) (-3444 (((-656 (-1197)) $) 16)) (-1960 (((-907 |#1|) $) 11)) (-1776 ((|#3| $) 12)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4369 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-940)) 41)) (-4113 (((-876) $) 89) (($ (-304 |#3|)) 22)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 38))) -(((-1097 |#1| |#2| |#3|) (-13 (-1121) (-296 |#3| |#3|) (-1059 (-304 |#3|)) (-10 -8 (-15 -4279 ($ |#3| |#3|)) (-15 -4279 ($ |#3| |#3| (-656 (-1197)))) (-15 -3767 ($ $ (-656 (-1197)) (-1 (-112) (-656 |#3|)))) (-15 -1960 ((-907 |#1|) $)) (-15 -1776 (|#3| $)) (-15 -1784 (|#3| $)) (-15 -4369 (|#3| $ |#3| (-940))) (-15 -3444 ((-656 (-1197)) $)))) (-1121) (-13 (-1070) (-901 |#1|) (-626 (-907 |#1|))) (-13 (-442 |#2|) (-901 |#1|) (-626 (-907 |#1|)))) (T -1097)) -((-4279 (*1 *1 *2 *2) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))))) (-4279 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1 (-112) (-656 *6))) (-4 *6 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *6)))) (-1960 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 *2))) (-5 *2 (-907 *3)) (-5 *1 (-1097 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 *2))))) (-1776 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) (-1784 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1097 *3 *4 *2)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) (-4369 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-940)) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1097 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) (-3444 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *2 (-656 (-1197))) (-5 *1 (-1097 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) -(-13 (-1121) (-296 |#3| |#3|) (-1059 (-304 |#3|)) (-10 -8 (-15 -4279 ($ |#3| |#3|)) (-15 -4279 ($ |#3| |#3| (-656 (-1197)))) (-15 -3767 ($ $ (-656 (-1197)) (-1 (-112) (-656 |#3|)))) (-15 -1960 ((-907 |#1|) $)) (-15 -1776 (|#3| $)) (-15 -1784 (|#3| $)) (-15 -4369 (|#3| $ |#3| (-940))) (-15 -3444 ((-656 (-1197)) $)))) -((-1957 (((-112) $ $) NIL)) (-3735 (($ (-656 (-1097 |#1| |#2| |#3|))) 14)) (-1989 (((-656 (-1097 |#1| |#2| |#3|)) $) 21)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4369 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-940)) 27)) (-4113 (((-876) $) 17)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 20))) -(((-1098 |#1| |#2| |#3|) (-13 (-1121) (-296 |#3| |#3|) (-10 -8 (-15 -3735 ($ (-656 (-1097 |#1| |#2| |#3|)))) (-15 -1989 ((-656 (-1097 |#1| |#2| |#3|)) $)) (-15 -4369 (|#3| $ |#3| (-940))))) (-1121) (-13 (-1070) (-901 |#1|) (-626 (-907 |#1|))) (-13 (-442 |#2|) (-901 |#1|) (-626 (-907 |#1|)))) (T -1098)) -((-3735 (*1 *1 *2) (-12 (-5 *2 (-656 (-1097 *3 *4 *5))) (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) (-5 *1 (-1098 *3 *4 *5)))) (-1989 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) (-5 *2 (-656 (-1097 *3 *4 *5))) (-5 *1 (-1098 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))))) (-4369 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-940)) (-4 *4 (-1121)) (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) (-5 *1 (-1098 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4))))))) -(-13 (-1121) (-296 |#3| |#3|) (-10 -8 (-15 -3735 ($ (-656 (-1097 |#1| |#2| |#3|)))) (-15 -1989 ((-656 (-1097 |#1| |#2| |#3|)) $)) (-15 -4369 (|#3| $ |#3| (-940))))) -((-2105 (((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)) 88) (((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|))) 92) (((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112)) 90))) -(((-1099 |#1| |#2|) (-10 -7 (-15 -2105 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -2105 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -2105 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)))) (-13 (-317) (-148)) (-656 (-1197))) (T -1099)) -((-2105 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -2785 (-1193 *5)) (|:| -4314 (-656 (-971 *5)))))) (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))))) (-2105 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -2785 (-1193 *4)) (|:| -4314 (-656 (-971 *4)))))) (-5 *1 (-1099 *4 *5)) (-5 *3 (-656 (-971 *4))) (-14 *5 (-656 (-1197))))) (-2105 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -2785 (-1193 *5)) (|:| -4314 (-656 (-971 *5)))))) (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197)))))) -(-10 -7 (-15 -2105 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -2105 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -2105 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)))) -((-1452 (((-430 |#3|) |#3|) 18))) -(((-1100 |#1| |#2| |#3|) (-10 -7 (-15 -1452 ((-430 |#3|) |#3|))) (-1264 (-419 (-576))) (-13 (-374) (-148) (-736 (-419 (-576)) |#1|)) (-1264 |#2|)) (T -1100)) -((-1452 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1264 *5))))) -(-10 -7 (-15 -1452 ((-430 |#3|) |#3|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 136)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-374)))) (-2390 (($ $) NIL (|has| |#1| (-374)))) (-3302 (((-112) $) NIL (|has| |#1| (-374)))) (-2637 (((-701 |#1|) (-1288 $)) NIL) (((-701 |#1|)) 121)) (-3832 ((|#1| $) 125)) (-2063 (((-1210 (-940) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL (|has| |#1| (-374)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2201 (((-783)) 43 (|has| |#1| (-379)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-2496 (($ (-1288 |#1|) (-1288 $)) NIL) (($ (-1288 |#1|)) 46)) (-4242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-1481 (((-701 |#1|) $ (-1288 $)) NIL) (((-701 |#1|) $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 113) (((-701 |#1|) (-701 $)) 108)) (-2721 (($ |#2|) 65) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-374)))) (-1851 (((-3 $ "failed") $) NIL)) (-4135 (((-940)) 84)) (-4370 (($) 47 (|has| |#1| (-379)))) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3712 (($) NIL (|has| |#1| (-360)))) (-2616 (((-112) $) NIL (|has| |#1| (-360)))) (-2824 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-2171 (((-112) $) NIL (|has| |#1| (-374)))) (-3359 (((-940) $) NIL (|has| |#1| (-360))) (((-845 (-940)) $) NIL (|has| |#1| (-360)))) (-2486 (((-112) $) NIL)) (-2595 ((|#1| $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4293 ((|#2| $) 91 (|has| |#1| (-374)))) (-3787 (((-940) $) 145 (|has| |#1| (-379)))) (-2709 ((|#2| $) 62)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL (|has| |#1| (-374)))) (-3650 (($) NIL (|has| |#1| (-360)) CONST)) (-2411 (($ (-940)) 135 (|has| |#1| (-379)))) (-3116 (((-1141) $) NIL)) (-2549 (($) 127)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3409 (((-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576))))) NIL (|has| |#1| (-360)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2812 (((-783) $) NIL (|has| |#1| (-374)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-1790 ((|#1| (-1288 $)) NIL) ((|#1|) 117)) (-3168 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-4107 (($ $ (-783)) NIL (-3795 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-3795 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-2828 (((-701 |#1|) (-1288 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-3881 ((|#2|) 81)) (-4223 (($) NIL (|has| |#1| (-360)))) (-4314 (((-1288 |#1|) $ (-1288 $)) 96) (((-701 |#1|) (-1288 $) (-1288 $)) NIL) (((-1288 |#1|) $) 75) (((-701 |#1|) (-1288 $)) 92)) (-1556 (((-1288 |#1|) $) NIL) (($ (-1288 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (|has| |#1| (-360)))) (-4113 (((-876) $) 61) (($ (-576)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-374))) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-374)) (|has| |#1| (-1059 (-419 (-576))))))) (-4276 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4358 ((|#2| $) 89)) (-2910 (((-783)) 83 T CONST)) (-2950 (((-112) $ $) NIL)) (-2704 (((-1288 $)) 88)) (-4134 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4313 (($) 32 T CONST)) (-4322 (($) 19 T CONST)) (-3157 (($ $ (-783)) NIL (-3795 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-3795 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1197)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-919 (-1197))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-3939 (((-112) $ $) 67)) (-4047 (($ $ $) NIL (|has| |#1| (-374)))) (-4037 (($ $) 71) (($ $ $) NIL)) (-4026 (($ $ $) 69)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) -(((-1101 |#1| |#2| |#3|) (-736 |#1| |#2|) (-174) (-1264 |#1|) |#2|) (T -1101)) -NIL -(-736 |#1| |#2|) -((-1452 (((-430 |#3|) |#3|) 19))) -(((-1102 |#1| |#2| |#3|) (-10 -7 (-15 -1452 ((-430 |#3|) |#3|))) (-1264 (-419 (-971 (-576)))) (-13 (-374) (-148) (-736 (-419 (-971 (-576))) |#1|)) (-1264 |#2|)) (T -1102)) -((-1452 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 (-971 (-576))))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-971 (-576))) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1102 *4 *5 *3)) (-4 *3 (-1264 *5))))) -(-10 -7 (-15 -1452 ((-430 |#3|) |#3|))) -((-1957 (((-112) $ $) NIL)) (-2907 (($ $ $) 16)) (-3777 (($ $ $) 17)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1548 (($) 6)) (-1556 (((-1197) $) 20)) (-4113 (((-876) $) 13)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 15)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 9))) -(((-1103) (-13 (-861) (-626 (-1197)) (-10 -8 (-15 -1548 ($))))) (T -1103)) -((-1548 (*1 *1) (-5 *1 (-1103)))) -(-13 (-861) (-626 (-1197)) (-10 -8 (-15 -1548 ($)))) -((-1957 (((-112) $ $) 7)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-1202)) 17) (((-1202) $) 16)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) -(((-1104) (-141)) (T -1104)) +((-3322 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23)))) (-4250 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23)))) (-2262 (*1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3322 (|t#1| $)) (-15 -3316 (|t#1| $)) (-15 -4250 (|t#1| $)) (-15 -2262 (|t#1|) -1491))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2299 (($) 25 T CONST)) (-2515 (($) 18 T CONST)) (-3322 ((|#1| $) 23)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3316 ((|#1| $) 22)) (-2262 ((|#1|) 20 T CONST)) (-3515 (((-877) $) 12)) (-4250 ((|#1| $) 21)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16))) +(((-1067 |#1|) (-141) (-23)) (T -1067)) +((-2299 (*1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-23))))) +(-13 (-1066 |t#1|) (-10 -8 (-15 -2299 ($) -1491))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-877)) . T) ((-1066 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2112 (((-657 (-2 (|:| -1988 $) (|:| -3179 (-657 (-793 |#1| (-879 |#2|)))))) (-657 (-793 |#1| (-879 |#2|)))) NIL)) (-1578 (((-657 $) (-657 (-793 |#1| (-879 |#2|)))) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-112)) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-112) (-112)) NIL)) (-1998 (((-657 (-879 |#2|)) $) NIL)) (-2250 (((-112) $) NIL)) (-4334 (((-112) $) NIL (|has| |#1| (-568)))) (-2605 (((-112) (-793 |#1| (-879 |#2|)) $) NIL) (((-112) $) NIL)) (-3300 (((-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-3188 (((-657 (-2 (|:| |val| (-793 |#1| (-879 |#2|))) (|:| -3941 $))) (-793 |#1| (-879 |#2|)) $) NIL)) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ (-879 |#2|)) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-2007 (($ (-1 (-112) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 (-793 |#1| (-879 |#2|)) "failed") $ (-879 |#2|)) NIL)) (-2515 (($) NIL T CONST)) (-2697 (((-112) $) NIL (|has| |#1| (-568)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1978 (((-112) $) NIL (|has| |#1| (-568)))) (-1835 (((-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|))) $ (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) (-1 (-112) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)))) NIL)) (-1494 (((-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|))) $) NIL (|has| |#1| (-568)))) (-4203 (((-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|))) $) NIL (|has| |#1| (-568)))) (-1593 (((-3 $ "failed") (-657 (-793 |#1| (-879 |#2|)))) NIL)) (-2830 (($ (-657 (-793 |#1| (-879 |#2|)))) NIL)) (-3542 (((-3 $ "failed") $) NIL)) (-1815 (((-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-793 |#1| (-879 |#2|)) (-1122))))) (-3901 (($ (-793 |#1| (-879 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-793 |#1| (-879 |#2|)) (-1122)))) (($ (-1 (-112) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3951 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-793 |#1| (-879 |#2|))) (|:| |den| |#1|)) (-793 |#1| (-879 |#2|)) $) NIL (|has| |#1| (-568)))) (-3427 (((-112) (-793 |#1| (-879 |#2|)) $ (-1 (-112) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)))) NIL)) (-1979 (((-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-3662 (((-793 |#1| (-879 |#2|)) (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) $ (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-793 |#1| (-879 |#2|)) (-1122)))) (((-793 |#1| (-879 |#2|)) (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) $ (-793 |#1| (-879 |#2|))) NIL (|has| $ (-6 -4466))) (((-793 |#1| (-879 |#2|)) (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $ (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) (-1 (-112) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)))) NIL)) (-1492 (((-2 (|:| -1988 (-657 (-793 |#1| (-879 |#2|)))) (|:| -3179 (-657 (-793 |#1| (-879 |#2|))))) $) NIL)) (-1381 (((-112) (-793 |#1| (-879 |#2|)) $) NIL)) (-1526 (((-112) (-793 |#1| (-879 |#2|)) $) NIL)) (-3883 (((-112) (-793 |#1| (-879 |#2|)) $) NIL) (((-112) $) NIL)) (-1448 (((-657 (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3537 (((-112) (-793 |#1| (-879 |#2|)) $) NIL) (((-112) $) NIL)) (-1428 (((-879 |#2|) $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-793 |#1| (-879 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-793 |#1| (-879 |#2|)) (-1122))))) (-1799 (($ (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) $) NIL)) (-3944 (((-657 (-879 |#2|)) $) NIL)) (-2611 (((-112) (-879 |#2|) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-3653 (((-3 (-793 |#1| (-879 |#2|)) (-657 $)) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-3156 (((-657 (-2 (|:| |val| (-793 |#1| (-879 |#2|))) (|:| -3941 $))) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-3921 (((-3 (-793 |#1| (-879 |#2|)) "failed") $) NIL)) (-4024 (((-657 $) (-793 |#1| (-879 |#2|)) $) NIL)) (-3846 (((-3 (-112) (-657 $)) (-793 |#1| (-879 |#2|)) $) NIL)) (-4002 (((-657 (-2 (|:| |val| (-112)) (|:| -3941 $))) (-793 |#1| (-879 |#2|)) $) NIL) (((-112) (-793 |#1| (-879 |#2|)) $) NIL)) (-3415 (((-657 $) (-793 |#1| (-879 |#2|)) $) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) $) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-657 $)) NIL) (((-657 $) (-793 |#1| (-879 |#2|)) (-657 $)) NIL)) (-3082 (($ (-793 |#1| (-879 |#2|)) $) NIL) (($ (-657 (-793 |#1| (-879 |#2|))) $) NIL)) (-3218 (((-657 (-793 |#1| (-879 |#2|))) $) NIL)) (-3893 (((-112) (-793 |#1| (-879 |#2|)) $) NIL) (((-112) $) NIL)) (-3510 (((-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-2304 (((-112) $ $) NIL)) (-2678 (((-2 (|:| |num| (-793 |#1| (-879 |#2|))) (|:| |den| |#1|)) (-793 |#1| (-879 |#2|)) $) NIL (|has| |#1| (-568)))) (-4299 (((-112) (-793 |#1| (-879 |#2|)) $) NIL) (((-112) $) NIL)) (-3511 (((-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-1460 (((-1142) $) NIL)) (-3528 (((-3 (-793 |#1| (-879 |#2|)) "failed") $) NIL)) (-4135 (((-3 (-793 |#1| (-879 |#2|)) "failed") (-1 (-112) (-793 |#1| (-879 |#2|))) $) NIL)) (-3923 (((-3 $ "failed") $ (-793 |#1| (-879 |#2|))) NIL)) (-1456 (($ $ (-793 |#1| (-879 |#2|))) NIL) (((-657 $) (-793 |#1| (-879 |#2|)) $) NIL) (((-657 $) (-793 |#1| (-879 |#2|)) (-657 $)) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) $) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-657 $)) NIL)) (-2372 (((-112) (-1 (-112) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|)))) NIL (-12 (|has| (-793 |#1| (-879 |#2|)) (-319 (-793 |#1| (-879 |#2|)))) (|has| (-793 |#1| (-879 |#2|)) (-1122)))) (($ $ (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) NIL (-12 (|has| (-793 |#1| (-879 |#2|)) (-319 (-793 |#1| (-879 |#2|)))) (|has| (-793 |#1| (-879 |#2|)) (-1122)))) (($ $ (-304 (-793 |#1| (-879 |#2|)))) NIL (-12 (|has| (-793 |#1| (-879 |#2|)) (-319 (-793 |#1| (-879 |#2|)))) (|has| (-793 |#1| (-879 |#2|)) (-1122)))) (($ $ (-657 (-304 (-793 |#1| (-879 |#2|))))) NIL (-12 (|has| (-793 |#1| (-879 |#2|)) (-319 (-793 |#1| (-879 |#2|)))) (|has| (-793 |#1| (-879 |#2|)) (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-4265 (((-784) $) NIL)) (-1469 (((-784) (-793 |#1| (-879 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-793 |#1| (-879 |#2|)) (-1122)))) (((-784) (-1 (-112) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-793 |#1| (-879 |#2|)) (-626 (-548))))) (-3529 (($ (-657 (-793 |#1| (-879 |#2|)))) NIL)) (-2764 (($ $ (-879 |#2|)) NIL)) (-2555 (($ $ (-879 |#2|)) NIL)) (-2038 (($ $) NIL)) (-2267 (($ $ (-879 |#2|)) NIL)) (-3515 (((-877) $) NIL) (((-657 (-793 |#1| (-879 |#2|))) $) NIL)) (-4384 (((-784) $) NIL (|has| (-879 |#2|) (-379)))) (-4166 (((-112) $ $) NIL)) (-2726 (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 (-793 |#1| (-879 |#2|))))) "failed") (-657 (-793 |#1| (-879 |#2|))) (-1 (-112) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 (-793 |#1| (-879 |#2|))))) "failed") (-657 (-793 |#1| (-879 |#2|))) (-1 (-112) (-793 |#1| (-879 |#2|))) (-1 (-112) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)))) NIL)) (-3741 (((-112) $ (-1 (-112) (-793 |#1| (-879 |#2|)) (-657 (-793 |#1| (-879 |#2|))))) NIL)) (-1360 (((-657 $) (-793 |#1| (-879 |#2|)) $) NIL) (((-657 $) (-793 |#1| (-879 |#2|)) (-657 $)) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) $) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-657 $)) NIL)) (-3258 (((-112) (-1 (-112) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2330 (((-657 (-879 |#2|)) $) NIL)) (-2374 (((-112) (-793 |#1| (-879 |#2|)) $) NIL)) (-2137 (((-112) (-879 |#2|) $) NIL)) (-2881 (((-112) $ $) NIL)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1068 |#1| |#2|) (-13 (-1093 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|))) (-10 -8 (-15 -1578 ((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-112) (-112))))) (-464) (-657 (-1198))) (T -1068)) +((-1578 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-1068 *5 *6))))) +(-13 (-1093 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|))) (-10 -8 (-15 -1578 ((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-112) (-112))))) +((-1950 (((-1 (-576)) (-1116 (-576))) 32)) (-1644 (((-576) (-576) (-576) (-576) (-576)) 29)) (-2088 (((-1 (-576)) |RationalNumber|) NIL)) (-1444 (((-1 (-576)) |RationalNumber|) NIL)) (-1940 (((-1 (-576)) (-576) |RationalNumber|) NIL))) +(((-1069) (-10 -7 (-15 -1950 ((-1 (-576)) (-1116 (-576)))) (-15 -1940 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -2088 ((-1 (-576)) |RationalNumber|)) (-15 -1444 ((-1 (-576)) |RationalNumber|)) (-15 -1644 ((-576) (-576) (-576) (-576) (-576))))) (T -1069)) +((-1644 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1069)))) (-1444 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1069)))) (-2088 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1069)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1069)) (-5 *3 (-576)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-1116 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1069))))) +(-10 -7 (-15 -1950 ((-1 (-576)) (-1116 (-576)))) (-15 -1940 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -2088 ((-1 (-576)) |RationalNumber|)) (-15 -1444 ((-1 (-576)) |RationalNumber|)) (-15 -1644 ((-576) (-576) (-576) (-576) (-576)))) +((-3515 (((-877) $) NIL) (($ (-576)) 10))) +(((-1070 |#1|) (-10 -8 (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) (-1071)) (T -1070)) +NIL +(-10 -8 (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-576)) 33)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-1071) (-141)) (T -1071)) +((-3845 (*1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-784))))) +(-13 (-1080) (-739) (-661 $) (-628 (-576)) (-10 -7 (-15 -3845 ((-784)) -1491) (-6 -4463))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-1643 (((-419 (-972 |#2|)) (-657 |#2|) (-657 |#2|) (-784) (-784)) 54))) +(((-1072 |#1| |#2|) (-10 -7 (-15 -1643 ((-419 (-972 |#2|)) (-657 |#2|) (-657 |#2|) (-784) (-784)))) (-1198) (-374)) (T -1072)) +((-1643 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-657 *6)) (-5 *4 (-784)) (-4 *6 (-374)) (-5 *2 (-419 (-972 *6))) (-5 *1 (-1072 *5 *6)) (-14 *5 (-1198))))) +(-10 -7 (-15 -1643 ((-419 (-972 |#2|)) (-657 |#2|) (-657 |#2|) (-784) (-784)))) +((-3423 (((-112) $ $) 7)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8)) (* (($ $ |#1|) 14))) +(((-1073 |#1|) (-141) (-1134)) (T -1073)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1073 *2)) (-4 *2 (-1134))))) +(-13 (-1122) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-1616 (((-112) $) 38)) (-3425 (((-112) $) 17)) (-2334 (((-784) $) 13)) (-2344 (((-784) $) 14)) (-3249 (((-112) $) 30)) (-2203 (((-112) $) 40))) +(((-1074 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2344 ((-784) |#1|)) (-15 -2334 ((-784) |#1|)) (-15 -2203 ((-112) |#1|)) (-15 -1616 ((-112) |#1|)) (-15 -3249 ((-112) |#1|)) (-15 -3425 ((-112) |#1|))) (-1075 |#2| |#3| |#4| |#5| |#6|) (-784) (-784) (-1071) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1074)) +NIL +(-10 -8 (-15 -2344 ((-784) |#1|)) (-15 -2334 ((-784) |#1|)) (-15 -2203 ((-112) |#1|)) (-15 -1616 ((-112) |#1|)) (-15 -3249 ((-112) |#1|)) (-15 -3425 ((-112) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-1616 (((-112) $) 56)) (-2423 (((-3 $ "failed") $ $) 20)) (-3425 (((-112) $) 58)) (-4284 (((-112) $ (-784)) 66)) (-2515 (($) 18 T CONST)) (-4389 (($ $) 39 (|has| |#3| (-317)))) (-3520 ((|#4| $ (-576)) 44)) (-4343 (((-784) $) 38 (|has| |#3| (-568)))) (-1741 ((|#3| $ (-576) (-576)) 46)) (-1448 (((-657 |#3|) $) 73 (|has| $ (-6 -4466)))) (-3652 (((-784) $) 37 (|has| |#3| (-568)))) (-2992 (((-657 |#5|) $) 36 (|has| |#3| (-568)))) (-2334 (((-784) $) 50)) (-2344 (((-784) $) 49)) (-1786 (((-112) $ (-784)) 65)) (-4076 (((-576) $) 54)) (-2581 (((-576) $) 52)) (-3855 (((-657 |#3|) $) 74 (|has| $ (-6 -4466)))) (-3326 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1122)) (|has| $ (-6 -4466))))) (-2898 (((-576) $) 53)) (-4230 (((-576) $) 51)) (-2484 (($ (-657 (-657 |#3|))) 59)) (-1799 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2819 (((-657 (-657 |#3|)) $) 48)) (-4326 (((-112) $ (-784)) 64)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3409 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-568)))) (-2372 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#3|) (-657 |#3|)) 80 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-304 |#3|)) 78 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-657 (-304 |#3|))) 77 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122))))) (-3807 (((-112) $ $) 60)) (-1368 (((-112) $) 63)) (-3340 (($) 62)) (-2780 ((|#3| $ (-576) (-576)) 47) ((|#3| $ (-576) (-576) |#3|) 45)) (-3249 (((-112) $) 57)) (-1469 (((-784) |#3| $) 75 (-12 (|has| |#3| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4466)))) (-1899 (($ $) 61)) (-1612 ((|#5| $ (-576)) 43)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-3258 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4466)))) (-2203 (((-112) $) 55)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#3|) 40 (|has| |#3| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-3437 (((-784) $) 67 (|has| $ (-6 -4466))))) +(((-1075 |#1| |#2| |#3| |#4| |#5|) (-141) (-784) (-784) (-1071) (-243 |t#2| |t#3|) (-243 |t#1| |t#3|)) (T -1075)) +((-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *5))) (-4 *5 (-1071)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-784)))) (-2344 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-784)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-657 (-657 *5))))) (-2780 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1071)))) (-1741 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1071)))) (-2780 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *2 *6 *7)) (-4 *2 (-1071)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *6 *2 *7)) (-4 *6 (-1071)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-1612 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *6 *7 *2)) (-4 *6 (-1071)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-4071 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-3409 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *2 (-1071)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) (-2995 (*1 *1 *1 *2) (-12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *2 (-1071)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) (-4389 (*1 *1 *1) (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-784)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-784)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-657 *7))))) +(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4466) (IF (|has| |t#3| (-174)) (-6 (-730 |t#3|)) |%noBranch|) (-15 -2484 ($ (-657 (-657 |t#3|)))) (-15 -3425 ((-112) $)) (-15 -3249 ((-112) $)) (-15 -1616 ((-112) $)) (-15 -2203 ((-112) $)) (-15 -4076 ((-576) $)) (-15 -2898 ((-576) $)) (-15 -2581 ((-576) $)) (-15 -4230 ((-576) $)) (-15 -2334 ((-784) $)) (-15 -2344 ((-784) $)) (-15 -2819 ((-657 (-657 |t#3|)) $)) (-15 -2780 (|t#3| $ (-576) (-576))) (-15 -1741 (|t#3| $ (-576) (-576))) (-15 -2780 (|t#3| $ (-576) (-576) |t#3|)) (-15 -3520 (|t#4| $ (-576))) (-15 -1612 (|t#5| $ (-576))) (-15 -4071 ($ (-1 |t#3| |t#3|) $)) (-15 -4071 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -3409 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-374)) (-15 -2995 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-317)) (-15 -4389 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -4343 ((-784) $)) (-15 -3652 ((-784) $)) (-15 -2992 ((-657 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-625 (-877)) . T) ((-319 |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122))) ((-659 (-576)) . T) ((-659 |#3|) . T) ((-661 |#3|) . T) ((-653 |#3|) |has| |#3| (-174)) ((-730 |#3|) |has| |#3| (-174)) ((-1073 |#3|) . T) ((-1078 |#3|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1616 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3425 (((-112) $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-2515 (($) NIL T CONST)) (-4389 (($ $) 47 (|has| |#3| (-317)))) (-3520 (((-245 |#2| |#3|) $ (-576)) 36)) (-2668 (($ (-702 |#3|)) 45)) (-4343 (((-784) $) 49 (|has| |#3| (-568)))) (-1741 ((|#3| $ (-576) (-576)) NIL)) (-1448 (((-657 |#3|) $) NIL (|has| $ (-6 -4466)))) (-3652 (((-784) $) 51 (|has| |#3| (-568)))) (-2992 (((-657 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-568)))) (-2334 (((-784) $) NIL)) (-2344 (((-784) $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-4076 (((-576) $) NIL)) (-2581 (((-576) $) NIL)) (-3855 (((-657 |#3|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-2898 (((-576) $) NIL)) (-4230 (((-576) $) NIL)) (-2484 (($ (-657 (-657 |#3|))) 31)) (-1799 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2819 (((-657 (-657 |#3|)) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3409 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-568)))) (-2372 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#3|) (-657 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-657 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#3| $ (-576) (-576)) NIL) ((|#3| $ (-576) (-576) |#3|) NIL)) (-1451 (((-135)) 59 (|has| |#3| (-374)))) (-3249 (((-112) $) NIL)) (-1469 (((-784) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122)))) (((-784) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) 65 (|has| |#3| (-626 (-548))))) (-1612 (((-245 |#1| |#3|) $ (-576)) 40)) (-3515 (((-877) $) 19) (((-702 |#3|) $) 42)) (-4166 (((-112) $ $) NIL)) (-3258 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-2203 (((-112) $) NIL)) (-2716 (($) 16 T CONST)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1076 |#1| |#2| |#3|) (-13 (-1075 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-702 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1296 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -2668 ($ (-702 |#3|))))) (-784) (-784) (-1071)) (T -1076)) +((-2668 (*1 *1 *2) (-12 (-5 *2 (-702 *5)) (-4 *5 (-1071)) (-5 *1 (-1076 *3 *4 *5)) (-14 *3 (-784)) (-14 *4 (-784))))) +(-13 (-1075 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-702 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1296 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -2668 ($ (-702 |#3|))))) +((-3662 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4071 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1077 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4071 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3662 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-784) (-784) (-1071) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1075 |#1| |#2| |#3| |#4| |#5|) (-1071) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1075 |#1| |#2| |#7| |#8| |#9|)) (T -1077)) +((-3662 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1071)) (-4 *2 (-1071)) (-14 *5 (-784)) (-14 *6 (-784)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1077 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1075 *5 *6 *7 *8 *9)) (-4 *12 (-1075 *5 *6 *2 *10 *11)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1071)) (-4 *10 (-1071)) (-14 *5 (-784)) (-14 *6 (-784)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1075 *5 *6 *10 *11 *12)) (-5 *1 (-1077 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1075 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10))))) +(-10 -7 (-15 -4071 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3662 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ |#1|) 27))) +(((-1078 |#1|) (-141) (-1080)) (T -1078)) +NIL +(-13 (-21) (-1073 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-1073 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2993 (((-1198) $) 11)) (-2290 ((|#1| $) 12)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2371 (($ (-1198) |#1|) 10)) (-3515 (((-877) $) 22 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2881 (((-112) $ $) 17 (|has| |#1| (-1122))))) +(((-1079 |#1| |#2|) (-13 (-1239) (-10 -8 (-15 -2371 ($ (-1198) |#1|)) (-15 -2993 ((-1198) $)) (-15 -2290 (|#1| $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) (-1115 |#2|) (-1239)) (T -1079)) +((-2371 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-4 *4 (-1239)) (-5 *1 (-1079 *3 *4)) (-4 *3 (-1115 *4)))) (-2993 (*1 *2 *1) (-12 (-4 *4 (-1239)) (-5 *2 (-1198)) (-5 *1 (-1079 *3 *4)) (-4 *3 (-1115 *4)))) (-2290 (*1 *2 *1) (-12 (-4 *2 (-1115 *3)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1239))))) +(-13 (-1239) (-10 -8 (-15 -2371 ($ (-1198) |#1|)) (-15 -2993 ((-1198) $)) (-15 -2290 (|#1| $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-1080) (-141)) (T -1080)) +NIL +(-13 (-21) (-1134)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-2212 (($ $) 17)) (-1794 (($ $) 25)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 55)) (-3869 (($ $) 27)) (-2440 (($ $) 12)) (-2681 (($ $) 43)) (-4136 (((-390) $) NIL) (((-227) $) NIL) (((-908 (-390)) $) 36)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 31) (($ (-576)) NIL) (($ (-419 (-576))) 31)) (-3845 (((-784)) 9)) (-2140 (($ $) 45))) +(((-1081 |#1|) (-10 -8 (-15 -1794 (|#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2440 (|#1| |#1|)) (-15 -2681 (|#1| |#1|)) (-15 -2140 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -2008 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -4136 ((-908 (-390)) |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -3515 (|#1| (-576))) (-15 -4136 ((-227) |#1|)) (-15 -4136 ((-390) |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -3515 (|#1| |#1|)) (-15 -3845 ((-784))) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) (-1082)) (T -1081)) +((-3845 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1081 *3)) (-4 *3 (-1082))))) +(-10 -8 (-15 -1794 (|#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2440 (|#1| |#1|)) (-15 -2681 (|#1| |#1|)) (-15 -2140 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -2008 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -4136 ((-908 (-390)) |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -3515 (|#1| (-576))) (-15 -4136 ((-227) |#1|)) (-15 -4136 ((-390) |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -3515 (|#1| |#1|)) (-15 -3845 ((-784))) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2923 (((-576) $) 98)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2212 (($ $) 96)) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 81)) (-4215 (((-430 $) $) 80)) (-1866 (($ $) 106)) (-3210 (((-112) $ $) 65)) (-3922 (((-576) $) 123)) (-2515 (($) 18 T CONST)) (-1794 (($ $) 95)) (-1593 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2830 (((-576) $) 112) (((-419 (-576)) $) 109)) (-3355 (($ $ $) 61)) (-3969 (((-3 $ "failed") $) 37)) (-3369 (($ $ $) 62)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-4009 (((-112) $) 79)) (-3810 (((-112) $) 121)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 102)) (-3994 (((-112) $) 35)) (-3856 (($ $ (-576)) 105)) (-3869 (($ $) 101)) (-3517 (((-112) $) 122)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3740 (($ $ $) 115)) (-2249 (($ $ $) 116)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 78)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-2440 (($ $) 97)) (-2681 (($ $) 99)) (-1856 (((-430 $) $) 82)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-4164 (((-784) $) 64)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63)) (-4136 (((-390) $) 114) (((-227) $) 113) (((-908 (-390)) $) 103)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-3845 (((-784)) 32 T CONST)) (-2140 (($ $) 100)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2127 (($ $) 124)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2938 (((-112) $ $) 117)) (-2913 (((-112) $ $) 119)) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 118)) (-2901 (((-112) $ $) 120)) (-2995 (($ $ $) 73)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +(((-1082) (-141)) (T -1082)) +((-2127 (*1 *1 *1) (-4 *1 (-1082))) (-3869 (*1 *1 *1) (-4 *1 (-1082))) (-2140 (*1 *1 *1) (-4 *1 (-1082))) (-2681 (*1 *1 *1) (-4 *1 (-1082))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-576)))) (-2440 (*1 *1 *1) (-4 *1 (-1082))) (-2212 (*1 *1 *1) (-4 *1 (-1082))) (-1794 (*1 *1 *1) (-4 *1 (-1082)))) +(-13 (-374) (-861) (-1044) (-1060 (-576)) (-1060 (-419 (-576))) (-1024) (-626 (-908 (-390))) (-902 (-390)) (-148) (-10 -8 (-15 -3869 ($ $)) (-15 -2140 ($ $)) (-15 -2681 ($ $)) (-15 -2923 ((-576) $)) (-15 -2440 ($ $)) (-15 -2212 ($ $)) (-15 -1794 ($ $)) (-15 -2127 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-908 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 $) . T) ((-739) . T) ((-804) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-861) . T) ((-862) . T) ((-865) . T) ((-902 (-390)) . T) ((-940) . T) ((-1024) . T) ((-1044) . T) ((-1060 (-419 (-576))) . T) ((-1060 (-576)) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) |#2| $) 26)) (-2148 ((|#1| $) 10)) (-3922 (((-576) |#2| $) 116)) (-1913 (((-3 $ "failed") |#2| (-941)) 75)) (-4228 ((|#1| $) 31)) (-1703 ((|#1| |#2| $ |#1|) 40)) (-3397 (($ $) 28)) (-3969 (((-3 |#2| "failed") |#2| $) 111)) (-3810 (((-112) |#2| $) NIL)) (-3517 (((-112) |#2| $) NIL)) (-1660 (((-112) |#2| $) 27)) (-1778 ((|#1| $) 117)) (-4217 ((|#1| $) 30)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2005 ((|#2| $) 102)) (-3515 (((-877) $) 92)) (-4166 (((-112) $ $) NIL)) (-4130 ((|#1| |#2| $ |#1|) 41)) (-4222 (((-657 $) |#2|) 77)) (-2881 (((-112) $ $) 97))) +(((-1083 |#1| |#2|) (-13 (-1090 |#1| |#2|) (-10 -8 (-15 -4217 (|#1| $)) (-15 -4228 (|#1| $)) (-15 -2148 (|#1| $)) (-15 -1778 (|#1| $)) (-15 -3397 ($ $)) (-15 -1660 ((-112) |#2| $)) (-15 -1703 (|#1| |#2| $ |#1|)))) (-13 (-861) (-374)) (-1265 |#1|)) (T -1083)) +((-1703 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) (-4 *3 (-1265 *2)))) (-4217 (*1 *2 *1) (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) (-4 *3 (-1265 *2)))) (-4228 (*1 *2 *1) (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) (-4 *3 (-1265 *2)))) (-2148 (*1 *2 *1) (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) (-4 *3 (-1265 *2)))) (-1778 (*1 *2 *1) (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) (-4 *3 (-1265 *2)))) (-3397 (*1 *1 *1) (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) (-4 *3 (-1265 *2)))) (-1660 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-861) (-374))) (-5 *2 (-112)) (-5 *1 (-1083 *4 *3)) (-4 *3 (-1265 *4))))) +(-13 (-1090 |#1| |#2|) (-10 -8 (-15 -4217 (|#1| $)) (-15 -4228 (|#1| $)) (-15 -2148 (|#1| $)) (-15 -1778 (|#1| $)) (-15 -3397 ($ $)) (-15 -1660 ((-112) |#2| $)) (-15 -1703 (|#1| |#2| $ |#1|)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2793 (($ $ $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-4388 (($ $ $ $) NIL)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-3922 (((-576) $) NIL)) (-2736 (($ $ $) NIL)) (-2515 (($) NIL T CONST)) (-2380 (($ (-1198)) 10) (($ (-576)) 7)) (-1593 (((-3 (-576) "failed") $) NIL)) (-2830 (((-576) $) NIL)) (-3355 (($ $ $) NIL)) (-3439 (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1758 (((-3 (-419 (-576)) "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-1842 (((-419 (-576)) $) NIL)) (-1876 (($) NIL) (($ $) NIL)) (-3369 (($ $ $) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-1760 (($ $ $ $) NIL)) (-3123 (($ $ $) NIL)) (-3810 (((-112) $) NIL)) (-3262 (($ $ $) NIL)) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL)) (-3994 (((-112) $) NIL)) (-1354 (((-112) $) NIL)) (-1955 (((-3 $ "failed") $) NIL)) (-3517 (((-112) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1931 (($ $ $ $) NIL)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-4194 (($ $) NIL)) (-3041 (($ $) NIL)) (-1993 (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2808 (($ $ $) NIL)) (-1679 (($) NIL T CONST)) (-1390 (($ $) NIL)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3067 (($ $) NIL)) (-1856 (((-430 $) $) NIL)) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3341 (((-112) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-2209 (($ $) NIL) (($ $ (-784)) NIL)) (-1843 (($ $) NIL)) (-1899 (($ $) NIL)) (-4136 (((-576) $) 16) (((-548) $) NIL) (((-908 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL) (($ (-1198)) 9)) (-3515 (((-877) $) 23) (($ (-576)) 6) (($ $) NIL) (($ (-576)) 6)) (-3845 (((-784)) NIL T CONST)) (-2639 (((-112) $ $) NIL)) (-1940 (($ $ $) NIL)) (-4166 (((-112) $ $) NIL)) (-4129 (($) NIL)) (-2607 (((-112) $ $) NIL)) (-4207 (($ $ $ $) NIL)) (-2127 (($ $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $) NIL) (($ $ (-784)) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL)) (-2982 (($ $) 22) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-576) $) NIL))) +(((-1084) (-13 (-557) (-630 (-1198)) (-10 -8 (-6 -4453) (-6 -4458) (-6 -4454) (-15 -2380 ($ (-1198))) (-15 -2380 ($ (-576)))))) (T -1084)) +((-2380 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1084)))) (-2380 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1084))))) +(-13 (-557) (-630 (-1198)) (-10 -8 (-6 -4453) (-6 -4458) (-6 -4454) (-15 -2380 ($ (-1198))) (-15 -2380 ($ (-576))))) +((-3423 (((-112) $ $) NIL (-2748 (|has| (-52) (-102)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-102))))) (-4082 (($) NIL) (($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) NIL)) (-3590 (((-1294) $ (-1198) (-1198)) NIL (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) NIL)) (-4242 (($) 9)) (-3719 (((-52) $ (-1198) (-52)) NIL)) (-1589 (($ $) 32)) (-3749 (($ $) 30)) (-1768 (($ $) 29)) (-3458 (($ $) 31)) (-1759 (($ $) 35)) (-4067 (($ $) 36)) (-2355 (($ $) 28)) (-3018 (($ $) 33)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) 27 (|has| $ (-6 -4466)))) (-2244 (((-3 (-52) "failed") (-1198) $) 43)) (-2515 (($) NIL T CONST)) (-1484 (($) 7)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122))))) (-1920 (($ (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) 53 (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-3 (-52) "failed") (-1198) $) NIL)) (-3901 (($ (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $ (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (((-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $ (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2812 (((-3 (-1180) "failed") $ (-1180) (-576)) 72)) (-1810 (((-52) $ (-1198) (-52)) NIL (|has| $ (-6 -4467)))) (-1741 (((-52) $ (-1198)) NIL)) (-1448 (((-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-657 (-52)) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-1198) $) NIL (|has| (-1198) (-862)))) (-3855 (((-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) 38 (|has| $ (-6 -4466))) (((-657 (-52)) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122))))) (-1833 (((-1198) $) NIL (|has| (-1198) (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4467))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (-2748 (|has| (-52) (-1122)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122))))) (-3135 (((-657 (-1198)) $) NIL)) (-2559 (((-112) (-1198) $) NIL)) (-3107 (((-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) NIL)) (-2701 (($ (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) 46)) (-3309 (((-657 (-1198)) $) NIL)) (-4324 (((-112) (-1198) $) NIL)) (-1460 (((-1142) $) NIL (-2748 (|has| (-52) (-1122)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122))))) (-1595 (((-390) $ (-1198)) 52)) (-3085 (((-657 (-1180)) $ (-1180)) 74)) (-3528 (((-52) $) NIL (|has| (-1198) (-862)))) (-4135 (((-3 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) "failed") (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL)) (-1495 (($ $ (-52)) NIL (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) NIL)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))))) NIL (-12 (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-304 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) NIL (-12 (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-657 (-52)) (-657 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-657 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122))))) (-3585 (((-657 (-52)) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 (((-52) $ (-1198)) NIL) (((-52) $ (-1198) (-52)) NIL)) (-3009 (($) NIL) (($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) NIL)) (-3943 (($ $ (-1198)) 54)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-1122)))) (((-784) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122)))) (((-784) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) 40)) (-1637 (($ $ $) 41)) (-3515 (((-877) $) NIL (-2748 (|has| (-52) (-625 (-877))) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-625 (-877)))))) (-3140 (($ $ (-1198) (-390)) 50)) (-1898 (($ $ (-1198) (-390)) 51)) (-4166 (((-112) $ $) NIL (-2748 (|has| (-52) (-102)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))))) NIL)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (-2748 (|has| (-52) (-102)) (|has| (-2 (|:| -4286 (-1198)) (|:| -4440 (-52))) (-102))))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1085) (-13 (-1215 (-1198) (-52)) (-10 -8 (-15 -1637 ($ $ $)) (-15 -1484 ($)) (-15 -2355 ($ $)) (-15 -1768 ($ $)) (-15 -3749 ($ $)) (-15 -3458 ($ $)) (-15 -3018 ($ $)) (-15 -1589 ($ $)) (-15 -1759 ($ $)) (-15 -4067 ($ $)) (-15 -3140 ($ $ (-1198) (-390))) (-15 -1898 ($ $ (-1198) (-390))) (-15 -1595 ((-390) $ (-1198))) (-15 -3085 ((-657 (-1180)) $ (-1180))) (-15 -3943 ($ $ (-1198))) (-15 -4242 ($)) (-15 -2812 ((-3 (-1180) "failed") $ (-1180) (-576))) (-6 -4466)))) (T -1085)) +((-1637 (*1 *1 *1 *1) (-5 *1 (-1085))) (-1484 (*1 *1) (-5 *1 (-1085))) (-2355 (*1 *1 *1) (-5 *1 (-1085))) (-1768 (*1 *1 *1) (-5 *1 (-1085))) (-3749 (*1 *1 *1) (-5 *1 (-1085))) (-3458 (*1 *1 *1) (-5 *1 (-1085))) (-3018 (*1 *1 *1) (-5 *1 (-1085))) (-1589 (*1 *1 *1) (-5 *1 (-1085))) (-1759 (*1 *1 *1) (-5 *1 (-1085))) (-4067 (*1 *1 *1) (-5 *1 (-1085))) (-3140 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-390)) (-5 *1 (-1085)))) (-1898 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-390)) (-5 *1 (-1085)))) (-1595 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-390)) (-5 *1 (-1085)))) (-3085 (*1 *2 *1 *3) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1085)) (-5 *3 (-1180)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1085)))) (-4242 (*1 *1) (-5 *1 (-1085))) (-2812 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1180)) (-5 *3 (-576)) (-5 *1 (-1085))))) +(-13 (-1215 (-1198) (-52)) (-10 -8 (-15 -1637 ($ $ $)) (-15 -1484 ($)) (-15 -2355 ($ $)) (-15 -1768 ($ $)) (-15 -3749 ($ $)) (-15 -3458 ($ $)) (-15 -3018 ($ $)) (-15 -1589 ($ $)) (-15 -1759 ($ $)) (-15 -4067 ($ $)) (-15 -3140 ($ $ (-1198) (-390))) (-15 -1898 ($ $ (-1198) (-390))) (-15 -1595 ((-390) $ (-1198))) (-15 -3085 ((-657 (-1180)) $ (-1180))) (-15 -3943 ($ $ (-1198))) (-15 -4242 ($)) (-15 -2812 ((-3 (-1180) "failed") $ (-1180) (-576))) (-6 -4466))) +((-4425 (($ $) 46)) (-3672 (((-112) $ $) 82)) (-1593 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-972 (-419 (-576)))) 247) (((-3 $ "failed") (-972 (-576))) 246) (((-3 $ "failed") (-972 |#2|)) 249)) (-2830 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) NIL) (($ (-972 (-419 (-576)))) 235) (($ (-972 (-576))) 231) (($ (-972 |#2|)) 255)) (-2165 (($ $) NIL) (($ $ |#4|) 44)) (-3427 (((-112) $ $) 131) (((-112) $ (-657 $)) 135)) (-2313 (((-112) $) 60)) (-4010 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 125)) (-2170 (($ $) 160)) (-1477 (($ $) 156)) (-2009 (($ $) 155)) (-4369 (($ $ $) 87) (($ $ $ |#4|) 92)) (-2882 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3537 (((-112) $ $) 143) (((-112) $ (-657 $)) 144)) (-1428 ((|#4| $) 32)) (-2620 (($ $ $) 128)) (-2609 (((-112) $) 59)) (-1560 (((-784) $) 35)) (-1765 (($ $) 174)) (-4254 (($ $) 171)) (-3361 (((-657 $) $) 72)) (-2062 (($ $) 62)) (-3304 (($ $) 167)) (-1435 (((-657 $) $) 69)) (-2945 (($ $) 64)) (-2141 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1597 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3066 (-784))) $ $) 130)) (-2103 (((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -2192 $) (|:| -3951 $)) $ $) 126) (((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -2192 $) (|:| -3951 $)) $ $ |#4|) 127)) (-2813 (((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -3951 $)) $ $) 121) (((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -3951 $)) $ $ |#4|) 123)) (-3884 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2107 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2561 (((-657 $) $) 54)) (-3893 (((-112) $ $) 140) (((-112) $ (-657 $)) 141)) (-3510 (($ $ $) 116)) (-1679 (($ $) 37)) (-2304 (((-112) $ $) 80)) (-4299 (((-112) $ $) 136) (((-112) $ (-657 $)) 138)) (-3511 (($ $ $) 112)) (-2626 (($ $) 41)) (-3431 ((|#2| |#2| $) 164) (($ (-657 $)) NIL) (($ $ $) NIL)) (-3405 (($ $ |#2|) NIL) (($ $ $) 153)) (-3220 (($ $ |#2|) 148) (($ $ $) 151)) (-2159 (($ $) 49)) (-1518 (($ $) 55)) (-4136 (((-908 (-390)) $) NIL) (((-908 (-576)) $) NIL) (((-548) $) NIL) (($ (-972 (-419 (-576)))) 237) (($ (-972 (-576))) 233) (($ (-972 |#2|)) 248) (((-1180) $) 279) (((-972 |#2|) $) 184)) (-3515 (((-877) $) 29) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-972 |#2|) $) 185) (($ (-419 (-576))) NIL) (($ $) NIL)) (-1568 (((-3 (-112) "failed") $ $) 79))) +(((-1086 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3515 (|#1| |#1|)) (-15 -3431 (|#1| |#1| |#1|)) (-15 -3431 (|#1| (-657 |#1|))) (-15 -3515 (|#1| (-419 (-576)))) (-15 -3515 ((-972 |#2|) |#1|)) (-15 -4136 ((-972 |#2|) |#1|)) (-15 -4136 ((-1180) |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -4254 (|#1| |#1|)) (-15 -3304 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -3431 (|#2| |#2| |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -3220 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#1| |#2|)) (-15 -3220 (|#1| |#1| |#2|)) (-15 -1477 (|#1| |#1|)) (-15 -2009 (|#1| |#1|)) (-15 -4136 (|#1| (-972 |#2|))) (-15 -2830 (|#1| (-972 |#2|))) (-15 -1593 ((-3 |#1| "failed") (-972 |#2|))) (-15 -4136 (|#1| (-972 (-576)))) (-15 -2830 (|#1| (-972 (-576)))) (-15 -1593 ((-3 |#1| "failed") (-972 (-576)))) (-15 -4136 (|#1| (-972 (-419 (-576))))) (-15 -2830 (|#1| (-972 (-419 (-576))))) (-15 -1593 ((-3 |#1| "failed") (-972 (-419 (-576))))) (-15 -3510 (|#1| |#1| |#1|)) (-15 -3511 (|#1| |#1| |#1|)) (-15 -1597 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3066 (-784))) |#1| |#1|)) (-15 -2620 (|#1| |#1| |#1|)) (-15 -4010 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -2103 ((-2 (|:| -1735 |#1|) (|:| |gap| (-784)) (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1| |#4|)) (-15 -2103 ((-2 (|:| -1735 |#1|) (|:| |gap| (-784)) (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -2813 ((-2 (|:| -1735 |#1|) (|:| |gap| (-784)) (|:| -3951 |#1|)) |#1| |#1| |#4|)) (-15 -2813 ((-2 (|:| -1735 |#1|) (|:| |gap| (-784)) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -2107 (|#1| |#1| |#1| |#4|)) (-15 -3884 (|#1| |#1| |#1| |#4|)) (-15 -2107 (|#1| |#1| |#1|)) (-15 -3884 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1| |#4|)) (-15 -4369 (|#1| |#1| |#1| |#4|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -4369 (|#1| |#1| |#1|)) (-15 -3537 ((-112) |#1| (-657 |#1|))) (-15 -3537 ((-112) |#1| |#1|)) (-15 -3893 ((-112) |#1| (-657 |#1|))) (-15 -3893 ((-112) |#1| |#1|)) (-15 -4299 ((-112) |#1| (-657 |#1|))) (-15 -4299 ((-112) |#1| |#1|)) (-15 -3427 ((-112) |#1| (-657 |#1|))) (-15 -3427 ((-112) |#1| |#1|)) (-15 -3672 ((-112) |#1| |#1|)) (-15 -2304 ((-112) |#1| |#1|)) (-15 -1568 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3361 ((-657 |#1|) |#1|)) (-15 -1435 ((-657 |#1|) |#1|)) (-15 -2945 (|#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2313 ((-112) |#1|)) (-15 -2609 ((-112) |#1|)) (-15 -2165 (|#1| |#1| |#4|)) (-15 -2141 (|#1| |#1| |#4|)) (-15 -1518 (|#1| |#1|)) (-15 -2561 ((-657 |#1|) |#1|)) (-15 -2159 (|#1| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -1679 (|#1| |#1|)) (-15 -1560 ((-784) |#1|)) (-15 -1428 (|#4| |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -4136 ((-908 (-576)) |#1|)) (-15 -4136 ((-908 (-390)) |#1|)) (-15 -3515 (|#1| |#4|)) (-15 -1593 ((-3 |#4| "failed") |#1|)) (-15 -2830 (|#4| |#1|)) (-15 -2141 (|#2| |#1|)) (-15 -2165 (|#1| |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) (-1087 |#2| |#3| |#4|) (-1071) (-806) (-862)) (T -1086)) +NIL +(-10 -8 (-15 -3515 (|#1| |#1|)) (-15 -3431 (|#1| |#1| |#1|)) (-15 -3431 (|#1| (-657 |#1|))) (-15 -3515 (|#1| (-419 (-576)))) (-15 -3515 ((-972 |#2|) |#1|)) (-15 -4136 ((-972 |#2|) |#1|)) (-15 -4136 ((-1180) |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -4254 (|#1| |#1|)) (-15 -3304 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -3431 (|#2| |#2| |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -3220 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#1| |#2|)) (-15 -3220 (|#1| |#1| |#2|)) (-15 -1477 (|#1| |#1|)) (-15 -2009 (|#1| |#1|)) (-15 -4136 (|#1| (-972 |#2|))) (-15 -2830 (|#1| (-972 |#2|))) (-15 -1593 ((-3 |#1| "failed") (-972 |#2|))) (-15 -4136 (|#1| (-972 (-576)))) (-15 -2830 (|#1| (-972 (-576)))) (-15 -1593 ((-3 |#1| "failed") (-972 (-576)))) (-15 -4136 (|#1| (-972 (-419 (-576))))) (-15 -2830 (|#1| (-972 (-419 (-576))))) (-15 -1593 ((-3 |#1| "failed") (-972 (-419 (-576))))) (-15 -3510 (|#1| |#1| |#1|)) (-15 -3511 (|#1| |#1| |#1|)) (-15 -1597 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3066 (-784))) |#1| |#1|)) (-15 -2620 (|#1| |#1| |#1|)) (-15 -4010 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -2103 ((-2 (|:| -1735 |#1|) (|:| |gap| (-784)) (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1| |#4|)) (-15 -2103 ((-2 (|:| -1735 |#1|) (|:| |gap| (-784)) (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -2813 ((-2 (|:| -1735 |#1|) (|:| |gap| (-784)) (|:| -3951 |#1|)) |#1| |#1| |#4|)) (-15 -2813 ((-2 (|:| -1735 |#1|) (|:| |gap| (-784)) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -2107 (|#1| |#1| |#1| |#4|)) (-15 -3884 (|#1| |#1| |#1| |#4|)) (-15 -2107 (|#1| |#1| |#1|)) (-15 -3884 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1| |#4|)) (-15 -4369 (|#1| |#1| |#1| |#4|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -4369 (|#1| |#1| |#1|)) (-15 -3537 ((-112) |#1| (-657 |#1|))) (-15 -3537 ((-112) |#1| |#1|)) (-15 -3893 ((-112) |#1| (-657 |#1|))) (-15 -3893 ((-112) |#1| |#1|)) (-15 -4299 ((-112) |#1| (-657 |#1|))) (-15 -4299 ((-112) |#1| |#1|)) (-15 -3427 ((-112) |#1| (-657 |#1|))) (-15 -3427 ((-112) |#1| |#1|)) (-15 -3672 ((-112) |#1| |#1|)) (-15 -2304 ((-112) |#1| |#1|)) (-15 -1568 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3361 ((-657 |#1|) |#1|)) (-15 -1435 ((-657 |#1|) |#1|)) (-15 -2945 (|#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2313 ((-112) |#1|)) (-15 -2609 ((-112) |#1|)) (-15 -2165 (|#1| |#1| |#4|)) (-15 -2141 (|#1| |#1| |#4|)) (-15 -1518 (|#1| |#1|)) (-15 -2561 ((-657 |#1|) |#1|)) (-15 -2159 (|#1| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -1679 (|#1| |#1|)) (-15 -1560 ((-784) |#1|)) (-15 -1428 (|#4| |#1|)) (-15 -4136 ((-548) |#1|)) (-15 -4136 ((-908 (-576)) |#1|)) (-15 -4136 ((-908 (-390)) |#1|)) (-15 -3515 (|#1| |#4|)) (-15 -1593 ((-3 |#4| "failed") |#1|)) (-15 -2830 (|#4| |#1|)) (-15 -2141 (|#2| |#1|)) (-15 -2165 (|#1| |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-1998 (((-657 |#3|) $) 113)) (-1825 (((-1194 $) $ |#3|) 128) (((-1194 |#1|) $) 127)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2361 (($ $) 91 (|has| |#1| (-568)))) (-3286 (((-112) $) 93 (|has| |#1| (-568)))) (-2889 (((-784) $) 115) (((-784) $ (-657 |#3|)) 114)) (-4425 (($ $) 278)) (-3672 (((-112) $ $) 264)) (-2423 (((-3 $ "failed") $ $) 20)) (-3924 (($ $ $) 223 (|has| |#1| (-568)))) (-4244 (((-657 $) $ $) 218 (|has| |#1| (-568)))) (-2628 (((-430 (-1194 $)) (-1194 $)) 103 (|has| |#1| (-929)))) (-3188 (($ $) 101 (|has| |#1| (-464)))) (-4215 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 106 (|has| |#1| (-929)))) (-2515 (($) 18 T CONST)) (-1593 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1060 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 $ "failed") (-972 (-419 (-576)))) 238 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198))))) (((-3 $ "failed") (-972 (-576))) 235 (-2748 (-12 (-2665 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1198)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198)))))) (((-3 $ "failed") (-972 |#1|)) 232 (-2748 (-12 (-2665 (|has| |#1| (-38 (-419 (-576))))) (-2665 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1198)))) (-12 (-2665 (|has| |#1| (-557))) (-2665 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1198)))) (-12 (-2665 (|has| |#1| (-1014 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198))))))) (-2830 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1060 (-576)))) ((|#3| $) 144) (($ (-972 (-419 (-576)))) 237 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198))))) (($ (-972 (-576))) 234 (-2748 (-12 (-2665 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1198)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198)))))) (($ (-972 |#1|)) 231 (-2748 (-12 (-2665 (|has| |#1| (-38 (-419 (-576))))) (-2665 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1198)))) (-12 (-2665 (|has| |#1| (-557))) (-2665 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1198)))) (-12 (-2665 (|has| |#1| (-1014 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198))))))) (-4351 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 219 (|has| |#1| (-568)))) (-2165 (($ $) 161) (($ $ |#3|) 273)) (-3439 (((-702 (-576)) (-702 $)) 139 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 138 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 137) (((-702 |#1|) (-702 $)) 136)) (-3427 (((-112) $ $) 263) (((-112) $ (-657 $)) 262)) (-3969 (((-3 $ "failed") $) 37)) (-2313 (((-112) $) 271)) (-4010 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 243)) (-2170 (($ $) 212 (|has| |#1| (-464)))) (-1445 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2153 (((-657 $) $) 112)) (-4009 (((-112) $) 99 (|has| |#1| (-929)))) (-1477 (($ $) 228 (|has| |#1| (-568)))) (-2009 (($ $) 229 (|has| |#1| (-568)))) (-4369 (($ $ $) 255) (($ $ $ |#3|) 253)) (-2882 (($ $ $) 254) (($ $ $ |#3|) 252)) (-2643 (($ $ |#1| |#2| $) 179)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 87 (-12 (|has| |#3| (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 86 (-12 (|has| |#3| (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-3994 (((-112) $) 35)) (-2977 (((-784) $) 176)) (-3537 (((-112) $ $) 257) (((-112) $ (-657 $)) 256)) (-1844 (($ $ $ $ $) 214 (|has| |#1| (-568)))) (-1428 ((|#3| $) 282)) (-1986 (($ (-1194 |#1|) |#3|) 120) (($ (-1194 $) |#3|) 119)) (-2278 (((-657 $) $) 129)) (-2343 (((-112) $) 159)) (-1974 (($ |#1| |#2|) 160) (($ $ |#3| (-784)) 122) (($ $ (-657 |#3|) (-657 (-784))) 121)) (-2620 (($ $ $) 242)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ |#3|) 123)) (-2609 (((-112) $) 272)) (-4219 ((|#2| $) 177) (((-784) $ |#3|) 125) (((-657 (-784)) $ (-657 |#3|)) 124)) (-1560 (((-784) $) 281)) (-2308 (($ (-1 |#2| |#2|) $) 178)) (-4071 (($ (-1 |#1| |#1|) $) 158)) (-2502 (((-3 |#3| "failed") $) 126)) (-1765 (($ $) 209 (|has| |#1| (-464)))) (-4254 (($ $) 210 (|has| |#1| (-464)))) (-3361 (((-657 $) $) 267)) (-2062 (($ $) 270)) (-3304 (($ $) 211 (|has| |#1| (-464)))) (-1435 (((-657 $) $) 268)) (-1993 (((-702 (-576)) (-1289 $)) 141 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 140 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 135) (((-702 |#1|) (-1289 $)) 134)) (-2945 (($ $) 269)) (-2129 (($ $) 156)) (-2141 ((|#1| $) 155) (($ $ |#3|) 274)) (-3388 (($ (-657 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-1597 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3066 (-784))) $ $) 241)) (-2103 (((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -2192 $) (|:| -3951 $)) $ $) 245) (((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -2192 $) (|:| -3951 $)) $ $ |#3|) 244)) (-2813 (((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -3951 $)) $ $) 247) (((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -3951 $)) $ $ |#3|) 246)) (-3884 (($ $ $) 251) (($ $ $ |#3|) 249)) (-2107 (($ $ $) 250) (($ $ $ |#3|) 248)) (-1708 (((-1180) $) 10)) (-3156 (($ $ $) 217 (|has| |#1| (-568)))) (-2561 (((-657 $) $) 276)) (-2998 (((-3 (-657 $) "failed") $) 117)) (-3097 (((-3 (-657 $) "failed") $) 118)) (-3403 (((-3 (-2 (|:| |var| |#3|) (|:| -2128 (-784))) "failed") $) 116)) (-3893 (((-112) $ $) 259) (((-112) $ (-657 $)) 258)) (-3510 (($ $ $) 239)) (-1679 (($ $) 280)) (-2304 (((-112) $ $) 265)) (-4299 (((-112) $ $) 261) (((-112) $ (-657 $)) 260)) (-3511 (($ $ $) 240)) (-2626 (($ $) 279)) (-1460 (((-1142) $) 11)) (-2181 (((-2 (|:| -3431 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-568)))) (-2616 (((-2 (|:| -3431 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-568)))) (-2108 (((-112) $) 173)) (-2118 ((|#1| $) 174)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 98 (|has| |#1| (-464)))) (-3431 ((|#1| |#1| $) 213 (|has| |#1| (-464))) (($ (-657 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) 105 (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) 104 (|has| |#1| (-929)))) (-1856 (((-430 $) $) 102 (|has| |#1| (-929)))) (-2362 (((-2 (|:| -3431 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-568)))) (-3409 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3405 (($ $ |#1|) 226 (|has| |#1| (-568))) (($ $ $) 224 (|has| |#1| (-568)))) (-3220 (($ $ |#1|) 227 (|has| |#1| (-568))) (($ $ $) 225 (|has| |#1| (-568)))) (-3205 (($ $ (-657 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-657 $) (-657 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-657 |#3|) (-657 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-657 |#3|) (-657 $)) 145)) (-1465 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2209 (($ $ (-657 |#3|) (-657 (-784))) 44) (($ $ |#3| (-784)) 43) (($ $ (-657 |#3|)) 42) (($ $ |#3|) 40)) (-4265 ((|#2| $) 157) (((-784) $ |#3|) 133) (((-657 (-784)) $ (-657 |#3|)) 132)) (-2159 (($ $) 277)) (-1518 (($ $) 275)) (-4136 (((-908 (-390)) $) 85 (-12 (|has| |#3| (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) 84 (-12 (|has| |#3| (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548))))) (($ (-972 (-419 (-576)))) 236 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198))))) (($ (-972 (-576))) 233 (-2748 (-12 (-2665 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1198)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198)))))) (($ (-972 |#1|)) 230 (|has| |#3| (-626 (-1198)))) (((-1180) $) 208 (-12 (|has| |#1| (-1060 (-576))) (|has| |#3| (-626 (-1198))))) (((-972 |#1|) $) 207 (|has| |#3| (-626 (-1198))))) (-3614 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 107 (-2675 (|has| $ (-146)) (|has| |#1| (-929))))) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (((-972 |#1|) $) 206 (|has| |#3| (-626 (-1198)))) (($ (-419 (-576))) 81 (-2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-3987 (((-657 |#1|) $) 175)) (-2498 ((|#1| $ |#2|) 162) (($ $ |#3| (-784)) 131) (($ $ (-657 |#3|) (-657 (-784))) 130)) (-3414 (((-3 $ "failed") $) 82 (-2748 (-2675 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) 32 T CONST)) (-3194 (($ $ $ (-784)) 180 (|has| |#1| (-174)))) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2716 (($) 19 T CONST)) (-1568 (((-3 (-112) "failed") $ $) 266)) (-2725 (($) 34 T CONST)) (-2770 (($ $ $ $ (-784)) 215 (|has| |#1| (-568)))) (-3703 (($ $ $ (-784)) 216 (|has| |#1| (-568)))) (-2066 (($ $ (-657 |#3|) (-657 (-784))) 47) (($ $ |#3| (-784)) 46) (($ $ (-657 |#3|)) 45) (($ $ |#3|) 41)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-1087 |#1| |#2| |#3|) (-141) (-1071) (-806) (-862)) (T -1087)) +((-1428 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-784)))) (-1679 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-2626 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-4425 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-2159 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-2561 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1087 *3 *4 *5)))) (-1518 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-2141 (*1 *1 *1 *2) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-2165 (*1 *1 *1 *2) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2062 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-2945 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-1435 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1087 *3 *4 *5)))) (-3361 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1087 *3 *4 *5)))) (-1568 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2304 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3672 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3427 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3427 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) (-4299 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-4299 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) (-3893 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3893 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) (-3537 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) (-4369 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-2882 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-4369 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-2882 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-3884 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-2107 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-3884 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-2107 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-2813 (*1 *2 *1 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1735 *1) (|:| |gap| (-784)) (|:| -3951 *1))) (-4 *1 (-1087 *3 *4 *5)))) (-2813 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1735 *1) (|:| |gap| (-784)) (|:| -3951 *1))) (-4 *1 (-1087 *4 *5 *3)))) (-2103 (*1 *2 *1 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1735 *1) (|:| |gap| (-784)) (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-1087 *3 *4 *5)))) (-2103 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1735 *1) (|:| |gap| (-784)) (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-1087 *4 *5 *3)))) (-4010 (*1 *2 *1 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-1087 *3 *4 *5)))) (-2620 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-1597 (*1 *2 *1 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3066 (-784)))) (-4 *1 (-1087 *3 *4 *5)))) (-3511 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-3510 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-1593 (*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-419 (-576)))) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-972 (-419 (-576)))) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-972 (-419 (-576)))) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)))) (-1593 (*1 *1 *2) (|partial| -2748 (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) (-12 (-2665 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) (-2830 (*1 *1 *2) (-2748 (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) (-12 (-2665 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) (-4136 (*1 *1 *2) (-2748 (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) (-12 (-2665 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) (-1593 (*1 *1 *2) (|partial| -2748 (-12 (-5 *2 (-972 *3)) (-12 (-2665 (-4 *3 (-38 (-419 (-576))))) (-2665 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 *3)) (-12 (-2665 (-4 *3 (-557))) (-2665 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 *3)) (-12 (-2665 (-4 *3 (-1014 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862))))) (-2830 (*1 *1 *2) (-2748 (-12 (-5 *2 (-972 *3)) (-12 (-2665 (-4 *3 (-38 (-419 (-576))))) (-2665 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 *3)) (-12 (-2665 (-4 *3 (-557))) (-2665 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 *3)) (-12 (-2665 (-4 *3 (-1014 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862))))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *5 (-626 (-1198))) (-4 *4 (-806)) (-4 *5 (-862)))) (-2009 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1477 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3220 (*1 *1 *1 *2) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3405 (*1 *1 *1 *2) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3220 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3405 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3924 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2362 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3431 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1087 *3 *4 *5)))) (-2616 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3431 *1) (|:| |coef1| *1))) (-4 *1 (-1087 *3 *4 *5)))) (-2181 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3431 *1) (|:| |coef2| *1))) (-4 *1 (-1087 *3 *4 *5)))) (-4351 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4244 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1087 *3 *4 *5)))) (-3156 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3703 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *3 (-568)))) (-2770 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *3 (-568)))) (-1844 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3431 (*1 *2 *2 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2170 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464)))) (-3304 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464)))) (-4254 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464)))) (-1765 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464))))) +(-13 (-969 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1428 (|t#3| $)) (-15 -1560 ((-784) $)) (-15 -1679 ($ $)) (-15 -2626 ($ $)) (-15 -4425 ($ $)) (-15 -2159 ($ $)) (-15 -2561 ((-657 $) $)) (-15 -1518 ($ $)) (-15 -2141 ($ $ |t#3|)) (-15 -2165 ($ $ |t#3|)) (-15 -2609 ((-112) $)) (-15 -2313 ((-112) $)) (-15 -2062 ($ $)) (-15 -2945 ($ $)) (-15 -1435 ((-657 $) $)) (-15 -3361 ((-657 $) $)) (-15 -1568 ((-3 (-112) "failed") $ $)) (-15 -2304 ((-112) $ $)) (-15 -3672 ((-112) $ $)) (-15 -3427 ((-112) $ $)) (-15 -3427 ((-112) $ (-657 $))) (-15 -4299 ((-112) $ $)) (-15 -4299 ((-112) $ (-657 $))) (-15 -3893 ((-112) $ $)) (-15 -3893 ((-112) $ (-657 $))) (-15 -3537 ((-112) $ $)) (-15 -3537 ((-112) $ (-657 $))) (-15 -4369 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -4369 ($ $ $ |t#3|)) (-15 -2882 ($ $ $ |t#3|)) (-15 -3884 ($ $ $)) (-15 -2107 ($ $ $)) (-15 -3884 ($ $ $ |t#3|)) (-15 -2107 ($ $ $ |t#3|)) (-15 -2813 ((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -3951 $)) $ $)) (-15 -2813 ((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -3951 $)) $ $ |t#3|)) (-15 -2103 ((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -2192 $) (|:| -3951 $)) $ $)) (-15 -2103 ((-2 (|:| -1735 $) (|:| |gap| (-784)) (|:| -2192 $) (|:| -3951 $)) $ $ |t#3|)) (-15 -4010 ((-2 (|:| -2192 $) (|:| -3951 $)) $ $)) (-15 -2620 ($ $ $)) (-15 -1597 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3066 (-784))) $ $)) (-15 -3511 ($ $ $)) (-15 -3510 ($ $ $)) (IF (|has| |t#3| (-626 (-1198))) (PROGN (-6 (-625 (-972 |t#1|))) (-6 (-626 (-972 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1593 ((-3 $ "failed") (-972 (-419 (-576))))) (-15 -2830 ($ (-972 (-419 (-576))))) (-15 -4136 ($ (-972 (-419 (-576))))) (-15 -1593 ((-3 $ "failed") (-972 (-576)))) (-15 -2830 ($ (-972 (-576)))) (-15 -4136 ($ (-972 (-576)))) (IF (|has| |t#1| (-1014 (-576))) |%noBranch| (PROGN (-15 -1593 ((-3 $ "failed") (-972 |t#1|))) (-15 -2830 ($ (-972 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1593 ((-3 $ "failed") (-972 (-576)))) (-15 -2830 ($ (-972 (-576)))) (-15 -4136 ($ (-972 (-576)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -1593 ((-3 $ "failed") (-972 |t#1|))) (-15 -2830 ($ (-972 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1593 ((-3 $ "failed") (-972 |t#1|))) (-15 -2830 ($ (-972 |t#1|)))))) (-15 -4136 ($ (-972 |t#1|))) (IF (|has| |t#1| (-1060 (-576))) (-6 (-626 (-1180))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -2009 ($ $)) (-15 -1477 ($ $)) (-15 -3220 ($ $ |t#1|)) (-15 -3405 ($ $ |t#1|)) (-15 -3220 ($ $ $)) (-15 -3405 ($ $ $)) (-15 -3924 ($ $ $)) (-15 -2362 ((-2 (|:| -3431 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2616 ((-2 (|:| -3431 $) (|:| |coef1| $)) $ $)) (-15 -2181 ((-2 (|:| -3431 $) (|:| |coef2| $)) $ $)) (-15 -4351 ($ $ $)) (-15 -4244 ((-657 $) $ $)) (-15 -3156 ($ $ $)) (-15 -3703 ($ $ $ (-784))) (-15 -2770 ($ $ $ $ (-784))) (-15 -1844 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3431 (|t#1| |t#1| $)) (-15 -2170 ($ $)) (-15 -3304 ($ $)) (-15 -4254 ($ $)) (-15 -1765 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-877)) . T) ((-625 (-972 |#1|)) |has| |#3| (-626 (-1198))) ((-174) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-908 (-390))) -12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#3| (-626 (-908 (-390))))) ((-626 (-908 (-576))) -12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#3| (-626 (-908 (-576))))) ((-626 (-972 |#1|)) |has| |#3| (-626 (-1198))) ((-626 (-1180)) -12 (|has| |#1| (-1060 (-576))) (|has| |#3| (-626 (-1198)))) ((-300) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2748 (|has| |#1| (-929)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 #1=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-652 #1#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-739) . T) ((-912 $ |#3|) . T) ((-918 |#3|) . T) ((-920 |#3|) . T) ((-902 (-390)) -12 (|has| |#1| (-902 (-390))) (|has| |#3| (-902 (-390)))) ((-902 (-576)) -12 (|has| |#1| (-902 (-576))) (|has| |#3| (-902 (-576)))) ((-969 |#1| |#2| |#3|) . T) ((-929) |has| |#1| (-929)) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1060 |#3|) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) |has| |#1| (-929))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-3004 (((-657 (-1157)) $) 18)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 27) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2645 (((-1157) $) 20)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1088) (-13 (-1105) (-10 -8 (-15 -3004 ((-657 (-1157)) $)) (-15 -2645 ((-1157) $))))) (T -1088)) +((-3004 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-1088)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1088))))) +(-13 (-1105) (-10 -8 (-15 -3004 ((-657 (-1157)) $)) (-15 -2645 ((-1157) $)))) +((-2044 (((-112) |#3| $) 15)) (-1913 (((-3 $ "failed") |#3| (-941)) 29)) (-3969 (((-3 |#3| "failed") |#3| $) 45)) (-3810 (((-112) |#3| $) 19)) (-3517 (((-112) |#3| $) 17))) +(((-1089 |#1| |#2| |#3|) (-10 -8 (-15 -1913 ((-3 |#1| "failed") |#3| (-941))) (-15 -3969 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3810 ((-112) |#3| |#1|)) (-15 -3517 ((-112) |#3| |#1|)) (-15 -2044 ((-112) |#3| |#1|))) (-1090 |#2| |#3|) (-13 (-861) (-374)) (-1265 |#2|)) (T -1089)) +NIL +(-10 -8 (-15 -1913 ((-3 |#1| "failed") |#3| (-941))) (-15 -3969 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3810 ((-112) |#3| |#1|)) (-15 -3517 ((-112) |#3| |#1|)) (-15 -2044 ((-112) |#3| |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) |#2| $) 22)) (-3922 (((-576) |#2| $) 23)) (-1913 (((-3 $ "failed") |#2| (-941)) 16)) (-1703 ((|#1| |#2| $ |#1|) 14)) (-3969 (((-3 |#2| "failed") |#2| $) 19)) (-3810 (((-112) |#2| $) 20)) (-3517 (((-112) |#2| $) 21)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-2005 ((|#2| $) 18)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-4130 ((|#1| |#2| $ |#1|) 15)) (-4222 (((-657 $) |#2|) 17)) (-2881 (((-112) $ $) 8))) +(((-1090 |#1| |#2|) (-141) (-13 (-861) (-374)) (-1265 |t#1|)) (T -1090)) +((-3922 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) (-4 *3 (-1265 *4)) (-5 *2 (-576)))) (-2044 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) (-4 *3 (-1265 *4)) (-5 *2 (-112)))) (-3517 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) (-4 *3 (-1265 *4)) (-5 *2 (-112)))) (-3810 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) (-4 *3 (-1265 *4)) (-5 *2 (-112)))) (-3969 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1090 *3 *2)) (-4 *3 (-13 (-861) (-374))) (-4 *2 (-1265 *3)))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *2)) (-4 *3 (-13 (-861) (-374))) (-4 *2 (-1265 *3)))) (-4222 (*1 *2 *3) (-12 (-4 *4 (-13 (-861) (-374))) (-4 *3 (-1265 *4)) (-5 *2 (-657 *1)) (-4 *1 (-1090 *4 *3)))) (-1913 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-941)) (-4 *4 (-13 (-861) (-374))) (-4 *1 (-1090 *4 *2)) (-4 *2 (-1265 *4)))) (-4130 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1090 *2 *3)) (-4 *2 (-13 (-861) (-374))) (-4 *3 (-1265 *2)))) (-1703 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1090 *2 *3)) (-4 *2 (-13 (-861) (-374))) (-4 *3 (-1265 *2))))) +(-13 (-1122) (-10 -8 (-15 -3922 ((-576) |t#2| $)) (-15 -2044 ((-112) |t#2| $)) (-15 -3517 ((-112) |t#2| $)) (-15 -3810 ((-112) |t#2| $)) (-15 -3969 ((-3 |t#2| "failed") |t#2| $)) (-15 -2005 (|t#2| $)) (-15 -4222 ((-657 $) |t#2|)) (-15 -1913 ((-3 $ "failed") |t#2| (-941))) (-15 -4130 (|t#1| |t#2| $ |t#1|)) (-15 -1703 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-4370 (((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-657 |#4|) (-657 |#5|) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) (-784)) 114)) (-2579 (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784)) 63)) (-4398 (((-1294) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-784)) 99)) (-2700 (((-784) (-657 |#4|) (-657 |#5|)) 30)) (-3433 (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784)) 65) (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784) (-112)) 67)) (-3545 (((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112)) 87)) (-4136 (((-1180) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) 92)) (-3663 (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-112)) 62)) (-3056 (((-784) (-657 |#4|) (-657 |#5|)) 21))) +(((-1091 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3056 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -2700 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -3663 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-112))) (-15 -2579 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784))) (-15 -2579 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|)) (-15 -3433 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784) (-112))) (-15 -3433 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784))) (-15 -3433 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|)) (-15 -3545 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -3545 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4370 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-657 |#4|) (-657 |#5|) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) (-784))) (-15 -4136 ((-1180) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)))) (-15 -4398 ((-1294) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-784)))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|)) (T -1091)) +((-4398 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3941 *9)))) (-5 *4 (-784)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-1294)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3941 *8))) (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1180)) (-5 *1 (-1091 *4 *5 *6 *7 *8)))) (-4370 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-657 *11)) (|:| |todo| (-657 (-2 (|:| |val| *3) (|:| -3941 *11)))))) (-5 *6 (-784)) (-5 *2 (-657 (-2 (|:| |val| (-657 *10)) (|:| -3941 *11)))) (-5 *3 (-657 *10)) (-5 *4 (-657 *11)) (-4 *10 (-1087 *7 *8 *9)) (-4 *11 (-1093 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-806)) (-4 *9 (-862)) (-5 *1 (-1091 *7 *8 *9 *10 *11)))) (-3545 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) (-3545 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-784)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-806)) (-4 *9 (-862)) (-4 *3 (-1087 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) (-5 *1 (-1091 *7 *8 *9 *3 *4)) (-4 *4 (-1093 *7 *8 *9 *3)))) (-2579 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2579 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) (-3663 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1091 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3056 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -2700 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -3663 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-112))) (-15 -2579 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784))) (-15 -2579 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|)) (-15 -3433 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784) (-112))) (-15 -3433 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784))) (-15 -3433 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|)) (-15 -3545 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -3545 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4370 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-657 |#4|) (-657 |#5|) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) (-784))) (-15 -4136 ((-1180) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)))) (-15 -4398 ((-1294) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-784)))) +((-1381 (((-112) |#5| $) 26)) (-1526 (((-112) |#5| $) 29)) (-3883 (((-112) |#5| $) 18) (((-112) $) 52)) (-3415 (((-657 $) |#5| $) NIL) (((-657 $) (-657 |#5|) $) 94) (((-657 $) (-657 |#5|) (-657 $)) 92) (((-657 $) |#5| (-657 $)) 95)) (-1456 (($ $ |#5|) NIL) (((-657 $) |#5| $) NIL) (((-657 $) |#5| (-657 $)) 73) (((-657 $) (-657 |#5|) $) 75) (((-657 $) (-657 |#5|) (-657 $)) 77)) (-1360 (((-657 $) |#5| $) NIL) (((-657 $) |#5| (-657 $)) 64) (((-657 $) (-657 |#5|) $) 69) (((-657 $) (-657 |#5|) (-657 $)) 71)) (-2374 (((-112) |#5| $) 32))) +(((-1092 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1456 ((-657 |#1|) (-657 |#5|) (-657 |#1|))) (-15 -1456 ((-657 |#1|) (-657 |#5|) |#1|)) (-15 -1456 ((-657 |#1|) |#5| (-657 |#1|))) (-15 -1456 ((-657 |#1|) |#5| |#1|)) (-15 -1360 ((-657 |#1|) (-657 |#5|) (-657 |#1|))) (-15 -1360 ((-657 |#1|) (-657 |#5|) |#1|)) (-15 -1360 ((-657 |#1|) |#5| (-657 |#1|))) (-15 -1360 ((-657 |#1|) |#5| |#1|)) (-15 -3415 ((-657 |#1|) |#5| (-657 |#1|))) (-15 -3415 ((-657 |#1|) (-657 |#5|) (-657 |#1|))) (-15 -3415 ((-657 |#1|) (-657 |#5|) |#1|)) (-15 -3415 ((-657 |#1|) |#5| |#1|)) (-15 -1526 ((-112) |#5| |#1|)) (-15 -3883 ((-112) |#1|)) (-15 -2374 ((-112) |#5| |#1|)) (-15 -1381 ((-112) |#5| |#1|)) (-15 -3883 ((-112) |#5| |#1|)) (-15 -1456 (|#1| |#1| |#5|))) (-1093 |#2| |#3| |#4| |#5|) (-464) (-806) (-862) (-1087 |#2| |#3| |#4|)) (T -1092)) +NIL +(-10 -8 (-15 -1456 ((-657 |#1|) (-657 |#5|) (-657 |#1|))) (-15 -1456 ((-657 |#1|) (-657 |#5|) |#1|)) (-15 -1456 ((-657 |#1|) |#5| (-657 |#1|))) (-15 -1456 ((-657 |#1|) |#5| |#1|)) (-15 -1360 ((-657 |#1|) (-657 |#5|) (-657 |#1|))) (-15 -1360 ((-657 |#1|) (-657 |#5|) |#1|)) (-15 -1360 ((-657 |#1|) |#5| (-657 |#1|))) (-15 -1360 ((-657 |#1|) |#5| |#1|)) (-15 -3415 ((-657 |#1|) |#5| (-657 |#1|))) (-15 -3415 ((-657 |#1|) (-657 |#5|) (-657 |#1|))) (-15 -3415 ((-657 |#1|) (-657 |#5|) |#1|)) (-15 -3415 ((-657 |#1|) |#5| |#1|)) (-15 -1526 ((-112) |#5| |#1|)) (-15 -3883 ((-112) |#1|)) (-15 -2374 ((-112) |#5| |#1|)) (-15 -1381 ((-112) |#5| |#1|)) (-15 -3883 ((-112) |#5| |#1|)) (-15 -1456 (|#1| |#1| |#5|))) +((-3423 (((-112) $ $) 7)) (-2112 (((-657 (-2 (|:| -1988 $) (|:| -3179 (-657 |#4|)))) (-657 |#4|)) 86)) (-1578 (((-657 $) (-657 |#4|)) 87) (((-657 $) (-657 |#4|) (-112)) 112)) (-1998 (((-657 |#3|) $) 34)) (-2250 (((-112) $) 27)) (-4334 (((-112) $) 18 (|has| |#1| (-568)))) (-2605 (((-112) |#4| $) 102) (((-112) $) 98)) (-3300 ((|#4| |#4| $) 93)) (-3188 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 $))) |#4| $) 127)) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |#3|) 28)) (-4284 (((-112) $ (-784)) 45)) (-2007 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 80)) (-2515 (($) 46 T CONST)) (-2697 (((-112) $) 23 (|has| |#1| (-568)))) (-3025 (((-112) $ $) 25 (|has| |#1| (-568)))) (-2936 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1978 (((-112) $) 26 (|has| |#1| (-568)))) (-1835 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1494 (((-657 |#4|) (-657 |#4|) $) 19 (|has| |#1| (-568)))) (-4203 (((-657 |#4|) (-657 |#4|) $) 20 (|has| |#1| (-568)))) (-1593 (((-3 $ "failed") (-657 |#4|)) 37)) (-2830 (($ (-657 |#4|)) 36)) (-3542 (((-3 $ "failed") $) 83)) (-1815 ((|#4| |#4| $) 90)) (-1620 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4466)))) (-3951 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3427 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1979 ((|#4| |#4| $) 88)) (-3662 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1492 (((-2 (|:| -1988 (-657 |#4|)) (|:| -3179 (-657 |#4|))) $) 106)) (-1381 (((-112) |#4| $) 137)) (-1526 (((-112) |#4| $) 134)) (-3883 (((-112) |#4| $) 138) (((-112) $) 135)) (-1448 (((-657 |#4|) $) 53 (|has| $ (-6 -4466)))) (-3537 (((-112) |#4| $) 105) (((-112) $) 104)) (-1428 ((|#3| $) 35)) (-1786 (((-112) $ (-784)) 44)) (-3855 (((-657 |#4|) $) 54 (|has| $ (-6 -4466)))) (-3326 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#4| |#4|) $) 48)) (-3944 (((-657 |#3|) $) 33)) (-2611 (((-112) |#3| $) 32)) (-4326 (((-112) $ (-784)) 43)) (-1708 (((-1180) $) 10)) (-3653 (((-3 |#4| (-657 $)) |#4| |#4| $) 129)) (-3156 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 $))) |#4| |#4| $) 128)) (-3921 (((-3 |#4| "failed") $) 84)) (-4024 (((-657 $) |#4| $) 130)) (-3846 (((-3 (-112) (-657 $)) |#4| $) 133)) (-4002 (((-657 (-2 (|:| |val| (-112)) (|:| -3941 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3415 (((-657 $) |#4| $) 126) (((-657 $) (-657 |#4|) $) 125) (((-657 $) (-657 |#4|) (-657 $)) 124) (((-657 $) |#4| (-657 $)) 123)) (-3082 (($ |#4| $) 118) (($ (-657 |#4|) $) 117)) (-3218 (((-657 |#4|) $) 108)) (-3893 (((-112) |#4| $) 100) (((-112) $) 96)) (-3510 ((|#4| |#4| $) 91)) (-2304 (((-112) $ $) 111)) (-2678 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-4299 (((-112) |#4| $) 101) (((-112) $) 97)) (-3511 ((|#4| |#4| $) 92)) (-1460 (((-1142) $) 11)) (-3528 (((-3 |#4| "failed") $) 85)) (-4135 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3923 (((-3 $ "failed") $ |#4|) 79)) (-1456 (($ $ |#4|) 78) (((-657 $) |#4| $) 116) (((-657 $) |#4| (-657 $)) 115) (((-657 $) (-657 |#4|) $) 114) (((-657 $) (-657 |#4|) (-657 $)) 113)) (-2372 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#4|) (-657 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-3807 (((-112) $ $) 39)) (-1368 (((-112) $) 42)) (-3340 (($) 41)) (-4265 (((-784) $) 107)) (-1469 (((-784) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4466)))) (-1899 (($ $) 40)) (-4136 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3529 (($ (-657 |#4|)) 61)) (-2764 (($ $ |#3|) 29)) (-2555 (($ $ |#3|) 31)) (-2038 (($ $) 89)) (-2267 (($ $ |#3|) 30)) (-3515 (((-877) $) 12) (((-657 |#4|) $) 38)) (-4384 (((-784) $) 77 (|has| |#3| (-379)))) (-4166 (((-112) $ $) 6)) (-2726 (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3741 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) 99)) (-1360 (((-657 $) |#4| $) 122) (((-657 $) |#4| (-657 $)) 121) (((-657 $) (-657 |#4|) $) 120) (((-657 $) (-657 |#4|) (-657 $)) 119)) (-3258 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4466)))) (-2330 (((-657 |#3|) $) 82)) (-2374 (((-112) |#4| $) 136)) (-2137 (((-112) |#3| $) 81)) (-2881 (((-112) $ $) 8)) (-3437 (((-784) $) 47 (|has| $ (-6 -4466))))) +(((-1093 |#1| |#2| |#3| |#4|) (-141) (-464) (-806) (-862) (-1087 |t#1| |t#2| |t#3|)) (T -1093)) +((-3883 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-1381 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-2374 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-1526 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-3846 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-3 (-112) (-657 *1))) (-4 *1 (-1093 *4 *5 *6 *3)))) (-4002 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3941 *1)))) (-4 *1 (-1093 *4 *5 *6 *3)))) (-4002 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-4024 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)))) (-3653 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-3 *3 (-657 *1))) (-4 *1 (-1093 *4 *5 *6 *3)))) (-3156 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *1)))) (-4 *1 (-1093 *4 *5 *6 *3)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *1)))) (-4 *1 (-1093 *4 *5 *6 *3)))) (-3415 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)))) (-3415 (*1 *2 *3 *1) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *7)))) (-3415 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *1)) (-5 *3 (-657 *7)) (-4 *1 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)))) (-3415 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)))) (-1360 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)))) (-1360 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)))) (-1360 (*1 *2 *3 *1) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *7)))) (-1360 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *1)) (-5 *3 (-657 *7)) (-4 *1 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)))) (-3082 (*1 *1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-3082 (*1 *1 *2 *1) (-12 (-5 *2 (-657 *6)) (-4 *1 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)))) (-1456 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)))) (-1456 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)))) (-1456 (*1 *2 *3 *1) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *7)))) (-1456 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *1)) (-5 *3 (-657 *7)) (-4 *1 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)))) (-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *5 *6 *7 *8))))) +(-13 (-1232 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3883 ((-112) |t#4| $)) (-15 -1381 ((-112) |t#4| $)) (-15 -2374 ((-112) |t#4| $)) (-15 -3883 ((-112) $)) (-15 -1526 ((-112) |t#4| $)) (-15 -3846 ((-3 (-112) (-657 $)) |t#4| $)) (-15 -4002 ((-657 (-2 (|:| |val| (-112)) (|:| -3941 $))) |t#4| $)) (-15 -4002 ((-112) |t#4| $)) (-15 -4024 ((-657 $) |t#4| $)) (-15 -3653 ((-3 |t#4| (-657 $)) |t#4| |t#4| $)) (-15 -3156 ((-657 (-2 (|:| |val| |t#4|) (|:| -3941 $))) |t#4| |t#4| $)) (-15 -3188 ((-657 (-2 (|:| |val| |t#4|) (|:| -3941 $))) |t#4| $)) (-15 -3415 ((-657 $) |t#4| $)) (-15 -3415 ((-657 $) (-657 |t#4|) $)) (-15 -3415 ((-657 $) (-657 |t#4|) (-657 $))) (-15 -3415 ((-657 $) |t#4| (-657 $))) (-15 -1360 ((-657 $) |t#4| $)) (-15 -1360 ((-657 $) |t#4| (-657 $))) (-15 -1360 ((-657 $) (-657 |t#4|) $)) (-15 -1360 ((-657 $) (-657 |t#4|) (-657 $))) (-15 -3082 ($ |t#4| $)) (-15 -3082 ($ (-657 |t#4|) $)) (-15 -1456 ((-657 $) |t#4| $)) (-15 -1456 ((-657 $) |t#4| (-657 $))) (-15 -1456 ((-657 $) (-657 |t#4|) $)) (-15 -1456 ((-657 $) (-657 |t#4|) (-657 $))) (-15 -1578 ((-657 $) (-657 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-625 (-657 |#4|)) . T) ((-625 (-877)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-998 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1232 |#1| |#2| |#3| |#4|) . T) ((-1239) . T)) +((-3553 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#5|) 86)) (-3634 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5|) 127)) (-3343 (((-657 |#5|) |#4| |#5|) 74)) (-1719 (((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2496 (((-1294)) 36)) (-2688 (((-1294)) 25)) (-3021 (((-1294) (-1180) (-1180) (-1180)) 32)) (-3770 (((-1294) (-1180) (-1180) (-1180)) 21)) (-1535 (((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) |#4| |#4| |#5|) 107)) (-2074 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) |#3| (-112)) 118) (((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3995 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5|) 113))) +(((-1094 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3770 ((-1294) (-1180) (-1180) (-1180))) (-15 -2688 ((-1294))) (-15 -3021 ((-1294) (-1180) (-1180) (-1180))) (-15 -2496 ((-1294))) (-15 -1535 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) |#4| |#4| |#5|)) (-15 -2074 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2074 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) |#3| (-112))) (-15 -3995 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5|)) (-15 -3634 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5|)) (-15 -1719 ((-112) |#4| |#5|)) (-15 -1719 ((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|)) (-15 -3343 ((-657 |#5|) |#4| |#5|)) (-15 -3553 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#5|))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|)) (T -1094)) +((-3553 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3343 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-1719 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3941 *4)))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-1719 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3634 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3995 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2074 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3941 *9)))) (-5 *5 (-112)) (-4 *8 (-1087 *6 *7 *4)) (-4 *9 (-1093 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *4 (-862)) (-5 *2 (-657 (-2 (|:| |val| *8) (|:| -3941 *9)))) (-5 *1 (-1094 *6 *7 *4 *8 *9)))) (-2074 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) (-1535 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2496 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) (-3021 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-2688 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) (-3770 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) +(-10 -7 (-15 -3770 ((-1294) (-1180) (-1180) (-1180))) (-15 -2688 ((-1294))) (-15 -3021 ((-1294) (-1180) (-1180) (-1180))) (-15 -2496 ((-1294))) (-15 -1535 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) |#4| |#4| |#5|)) (-15 -2074 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2074 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) |#3| (-112))) (-15 -3995 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5|)) (-15 -3634 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5|)) (-15 -1719 ((-112) |#4| |#5|)) (-15 -1719 ((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|)) (-15 -3343 ((-657 |#5|) |#4| |#5|)) (-15 -3553 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#5|))) +((-3423 (((-112) $ $) NIL)) (-2930 (((-1238) $) 13)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3054 (((-1157) $) 10)) (-3515 (((-877) $) 20) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1095) (-13 (-1105) (-10 -8 (-15 -3054 ((-1157) $)) (-15 -2930 ((-1238) $))))) (T -1095)) +((-3054 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1095)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-1095))))) +(-13 (-1105) (-10 -8 (-15 -3054 ((-1157) $)) (-15 -2930 ((-1238) $)))) +((-3981 (((-112) $ $) 7))) +(((-1096) (-13 (-1239) (-10 -8 (-15 -3981 ((-112) $ $))))) (T -1096)) +((-3981 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1096))))) +(-13 (-1239) (-10 -8 (-15 -3981 ((-112) $ $)))) +((-3423 (((-112) $ $) NIL)) (-2634 (((-1198) $) 8)) (-1708 (((-1180) $) 17)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 11)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 14))) +(((-1097 |#1|) (-13 (-1122) (-10 -8 (-15 -2634 ((-1198) $)))) (-1198)) (T -1097)) +((-2634 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1097 *3)) (-14 *3 *2)))) +(-13 (-1122) (-10 -8 (-15 -2634 ((-1198) $)))) +((-3423 (((-112) $ $) NIL)) (-4239 (($ $ (-657 (-1198)) (-1 (-112) (-657 |#3|))) 34)) (-2441 (($ |#3| |#3|) 23) (($ |#3| |#3| (-657 (-1198))) 21)) (-1691 ((|#3| $) 13)) (-1593 (((-3 (-304 |#3|) "failed") $) 60)) (-2830 (((-304 |#3|) $) NIL)) (-2243 (((-657 (-1198)) $) 16)) (-2715 (((-908 |#1|) $) 11)) (-1678 ((|#3| $) 12)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2780 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-941)) 41)) (-3515 (((-877) $) 89) (($ (-304 |#3|)) 22)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 38))) +(((-1098 |#1| |#2| |#3|) (-13 (-1122) (-296 |#3| |#3|) (-1060 (-304 |#3|)) (-10 -8 (-15 -2441 ($ |#3| |#3|)) (-15 -2441 ($ |#3| |#3| (-657 (-1198)))) (-15 -4239 ($ $ (-657 (-1198)) (-1 (-112) (-657 |#3|)))) (-15 -2715 ((-908 |#1|) $)) (-15 -1678 (|#3| $)) (-15 -1691 (|#3| $)) (-15 -2780 (|#3| $ |#3| (-941))) (-15 -2243 ((-657 (-1198)) $)))) (-1122) (-13 (-1071) (-902 |#1|) (-626 (-908 |#1|))) (-13 (-442 |#2|) (-902 |#1|) (-626 (-908 |#1|)))) (T -1098)) +((-2441 (*1 *1 *2 *2) (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) (-5 *1 (-1098 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))))) (-2441 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-657 (-1198))) (-4 *4 (-1122)) (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) (-5 *1 (-1098 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))))) (-4239 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-1 (-112) (-657 *6))) (-4 *6 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))) (-4 *4 (-1122)) (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) (-5 *1 (-1098 *4 *5 *6)))) (-2715 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 *2))) (-5 *2 (-908 *3)) (-5 *1 (-1098 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-902 *3) (-626 *2))))) (-1678 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *2 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))) (-5 *1 (-1098 *3 *4 *2)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))))) (-1691 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *2 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))) (-5 *1 (-1098 *3 *4 *2)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))))) (-2780 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-941)) (-4 *4 (-1122)) (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) (-5 *1 (-1098 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))))) (-2243 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) (-5 *2 (-657 (-1198))) (-5 *1 (-1098 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-902 *3) (-626 (-908 *3))))))) +(-13 (-1122) (-296 |#3| |#3|) (-1060 (-304 |#3|)) (-10 -8 (-15 -2441 ($ |#3| |#3|)) (-15 -2441 ($ |#3| |#3| (-657 (-1198)))) (-15 -4239 ($ $ (-657 (-1198)) (-1 (-112) (-657 |#3|)))) (-15 -2715 ((-908 |#1|) $)) (-15 -1678 (|#3| $)) (-15 -1691 (|#3| $)) (-15 -2780 (|#3| $ |#3| (-941))) (-15 -2243 ((-657 (-1198)) $)))) +((-3423 (((-112) $ $) NIL)) (-4205 (($ (-657 (-1098 |#1| |#2| |#3|))) 14)) (-3290 (((-657 (-1098 |#1| |#2| |#3|)) $) 21)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2780 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-941)) 27)) (-3515 (((-877) $) 17)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 20))) +(((-1099 |#1| |#2| |#3|) (-13 (-1122) (-296 |#3| |#3|) (-10 -8 (-15 -4205 ($ (-657 (-1098 |#1| |#2| |#3|)))) (-15 -3290 ((-657 (-1098 |#1| |#2| |#3|)) $)) (-15 -2780 (|#3| $ |#3| (-941))))) (-1122) (-13 (-1071) (-902 |#1|) (-626 (-908 |#1|))) (-13 (-442 |#2|) (-902 |#1|) (-626 (-908 |#1|)))) (T -1099)) +((-4205 (*1 *1 *2) (-12 (-5 *2 (-657 (-1098 *3 *4 *5))) (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) (-4 *5 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))) (-5 *1 (-1099 *3 *4 *5)))) (-3290 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) (-5 *2 (-657 (-1098 *3 *4 *5))) (-5 *1 (-1099 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))))) (-2780 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-941)) (-4 *4 (-1122)) (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) (-5 *1 (-1099 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4))))))) +(-13 (-1122) (-296 |#3| |#3|) (-10 -8 (-15 -4205 ($ (-657 (-1098 |#1| |#2| |#3|)))) (-15 -3290 ((-657 (-1098 |#1| |#2| |#3|)) $)) (-15 -2780 (|#3| $ |#3| (-941))))) +((-1488 (((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112)) 88) (((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|))) 92) (((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112)) 90))) +(((-1100 |#1| |#2|) (-10 -7 (-15 -1488 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112))) (-15 -1488 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)))) (-15 -1488 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112)))) (-13 (-317) (-148)) (-657 (-1198))) (T -1100)) +((-1488 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-2 (|:| -1980 (-1194 *5)) (|:| -3806 (-657 (-972 *5)))))) (-5 *1 (-1100 *5 *6)) (-5 *3 (-657 (-972 *5))) (-14 *6 (-657 (-1198))))) (-1488 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-5 *2 (-657 (-2 (|:| -1980 (-1194 *4)) (|:| -3806 (-657 (-972 *4)))))) (-5 *1 (-1100 *4 *5)) (-5 *3 (-657 (-972 *4))) (-14 *5 (-657 (-1198))))) (-1488 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-2 (|:| -1980 (-1194 *5)) (|:| -3806 (-657 (-972 *5)))))) (-5 *1 (-1100 *5 *6)) (-5 *3 (-657 (-972 *5))) (-14 *6 (-657 (-1198)))))) +(-10 -7 (-15 -1488 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112))) (-15 -1488 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)))) (-15 -1488 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112)))) +((-1856 (((-430 |#3|) |#3|) 18))) +(((-1101 |#1| |#2| |#3|) (-10 -7 (-15 -1856 ((-430 |#3|) |#3|))) (-1265 (-419 (-576))) (-13 (-374) (-148) (-737 (-419 (-576)) |#1|)) (-1265 |#2|)) (T -1101)) +((-1856 (*1 *2 *3) (-12 (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-13 (-374) (-148) (-737 (-419 (-576)) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1101 *4 *5 *3)) (-4 *3 (-1265 *5))))) +(-10 -7 (-15 -1856 ((-430 |#3|) |#3|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 136)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-374)))) (-2361 (($ $) NIL (|has| |#1| (-374)))) (-3286 (((-112) $) NIL (|has| |#1| (-374)))) (-3011 (((-702 |#1|) (-1289 $)) NIL) (((-702 |#1|)) 121)) (-2256 ((|#1| $) 125)) (-2266 (((-1211 (-941) (-784)) (-576)) NIL (|has| |#1| (-360)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-374)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2148 (((-784)) 43 (|has| |#1| (-379)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-4093 (($ (-1289 |#1|) (-1289 $)) NIL) (($ (-1289 |#1|)) 46)) (-4375 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-1584 (((-702 |#1|) $ (-1289 $)) NIL) (((-702 |#1|) $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 113) (((-702 |#1|) (-702 $)) 108)) (-3662 (($ |#2|) 65) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-374)))) (-3969 (((-3 $ "failed") $) NIL)) (-4343 (((-941)) 84)) (-1876 (($) 47 (|has| |#1| (-379)))) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-2846 (($) NIL (|has| |#1| (-360)))) (-2798 (((-112) $) NIL (|has| |#1| (-360)))) (-4266 (($ $ (-784)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-4009 (((-112) $) NIL (|has| |#1| (-374)))) (-2650 (((-941) $) NIL (|has| |#1| (-360))) (((-846 (-941)) $) NIL (|has| |#1| (-360)))) (-3994 (((-112) $) NIL)) (-3869 ((|#1| $) NIL)) (-1955 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3604 ((|#2| $) 91 (|has| |#1| (-374)))) (-2327 (((-941) $) 145 (|has| |#1| (-379)))) (-3647 ((|#2| $) 62)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL (|has| |#1| (-374)))) (-1679 (($) NIL (|has| |#1| (-360)) CONST)) (-3146 (($ (-941)) 135 (|has| |#1| (-379)))) (-1460 (((-1142) $) NIL)) (-4083 (($) 127)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3092 (((-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576))))) NIL (|has| |#1| (-360)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4164 (((-784) $) NIL (|has| |#1| (-374)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-1465 ((|#1| (-1289 $)) NIL) ((|#1|) 117)) (-2495 (((-784) $) NIL (|has| |#1| (-360))) (((-3 (-784) "failed") $ $) NIL (|has| |#1| (-360)))) (-2209 (($ $ (-784)) NIL (-2748 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2748 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-1198)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-784)) NIL (|has| |#1| (-374)))) (-4301 (((-702 |#1|) (-1289 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-2005 ((|#2|) 81)) (-4170 (($) NIL (|has| |#1| (-360)))) (-3806 (((-1289 |#1|) $ (-1289 $)) 96) (((-702 |#1|) (-1289 $) (-1289 $)) NIL) (((-1289 |#1|) $) 75) (((-702 |#1|) (-1289 $)) 92)) (-4136 (((-1289 |#1|) $) NIL) (($ (-1289 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-360)))) (-3515 (((-877) $) 61) (($ (-576)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-374))) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576))))))) (-3414 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2948 ((|#2| $) 89)) (-3845 (((-784)) 83 T CONST)) (-4166 (((-112) $ $) NIL)) (-2469 (((-1289 $)) 88)) (-2607 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2716 (($) 32 T CONST)) (-2725 (($) 19 T CONST)) (-2066 (($ $ (-784)) NIL (-2748 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2748 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-1198)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-784)) NIL (|has| |#1| (-374)))) (-2881 (((-112) $ $) 67)) (-2995 (($ $ $) NIL (|has| |#1| (-374)))) (-2982 (($ $) 71) (($ $ $) NIL)) (-2971 (($ $ $) 69)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) +(((-1102 |#1| |#2| |#3|) (-737 |#1| |#2|) (-174) (-1265 |#1|) |#2|) (T -1102)) +NIL +(-737 |#1| |#2|) +((-1856 (((-430 |#3|) |#3|) 19))) +(((-1103 |#1| |#2| |#3|) (-10 -7 (-15 -1856 ((-430 |#3|) |#3|))) (-1265 (-419 (-972 (-576)))) (-13 (-374) (-148) (-737 (-419 (-972 (-576))) |#1|)) (-1265 |#2|)) (T -1103)) +((-1856 (*1 *2 *3) (-12 (-4 *4 (-1265 (-419 (-972 (-576))))) (-4 *5 (-13 (-374) (-148) (-737 (-419 (-972 (-576))) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1103 *4 *5 *3)) (-4 *3 (-1265 *5))))) +(-10 -7 (-15 -1856 ((-430 |#3|) |#3|))) +((-3423 (((-112) $ $) NIL)) (-3740 (($ $ $) 16)) (-2249 (($ $ $) 17)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-4149 (($) 6)) (-4136 (((-1198) $) 20)) (-3515 (((-877) $) 13)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 15)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 9))) +(((-1104) (-13 (-862) (-626 (-1198)) (-10 -8 (-15 -4149 ($))))) (T -1104)) +((-4149 (*1 *1) (-5 *1 (-1104)))) +(-13 (-862) (-626 (-1198)) (-10 -8 (-15 -4149 ($)))) +((-3423 (((-112) $ $) 7)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-1203)) 17) (((-1203) $) 16)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) +(((-1105) (-141)) (T -1105)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-628 #0=(-1202)) . T) ((-625 (-876)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1121) . T) ((-1238) . T)) -((-3427 ((|#1| |#1| (-1 (-576) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-4004 (((-1293)) 21)) (-2011 (((-656 |#1|)) 13))) -(((-1105 |#1|) (-10 -7 (-15 -4004 ((-1293))) (-15 -2011 ((-656 |#1|))) (-15 -3427 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3427 (|#1| |#1| (-1 (-576) |#1| |#1|)))) (-133)) (T -1105)) -((-3427 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2)))) (-3427 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2)))) (-2011 (*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-133)))) (-4004 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1105 *3)) (-4 *3 (-133))))) -(-10 -7 (-15 -4004 ((-1293))) (-15 -2011 ((-656 |#1|))) (-15 -3427 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3427 (|#1| |#1| (-1 (-576) |#1| |#1|)))) -((-1693 (($ (-109) $) 20)) (-2886 (((-703 (-109)) (-518) $) 19)) (-3307 (($) 7)) (-1593 (($) 21)) (-2976 (($) 22)) (-2726 (((-656 (-177)) $) 10)) (-4113 (((-876) $) 25))) -(((-1106) (-13 (-625 (-876)) (-10 -8 (-15 -3307 ($)) (-15 -2726 ((-656 (-177)) $)) (-15 -2886 ((-703 (-109)) (-518) $)) (-15 -1693 ($ (-109) $)) (-15 -1593 ($)) (-15 -2976 ($))))) (T -1106)) -((-3307 (*1 *1) (-5 *1 (-1106))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1106)))) (-2886 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1106)))) (-1693 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1106)))) (-1593 (*1 *1) (-5 *1 (-1106))) (-2976 (*1 *1) (-5 *1 (-1106)))) -(-13 (-625 (-876)) (-10 -8 (-15 -3307 ($)) (-15 -2726 ((-656 (-177)) $)) (-15 -2886 ((-703 (-109)) (-518) $)) (-15 -1693 ($ (-109) $)) (-15 -1593 ($)) (-15 -2976 ($)))) -((-2272 (((-1288 (-701 |#1|)) (-656 (-701 |#1|))) 45) (((-1288 (-701 (-971 |#1|))) (-656 (-1197)) (-701 (-971 |#1|))) 75) (((-1288 (-701 (-419 (-971 |#1|)))) (-656 (-1197)) (-701 (-419 (-971 |#1|)))) 92)) (-4314 (((-1288 |#1|) (-701 |#1|) (-656 (-701 |#1|))) 39))) -(((-1107 |#1|) (-10 -7 (-15 -2272 ((-1288 (-701 (-419 (-971 |#1|)))) (-656 (-1197)) (-701 (-419 (-971 |#1|))))) (-15 -2272 ((-1288 (-701 (-971 |#1|))) (-656 (-1197)) (-701 (-971 |#1|)))) (-15 -2272 ((-1288 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -4314 ((-1288 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) (-374)) (T -1107)) -((-4314 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-1288 *5)) (-5 *1 (-1107 *5)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-1107 *4)))) (-2272 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) (-5 *2 (-1288 (-701 (-971 *5)))) (-5 *1 (-1107 *5)) (-5 *4 (-701 (-971 *5))))) (-2272 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) (-5 *2 (-1288 (-701 (-419 (-971 *5))))) (-5 *1 (-1107 *5)) (-5 *4 (-701 (-419 (-971 *5))))))) -(-10 -7 (-15 -2272 ((-1288 (-701 (-419 (-971 |#1|)))) (-656 (-1197)) (-701 (-419 (-971 |#1|))))) (-15 -2272 ((-1288 (-701 (-971 |#1|))) (-656 (-1197)) (-701 (-971 |#1|)))) (-15 -2272 ((-1288 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -4314 ((-1288 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2904 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1197)) NIL)) (-2028 (((-783) $) NIL) (((-783) $ (-1197)) NIL)) (-1585 (((-656 (-1109 (-1197))) $) NIL)) (-1421 (((-1193 $) $ (-1109 (-1197))) NIL) (((-1193 |#1|) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 (-1109 (-1197)))) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2658 (($ $) NIL (|has| |#1| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3483 (($ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1109 (-1197)) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL) (((-3 (-1146 |#1| (-1197)) "failed") $) NIL)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1109 (-1197)) $) NIL) (((-1197) $) NIL) (((-1146 |#1| (-1197)) $) NIL)) (-2970 (($ $ $ (-1109 (-1197))) NIL (|has| |#1| (-174)))) (-3310 (($ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1109 (-1197))) NIL (|has| |#1| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#1| (-928)))) (-1975 (($ $ |#1| (-543 (-1109 (-1197))) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1109 (-1197)) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1109 (-1197)) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3359 (((-783) $ (-1197)) NIL) (((-783) $) NIL)) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-1574 (($ (-1193 |#1|) (-1109 (-1197))) NIL) (($ (-1193 $) (-1109 (-1197))) NIL)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-543 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ (-1109 (-1197))) NIL)) (-2192 (((-543 (-1109 (-1197))) $) NIL) (((-783) $ (-1109 (-1197))) NIL) (((-656 (-783)) $ (-656 (-1109 (-1197)))) NIL)) (-3784 (($ (-1 (-543 (-1109 (-1197))) (-543 (-1109 (-1197)))) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2554 (((-1 $ (-783)) (-1197)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-3477 (((-3 (-1109 (-1197)) "failed") $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-4195 (((-1109 (-1197)) $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2447 (((-1179) $) NIL)) (-3274 (((-112) $) NIL)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| (-1109 (-1197))) (|:| -4080 (-783))) "failed") $) NIL)) (-2294 (($ $) NIL)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) NIL)) (-1686 ((|#1| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-928)))) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1109 (-1197)) |#1|) NIL) (($ $ (-656 (-1109 (-1197))) (-656 |#1|)) NIL) (($ $ (-1109 (-1197)) $) NIL) (($ $ (-656 (-1109 (-1197))) (-656 $)) NIL) (($ $ (-1197) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1197)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-1790 (($ $ (-1109 (-1197))) NIL (|has| |#1| (-174)))) (-4107 (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2066 (((-656 (-1197)) $) NIL)) (-2196 (((-543 (-1109 (-1197))) $) NIL) (((-783) $ (-1109 (-1197))) NIL) (((-656 (-783)) $ (-656 (-1109 (-1197)))) NIL) (((-783) $ (-1197)) NIL)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| (-1109 (-1197)) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1109 (-1197)) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1109 (-1197)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1944 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1109 (-1197))) NIL (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1109 (-1197))) NIL) (($ (-1197)) NIL) (($ (-1146 |#1| (-1197))) NIL) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-543 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-656 (-1109 (-1197))) (-656 (-783))) NIL) (($ $ (-1109 (-1197)) (-783)) NIL) (($ $ (-656 (-1109 (-1197)))) NIL) (($ $ (-1109 (-1197))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1108 |#1|) (-13 (-260 |#1| (-1197) (-1109 (-1197)) (-543 (-1109 (-1197)))) (-1059 (-1146 |#1| (-1197)))) (-1070)) (T -1108)) -NIL -(-13 (-260 |#1| (-1197) (-1109 (-1197)) (-543 (-1109 (-1197)))) (-1059 (-1146 |#1| (-1197)))) -((-1957 (((-112) $ $) NIL)) (-2028 (((-783) $) NIL)) (-1654 ((|#1| $) 10)) (-2982 (((-3 |#1| "failed") $) NIL)) (-2317 ((|#1| $) NIL)) (-3359 (((-783) $) 11)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2554 (($ |#1| (-783)) 9)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4107 (($ $ (-783)) NIL) (($ $) NIL)) (-4113 (((-876) $) NIL) (($ |#1|) NIL)) (-2950 (((-112) $ $) NIL)) (-3157 (($ $ (-783)) NIL) (($ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 16))) -(((-1109 |#1|) (-275 |#1|) (-861)) (T -1109)) +(((-93) . T) ((-102) . T) ((-628 #0=(-1203)) . T) ((-625 (-877)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1122) . T) ((-1239) . T)) +((-2078 ((|#1| |#1| (-1 (-576) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-1687 (((-1294)) 21)) (-3990 (((-657 |#1|)) 13))) +(((-1106 |#1|) (-10 -7 (-15 -1687 ((-1294))) (-15 -3990 ((-657 |#1|))) (-15 -2078 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2078 (|#1| |#1| (-1 (-576) |#1| |#1|)))) (-133)) (T -1106)) +((-2078 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1106 *2)))) (-2078 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1106 *2)))) (-3990 (*1 *2) (-12 (-5 *2 (-657 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-133)))) (-1687 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1106 *3)) (-4 *3 (-133))))) +(-10 -7 (-15 -1687 ((-1294))) (-15 -3990 ((-657 |#1|))) (-15 -2078 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2078 (|#1| |#1| (-1 (-576) |#1| |#1|)))) +((-2891 (($ (-109) $) 20)) (-3598 (((-704 (-109)) (-518) $) 19)) (-3340 (($) 7)) (-3243 (($) 21)) (-4415 (($) 22)) (-2637 (((-657 (-177)) $) 10)) (-3515 (((-877) $) 25))) +(((-1107) (-13 (-625 (-877)) (-10 -8 (-15 -3340 ($)) (-15 -2637 ((-657 (-177)) $)) (-15 -3598 ((-704 (-109)) (-518) $)) (-15 -2891 ($ (-109) $)) (-15 -3243 ($)) (-15 -4415 ($))))) (T -1107)) +((-3340 (*1 *1) (-5 *1 (-1107))) (-2637 (*1 *2 *1) (-12 (-5 *2 (-657 (-177))) (-5 *1 (-1107)))) (-3598 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-704 (-109))) (-5 *1 (-1107)))) (-2891 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1107)))) (-3243 (*1 *1) (-5 *1 (-1107))) (-4415 (*1 *1) (-5 *1 (-1107)))) +(-13 (-625 (-877)) (-10 -8 (-15 -3340 ($)) (-15 -2637 ((-657 (-177)) $)) (-15 -3598 ((-704 (-109)) (-518) $)) (-15 -2891 ($ (-109) $)) (-15 -3243 ($)) (-15 -4415 ($)))) +((-3731 (((-1289 (-702 |#1|)) (-657 (-702 |#1|))) 45) (((-1289 (-702 (-972 |#1|))) (-657 (-1198)) (-702 (-972 |#1|))) 75) (((-1289 (-702 (-419 (-972 |#1|)))) (-657 (-1198)) (-702 (-419 (-972 |#1|)))) 92)) (-3806 (((-1289 |#1|) (-702 |#1|) (-657 (-702 |#1|))) 39))) +(((-1108 |#1|) (-10 -7 (-15 -3731 ((-1289 (-702 (-419 (-972 |#1|)))) (-657 (-1198)) (-702 (-419 (-972 |#1|))))) (-15 -3731 ((-1289 (-702 (-972 |#1|))) (-657 (-1198)) (-702 (-972 |#1|)))) (-15 -3731 ((-1289 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -3806 ((-1289 |#1|) (-702 |#1|) (-657 (-702 |#1|))))) (-374)) (T -1108)) +((-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-702 *5))) (-5 *3 (-702 *5)) (-4 *5 (-374)) (-5 *2 (-1289 *5)) (-5 *1 (-1108 *5)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-657 (-702 *4))) (-4 *4 (-374)) (-5 *2 (-1289 (-702 *4))) (-5 *1 (-1108 *4)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-1198))) (-4 *5 (-374)) (-5 *2 (-1289 (-702 (-972 *5)))) (-5 *1 (-1108 *5)) (-5 *4 (-702 (-972 *5))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-1198))) (-4 *5 (-374)) (-5 *2 (-1289 (-702 (-419 (-972 *5))))) (-5 *1 (-1108 *5)) (-5 *4 (-702 (-419 (-972 *5))))))) +(-10 -7 (-15 -3731 ((-1289 (-702 (-419 (-972 |#1|)))) (-657 (-1198)) (-702 (-419 (-972 |#1|))))) (-15 -3731 ((-1289 (-702 (-972 |#1|))) (-657 (-1198)) (-702 (-972 |#1|)))) (-15 -3731 ((-1289 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -3806 ((-1289 |#1|) (-702 |#1|) (-657 (-702 |#1|))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3800 (((-657 (-784)) $) NIL) (((-657 (-784)) $ (-1198)) NIL)) (-3074 (((-784) $) NIL) (((-784) $ (-1198)) NIL)) (-1998 (((-657 (-1110 (-1198))) $) NIL)) (-1825 (((-1194 $) $ (-1110 (-1198))) NIL) (((-1194 |#1|) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 (-1110 (-1198)))) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3188 (($ $) NIL (|has| |#1| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2549 (($ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-1110 (-1198)) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL) (((-3 (-1147 |#1| (-1198)) "failed") $) NIL)) (-2830 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-1110 (-1198)) $) NIL) (((-1198) $) NIL) (((-1147 |#1| (-1198)) $) NIL)) (-4351 (($ $ $ (-1110 (-1198))) NIL (|has| |#1| (-174)))) (-2165 (($ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1110 (-1198))) NIL (|has| |#1| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#1| (-929)))) (-2643 (($ $ |#1| (-543 (-1110 (-1198))) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1110 (-1198)) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1110 (-1198)) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-2650 (((-784) $ (-1198)) NIL) (((-784) $) NIL)) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-1986 (($ (-1194 |#1|) (-1110 (-1198))) NIL) (($ (-1194 $) (-1110 (-1198))) NIL)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-543 (-1110 (-1198)))) NIL) (($ $ (-1110 (-1198)) (-784)) NIL) (($ $ (-657 (-1110 (-1198))) (-657 (-784))) NIL)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ (-1110 (-1198))) NIL)) (-4219 (((-543 (-1110 (-1198))) $) NIL) (((-784) $ (-1110 (-1198))) NIL) (((-657 (-784)) $ (-657 (-1110 (-1198)))) NIL)) (-2308 (($ (-1 (-543 (-1110 (-1198))) (-543 (-1110 (-1198)))) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3359 (((-1 $ (-784)) (-1198)) NIL) (((-1 $ (-784)) $) NIL (|has| |#1| (-238)))) (-2502 (((-3 (-1110 (-1198)) "failed") $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-1582 (((-1110 (-1198)) $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1708 (((-1180) $) NIL)) (-4298 (((-112) $) NIL)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| (-1110 (-1198))) (|:| -2128 (-784))) "failed") $) NIL)) (-4268 (($ $) NIL)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) NIL)) (-2118 ((|#1| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-929)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1110 (-1198)) |#1|) NIL) (($ $ (-657 (-1110 (-1198))) (-657 |#1|)) NIL) (($ $ (-1110 (-1198)) $) NIL) (($ $ (-657 (-1110 (-1198))) (-657 $)) NIL) (($ $ (-1198) $) NIL (|has| |#1| (-238))) (($ $ (-657 (-1198)) (-657 $)) NIL (|has| |#1| (-238))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-238))) (($ $ (-657 (-1198)) (-657 |#1|)) NIL (|has| |#1| (-238)))) (-1465 (($ $ (-1110 (-1198))) NIL (|has| |#1| (-174)))) (-2209 (($ $ (-657 (-1110 (-1198))) (-657 (-784))) NIL) (($ $ (-1110 (-1198)) (-784)) NIL) (($ $ (-657 (-1110 (-1198)))) NIL) (($ $ (-1110 (-1198))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-2297 (((-657 (-1198)) $) NIL)) (-4265 (((-543 (-1110 (-1198))) $) NIL) (((-784) $ (-1110 (-1198))) NIL) (((-657 (-784)) $ (-657 (-1110 (-1198)))) NIL) (((-784) $ (-1198)) NIL)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| (-1110 (-1198)) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-1110 (-1198)) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-1110 (-1198)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3614 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1110 (-1198))) NIL (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1110 (-1198))) NIL) (($ (-1198)) NIL) (($ (-1147 |#1| (-1198))) NIL) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-543 (-1110 (-1198)))) NIL) (($ $ (-1110 (-1198)) (-784)) NIL) (($ $ (-657 (-1110 (-1198))) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-657 (-1110 (-1198))) (-657 (-784))) NIL) (($ $ (-1110 (-1198)) (-784)) NIL) (($ $ (-657 (-1110 (-1198)))) NIL) (($ $ (-1110 (-1198))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1109 |#1|) (-13 (-260 |#1| (-1198) (-1110 (-1198)) (-543 (-1110 (-1198)))) (-1060 (-1147 |#1| (-1198)))) (-1071)) (T -1109)) +NIL +(-13 (-260 |#1| (-1198) (-1110 (-1198)) (-543 (-1110 (-1198)))) (-1060 (-1147 |#1| (-1198)))) +((-3423 (((-112) $ $) NIL)) (-3074 (((-784) $) NIL)) (-2993 ((|#1| $) 10)) (-1593 (((-3 |#1| "failed") $) NIL)) (-2830 ((|#1| $) NIL)) (-2650 (((-784) $) 11)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-3359 (($ |#1| (-784)) 9)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2209 (($ $ (-784)) NIL) (($ $) NIL)) (-3515 (((-877) $) NIL) (($ |#1|) NIL)) (-4166 (((-112) $ $) NIL)) (-2066 (($ $ (-784)) NIL) (($ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 16))) +(((-1110 |#1|) (-275 |#1|) (-862)) (T -1110)) NIL (-275 |#1|) -((-2423 (((-656 |#2|) (-1 |#2| |#1|) (-1115 |#1|)) 29 (|has| |#1| (-860))) (((-1115 |#2|) (-1 |#2| |#1|) (-1115 |#1|)) 14))) -(((-1110 |#1| |#2|) (-10 -7 (-15 -2423 ((-1115 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) (IF (|has| |#1| (-860)) (-15 -2423 ((-656 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) |%noBranch|)) (-1238) (-1238)) (T -1110)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1115 *5)) (-4 *5 (-860)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-656 *6)) (-5 *1 (-1110 *5 *6)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1115 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1115 *6)) (-5 *1 (-1110 *5 *6))))) -(-10 -7 (-15 -2423 ((-1115 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) (IF (|has| |#1| (-860)) (-15 -2423 ((-656 |#2|) (-1 |#2| |#1|) (-1115 |#1|))) |%noBranch|)) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 16) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2685 (((-656 (-1156)) $) 10)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1111) (-13 (-1104) (-10 -8 (-15 -2685 ((-656 (-1156)) $))))) (T -1111)) -((-2685 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1111))))) -(-13 (-1104) (-10 -8 (-15 -2685 ((-656 (-1156)) $)))) -((-2423 (((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 19))) -(((-1112 |#1| |#2|) (-10 -7 (-15 -2423 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) (-1238) (-1238)) (T -1112)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1113 *6)) (-5 *1 (-1112 *5 *6))))) -(-10 -7 (-15 -2423 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) -((-1957 (((-112) $ $) NIL (|has| (-1115 |#1|) (-1121)))) (-1654 (((-1197) $) NIL)) (-2402 (((-1115 |#1|) $) NIL)) (-2447 (((-1179) $) NIL (|has| (-1115 |#1|) (-1121)))) (-3116 (((-1141) $) NIL (|has| (-1115 |#1|) (-1121)))) (-2441 (($ (-1197) (-1115 |#1|)) NIL)) (-4113 (((-876) $) NIL (|has| (-1115 |#1|) (-1121)))) (-2950 (((-112) $ $) NIL (|has| (-1115 |#1|) (-1121)))) (-3939 (((-112) $ $) NIL (|has| (-1115 |#1|) (-1121))))) -(((-1113 |#1|) (-13 (-1238) (-10 -8 (-15 -2441 ($ (-1197) (-1115 |#1|))) (-15 -1654 ((-1197) $)) (-15 -2402 ((-1115 |#1|) $)) (IF (|has| (-1115 |#1|) (-1121)) (-6 (-1121)) |%noBranch|))) (-1238)) (T -1113)) -((-2441 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1115 *4)) (-4 *4 (-1238)) (-5 *1 (-1113 *4)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1113 *3)) (-4 *3 (-1238)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-1113 *3)) (-4 *3 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -2441 ($ (-1197) (-1115 |#1|))) (-15 -1654 ((-1197) $)) (-15 -2402 ((-1115 |#1|) $)) (IF (|has| (-1115 |#1|) (-1121)) (-6 (-1121)) |%noBranch|))) -((-2402 (($ |#1| |#1|) 8)) (-3890 ((|#1| $) 11)) (-1696 ((|#1| $) 13)) (-2656 (((-576) $) 9)) (-2699 ((|#1| $) 10)) (-2668 ((|#1| $) 12)) (-1556 (($ |#1|) 6)) (-2497 (($ |#1| |#1|) 15)) (-3716 (($ $ (-576)) 14))) -(((-1114 |#1|) (-141) (-1238)) (T -1114)) -((-2497 (*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-3716 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1114 *3)) (-4 *3 (-1238)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-2699 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1238)) (-5 *2 (-576)))) (-2402 (*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) -(-13 (-630 |t#1|) (-10 -8 (-15 -2497 ($ |t#1| |t#1|)) (-15 -3716 ($ $ (-576))) (-15 -1696 (|t#1| $)) (-15 -2668 (|t#1| $)) (-15 -3890 (|t#1| $)) (-15 -2699 (|t#1| $)) (-15 -2656 ((-576) $)) (-15 -2402 ($ |t#1| |t#1|)))) +((-4071 (((-657 |#2|) (-1 |#2| |#1|) (-1116 |#1|)) 29 (|has| |#1| (-861))) (((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|)) 14))) +(((-1111 |#1| |#2|) (-10 -7 (-15 -4071 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (IF (|has| |#1| (-861)) (-15 -4071 ((-657 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) |%noBranch|)) (-1239) (-1239)) (T -1111)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-861)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-657 *6)) (-5 *1 (-1111 *5 *6)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1116 *6)) (-5 *1 (-1111 *5 *6))))) +(-10 -7 (-15 -4071 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (IF (|has| |#1| (-861)) (-15 -4071 ((-657 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) |%noBranch|)) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 16) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2300 (((-657 (-1157)) $) 10)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1112) (-13 (-1105) (-10 -8 (-15 -2300 ((-657 (-1157)) $))))) (T -1112)) +((-2300 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-1112))))) +(-13 (-1105) (-10 -8 (-15 -2300 ((-657 (-1157)) $)))) +((-4071 (((-1114 |#2|) (-1 |#2| |#1|) (-1114 |#1|)) 19))) +(((-1113 |#1| |#2|) (-10 -7 (-15 -4071 ((-1114 |#2|) (-1 |#2| |#1|) (-1114 |#1|)))) (-1239) (-1239)) (T -1113)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1114 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1114 *6)) (-5 *1 (-1113 *5 *6))))) +(-10 -7 (-15 -4071 ((-1114 |#2|) (-1 |#2| |#1|) (-1114 |#1|)))) +((-3423 (((-112) $ $) NIL (|has| (-1116 |#1|) (-1122)))) (-2993 (((-1198) $) NIL)) (-2290 (((-1116 |#1|) $) NIL)) (-1708 (((-1180) $) NIL (|has| (-1116 |#1|) (-1122)))) (-1460 (((-1142) $) NIL (|has| (-1116 |#1|) (-1122)))) (-2371 (($ (-1198) (-1116 |#1|)) NIL)) (-3515 (((-877) $) NIL (|has| (-1116 |#1|) (-1122)))) (-4166 (((-112) $ $) NIL (|has| (-1116 |#1|) (-1122)))) (-2881 (((-112) $ $) NIL (|has| (-1116 |#1|) (-1122))))) +(((-1114 |#1|) (-13 (-1239) (-10 -8 (-15 -2371 ($ (-1198) (-1116 |#1|))) (-15 -2993 ((-1198) $)) (-15 -2290 ((-1116 |#1|) $)) (IF (|has| (-1116 |#1|) (-1122)) (-6 (-1122)) |%noBranch|))) (-1239)) (T -1114)) +((-2371 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1116 *4)) (-4 *4 (-1239)) (-5 *1 (-1114 *4)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1114 *3)) (-4 *3 (-1239)))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1114 *3)) (-4 *3 (-1239))))) +(-13 (-1239) (-10 -8 (-15 -2371 ($ (-1198) (-1116 |#1|))) (-15 -2993 ((-1198) $)) (-15 -2290 ((-1116 |#1|) $)) (IF (|has| (-1116 |#1|) (-1122)) (-6 (-1122)) |%noBranch|))) +((-2290 (($ |#1| |#1|) 8)) (-3989 ((|#1| $) 11)) (-3045 ((|#1| $) 13)) (-4193 (((-576) $) 9)) (-2421 ((|#1| $) 10)) (-4206 ((|#1| $) 12)) (-4136 (($ |#1|) 6)) (-1812 (($ |#1| |#1|) 15)) (-2670 (($ $ (-576)) 14))) +(((-1115 |#1|) (-141) (-1239)) (T -1115)) +((-1812 (*1 *1 *2 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) (-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1115 *3)) (-4 *3 (-1239)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1239)) (-5 *2 (-576)))) (-2290 (*1 *1 *2 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239))))) +(-13 (-630 |t#1|) (-10 -8 (-15 -1812 ($ |t#1| |t#1|)) (-15 -2670 ($ $ (-576))) (-15 -3045 (|t#1| $)) (-15 -4206 (|t#1| $)) (-15 -3989 (|t#1| $)) (-15 -2421 (|t#1| $)) (-15 -4193 ((-576) $)) (-15 -2290 ($ |t#1| |t#1|)))) (((-630 |#1|) . T)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2402 (($ |#1| |#1|) 16)) (-2423 (((-656 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-860)))) (-3890 ((|#1| $) 12)) (-1696 ((|#1| $) 11)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2656 (((-576) $) 15)) (-2699 ((|#1| $) 14)) (-2668 ((|#1| $) 13)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3568 (((-656 |#1|) $) 44 (|has| |#1| (-860))) (((-656 |#1|) (-656 $)) 43 (|has| |#1| (-860)))) (-1556 (($ |#1|) 29)) (-4113 (((-876) $) 28 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2497 (($ |#1| |#1|) 10)) (-3716 (($ $ (-576)) 17)) (-3939 (((-112) $ $) 22 (|has| |#1| (-1121))))) -(((-1115 |#1|) (-13 (-1114 |#1|) (-10 -7 (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-656 |#1|))) |%noBranch|))) (-1238)) (T -1115)) -NIL -(-13 (-1114 |#1|) (-10 -7 (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-656 |#1|))) |%noBranch|))) -((-2402 (($ |#1| |#1|) 8)) (-2423 ((|#2| (-1 |#1| |#1|) $) 16)) (-3890 ((|#1| $) 11)) (-1696 ((|#1| $) 13)) (-2656 (((-576) $) 9)) (-2699 ((|#1| $) 10)) (-2668 ((|#1| $) 12)) (-3568 ((|#2| (-656 $)) 18) ((|#2| $) 17)) (-1556 (($ |#1|) 6)) (-2497 (($ |#1| |#1|) 15)) (-3716 (($ $ (-576)) 14))) -(((-1116 |#1| |#2|) (-141) (-860) (-1170 |t#1|)) (T -1116)) -((-3568 (*1 *2 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1170 *4)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1170 *3)))) (-2423 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1170 *4))))) -(-13 (-1114 |t#1|) (-10 -8 (-15 -3568 (|t#2| (-656 $))) (-15 -3568 (|t#2| $)) (-15 -2423 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-630 |#1|) . T) ((-1114 |#1|) . T)) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-2850 (((-1156) $) 12)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 18) (($ (-1202)) NIL) (((-1202) $) NIL)) (-4159 (((-656 (-1156)) $) 10)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1117) (-13 (-1104) (-10 -8 (-15 -4159 ((-656 (-1156)) $)) (-15 -2850 ((-1156) $))))) (T -1117)) -((-4159 (*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1117)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1117))))) -(-13 (-1104) (-10 -8 (-15 -4159 ((-656 (-1156)) $)) (-15 -2850 ((-1156) $)))) -((-4025 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1831 (($ $ $) 10)) (-3198 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1118 |#1| |#2|) (-10 -8 (-15 -4025 (|#1| |#2| |#1|)) (-15 -4025 (|#1| |#1| |#2|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#1| |#1|)) (-15 -3198 (|#1| |#1| |#2|)) (-15 -3198 (|#1| |#1| |#1|))) (-1119 |#2|) (-1121)) (T -1118)) -NIL -(-10 -8 (-15 -4025 (|#1| |#2| |#1|)) (-15 -4025 (|#1| |#1| |#2|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#1| |#1|)) (-15 -3198 (|#1| |#1| |#2|)) (-15 -3198 (|#1| |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-4025 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-1831 (($ $ $) 21)) (-4084 (((-112) $ $) 20)) (-4234 (((-112) $ (-783)) 36)) (-3704 (($) 26) (($ (-656 |#1|)) 25)) (-3603 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4464)))) (-3170 (($) 37 T CONST)) (-3841 (($ $) 60 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#1| $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4464)))) (-3722 (((-656 |#1|) $) 44 (|has| $ (-6 -4464)))) (-2779 (((-112) $ $) 29)) (-3215 (((-112) $ (-783)) 35)) (-2911 (((-656 |#1|) $) 45 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 39)) (-1884 (((-112) $ (-783)) 34)) (-2447 (((-1179) $) 10)) (-1431 (($ $ $) 24)) (-3116 (((-1141) $) 11)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-1759 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#1|) (-656 |#1|)) 51 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 49 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 (-304 |#1|))) 48 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 30)) (-3617 (((-112) $) 33)) (-3307 (($) 32)) (-3198 (($ $ $) 23) (($ $ |#1|) 22)) (-3127 (((-783) |#1| $) 46 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4464)))) (-4287 (($ $) 31)) (-1556 (((-548) $) 61 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 52)) (-4113 (((-876) $) 12)) (-1515 (($) 28) (($ (-656 |#1|)) 27)) (-2950 (((-112) $ $) 6)) (-2543 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 8)) (-1970 (((-783) $) 38 (|has| $ (-6 -4464))))) -(((-1119 |#1|) (-141) (-1121)) (T -1119)) -((-2779 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-1515 (*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) (-3704 (*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3704 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) (-1431 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3198 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3198 (*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-1831 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-4084 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) (-4025 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-4025 (*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-4025 (*1 *1 *2 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) -(-13 (-1121) (-152 |t#1|) (-10 -8 (-6 -4454) (-15 -2779 ((-112) $ $)) (-15 -1515 ($)) (-15 -1515 ($ (-656 |t#1|))) (-15 -3704 ($)) (-15 -3704 ($ (-656 |t#1|))) (-15 -1431 ($ $ $)) (-15 -3198 ($ $ $)) (-15 -3198 ($ $ |t#1|)) (-15 -1831 ($ $ $)) (-15 -4084 ((-112) $ $)) (-15 -4025 ($ $ $)) (-15 -4025 ($ $ |t#1|)) (-15 -4025 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-625 (-876)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) . T) ((-1238) . T)) -((-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 8))) -(((-1120 |#1|) (-10 -8 (-15 -2447 ((-1179) |#1|)) (-15 -3116 ((-1141) |#1|))) (-1121)) (T -1120)) -NIL -(-10 -8 (-15 -2447 ((-1179) |#1|)) (-15 -3116 ((-1141) |#1|))) -((-1957 (((-112) $ $) 7)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) -(((-1121) (-141)) (T -1121)) -((-3116 (*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1141)))) (-2447 (*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1179))))) -(-13 (-102) (-625 (-876)) (-10 -8 (-15 -3116 ((-1141) $)) (-15 -2447 ((-1179) $)))) -(((-102) . T) ((-625 (-876)) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783)) 36)) (-3817 (($ (-656 (-940))) 70)) (-2221 (((-3 $ "failed") $ (-940) (-940)) 81)) (-4370 (($) 40)) (-1602 (((-112) (-940) $) 42)) (-3787 (((-940) $) 64)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) 39)) (-4008 (((-3 $ "failed") $ (-940)) 77)) (-3116 (((-1141) $) NIL)) (-2280 (((-1288 $)) 47)) (-3117 (((-656 (-940)) $) 27)) (-1993 (((-783) $ (-940) (-940)) 78)) (-4113 (((-876) $) 32)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 24))) -(((-1122 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -4008 ((-3 $ "failed") $ (-940))) (-15 -2221 ((-3 $ "failed") $ (-940) (-940))) (-15 -3117 ((-656 (-940)) $)) (-15 -3817 ($ (-656 (-940)))) (-15 -2280 ((-1288 $))) (-15 -1602 ((-112) (-940) $)) (-15 -1993 ((-783) $ (-940) (-940))))) (-940) (-940)) (T -1122)) -((-4008 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2221 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-2280 (*1 *2) (-12 (-5 *2 (-1288 (-1122 *3 *4))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) (-1602 (*1 *2 *3 *1) (-12 (-5 *3 (-940)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1993 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-783)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-379) (-10 -8 (-15 -4008 ((-3 $ "failed") $ (-940))) (-15 -2221 ((-3 $ "failed") $ (-940) (-940))) (-15 -3117 ((-656 (-940)) $)) (-15 -3817 ($ (-656 (-940)))) (-15 -2280 ((-1288 $))) (-15 -1602 ((-112) (-940) $)) (-15 -1993 ((-783) $ (-940) (-940))))) -((-1957 (((-112) $ $) NIL)) (-3504 (($) NIL (|has| |#1| (-379)))) (-4025 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-1831 (($ $ $) 81)) (-4084 (((-112) $ $) 82)) (-4234 (((-112) $ (-783)) NIL)) (-2201 (((-783)) NIL (|has| |#1| (-379)))) (-3704 (($ (-656 |#1|)) NIL) (($) 13)) (-1954 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3872 (($ |#1| $) 74 (|has| $ (-6 -4464))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4464)))) (-4370 (($) NIL (|has| |#1| (-379)))) (-3722 (((-656 |#1|) $) 19 (|has| $ (-6 -4464)))) (-2779 (((-112) $ $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-2907 ((|#1| $) 55 (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3777 ((|#1| $) 53 (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 34)) (-3787 (((-940) $) NIL (|has| |#1| (-379)))) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-1431 (($ $ $) 79)) (-3743 ((|#1| $) 25)) (-3695 (($ |#1| $) 69)) (-2411 (($ (-940)) NIL (|has| |#1| (-379)))) (-3116 (((-1141) $) NIL)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2372 ((|#1| $) 27)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 21)) (-3307 (($) 11)) (-3198 (($ $ |#1|) NIL) (($ $ $) 80)) (-3091 (($) NIL) (($ (-656 |#1|)) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) 16)) (-1556 (((-548) $) 50 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 62)) (-2741 (($ $) NIL (|has| |#1| (-379)))) (-4113 (((-876) $) NIL)) (-3540 (((-783) $) NIL)) (-1515 (($ (-656 |#1|)) NIL) (($) 12)) (-2950 (((-112) $ $) NIL)) (-4156 (($ (-656 |#1|)) NIL)) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 52)) (-1970 (((-783) $) 10 (|has| $ (-6 -4464))))) -(((-1123 |#1|) (-437 |#1|) (-1121)) (T -1123)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2290 (($ |#1| |#1|) 16)) (-4071 (((-657 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-861)))) (-3989 ((|#1| $) 12)) (-3045 ((|#1| $) 11)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-4193 (((-576) $) 15)) (-2421 ((|#1| $) 14)) (-4206 ((|#1| $) 13)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1971 (((-657 |#1|) $) 44 (|has| |#1| (-861))) (((-657 |#1|) (-657 $)) 43 (|has| |#1| (-861)))) (-4136 (($ |#1|) 29)) (-3515 (((-877) $) 28 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-1812 (($ |#1| |#1|) 10)) (-2670 (($ $ (-576)) 17)) (-2881 (((-112) $ $) 22 (|has| |#1| (-1122))))) +(((-1116 |#1|) (-13 (-1115 |#1|) (-10 -7 (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-1117 |#1| (-657 |#1|))) |%noBranch|))) (-1239)) (T -1116)) +NIL +(-13 (-1115 |#1|) (-10 -7 (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-1117 |#1| (-657 |#1|))) |%noBranch|))) +((-2290 (($ |#1| |#1|) 8)) (-4071 ((|#2| (-1 |#1| |#1|) $) 16)) (-3989 ((|#1| $) 11)) (-3045 ((|#1| $) 13)) (-4193 (((-576) $) 9)) (-2421 ((|#1| $) 10)) (-4206 ((|#1| $) 12)) (-1971 ((|#2| (-657 $)) 18) ((|#2| $) 17)) (-4136 (($ |#1|) 6)) (-1812 (($ |#1| |#1|) 15)) (-2670 (($ $ (-576)) 14))) +(((-1117 |#1| |#2|) (-141) (-861) (-1171 |t#1|)) (T -1117)) +((-1971 (*1 *2 *3) (-12 (-5 *3 (-657 *1)) (-4 *1 (-1117 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1171 *4)))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1171 *3)))) (-4071 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1117 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1171 *4))))) +(-13 (-1115 |t#1|) (-10 -8 (-15 -1971 (|t#2| (-657 $))) (-15 -1971 (|t#2| $)) (-15 -4071 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-630 |#1|) . T) ((-1115 |#1|) . T)) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-3921 (((-1157) $) 12)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 18) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2645 (((-657 (-1157)) $) 10)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1118) (-13 (-1105) (-10 -8 (-15 -2645 ((-657 (-1157)) $)) (-15 -3921 ((-1157) $))))) (T -1118)) +((-2645 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-1118)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1118))))) +(-13 (-1105) (-10 -8 (-15 -2645 ((-657 (-1157)) $)) (-15 -3921 ((-1157) $)))) +((-1849 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1855 (($ $ $) 10)) (-1610 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1119 |#1| |#2|) (-10 -8 (-15 -1849 (|#1| |#2| |#1|)) (-15 -1849 (|#1| |#1| |#2|)) (-15 -1849 (|#1| |#1| |#1|)) (-15 -1855 (|#1| |#1| |#1|)) (-15 -1610 (|#1| |#1| |#2|)) (-15 -1610 (|#1| |#1| |#1|))) (-1120 |#2|) (-1122)) (T -1119)) +NIL +(-10 -8 (-15 -1849 (|#1| |#2| |#1|)) (-15 -1849 (|#1| |#1| |#2|)) (-15 -1849 (|#1| |#1| |#1|)) (-15 -1855 (|#1| |#1| |#1|)) (-15 -1610 (|#1| |#1| |#2|)) (-15 -1610 (|#1| |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-1849 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-1855 (($ $ $) 21)) (-2176 (((-112) $ $) 20)) (-4284 (((-112) $ (-784)) 36)) (-2119 (($) 26) (($ (-657 |#1|)) 25)) (-2007 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4466)))) (-2515 (($) 37 T CONST)) (-1620 (($ $) 60 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#1| $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4466)))) (-1448 (((-657 |#1|) $) 44 (|has| $ (-6 -4466)))) (-1919 (((-112) $ $) 29)) (-1786 (((-112) $ (-784)) 35)) (-3855 (((-657 |#1|) $) 45 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 39)) (-4326 (((-112) $ (-784)) 34)) (-1708 (((-1180) $) 10)) (-3415 (($ $ $) 24)) (-1460 (((-1142) $) 11)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2372 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#1|) (-657 |#1|)) 51 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 49 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 (-304 |#1|))) 48 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 30)) (-1368 (((-112) $) 33)) (-3340 (($) 32)) (-1610 (($ $ $) 23) (($ $ |#1|) 22)) (-1469 (((-784) |#1| $) 46 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4466)))) (-1899 (($ $) 31)) (-4136 (((-548) $) 61 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 52)) (-3515 (((-877) $) 12)) (-1923 (($) 28) (($ (-657 |#1|)) 27)) (-4166 (((-112) $ $) 6)) (-3258 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 8)) (-3437 (((-784) $) 38 (|has| $ (-6 -4466))))) +(((-1120 |#1|) (-141) (-1122)) (T -1120)) +((-1919 (*1 *2 *1 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1122)) (-5 *2 (-112)))) (-1923 (*1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-1923 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-1120 *3)))) (-2119 (*1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-2119 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-1120 *3)))) (-3415 (*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-1610 (*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-1610 (*1 *1 *1 *2) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-1855 (*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-2176 (*1 *2 *1 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1122)) (-5 *2 (-112)))) (-1849 (*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-1849 (*1 *1 *1 *2) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-1849 (*1 *1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) +(-13 (-1122) (-152 |t#1|) (-10 -8 (-6 -4456) (-15 -1919 ((-112) $ $)) (-15 -1923 ($)) (-15 -1923 ($ (-657 |t#1|))) (-15 -2119 ($)) (-15 -2119 ($ (-657 |t#1|))) (-15 -3415 ($ $ $)) (-15 -1610 ($ $ $)) (-15 -1610 ($ $ |t#1|)) (-15 -1855 ($ $ $)) (-15 -2176 ((-112) $ $)) (-15 -1849 ($ $ $)) (-15 -1849 ($ $ |t#1|)) (-15 -1849 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-625 (-877)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) . T) ((-1239) . T)) +((-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 8))) +(((-1121 |#1|) (-10 -8 (-15 -1708 ((-1180) |#1|)) (-15 -1460 ((-1142) |#1|))) (-1122)) (T -1121)) +NIL +(-10 -8 (-15 -1708 ((-1180) |#1|)) (-15 -1460 ((-1142) |#1|))) +((-3423 (((-112) $ $) 7)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) +(((-1122) (-141)) (T -1122)) +((-1460 (*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1142)))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1180))))) +(-13 (-102) (-625 (-877)) (-10 -8 (-15 -1460 ((-1142) $)) (-15 -1708 ((-1180) $)))) +(((-102) . T) ((-625 (-877)) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784)) 36)) (-2582 (($ (-657 (-941))) 70)) (-1393 (((-3 $ "failed") $ (-941) (-941)) 81)) (-1876 (($) 40)) (-3326 (((-112) (-941) $) 42)) (-2327 (((-941) $) 64)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) 39)) (-3885 (((-3 $ "failed") $ (-941)) 77)) (-1460 (((-1142) $) NIL)) (-3822 (((-1289 $)) 47)) (-2058 (((-657 (-941)) $) 27)) (-4256 (((-784) $ (-941) (-941)) 78)) (-3515 (((-877) $) 32)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 24))) +(((-1123 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -3885 ((-3 $ "failed") $ (-941))) (-15 -1393 ((-3 $ "failed") $ (-941) (-941))) (-15 -2058 ((-657 (-941)) $)) (-15 -2582 ($ (-657 (-941)))) (-15 -3822 ((-1289 $))) (-15 -3326 ((-112) (-941) $)) (-15 -4256 ((-784) $ (-941) (-941))))) (-941) (-941)) (T -1123)) +((-3885 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-941)) (-5 *1 (-1123 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1393 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-941)) (-5 *1 (-1123 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941)))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941)))) (-3822 (*1 *2) (-12 (-5 *2 (-1289 (-1123 *3 *4))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941)))) (-3326 (*1 *2 *3 *1) (-12 (-5 *3 (-941)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-4256 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-941)) (-5 *2 (-784)) (-5 *1 (-1123 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-379) (-10 -8 (-15 -3885 ((-3 $ "failed") $ (-941))) (-15 -1393 ((-3 $ "failed") $ (-941) (-941))) (-15 -2058 ((-657 (-941)) $)) (-15 -2582 ($ (-657 (-941)))) (-15 -3822 ((-1289 $))) (-15 -3326 ((-112) (-941) $)) (-15 -4256 ((-784) $ (-941) (-941))))) +((-3423 (((-112) $ $) NIL)) (-1561 (($) NIL (|has| |#1| (-379)))) (-1849 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-1855 (($ $ $) 81)) (-2176 (((-112) $ $) 82)) (-4284 (((-112) $ (-784)) NIL)) (-2148 (((-784)) NIL (|has| |#1| (-379)))) (-2119 (($ (-657 |#1|)) NIL) (($) 13)) (-3726 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1920 (($ |#1| $) 74 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3901 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4466)))) (-1876 (($) NIL (|has| |#1| (-379)))) (-1448 (((-657 |#1|) $) 19 (|has| $ (-6 -4466)))) (-1919 (((-112) $ $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3740 ((|#1| $) 55 (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2249 ((|#1| $) 53 (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 34)) (-2327 (((-941) $) NIL (|has| |#1| (-379)))) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-3415 (($ $ $) 79)) (-3107 ((|#1| $) 25)) (-2701 (($ |#1| $) 69)) (-3146 (($ (-941)) NIL (|has| |#1| (-379)))) (-1460 (((-1142) $) NIL)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2184 ((|#1| $) 27)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 21)) (-3340 (($) 11)) (-1610 (($ $ |#1|) NIL) (($ $ $) 80)) (-3009 (($) NIL) (($ (-657 |#1|)) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) 16)) (-4136 (((-548) $) 50 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 62)) (-1600 (($ $) NIL (|has| |#1| (-379)))) (-3515 (((-877) $) NIL)) (-1854 (((-784) $) NIL)) (-1923 (($ (-657 |#1|)) NIL) (($) 12)) (-4166 (((-112) $ $) NIL)) (-1636 (($ (-657 |#1|)) NIL)) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 52)) (-3437 (((-784) $) 10 (|has| $ (-6 -4466))))) +(((-1124 |#1|) (-437 |#1|) (-1122)) (T -1124)) NIL (-437 |#1|) -((-1957 (((-112) $ $) 7)) (-3283 (((-112) $) 33)) (-2219 ((|#2| $) 28)) (-1901 (((-112) $) 34)) (-1533 ((|#1| $) 29)) (-1730 (((-112) $) 36)) (-2925 (((-112) $) 38)) (-2896 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3936 (((-112) $) 32)) (-2244 ((|#3| $) 27)) (-3116 (((-1141) $) 11)) (-2207 (((-112) $) 31)) (-2633 ((|#4| $) 26)) (-1617 ((|#5| $) 25)) (-3379 (((-112) $ $) 39)) (-4369 (($ $ (-576)) 41) (($ $ (-656 (-576))) 40)) (-1525 (((-656 $) $) 30)) (-1556 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-656 $)) 42)) (-4113 (((-876) $) 12)) (-4051 (($ $) 23)) (-1716 (($ $) 24)) (-2950 (((-112) $ $) 6)) (-2181 (((-112) $) 37)) (-3939 (((-112) $ $) 8)) (-1970 (((-576) $) 22))) -(((-1124 |#1| |#2| |#3| |#4| |#5|) (-141) (-1121) (-1121) (-1121) (-1121) (-1121)) (T -1124)) -((-3379 (*1 *2 *1 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112)))) (-1525 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-1124 *3 *4 *5 *6 *7)))) (-1533 (*1 *2 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *2 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-2244 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *2 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-2633 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-1617 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *2)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-1716 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)))) (-4051 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)))) (-1970 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-576))))) -(-13 (-1121) (-630 |t#1|) (-630 |t#2|) (-630 |t#3|) (-630 |t#4|) (-630 |t#4|) (-630 |t#5|) (-630 (-656 $)) (-296 (-576) $) (-296 (-656 (-576)) $) (-10 -8 (-15 -3379 ((-112) $ $)) (-15 -2925 ((-112) $)) (-15 -2181 ((-112) $)) (-15 -1730 ((-112) $)) (-15 -2896 ((-112) $)) (-15 -1901 ((-112) $)) (-15 -3283 ((-112) $)) (-15 -3936 ((-112) $)) (-15 -2207 ((-112) $)) (-15 -1525 ((-656 $) $)) (-15 -1533 (|t#1| $)) (-15 -2219 (|t#2| $)) (-15 -2244 (|t#3| $)) (-15 -2633 (|t#4| $)) (-15 -1617 (|t#5| $)) (-15 -1716 ($ $)) (-15 -4051 ($ $)) (-15 -1970 ((-576) $)))) -(((-102) . T) ((-625 (-876)) . T) ((-630 (-656 $)) . T) ((-630 |#1|) . T) ((-630 |#2|) . T) ((-630 |#3|) . T) ((-630 |#4|) . T) ((-630 |#5|) . T) ((-296 (-576) $) . T) ((-296 (-656 (-576)) $) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3283 (((-112) $) NIL)) (-2219 (((-1197) $) NIL)) (-1901 (((-112) $) NIL)) (-1533 (((-1179) $) NIL)) (-1730 (((-112) $) NIL)) (-2925 (((-112) $) NIL)) (-2896 (((-112) $) NIL)) (-2447 (((-1179) $) NIL)) (-3936 (((-112) $) NIL)) (-2244 (((-576) $) NIL)) (-3116 (((-1141) $) NIL)) (-2207 (((-112) $) NIL)) (-2633 (((-227) $) NIL)) (-1617 (((-876) $) NIL)) (-3379 (((-112) $ $) NIL)) (-4369 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1525 (((-656 $) $) NIL)) (-1556 (($ (-1179)) NIL) (($ (-1197)) NIL) (($ (-576)) NIL) (($ (-227)) NIL) (($ (-876)) NIL) (($ (-656 $)) NIL)) (-4113 (((-876) $) NIL)) (-4051 (($ $) NIL)) (-1716 (($ $) NIL)) (-2950 (((-112) $ $) NIL)) (-2181 (((-112) $) NIL)) (-3939 (((-112) $ $) NIL)) (-1970 (((-576) $) NIL))) -(((-1125) (-1124 (-1179) (-1197) (-576) (-227) (-876))) (T -1125)) -NIL -(-1124 (-1179) (-1197) (-576) (-227) (-876)) -((-1957 (((-112) $ $) NIL)) (-3283 (((-112) $) 45)) (-2219 ((|#2| $) 48)) (-1901 (((-112) $) 20)) (-1533 ((|#1| $) 21)) (-1730 (((-112) $) 42)) (-2925 (((-112) $) 14)) (-2896 (((-112) $) 44)) (-2447 (((-1179) $) NIL)) (-3936 (((-112) $) 46)) (-2244 ((|#3| $) 50)) (-3116 (((-1141) $) NIL)) (-2207 (((-112) $) 47)) (-2633 ((|#4| $) 49)) (-1617 ((|#5| $) 51)) (-3379 (((-112) $ $) 41)) (-4369 (($ $ (-576)) 62) (($ $ (-656 (-576))) 64)) (-1525 (((-656 $) $) 27)) (-1556 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-656 $)) 52)) (-4113 (((-876) $) 28)) (-4051 (($ $) 26)) (-1716 (($ $) 58)) (-2950 (((-112) $ $) NIL)) (-2181 (((-112) $) 23)) (-3939 (((-112) $ $) 40)) (-1970 (((-576) $) 60))) -(((-1126 |#1| |#2| |#3| |#4| |#5|) (-1124 |#1| |#2| |#3| |#4| |#5|) (-1121) (-1121) (-1121) (-1121) (-1121)) (T -1126)) -NIL -(-1124 |#1| |#2| |#3| |#4| |#5|) -((-3973 (((-1293) $) 22)) (-2816 (($ (-1197) (-446) |#2|) 11)) (-4113 (((-876) $) 16))) -(((-1127 |#1| |#2|) (-13 (-407) (-10 -8 (-15 -2816 ($ (-1197) (-446) |#2|)))) (-1121) (-442 |#1|)) (T -1127)) -((-2816 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-446)) (-4 *5 (-1121)) (-5 *1 (-1127 *5 *4)) (-4 *4 (-442 *5))))) -(-13 (-407) (-10 -8 (-15 -2816 ($ (-1197) (-446) |#2|)))) -((-2969 (((-112) |#5| |#5|) 44)) (-1530 (((-112) |#5| |#5|) 59)) (-4257 (((-112) |#5| (-656 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-1352 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-3134 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) 70)) (-4299 (((-1293)) 32)) (-1657 (((-1293) (-1179) (-1179) (-1179)) 28)) (-1409 (((-656 |#5|) (-656 |#5|)) 101)) (-2667 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) 93)) (-1889 (((-656 (-2 (|:| -3379 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 123)) (-1920 (((-112) |#5| |#5|) 53)) (-3292 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2540 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-3560 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-2384 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-2943 (((-3 (-2 (|:| -3379 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-4270 (((-656 |#5|) (-656 |#5|)) 49))) -(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1657 ((-1293) (-1179) (-1179) (-1179))) (-15 -4299 ((-1293))) (-15 -2969 ((-112) |#5| |#5|)) (-15 -4270 ((-656 |#5|) (-656 |#5|))) (-15 -1920 ((-112) |#5| |#5|)) (-15 -1530 ((-112) |#5| |#5|)) (-15 -1352 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2540 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3560 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2384 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3292 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4257 ((-112) |#5| |#5|)) (-15 -4257 ((-112) |#5| (-656 |#5|))) (-15 -1409 ((-656 |#5|) (-656 |#5|))) (-15 -3134 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -2667 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-15 -1889 ((-656 (-2 (|:| -3379 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2943 ((-3 (-2 (|:| -3379 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1128)) -((-2943 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| -3379 (-656 *9)) (|:| -4442 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1128 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1092 *6 *7 *8 *9)))) (-1889 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -3379 (-656 *9)) (|:| -4442 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1128 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-2667 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4442 *7)))) (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-3134 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1128 *5 *6 *7 *8 *3)))) (-4257 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3292 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-2384 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3560 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2540 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1352 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-1530 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-1920 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-4270 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-2969 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-4299 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-1657 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(-10 -7 (-15 -1657 ((-1293) (-1179) (-1179) (-1179))) (-15 -4299 ((-1293))) (-15 -2969 ((-112) |#5| |#5|)) (-15 -4270 ((-656 |#5|) (-656 |#5|))) (-15 -1920 ((-112) |#5| |#5|)) (-15 -1530 ((-112) |#5| |#5|)) (-15 -1352 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2540 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3560 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2384 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3292 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4257 ((-112) |#5| |#5|)) (-15 -4257 ((-112) |#5| (-656 |#5|))) (-15 -1409 ((-656 |#5|) (-656 |#5|))) (-15 -3134 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -2667 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-15 -1889 ((-656 (-2 (|:| -3379 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2943 ((-3 (-2 (|:| -3379 (-656 |#4|)) (|:| -4442 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1735 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|) 108)) (-4316 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#4| |#4| |#5|) 80)) (-4249 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|) 102)) (-3637 (((-656 |#5|) |#4| |#5|) 124)) (-3706 (((-656 |#5|) |#4| |#5|) 131)) (-3558 (((-656 |#5|) |#4| |#5|) 132)) (-2223 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|) 109)) (-2523 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|) 130)) (-2487 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2856 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#3| (-112)) 92) (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2572 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|) 87)) (-2087 (((-1293)) 36)) (-2297 (((-1293)) 25)) (-3733 (((-1293) (-1179) (-1179) (-1179)) 32)) (-3675 (((-1293) (-1179) (-1179) (-1179)) 21))) -(((-1129 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3675 ((-1293) (-1179) (-1179) (-1179))) (-15 -2297 ((-1293))) (-15 -3733 ((-1293) (-1179) (-1179) (-1179))) (-15 -2087 ((-1293))) (-15 -4316 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -2856 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2856 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#3| (-112))) (-15 -2572 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -4249 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -2487 ((-112) |#4| |#5|)) (-15 -2223 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -3637 ((-656 |#5|) |#4| |#5|)) (-15 -2523 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -3706 ((-656 |#5|) |#4| |#5|)) (-15 -2487 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -3558 ((-656 |#5|) |#4| |#5|)) (-15 -1735 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1129)) -((-1735 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3558 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2487 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3706 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2523 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3637 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2223 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2487 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-4249 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2572 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2856 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4442 *9)))) (-5 *1 (-1129 *6 *7 *4 *8 *9)))) (-2856 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1129 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-4316 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2087 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3733 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-2297 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3675 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(-10 -7 (-15 -3675 ((-1293) (-1179) (-1179) (-1179))) (-15 -2297 ((-1293))) (-15 -3733 ((-1293) (-1179) (-1179) (-1179))) (-15 -2087 ((-1293))) (-15 -4316 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -2856 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2856 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) |#3| (-112))) (-15 -2572 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -4249 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#4| |#5|)) (-15 -2487 ((-112) |#4| |#5|)) (-15 -2223 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -3637 ((-656 |#5|) |#4| |#5|)) (-15 -2523 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -3706 ((-656 |#5|) |#4| |#5|)) (-15 -2487 ((-656 (-2 (|:| |val| (-112)) (|:| -4442 |#5|))) |#4| |#5|)) (-15 -3558 ((-656 |#5|) |#4| |#5|)) (-15 -1735 ((-656 (-2 (|:| |val| |#4|) (|:| -4442 |#5|))) |#4| |#5|))) -((-1957 (((-112) $ $) 7)) (-2048 (((-656 (-2 (|:| -1597 $) (|:| -3823 (-656 |#4|)))) (-656 |#4|)) 86)) (-2739 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1585 (((-656 |#3|) $) 34)) (-4404 (((-112) $) 27)) (-3921 (((-112) $) 18 (|has| |#1| (-568)))) (-2417 (((-112) |#4| $) 102) (((-112) $) 98)) (-1916 ((|#4| |#4| $) 93)) (-2658 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| $) 127)) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |#3|) 28)) (-4234 (((-112) $ (-783)) 45)) (-3603 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3170 (($) 46 T CONST)) (-4016 (((-112) $) 23 (|has| |#1| (-568)))) (-3403 (((-112) $ $) 25 (|has| |#1| (-568)))) (-4357 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2159 (((-112) $) 26 (|has| |#1| (-568)))) (-2460 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3496 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-3588 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2982 (((-3 $ "failed") (-656 |#4|)) 37)) (-2317 (($ (-656 |#4|)) 36)) (-1764 (((-3 $ "failed") $) 83)) (-2458 ((|#4| |#4| $) 90)) (-3841 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3561 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2559 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3234 ((|#4| |#4| $) 88)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1794 (((-2 (|:| -1597 (-656 |#4|)) (|:| -3823 (-656 |#4|))) $) 106)) (-2220 (((-112) |#4| $) 137)) (-1473 (((-112) |#4| $) 134)) (-2289 (((-112) |#4| $) 138) (((-112) $) 135)) (-3722 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-1938 (((-112) |#4| $) 105) (((-112) $) 104)) (-4260 ((|#3| $) 35)) (-3215 (((-112) $ (-783)) 44)) (-2911 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-1602 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#4| |#4|) $) 48)) (-3240 (((-656 |#3|) $) 33)) (-3821 (((-112) |#3| $) 32)) (-1884 (((-112) $ (-783)) 43)) (-2447 (((-1179) $) 10)) (-2890 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4381 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| |#4| $) 128)) (-2850 (((-3 |#4| "failed") $) 84)) (-2489 (((-656 $) |#4| $) 130)) (-4003 (((-3 (-112) (-656 $)) |#4| $) 133)) (-3891 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1431 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2341 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-4387 (((-656 |#4|) $) 108)) (-2915 (((-112) |#4| $) 100) (((-112) $) 96)) (-3648 ((|#4| |#4| $) 91)) (-2384 (((-112) $ $) 111)) (-2296 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-2200 (((-112) |#4| $) 101) (((-112) $) 97)) (-2565 ((|#4| |#4| $) 92)) (-3116 (((-1141) $) 11)) (-1755 (((-3 |#4| "failed") $) 85)) (-4220 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3238 (((-3 $ "failed") $ |#4|) 79)) (-2419 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-1759 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-1645 (((-112) $ $) 39)) (-3617 (((-112) $) 42)) (-3307 (($) 41)) (-2196 (((-783) $) 107)) (-3127 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-4287 (($ $) 40)) (-1556 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4125 (($ (-656 |#4|)) 61)) (-4023 (($ $ |#3|) 29)) (-2715 (($ $ |#3|) 31)) (-1357 (($ $) 89)) (-3142 (($ $ |#3|) 30)) (-4113 (((-876) $) 12) (((-656 |#4|) $) 38)) (-2524 (((-783) $) 77 (|has| |#3| (-379)))) (-2950 (((-112) $ $) 6)) (-1671 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1638 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3290 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2543 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-1754 (((-656 |#3|) $) 82)) (-3462 (((-112) |#4| $) 136)) (-1736 (((-112) |#3| $) 81)) (-3939 (((-112) $ $) 8)) (-1970 (((-783) $) 47 (|has| $ (-6 -4464))))) -(((-1130 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1130)) -NIL -(-13 (-1092 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1092 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) -((-2734 (((-656 (-576)) (-576) (-576) (-576)) 38)) (-2624 (((-656 (-576)) (-576) (-576) (-576)) 28)) (-1890 (((-656 (-576)) (-576) (-576) (-576)) 33)) (-2563 (((-576) (-576) (-576)) 21)) (-4175 (((-1288 (-576)) (-656 (-576)) (-1288 (-576)) (-576)) 77) (((-1288 (-576)) (-1288 (-576)) (-1288 (-576)) (-576)) 72)) (-2062 (((-656 (-576)) (-656 (-940)) (-656 (-576)) (-112)) 54)) (-2594 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 76)) (-1568 (((-701 (-576)) (-656 (-940)) (-656 (-576))) 59)) (-1378 (((-656 (-701 (-576))) (-656 (-940))) 65)) (-4099 (((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 80)) (-1633 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576))) 90))) -(((-1131) (-10 -7 (-15 -1633 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -4099 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -1378 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -1568 ((-701 (-576)) (-656 (-940)) (-656 (-576)))) (-15 -2594 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2062 ((-656 (-576)) (-656 (-940)) (-656 (-576)) (-112))) (-15 -4175 ((-1288 (-576)) (-1288 (-576)) (-1288 (-576)) (-576))) (-15 -4175 ((-1288 (-576)) (-656 (-576)) (-1288 (-576)) (-576))) (-15 -2563 ((-576) (-576) (-576))) (-15 -1890 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2624 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2734 ((-656 (-576)) (-576) (-576) (-576))))) (T -1131)) -((-2734 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576)))) (-2624 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576)))) (-1890 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576)))) (-2563 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1131)))) (-4175 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) (-5 *1 (-1131)))) (-4175 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-576)) (-5 *1 (-1131)))) (-2062 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-940))) (-5 *4 (-112)) (-5 *1 (-1131)))) (-2594 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1131)))) (-1568 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1131)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1131)))) (-4099 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1131)))) (-1633 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1131))))) -(-10 -7 (-15 -1633 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -4099 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -1378 ((-656 (-701 (-576))) (-656 (-940)))) (-15 -1568 ((-701 (-576)) (-656 (-940)) (-656 (-576)))) (-15 -2594 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2062 ((-656 (-576)) (-656 (-940)) (-656 (-576)) (-112))) (-15 -4175 ((-1288 (-576)) (-1288 (-576)) (-1288 (-576)) (-576))) (-15 -4175 ((-1288 (-576)) (-656 (-576)) (-1288 (-576)) (-576))) (-15 -2563 ((-576) (-576) (-576))) (-15 -1890 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2624 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2734 ((-656 (-576)) (-576) (-576) (-576)))) -((** (($ $ (-940)) 10))) -(((-1132 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-940)))) (-1133)) (T -1132)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-940)))) -((-1957 (((-112) $ $) 7)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8)) (** (($ $ (-940)) 14)) (* (($ $ $) 15))) -(((-1133) (-141)) (T -1133)) -((* (*1 *1 *1 *1) (-4 *1 (-1133))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1133)) (-5 *2 (-940))))) -(-13 (-1121) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-940))))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL (|has| |#3| (-102)))) (-3114 (((-112) $) NIL (|has| |#3| (-23)))) (-2846 (($ (-940)) NIL (|has| |#3| (-1070)))) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2214 (($ $ $) NIL (|has| |#3| (-805)))) (-1765 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-4234 (((-112) $ (-783)) NIL)) (-2201 (((-783)) NIL (|has| |#3| (-379)))) (-4268 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1121)))) (-2317 (((-576) $) NIL (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) ((|#3| $) NIL (|has| |#3| (-1121)))) (-1930 (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -3563 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1070)))) (-1851 (((-3 $ "failed") $) NIL (|has| |#3| (-1070)))) (-4370 (($) NIL (|has| |#3| (-379)))) (-1910 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#3| $ (-576)) 12)) (-3722 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-2486 (((-112) $) NIL (|has| |#3| (-1070)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#3| (-861)))) (-2911 (((-656 |#3|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#3| (-861)))) (-1898 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#3| |#3|) $) NIL)) (-3787 (((-940) $) NIL (|has| |#3| (-379)))) (-1884 (((-112) $ (-783)) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1070)))) (((-2 (|:| -3563 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-1288 $) $) NIL (|has| |#3| (-1070))) (((-701 |#3|) (-1288 $)) NIL (|has| |#3| (-1070)))) (-2447 (((-1179) $) NIL (|has| |#3| (-1121)))) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-2411 (($ (-940)) NIL (|has| |#3| (-379)))) (-3116 (((-1141) $) NIL (|has| |#3| (-1121)))) (-1755 ((|#3| $) NIL (|has| (-576) (-861)))) (-4267 (($ $ |#3|) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-2885 (((-656 |#3|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) NIL)) (-1875 ((|#3| $ $) NIL (|has| |#3| (-1070)))) (-1492 (($ (-1288 |#3|)) NIL)) (-3181 (((-135)) NIL (|has| |#3| (-374)))) (-4107 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070)))) (-3127 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#3| (-1121))))) (-4287 (($ $) NIL)) (-4113 (((-1288 |#3|) $) NIL) (($ (-576)) NIL (-3795 (-12 (|has| |#3| (-1059 (-576))) (|has| |#3| (-1121))) (|has| |#3| (-1070)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1059 (-419 (-576)))) (|has| |#3| (-1121)))) (($ |#3|) NIL (|has| |#3| (-1121))) (((-876) $) NIL (|has| |#3| (-625 (-876))))) (-2910 (((-783)) NIL (|has| |#3| (-1070)) CONST)) (-2950 (((-112) $ $) NIL (|has| |#3| (-102)))) (-2543 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4464)))) (-4313 (($) NIL (|has| |#3| (-23)) CONST)) (-4322 (($) NIL (|has| |#3| (-1070)) CONST)) (-3157 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1070)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1197)) NIL (-12 (|has| |#3| (-919 (-1197))) (|has| |#3| (-1070)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1070)))) (-3995 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#3| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3963 (((-112) $ $) 24 (|has| |#3| (-861)))) (-4047 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4037 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-4026 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-783)) NIL (|has| |#3| (-1070))) (($ $ (-940)) NIL (|has| |#3| (-1070)))) (* (($ $ $) NIL (|has| |#3| (-1070))) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ (-576) $) NIL (|has| |#3| (-21))) (($ (-783) $) NIL (|has| |#3| (-23))) (($ (-940) $) NIL (|has| |#3| (-25)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1134 |#1| |#2| |#3|) (-243 |#1| |#3|) (-783) (-783) (-805)) (T -1134)) +((-3423 (((-112) $ $) 7)) (-4397 (((-112) $) 33)) (-3042 ((|#2| $) 28)) (-1367 (((-112) $) 34)) (-1331 ((|#1| $) 29)) (-2076 (((-112) $) 36)) (-3887 (((-112) $) 38)) (-3724 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1374 (((-112) $) 32)) (-3065 ((|#3| $) 27)) (-1460 (((-1142) $) 11)) (-4368 (((-112) $) 31)) (-2983 ((|#4| $) 26)) (-2949 ((|#5| $) 25)) (-3981 (((-112) $ $) 39)) (-2780 (($ $ (-576)) 41) (($ $ (-657 (-576))) 40)) (-1933 (((-657 $) $) 30)) (-4136 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-657 $)) 42)) (-3515 (((-877) $) 12)) (-3008 (($ $) 23)) (-3099 (($ $) 24)) (-4166 (((-112) $ $) 6)) (-4101 (((-112) $) 37)) (-2881 (((-112) $ $) 8)) (-3437 (((-576) $) 22))) +(((-1125 |#1| |#2| |#3| |#4| |#5|) (-141) (-1122) (-1122) (-1122) (-1122) (-1122)) (T -1125)) +((-3981 (*1 *2 *1 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-4397 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-4368 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-1933 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-657 *1)) (-4 *1 (-1125 *3 *4 *5 *6 *7)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *2 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *2)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-3099 (*1 *1 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *2 (-1122)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)))) (-3008 (*1 *1 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *2 (-1122)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-576))))) +(-13 (-1122) (-630 |t#1|) (-630 |t#2|) (-630 |t#3|) (-630 |t#4|) (-630 |t#4|) (-630 |t#5|) (-630 (-657 $)) (-296 (-576) $) (-296 (-657 (-576)) $) (-10 -8 (-15 -3981 ((-112) $ $)) (-15 -3887 ((-112) $)) (-15 -4101 ((-112) $)) (-15 -2076 ((-112) $)) (-15 -3724 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -4397 ((-112) $)) (-15 -1374 ((-112) $)) (-15 -4368 ((-112) $)) (-15 -1933 ((-657 $) $)) (-15 -1331 (|t#1| $)) (-15 -3042 (|t#2| $)) (-15 -3065 (|t#3| $)) (-15 -2983 (|t#4| $)) (-15 -2949 (|t#5| $)) (-15 -3099 ($ $)) (-15 -3008 ($ $)) (-15 -3437 ((-576) $)))) +(((-102) . T) ((-625 (-877)) . T) ((-630 (-657 $)) . T) ((-630 |#1|) . T) ((-630 |#2|) . T) ((-630 |#3|) . T) ((-630 |#4|) . T) ((-630 |#5|) . T) ((-296 (-576) $) . T) ((-296 (-657 (-576)) $) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-4397 (((-112) $) NIL)) (-3042 (((-1198) $) NIL)) (-1367 (((-112) $) NIL)) (-1331 (((-1180) $) NIL)) (-2076 (((-112) $) NIL)) (-3887 (((-112) $) NIL)) (-3724 (((-112) $) NIL)) (-1708 (((-1180) $) NIL)) (-1374 (((-112) $) NIL)) (-3065 (((-576) $) NIL)) (-1460 (((-1142) $) NIL)) (-4368 (((-112) $) NIL)) (-2983 (((-227) $) NIL)) (-2949 (((-877) $) NIL)) (-3981 (((-112) $ $) NIL)) (-2780 (($ $ (-576)) NIL) (($ $ (-657 (-576))) NIL)) (-1933 (((-657 $) $) NIL)) (-4136 (($ (-1180)) NIL) (($ (-1198)) NIL) (($ (-576)) NIL) (($ (-227)) NIL) (($ (-877)) NIL) (($ (-657 $)) NIL)) (-3515 (((-877) $) NIL)) (-3008 (($ $) NIL)) (-3099 (($ $) NIL)) (-4166 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-2881 (((-112) $ $) NIL)) (-3437 (((-576) $) NIL))) +(((-1126) (-1125 (-1180) (-1198) (-576) (-227) (-877))) (T -1126)) +NIL +(-1125 (-1180) (-1198) (-576) (-227) (-877)) +((-3423 (((-112) $ $) NIL)) (-4397 (((-112) $) 45)) (-3042 ((|#2| $) 48)) (-1367 (((-112) $) 20)) (-1331 ((|#1| $) 21)) (-2076 (((-112) $) 42)) (-3887 (((-112) $) 14)) (-3724 (((-112) $) 44)) (-1708 (((-1180) $) NIL)) (-1374 (((-112) $) 46)) (-3065 ((|#3| $) 50)) (-1460 (((-1142) $) NIL)) (-4368 (((-112) $) 47)) (-2983 ((|#4| $) 49)) (-2949 ((|#5| $) 51)) (-3981 (((-112) $ $) 41)) (-2780 (($ $ (-576)) 62) (($ $ (-657 (-576))) 64)) (-1933 (((-657 $) $) 27)) (-4136 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-657 $)) 52)) (-3515 (((-877) $) 28)) (-3008 (($ $) 26)) (-3099 (($ $) 58)) (-4166 (((-112) $ $) NIL)) (-4101 (((-112) $) 23)) (-2881 (((-112) $ $) 40)) (-3437 (((-576) $) 60))) +(((-1127 |#1| |#2| |#3| |#4| |#5|) (-1125 |#1| |#2| |#3| |#4| |#5|) (-1122) (-1122) (-1122) (-1122) (-1122)) (T -1127)) +NIL +(-1125 |#1| |#2| |#3| |#4| |#5|) +((-2063 (((-1294) $) 22)) (-2785 (($ (-1198) (-446) |#2|) 11)) (-3515 (((-877) $) 16))) +(((-1128 |#1| |#2|) (-13 (-407) (-10 -8 (-15 -2785 ($ (-1198) (-446) |#2|)))) (-1122) (-442 |#1|)) (T -1128)) +((-2785 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-446)) (-4 *5 (-1122)) (-5 *1 (-1128 *5 *4)) (-4 *4 (-442 *5))))) +(-13 (-407) (-10 -8 (-15 -2785 ($ (-1198) (-446) |#2|)))) +((-4339 (((-112) |#5| |#5|) 44)) (-3954 (((-112) |#5| |#5|) 59)) (-1401 (((-112) |#5| (-657 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-1981 (((-112) (-657 |#4|) (-657 |#4|)) 65)) (-2179 (((-112) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) 70)) (-3673 (((-1294)) 32)) (-2638 (((-1294) (-1180) (-1180) (-1180)) 28)) (-3196 (((-657 |#5|) (-657 |#5|)) 101)) (-2113 (((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)))) 93)) (-4382 (((-657 (-2 (|:| -3981 (-657 |#4|)) (|:| -3941 |#5|) (|:| |ineq| (-657 |#4|)))) (-657 |#4|) (-657 |#5|) (-112) (-112)) 123)) (-3345 (((-112) |#5| |#5|) 53)) (-1382 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1417 (((-112) (-657 |#4|) (-657 |#4|)) 64)) (-3938 (((-112) (-657 |#4|) (-657 |#4|)) 66)) (-2304 (((-112) (-657 |#4|) (-657 |#4|)) 67)) (-4078 (((-3 (-2 (|:| -3981 (-657 |#4|)) (|:| -3941 |#5|) (|:| |ineq| (-657 |#4|))) "failed") (-657 |#4|) |#5| (-657 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3337 (((-657 |#5|) (-657 |#5|)) 49))) +(((-1129 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2638 ((-1294) (-1180) (-1180) (-1180))) (-15 -3673 ((-1294))) (-15 -4339 ((-112) |#5| |#5|)) (-15 -3337 ((-657 |#5|) (-657 |#5|))) (-15 -3345 ((-112) |#5| |#5|)) (-15 -3954 ((-112) |#5| |#5|)) (-15 -1981 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -1417 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -3938 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -2304 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -1382 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1401 ((-112) |#5| |#5|)) (-15 -1401 ((-112) |#5| (-657 |#5|))) (-15 -3196 ((-657 |#5|) (-657 |#5|))) (-15 -2179 ((-112) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)))) (-15 -2113 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) (-15 -4382 ((-657 (-2 (|:| -3981 (-657 |#4|)) (|:| -3941 |#5|) (|:| |ineq| (-657 |#4|)))) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -4078 ((-3 (-2 (|:| -3981 (-657 |#4|)) (|:| -3941 |#5|) (|:| |ineq| (-657 |#4|))) "failed") (-657 |#4|) |#5| (-657 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|)) (T -1129)) +((-4078 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *9 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| -3981 (-657 *9)) (|:| -3941 *4) (|:| |ineq| (-657 *9)))) (-5 *1 (-1129 *6 *7 *8 *9 *4)) (-5 *3 (-657 *9)) (-4 *4 (-1093 *6 *7 *8 *9)))) (-4382 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-657 *10)) (-5 *5 (-112)) (-4 *10 (-1093 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *9 (-1087 *6 *7 *8)) (-5 *2 (-657 (-2 (|:| -3981 (-657 *9)) (|:| -3941 *10) (|:| |ineq| (-657 *9))))) (-5 *1 (-1129 *6 *7 *8 *9 *10)) (-5 *3 (-657 *9)))) (-2113 (*1 *2 *2) (-12 (-5 *2 (-657 (-2 (|:| |val| (-657 *6)) (|:| -3941 *7)))) (-4 *6 (-1087 *3 *4 *5)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1129 *3 *4 *5 *6 *7)))) (-2179 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3941 *8))) (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *8)))) (-3196 (*1 *2 *2) (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *1 (-1129 *3 *4 *5 *6 *7)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1129 *5 *6 *7 *8 *3)))) (-1401 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-1382 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-2304 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-3938 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-1417 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-1981 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-3954 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-3345 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *1 (-1129 *3 *4 *5 *6 *7)))) (-4339 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-3673 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) (-2638 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) +(-10 -7 (-15 -2638 ((-1294) (-1180) (-1180) (-1180))) (-15 -3673 ((-1294))) (-15 -4339 ((-112) |#5| |#5|)) (-15 -3337 ((-657 |#5|) (-657 |#5|))) (-15 -3345 ((-112) |#5| |#5|)) (-15 -3954 ((-112) |#5| |#5|)) (-15 -1981 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -1417 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -3938 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -2304 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -1382 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1401 ((-112) |#5| |#5|)) (-15 -1401 ((-112) |#5| (-657 |#5|))) (-15 -3196 ((-657 |#5|) (-657 |#5|))) (-15 -2179 ((-112) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)))) (-15 -2113 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) (-15 -4382 ((-657 (-2 (|:| -3981 (-657 |#4|)) (|:| -3941 |#5|) (|:| |ineq| (-657 |#4|)))) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -4078 ((-3 (-2 (|:| -3981 (-657 |#4|)) (|:| -3941 |#5|) (|:| |ineq| (-657 |#4|))) "failed") (-657 |#4|) |#5| (-657 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2125 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#5|) 108)) (-3830 (((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) |#4| |#4| |#5|) 80)) (-4445 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5|) 102)) (-3373 (((-657 |#5|) |#4| |#5|) 124)) (-2789 (((-657 |#5|) |#4| |#5|) 131)) (-2020 (((-657 |#5|) |#4| |#5|) 132)) (-3222 (((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|) 109)) (-4373 (((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|) 130)) (-4006 (((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1453 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) |#3| (-112)) 92) (((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3603 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5|) 87)) (-2496 (((-1294)) 36)) (-2688 (((-1294)) 25)) (-3021 (((-1294) (-1180) (-1180) (-1180)) 32)) (-3770 (((-1294) (-1180) (-1180) (-1180)) 21))) +(((-1130 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3770 ((-1294) (-1180) (-1180) (-1180))) (-15 -2688 ((-1294))) (-15 -3021 ((-1294) (-1180) (-1180) (-1180))) (-15 -2496 ((-1294))) (-15 -3830 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) |#4| |#4| |#5|)) (-15 -1453 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1453 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) |#3| (-112))) (-15 -3603 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5|)) (-15 -4445 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5|)) (-15 -4006 ((-112) |#4| |#5|)) (-15 -3222 ((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|)) (-15 -3373 ((-657 |#5|) |#4| |#5|)) (-15 -4373 ((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|)) (-15 -2789 ((-657 |#5|) |#4| |#5|)) (-15 -4006 ((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|)) (-15 -2020 ((-657 |#5|) |#4| |#5|)) (-15 -2125 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#5|))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|)) (T -1130)) +((-2125 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2020 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-4006 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3941 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2789 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-4373 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3941 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3373 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3222 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3941 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-4006 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-4445 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3603 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-1453 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3941 *9)))) (-5 *5 (-112)) (-4 *8 (-1087 *6 *7 *4)) (-4 *9 (-1093 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *4 (-862)) (-5 *2 (-657 (-2 (|:| |val| *8) (|:| -3941 *9)))) (-5 *1 (-1130 *6 *7 *4 *8 *9)))) (-1453 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) (-5 *1 (-1130 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) (-3830 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2496 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1130 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) (-3021 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1130 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-2688 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1130 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) (-3770 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1130 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) +(-10 -7 (-15 -3770 ((-1294) (-1180) (-1180) (-1180))) (-15 -2688 ((-1294))) (-15 -3021 ((-1294) (-1180) (-1180) (-1180))) (-15 -2496 ((-1294))) (-15 -3830 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) |#4| |#4| |#5|)) (-15 -1453 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1453 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) |#3| (-112))) (-15 -3603 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5|)) (-15 -4445 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#4| |#5|)) (-15 -4006 ((-112) |#4| |#5|)) (-15 -3222 ((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|)) (-15 -3373 ((-657 |#5|) |#4| |#5|)) (-15 -4373 ((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|)) (-15 -2789 ((-657 |#5|) |#4| |#5|)) (-15 -4006 ((-657 (-2 (|:| |val| (-112)) (|:| -3941 |#5|))) |#4| |#5|)) (-15 -2020 ((-657 |#5|) |#4| |#5|)) (-15 -2125 ((-657 (-2 (|:| |val| |#4|) (|:| -3941 |#5|))) |#4| |#5|))) +((-3423 (((-112) $ $) 7)) (-2112 (((-657 (-2 (|:| -1988 $) (|:| -3179 (-657 |#4|)))) (-657 |#4|)) 86)) (-1578 (((-657 $) (-657 |#4|)) 87) (((-657 $) (-657 |#4|) (-112)) 112)) (-1998 (((-657 |#3|) $) 34)) (-2250 (((-112) $) 27)) (-4334 (((-112) $) 18 (|has| |#1| (-568)))) (-2605 (((-112) |#4| $) 102) (((-112) $) 98)) (-3300 ((|#4| |#4| $) 93)) (-3188 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 $))) |#4| $) 127)) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |#3|) 28)) (-4284 (((-112) $ (-784)) 45)) (-2007 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 80)) (-2515 (($) 46 T CONST)) (-2697 (((-112) $) 23 (|has| |#1| (-568)))) (-3025 (((-112) $ $) 25 (|has| |#1| (-568)))) (-2936 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1978 (((-112) $) 26 (|has| |#1| (-568)))) (-1835 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1494 (((-657 |#4|) (-657 |#4|) $) 19 (|has| |#1| (-568)))) (-4203 (((-657 |#4|) (-657 |#4|) $) 20 (|has| |#1| (-568)))) (-1593 (((-3 $ "failed") (-657 |#4|)) 37)) (-2830 (($ (-657 |#4|)) 36)) (-3542 (((-3 $ "failed") $) 83)) (-1815 ((|#4| |#4| $) 90)) (-1620 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4466)))) (-3951 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3427 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1979 ((|#4| |#4| $) 88)) (-3662 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1492 (((-2 (|:| -1988 (-657 |#4|)) (|:| -3179 (-657 |#4|))) $) 106)) (-1381 (((-112) |#4| $) 137)) (-1526 (((-112) |#4| $) 134)) (-3883 (((-112) |#4| $) 138) (((-112) $) 135)) (-1448 (((-657 |#4|) $) 53 (|has| $ (-6 -4466)))) (-3537 (((-112) |#4| $) 105) (((-112) $) 104)) (-1428 ((|#3| $) 35)) (-1786 (((-112) $ (-784)) 44)) (-3855 (((-657 |#4|) $) 54 (|has| $ (-6 -4466)))) (-3326 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#4| |#4|) $) 48)) (-3944 (((-657 |#3|) $) 33)) (-2611 (((-112) |#3| $) 32)) (-4326 (((-112) $ (-784)) 43)) (-1708 (((-1180) $) 10)) (-3653 (((-3 |#4| (-657 $)) |#4| |#4| $) 129)) (-3156 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 $))) |#4| |#4| $) 128)) (-3921 (((-3 |#4| "failed") $) 84)) (-4024 (((-657 $) |#4| $) 130)) (-3846 (((-3 (-112) (-657 $)) |#4| $) 133)) (-4002 (((-657 (-2 (|:| |val| (-112)) (|:| -3941 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3415 (((-657 $) |#4| $) 126) (((-657 $) (-657 |#4|) $) 125) (((-657 $) (-657 |#4|) (-657 $)) 124) (((-657 $) |#4| (-657 $)) 123)) (-3082 (($ |#4| $) 118) (($ (-657 |#4|) $) 117)) (-3218 (((-657 |#4|) $) 108)) (-3893 (((-112) |#4| $) 100) (((-112) $) 96)) (-3510 ((|#4| |#4| $) 91)) (-2304 (((-112) $ $) 111)) (-2678 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-4299 (((-112) |#4| $) 101) (((-112) $) 97)) (-3511 ((|#4| |#4| $) 92)) (-1460 (((-1142) $) 11)) (-3528 (((-3 |#4| "failed") $) 85)) (-4135 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3923 (((-3 $ "failed") $ |#4|) 79)) (-1456 (($ $ |#4|) 78) (((-657 $) |#4| $) 116) (((-657 $) |#4| (-657 $)) 115) (((-657 $) (-657 |#4|) $) 114) (((-657 $) (-657 |#4|) (-657 $)) 113)) (-2372 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#4|) (-657 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-3807 (((-112) $ $) 39)) (-1368 (((-112) $) 42)) (-3340 (($) 41)) (-4265 (((-784) $) 107)) (-1469 (((-784) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4466)))) (-1899 (($ $) 40)) (-4136 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3529 (($ (-657 |#4|)) 61)) (-2764 (($ $ |#3|) 29)) (-2555 (($ $ |#3|) 31)) (-2038 (($ $) 89)) (-2267 (($ $ |#3|) 30)) (-3515 (((-877) $) 12) (((-657 |#4|) $) 38)) (-4384 (((-784) $) 77 (|has| |#3| (-379)))) (-4166 (((-112) $ $) 6)) (-2726 (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3741 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) 99)) (-1360 (((-657 $) |#4| $) 122) (((-657 $) |#4| (-657 $)) 121) (((-657 $) (-657 |#4|) $) 120) (((-657 $) (-657 |#4|) (-657 $)) 119)) (-3258 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4466)))) (-2330 (((-657 |#3|) $) 82)) (-2374 (((-112) |#4| $) 136)) (-2137 (((-112) |#3| $) 81)) (-2881 (((-112) $ $) 8)) (-3437 (((-784) $) 47 (|has| $ (-6 -4466))))) +(((-1131 |#1| |#2| |#3| |#4|) (-141) (-464) (-806) (-862) (-1087 |t#1| |t#2| |t#3|)) (T -1131)) +NIL +(-13 (-1093 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-625 (-657 |#4|)) . T) ((-625 (-877)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-998 |#1| |#2| |#3| |#4|) . T) ((-1093 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1232 |#1| |#2| |#3| |#4|) . T) ((-1239) . T)) +((-1539 (((-657 (-576)) (-576) (-576) (-576)) 38)) (-2879 (((-657 (-576)) (-576) (-576) (-576)) 28)) (-4391 (((-657 (-576)) (-576) (-576) (-576)) 33)) (-3483 (((-576) (-576) (-576)) 21)) (-1805 (((-1289 (-576)) (-657 (-576)) (-1289 (-576)) (-576)) 77) (((-1289 (-576)) (-1289 (-576)) (-1289 (-576)) (-576)) 72)) (-2258 (((-657 (-576)) (-657 (-941)) (-657 (-576)) (-112)) 54)) (-3858 (((-702 (-576)) (-657 (-576)) (-657 (-576)) (-702 (-576))) 76)) (-4331 (((-702 (-576)) (-657 (-941)) (-657 (-576))) 59)) (-1334 (((-657 (-702 (-576))) (-657 (-941))) 65)) (-2324 (((-657 (-576)) (-657 (-576)) (-657 (-576)) (-702 (-576))) 80)) (-3685 (((-702 (-576)) (-657 (-576)) (-657 (-576)) (-657 (-576))) 90))) +(((-1132) (-10 -7 (-15 -3685 ((-702 (-576)) (-657 (-576)) (-657 (-576)) (-657 (-576)))) (-15 -2324 ((-657 (-576)) (-657 (-576)) (-657 (-576)) (-702 (-576)))) (-15 -1334 ((-657 (-702 (-576))) (-657 (-941)))) (-15 -4331 ((-702 (-576)) (-657 (-941)) (-657 (-576)))) (-15 -3858 ((-702 (-576)) (-657 (-576)) (-657 (-576)) (-702 (-576)))) (-15 -2258 ((-657 (-576)) (-657 (-941)) (-657 (-576)) (-112))) (-15 -1805 ((-1289 (-576)) (-1289 (-576)) (-1289 (-576)) (-576))) (-15 -1805 ((-1289 (-576)) (-657 (-576)) (-1289 (-576)) (-576))) (-15 -3483 ((-576) (-576) (-576))) (-15 -4391 ((-657 (-576)) (-576) (-576) (-576))) (-15 -2879 ((-657 (-576)) (-576) (-576) (-576))) (-15 -1539 ((-657 (-576)) (-576) (-576) (-576))))) (T -1132)) +((-1539 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1132)) (-5 *3 (-576)))) (-2879 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1132)) (-5 *3 (-576)))) (-4391 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1132)) (-5 *3 (-576)))) (-3483 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1132)))) (-1805 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1289 (-576))) (-5 *3 (-657 (-576))) (-5 *4 (-576)) (-5 *1 (-1132)))) (-1805 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1289 (-576))) (-5 *3 (-576)) (-5 *1 (-1132)))) (-2258 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-657 (-576))) (-5 *3 (-657 (-941))) (-5 *4 (-112)) (-5 *1 (-1132)))) (-3858 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-702 (-576))) (-5 *3 (-657 (-576))) (-5 *1 (-1132)))) (-4331 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-941))) (-5 *4 (-657 (-576))) (-5 *2 (-702 (-576))) (-5 *1 (-1132)))) (-1334 (*1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *2 (-657 (-702 (-576)))) (-5 *1 (-1132)))) (-2324 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-657 (-576))) (-5 *3 (-702 (-576))) (-5 *1 (-1132)))) (-3685 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-702 (-576))) (-5 *1 (-1132))))) +(-10 -7 (-15 -3685 ((-702 (-576)) (-657 (-576)) (-657 (-576)) (-657 (-576)))) (-15 -2324 ((-657 (-576)) (-657 (-576)) (-657 (-576)) (-702 (-576)))) (-15 -1334 ((-657 (-702 (-576))) (-657 (-941)))) (-15 -4331 ((-702 (-576)) (-657 (-941)) (-657 (-576)))) (-15 -3858 ((-702 (-576)) (-657 (-576)) (-657 (-576)) (-702 (-576)))) (-15 -2258 ((-657 (-576)) (-657 (-941)) (-657 (-576)) (-112))) (-15 -1805 ((-1289 (-576)) (-1289 (-576)) (-1289 (-576)) (-576))) (-15 -1805 ((-1289 (-576)) (-657 (-576)) (-1289 (-576)) (-576))) (-15 -3483 ((-576) (-576) (-576))) (-15 -4391 ((-657 (-576)) (-576) (-576) (-576))) (-15 -2879 ((-657 (-576)) (-576) (-576) (-576))) (-15 -1539 ((-657 (-576)) (-576) (-576) (-576)))) +((** (($ $ (-941)) 10))) +(((-1133 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-941)))) (-1134)) (T -1133)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-941)))) +((-3423 (((-112) $ $) 7)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8)) (** (($ $ (-941)) 14)) (* (($ $ $) 15))) +(((-1134) (-141)) (T -1134)) +((* (*1 *1 *1 *1) (-4 *1 (-1134))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-941))))) +(-13 (-1122) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-941))))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL (|has| |#3| (-102)))) (-2044 (((-112) $) NIL (|has| |#3| (-23)))) (-1375 (($ (-941)) NIL (|has| |#3| (-1071)))) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1323 (($ $ $) NIL (|has| |#3| (-806)))) (-2423 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-4284 (((-112) $ (-784)) NIL)) (-2148 (((-784)) NIL (|has| |#3| (-379)))) (-3719 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1122)))) (-2830 (((-576) $) NIL (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) ((|#3| $) NIL (|has| |#3| (-1122)))) (-3439 (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((-2 (|:| -3962 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 $) (-1289 $)) NIL (|has| |#3| (-1071))) (((-702 |#3|) (-702 $)) NIL (|has| |#3| (-1071)))) (-3969 (((-3 $ "failed") $) NIL (|has| |#3| (-1071)))) (-1876 (($) NIL (|has| |#3| (-379)))) (-1810 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#3| $ (-576)) 12)) (-1448 (((-657 |#3|) $) NIL (|has| $ (-6 -4466)))) (-3994 (((-112) $) NIL (|has| |#3| (-1071)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#3| (-862)))) (-3855 (((-657 |#3|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#3| (-862)))) (-1799 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#3| |#3|) $) NIL)) (-2327 (((-941) $) NIL (|has| |#3| (-379)))) (-4326 (((-112) $ (-784)) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((-2 (|:| -3962 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-1289 $) $) NIL (|has| |#3| (-1071))) (((-702 |#3|) (-1289 $)) NIL (|has| |#3| (-1071)))) (-1708 (((-1180) $) NIL (|has| |#3| (-1122)))) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-3146 (($ (-941)) NIL (|has| |#3| (-379)))) (-1460 (((-1142) $) NIL (|has| |#3| (-1122)))) (-3528 ((|#3| $) NIL (|has| (-576) (-862)))) (-1495 (($ $ |#3|) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-657 |#3|) (-657 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-3585 (((-657 |#3|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) NIL)) (-4224 ((|#3| $ $) NIL (|has| |#3| (-1071)))) (-1902 (($ (-1289 |#3|)) NIL)) (-1451 (((-135)) NIL (|has| |#3| (-374)))) (-2209 (($ $ (-784)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1071))) (($ $ (-1 |#3| |#3|) (-784)) NIL (|has| |#3| (-1071)))) (-1469 (((-784) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466))) (((-784) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-1899 (($ $) NIL)) (-3515 (((-1289 |#3|) $) NIL) (($ (-576)) NIL (-2748 (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122))) (|has| |#3| (-1071)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) (($ |#3|) NIL (|has| |#3| (-1122))) (((-877) $) NIL (|has| |#3| (-625 (-877))))) (-3845 (((-784)) NIL (|has| |#3| (-1071)) CONST)) (-4166 (((-112) $ $) NIL (|has| |#3| (-102)))) (-3258 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-2716 (($) NIL (|has| |#3| (-23)) CONST)) (-2725 (($) NIL (|has| |#3| (-1071)) CONST)) (-2066 (($ $ (-784)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1071))) (($ $ (-1 |#3| |#3|) (-784)) NIL (|has| |#3| (-1071)))) (-2938 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#3| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2901 (((-112) $ $) 24 (|has| |#3| (-862)))) (-2995 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-2982 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-2971 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-784)) NIL (|has| |#3| (-1071))) (($ $ (-941)) NIL (|has| |#3| (-1071)))) (* (($ $ $) NIL (|has| |#3| (-1071))) (($ $ |#3|) NIL (|has| |#3| (-739))) (($ |#3| $) NIL (|has| |#3| (-739))) (($ (-576) $) NIL (|has| |#3| (-21))) (($ (-784) $) NIL (|has| |#3| (-23))) (($ (-941) $) NIL (|has| |#3| (-25)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1135 |#1| |#2| |#3|) (-243 |#1| |#3|) (-784) (-784) (-806)) (T -1135)) NIL (-243 |#1| |#3|) -((-3761 (((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 50)) (-3372 (((-576) (-1261 |#2| |#1|)) 94 (|has| |#1| (-464)))) (-2751 (((-576) (-1261 |#2| |#1|)) 76)) (-4039 (((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 58)) (-2165 (((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 93 (|has| |#1| (-464)))) (-2831 (((-656 |#1|) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 61)) (-2864 (((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|)) 75))) -(((-1135 |#1| |#2|) (-10 -7 (-15 -3761 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -4039 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2831 ((-656 |#1|) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2864 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2751 ((-576) (-1261 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2165 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -3372 ((-576) (-1261 |#2| |#1|)))) |%noBranch|)) (-832) (-1197)) (T -1135)) -((-3372 (*1 *2 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-2165 (*1 *2 *3 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-2864 (*1 *2 *3 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5)))) (-2831 (*1 *2 *3 *3) (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 *4)) (-5 *1 (-1135 *4 *5)))) (-4039 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4)))) (-3761 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4))))) -(-10 -7 (-15 -3761 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -4039 ((-656 (-1261 |#2| |#1|)) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2831 ((-656 |#1|) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2864 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -2751 ((-576) (-1261 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2165 ((-576) (-1261 |#2| |#1|) (-1261 |#2| |#1|))) (-15 -3372 ((-576) (-1261 |#2| |#1|)))) |%noBranch|)) -((-1957 (((-112) $ $) NIL)) (-2415 (($ (-518) (-1139)) 13)) (-3514 (((-1139) $) 19)) (-4149 (((-518) $) 16)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 26) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1136) (-13 (-1104) (-10 -8 (-15 -2415 ($ (-518) (-1139))) (-15 -4149 ((-518) $)) (-15 -3514 ((-1139) $))))) (T -1136)) -((-2415 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-1136)))) (-4149 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1136)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1136))))) -(-13 (-1104) (-10 -8 (-15 -2415 ($ (-518) (-1139))) (-15 -4149 ((-518) $)) (-15 -3514 ((-1139) $)))) -((-1527 (((-3 (-576) "failed") |#2| (-1197) |#2| (-1179)) 19) (((-3 (-576) "failed") |#2| (-1197) (-855 |#2|)) 17) (((-3 (-576) "failed") |#2|) 60))) -(((-1137 |#1| |#2|) (-10 -7 (-15 -1527 ((-3 (-576) "failed") |#2|)) (-15 -1527 ((-3 (-576) "failed") |#2| (-1197) (-855 |#2|))) (-15 -1527 ((-3 (-576) "failed") |#2| (-1197) |#2| (-1179)))) (-13 (-568) (-1059 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1223) (-442 |#1|))) (T -1137)) -((-1527 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-1179)) (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1137 *6 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))))) (-1527 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1137 *6 *3)))) (-1527 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1137 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4)))))) -(-10 -7 (-15 -1527 ((-3 (-576) "failed") |#2|)) (-15 -1527 ((-3 (-576) "failed") |#2| (-1197) (-855 |#2|))) (-15 -1527 ((-3 (-576) "failed") |#2| (-1197) |#2| (-1179)))) -((-1527 (((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)) (-1179)) 38) (((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-855 (-419 (-971 |#1|)))) 33) (((-3 (-576) "failed") (-419 (-971 |#1|))) 14))) -(((-1138 |#1|) (-10 -7 (-15 -1527 ((-3 (-576) "failed") (-419 (-971 |#1|)))) (-15 -1527 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-855 (-419 (-971 |#1|))))) (-15 -1527 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)) (-1179)))) (-464)) (T -1138)) -((-1527 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1197)) (-5 *5 (-1179)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *6)))) (-1527 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 (-419 (-971 *6)))) (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *6)))) (-1527 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *4))))) -(-10 -7 (-15 -1527 ((-3 (-576) "failed") (-419 (-971 |#1|)))) (-15 -1527 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-855 (-419 (-971 |#1|))))) (-15 -1527 ((-3 (-576) "failed") (-419 (-971 |#1|)) (-1197) (-419 (-971 |#1|)) (-1179)))) -((-1957 (((-112) $ $) NIL)) (-4171 (((-1202) $) 12)) (-4118 (((-656 (-1202)) $) 14)) (-3514 (($ (-656 (-1202)) (-1202)) 10)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 29)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 17))) -(((-1139) (-13 (-1121) (-10 -8 (-15 -3514 ($ (-656 (-1202)) (-1202))) (-15 -4171 ((-1202) $)) (-15 -4118 ((-656 (-1202)) $))))) (T -1139)) -((-3514 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1202))) (-5 *3 (-1202)) (-5 *1 (-1139)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-1139)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1139))))) -(-13 (-1121) (-10 -8 (-15 -3514 ($ (-656 (-1202)) (-1202))) (-15 -4171 ((-1202) $)) (-15 -4118 ((-656 (-1202)) $)))) -((-2845 (((-326 (-576)) (-48)) 12))) -(((-1140) (-10 -7 (-15 -2845 ((-326 (-576)) (-48))))) (T -1140)) -((-2845 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1140))))) -(-10 -7 (-15 -2845 ((-326 (-576)) (-48)))) -((-1957 (((-112) $ $) NIL)) (-1980 (($ $) 44)) (-3114 (((-112) $) 70)) (-4296 (($ $ $) 53)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 98)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-3374 (($ $ $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3282 (($ $ $ $) 81)) (-2658 (($ $) NIL)) (-3589 (((-430 $) $) NIL)) (-4386 (((-112) $ $) NIL)) (-2201 (((-783)) 83)) (-1527 (((-576) $) NIL)) (-3385 (($ $ $) 78)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL)) (-2317 (((-576) $) NIL)) (-1895 (($ $ $) 64)) (-1930 (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 92) (((-701 (-576)) (-701 $)) 32)) (-1851 (((-3 $ "failed") $) NIL)) (-3526 (((-3 (-419 (-576)) "failed") $) NIL)) (-4063 (((-112) $) NIL)) (-1400 (((-419 (-576)) $) NIL)) (-4370 (($) 95) (($ $) 96)) (-1908 (($ $ $) 63)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL)) (-2171 (((-112) $) NIL)) (-4170 (($ $ $ $) NIL)) (-3104 (($ $ $) 93)) (-2279 (((-112) $) NIL)) (-1595 (($ $ $) NIL)) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL)) (-2324 (($ $ $) 52)) (-2486 (((-112) $) 72)) (-3616 (((-112) $) 69)) (-2299 (($ $) 45)) (-3552 (((-3 $ "failed") $) NIL)) (-3323 (((-112) $) 82)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3547 (($ $ $ $) 79)) (-2907 (($ $ $) 74) (($) 42 T CONST)) (-3777 (($ $ $) 73) (($) 41 T CONST)) (-2362 (($ $) NIL)) (-3787 (((-940) $) 88)) (-3108 (($ $) 77)) (-2160 (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL) (((-701 (-576)) (-1288 $)) NIL)) (-3076 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2447 (((-1179) $) NIL)) (-2617 (($ $ $) NIL)) (-3650 (($) NIL T CONST)) (-2411 (($ (-940)) 87)) (-1921 (($ $) 57)) (-3116 (((-1141) $) 76)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL)) (-3115 (($ $ $) 67) (($ (-656 $)) NIL)) (-4372 (($ $) NIL)) (-1452 (((-430 $) $) NIL)) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL)) (-1946 (((-3 $ "failed") $ $) NIL)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3955 (((-112) $) NIL)) (-2812 (((-783) $) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 66)) (-4107 (($ $) NIL) (($ $ (-783)) NIL)) (-3756 (($ $) 58)) (-4287 (($ $) NIL)) (-1556 (((-576) $) 17) (((-548) $) NIL) (((-907 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL)) (-4113 (((-876) $) 35) (($ (-576)) 94) (($ $) NIL) (($ (-576)) 94)) (-2910 (((-783)) NIL T CONST)) (-2291 (((-112) $ $) NIL)) (-1348 (($ $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-1869 (($) 40)) (-4134 (((-112) $ $) NIL)) (-2311 (($ $ $) 50)) (-1555 (($ $ $ $) 80)) (-2366 (($ $) 68)) (-2033 (($ $ $) 47)) (-4313 (($) 7 T CONST)) (-2187 (($ $ $) 51)) (-4322 (($) 39 T CONST)) (-2172 (((-1179) $) 26) (((-1179) $ (-112)) 27) (((-1293) (-834) $) 28) (((-1293) (-834) $ (-112)) 29)) (-2198 (($ $) 48)) (-3157 (($ $) NIL) (($ $ (-783)) NIL)) (-2176 (($ $ $) 49)) (-3995 (((-112) $ $) 56)) (-3975 (((-112) $ $) 54)) (-3939 (((-112) $ $) 43)) (-3984 (((-112) $ $) 55)) (-3963 (((-112) $ $) 10)) (-2022 (($ $ $) 46)) (-4037 (($ $) 16) (($ $ $) 60)) (-4026 (($ $ $) 59)) (** (($ $ (-940)) NIL) (($ $ (-783)) 62)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 38) (($ $ $) 37) (($ (-576) $) 38))) -(((-1141) (-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4451) (-6 -4456) (-6 -4452) (-15 -4296 ($ $ $)) (-15 -2198 ($ $)) (-15 -2176 ($ $ $)) (-15 -2187 ($ $ $))))) (T -1141)) -((-4296 (*1 *1 *1 *1) (-5 *1 (-1141))) (-2198 (*1 *1 *1) (-5 *1 (-1141))) (-2176 (*1 *1 *1 *1) (-5 *1 (-1141))) (-2187 (*1 *1 *1 *1) (-5 *1 (-1141)))) -(-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4451) (-6 -4456) (-6 -4452) (-15 -4296 ($ $ $)) (-15 -2198 ($ $)) (-15 -2176 ($ $ $)) (-15 -2187 ($ $ $)))) +((-2093 (((-657 (-1262 |#2| |#1|)) (-1262 |#2| |#1|) (-1262 |#2| |#1|)) 50)) (-2771 (((-576) (-1262 |#2| |#1|)) 94 (|has| |#1| (-464)))) (-1696 (((-576) (-1262 |#2| |#1|)) 76)) (-2885 (((-657 (-1262 |#2| |#1|)) (-1262 |#2| |#1|) (-1262 |#2| |#1|)) 58)) (-3945 (((-576) (-1262 |#2| |#1|) (-1262 |#2| |#1|)) 93 (|has| |#1| (-464)))) (-4335 (((-657 |#1|) (-1262 |#2| |#1|) (-1262 |#2| |#1|)) 61)) (-3320 (((-576) (-1262 |#2| |#1|) (-1262 |#2| |#1|)) 75))) +(((-1136 |#1| |#2|) (-10 -7 (-15 -2093 ((-657 (-1262 |#2| |#1|)) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -2885 ((-657 (-1262 |#2| |#1|)) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -4335 ((-657 |#1|) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -3320 ((-576) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -1696 ((-576) (-1262 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3945 ((-576) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -2771 ((-576) (-1262 |#2| |#1|)))) |%noBranch|)) (-833) (-1198)) (T -1136)) +((-2771 (*1 *2 *3) (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-464)) (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-576)) (-5 *1 (-1136 *4 *5)))) (-3945 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-464)) (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-576)) (-5 *1 (-1136 *4 *5)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-576)) (-5 *1 (-1136 *4 *5)))) (-3320 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-576)) (-5 *1 (-1136 *4 *5)))) (-4335 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-657 *4)) (-5 *1 (-1136 *4 *5)))) (-2885 (*1 *2 *3 *3) (-12 (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-657 (-1262 *5 *4))) (-5 *1 (-1136 *4 *5)) (-5 *3 (-1262 *5 *4)))) (-2093 (*1 *2 *3 *3) (-12 (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-657 (-1262 *5 *4))) (-5 *1 (-1136 *4 *5)) (-5 *3 (-1262 *5 *4))))) +(-10 -7 (-15 -2093 ((-657 (-1262 |#2| |#1|)) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -2885 ((-657 (-1262 |#2| |#1|)) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -4335 ((-657 |#1|) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -3320 ((-576) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -1696 ((-576) (-1262 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3945 ((-576) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -2771 ((-576) (-1262 |#2| |#1|)))) |%noBranch|)) +((-3423 (((-112) $ $) NIL)) (-2585 (($ (-518) (-1140)) 13)) (-2702 (((-1140) $) 19)) (-2634 (((-518) $) 16)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 26) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1137) (-13 (-1105) (-10 -8 (-15 -2585 ($ (-518) (-1140))) (-15 -2634 ((-518) $)) (-15 -2702 ((-1140) $))))) (T -1137)) +((-2585 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1140)) (-5 *1 (-1137)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1137)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1137))))) +(-13 (-1105) (-10 -8 (-15 -2585 ($ (-518) (-1140))) (-15 -2634 ((-518) $)) (-15 -2702 ((-1140) $)))) +((-3922 (((-3 (-576) "failed") |#2| (-1198) |#2| (-1180)) 19) (((-3 (-576) "failed") |#2| (-1198) (-856 |#2|)) 17) (((-3 (-576) "failed") |#2|) 60))) +(((-1138 |#1| |#2|) (-10 -7 (-15 -3922 ((-3 (-576) "failed") |#2|)) (-15 -3922 ((-3 (-576) "failed") |#2| (-1198) (-856 |#2|))) (-15 -3922 ((-3 (-576) "failed") |#2| (-1198) |#2| (-1180)))) (-13 (-568) (-1060 (-576)) (-652 (-576)) (-464)) (-13 (-27) (-1224) (-442 |#1|))) (T -1138)) +((-3922 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-1180)) (-4 *6 (-13 (-568) (-1060 *2) (-652 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1138 *6 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))))) (-3922 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-856 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-568) (-1060 *2) (-652 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1138 *6 *3)))) (-3922 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1060 *2) (-652 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1138 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4)))))) +(-10 -7 (-15 -3922 ((-3 (-576) "failed") |#2|)) (-15 -3922 ((-3 (-576) "failed") |#2| (-1198) (-856 |#2|))) (-15 -3922 ((-3 (-576) "failed") |#2| (-1198) |#2| (-1180)))) +((-3922 (((-3 (-576) "failed") (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|)) (-1180)) 38) (((-3 (-576) "failed") (-419 (-972 |#1|)) (-1198) (-856 (-419 (-972 |#1|)))) 33) (((-3 (-576) "failed") (-419 (-972 |#1|))) 14))) +(((-1139 |#1|) (-10 -7 (-15 -3922 ((-3 (-576) "failed") (-419 (-972 |#1|)))) (-15 -3922 ((-3 (-576) "failed") (-419 (-972 |#1|)) (-1198) (-856 (-419 (-972 |#1|))))) (-15 -3922 ((-3 (-576) "failed") (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|)) (-1180)))) (-464)) (T -1139)) +((-3922 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-972 *6))) (-5 *4 (-1198)) (-5 *5 (-1180)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1139 *6)))) (-3922 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-856 (-419 (-972 *6)))) (-5 *3 (-419 (-972 *6))) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1139 *6)))) (-3922 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-464)) (-5 *2 (-576)) (-5 *1 (-1139 *4))))) +(-10 -7 (-15 -3922 ((-3 (-576) "failed") (-419 (-972 |#1|)))) (-15 -3922 ((-3 (-576) "failed") (-419 (-972 |#1|)) (-1198) (-856 (-419 (-972 |#1|))))) (-15 -3922 ((-3 (-576) "failed") (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|)) (-1180)))) +((-3423 (((-112) $ $) NIL)) (-2930 (((-1203) $) 12)) (-2874 (((-657 (-1203)) $) 14)) (-2702 (($ (-657 (-1203)) (-1203)) 10)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 29)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 17))) +(((-1140) (-13 (-1122) (-10 -8 (-15 -2702 ($ (-657 (-1203)) (-1203))) (-15 -2930 ((-1203) $)) (-15 -2874 ((-657 (-1203)) $))))) (T -1140)) +((-2702 (*1 *1 *2 *3) (-12 (-5 *2 (-657 (-1203))) (-5 *3 (-1203)) (-5 *1 (-1140)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-1140)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-1140))))) +(-13 (-1122) (-10 -8 (-15 -2702 ($ (-657 (-1203)) (-1203))) (-15 -2930 ((-1203) $)) (-15 -2874 ((-657 (-1203)) $)))) +((-1362 (((-326 (-576)) (-48)) 12))) +(((-1141) (-10 -7 (-15 -1362 ((-326 (-576)) (-48))))) (T -1141)) +((-1362 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1141))))) +(-10 -7 (-15 -1362 ((-326 (-576)) (-48)))) +((-3423 (((-112) $ $) NIL)) (-3452 (($ $) 44)) (-2044 (((-112) $) 70)) (-2693 (($ $ $) 53)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 98)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2793 (($ $ $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-4388 (($ $ $ $) 81)) (-3188 (($ $) NIL)) (-4215 (((-430 $) $) NIL)) (-3210 (((-112) $ $) NIL)) (-2148 (((-784)) 83)) (-3922 (((-576) $) NIL)) (-2736 (($ $ $) 78)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL)) (-2830 (((-576) $) NIL)) (-3355 (($ $ $) 64)) (-3439 (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 92) (((-702 (-576)) (-702 $)) 32)) (-3969 (((-3 $ "failed") $) NIL)) (-1758 (((-3 (-419 (-576)) "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-1842 (((-419 (-576)) $) NIL)) (-1876 (($) 95) (($ $) 96)) (-3369 (($ $ $) 63)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL)) (-4009 (((-112) $) NIL)) (-1760 (($ $ $ $) NIL)) (-3123 (($ $ $) 93)) (-3810 (((-112) $) NIL)) (-3262 (($ $ $) NIL)) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL)) (-2685 (($ $ $) 52)) (-3994 (((-112) $) 72)) (-1354 (((-112) $) 69)) (-2665 (($ $) 45)) (-1955 (((-3 $ "failed") $) NIL)) (-3517 (((-112) $) 82)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1931 (($ $ $ $) 79)) (-3740 (($ $ $) 74) (($) 42 T CONST)) (-2249 (($ $ $) 73) (($) 41 T CONST)) (-4194 (($ $) NIL)) (-2327 (((-941) $) 88)) (-3041 (($ $) 77)) (-1993 (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3388 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1708 (((-1180) $) NIL)) (-2808 (($ $ $) NIL)) (-1679 (($) NIL T CONST)) (-3146 (($ (-941)) 87)) (-1390 (($ $) 57)) (-1460 (((-1142) $) 76)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3431 (($ $ $) 67) (($ (-657 $)) NIL)) (-3067 (($ $) NIL)) (-1856 (((-430 $) $) NIL)) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL)) (-3409 (((-3 $ "failed") $ $) NIL)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3341 (((-112) $) NIL)) (-4164 (((-784) $) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 66)) (-2209 (($ $) NIL) (($ $ (-784)) NIL)) (-1843 (($ $) 58)) (-1899 (($ $) NIL)) (-4136 (((-576) $) 17) (((-548) $) NIL) (((-908 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL)) (-3515 (((-877) $) 35) (($ (-576)) 94) (($ $) NIL) (($ (-576)) 94)) (-3845 (((-784)) NIL T CONST)) (-2639 (((-112) $ $) NIL)) (-1940 (($ $ $) NIL)) (-4166 (((-112) $ $) NIL)) (-4129 (($) 40)) (-2607 (((-112) $ $) NIL)) (-2675 (($ $ $) 50)) (-4207 (($ $ $ $) 80)) (-2127 (($ $) 68)) (-3505 (($ $ $) 47)) (-2716 (($) 7 T CONST)) (-3829 (($ $ $) 51)) (-2725 (($) 39 T CONST)) (-4019 (((-1180) $) 26) (((-1180) $ (-112)) 27) (((-1294) (-835) $) 28) (((-1294) (-835) $ (-112)) 29)) (-3840 (($ $) 48)) (-2066 (($ $) NIL) (($ $ (-784)) NIL)) (-3818 (($ $ $) 49)) (-2938 (((-112) $ $) 56)) (-2913 (((-112) $ $) 54)) (-2881 (((-112) $ $) 43)) (-2925 (((-112) $ $) 55)) (-2901 (((-112) $ $) 10)) (-3493 (($ $ $) 46)) (-2982 (($ $) 16) (($ $ $) 60)) (-2971 (($ $ $) 59)) (** (($ $ (-941)) NIL) (($ $ (-784)) 62)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 38) (($ $ $) 37) (($ (-576) $) 38))) +(((-1142) (-13 (-557) (-857) (-113) (-674) (-841) (-10 -8 (-6 -4453) (-6 -4458) (-6 -4454) (-15 -2693 ($ $ $)) (-15 -3840 ($ $)) (-15 -3818 ($ $ $)) (-15 -3829 ($ $ $))))) (T -1142)) +((-2693 (*1 *1 *1 *1) (-5 *1 (-1142))) (-3840 (*1 *1 *1) (-5 *1 (-1142))) (-3818 (*1 *1 *1 *1) (-5 *1 (-1142))) (-3829 (*1 *1 *1 *1) (-5 *1 (-1142)))) +(-13 (-557) (-857) (-113) (-674) (-841) (-10 -8 (-6 -4453) (-6 -4458) (-6 -4454) (-15 -2693 ($ $ $)) (-15 -3840 ($ $)) (-15 -3818 ($ $ $)) (-15 -3829 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3015 ((|#1| $) 45)) (-4234 (((-112) $ (-783)) 8)) (-3170 (($) 7 T CONST)) (-2663 ((|#1| |#1| $) 47)) (-3166 ((|#1| $) 46)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3743 ((|#1| $) 40)) (-3695 (($ |#1| $) 41)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-2372 ((|#1| $) 42)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4307 (((-783) $) 44)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) 43)) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-1142 |#1|) (-141) (-1238)) (T -1142)) -((-2663 (*1 *2 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4464) (-15 -2663 (|t#1| |t#1| $)) (-15 -3166 (|t#1| $)) (-15 -3015 (|t#1| $)) (-15 -4307 ((-783) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-3832 ((|#3| $) 87)) (-2982 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2317 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#3| $) 47)) (-1930 (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL) (((-2 (|:| -3563 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 $) (-1288 $)) 84) (((-701 |#3|) (-701 $)) 76)) (-4107 (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-4383 ((|#3| $) 89)) (-1616 ((|#4| $) 43)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#3|) 25)) (** (($ $ (-940)) NIL) (($ $ (-783)) 24) (($ $ (-576)) 95))) -(((-1143 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4383 (|#3| |#1|)) (-15 -3832 (|#3| |#1|)) (-15 -1616 (|#4| |#1|)) (-15 -1930 ((-701 |#3|) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-701 (-576)) (-701 |#1|))) (-15 -4113 (|#1| |#3|)) (-15 -2982 ((-3 |#3| "failed") |#1|)) (-15 -2317 (|#3| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -4107 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4107 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -4113 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -4113 ((-876) |#1|))) (-1144 |#2| |#3| |#4| |#5|) (-783) (-1070) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1143)) -NIL -(-10 -8 (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4383 (|#3| |#1|)) (-15 -3832 (|#3| |#1|)) (-15 -1616 (|#4| |#1|)) (-15 -1930 ((-701 |#3|) (-701 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 |#3|)) (|:| |vec| (-1288 |#3|))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 |#1|) (-1288 |#1|))) (-15 -1930 ((-701 (-576)) (-701 |#1|))) (-15 -4113 (|#1| |#3|)) (-15 -2982 ((-3 |#3| "failed") |#1|)) (-15 -2317 (|#3| |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -4107 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4107 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -4113 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-3832 ((|#2| $) 80)) (-4154 (((-112) $) 124)) (-1765 (((-3 $ "failed") $ $) 20)) (-1929 (((-112) $) 122)) (-4234 (((-112) $ (-783)) 114)) (-3541 (($ |#2|) 83)) (-3170 (($) 18 T CONST)) (-2836 (($ $) 141 (|has| |#2| (-317)))) (-2880 ((|#3| $ (-576)) 136)) (-2982 (((-3 (-576) "failed") $) 99 (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) 96 (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) 93)) (-2317 (((-576) $) 98 (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) 95 (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) 94)) (-1930 (((-701 (-576)) (-701 $)) 89 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 88 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 87) (((-701 |#2|) (-701 $)) 86)) (-1851 (((-3 $ "failed") $) 37)) (-4135 (((-783) $) 142 (|has| |#2| (-568)))) (-3721 ((|#2| $ (-576) (-576)) 134)) (-3722 (((-656 |#2|) $) 107 (|has| $ (-6 -4464)))) (-2486 (((-112) $) 35)) (-3985 (((-783) $) 143 (|has| |#2| (-568)))) (-4362 (((-656 |#4|) $) 144 (|has| |#2| (-568)))) (-2759 (((-783) $) 130)) (-2773 (((-783) $) 131)) (-3215 (((-112) $ (-783)) 115)) (-4389 ((|#2| $) 75 (|has| |#2| (-6 (-4466 "*"))))) (-2805 (((-576) $) 126)) (-2718 (((-576) $) 128)) (-2911 (((-656 |#2|) $) 106 (|has| $ (-6 -4464)))) (-1602 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-2626 (((-576) $) 127)) (-3267 (((-576) $) 129)) (-3410 (($ (-656 (-656 |#2|))) 121)) (-1898 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#2| |#2| |#2|) $ $) 138) (($ (-1 |#2| |#2|) $) 112)) (-4345 (((-656 (-656 |#2|)) $) 132)) (-1884 (((-112) $ (-783)) 116)) (-2160 (((-701 (-576)) (-1288 $)) 91 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 90 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 85) (((-701 |#2|) (-1288 $)) 84)) (-2447 (((-1179) $) 10)) (-3492 (((-3 $ "failed") $) 74 (|has| |#2| (-374)))) (-3116 (((-1141) $) 11)) (-1946 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-568)))) (-1759 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#2|))) 103 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 102 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 100 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) 120)) (-3617 (((-112) $) 117)) (-3307 (($) 118)) (-4369 ((|#2| $ (-576) (-576) |#2|) 135) ((|#2| $ (-576) (-576)) 133)) (-4107 (($ $ (-1 |#2| |#2|) (-783)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-237))) (($ $ (-783)) 45 (|has| |#2| (-237))) (($ $ (-1197)) 55 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) 53 (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) 52 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 51 (|has| |#2| (-919 (-1197))))) (-4383 ((|#2| $) 79)) (-4359 (($ (-656 |#2|)) 82)) (-1414 (((-112) $) 123)) (-1616 ((|#3| $) 81)) (-1846 ((|#2| $) 76 (|has| |#2| (-6 (-4466 "*"))))) (-3127 (((-783) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4464))) (((-783) |#2| $) 105 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 119)) (-3840 ((|#4| $ (-576)) 137)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 97 (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) 92)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-2543 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4464)))) (-2057 (((-112) $) 125)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-1 |#2| |#2|) (-783)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-237))) (($ $ (-783)) 44 (|has| |#2| (-237))) (($ $ (-1197)) 54 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) 50 (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) 49 (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 48 (|has| |#2| (-919 (-1197))))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#2|) 140 (|has| |#2| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 73 (|has| |#2| (-374)))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#2|) 146) (($ |#2| $) 145) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-1970 (((-783) $) 113 (|has| $ (-6 -4464))))) -(((-1144 |#1| |#2| |#3| |#4|) (-141) (-783) (-1070) (-243 |t#1| |t#2|) (-243 |t#1| |t#2|)) (T -1144)) -((-3541 (*1 *1 *2) (-12 (-4 *2 (-1070)) (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-4359 (*1 *1 *2) (-12 (-5 *2 (-656 *4)) (-4 *4 (-1070)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1070)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1070)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1144 *3 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) (-4389 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) (-3492 (*1 *1 *1) (|partial| -12 (-4 *1 (-1144 *2 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374))))) -(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1074 |t#1| |t#1| |t#2| |t#3| |t#4|) (-423 |t#2|) (-388 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (-15 -3541 ($ |t#2|)) (-15 -4359 ($ (-656 |t#2|))) (-15 -1616 (|t#3| $)) (-15 -3832 (|t#2| $)) (-15 -4383 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4466 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1846 (|t#2| $)) (-15 -4389 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-374)) (PROGN (-15 -3492 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4466 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#2| (-1059 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-234 $) -3795 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-232 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) -3795 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-272 |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-388 |#2|) . T) ((-423 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 #1=(-576)) |has| |#2| (-651 (-576))) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-6 (-4466 "*")))) ((-651 #1#) |has| |#2| (-651 (-576))) ((-651 |#2|) . T) ((-729 |#2|) -3795 (|has| |#2| (-174)) (|has| |#2| (-6 (-4466 "*")))) ((-738) . T) ((-911 $ #2=(-1197)) -3795 (|has| |#2| (-919 (-1197))) (|has| |#2| (-917 (-1197)))) ((-917 (-1197)) |has| |#2| (-917 (-1197))) ((-919 #2#) -3795 (|has| |#2| (-919 (-1197))) (|has| |#2| (-917 (-1197)))) ((-1074 |#1| |#1| |#2| |#3| |#4|) . T) ((-1059 #0#) |has| |#2| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#2| (-1059 (-576))) ((-1059 |#2|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2940 ((|#4| |#4|) 81)) (-2800 ((|#4| |#4|) 76)) (-3629 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2704 (-656 |#3|))) |#4| |#3|) 91)) (-4243 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3527 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1145 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 (|#4| |#4|)) (-15 -3527 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2940 (|#4| |#4|)) (-15 -4243 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3629 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2704 (-656 |#3|))) |#4| |#3|))) (-317) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1145)) -((-3629 (*1 *2 *3 *4) (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) (-5 *1 (-1145 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-4243 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2940 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3527 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -2800 (|#4| |#4|)) (-15 -3527 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2940 (|#4| |#4|)) (-15 -4243 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3629 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2704 (-656 |#3|))) |#4| |#3|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 18)) (-1585 (((-656 |#2|) $) 174)) (-1421 (((-1193 $) $ |#2|) 60) (((-1193 |#1|) $) 49)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)))) (-2390 (($ $) 118 (|has| |#1| (-568)))) (-3302 (((-112) $) 120 (|has| |#1| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 |#2|)) 213)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-2658 (($ $) NIL (|has| |#1| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) 167) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 |#2| "failed") $) NIL)) (-2317 ((|#1| $) 165) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) ((|#2| $) NIL)) (-2970 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-3310 (($ $) 217)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) 90)) (-1788 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#1| (-928)))) (-1975 (($ $ |#1| (-543 |#2|) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#1| (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#1| (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-2486 (((-112) $) 20)) (-2018 (((-783) $) 30)) (-1574 (($ (-1193 |#1|) |#2|) 54) (($ (-1193 $) |#2|) 71)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) 38)) (-1564 (($ |#1| (-543 |#2|)) 78) (($ $ |#2| (-783)) 58) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ |#2|) NIL)) (-2192 (((-543 |#2|) $) 205) (((-783) $ |#2|) 206) (((-656 (-783)) $ (-656 |#2|)) 207)) (-3784 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) 128)) (-3477 (((-3 |#2| "failed") $) 177)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-1700 (($ $) 216)) (-1711 ((|#1| $) 43)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2447 (((-1179) $) NIL)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| |#2|) (|:| -4080 (-783))) "failed") $) NIL)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) 39)) (-1686 ((|#1| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 148 (|has| |#1| (-464)))) (-3115 (($ (-656 $)) 153 (|has| |#1| (-464))) (($ $ $) 138 (|has| |#1| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#1| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-928)))) (-1946 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-568)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-656 |#2|) (-656 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-656 |#2|) (-656 $)) 194)) (-1790 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-4107 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 215)) (-2196 (((-543 |#2|) $) 201) (((-783) $ |#2|) 196) (((-656 (-783)) $ (-656 |#2|)) 199)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| |#1| (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| |#1| (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1944 ((|#1| $) 134 (|has| |#1| (-464))) (($ $ |#2|) 137 (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-4113 (((-876) $) 159) (($ (-576)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-3244 (((-656 |#1|) $) 162)) (-2707 ((|#1| $ (-543 |#2|)) 80) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) 87 T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) 123 (|has| |#1| (-568)))) (-4313 (($) 12 T CONST)) (-4322 (($) 14 T CONST)) (-3157 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3939 (((-112) $ $) 106)) (-4047 (($ $ |#1|) 132 (|has| |#1| (-374)))) (-4037 (($ $) 93) (($ $ $) 104)) (-4026 (($ $ $) 55)) (** (($ $ (-940)) 110) (($ $ (-783)) 109)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 96) (($ $ $) 72) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) -(((-1146 |#1| |#2|) (-968 |#1| (-543 |#2|) |#2|) (-1070) (-861)) (T -1146)) -NIL -(-968 |#1| (-543 |#2|) |#2|) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1585 (((-656 |#2|) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-3586 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3562 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-3612 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) NIL T CONST)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-2818 (((-971 |#1|) $ (-783)) NIL) (((-971 |#1|) $ (-783) (-783)) NIL)) (-2654 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-783) $ |#2|) NIL) (((-783) $ |#2| (-783)) NIL)) (-2486 (((-112) $) NIL)) (-4005 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4101 (((-112) $) NIL)) (-1564 (($ $ (-656 |#2|) (-656 (-543 |#2|))) NIL) (($ $ |#2| (-543 |#2|)) NIL) (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 63) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2608 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-4412 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3116 (((-1141) $) NIL)) (-1528 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2419 (($ $ (-783)) 16)) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2156 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-2145 (($ $ |#2| $) 106) (($ $ (-656 |#2|) (-656 $)) 99) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-4107 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 109)) (-2196 (((-543 |#2|) $) NIL)) (-2182 (((-1 (-1178 |#3|) |#3|) (-656 |#2|) (-656 (-1178 |#3|))) 87)) (-3623 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) 18)) (-4113 (((-876) $) 198) (($ (-576)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#2|) 70) (($ |#3|) 68)) (-2707 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL) ((|#3| $ (-783)) 43)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3632 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-1972 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) 52 T CONST)) (-4322 (($) 62 T CONST)) (-3157 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) 200 (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 66)) (** (($ $ (-940)) NIL) (($ $ (-783)) 77) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 112 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ $ (-419 (-576))) 117 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 115 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1147 |#1| |#2| |#3|) (-13 (-752 |#1| |#2|) (-10 -8 (-15 -2707 (|#3| $ (-783))) (-15 -4113 ($ |#2|)) (-15 -4113 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2182 ((-1 (-1178 |#3|) |#3|) (-656 |#2|) (-656 (-1178 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4412 ($ $ |#2| |#1|)) (-15 -1528 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1070) (-861) (-968 |#1| (-543 |#2|) |#2|)) (T -1147)) -((-2707 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-968 *4 (-543 *5) *5)) (-5 *1 (-1147 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-4113 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) (-4113 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) (-4 *2 (-968 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) (-4 *2 (-968 *3 (-543 *4) *4)))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1178 *7))) (-4 *6 (-861)) (-4 *7 (-968 *5 (-543 *6) *6)) (-4 *5 (-1070)) (-5 *2 (-1 (-1178 *7) *7)) (-5 *1 (-1147 *5 *6 *7)))) (-4412 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) (-1528 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1147 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *1 (-1147 *4 *3 *5)) (-4 *5 (-968 *4 (-543 *3) *3))))) -(-13 (-752 |#1| |#2|) (-10 -8 (-15 -2707 (|#3| $ (-783))) (-15 -4113 ($ |#2|)) (-15 -4113 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2182 ((-1 (-1178 |#3|) |#3|) (-656 |#2|) (-656 (-1178 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4412 ($ $ |#2| |#1|)) (-15 -1528 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-1957 (((-112) $ $) 7)) (-2048 (((-656 (-2 (|:| -1597 $) (|:| -3823 (-656 |#4|)))) (-656 |#4|)) 86)) (-2739 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1585 (((-656 |#3|) $) 34)) (-4404 (((-112) $) 27)) (-3921 (((-112) $) 18 (|has| |#1| (-568)))) (-2417 (((-112) |#4| $) 102) (((-112) $) 98)) (-1916 ((|#4| |#4| $) 93)) (-2658 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| $) 127)) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |#3|) 28)) (-4234 (((-112) $ (-783)) 45)) (-3603 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3170 (($) 46 T CONST)) (-4016 (((-112) $) 23 (|has| |#1| (-568)))) (-3403 (((-112) $ $) 25 (|has| |#1| (-568)))) (-4357 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2159 (((-112) $) 26 (|has| |#1| (-568)))) (-2460 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3496 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-3588 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2982 (((-3 $ "failed") (-656 |#4|)) 37)) (-2317 (($ (-656 |#4|)) 36)) (-1764 (((-3 $ "failed") $) 83)) (-2458 ((|#4| |#4| $) 90)) (-3841 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3561 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2559 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3234 ((|#4| |#4| $) 88)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1794 (((-2 (|:| -1597 (-656 |#4|)) (|:| -3823 (-656 |#4|))) $) 106)) (-2220 (((-112) |#4| $) 137)) (-1473 (((-112) |#4| $) 134)) (-2289 (((-112) |#4| $) 138) (((-112) $) 135)) (-3722 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-1938 (((-112) |#4| $) 105) (((-112) $) 104)) (-4260 ((|#3| $) 35)) (-3215 (((-112) $ (-783)) 44)) (-2911 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-1602 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#4| |#4|) $) 48)) (-3240 (((-656 |#3|) $) 33)) (-3821 (((-112) |#3| $) 32)) (-1884 (((-112) $ (-783)) 43)) (-2447 (((-1179) $) 10)) (-2890 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4381 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| |#4| $) 128)) (-2850 (((-3 |#4| "failed") $) 84)) (-2489 (((-656 $) |#4| $) 130)) (-4003 (((-3 (-112) (-656 $)) |#4| $) 133)) (-3891 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1431 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2341 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-4387 (((-656 |#4|) $) 108)) (-2915 (((-112) |#4| $) 100) (((-112) $) 96)) (-3648 ((|#4| |#4| $) 91)) (-2384 (((-112) $ $) 111)) (-2296 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-2200 (((-112) |#4| $) 101) (((-112) $) 97)) (-2565 ((|#4| |#4| $) 92)) (-3116 (((-1141) $) 11)) (-1755 (((-3 |#4| "failed") $) 85)) (-4220 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3238 (((-3 $ "failed") $ |#4|) 79)) (-2419 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-1759 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-1645 (((-112) $ $) 39)) (-3617 (((-112) $) 42)) (-3307 (($) 41)) (-2196 (((-783) $) 107)) (-3127 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-4287 (($ $) 40)) (-1556 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4125 (($ (-656 |#4|)) 61)) (-4023 (($ $ |#3|) 29)) (-2715 (($ $ |#3|) 31)) (-1357 (($ $) 89)) (-3142 (($ $ |#3|) 30)) (-4113 (((-876) $) 12) (((-656 |#4|) $) 38)) (-2524 (((-783) $) 77 (|has| |#3| (-379)))) (-2950 (((-112) $ $) 6)) (-1671 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1638 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3290 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2543 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-1754 (((-656 |#3|) $) 82)) (-3462 (((-112) |#4| $) 136)) (-1736 (((-112) |#3| $) 81)) (-3939 (((-112) $ $) 8)) (-1970 (((-783) $) 47 (|has| $ (-6 -4464))))) -(((-1148 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1148)) -NIL -(-13 (-1130 |t#1| |t#2| |t#3| |t#4|) (-796 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-796 |#1| |#2| |#3| |#4|) . T) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1092 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1130 |#1| |#2| |#3| |#4|) . T) ((-1231 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) -((-4138 (((-656 |#2|) |#1|) 15)) (-2960 (((-656 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-656 |#2|) |#1|) 61)) (-2081 (((-656 |#2|) |#2| |#2| |#2|) 45) (((-656 |#2|) |#1|) 59)) (-4237 ((|#2| |#1|) 54)) (-1362 (((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3319 (((-656 |#2|) |#2| |#2|) 42) (((-656 |#2|) |#1|) 58)) (-2035 (((-656 |#2|) |#2| |#2| |#2| |#2|) 46) (((-656 |#2|) |#1|) 60)) (-1977 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-1652 ((|#2| |#2| |#2| |#2|) 51)) (-3815 ((|#2| |#2| |#2|) 50)) (-2075 ((|#2| |#2| |#2| |#2| |#2|) 52))) -(((-1149 |#1| |#2|) (-10 -7 (-15 -4138 ((-656 |#2|) |#1|)) (-15 -4237 (|#2| |#1|)) (-15 -1362 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3319 ((-656 |#2|) |#1|)) (-15 -2081 ((-656 |#2|) |#1|)) (-15 -2035 ((-656 |#2|) |#1|)) (-15 -2960 ((-656 |#2|) |#1|)) (-15 -3319 ((-656 |#2|) |#2| |#2|)) (-15 -2081 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -2035 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2960 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3815 (|#2| |#2| |#2|)) (-15 -1652 (|#2| |#2| |#2| |#2|)) (-15 -2075 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1977 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1264 |#2|) (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (T -1149)) -((-1977 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-2075 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-1652 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-3815 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-2960 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-2035 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-2081 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-3319 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-2960 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-2081 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-1362 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-2 (|:| |solns| (-656 *5)) (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1149 *3 *5)) (-4 *3 (-1264 *5)))) (-4237 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -4138 ((-656 |#2|) |#1|)) (-15 -4237 (|#2| |#1|)) (-15 -1362 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3319 ((-656 |#2|) |#1|)) (-15 -2081 ((-656 |#2|) |#1|)) (-15 -2035 ((-656 |#2|) |#1|)) (-15 -2960 ((-656 |#2|) |#1|)) (-15 -3319 ((-656 |#2|) |#2| |#2|)) (-15 -2081 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -2035 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2960 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3815 (|#2| |#2| |#2|)) (-15 -1652 (|#2| |#2| |#2| |#2|)) (-15 -2075 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1977 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-4214 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|))))) 118) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197))) 117) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|)))) 115) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 113) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|)))) 97) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))) (-1197)) 98) (((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|))) 92) (((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)) (-1197)) 82)) (-4419 (((-656 (-656 (-326 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 111) (((-656 (-326 |#1|)) (-419 (-971 |#1|)) (-1197)) 54)) (-3227 (((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-971 |#1|)) (-1197)) 122) (((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197)) 121))) -(((-1150 |#1|) (-10 -7 (-15 -4214 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -4214 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)))) (-15 -4214 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -4214 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))))) (-15 -4214 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -4214 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))))) (-15 -4214 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -4214 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -4419 ((-656 (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -4419 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -3227 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -3227 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-971 |#1|)) (-1197)))) (-13 (-317) (-148))) (T -1150)) -((-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-4419 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) (-5 *1 (-1150 *5)))) (-4419 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) (-5 *1 (-1150 *5)))) (-4214 (*1 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1150 *4)))) (-4214 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-971 *5))))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-4214 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1150 *4)))) (-4214 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)))) (-4214 (*1 *2 *3) (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) (-4214 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)))) (-4214 (*1 *2 *3) (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) (-4214 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5))))) -(-10 -7 (-15 -4214 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)) (-1197))) (-15 -4214 ((-656 (-304 (-326 |#1|))) (-419 (-971 |#1|)))) (-15 -4214 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -4214 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-971 |#1|))))) (-15 -4214 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -4214 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-971 |#1|))))) (-15 -4214 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -4214 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -4419 ((-656 (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -4419 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -3227 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -3227 ((-1186 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-971 |#1|)) (-1197)))) -((-3694 (((-419 (-1193 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1193 (-326 |#1|))) (-576)) 36)) (-2127 (((-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|)))) 48))) -(((-1151 |#1|) (-10 -7 (-15 -2127 ((-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))))) (-15 -3694 ((-419 (-1193 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1193 (-326 |#1|))) (-576)))) (-568)) (T -1151)) -((-3694 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1193 (-326 *5)))) (-5 *3 (-1288 (-326 *5))) (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1151 *5)))) (-2127 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1193 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1151 *3))))) -(-10 -7 (-15 -2127 ((-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))) (-419 (-1193 (-326 |#1|))))) (-15 -3694 ((-419 (-1193 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1193 (-326 |#1|))) (-576)))) -((-4138 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1197))) 244) (((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1197)) 23) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1197)) 29) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|))) 28) (((-656 (-304 (-326 |#1|))) (-326 |#1|)) 24))) -(((-1152 |#1|) (-10 -7 (-15 -4138 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -4138 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -4138 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1197))) (-15 -4138 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1197))) (-15 -4138 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1197))))) (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (T -1152)) -((-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1197))) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1152 *5)) (-5 *3 (-656 (-304 (-326 *5)))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-326 *5)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-304 (-326 *5))))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-304 (-326 *4))))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-326 *4))))) -(-10 -7 (-15 -4138 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -4138 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -4138 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1197))) (-15 -4138 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1197))) (-15 -4138 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1197))))) -((-4398 ((|#2| |#2|) 28 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-4173 ((|#2| |#2|) 27 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1153 |#1| |#2|) (-10 -7 (-15 -4173 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4398 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -4173 (|#2| |#2|)) (-15 -4398 (|#2| |#2|))) |%noBranch|)) (-1238) (-13 (-616 (-576) |#1|) (-10 -7 (-6 -4464) (-6 -4465)))) (T -1153)) -((-4398 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4464) (-6 -4465)))))) (-4173 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4464) (-6 -4465)))))) (-4398 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4464) (-6 -4465)))))) (-4173 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4464) (-6 -4465))))))) -(-10 -7 (-15 -4173 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4398 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -4173 (|#2| |#2|)) (-15 -4398 (|#2| |#2|))) |%noBranch|)) -((-1957 (((-112) $ $) NIL)) (-3702 (((-1185 3 |#1|) $) 141)) (-2575 (((-112) $) 101)) (-4304 (($ $ (-656 (-962 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 104) (($ (-656 (-962 |#1|))) 103) (((-656 (-962 |#1|)) $) 102)) (-2809 (((-112) $) 72)) (-2819 (($ $ (-962 |#1|)) 76) (($ $ (-656 |#1|)) 81) (($ $ (-783)) 83) (($ (-962 |#1|)) 77) (((-962 |#1|) $) 75)) (-1856 (((-2 (|:| -2729 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 139)) (-3713 (((-783) $) 53)) (-2582 (((-783) $) 52)) (-2990 (($ $ (-783) (-962 |#1|)) 67)) (-1817 (((-112) $) 111)) (-3296 (($ $ (-656 (-656 (-962 |#1|))) (-656 (-173)) (-173)) 118) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 120) (($ $ (-656 (-656 (-962 |#1|))) (-112) (-112)) 115) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 127) (($ (-656 (-656 (-962 |#1|)))) 116) (($ (-656 (-656 (-962 |#1|))) (-112) (-112)) 117) (((-656 (-656 (-962 |#1|))) $) 114)) (-2748 (($ (-656 $)) 56) (($ $ $) 57)) (-3500 (((-656 (-173)) $) 133)) (-2852 (((-656 (-962 |#1|)) $) 130)) (-3249 (((-656 (-656 (-173))) $) 132)) (-4206 (((-656 (-656 (-656 (-962 |#1|)))) $) NIL)) (-1365 (((-656 (-656 (-656 (-783)))) $) 131)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3024 (((-783) $ (-656 (-962 |#1|))) 65)) (-2648 (((-112) $) 84)) (-3604 (($ $ (-656 (-962 |#1|))) 86) (($ $ (-656 (-656 |#1|))) 92) (($ (-656 (-962 |#1|))) 87) (((-656 (-962 |#1|)) $) 85)) (-3018 (($) 48) (($ (-1185 3 |#1|)) 49)) (-4287 (($ $) 63)) (-4282 (((-656 $) $) 62)) (-4105 (($ (-656 $)) 59)) (-2587 (((-656 $) $) 61)) (-4113 (((-876) $) 146)) (-2466 (((-112) $) 94)) (-1959 (($ $ (-656 (-962 |#1|))) 96) (($ $ (-656 (-656 |#1|))) 99) (($ (-656 (-962 |#1|))) 97) (((-656 (-962 |#1|)) $) 95)) (-3836 (($ $) 140)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1154 |#1|) (-1155 |#1|) (-1070)) (T -1154)) -NIL -(-1155 |#1|) -((-1957 (((-112) $ $) 7)) (-3702 (((-1185 3 |#1|) $) 14)) (-2575 (((-112) $) 30)) (-4304 (($ $ (-656 (-962 |#1|))) 34) (($ $ (-656 (-656 |#1|))) 33) (($ (-656 (-962 |#1|))) 32) (((-656 (-962 |#1|)) $) 31)) (-2809 (((-112) $) 45)) (-2819 (($ $ (-962 |#1|)) 50) (($ $ (-656 |#1|)) 49) (($ $ (-783)) 48) (($ (-962 |#1|)) 47) (((-962 |#1|) $) 46)) (-1856 (((-2 (|:| -2729 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 16)) (-3713 (((-783) $) 59)) (-2582 (((-783) $) 60)) (-2990 (($ $ (-783) (-962 |#1|)) 51)) (-1817 (((-112) $) 22)) (-3296 (($ $ (-656 (-656 (-962 |#1|))) (-656 (-173)) (-173)) 29) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 28) (($ $ (-656 (-656 (-962 |#1|))) (-112) (-112)) 27) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 26) (($ (-656 (-656 (-962 |#1|)))) 25) (($ (-656 (-656 (-962 |#1|))) (-112) (-112)) 24) (((-656 (-656 (-962 |#1|))) $) 23)) (-2748 (($ (-656 $)) 58) (($ $ $) 57)) (-3500 (((-656 (-173)) $) 17)) (-2852 (((-656 (-962 |#1|)) $) 21)) (-3249 (((-656 (-656 (-173))) $) 18)) (-4206 (((-656 (-656 (-656 (-962 |#1|)))) $) 19)) (-1365 (((-656 (-656 (-656 (-783)))) $) 20)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-3024 (((-783) $ (-656 (-962 |#1|))) 52)) (-2648 (((-112) $) 40)) (-3604 (($ $ (-656 (-962 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 43) (($ (-656 (-962 |#1|))) 42) (((-656 (-962 |#1|)) $) 41)) (-3018 (($) 62) (($ (-1185 3 |#1|)) 61)) (-4287 (($ $) 53)) (-4282 (((-656 $) $) 54)) (-4105 (($ (-656 $)) 56)) (-2587 (((-656 $) $) 55)) (-4113 (((-876) $) 12)) (-2466 (((-112) $) 35)) (-1959 (($ $ (-656 (-962 |#1|))) 39) (($ $ (-656 (-656 |#1|))) 38) (($ (-656 (-962 |#1|))) 37) (((-656 (-962 |#1|)) $) 36)) (-3836 (($ $) 15)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) -(((-1155 |#1|) (-141) (-1070)) (T -1155)) -((-4113 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-876)))) (-3018 (*1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-1185 3 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) (-2748 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-2748 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-2587 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)))) (-4282 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)))) (-4287 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-3024 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-962 *4))) (-4 *1 (-1155 *4)) (-4 *4 (-1070)) (-5 *2 (-783)))) (-2990 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-962 *4)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-2819 (*1 *1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-2819 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-2819 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-962 *3)))) (-2809 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-3604 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3604 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3604 (*1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-2648 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-1959 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-1959 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-1959 (*1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-2466 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-4304 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-4304 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-4304 (*1 *1 *2) (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-4304 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-3296 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-962 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) (-3296 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) (-3296 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-3296 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-3296 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 *3)))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3296 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) (-4 *4 (-1070)) (-4 *1 (-1155 *4)))) (-3296 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-962 *3)))))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (-2852 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) (-1365 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-656 (-783))))))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-656 (-962 *3))))))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-173)))))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-173))))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2729 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783)))))) (-3836 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-1185 3 *3))))) -(-13 (-1121) (-10 -8 (-15 -3018 ($)) (-15 -3018 ($ (-1185 3 |t#1|))) (-15 -2582 ((-783) $)) (-15 -3713 ((-783) $)) (-15 -2748 ($ (-656 $))) (-15 -2748 ($ $ $)) (-15 -4105 ($ (-656 $))) (-15 -2587 ((-656 $) $)) (-15 -4282 ((-656 $) $)) (-15 -4287 ($ $)) (-15 -3024 ((-783) $ (-656 (-962 |t#1|)))) (-15 -2990 ($ $ (-783) (-962 |t#1|))) (-15 -2819 ($ $ (-962 |t#1|))) (-15 -2819 ($ $ (-656 |t#1|))) (-15 -2819 ($ $ (-783))) (-15 -2819 ($ (-962 |t#1|))) (-15 -2819 ((-962 |t#1|) $)) (-15 -2809 ((-112) $)) (-15 -3604 ($ $ (-656 (-962 |t#1|)))) (-15 -3604 ($ $ (-656 (-656 |t#1|)))) (-15 -3604 ($ (-656 (-962 |t#1|)))) (-15 -3604 ((-656 (-962 |t#1|)) $)) (-15 -2648 ((-112) $)) (-15 -1959 ($ $ (-656 (-962 |t#1|)))) (-15 -1959 ($ $ (-656 (-656 |t#1|)))) (-15 -1959 ($ (-656 (-962 |t#1|)))) (-15 -1959 ((-656 (-962 |t#1|)) $)) (-15 -2466 ((-112) $)) (-15 -4304 ($ $ (-656 (-962 |t#1|)))) (-15 -4304 ($ $ (-656 (-656 |t#1|)))) (-15 -4304 ($ (-656 (-962 |t#1|)))) (-15 -4304 ((-656 (-962 |t#1|)) $)) (-15 -2575 ((-112) $)) (-15 -3296 ($ $ (-656 (-656 (-962 |t#1|))) (-656 (-173)) (-173))) (-15 -3296 ($ $ (-656 (-656 (-656 |t#1|))) (-656 (-173)) (-173))) (-15 -3296 ($ $ (-656 (-656 (-962 |t#1|))) (-112) (-112))) (-15 -3296 ($ $ (-656 (-656 (-656 |t#1|))) (-112) (-112))) (-15 -3296 ($ (-656 (-656 (-962 |t#1|))))) (-15 -3296 ($ (-656 (-656 (-962 |t#1|))) (-112) (-112))) (-15 -3296 ((-656 (-656 (-962 |t#1|))) $)) (-15 -1817 ((-112) $)) (-15 -2852 ((-656 (-962 |t#1|)) $)) (-15 -1365 ((-656 (-656 (-656 (-783)))) $)) (-15 -4206 ((-656 (-656 (-656 (-962 |t#1|)))) $)) (-15 -3249 ((-656 (-656 (-173))) $)) (-15 -3500 ((-656 (-173)) $)) (-15 -1856 ((-2 (|:| -2729 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $)) (-15 -3836 ($ $)) (-15 -3702 ((-1185 3 |t#1|) $)) (-15 -4113 ((-876) $)))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 184) (($ (-1202)) NIL) (((-1202) $) 7)) (-4305 (((-112) $ (|[\|\|]| (-536))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-688))) 27) (((-112) $ (|[\|\|]| (-1298))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-618))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1136))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-693))) 55) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1087))) 63) (((-112) $ (|[\|\|]| (-1299))) 67) (((-112) $ (|[\|\|]| (-537))) 71) (((-112) $ (|[\|\|]| (-1172))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-683))) 83) (((-112) $ (|[\|\|]| (-321))) 87) (((-112) $ (|[\|\|]| (-1057))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-991))) 99) (((-112) $ (|[\|\|]| (-1094))) 103) (((-112) $ (|[\|\|]| (-1111))) 107) (((-112) $ (|[\|\|]| (-1117))) 111) (((-112) $ (|[\|\|]| (-638))) 115) (((-112) $ (|[\|\|]| (-1187))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-490))) 131) (((-112) $ (|[\|\|]| (-604))) 135) (((-112) $ (|[\|\|]| (-518))) 139) (((-112) $ (|[\|\|]| (-1179))) 143) (((-112) $ (|[\|\|]| (-576))) 147)) (-2950 (((-112) $ $) NIL)) (-4333 (((-536) $) 20) (((-220) $) 24) (((-688) $) 28) (((-1298) $) 32) (((-139) $) 36) (((-618) $) 40) (((-134) $) 44) (((-1136) $) 48) (((-96) $) 52) (((-693) $) 56) (((-529) $) 60) (((-1087) $) 64) (((-1299) $) 68) (((-537) $) 72) (((-1172) $) 76) (((-155) $) 80) (((-683) $) 84) (((-321) $) 88) (((-1057) $) 92) (((-182) $) 96) (((-991) $) 100) (((-1094) $) 104) (((-1111) $) 108) (((-1117) $) 112) (((-638) $) 116) (((-1187) $) 120) (((-157) $) 124) (((-138) $) 128) (((-490) $) 132) (((-604) $) 136) (((-518) $) 140) (((-1179) $) 144) (((-576) $) 148)) (-3939 (((-112) $ $) NIL))) -(((-1156) (-1158)) (T -1156)) -NIL -(-1158) -((-2287 (((-656 (-1202)) (-1179)) 9))) -(((-1157) (-10 -7 (-15 -2287 ((-656 (-1202)) (-1179))))) (T -1157)) -((-2287 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-1157))))) -(-10 -7 (-15 -2287 ((-656 (-1202)) (-1179)))) -((-1957 (((-112) $ $) 7)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-1202)) 17) (((-1202) $) 16)) (-4305 (((-112) $ (|[\|\|]| (-536))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-688))) 81) (((-112) $ (|[\|\|]| (-1298))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-618))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1136))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-693))) 67) (((-112) $ (|[\|\|]| (-529))) 65) (((-112) $ (|[\|\|]| (-1087))) 63) (((-112) $ (|[\|\|]| (-1299))) 61) (((-112) $ (|[\|\|]| (-537))) 59) (((-112) $ (|[\|\|]| (-1172))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-683))) 53) (((-112) $ (|[\|\|]| (-321))) 51) (((-112) $ (|[\|\|]| (-1057))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-991))) 45) (((-112) $ (|[\|\|]| (-1094))) 43) (((-112) $ (|[\|\|]| (-1111))) 41) (((-112) $ (|[\|\|]| (-1117))) 39) (((-112) $ (|[\|\|]| (-638))) 37) (((-112) $ (|[\|\|]| (-1187))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-490))) 29) (((-112) $ (|[\|\|]| (-604))) 27) (((-112) $ (|[\|\|]| (-518))) 25) (((-112) $ (|[\|\|]| (-1179))) 23) (((-112) $ (|[\|\|]| (-576))) 21)) (-2950 (((-112) $ $) 6)) (-4333 (((-536) $) 84) (((-220) $) 82) (((-688) $) 80) (((-1298) $) 78) (((-139) $) 76) (((-618) $) 74) (((-134) $) 72) (((-1136) $) 70) (((-96) $) 68) (((-693) $) 66) (((-529) $) 64) (((-1087) $) 62) (((-1299) $) 60) (((-537) $) 58) (((-1172) $) 56) (((-155) $) 54) (((-683) $) 52) (((-321) $) 50) (((-1057) $) 48) (((-182) $) 46) (((-991) $) 44) (((-1094) $) 42) (((-1111) $) 40) (((-1117) $) 38) (((-638) $) 36) (((-1187) $) 34) (((-157) $) 32) (((-138) $) 30) (((-490) $) 28) (((-604) $) 26) (((-518) $) 24) (((-1179) $) 22) (((-576) $) 20)) (-3939 (((-112) $ $) 8))) -(((-1158) (-141)) (T -1158)) -((-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-536)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-220)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-688)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1298)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-139)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-618)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-134)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1136)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-96)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-693)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-529)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1087)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1299)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-537)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1172)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-155)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-683)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-321)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1057)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-182)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-991))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-991)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1094)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1111))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1111)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1117)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-638)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1187))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1187)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-157)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-138)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-490)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-604)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-518)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1179)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-576))))) -(-13 (-1104) (-1283) (-10 -8 (-15 -4305 ((-112) $ (|[\|\|]| (-536)))) (-15 -4333 ((-536) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-220)))) (-15 -4333 ((-220) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-688)))) (-15 -4333 ((-688) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1298)))) (-15 -4333 ((-1298) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-139)))) (-15 -4333 ((-139) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-618)))) (-15 -4333 ((-618) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-134)))) (-15 -4333 ((-134) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1136)))) (-15 -4333 ((-1136) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-96)))) (-15 -4333 ((-96) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-693)))) (-15 -4333 ((-693) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-529)))) (-15 -4333 ((-529) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1087)))) (-15 -4333 ((-1087) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1299)))) (-15 -4333 ((-1299) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-537)))) (-15 -4333 ((-537) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1172)))) (-15 -4333 ((-1172) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-155)))) (-15 -4333 ((-155) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-683)))) (-15 -4333 ((-683) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-321)))) (-15 -4333 ((-321) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1057)))) (-15 -4333 ((-1057) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-182)))) (-15 -4333 ((-182) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-991)))) (-15 -4333 ((-991) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1094)))) (-15 -4333 ((-1094) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1111)))) (-15 -4333 ((-1111) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1117)))) (-15 -4333 ((-1117) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-638)))) (-15 -4333 ((-638) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1187)))) (-15 -4333 ((-1187) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-157)))) (-15 -4333 ((-157) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-138)))) (-15 -4333 ((-138) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-490)))) (-15 -4333 ((-490) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-604)))) (-15 -4333 ((-604) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-518)))) (-15 -4333 ((-518) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1179)))) (-15 -4333 ((-1179) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-576)))) (-15 -4333 ((-576) $)))) -(((-93) . T) ((-102) . T) ((-628 #0=(-1202)) . T) ((-625 (-876)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1121) . T) ((-1104) . T) ((-1238) . T) ((-1283) . T)) -((-3647 (((-1293) (-656 (-876))) 22) (((-1293) (-876)) 21)) (-3085 (((-1293) (-656 (-876))) 20) (((-1293) (-876)) 19)) (-3973 (((-1293) (-656 (-876))) 18) (((-1293) (-876)) 10) (((-1293) (-1179) (-876)) 16))) -(((-1159) (-10 -7 (-15 -3973 ((-1293) (-1179) (-876))) (-15 -3973 ((-1293) (-876))) (-15 -3085 ((-1293) (-876))) (-15 -3647 ((-1293) (-876))) (-15 -3973 ((-1293) (-656 (-876)))) (-15 -3085 ((-1293) (-656 (-876)))) (-15 -3647 ((-1293) (-656 (-876)))))) (T -1159)) -((-3647 (*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159))))) -(-10 -7 (-15 -3973 ((-1293) (-1179) (-876))) (-15 -3973 ((-1293) (-876))) (-15 -3085 ((-1293) (-876))) (-15 -3647 ((-1293) (-876))) (-15 -3973 ((-1293) (-656 (-876)))) (-15 -3085 ((-1293) (-656 (-876)))) (-15 -3647 ((-1293) (-656 (-876))))) -((-3396 (($ $ $) 10)) (-2621 (($ $) 9)) (-3242 (($ $ $) 13)) (-3854 (($ $ $) 15)) (-1772 (($ $ $) 12)) (-2586 (($ $ $) 14)) (-2347 (($ $) 17)) (-1958 (($ $) 16)) (-2366 (($ $) 6)) (-2257 (($ $ $) 11) (($ $) 7)) (-2480 (($ $ $) 8))) -(((-1160) (-141)) (T -1160)) -((-2347 (*1 *1 *1) (-4 *1 (-1160))) (-1958 (*1 *1 *1) (-4 *1 (-1160))) (-3854 (*1 *1 *1 *1) (-4 *1 (-1160))) (-2586 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3242 (*1 *1 *1 *1) (-4 *1 (-1160))) (-1772 (*1 *1 *1 *1) (-4 *1 (-1160))) (-2257 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3396 (*1 *1 *1 *1) (-4 *1 (-1160))) (-2621 (*1 *1 *1) (-4 *1 (-1160))) (-2480 (*1 *1 *1 *1) (-4 *1 (-1160))) (-2257 (*1 *1 *1) (-4 *1 (-1160))) (-2366 (*1 *1 *1) (-4 *1 (-1160)))) -(-13 (-10 -8 (-15 -2366 ($ $)) (-15 -2257 ($ $)) (-15 -2480 ($ $ $)) (-15 -2621 ($ $)) (-15 -3396 ($ $ $)) (-15 -2257 ($ $ $)) (-15 -1772 ($ $ $)) (-15 -3242 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -3854 ($ $ $)) (-15 -1958 ($ $)) (-15 -2347 ($ $)))) -((-1957 (((-112) $ $) 44)) (-1690 ((|#1| $) 17)) (-3849 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3884 (((-112) $) 19)) (-2183 (($ $ |#1|) 30)) (-2821 (($ $ (-112)) 32)) (-2535 (($ $) 33)) (-1863 (($ $ |#2|) 31)) (-2447 (((-1179) $) NIL)) (-1697 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3116 (((-1141) $) NIL)) (-3617 (((-112) $) 16)) (-3307 (($) 13)) (-4287 (($ $) 29)) (-4125 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4442 |#2|))) 23) (((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4442 |#2|)))) 26) (((-656 $) |#1| (-656 |#2|)) 28)) (-3271 ((|#2| $) 18)) (-4113 (((-876) $) 53)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 42))) -(((-1161 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3307 ($)) (-15 -3617 ((-112) $)) (-15 -1690 (|#1| $)) (-15 -3271 (|#2| $)) (-15 -3884 ((-112) $)) (-15 -4125 ($ |#1| |#2| (-112))) (-15 -4125 ($ |#1| |#2|)) (-15 -4125 ($ (-2 (|:| |val| |#1|) (|:| -4442 |#2|)))) (-15 -4125 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4442 |#2|))))) (-15 -4125 ((-656 $) |#1| (-656 |#2|))) (-15 -4287 ($ $)) (-15 -2183 ($ $ |#1|)) (-15 -1863 ($ $ |#2|)) (-15 -2821 ($ $ (-112))) (-15 -2535 ($ $)) (-15 -1697 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3849 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1121) (-34)) (-13 (-1121) (-34))) (T -1161)) -((-3307 (*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-1690 (*1 *2 *1) (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *2 *3)) (-4 *3 (-13 (-1121) (-34))))) (-3271 (*1 *2 *1) (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-4125 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-4125 (*1 *1 *2 *3) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-4125 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4442 *4))) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -4442 *5)))) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-656 (-1161 *4 *5))) (-5 *1 (-1161 *4 *5)))) (-4125 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-656 (-1161 *3 *5))) (-5 *1 (-1161 *3 *5)) (-4 *3 (-13 (-1121) (-34))))) (-4287 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-2183 (*1 *1 *1 *2) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-1863 (*1 *1 *1 *2) (-12 (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))) (-4 *2 (-13 (-1121) (-34))))) (-2821 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-2535 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-1697 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1161 *5 *6)))) (-3849 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34)))))) -(-13 (-1121) (-10 -8 (-15 -3307 ($)) (-15 -3617 ((-112) $)) (-15 -1690 (|#1| $)) (-15 -3271 (|#2| $)) (-15 -3884 ((-112) $)) (-15 -4125 ($ |#1| |#2| (-112))) (-15 -4125 ($ |#1| |#2|)) (-15 -4125 ($ (-2 (|:| |val| |#1|) (|:| -4442 |#2|)))) (-15 -4125 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4442 |#2|))))) (-15 -4125 ((-656 $) |#1| (-656 |#2|))) (-15 -4287 ($ $)) (-15 -2183 ($ $ |#1|)) (-15 -1863 ($ $ |#2|)) (-15 -2821 ($ $ (-112))) (-15 -2535 ($ $)) (-15 -1697 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3849 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-1957 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-102)))) (-1690 (((-1161 |#1| |#2|) $) 27)) (-1914 (($ $) 91)) (-3209 (((-112) (-1161 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2490 (($ $ $ (-656 (-1161 |#1| |#2|))) 108) (($ $ $ (-656 (-1161 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-4234 (((-112) $ (-783)) NIL)) (-4261 (((-1161 |#1| |#2|) $ (-1161 |#1| |#2|)) 46 (|has| $ (-6 -4465)))) (-4268 (((-1161 |#1| |#2|) $ "value" (-1161 |#1| |#2|)) NIL (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) 44 (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-3885 (((-656 (-2 (|:| |val| |#1|) (|:| -4442 |#2|))) $) 95)) (-3872 (($ (-1161 |#1| |#2|) $) 42)) (-2825 (($ (-1161 |#1| |#2|) $) 34)) (-3722 (((-656 (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) 54)) (-3901 (((-112) (-1161 |#1| |#2|) $) 97)) (-1878 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 (-1161 |#1| |#2|)) $) 58 (|has| $ (-6 -4464)))) (-1602 (((-112) (-1161 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-1161 |#1| |#2|) (-1121))))) (-1898 (($ (-1 (-1161 |#1| |#2|) (-1161 |#1| |#2|)) $) 50 (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-1161 |#1| |#2|) (-1161 |#1| |#2|)) $) 49)) (-1884 (((-112) $ (-783)) NIL)) (-4186 (((-656 (-1161 |#1| |#2|)) $) 56)) (-3211 (((-112) $) 45)) (-2447 (((-1179) $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-3116 (((-1141) $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-2775 (((-3 $ "failed") $) 89)) (-1759 (((-112) (-1 (-112) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-1161 |#1| |#2|)))) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121)))) (($ $ (-304 (-1161 |#1| |#2|))) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121)))) (($ $ (-1161 |#1| |#2|) (-1161 |#1| |#2|)) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121)))) (($ $ (-656 (-1161 |#1| |#2|)) (-656 (-1161 |#1| |#2|))) NIL (-12 (|has| (-1161 |#1| |#2|) (-319 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1121))))) (-1645 (((-112) $ $) 53)) (-3617 (((-112) $) 24)) (-3307 (($) 26)) (-4369 (((-1161 |#1| |#2|) $ "value") NIL)) (-2027 (((-576) $ $) NIL)) (-2974 (((-112) $) 47)) (-3127 (((-783) (-1 (-112) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4464))) (((-783) (-1161 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-1161 |#1| |#2|) (-1121))))) (-4287 (($ $) 52)) (-4125 (($ (-1161 |#1| |#2|)) 10) (($ |#1| |#2| (-656 $)) 13) (($ |#1| |#2| (-656 (-1161 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-656 |#2|)) 18)) (-1453 (((-656 |#2|) $) 96)) (-4113 (((-876) $) 87 (|has| (-1161 |#1| |#2|) (-625 (-876))))) (-1549 (((-656 $) $) 31)) (-4295 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-1121)))) (-2950 (((-112) $ $) NIL (|has| (-1161 |#1| |#2|) (-102)))) (-2543 (((-112) (-1 (-112) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 70 (|has| (-1161 |#1| |#2|) (-102)))) (-1970 (((-783) $) 64 (|has| $ (-6 -4464))))) -(((-1162 |#1| |#2|) (-13 (-1031 (-1161 |#1| |#2|)) (-10 -8 (-6 -4465) (-6 -4464) (-15 -2775 ((-3 $ "failed") $)) (-15 -1914 ($ $)) (-15 -4125 ($ (-1161 |#1| |#2|))) (-15 -4125 ($ |#1| |#2| (-656 $))) (-15 -4125 ($ |#1| |#2| (-656 (-1161 |#1| |#2|)))) (-15 -4125 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1453 ((-656 |#2|) $)) (-15 -3885 ((-656 (-2 (|:| |val| |#1|) (|:| -4442 |#2|))) $)) (-15 -3901 ((-112) (-1161 |#1| |#2|) $)) (-15 -3209 ((-112) (-1161 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2825 ($ (-1161 |#1| |#2|) $)) (-15 -3872 ($ (-1161 |#1| |#2|) $)) (-15 -2490 ($ $ $ (-656 (-1161 |#1| |#2|)))) (-15 -2490 ($ $ $ (-656 (-1161 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1121) (-34)) (-13 (-1121) (-34))) (T -1162)) -((-2775 (*1 *1 *1) (|partial| -12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-1914 (*1 *1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-4125 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-4125 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1162 *2 *3))) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-4125 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1161 *2 *3))) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1162 *2 *3)))) (-4125 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-656 *4)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3901 (*1 *2 *3 *1) (-12 (-5 *3 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *4 *5)))) (-3209 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1161 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *5 *6)))) (-2825 (*1 *1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-3872 (*1 *1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-2490 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-656 (-1161 *3 *4))) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) (-2490 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1161 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *1 (-1162 *4 *5))))) -(-13 (-1031 (-1161 |#1| |#2|)) (-10 -8 (-6 -4465) (-6 -4464) (-15 -2775 ((-3 $ "failed") $)) (-15 -1914 ($ $)) (-15 -4125 ($ (-1161 |#1| |#2|))) (-15 -4125 ($ |#1| |#2| (-656 $))) (-15 -4125 ($ |#1| |#2| (-656 (-1161 |#1| |#2|)))) (-15 -4125 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1453 ((-656 |#2|) $)) (-15 -3885 ((-656 (-2 (|:| |val| |#1|) (|:| -4442 |#2|))) $)) (-15 -3901 ((-112) (-1161 |#1| |#2|) $)) (-15 -3209 ((-112) (-1161 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2825 ($ (-1161 |#1| |#2|) $)) (-15 -3872 ($ (-1161 |#1| |#2|) $)) (-15 -2490 ($ $ $ (-656 (-1161 |#1| |#2|)))) (-15 -2490 ($ $ $ (-656 (-1161 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-3019 (($ $) NIL)) (-3832 ((|#2| $) NIL)) (-4154 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2388 (($ (-701 |#2|)) 56)) (-1929 (((-112) $) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-3541 (($ |#2|) 14)) (-3170 (($) NIL T CONST)) (-2836 (($ $) 69 (|has| |#2| (-317)))) (-2880 (((-245 |#1| |#2|) $ (-576)) 42)) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) ((|#2| $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) 83)) (-4135 (((-783) $) 71 (|has| |#2| (-568)))) (-3721 ((|#2| $ (-576) (-576)) NIL)) (-3722 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-2486 (((-112) $) NIL)) (-3985 (((-783) $) 73 (|has| |#2| (-568)))) (-4362 (((-656 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-568)))) (-2759 (((-783) $) NIL)) (-1991 (($ |#2|) 25)) (-2773 (((-783) $) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-4389 ((|#2| $) 67 (|has| |#2| (-6 (-4466 "*"))))) (-2805 (((-576) $) NIL)) (-2718 (((-576) $) NIL)) (-2911 (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2626 (((-576) $) NIL)) (-3267 (((-576) $) NIL)) (-3410 (($ (-656 (-656 |#2|))) 37)) (-1898 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4345 (((-656 (-656 |#2|)) $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-2447 (((-1179) $) NIL)) (-3492 (((-3 $ "failed") $) 80 (|has| |#2| (-374)))) (-3116 (((-1141) $) NIL)) (-1946 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-1759 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) NIL)) (-4107 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-4383 ((|#2| $) NIL)) (-4359 (($ (-656 |#2|)) 50)) (-1414 (((-112) $) NIL)) (-1616 (((-245 |#1| |#2|) $) NIL)) (-1846 ((|#2| $) 65 (|has| |#2| (-6 (-4466 "*"))))) (-3127 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-4287 (($ $) NIL)) (-1556 (((-548) $) 89 (|has| |#2| (-626 (-548))))) (-3840 (((-245 |#1| |#2|) $ (-576)) 44)) (-4113 (((-876) $) 47) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1059 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) 52)) (-2910 (((-783)) 23 T CONST)) (-2950 (((-112) $ $) NIL)) (-2543 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2057 (((-112) $) NIL)) (-4313 (($) 16 T CONST)) (-4322 (($) 21 T CONST)) (-3157 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) 63) (($ $ (-576)) 82 (|has| |#2| (-374)))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1163 |#1| |#2|) (-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -1991 ($ |#2|)) (-15 -3019 ($ $)) (-15 -2388 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4466 "*"))) (-6 -4453) |%noBranch|) (IF (|has| |#2| (-6 (-4466 "*"))) (IF (|has| |#2| (-6 -4461)) (-6 -4461) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-783) (-1070)) (T -1163)) -((-1991 (*1 *1 *2) (-12 (-5 *1 (-1163 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1070)))) (-3019 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1070)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-701 *4)) (-4 *4 (-1070)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-783))))) -(-13 (-1144 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -1991 ($ |#2|)) (-15 -3019 ($ $)) (-15 -2388 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4466 "*"))) (-6 -4453) |%noBranch|) (IF (|has| |#2| (-6 (-4466 "*"))) (IF (|has| |#2| (-6 -4461)) (-6 -4461) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -((-3532 (($ $) 19)) (-2592 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-2281 (((-112) $ $) 24)) (-4181 (($ $) 17)) (-4369 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1255 (-576))) NIL) (($ $ $) 31)) (-4113 (($ (-145)) 29) (((-876) $) NIL))) -(((-1164 |#1|) (-10 -8 (-15 -4113 ((-876) |#1|)) (-15 -4369 (|#1| |#1| |#1|)) (-15 -2592 (|#1| |#1| (-142))) (-15 -2592 (|#1| |#1| (-145))) (-15 -4113 (|#1| (-145))) (-15 -2281 ((-112) |#1| |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -4181 (|#1| |#1|)) (-15 -4369 (|#1| |#1| (-1255 (-576)))) (-15 -4369 ((-145) |#1| (-576))) (-15 -4369 ((-145) |#1| (-576) (-145)))) (-1165)) (T -1164)) -NIL -(-10 -8 (-15 -4113 ((-876) |#1|)) (-15 -4369 (|#1| |#1| |#1|)) (-15 -2592 (|#1| |#1| (-142))) (-15 -2592 (|#1| |#1| (-145))) (-15 -4113 (|#1| (-145))) (-15 -2281 ((-112) |#1| |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -4181 (|#1| |#1|)) (-15 -4369 (|#1| |#1| (-1255 (-576)))) (-15 -4369 ((-145) |#1| (-576))) (-15 -4369 ((-145) |#1| (-576) (-145)))) -((-1957 (((-112) $ $) 20 (|has| (-145) (-102)))) (-2635 (($ $) 123)) (-3532 (($ $) 124)) (-2592 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3657 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2259 (((-112) $ $) 121)) (-2235 (((-112) $ $ (-576)) 120)) (-2887 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-2919 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-861)))) (-3519 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| (-145) (-861)) (|has| $ (-6 -4465))))) (-2380 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-861)))) (-4234 (((-112) $ (-783)) 8)) (-4268 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4465))) (((-145) $ (-1255 (-576)) (-145)) 60 (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-4435 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-1542 (($ $) 93 (|has| $ (-6 -4465)))) (-4204 (($ $) 103)) (-3124 (($ $ (-1255 (-576)) $) 117)) (-3841 (($ $) 80 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ (-145) $) 79 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4464)))) (-2721 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4464)))) (-1910 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4465)))) (-3721 (((-145) $ (-576)) 52)) (-2281 (((-112) $ $) 122)) (-3539 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1121))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1121))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-3722 (((-656 (-145)) $) 31 (|has| $ (-6 -4464)))) (-1991 (($ (-783) (-145)) 70)) (-3215 (((-112) $ (-783)) 9)) (-1605 (((-576) $) 44 (|has| (-576) (-861)))) (-2907 (($ $ $) 85 (|has| (-145) (-861)))) (-2748 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-861)))) (-2911 (((-656 (-145)) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464))))) (-1829 (((-576) $) 45 (|has| (-576) (-861)))) (-3777 (($ $ $) 86 (|has| (-145) (-861)))) (-4327 (((-112) $ $ (-145)) 118)) (-1465 (((-783) $ $ (-145)) 119)) (-1898 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-3809 (($ $) 125)) (-4181 (($ $) 126)) (-1884 (((-112) $ (-783)) 10)) (-1325 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2447 (((-1179) $) 23 (|has| (-145) (-1121)))) (-3386 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-2863 (((-656 (-576)) $) 47)) (-1389 (((-112) (-576) $) 48)) (-3116 (((-1141) $) 22 (|has| (-145) (-1121)))) (-1755 (((-145) $) 43 (|has| (-576) (-861)))) (-4220 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-4267 (($ $ (-145)) 42 (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-2885 (((-656 (-145)) $) 49)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1255 (-576))) 71) (($ $ $) 105)) (-2335 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-3127 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4464))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1121)) (|has| $ (-6 -4464))))) (-3218 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-4287 (($ $) 13)) (-1556 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-4125 (($ (-656 (-145))) 72)) (-2767 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4113 (($ (-145)) 114) (((-876) $) 18 (|has| (-145) (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| (-145) (-102)))) (-2543 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) 87 (|has| (-145) (-861)))) (-3975 (((-112) $ $) 89 (|has| (-145) (-861)))) (-3939 (((-112) $ $) 19 (|has| (-145) (-102)))) (-3984 (((-112) $ $) 88 (|has| (-145) (-861)))) (-3963 (((-112) $ $) 90 (|has| (-145) (-861)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-1165) (-141)) (T -1165)) -((-4181 (*1 *1 *1) (-4 *1 (-1165))) (-3809 (*1 *1 *1) (-4 *1 (-1165))) (-3532 (*1 *1 *1) (-4 *1 (-1165))) (-2635 (*1 *1 *1) (-4 *1 (-1165))) (-2281 (*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112)))) (-2259 (*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112)))) (-2235 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-576)) (-5 *2 (-112)))) (-1465 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-783)))) (-4327 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3124 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-1255 (-576))))) (-3539 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576)))) (-3539 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576)) (-5 *3 (-142)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1165)))) (-2887 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1165)))) (-2887 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1165)))) (-2592 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145)))) (-2592 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) (-1325 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145)))) (-1325 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) (-4435 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145)))) (-4435 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) (-4369 (*1 *1 *1 *1) (-4 *1 (-1165)))) -(-13 (-19 (-145)) (-10 -8 (-15 -4181 ($ $)) (-15 -3809 ($ $)) (-15 -3532 ($ $)) (-15 -2635 ($ $)) (-15 -2281 ((-112) $ $)) (-15 -2259 ((-112) $ $)) (-15 -2235 ((-112) $ $ (-576))) (-15 -1465 ((-783) $ $ (-145))) (-15 -4327 ((-112) $ $ (-145))) (-15 -3124 ($ $ (-1255 (-576)) $)) (-15 -3539 ((-576) $ $ (-576))) (-15 -3539 ((-576) (-142) $ (-576))) (-15 -4113 ($ (-145))) (-15 -2887 ((-656 $) $ (-145))) (-15 -2887 ((-656 $) $ (-142))) (-15 -2592 ($ $ (-145))) (-15 -2592 ($ $ (-142))) (-15 -1325 ($ $ (-145))) (-15 -1325 ($ $ (-142))) (-15 -4435 ($ $ (-145))) (-15 -4435 ($ $ (-142))) (-15 -4369 ($ $ $)))) -(((-34) . T) ((-102) -3795 (|has| (-145) (-1121)) (|has| (-145) (-861)) (|has| (-145) (-102))) ((-625 (-876)) -3795 (|has| (-145) (-1121)) (|has| (-145) (-861)) (|has| (-145) (-625 (-876)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))) ((-663 #0#) . T) ((-19 #0#) . T) ((-861) |has| (-145) (-861)) ((-864) |has| (-145) (-861)) ((-1121) -3795 (|has| (-145) (-1121)) (|has| (-145) (-861))) ((-1238) . T)) -((-2834 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-783)) 112)) (-3177 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783)) 61)) (-3086 (((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-783)) 97)) (-1983 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-3316 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783)) 63) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783) (-112)) 65)) (-3325 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 85)) (-1556 (((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) 90)) (-1404 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|) 60)) (-4371 (((-783) (-656 |#4|) (-656 |#5|)) 21))) -(((-1166 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4371 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1983 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1404 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -3177 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -3177 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -3316 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -3316 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -3316 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -3325 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3325 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2834 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-783))) (-15 -1556 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -3086 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-783)))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|) (-1130 |#1| |#2| |#3| |#4|)) (T -1166)) -((-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1130 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) (-5 *1 (-1166 *4 *5 *6 *7 *8)))) (-2834 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4442 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4442 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) (-4 *11 (-1130 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-5 *1 (-1166 *7 *8 *9 *10 *11)))) (-3325 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-3325 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-3316 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-3316 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) (-3316 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1166 *7 *8 *9 *3 *4)) (-4 *4 (-1130 *7 *8 *9 *3)))) (-3177 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-3177 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) (-1404 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -4371 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1983 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1404 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -3177 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -3177 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -3316 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -3316 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5| (-783))) (-15 -3316 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) |#4| |#5|)) (-15 -3325 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3325 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2834 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))))) (-783))) (-15 -1556 ((-1179) (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|)))) (-15 -3086 ((-1293) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4442 |#5|))) (-783)))) -((-1957 (((-112) $ $) NIL)) (-2048 (((-656 (-2 (|:| -1597 $) (|:| -3823 (-656 |#4|)))) (-656 |#4|)) NIL)) (-2739 (((-656 $) (-656 |#4|)) 124) (((-656 $) (-656 |#4|) (-112)) 125) (((-656 $) (-656 |#4|) (-112) (-112)) 123) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1585 (((-656 |#3|) $) NIL)) (-4404 (((-112) $) NIL)) (-3921 (((-112) $) NIL (|has| |#1| (-568)))) (-2417 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1916 ((|#4| |#4| $) NIL)) (-2658 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| $) 97)) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |#3|) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-3603 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 75)) (-3170 (($) NIL T CONST)) (-4016 (((-112) $) 29 (|has| |#1| (-568)))) (-3403 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4357 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2159 (((-112) $) NIL (|has| |#1| (-568)))) (-2460 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3496 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-3588 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2982 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2317 (($ (-656 |#4|)) NIL)) (-1764 (((-3 $ "failed") $) 45)) (-2458 ((|#4| |#4| $) 78)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-2825 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3561 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-568)))) (-2559 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3234 ((|#4| |#4| $) NIL)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1794 (((-2 (|:| -1597 (-656 |#4|)) (|:| -3823 (-656 |#4|))) $) NIL)) (-2220 (((-112) |#4| $) NIL)) (-1473 (((-112) |#4| $) NIL)) (-2289 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2602 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 139)) (-3722 (((-656 |#4|) $) 18 (|has| $ (-6 -4464)))) (-1938 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4260 ((|#3| $) 38)) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#4|) $) 19 (|has| $ (-6 -4464)))) (-1602 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-1898 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#4| |#4|) $) 23)) (-3240 (((-656 |#3|) $) NIL)) (-3821 (((-112) |#3| $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-2890 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-4381 (((-656 (-2 (|:| |val| |#4|) (|:| -4442 $))) |#4| |#4| $) 117)) (-2850 (((-3 |#4| "failed") $) 42)) (-2489 (((-656 $) |#4| $) 102)) (-4003 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-3891 (((-656 (-2 (|:| |val| (-112)) (|:| -4442 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-1431 (((-656 $) |#4| $) 121) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 122) (((-656 $) |#4| (-656 $)) NIL)) (-3927 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 134)) (-2341 (($ |#4| $) 88) (($ (-656 |#4|) $) 89) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4387 (((-656 |#4|) $) NIL)) (-2915 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3648 ((|#4| |#4| $) NIL)) (-2384 (((-112) $ $) NIL)) (-2296 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2200 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2565 ((|#4| |#4| $) NIL)) (-3116 (((-1141) $) NIL)) (-1755 (((-3 |#4| "failed") $) 40)) (-4220 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3238 (((-3 $ "failed") $ |#4|) 59)) (-2419 (($ $ |#4|) NIL) (((-656 $) |#4| $) 104) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 99)) (-1759 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 17)) (-3307 (($) 14)) (-2196 (((-783) $) NIL)) (-3127 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) 13)) (-1556 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-4125 (($ (-656 |#4|)) 22)) (-4023 (($ $ |#3|) 52)) (-2715 (($ $ |#3|) 54)) (-1357 (($ $) NIL)) (-3142 (($ $ |#3|) NIL)) (-4113 (((-876) $) 35) (((-656 |#4|) $) 46)) (-2524 (((-783) $) NIL (|has| |#3| (-379)))) (-2950 (((-112) $ $) NIL)) (-1671 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1638 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-3290 (((-656 $) |#4| $) 66) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2543 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1754 (((-656 |#3|) $) NIL)) (-3462 (((-112) |#4| $) NIL)) (-1736 (((-112) |#3| $) 74)) (-3939 (((-112) $ $) NIL)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1167 |#1| |#2| |#3| |#4|) (-13 (-1130 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2341 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2739 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -2739 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3927 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -2602 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -1167)) -((-2341 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *3))) (-5 *1 (-1167 *5 *6 *7 *3)) (-4 *3 (-1086 *5 *6 *7)))) (-2739 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-2739 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-3927 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-2602 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1167 *5 *6 *7 *8))))) (-5 *1 (-1167 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(-13 (-1130 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2341 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2739 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -2739 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3927 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -2602 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3015 ((|#1| $) 37)) (-4132 (($ (-656 |#1|)) 45)) (-4234 (((-112) $ (-783)) NIL)) (-3170 (($) NIL T CONST)) (-2663 ((|#1| |#1| $) 40)) (-3166 ((|#1| $) 35)) (-3722 (((-656 |#1|) $) 18 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1898 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 22)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3743 ((|#1| $) 38)) (-3695 (($ |#1| $) 41)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-2372 ((|#1| $) 36)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 32)) (-3307 (($) 43)) (-4307 (((-783) $) 30)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) 27)) (-4113 (((-876) $) 14 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4156 (($ (-656 |#1|)) NIL)) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 17 (|has| |#1| (-102)))) (-1970 (((-783) $) 31 (|has| $ (-6 -4464))))) -(((-1168 |#1|) (-13 (-1142 |#1|) (-10 -8 (-15 -4132 ($ (-656 |#1|))))) (-1238)) (T -1168)) -((-4132 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1168 *3))))) -(-13 (-1142 |#1|) (-10 -8 (-15 -4132 ($ (-656 |#1|))))) -((-4268 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1255 (-576)) |#2|) 53) ((|#2| $ (-576) |#2|) 50)) (-2319 (((-112) $) 12)) (-1898 (($ (-1 |#2| |#2|) $) 48)) (-1755 ((|#2| $) NIL) (($ $ (-783)) 17)) (-4267 (($ $ |#2|) 49)) (-3501 (((-112) $) 11)) (-4369 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1255 (-576))) 36) ((|#2| $ (-576)) 26) ((|#2| $ (-576) |#2|) NIL)) (-4022 (($ $ $) 56) (($ $ |#2|) NIL)) (-2767 (($ $ $) 38) (($ |#2| $) NIL) (($ (-656 $)) 45) (($ $ |#2|) NIL))) -(((-1169 |#1| |#2|) (-10 -8 (-15 -2319 ((-112) |#1|)) (-15 -3501 ((-112) |#1|)) (-15 -4268 (|#2| |#1| (-576) |#2|)) (-15 -4369 (|#2| |#1| (-576) |#2|)) (-15 -4369 (|#2| |#1| (-576))) (-15 -4267 (|#1| |#1| |#2|)) (-15 -4369 (|#1| |#1| (-1255 (-576)))) (-15 -2767 (|#1| |#1| |#2|)) (-15 -2767 (|#1| (-656 |#1|))) (-15 -4268 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -4268 (|#2| |#1| "last" |#2|)) (-15 -4268 (|#1| |#1| "rest" |#1|)) (-15 -4268 (|#2| |#1| "first" |#2|)) (-15 -4022 (|#1| |#1| |#2|)) (-15 -4022 (|#1| |#1| |#1|)) (-15 -4369 (|#2| |#1| "last")) (-15 -4369 (|#1| |#1| "rest")) (-15 -1755 (|#1| |#1| (-783))) (-15 -4369 (|#2| |#1| "first")) (-15 -1755 (|#2| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -4268 (|#2| |#1| "value" |#2|)) (-15 -4369 (|#2| |#1| "value")) (-15 -1898 (|#1| (-1 |#2| |#2|) |#1|))) (-1170 |#2|) (-1238)) (T -1169)) -NIL -(-10 -8 (-15 -2319 ((-112) |#1|)) (-15 -3501 ((-112) |#1|)) (-15 -4268 (|#2| |#1| (-576) |#2|)) (-15 -4369 (|#2| |#1| (-576) |#2|)) (-15 -4369 (|#2| |#1| (-576))) (-15 -4267 (|#1| |#1| |#2|)) (-15 -4369 (|#1| |#1| (-1255 (-576)))) (-15 -2767 (|#1| |#1| |#2|)) (-15 -2767 (|#1| (-656 |#1|))) (-15 -4268 (|#2| |#1| (-1255 (-576)) |#2|)) (-15 -4268 (|#2| |#1| "last" |#2|)) (-15 -4268 (|#1| |#1| "rest" |#1|)) (-15 -4268 (|#2| |#1| "first" |#2|)) (-15 -4022 (|#1| |#1| |#2|)) (-15 -4022 (|#1| |#1| |#1|)) (-15 -4369 (|#2| |#1| "last")) (-15 -4369 (|#1| |#1| "rest")) (-15 -1755 (|#1| |#1| (-783))) (-15 -4369 (|#2| |#1| "first")) (-15 -1755 (|#2| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -4268 (|#2| |#1| "value" |#2|)) (-15 -4369 (|#2| |#1| "value")) (-15 -1898 (|#1| (-1 |#2| |#2|) |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1690 ((|#1| $) 49)) (-3457 ((|#1| $) 66)) (-3095 (($ $) 68)) (-3657 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4465)))) (-2867 (($ $ (-576)) 53 (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) 8)) (-4261 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-1331 (($ $ $) 57 (|has| $ (-6 -4465)))) (-3652 ((|#1| $ |#1|) 55 (|has| $ (-6 -4465)))) (-2122 ((|#1| $ |#1|) 59 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4465))) (($ $ "rest" $) 56 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 119 (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4464)))) (-3443 ((|#1| $) 67)) (-3170 (($) 7 T CONST)) (-1764 (($ $) 74) (($ $ (-783)) 72)) (-3841 (($ $) 101 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4464))) (($ |#1| $) 102 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1910 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) 89)) (-2319 (((-112) $) 85)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) 51)) (-1878 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-1991 (($ (-783) |#1|) 111)) (-3215 (((-112) $ (-783)) 9)) (-1605 (((-576) $) 97 (|has| (-576) (-861)))) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1829 (((-576) $) 96 (|has| (-576) (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1884 (((-112) $ (-783)) 10)) (-4186 (((-656 |#1|) $) 46)) (-3211 (((-112) $) 50)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2850 ((|#1| $) 71) (($ $ (-783)) 69)) (-3386 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-2863 (((-656 (-576)) $) 94)) (-1389 (((-112) (-576) $) 93)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1755 ((|#1| $) 77) (($ $ (-783)) 75)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4267 (($ $ |#1|) 98 (|has| $ (-6 -4465)))) (-3501 (((-112) $) 86)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) 92)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1255 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-2027 (((-576) $ $) 45)) (-2335 (($ $ (-1255 (-576))) 116) (($ $ (-576)) 115)) (-2974 (((-112) $) 47)) (-4297 (($ $) 63)) (-1769 (($ $) 60 (|has| $ (-6 -4465)))) (-3083 (((-783) $) 64)) (-2783 (($ $) 65)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-1556 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 109)) (-4022 (($ $ $) 62 (|has| $ (-6 -4465))) (($ $ |#1|) 61 (|has| $ (-6 -4465)))) (-2767 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) 52)) (-4295 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-1170 |#1|) (-141) (-1238)) (T -1170)) -((-3501 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) -(-13 (-1276 |t#1|) (-663 |t#1|) (-10 -8 (-15 -3501 ((-112) $)) (-15 -2319 ((-112) $)))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T) ((-1276 |#1|) . T)) -((-1957 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1978 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3657 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#2| $ |#1| |#2|) NIL)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2051 (((-3 |#2| "failed") |#1| $) NIL)) (-3170 (($) NIL T CONST)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-3872 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) NIL)) (-2825 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#2| $ |#1|) NIL)) (-3722 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 ((|#1| $) NIL (|has| |#1| (-861)))) (-2911 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1829 ((|#1| $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-2353 (((-656 |#1|) $) NIL)) (-4128 (((-112) |#1| $) NIL)) (-3743 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-3695 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-2863 (((-656 |#1|) $) NIL)) (-1389 (((-112) |#1| $) NIL)) (-3116 (((-1141) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-1755 ((|#2| $) NIL (|has| |#1| (-861)))) (-4220 (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL)) (-4267 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2885 (((-656 |#2|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3091 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-4113 (((-876) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2950 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1171 |#1| |#2| |#3|) (-1214 |#1| |#2|) (-1121) (-1121) |#2|) (T -1171)) -NIL -(-1214 |#1| |#2|) -((-1957 (((-112) $ $) NIL)) (-3068 (((-703 (-1156)) $) 27)) (-3326 (((-1156) $) 15)) (-3571 (((-1156) $) 17)) (-2447 (((-1179) $) NIL)) (-2476 (((-518) $) 13)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 37) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1172) (-13 (-1104) (-10 -8 (-15 -2476 ((-518) $)) (-15 -3571 ((-1156) $)) (-15 -3068 ((-703 (-1156)) $)) (-15 -3326 ((-1156) $))))) (T -1172)) -((-2476 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1172)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-703 (-1156))) (-5 *1 (-1172)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172))))) -(-13 (-1104) (-10 -8 (-15 -2476 ((-518) $)) (-15 -3571 ((-1156) $)) (-15 -3068 ((-703 (-1156)) $)) (-15 -3326 ((-1156) $)))) -((-1957 (((-112) $ $) 7)) (-3552 (((-3 $ "failed") $) 14)) (-2447 (((-1179) $) 10)) (-3650 (($) 15 T CONST)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-3939 (((-112) $ $) 8))) -(((-1173) (-141)) (T -1173)) -((-3650 (*1 *1) (-4 *1 (-1173))) (-3552 (*1 *1 *1) (|partial| -4 *1 (-1173)))) -(-13 (-1121) (-10 -8 (-15 -3650 ($) -2666) (-15 -3552 ((-3 $ "failed") $)))) -(((-102) . T) ((-625 (-876)) . T) ((-1121) . T) ((-1238) . T)) -((-1479 (((-1178 |#1|) (-1178 |#1|)) 17)) (-1821 (((-1178 |#1|) (-1178 |#1|)) 13)) (-1382 (((-1178 |#1|) (-1178 |#1|) (-576) (-576)) 20)) (-3411 (((-1178 |#1|) (-1178 |#1|)) 15))) -(((-1174 |#1|) (-10 -7 (-15 -1821 ((-1178 |#1|) (-1178 |#1|))) (-15 -3411 ((-1178 |#1|) (-1178 |#1|))) (-15 -1479 ((-1178 |#1|) (-1178 |#1|))) (-15 -1382 ((-1178 |#1|) (-1178 |#1|) (-576) (-576)))) (-13 (-568) (-148))) (T -1174)) -((-1382 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1174 *4)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1174 *3)))) (-3411 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1174 *3)))) (-1821 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1174 *3))))) -(-10 -7 (-15 -1821 ((-1178 |#1|) (-1178 |#1|))) (-15 -3411 ((-1178 |#1|) (-1178 |#1|))) (-15 -1479 ((-1178 |#1|) (-1178 |#1|))) (-15 -1382 ((-1178 |#1|) (-1178 |#1|) (-576) (-576)))) -((-2767 (((-1178 |#1|) (-1178 (-1178 |#1|))) 15))) -(((-1175 |#1|) (-10 -7 (-15 -2767 ((-1178 |#1|) (-1178 (-1178 |#1|))))) (-1238)) (T -1175)) -((-2767 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1175 *4)) (-4 *4 (-1238))))) -(-10 -7 (-15 -2767 ((-1178 |#1|) (-1178 (-1178 |#1|))))) -((-4324 (((-1178 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)) 25)) (-2721 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)) 26)) (-2423 (((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|)) 16))) -(((-1176 |#1| |#2|) (-10 -7 (-15 -2423 ((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|))) (-15 -4324 ((-1178 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|))) (-15 -2721 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)))) (-1238) (-1238)) (T -1176)) -((-2721 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-1176 *5 *2)))) (-4324 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1178 *6)) (-4 *6 (-1238)) (-4 *3 (-1238)) (-5 *2 (-1178 *3)) (-5 *1 (-1176 *6 *3)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1178 *6)) (-5 *1 (-1176 *5 *6))))) -(-10 -7 (-15 -2423 ((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|))) (-15 -4324 ((-1178 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|))) (-15 -2721 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1178 |#1|)))) -((-2423 (((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-1178 |#2|)) 21))) -(((-1177 |#1| |#2| |#3|) (-10 -7 (-15 -2423 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-1178 |#2|)))) (-1238) (-1238) (-1238)) (T -1177)) -((-2423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1178 *6)) (-5 *5 (-1178 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) (-5 *1 (-1177 *6 *7 *8))))) -(-10 -7 (-15 -2423 ((-1178 |#3|) (-1 |#3| |#1| |#2|) (-1178 |#1|) (-1178 |#2|)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1690 ((|#1| $) NIL)) (-3457 ((|#1| $) NIL)) (-3095 (($ $) 67)) (-3657 (((-1293) $ (-576) (-576)) 99 (|has| $ (-6 -4465)))) (-2867 (($ $ (-576)) 128 (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) NIL)) (-3834 (((-876) $) 56 (|has| |#1| (-1121)))) (-4167 (((-112)) 55 (|has| |#1| (-1121)))) (-4261 ((|#1| $ |#1|) NIL (|has| $ (-6 -4465)))) (-1331 (($ $ $) 115 (|has| $ (-6 -4465))) (($ $ (-576) $) 141)) (-3652 ((|#1| $ |#1|) 125 (|has| $ (-6 -4465)))) (-2122 ((|#1| $ |#1|) 120 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4465))) (($ $ "rest" $) 124 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 112 (|has| $ (-6 -4465))) ((|#1| $ (-576) |#1|) 77 (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) NIL (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) 80)) (-3443 ((|#1| $) NIL)) (-3170 (($) NIL T CONST)) (-1324 (($ $) 14)) (-1764 (($ $) 40) (($ $ (-783)) 111)) (-3740 (((-112) (-656 |#1|) $) 134 (|has| |#1| (-1121)))) (-1484 (($ (-656 |#1|)) 130)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) 79)) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1910 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) NIL)) (-2319 (((-112) $) NIL)) (-3722 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3401 (((-1293) (-576) $) 140 (|has| |#1| (-1121)))) (-3495 (((-783) $) 137)) (-3065 (((-656 $) $) NIL)) (-1878 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-1991 (($ (-783) |#1|) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-1884 (((-112) $ (-783)) NIL)) (-4186 (((-656 |#1|) $) NIL)) (-3211 (((-112) $) NIL)) (-1745 (($ $) 113)) (-3969 (((-112) $) 13)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2850 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-3386 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) 96)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-3529 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-1340 ((|#1| $) 10)) (-1755 ((|#1| $) 39) (($ $ (-783)) 65)) (-3636 (((-2 (|:| |cycle?| (-112)) (|:| -1995 (-783)) (|:| |period| (-783))) (-783) $) 34)) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3579 (($ (-1 (-112) |#1|) $) 145)) (-3590 (($ (-1 (-112) |#1|) $) 146)) (-4267 (($ $ |#1|) 90 (|has| $ (-6 -4465)))) (-2419 (($ $ (-576)) 45)) (-3501 (((-112) $) 94)) (-3201 (((-112) $) 12)) (-3206 (((-112) $) 136)) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 30)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) 20)) (-3307 (($) 60)) (-4369 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1255 (-576))) NIL) ((|#1| $ (-576)) 75) ((|#1| $ (-576) |#1|) NIL)) (-2027 (((-576) $ $) 64)) (-2335 (($ $ (-1255 (-576))) NIL) (($ $ (-576)) NIL)) (-2136 (($ (-1 $)) 63)) (-2974 (((-112) $) 91)) (-4297 (($ $) 92)) (-1769 (($ $) 116 (|has| $ (-6 -4465)))) (-3083 (((-783) $) NIL)) (-2783 (($ $) NIL)) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) 59)) (-1556 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 73)) (-4058 (($ |#1| $) 114)) (-4022 (($ $ $) 118 (|has| $ (-6 -4465))) (($ $ |#1|) 119 (|has| $ (-6 -4465)))) (-2767 (($ $ $) 101) (($ |#1| $) 61) (($ (-656 $)) 106) (($ $ |#1|) 100)) (-3193 (($ $) 66)) (-4113 (($ (-656 |#1|)) 129) (((-876) $) 57 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) NIL)) (-4295 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 132 (|has| |#1| (-102)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1178 |#1|) (-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4465) (-15 -1484 ($ (-656 |#1|))) (IF (|has| |#1| (-1121)) (-15 -3740 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -3636 ((-2 (|:| |cycle?| (-112)) (|:| -1995 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -2136 ($ (-1 $))) (-15 -4058 ($ |#1| $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -3401 ((-1293) (-576) $)) (-15 -3834 ((-876) $)) (-15 -4167 ((-112)))) |%noBranch|) (-15 -1331 ($ $ (-576) $)) (-15 -3529 ($ (-1 |#1|))) (-15 -3529 ($ (-1 |#1| |#1|) |#1|)) (-15 -3579 ($ (-1 (-112) |#1|) $)) (-15 -3590 ($ (-1 (-112) |#1|) $)))) (-1238)) (T -1178)) -((-1484 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-3740 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-4 *4 (-1238)) (-5 *2 (-112)) (-5 *1 (-1178 *4)))) (-3636 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1995 (-783)) (|:| |period| (-783)))) (-5 *1 (-1178 *4)) (-4 *4 (-1238)) (-5 *3 (-783)))) (-2136 (*1 *1 *2) (-12 (-5 *2 (-1 (-1178 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1238)))) (-4058 (*1 *1 *2 *1) (-12 (-5 *1 (-1178 *2)) (-4 *2 (-1238)))) (-3401 (*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1178 *4)) (-4 *4 (-1121)) (-4 *4 (-1238)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) (-4 *3 (-1238)))) (-4167 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) (-4 *3 (-1238)))) (-1331 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1178 *3)) (-4 *3 (-1238)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-3529 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-3579 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) (-3590 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) -(-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4465) (-15 -1484 ($ (-656 |#1|))) (IF (|has| |#1| (-1121)) (-15 -3740 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -3636 ((-2 (|:| |cycle?| (-112)) (|:| -1995 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -2136 ($ (-1 $))) (-15 -4058 ($ |#1| $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -3401 ((-1293) (-576) $)) (-15 -3834 ((-876) $)) (-15 -4167 ((-112)))) |%noBranch|) (-15 -1331 ($ $ (-576) $)) (-15 -3529 ($ (-1 |#1|))) (-15 -3529 ($ (-1 |#1| |#1|) |#1|)) (-15 -3579 ($ (-1 (-112) |#1|) $)) (-15 -3590 ($ (-1 (-112) |#1|) $)))) -((-1957 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2635 (($ $) NIL)) (-3532 (($ $) NIL)) (-2592 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2259 (((-112) $ $) NIL)) (-2235 (((-112) $ $ (-576)) NIL)) (-1533 (($ (-576)) 8) (($ (-227)) 10)) (-2887 (((-656 $) $ (-145)) NIL) (((-656 $) $ (-142)) NIL)) (-2919 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-3519 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| (-145) (-861))))) (-2380 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4465))) (((-145) $ (-1255 (-576)) (-145)) NIL (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-4435 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-3124 (($ $ (-1255 (-576)) $) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-2825 (($ (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4464))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4464)))) (-1910 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4465)))) (-3721 (((-145) $ (-576)) NIL)) (-2281 (((-112) $ $) NIL)) (-3539 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1121))) (((-576) (-145) $ (-576)) NIL (|has| (-145) (-1121))) (((-576) $ $ (-576)) NIL) (((-576) (-142) $ (-576)) NIL)) (-3722 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-1991 (($ (-783) (-145)) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| (-145) (-861)))) (-2748 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-2911 (((-656 (-145)) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-1829 (((-576) $) NIL (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| (-145) (-861)))) (-4327 (((-112) $ $ (-145)) NIL)) (-1465 (((-783) $ $ (-145)) NIL)) (-1898 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3809 (($ $) NIL)) (-4181 (($ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-1325 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2447 (((-1179) $) NIL (|has| (-145) (-1121)))) (-3386 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| (-145) (-1121)))) (-1755 (((-145) $) NIL (|has| (-576) (-861)))) (-4220 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4267 (($ $ (-145)) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-2885 (((-656 (-145)) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1255 (-576))) NIL) (($ $ $) NIL)) (-2335 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-3127 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-145) (-1121))))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-4125 (($ (-656 (-145))) NIL)) (-2767 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4113 (($ (-145)) NIL) (((-876) $) NIL (|has| (-145) (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2543 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4464)))) (-2172 (((-1179) $) 21) (((-1179) $ (-112)) 23) (((-1293) (-834) $) 24) (((-1293) (-834) $ (-112)) 25)) (-3995 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3975 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3939 (((-112) $ $) NIL (|has| (-145) (-102)))) (-3984 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3963 (((-112) $ $) NIL (|has| (-145) (-861)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1179) (-13 (-1165) (-840) (-10 -8 (-15 -1533 ($ (-576))) (-15 -1533 ($ (-227)))))) (T -1179)) -((-1533 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1179)))) (-1533 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1179))))) -(-13 (-1165) (-840) (-10 -8 (-15 -1533 ($ (-576))) (-15 -1533 ($ (-227))))) -((-1957 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-102)) (|has| |#1| (-102))))) (-1978 (($) NIL) (($ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) NIL)) (-3657 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#1| $ (-1179) |#1|) NIL)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-2051 (((-3 |#1| "failed") (-1179) $) NIL)) (-3170 (($) NIL T CONST)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121))))) (-3872 (($ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#1| "failed") (-1179) $) NIL)) (-2825 (($ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)))) (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-1179) |#1|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-1179)) NIL)) (-3722 (((-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-1179) $) NIL (|has| (-1179) (-861)))) (-2911 (((-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-1179) $) NIL (|has| (-1179) (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (-3795 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)) (|has| |#1| (-1121))))) (-2353 (((-656 (-1179)) $) NIL)) (-4128 (((-112) (-1179) $) NIL)) (-3743 (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL)) (-3695 (($ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL)) (-2863 (((-656 (-1179)) $) NIL)) (-1389 (((-112) (-1179) $) NIL)) (-3116 (((-1141) $) NIL (-3795 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)) (|has| |#1| (-1121))))) (-1755 ((|#1| $) NIL (|has| (-1179) (-861)))) (-4220 (((-3 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) "failed") (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL)) (-4267 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))))) NIL (-12 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) NIL (-12 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)))) (($ $ (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) NIL (-12 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)))) (($ $ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) NIL (-12 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-319 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ (-1179)) NIL) ((|#1| $ (-1179) |#1|) NIL)) (-3091 (($) NIL) (($ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) NIL)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-1121)))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) NIL)) (-4113 (((-876) $) NIL (-3795 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-625 (-876))) (|has| |#1| (-625 (-876)))))) (-2950 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-102)) (|has| |#1| (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)))) NIL)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (-102)) (|has| |#1| (-102))))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1180 |#1|) (-13 (-1214 (-1179) |#1|) (-10 -7 (-6 -4464))) (-1121)) (T -1180)) -NIL -(-13 (-1214 (-1179) |#1|) (-10 -7 (-6 -4464))) -((-3442 (((-1178 |#1|) (-1178 |#1|)) 83)) (-1851 (((-3 (-1178 |#1|) "failed") (-1178 |#1|)) 39)) (-1629 (((-1178 |#1|) (-419 (-576)) (-1178 |#1|)) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3738 (((-1178 |#1|) |#1| (-1178 |#1|)) 139 (|has| |#1| (-374)))) (-2937 (((-1178 |#1|) (-1178 |#1|)) 97)) (-2493 (((-1178 (-576)) (-576)) 63)) (-2468 (((-1178 |#1|) (-1178 (-1178 |#1|))) 116 (|has| |#1| (-38 (-419 (-576)))))) (-4315 (((-1178 |#1|) (-576) (-576) (-1178 |#1|)) 102)) (-1619 (((-1178 |#1|) |#1| (-576)) 51)) (-1712 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 66)) (-3135 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 136 (|has| |#1| (-374)))) (-3625 (((-1178 |#1|) |#1| (-1 (-1178 |#1|))) 115 (|has| |#1| (-38 (-419 (-576)))))) (-2190 (((-1178 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1178 |#1|))) 137 (|has| |#1| (-374)))) (-3266 (((-1178 |#1|) (-1178 |#1|)) 96)) (-1423 (((-1178 |#1|) (-1178 |#1|)) 82)) (-1798 (((-1178 |#1|) (-576) (-576) (-1178 |#1|)) 103)) (-4412 (((-1178 |#1|) |#1| (-1178 |#1|)) 112 (|has| |#1| (-38 (-419 (-576)))))) (-3475 (((-1178 (-576)) (-576)) 62)) (-4406 (((-1178 |#1|) |#1|) 65)) (-2167 (((-1178 |#1|) (-1178 |#1|) (-576) (-576)) 99)) (-3641 (((-1178 |#1|) (-1 |#1| (-576)) (-1178 |#1|)) 72)) (-1946 (((-3 (-1178 |#1|) "failed") (-1178 |#1|) (-1178 |#1|)) 37)) (-4400 (((-1178 |#1|) (-1178 |#1|)) 98)) (-2145 (((-1178 |#1|) (-1178 |#1|) |#1|) 77)) (-3521 (((-1178 |#1|) (-1178 |#1|)) 68)) (-3958 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 78)) (-4113 (((-1178 |#1|) |#1|) 73)) (-3728 (((-1178 |#1|) (-1178 (-1178 |#1|))) 88)) (-4047 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 38)) (-4037 (((-1178 |#1|) (-1178 |#1|)) 21) (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 23)) (-4026 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 17)) (* (((-1178 |#1|) (-1178 |#1|) |#1|) 29) (((-1178 |#1|) |#1| (-1178 |#1|)) 26) (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 27))) -(((-1181 |#1|) (-10 -7 (-15 -4026 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -4037 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -4037 ((-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -1946 ((-3 (-1178 |#1|) "failed") (-1178 |#1|) (-1178 |#1|))) (-15 -4047 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1851 ((-3 (-1178 |#1|) "failed") (-1178 |#1|))) (-15 -1619 ((-1178 |#1|) |#1| (-576))) (-15 -3475 ((-1178 (-576)) (-576))) (-15 -2493 ((-1178 (-576)) (-576))) (-15 -4406 ((-1178 |#1|) |#1|)) (-15 -1712 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3521 ((-1178 |#1|) (-1178 |#1|))) (-15 -3641 ((-1178 |#1|) (-1 |#1| (-576)) (-1178 |#1|))) (-15 -4113 ((-1178 |#1|) |#1|)) (-15 -2145 ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -3958 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1423 ((-1178 |#1|) (-1178 |#1|))) (-15 -3442 ((-1178 |#1|) (-1178 |#1|))) (-15 -3728 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -3266 ((-1178 |#1|) (-1178 |#1|))) (-15 -2937 ((-1178 |#1|) (-1178 |#1|))) (-15 -4400 ((-1178 |#1|) (-1178 |#1|))) (-15 -2167 ((-1178 |#1|) (-1178 |#1|) (-576) (-576))) (-15 -4315 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (-15 -1798 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4412 ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 -3625 ((-1178 |#1|) |#1| (-1 (-1178 |#1|)))) (-15 -2468 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -1629 ((-1178 |#1|) (-419 (-576)) (-1178 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3135 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2190 ((-1178 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1178 |#1|)))) (-15 -3738 ((-1178 |#1|) |#1| (-1178 |#1|)))) |%noBranch|)) (-1070)) (T -1181)) -((-3738 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2190 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1178 *4))) (-4 *4 (-374)) (-4 *4 (-1070)) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)))) (-3135 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-1629 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1070)) (-5 *3 (-419 (-576))) (-5 *1 (-1181 *4)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1178 *3))) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)))) (-4412 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-1798 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-4315 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-2167 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-4400 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) (-4 *4 (-1070)))) (-3442 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-1423 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-3958 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-2145 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-4113 (*1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) (-3641 (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1070)) (-5 *1 (-1181 *4)))) (-3521 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-1712 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-4406 (*1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) (-2493 (*1 *2 *3) (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) (-5 *3 (-576)))) (-3475 (*1 *2 *3) (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) (-5 *3 (-576)))) (-1619 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) (-1851 (*1 *2 *2) (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-4047 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-1946 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-4037 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-4037 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) (-4026 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) -(-10 -7 (-15 -4026 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -4037 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -4037 ((-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 * ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 * ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -1946 ((-3 (-1178 |#1|) "failed") (-1178 |#1|) (-1178 |#1|))) (-15 -4047 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1851 ((-3 (-1178 |#1|) "failed") (-1178 |#1|))) (-15 -1619 ((-1178 |#1|) |#1| (-576))) (-15 -3475 ((-1178 (-576)) (-576))) (-15 -2493 ((-1178 (-576)) (-576))) (-15 -4406 ((-1178 |#1|) |#1|)) (-15 -1712 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3521 ((-1178 |#1|) (-1178 |#1|))) (-15 -3641 ((-1178 |#1|) (-1 |#1| (-576)) (-1178 |#1|))) (-15 -4113 ((-1178 |#1|) |#1|)) (-15 -2145 ((-1178 |#1|) (-1178 |#1|) |#1|)) (-15 -3958 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1423 ((-1178 |#1|) (-1178 |#1|))) (-15 -3442 ((-1178 |#1|) (-1178 |#1|))) (-15 -3728 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -3266 ((-1178 |#1|) (-1178 |#1|))) (-15 -2937 ((-1178 |#1|) (-1178 |#1|))) (-15 -4400 ((-1178 |#1|) (-1178 |#1|))) (-15 -2167 ((-1178 |#1|) (-1178 |#1|) (-576) (-576))) (-15 -4315 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (-15 -1798 ((-1178 |#1|) (-576) (-576) (-1178 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4412 ((-1178 |#1|) |#1| (-1178 |#1|))) (-15 -3625 ((-1178 |#1|) |#1| (-1 (-1178 |#1|)))) (-15 -2468 ((-1178 |#1|) (-1178 (-1178 |#1|)))) (-15 -1629 ((-1178 |#1|) (-419 (-576)) (-1178 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3135 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -2190 ((-1178 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1178 |#1|)))) (-15 -3738 ((-1178 |#1|) |#1| (-1178 |#1|)))) |%noBranch|)) -((-3586 (((-1178 |#1|) (-1178 |#1|)) 60)) (-3435 (((-1178 |#1|) (-1178 |#1|)) 42)) (-3562 (((-1178 |#1|) (-1178 |#1|)) 56)) (-3412 (((-1178 |#1|) (-1178 |#1|)) 38)) (-3612 (((-1178 |#1|) (-1178 |#1|)) 63)) (-3461 (((-1178 |#1|) (-1178 |#1|)) 45)) (-2608 (((-1178 |#1|) (-1178 |#1|)) 34)) (-2156 (((-1178 |#1|) (-1178 |#1|)) 29)) (-3623 (((-1178 |#1|) (-1178 |#1|)) 64)) (-3474 (((-1178 |#1|) (-1178 |#1|)) 46)) (-3599 (((-1178 |#1|) (-1178 |#1|)) 61)) (-3448 (((-1178 |#1|) (-1178 |#1|)) 43)) (-3574 (((-1178 |#1|) (-1178 |#1|)) 58)) (-3424 (((-1178 |#1|) (-1178 |#1|)) 40)) (-3653 (((-1178 |#1|) (-1178 |#1|)) 68)) (-3510 (((-1178 |#1|) (-1178 |#1|)) 50)) (-3632 (((-1178 |#1|) (-1178 |#1|)) 66)) (-3487 (((-1178 |#1|) (-1178 |#1|)) 48)) (-3673 (((-1178 |#1|) (-1178 |#1|)) 71)) (-3537 (((-1178 |#1|) (-1178 |#1|)) 53)) (-1972 (((-1178 |#1|) (-1178 |#1|)) 72)) (-3550 (((-1178 |#1|) (-1178 |#1|)) 54)) (-3664 (((-1178 |#1|) (-1178 |#1|)) 70)) (-3523 (((-1178 |#1|) (-1178 |#1|)) 52)) (-3642 (((-1178 |#1|) (-1178 |#1|)) 69)) (-3498 (((-1178 |#1|) (-1178 |#1|)) 51)) (** (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 36))) -(((-1182 |#1|) (-10 -7 (-15 -2156 ((-1178 |#1|) (-1178 |#1|))) (-15 -2608 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3412 ((-1178 |#1|) (-1178 |#1|))) (-15 -3424 ((-1178 |#1|) (-1178 |#1|))) (-15 -3435 ((-1178 |#1|) (-1178 |#1|))) (-15 -3448 ((-1178 |#1|) (-1178 |#1|))) (-15 -3461 ((-1178 |#1|) (-1178 |#1|))) (-15 -3474 ((-1178 |#1|) (-1178 |#1|))) (-15 -3487 ((-1178 |#1|) (-1178 |#1|))) (-15 -3498 ((-1178 |#1|) (-1178 |#1|))) (-15 -3510 ((-1178 |#1|) (-1178 |#1|))) (-15 -3523 ((-1178 |#1|) (-1178 |#1|))) (-15 -3537 ((-1178 |#1|) (-1178 |#1|))) (-15 -3550 ((-1178 |#1|) (-1178 |#1|))) (-15 -3562 ((-1178 |#1|) (-1178 |#1|))) (-15 -3574 ((-1178 |#1|) (-1178 |#1|))) (-15 -3586 ((-1178 |#1|) (-1178 |#1|))) (-15 -3599 ((-1178 |#1|) (-1178 |#1|))) (-15 -3612 ((-1178 |#1|) (-1178 |#1|))) (-15 -3623 ((-1178 |#1|) (-1178 |#1|))) (-15 -3632 ((-1178 |#1|) (-1178 |#1|))) (-15 -3642 ((-1178 |#1|) (-1178 |#1|))) (-15 -3653 ((-1178 |#1|) (-1178 |#1|))) (-15 -3664 ((-1178 |#1|) (-1178 |#1|))) (-15 -3673 ((-1178 |#1|) (-1178 |#1|))) (-15 -1972 ((-1178 |#1|) (-1178 |#1|)))) (-38 (-419 (-576)))) (T -1182)) -((-1972 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3673 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3664 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3653 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3623 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3599 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3586 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3574 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3562 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3550 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3537 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3510 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3461 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3435 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3412 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2608 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2156 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3))))) -(-10 -7 (-15 -2156 ((-1178 |#1|) (-1178 |#1|))) (-15 -2608 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3412 ((-1178 |#1|) (-1178 |#1|))) (-15 -3424 ((-1178 |#1|) (-1178 |#1|))) (-15 -3435 ((-1178 |#1|) (-1178 |#1|))) (-15 -3448 ((-1178 |#1|) (-1178 |#1|))) (-15 -3461 ((-1178 |#1|) (-1178 |#1|))) (-15 -3474 ((-1178 |#1|) (-1178 |#1|))) (-15 -3487 ((-1178 |#1|) (-1178 |#1|))) (-15 -3498 ((-1178 |#1|) (-1178 |#1|))) (-15 -3510 ((-1178 |#1|) (-1178 |#1|))) (-15 -3523 ((-1178 |#1|) (-1178 |#1|))) (-15 -3537 ((-1178 |#1|) (-1178 |#1|))) (-15 -3550 ((-1178 |#1|) (-1178 |#1|))) (-15 -3562 ((-1178 |#1|) (-1178 |#1|))) (-15 -3574 ((-1178 |#1|) (-1178 |#1|))) (-15 -3586 ((-1178 |#1|) (-1178 |#1|))) (-15 -3599 ((-1178 |#1|) (-1178 |#1|))) (-15 -3612 ((-1178 |#1|) (-1178 |#1|))) (-15 -3623 ((-1178 |#1|) (-1178 |#1|))) (-15 -3632 ((-1178 |#1|) (-1178 |#1|))) (-15 -3642 ((-1178 |#1|) (-1178 |#1|))) (-15 -3653 ((-1178 |#1|) (-1178 |#1|))) (-15 -3664 ((-1178 |#1|) (-1178 |#1|))) (-15 -3673 ((-1178 |#1|) (-1178 |#1|))) (-15 -1972 ((-1178 |#1|) (-1178 |#1|)))) -((-3586 (((-1178 |#1|) (-1178 |#1|)) 102)) (-3435 (((-1178 |#1|) (-1178 |#1|)) 61)) (-3737 (((-2 (|:| -3562 (-1178 |#1|)) (|:| -3574 (-1178 |#1|))) (-1178 |#1|)) 98)) (-3562 (((-1178 |#1|) (-1178 |#1|)) 99)) (-1415 (((-2 (|:| -3412 (-1178 |#1|)) (|:| -3424 (-1178 |#1|))) (-1178 |#1|)) 54)) (-3412 (((-1178 |#1|) (-1178 |#1|)) 55)) (-3612 (((-1178 |#1|) (-1178 |#1|)) 104)) (-3461 (((-1178 |#1|) (-1178 |#1|)) 68)) (-2608 (((-1178 |#1|) (-1178 |#1|)) 40)) (-2156 (((-1178 |#1|) (-1178 |#1|)) 37)) (-3623 (((-1178 |#1|) (-1178 |#1|)) 105)) (-3474 (((-1178 |#1|) (-1178 |#1|)) 69)) (-3599 (((-1178 |#1|) (-1178 |#1|)) 103)) (-3448 (((-1178 |#1|) (-1178 |#1|)) 64)) (-3574 (((-1178 |#1|) (-1178 |#1|)) 100)) (-3424 (((-1178 |#1|) (-1178 |#1|)) 56)) (-3653 (((-1178 |#1|) (-1178 |#1|)) 113)) (-3510 (((-1178 |#1|) (-1178 |#1|)) 88)) (-3632 (((-1178 |#1|) (-1178 |#1|)) 107)) (-3487 (((-1178 |#1|) (-1178 |#1|)) 84)) (-3673 (((-1178 |#1|) (-1178 |#1|)) 117)) (-3537 (((-1178 |#1|) (-1178 |#1|)) 92)) (-1972 (((-1178 |#1|) (-1178 |#1|)) 119)) (-3550 (((-1178 |#1|) (-1178 |#1|)) 94)) (-3664 (((-1178 |#1|) (-1178 |#1|)) 115)) (-3523 (((-1178 |#1|) (-1178 |#1|)) 90)) (-3642 (((-1178 |#1|) (-1178 |#1|)) 109)) (-3498 (((-1178 |#1|) (-1178 |#1|)) 86)) (** (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 41))) -(((-1183 |#1|) (-10 -7 (-15 -2156 ((-1178 |#1|) (-1178 |#1|))) (-15 -2608 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1415 ((-2 (|:| -3412 (-1178 |#1|)) (|:| -3424 (-1178 |#1|))) (-1178 |#1|))) (-15 -3412 ((-1178 |#1|) (-1178 |#1|))) (-15 -3424 ((-1178 |#1|) (-1178 |#1|))) (-15 -3435 ((-1178 |#1|) (-1178 |#1|))) (-15 -3448 ((-1178 |#1|) (-1178 |#1|))) (-15 -3461 ((-1178 |#1|) (-1178 |#1|))) (-15 -3474 ((-1178 |#1|) (-1178 |#1|))) (-15 -3487 ((-1178 |#1|) (-1178 |#1|))) (-15 -3498 ((-1178 |#1|) (-1178 |#1|))) (-15 -3510 ((-1178 |#1|) (-1178 |#1|))) (-15 -3523 ((-1178 |#1|) (-1178 |#1|))) (-15 -3537 ((-1178 |#1|) (-1178 |#1|))) (-15 -3550 ((-1178 |#1|) (-1178 |#1|))) (-15 -3737 ((-2 (|:| -3562 (-1178 |#1|)) (|:| -3574 (-1178 |#1|))) (-1178 |#1|))) (-15 -3562 ((-1178 |#1|) (-1178 |#1|))) (-15 -3574 ((-1178 |#1|) (-1178 |#1|))) (-15 -3586 ((-1178 |#1|) (-1178 |#1|))) (-15 -3599 ((-1178 |#1|) (-1178 |#1|))) (-15 -3612 ((-1178 |#1|) (-1178 |#1|))) (-15 -3623 ((-1178 |#1|) (-1178 |#1|))) (-15 -3632 ((-1178 |#1|) (-1178 |#1|))) (-15 -3642 ((-1178 |#1|) (-1178 |#1|))) (-15 -3653 ((-1178 |#1|) (-1178 |#1|))) (-15 -3664 ((-1178 |#1|) (-1178 |#1|))) (-15 -3673 ((-1178 |#1|) (-1178 |#1|))) (-15 -1972 ((-1178 |#1|) (-1178 |#1|)))) (-38 (-419 (-576)))) (T -1183)) -((-1972 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3673 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3664 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3653 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3623 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3599 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3586 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3574 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3562 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3562 (-1178 *4)) (|:| -3574 (-1178 *4)))) (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4)))) (-3550 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3537 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3510 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3461 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3435 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3412 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-1415 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3412 (-1178 *4)) (|:| -3424 (-1178 *4)))) (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2608 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2156 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(-10 -7 (-15 -2156 ((-1178 |#1|) (-1178 |#1|))) (-15 -2608 ((-1178 |#1|) (-1178 |#1|))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -1415 ((-2 (|:| -3412 (-1178 |#1|)) (|:| -3424 (-1178 |#1|))) (-1178 |#1|))) (-15 -3412 ((-1178 |#1|) (-1178 |#1|))) (-15 -3424 ((-1178 |#1|) (-1178 |#1|))) (-15 -3435 ((-1178 |#1|) (-1178 |#1|))) (-15 -3448 ((-1178 |#1|) (-1178 |#1|))) (-15 -3461 ((-1178 |#1|) (-1178 |#1|))) (-15 -3474 ((-1178 |#1|) (-1178 |#1|))) (-15 -3487 ((-1178 |#1|) (-1178 |#1|))) (-15 -3498 ((-1178 |#1|) (-1178 |#1|))) (-15 -3510 ((-1178 |#1|) (-1178 |#1|))) (-15 -3523 ((-1178 |#1|) (-1178 |#1|))) (-15 -3537 ((-1178 |#1|) (-1178 |#1|))) (-15 -3550 ((-1178 |#1|) (-1178 |#1|))) (-15 -3737 ((-2 (|:| -3562 (-1178 |#1|)) (|:| -3574 (-1178 |#1|))) (-1178 |#1|))) (-15 -3562 ((-1178 |#1|) (-1178 |#1|))) (-15 -3574 ((-1178 |#1|) (-1178 |#1|))) (-15 -3586 ((-1178 |#1|) (-1178 |#1|))) (-15 -3599 ((-1178 |#1|) (-1178 |#1|))) (-15 -3612 ((-1178 |#1|) (-1178 |#1|))) (-15 -3623 ((-1178 |#1|) (-1178 |#1|))) (-15 -3632 ((-1178 |#1|) (-1178 |#1|))) (-15 -3642 ((-1178 |#1|) (-1178 |#1|))) (-15 -3653 ((-1178 |#1|) (-1178 |#1|))) (-15 -3664 ((-1178 |#1|) (-1178 |#1|))) (-15 -3673 ((-1178 |#1|) (-1178 |#1|))) (-15 -1972 ((-1178 |#1|) (-1178 |#1|)))) -((-3456 (((-977 |#2|) |#2| |#2|) 50)) (-1788 ((|#2| |#2| |#1|) 19 (|has| |#1| (-317))))) -(((-1184 |#1| |#2|) (-10 -7 (-15 -3456 ((-977 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -1788 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1264 |#1|)) (T -1184)) -((-1788 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1184 *3 *2)) (-4 *2 (-1264 *3)))) (-3456 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-977 *3)) (-5 *1 (-1184 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -3456 ((-977 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -1788 (|#2| |#2| |#1|)) |%noBranch|)) -((-1957 (((-112) $ $) NIL)) (-3183 (($ $ (-656 (-783))) 79)) (-3702 (($) 33)) (-3079 (($ $) 51)) (-2096 (((-656 $) $) 60)) (-2684 (((-112) $) 19)) (-3606 (((-656 (-962 |#2|)) $) 86)) (-1738 (($ $) 80)) (-2034 (((-783) $) 47)) (-1991 (($) 32)) (-1427 (($ $ (-656 (-783)) (-962 |#2|)) 72) (($ $ (-656 (-783)) (-783)) 73) (($ $ (-783) (-962 |#2|)) 75)) (-2748 (($ $ $) 57) (($ (-656 $)) 59)) (-2106 (((-783) $) 87)) (-3211 (((-112) $) 15)) (-2447 (((-1179) $) NIL)) (-1710 (((-112) $) 22)) (-3116 (((-1141) $) NIL)) (-2590 (((-173) $) 85)) (-4271 (((-962 |#2|) $) 81)) (-4106 (((-783) $) 82)) (-1572 (((-112) $) 84)) (-1870 (($ $ (-656 (-783)) (-173)) 78)) (-3852 (($ $) 52)) (-4113 (((-876) $) 99)) (-3445 (($ $ (-656 (-783)) (-112)) 77)) (-1549 (((-656 $) $) 11)) (-3621 (($ $ (-783)) 46)) (-1511 (($ $) 43)) (-2950 (((-112) $ $) NIL)) (-3446 (($ $ $ (-962 |#2|) (-783)) 68)) (-1590 (($ $ (-962 |#2|)) 67)) (-2947 (($ $ (-656 (-783)) (-962 |#2|)) 66) (($ $ (-656 (-783)) (-783)) 70) (((-783) $ (-962 |#2|)) 71)) (-3939 (((-112) $ $) 92))) -(((-1185 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3211 ((-112) $)) (-15 -2684 ((-112) $)) (-15 -1710 ((-112) $)) (-15 -1991 ($)) (-15 -3702 ($)) (-15 -1511 ($ $)) (-15 -3621 ($ $ (-783))) (-15 -1549 ((-656 $) $)) (-15 -2034 ((-783) $)) (-15 -3079 ($ $)) (-15 -3852 ($ $)) (-15 -2748 ($ $ $)) (-15 -2748 ($ (-656 $))) (-15 -2096 ((-656 $) $)) (-15 -2947 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -1590 ($ $ (-962 |#2|))) (-15 -3446 ($ $ $ (-962 |#2|) (-783))) (-15 -1427 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -2947 ($ $ (-656 (-783)) (-783))) (-15 -1427 ($ $ (-656 (-783)) (-783))) (-15 -2947 ((-783) $ (-962 |#2|))) (-15 -1427 ($ $ (-783) (-962 |#2|))) (-15 -3445 ($ $ (-656 (-783)) (-112))) (-15 -1870 ($ $ (-656 (-783)) (-173))) (-15 -3183 ($ $ (-656 (-783)))) (-15 -4271 ((-962 |#2|) $)) (-15 -4106 ((-783) $)) (-15 -1572 ((-112) $)) (-15 -2590 ((-173) $)) (-15 -2106 ((-783) $)) (-15 -1738 ($ $)) (-15 -3606 ((-656 (-962 |#2|)) $)))) (-940) (-1070)) (T -1185)) -((-3211 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-1991 (*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-3702 (*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-1511 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-3621 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-3079 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-3852 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-2748 (*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-2748 (*1 *1 *2) (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2947 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-1590 (*1 *1 *1 *2) (-12 (-5 *2 (-962 *4)) (-4 *4 (-1070)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)))) (-3446 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-962 *5)) (-5 *3 (-783)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-1427 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-2947 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-1427 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-2947 (*1 *2 *1 *3) (-12 (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *2 (-783)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-1427 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) (-3445 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-1870 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)) (-4 *5 (-1070)))) (-3183 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-962 *4)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070)))) (-1738 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-656 (-962 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) (-4 *4 (-1070))))) -(-13 (-1121) (-10 -8 (-15 -3211 ((-112) $)) (-15 -2684 ((-112) $)) (-15 -1710 ((-112) $)) (-15 -1991 ($)) (-15 -3702 ($)) (-15 -1511 ($ $)) (-15 -3621 ($ $ (-783))) (-15 -1549 ((-656 $) $)) (-15 -2034 ((-783) $)) (-15 -3079 ($ $)) (-15 -3852 ($ $)) (-15 -2748 ($ $ $)) (-15 -2748 ($ (-656 $))) (-15 -2096 ((-656 $) $)) (-15 -2947 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -1590 ($ $ (-962 |#2|))) (-15 -3446 ($ $ $ (-962 |#2|) (-783))) (-15 -1427 ($ $ (-656 (-783)) (-962 |#2|))) (-15 -2947 ($ $ (-656 (-783)) (-783))) (-15 -1427 ($ $ (-656 (-783)) (-783))) (-15 -2947 ((-783) $ (-962 |#2|))) (-15 -1427 ($ $ (-783) (-962 |#2|))) (-15 -3445 ($ $ (-656 (-783)) (-112))) (-15 -1870 ($ $ (-656 (-783)) (-173))) (-15 -3183 ($ $ (-656 (-783)))) (-15 -4271 ((-962 |#2|) $)) (-15 -4106 ((-783) $)) (-15 -1572 ((-112) $)) (-15 -2590 ((-173) $)) (-15 -2106 ((-783) $)) (-15 -1738 ($ $)) (-15 -3606 ((-656 (-962 |#2|)) $)))) -((-1957 (((-112) $ $) NIL)) (-1784 ((|#2| $) 11)) (-1776 ((|#1| $) 10)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4125 (($ |#1| |#2|) 9)) (-4113 (((-876) $) 16)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1186 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -4125 ($ |#1| |#2|)) (-15 -1776 (|#1| $)) (-15 -1784 (|#2| $)))) (-1121) (-1121)) (T -1186)) -((-4125 (*1 *1 *2 *3) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-1776 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-1121)))) (-1784 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1121))))) -(-13 (-1121) (-10 -8 (-15 -4125 ($ |#1| |#2|)) (-15 -1776 (|#1| $)) (-15 -1784 (|#2| $)))) -((-1957 (((-112) $ $) NIL)) (-2371 (((-1156) $) 9)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1187) (-13 (-1104) (-10 -8 (-15 -2371 ((-1156) $))))) (T -1187)) -((-2371 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1187))))) -(-13 (-1104) (-10 -8 (-15 -2371 ((-1156) $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2628 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1585 (((-656 (-1103)) $) NIL)) (-1654 (((-1197) $) 11)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2390 (($ $) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3302 (((-112) $) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4087 (($ $ (-576)) NIL) (($ $ (-576) (-576)) 75)) (-4073 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-1437 (((-1195 |#1| |#2| |#3|) $) 42)) (-4002 (((-3 (-1195 |#1| |#2| |#3|) "failed") $) 32)) (-1630 (((-1195 |#1| |#2| |#3|) $) 33)) (-3586 (($ $) 116 (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-2658 (($ $) NIL (|has| |#1| (-374)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3562 (($ $) 112 (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-1527 (((-576) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2861 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-3612 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-1195 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1197) "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-2317 (((-1195 |#1| |#2| |#3|) $) 140) (((-1197) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-3516 (($ $) 37) (($ (-576) $) 38)) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-3310 (($ $) NIL)) (-1930 (((-701 (-1195 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 (-1195 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1195 |#1| |#2| |#3|)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-1851 (((-3 $ "failed") $) 54)) (-1647 (((-419 (-971 |#1|)) $ (-576)) 74 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 76 (|has| |#1| (-568)))) (-4370 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2171 (((-112) $) NIL (|has| |#1| (-374)))) (-2279 (((-112) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2654 (((-112) $) 28)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-901 (-576))) (|has| |#1| (-374))))) (-3359 (((-576) $) NIL) (((-576) $ (-576)) 26)) (-2486 (((-112) $) NIL)) (-2252 (($ $) NIL (|has| |#1| (-374)))) (-2687 (((-1195 |#1| |#2| |#3|) $) 44 (|has| |#1| (-374)))) (-4005 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3552 (((-3 $ "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))))) (-3323 (((-112) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4328 (($ $ (-940)) NIL)) (-3260 (($ (-1 |#1| (-576)) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-576)) 19) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-2907 (($ $ $) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3777 (($ $ $) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-2608 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-2160 (((-701 (-1195 |#1| |#2| |#3|)) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 (-1195 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1195 |#1| |#2| |#3|)))) (-1288 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1639 (($ (-576) (-1195 |#1| |#2| |#3|)) 36)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL (|has| |#1| (-374)))) (-4412 (($ $) 79 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3650 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))) CONST)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2701 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-3058 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-1452 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-2419 (($ $ (-576)) 158)) (-1946 (((-3 $ "failed") $ $) 55 (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2156 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1195 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1195 |#1| |#2| |#3|)) (-656 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2812 (((-783) $) NIL (|has| |#1| (-374)))) (-4369 ((|#1| $ (-576)) NIL) (($ $ $) 61 (|has| (-576) (-1133))) (($ $ (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-296 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-4107 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) 57) (($ $) 56 (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-3591 (($ $) NIL (|has| |#1| (-374)))) (-2697 (((-1195 |#1| |#2| |#3|) $) 46 (|has| |#1| (-374)))) (-2196 (((-576) $) 43)) (-3623 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) 118 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) 114 (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-1556 (((-548) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-907 (-390)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-3193 (($ $) NIL)) (-4113 (((-876) $) 162) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1195 |#1| |#2| |#3|)) 30) (($ (-1284 |#2|)) 25) (($ (-1197)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (($ $) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-2707 ((|#1| $ (-576)) 77)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-2910 (((-783)) NIL T CONST)) (-3188 ((|#1| $) 12)) (-4081 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3632 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) 108 (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) 110 (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-2366 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4313 (($) 21 T CONST)) (-4322 (($) 16 T CONST)) (-3157 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) NIL) (($ $) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-3995 (((-112) $ $) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3975 (((-112) $ $) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3963 (((-112) $ $) NIL (-3795 (-12 (|has| (-1195 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 49 (|has| |#1| (-374))) (($ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) 50 (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 23)) (** (($ $ (-940)) NIL) (($ $ (-783)) 60) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) 83 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 137 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1195 |#1| |#2| |#3|)) 48 (|has| |#1| (-374))) (($ (-1195 |#1| |#2| |#3|) $) 47 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1188 |#1| |#2| |#3|) (-13 (-1250 |#1| (-1195 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -4113 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1188)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-4412 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1250 |#1| (-1195 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -4113 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) -((-3352 ((|#2| |#2| (-1113 |#2|)) 26) ((|#2| |#2| (-1197)) 28))) -(((-1189 |#1| |#2|) (-10 -7 (-15 -3352 (|#2| |#2| (-1197))) (-15 -3352 (|#2| |#2| (-1113 |#2|)))) (-13 (-568) (-1059 (-576)) (-651 (-576))) (-13 (-442 |#1|) (-161) (-27) (-1223))) (T -1189)) -((-3352 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1223))) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1189 *4 *2)))) (-3352 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1223)))))) -(-10 -7 (-15 -3352 (|#2| |#2| (-1197))) (-15 -3352 (|#2| |#2| (-1113 |#2|)))) -((-3352 (((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1113 (-419 (-971 |#1|)))) 31) (((-419 (-971 |#1|)) (-971 |#1|) (-1113 (-971 |#1|))) 44) (((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1197)) 33) (((-419 (-971 |#1|)) (-971 |#1|) (-1197)) 36))) -(((-1190 |#1|) (-10 -7 (-15 -3352 ((-419 (-971 |#1|)) (-971 |#1|) (-1197))) (-15 -3352 ((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -3352 ((-419 (-971 |#1|)) (-971 |#1|) (-1113 (-971 |#1|)))) (-15 -3352 ((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1113 (-419 (-971 |#1|)))))) (-13 (-568) (-1059 (-576)))) (T -1190)) -((-3352 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1190 *5)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-971 *5))) (-5 *3 (-971 *5)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 *3)) (-5 *1 (-1190 *5)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-3 (-419 (-971 *5)) (-326 *5))) (-5 *1 (-1190 *5)) (-5 *3 (-419 (-971 *5))))) (-3352 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 (-971 *5))) (-5 *1 (-1190 *5)) (-5 *3 (-971 *5))))) -(-10 -7 (-15 -3352 ((-419 (-971 |#1|)) (-971 |#1|) (-1197))) (-15 -3352 ((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1197))) (-15 -3352 ((-419 (-971 |#1|)) (-971 |#1|) (-1113 (-971 |#1|)))) (-15 -3352 ((-3 (-419 (-971 |#1|)) (-326 |#1|)) (-419 (-971 |#1|)) (-1113 (-419 (-971 |#1|)))))) -((-2423 (((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)) 13))) -(((-1191 |#1| |#2|) (-10 -7 (-15 -2423 ((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)))) (-1070) (-1070)) (T -1191)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1193 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-1193 *6)) (-5 *1 (-1191 *5 *6))))) -(-10 -7 (-15 -2423 ((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)))) -((-3589 (((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))) 51)) (-1452 (((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))) 52))) -(((-1192 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1452 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|)))) (-15 -3589 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))))) (-805) (-861) (-464) (-968 |#3| |#1| |#2|)) (T -1192)) -((-3589 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7))))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7)))))) -(-10 -7 (-15 -1452 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|)))) (-15 -3589 ((-430 (-1193 (-419 |#4|))) (-1193 (-419 |#4|))))) -((-1957 (((-112) $ $) 171)) (-3114 (((-112) $) 43)) (-2732 (((-1288 |#1|) $ (-783)) NIL)) (-1585 (((-656 (-1103)) $) NIL)) (-3287 (($ (-1193 |#1|)) NIL)) (-1421 (((-1193 $) $ (-1103)) 82) (((-1193 |#1|) $) 71)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) 164 (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2163 (($ $ $) 158 (|has| |#1| (-568)))) (-2725 (((-430 (-1193 $)) (-1193 $)) 95 (|has| |#1| (-928)))) (-2658 (($ $) NIL (|has| |#1| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 115 (|has| |#1| (-928)))) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2665 (($ $ (-783)) 61)) (-2713 (($ $ (-783)) 63)) (-2096 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL)) (-2317 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-1103) $) NIL)) (-2970 (($ $ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-3310 (($ $) 80)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) NIL) (((-701 |#1|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-3895 (($ $ $) 131)) (-4201 (($ $ $) NIL (|has| |#1| (-568)))) (-2799 (((-2 (|:| -2862 |#1|) (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-568)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1788 (($ $) 165 (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#1| (-928)))) (-1975 (($ $ |#1| (-783) $) 69)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-4353 (((-876) $ (-876)) 148)) (-3359 (((-783) $ $) NIL (|has| |#1| (-568)))) (-2486 (((-112) $) 48)) (-2018 (((-783) $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-1173)))) (-1574 (($ (-1193 |#1|) (-1103)) 73) (($ (-1193 $) (-1103)) 89)) (-4328 (($ $ (-783)) 51)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-783)) 87) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ (-1103)) NIL) (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 153)) (-2192 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-3784 (($ (-1 (-783) (-783)) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2253 (((-1193 |#1|) $) NIL)) (-3477 (((-3 (-1103) "failed") $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL) (((-701 |#1|) (-1288 $)) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#1| $) 76)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2447 (((-1179) $) NIL)) (-2107 (((-2 (|:| -2675 $) (|:| -3561 $)) $ (-783)) 60)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| (-1103)) (|:| -4080 (-783))) "failed") $) NIL)) (-4412 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3650 (($) NIL (|has| |#1| (-1173)) CONST)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) 50)) (-1686 ((|#1| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 103 (|has| |#1| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 167 (|has| |#1| (-464)))) (-4179 (($ $ (-783) |#1| $) 123)) (-4112 (((-430 (-1193 $)) (-1193 $)) 101 (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) 100 (|has| |#1| (-928)))) (-1452 (((-430 $) $) 108 (|has| |#1| (-928)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-1946 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#1|) NIL) (($ $ (-656 (-1103)) (-656 |#1|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-2812 (((-783) $) NIL (|has| |#1| (-374)))) (-4369 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4292 (((-3 $ "failed") $ (-783)) 54)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 172 (|has| |#1| (-374)))) (-1790 (($ $ (-1103)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-4107 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-2196 (((-783) $) 78) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1944 ((|#1| $) 162 (|has| |#1| (-464))) (($ $ (-1103)) NIL (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-928))))) (-4105 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-4113 (((-876) $) 149) (($ (-576)) NIL) (($ |#1|) 77) (($ (-1103)) NIL) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) 41 (|has| |#1| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4313 (($) 17 T CONST)) (-4322 (($) 19 T CONST)) (-3157 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#1| (-919 (-1197))))) (-3939 (((-112) $ $) 120)) (-4047 (($ $ |#1|) 173 (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 90)) (** (($ $ (-940)) 14) (($ $ (-783)) 12)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1193 |#1|) (-13 (-1264 |#1|) (-10 -8 (-15 -4353 ((-876) $ (-876))) (-15 -4179 ($ $ (-783) |#1| $)))) (-1070)) (T -1193)) -((-4353 (*1 *2 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1193 *3)) (-4 *3 (-1070)))) (-4179 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1193 *3)) (-4 *3 (-1070))))) -(-13 (-1264 |#1|) (-10 -8 (-15 -4353 ((-876) $ (-876))) (-15 -4179 ($ $ (-783) |#1| $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1585 (((-656 (-1103)) $) NIL)) (-1654 (((-1197) $) 11)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-4087 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-4073 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3586 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL (|has| |#1| (-374)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3562 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2861 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-3612 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-1188 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1195 |#1| |#2| |#3|) "failed") $) 36)) (-2317 (((-1188 |#1| |#2| |#3|) $) NIL) (((-1195 |#1| |#2| |#3|) $) NIL)) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-3831 (((-419 (-576)) $) 59)) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-1648 (($ (-419 (-576)) (-1188 |#1| |#2| |#3|)) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2171 (((-112) $) NIL (|has| |#1| (-374)))) (-2654 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-2486 (((-112) $) NIL)) (-4005 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4328 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-419 (-576))) 20) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2608 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1950 (((-1188 |#1| |#2| |#3|) $) 41)) (-1981 (((-3 (-1188 |#1| |#2| |#3|) "failed") $) NIL)) (-1639 (((-1188 |#1| |#2| |#3|) $) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL (|has| |#1| (-374)))) (-4412 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-2419 (($ $ (-419 (-576))) NIL)) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2156 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2812 (((-783) $) NIL (|has| |#1| (-374)))) (-4369 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-4107 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) 38)) (-2196 (((-419 (-576)) $) NIL)) (-3623 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) NIL)) (-4113 (((-876) $) 62) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1188 |#1| |#2| |#3|)) 30) (($ (-1195 |#1| |#2| |#3|)) 31) (($ (-1284 |#2|)) 26) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2707 ((|#1| $ (-419 (-576))) NIL)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-3188 ((|#1| $) 12)) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3632 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) 22 T CONST)) (-4322 (($) 16 T CONST)) (-3157 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 24)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1194 |#1| |#2| |#3|) (-13 (-1271 |#1| (-1188 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1195 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1194)) -((-4412 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1271 |#1| (-1188 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1195 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 129)) (-1585 (((-656 (-1103)) $) NIL)) (-1654 (((-1197) $) 119)) (-4226 (((-1261 |#2| |#1|) $ (-783)) 69)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-4087 (($ $ (-783)) 85) (($ $ (-783) (-783)) 82)) (-4073 (((-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 105)) (-3586 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3562 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2861 (($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 118) (($ (-1178 |#1|)) 113)) (-3612 (($ $) 177 (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) NIL T CONST)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) 25)) (-3219 (($ $) 28)) (-2818 (((-971 |#1|) $ (-783)) 81) (((-971 |#1|) $ (-783) (-783)) 83)) (-2654 (((-112) $) 124)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-783) $) 126) (((-783) $ (-783)) 128)) (-2486 (((-112) $) NIL)) (-4005 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4328 (($ $ (-940)) NIL)) (-3260 (($ (-1 |#1| (-576)) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-783)) 13) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2608 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-4412 (($ $) 133 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3116 (((-1141) $) NIL)) (-2419 (($ $ (-783)) 15)) (-1946 (((-3 $ "failed") $ $) 26 (|has| |#1| (-568)))) (-2156 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-4369 ((|#1| $ (-783)) 122) (($ $ $) 132 (|has| (-783) (-1133)))) (-4107 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) 31)) (-2196 (((-783) $) NIL)) (-3623 (($ $) 179 (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) NIL)) (-4113 (((-876) $) 206) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1261 |#2| |#1|)) 55) (($ (-1284 |#2|)) 36)) (-3244 (((-1178 |#1|) $) 101)) (-2707 ((|#1| $ (-783)) 121)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-3188 ((|#1| $) 58)) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3632 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) 165 (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-783)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) 167 (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) 163 (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) 159 (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) 17 T CONST)) (-4322 (($) 20 T CONST)) (-3157 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) 198)) (-4026 (($ $ $) 35)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 203 (|has| |#1| (-374))) (($ $ $) 138 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 141 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1195 |#1| |#2| |#3|) (-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -4113 ($ (-1261 |#2| |#1|))) (-15 -4226 ((-1261 |#2| |#1|) $ (-783))) (-15 -4113 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1195)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1261 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-1195 *3 *4 *5)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-4412 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -4113 ($ (-1261 |#2| |#1|))) (-15 -4226 ((-1261 |#2| |#1|) $ (-783))) (-15 -4113 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) -((-4113 (((-876) $) 33) (($ (-1197)) 35)) (-3795 (($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 46)) (-3785 (($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 39) (($ $) 40)) (-2766 (($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 41)) (-2753 (($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 43)) (-2742 (($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 42)) (-2730 (($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 44)) (-3042 (($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 45))) -(((-1196) (-13 (-625 (-876)) (-10 -8 (-15 -4113 ($ (-1197))) (-15 -2766 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2742 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2753 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2730 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3795 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3042 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3785 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3785 ($ $))))) (T -1196)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1196)))) (-2766 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2742 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2753 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-2730 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3795 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3042 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3785 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3785 (*1 *1 *1) (-5 *1 (-1196)))) -(-13 (-625 (-876)) (-10 -8 (-15 -4113 ($ (-1197))) (-15 -2766 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2742 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2753 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2730 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3795 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3042 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3785 ($ (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3785 ($ $)))) -((-1957 (((-112) $ $) NIL)) (-3488 (($ $ (-656 (-876))) 62)) (-1815 (($ $ (-656 (-876))) 60)) (-1533 (((-1179) $) 101)) (-3125 (((-2 (|:| -3824 (-656 (-876))) (|:| -2214 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3678 (-656 (-876))) (|:| |args| (-656 (-876)))) $) 108)) (-4057 (((-112) $) 23)) (-2956 (($ $ (-656 (-656 (-876)))) 59) (($ $ (-2 (|:| -3824 (-656 (-876))) (|:| -2214 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3678 (-656 (-876))) (|:| |args| (-656 (-876))))) 99)) (-3170 (($) 163 T CONST)) (-3294 (((-1293)) 135)) (-2477 (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 69) (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 76)) (-1991 (($) 122) (($ $) 131)) (-4149 (($ $) 100)) (-2907 (($ $ $) NIL)) (-3777 (($ $ $) NIL)) (-2786 (((-656 $) $) 136)) (-2447 (((-1179) $) 114)) (-3116 (((-1141) $) NIL)) (-4369 (($ $ (-656 (-876))) 61)) (-1556 (((-548) $) 48) (((-1197) $) 49) (((-907 (-576)) $) 80) (((-907 (-390)) $) 78)) (-4113 (((-876) $) 55) (($ (-1179)) 50)) (-2950 (((-112) $ $) NIL)) (-3868 (($ $ (-656 (-876))) 63)) (-2172 (((-1179) $) 34) (((-1179) $ (-112)) 35) (((-1293) (-834) $) 36) (((-1293) (-834) $ (-112)) 37)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 51)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) 52))) -(((-1197) (-13 (-861) (-626 (-548)) (-840) (-626 (-1197)) (-628 (-1179)) (-626 (-907 (-576))) (-626 (-907 (-390))) (-901 (-576)) (-901 (-390)) (-10 -8 (-15 -1991 ($)) (-15 -1991 ($ $)) (-15 -3294 ((-1293))) (-15 -4149 ($ $)) (-15 -4057 ((-112) $)) (-15 -3125 ((-2 (|:| -3824 (-656 (-876))) (|:| -2214 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3678 (-656 (-876))) (|:| |args| (-656 (-876)))) $)) (-15 -2956 ($ $ (-656 (-656 (-876))))) (-15 -2956 ($ $ (-2 (|:| -3824 (-656 (-876))) (|:| -2214 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3678 (-656 (-876))) (|:| |args| (-656 (-876)))))) (-15 -1815 ($ $ (-656 (-876)))) (-15 -3488 ($ $ (-656 (-876)))) (-15 -3868 ($ $ (-656 (-876)))) (-15 -4369 ($ $ (-656 (-876)))) (-15 -1533 ((-1179) $)) (-15 -2786 ((-656 $) $)) (-15 -3170 ($) -2666)))) (T -1197)) -((-1991 (*1 *1) (-5 *1 (-1197))) (-1991 (*1 *1 *1) (-5 *1 (-1197))) (-3294 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1197)))) (-4149 (*1 *1 *1) (-5 *1 (-1197))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197)))) (-3125 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3824 (-656 (-876))) (|:| -2214 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3678 (-656 (-876))) (|:| |args| (-656 (-876))))) (-5 *1 (-1197)))) (-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-1197)))) (-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3824 (-656 (-876))) (|:| -2214 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3678 (-656 (-876))) (|:| |args| (-656 (-876))))) (-5 *1 (-1197)))) (-1815 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-3488 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-3868 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) (-1533 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1197)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1197)))) (-3170 (*1 *1) (-5 *1 (-1197)))) -(-13 (-861) (-626 (-548)) (-840) (-626 (-1197)) (-628 (-1179)) (-626 (-907 (-576))) (-626 (-907 (-390))) (-901 (-576)) (-901 (-390)) (-10 -8 (-15 -1991 ($)) (-15 -1991 ($ $)) (-15 -3294 ((-1293))) (-15 -4149 ($ $)) (-15 -4057 ((-112) $)) (-15 -3125 ((-2 (|:| -3824 (-656 (-876))) (|:| -2214 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3678 (-656 (-876))) (|:| |args| (-656 (-876)))) $)) (-15 -2956 ($ $ (-656 (-656 (-876))))) (-15 -2956 ($ $ (-2 (|:| -3824 (-656 (-876))) (|:| -2214 (-656 (-876))) (|:| |presup| (-656 (-876))) (|:| -3678 (-656 (-876))) (|:| |args| (-656 (-876)))))) (-15 -1815 ($ $ (-656 (-876)))) (-15 -3488 ($ $ (-656 (-876)))) (-15 -3868 ($ $ (-656 (-876)))) (-15 -4369 ($ $ (-656 (-876)))) (-15 -1533 ((-1179) $)) (-15 -2786 ((-656 $) $)) (-15 -3170 ($) -2666))) -((-3853 (((-1288 |#1|) |#1| (-940)) 18) (((-1288 |#1|) (-656 |#1|)) 25))) -(((-1198 |#1|) (-10 -7 (-15 -3853 ((-1288 |#1|) (-656 |#1|))) (-15 -3853 ((-1288 |#1|) |#1| (-940)))) (-1070)) (T -1198)) -((-3853 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-1288 *3)) (-5 *1 (-1198 *3)) (-4 *3 (-1070)))) (-3853 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)) (-5 *1 (-1198 *4))))) -(-10 -7 (-15 -3853 ((-1288 |#1|) (-656 |#1|))) (-15 -3853 ((-1288 |#1|) |#1| (-940)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1059 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2317 (((-576) $) NIL (|has| |#1| (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1059 (-419 (-576))))) ((|#1| $) NIL)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-464)))) (-1975 (($ $ |#1| (-992) $) NIL)) (-2486 (((-112) $) 17)) (-2018 (((-783) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-992)) NIL)) (-2192 (((-992) $) NIL)) (-3784 (($ (-1 (-992) (-992)) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) NIL)) (-1686 ((|#1| $) NIL)) (-4179 (($ $ (-992) |#1| $) NIL (-12 (|has| (-992) (-132)) (|has| |#1| (-568))))) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2196 (((-992) $) NIL)) (-1944 ((|#1| $) NIL (|has| |#1| (-464)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-3795 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1059 (-419 (-576))))))) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ (-992)) NIL)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4313 (($) 10 T CONST)) (-4322 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 21)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1199 |#1|) (-13 (-336 |#1| (-992)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-992) (-132)) (-15 -4179 ($ $ (-992) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) (-1070)) (T -1199)) -((-4179 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-992)) (-4 *2 (-132)) (-5 *1 (-1199 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) -(-13 (-336 |#1| (-992)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-992) (-132)) (-15 -4179 ($ $ (-992) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) -((-4416 (((-1201) (-1197) $) 25)) (-2275 (($) 29)) (-3194 (((-3 (|:| |fst| (-446)) (|:| -2435 "void")) (-1197) $) 22)) (-3478 (((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2435 "void")) $) 41) (((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) 42) (((-1293) (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) 43)) (-3912 (((-1293) (-1197)) 58)) (-2092 (((-1293) (-1197) $) 55) (((-1293) (-1197)) 56) (((-1293)) 57)) (-2757 (((-1293) (-1197)) 37)) (-2318 (((-1197)) 36)) (-3307 (($) 34)) (-2326 (((-449) (-1197) (-449) (-1197) $) 45) (((-449) (-656 (-1197)) (-449) (-1197) $) 49) (((-449) (-1197) (-449)) 46) (((-449) (-1197) (-449) (-1197)) 50)) (-3341 (((-1197)) 35)) (-4113 (((-876) $) 28)) (-2132 (((-1293)) 30) (((-1293) (-1197)) 33)) (-2121 (((-656 (-1197)) (-1197) $) 24)) (-4417 (((-1293) (-1197) (-656 (-1197)) $) 38) (((-1293) (-1197) (-656 (-1197))) 39) (((-1293) (-656 (-1197))) 40))) -(((-1200) (-13 (-625 (-876)) (-10 -8 (-15 -2275 ($)) (-15 -2132 ((-1293))) (-15 -2132 ((-1293) (-1197))) (-15 -2326 ((-449) (-1197) (-449) (-1197) $)) (-15 -2326 ((-449) (-656 (-1197)) (-449) (-1197) $)) (-15 -2326 ((-449) (-1197) (-449))) (-15 -2326 ((-449) (-1197) (-449) (-1197))) (-15 -2757 ((-1293) (-1197))) (-15 -3341 ((-1197))) (-15 -2318 ((-1197))) (-15 -4417 ((-1293) (-1197) (-656 (-1197)) $)) (-15 -4417 ((-1293) (-1197) (-656 (-1197)))) (-15 -4417 ((-1293) (-656 (-1197)))) (-15 -3478 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2435 "void")) $)) (-15 -3478 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2435 "void")))) (-15 -3478 ((-1293) (-3 (|:| |fst| (-446)) (|:| -2435 "void")))) (-15 -2092 ((-1293) (-1197) $)) (-15 -2092 ((-1293) (-1197))) (-15 -2092 ((-1293))) (-15 -3912 ((-1293) (-1197))) (-15 -3307 ($)) (-15 -3194 ((-3 (|:| |fst| (-446)) (|:| -2435 "void")) (-1197) $)) (-15 -2121 ((-656 (-1197)) (-1197) $)) (-15 -4416 ((-1201) (-1197) $))))) (T -1200)) -((-2275 (*1 *1) (-5 *1 (-1200))) (-2132 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2326 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-2326 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *4 (-1197)) (-5 *1 (-1200)))) (-2326 (*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-2326 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3341 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200)))) (-2318 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200)))) (-4417 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-4417 (*1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3478 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1197)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3478 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2092 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-2092 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3307 (*1 *1) (-5 *1 (-1200))) (-3194 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-5 *1 (-1200)))) (-2121 (*1 *2 *3 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1200)) (-5 *3 (-1197)))) (-4416 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1201)) (-5 *1 (-1200))))) -(-13 (-625 (-876)) (-10 -8 (-15 -2275 ($)) (-15 -2132 ((-1293))) (-15 -2132 ((-1293) (-1197))) (-15 -2326 ((-449) (-1197) (-449) (-1197) $)) (-15 -2326 ((-449) (-656 (-1197)) (-449) (-1197) $)) (-15 -2326 ((-449) (-1197) (-449))) (-15 -2326 ((-449) (-1197) (-449) (-1197))) (-15 -2757 ((-1293) (-1197))) (-15 -3341 ((-1197))) (-15 -2318 ((-1197))) (-15 -4417 ((-1293) (-1197) (-656 (-1197)) $)) (-15 -4417 ((-1293) (-1197) (-656 (-1197)))) (-15 -4417 ((-1293) (-656 (-1197)))) (-15 -3478 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2435 "void")) $)) (-15 -3478 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -2435 "void")))) (-15 -3478 ((-1293) (-3 (|:| |fst| (-446)) (|:| -2435 "void")))) (-15 -2092 ((-1293) (-1197) $)) (-15 -2092 ((-1293) (-1197))) (-15 -2092 ((-1293))) (-15 -3912 ((-1293) (-1197))) (-15 -3307 ($)) (-15 -3194 ((-3 (|:| |fst| (-446)) (|:| -2435 "void")) (-1197) $)) (-15 -2121 ((-656 (-1197)) (-1197) $)) (-15 -4416 ((-1201) (-1197) $)))) -((-4224 (((-656 (-656 (-3 (|:| -4149 (-1197)) (|:| -2685 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) $) 66)) (-1866 (((-656 (-3 (|:| -4149 (-1197)) (|:| -2685 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))) (-446) $) 47)) (-3926 (($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-449))))) 17)) (-3912 (((-1293) $) 73)) (-2103 (((-656 (-1197)) $) 22)) (-4428 (((-1125) $) 60)) (-3858 (((-449) (-1197) $) 27)) (-1384 (((-656 (-1197)) $) 30)) (-3307 (($) 19)) (-2326 (((-449) (-656 (-1197)) (-449) $) 25) (((-449) (-1197) (-449) $) 24)) (-4113 (((-876) $) 9) (((-1210 (-1197) (-449)) $) 13))) -(((-1201) (-13 (-625 (-876)) (-10 -8 (-15 -4113 ((-1210 (-1197) (-449)) $)) (-15 -3307 ($)) (-15 -2326 ((-449) (-656 (-1197)) (-449) $)) (-15 -2326 ((-449) (-1197) (-449) $)) (-15 -3858 ((-449) (-1197) $)) (-15 -2103 ((-656 (-1197)) $)) (-15 -1866 ((-656 (-3 (|:| -4149 (-1197)) (|:| -2685 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))) (-446) $)) (-15 -1384 ((-656 (-1197)) $)) (-15 -4224 ((-656 (-656 (-3 (|:| -4149 (-1197)) (|:| -2685 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) $)) (-15 -4428 ((-1125) $)) (-15 -3912 ((-1293) $)) (-15 -3926 ($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-449))))))))) (T -1201)) -((-4113 (*1 *2 *1) (-12 (-5 *2 (-1210 (-1197) (-449))) (-5 *1 (-1201)))) (-3307 (*1 *1) (-5 *1 (-1201))) (-2326 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *1 (-1201)))) (-2326 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1201)))) (-3858 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-449)) (-5 *1 (-1201)))) (-2103 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201)))) (-1866 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-656 (-3 (|:| -4149 (-1197)) (|:| -2685 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) (-5 *1 (-1201)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-3 (|:| -4149 (-1197)) (|:| -2685 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))))) (-5 *1 (-1201)))) (-4428 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1201)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1201)))) (-3926 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-449))))) (-5 *1 (-1201))))) -(-13 (-625 (-876)) (-10 -8 (-15 -4113 ((-1210 (-1197) (-449)) $)) (-15 -3307 ($)) (-15 -2326 ((-449) (-656 (-1197)) (-449) $)) (-15 -2326 ((-449) (-1197) (-449) $)) (-15 -3858 ((-449) (-1197) $)) (-15 -2103 ((-656 (-1197)) $)) (-15 -1866 ((-656 (-3 (|:| -4149 (-1197)) (|:| -2685 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))) (-446) $)) (-15 -1384 ((-656 (-1197)) $)) (-15 -4224 ((-656 (-656 (-3 (|:| -4149 (-1197)) (|:| -2685 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) $)) (-15 -4428 ((-1125) $)) (-15 -3912 ((-1293) $)) (-15 -3926 ($ (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-449)))))))) -((-1957 (((-112) $ $) NIL)) (-2982 (((-3 (-576) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-518) "failed") $) 43) (((-3 (-1179) "failed") $) 47)) (-2317 (((-576) $) 30) (((-227) $) 36) (((-518) $) 40) (((-1179) $) 48)) (-2307 (((-112) $) 53)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2921 (((-3 (-576) (-227) (-518) (-1179) $) $) 55)) (-3253 (((-656 $) $) 57)) (-1556 (((-1125) $) 24) (($ (-1125)) 25)) (-1854 (((-112) $) 56)) (-4113 (((-876) $) 23) (($ (-576)) 26) (($ (-227)) 32) (($ (-518)) 38) (($ (-1179)) 44) (((-548) $) 59) (((-576) $) 31) (((-227) $) 37) (((-518) $) 41) (((-1179) $) 49)) (-4305 (((-112) $ (|[\|\|]| (-576))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-518))) 19) (((-112) $ (|[\|\|]| (-1179))) 16)) (-3317 (($ (-518) (-656 $)) 51) (($ $ (-656 $)) 52)) (-2950 (((-112) $ $) NIL)) (-4333 (((-576) $) 27) (((-227) $) 33) (((-518) $) 39) (((-1179) $) 45)) (-3939 (((-112) $ $) 7))) -(((-1202) (-13 (-1283) (-1121) (-1059 (-576)) (-1059 (-227)) (-1059 (-518)) (-1059 (-1179)) (-625 (-548)) (-10 -8 (-15 -1556 ((-1125) $)) (-15 -1556 ($ (-1125))) (-15 -4113 ((-576) $)) (-15 -4333 ((-576) $)) (-15 -4113 ((-227) $)) (-15 -4333 ((-227) $)) (-15 -4113 ((-518) $)) (-15 -4333 ((-518) $)) (-15 -4113 ((-1179) $)) (-15 -4333 ((-1179) $)) (-15 -3317 ($ (-518) (-656 $))) (-15 -3317 ($ $ (-656 $))) (-15 -2307 ((-112) $)) (-15 -2921 ((-3 (-576) (-227) (-518) (-1179) $) $)) (-15 -3253 ((-656 $) $)) (-15 -1854 ((-112) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-576)))) (-15 -4305 ((-112) $ (|[\|\|]| (-227)))) (-15 -4305 ((-112) $ (|[\|\|]| (-518)))) (-15 -4305 ((-112) $ (|[\|\|]| (-1179))))))) (T -1202)) -((-1556 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1202)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1202)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) (-3317 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1202))) (-5 *1 (-1202)))) (-3317 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1179) (-1202))) (-5 *1 (-1202)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202)))) (-1854 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1202)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1202)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1202)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)) (-5 *1 (-1202))))) -(-13 (-1283) (-1121) (-1059 (-576)) (-1059 (-227)) (-1059 (-518)) (-1059 (-1179)) (-625 (-548)) (-10 -8 (-15 -1556 ((-1125) $)) (-15 -1556 ($ (-1125))) (-15 -4113 ((-576) $)) (-15 -4333 ((-576) $)) (-15 -4113 ((-227) $)) (-15 -4333 ((-227) $)) (-15 -4113 ((-518) $)) (-15 -4333 ((-518) $)) (-15 -4113 ((-1179) $)) (-15 -4333 ((-1179) $)) (-15 -3317 ($ (-518) (-656 $))) (-15 -3317 ($ $ (-656 $))) (-15 -2307 ((-112) $)) (-15 -2921 ((-3 (-576) (-227) (-518) (-1179) $) $)) (-15 -3253 ((-656 $) $)) (-15 -1854 ((-112) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-576)))) (-15 -4305 ((-112) $ (|[\|\|]| (-227)))) (-15 -4305 ((-112) $ (|[\|\|]| (-518)))) (-15 -4305 ((-112) $ (|[\|\|]| (-1179)))))) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783)) 22)) (-3170 (($) 12 T CONST)) (-4370 (($) 26)) (-2907 (($ $ $) NIL) (($) 19 T CONST)) (-3777 (($ $ $) NIL) (($) 20 T CONST)) (-3787 (((-940) $) 24)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) 23)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL))) -(((-1203 |#1|) (-13 (-856) (-10 -8 (-15 -3170 ($) -2666))) (-940)) (T -1203)) -((-3170 (*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-940))))) -(-13 (-856) (-10 -8 (-15 -3170 ($) -2666))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1425 ((|#1| $) 45)) (-4284 (((-112) $ (-784)) 8)) (-2515 (($) 7 T CONST)) (-3240 ((|#1| |#1| $) 47)) (-2477 ((|#1| $) 46)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3107 ((|#1| $) 40)) (-2701 (($ |#1| $) 41)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2184 ((|#1| $) 42)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-3106 (((-784) $) 44)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) 43)) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-1143 |#1|) (-141) (-1239)) (T -1143)) +((-3240 (*1 *2 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1239)))) (-2477 (*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1239)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1239)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1239)) (-5 *2 (-784))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4466) (-15 -3240 (|t#1| |t#1| $)) (-15 -2477 (|t#1| $)) (-15 -1425 (|t#1| $)) (-15 -3106 ((-784) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-2256 ((|#3| $) 87)) (-1593 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2830 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#3| $) 47)) (-3439 (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-2 (|:| -3962 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 $) (-1289 $)) 84) (((-702 |#3|) (-702 $)) 76)) (-2209 (($ $ (-1 |#3| |#3|) (-784)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-3176 ((|#3| $) 89)) (-3500 ((|#4| $) 43)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#3|) 25)) (** (($ $ (-941)) NIL) (($ $ (-784)) 24) (($ $ (-576)) 95))) +(((-1144 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3176 (|#3| |#1|)) (-15 -2256 (|#3| |#1|)) (-15 -3500 (|#4| |#1|)) (-15 -3439 ((-702 |#3|) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-702 (-576)) (-702 |#1|))) (-15 -3515 (|#1| |#3|)) (-15 -1593 ((-3 |#3| "failed") |#1|)) (-15 -2830 (|#3| |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|) (-784))) (-15 -3515 (|#1| (-576))) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941))) (-15 -3515 ((-877) |#1|))) (-1145 |#2| |#3| |#4| |#5|) (-784) (-1071) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1144)) +NIL +(-10 -8 (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3176 (|#3| |#1|)) (-15 -2256 (|#3| |#1|)) (-15 -3500 (|#4| |#1|)) (-15 -3439 ((-702 |#3|) (-702 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3439 ((-702 (-576)) (-702 |#1|))) (-15 -3515 (|#1| |#3|)) (-15 -1593 ((-3 |#3| "failed") |#1|)) (-15 -2830 (|#3| |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|) (-784))) (-15 -3515 (|#1| (-576))) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941))) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2256 ((|#2| $) 80)) (-1616 (((-112) $) 124)) (-2423 (((-3 $ "failed") $ $) 20)) (-3425 (((-112) $) 122)) (-4284 (((-112) $ (-784)) 114)) (-1868 (($ |#2|) 83)) (-2515 (($) 18 T CONST)) (-4389 (($ $) 141 (|has| |#2| (-317)))) (-3520 ((|#3| $ (-576)) 136)) (-1593 (((-3 (-576) "failed") $) 99 (|has| |#2| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 96 (|has| |#2| (-1060 (-419 (-576))))) (((-3 |#2| "failed") $) 93)) (-2830 (((-576) $) 98 (|has| |#2| (-1060 (-576)))) (((-419 (-576)) $) 95 (|has| |#2| (-1060 (-419 (-576))))) ((|#2| $) 94)) (-3439 (((-702 (-576)) (-702 $)) 89 (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 88 (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) 87) (((-702 |#2|) (-702 $)) 86)) (-3969 (((-3 $ "failed") $) 37)) (-4343 (((-784) $) 142 (|has| |#2| (-568)))) (-1741 ((|#2| $ (-576) (-576)) 134)) (-1448 (((-657 |#2|) $) 107 (|has| $ (-6 -4466)))) (-3994 (((-112) $) 35)) (-3652 (((-784) $) 143 (|has| |#2| (-568)))) (-2992 (((-657 |#4|) $) 144 (|has| |#2| (-568)))) (-2334 (((-784) $) 130)) (-2344 (((-784) $) 131)) (-1786 (((-112) $ (-784)) 115)) (-3242 ((|#2| $) 75 (|has| |#2| (-6 (-4468 "*"))))) (-4076 (((-576) $) 126)) (-2581 (((-576) $) 128)) (-3855 (((-657 |#2|) $) 106 (|has| $ (-6 -4466)))) (-3326 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-2898 (((-576) $) 127)) (-4230 (((-576) $) 129)) (-2484 (($ (-657 (-657 |#2|))) 121)) (-1799 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#2| |#2| |#2|) $ $) 138) (($ (-1 |#2| |#2|) $) 112)) (-2819 (((-657 (-657 |#2|)) $) 132)) (-4326 (((-112) $ (-784)) 116)) (-1993 (((-702 (-576)) (-1289 $)) 91 (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 90 (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) 85) (((-702 |#2|) (-1289 $)) 84)) (-1708 (((-1180) $) 10)) (-1455 (((-3 $ "failed") $) 74 (|has| |#2| (-374)))) (-1460 (((-1142) $) 11)) (-3409 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-568)))) (-2372 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#2|))) 103 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) 102 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) 100 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) 120)) (-1368 (((-112) $) 117)) (-3340 (($) 118)) (-2780 ((|#2| $ (-576) (-576) |#2|) 135) ((|#2| $ (-576) (-576)) 133)) (-2209 (($ $ (-1 |#2| |#2|) (-784)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-237))) (($ $ (-784)) 45 (|has| |#2| (-237))) (($ $ (-1198)) 55 (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) 53 (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) 52 (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 51 (|has| |#2| (-920 (-1198))))) (-3176 ((|#2| $) 79)) (-2959 (($ (-657 |#2|)) 82)) (-3249 (((-112) $) 123)) (-3500 ((|#3| $) 81)) (-3917 ((|#2| $) 76 (|has| |#2| (-6 (-4468 "*"))))) (-1469 (((-784) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4466))) (((-784) |#2| $) 105 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 119)) (-1612 ((|#4| $ (-576)) 137)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 97 (|has| |#2| (-1060 (-419 (-576))))) (($ |#2|) 92)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-3258 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4466)))) (-2203 (((-112) $) 125)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-1 |#2| |#2|) (-784)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-237))) (($ $ (-784)) 44 (|has| |#2| (-237))) (($ $ (-1198)) 54 (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) 50 (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) 49 (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 48 (|has| |#2| (-920 (-1198))))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#2|) 140 (|has| |#2| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 73 (|has| |#2| (-374)))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#2|) 146) (($ |#2| $) 145) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-3437 (((-784) $) 113 (|has| $ (-6 -4466))))) +(((-1145 |#1| |#2| |#3| |#4|) (-141) (-784) (-1071) (-243 |t#1| |t#2|) (-243 |t#1| |t#2|)) (T -1145)) +((-1868 (*1 *1 *2) (-12 (-4 *2 (-1071)) (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-2959 (*1 *1 *2) (-12 (-5 *2 (-657 *4)) (-4 *4 (-1071)) (-4 *1 (-1145 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *4 *2 *5)) (-4 *4 (-1071)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1071)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1071)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1145 *3 *4 *5 *2)) (-4 *4 (-1071)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1145 *3 *4 *2 *5)) (-4 *4 (-1071)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071)))) (-1455 (*1 *1 *1) (|partial| -12 (-4 *1 (-1145 *2 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1145 *3 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374))))) +(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1075 |t#1| |t#1| |t#2| |t#3| |t#4|) (-423 |t#2|) (-388 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-730 |t#2|)) |%noBranch|) (-15 -1868 ($ |t#2|)) (-15 -2959 ($ (-657 |t#2|))) (-15 -3500 (|t#3| $)) (-15 -2256 (|t#2| $)) (-15 -3176 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4468 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3917 (|t#2| $)) (-15 -3242 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-374)) (PROGN (-15 -1455 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4468 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#2| (-1060 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#2|) . T) ((-625 (-877)) . T) ((-234 $) -2748 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-232 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) -2748 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-272 |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-388 |#2|) . T) ((-423 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-659 (-576)) . T) ((-659 |#2|) . T) ((-659 $) . T) ((-661 #1=(-576)) |has| |#2| (-652 (-576))) ((-661 |#2|) . T) ((-661 $) . T) ((-653 |#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-6 (-4468 "*")))) ((-652 #1#) |has| |#2| (-652 (-576))) ((-652 |#2|) . T) ((-730 |#2|) -2748 (|has| |#2| (-174)) (|has| |#2| (-6 (-4468 "*")))) ((-739) . T) ((-912 $ #2=(-1198)) -2748 (|has| |#2| (-920 (-1198))) (|has| |#2| (-918 (-1198)))) ((-918 (-1198)) |has| |#2| (-918 (-1198))) ((-920 #2#) -2748 (|has| |#2| (-920 (-1198))) (|has| |#2| (-918 (-1198)))) ((-1075 |#1| |#1| |#2| |#3| |#4|) . T) ((-1060 #0#) |has| |#2| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#2| (-1060 (-576))) ((-1060 |#2|) . T) ((-1073 |#2|) . T) ((-1078 |#2|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-4045 ((|#4| |#4|) 81)) (-4021 ((|#4| |#4|) 76)) (-3291 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2469 (-657 |#3|))) |#4| |#3|) 91)) (-4385 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1769 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1146 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4021 (|#4| |#4|)) (-15 -1769 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4045 (|#4| |#4|)) (-15 -4385 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3291 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2469 (-657 |#3|))) |#4| |#3|))) (-317) (-384 |#1|) (-384 |#1|) (-700 |#1| |#2| |#3|)) (T -1146)) +((-3291 (*1 *2 *3 *4) (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) (-5 *1 (-1146 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4)))) (-4385 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1146 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1146 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-1769 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1146 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-4021 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1146 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) +(-10 -7 (-15 -4021 (|#4| |#4|)) (-15 -1769 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4045 (|#4| |#4|)) (-15 -4385 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3291 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2469 (-657 |#3|))) |#4| |#3|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 18)) (-1998 (((-657 |#2|) $) 174)) (-1825 (((-1194 $) $ |#2|) 60) (((-1194 |#1|) $) 49)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)))) (-2361 (($ $) 118 (|has| |#1| (-568)))) (-3286 (((-112) $) 120 (|has| |#1| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 |#2|)) 213)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3188 (($ $) NIL (|has| |#1| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) 167) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 |#2| "failed") $) NIL)) (-2830 ((|#1| $) 165) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) ((|#2| $) NIL)) (-4351 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-2165 (($ $) 217)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) 90)) (-1445 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#1| (-929)))) (-2643 (($ $ |#1| (-543 |#2|) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| |#1| (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| |#1| (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-3994 (((-112) $) 20)) (-2977 (((-784) $) 30)) (-1986 (($ (-1194 |#1|) |#2|) 54) (($ (-1194 $) |#2|) 71)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) 38)) (-1974 (($ |#1| (-543 |#2|)) 78) (($ $ |#2| (-784)) 58) (($ $ (-657 |#2|) (-657 (-784))) NIL)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ |#2|) NIL)) (-4219 (((-543 |#2|) $) 205) (((-784) $ |#2|) 206) (((-657 (-784)) $ (-657 |#2|)) 207)) (-2308 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) 128)) (-2502 (((-3 |#2| "failed") $) 177)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2129 (($ $) 216)) (-2141 ((|#1| $) 43)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1708 (((-1180) $) NIL)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| |#2|) (|:| -2128 (-784))) "failed") $) NIL)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) 39)) (-2118 ((|#1| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 148 (|has| |#1| (-464)))) (-3431 (($ (-657 $)) 153 (|has| |#1| (-464))) (($ $ $) 138 (|has| |#1| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-929)))) (-3409 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-568)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-657 |#2|) (-657 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-657 |#2|) (-657 $)) 194)) (-1465 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2209 (($ $ (-657 |#2|) (-657 (-784))) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|)) NIL) (($ $ |#2|) 215)) (-4265 (((-543 |#2|) $) 201) (((-784) $ |#2|) 196) (((-657 (-784)) $ (-657 |#2|)) 199)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3614 ((|#1| $) 134 (|has| |#1| (-464))) (($ $ |#2|) 137 (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3515 (((-877) $) 159) (($ (-576)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-3987 (((-657 |#1|) $) 162)) (-2498 ((|#1| $ (-543 |#2|)) 80) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) 87 T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) 123 (|has| |#1| (-568)))) (-2716 (($) 12 T CONST)) (-2725 (($) 14 T CONST)) (-2066 (($ $ (-657 |#2|) (-657 (-784))) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|)) NIL) (($ $ |#2|) NIL)) (-2881 (((-112) $ $) 106)) (-2995 (($ $ |#1|) 132 (|has| |#1| (-374)))) (-2982 (($ $) 93) (($ $ $) 104)) (-2971 (($ $ $) 55)) (** (($ $ (-941)) 110) (($ $ (-784)) 109)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 96) (($ $ $) 72) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +(((-1147 |#1| |#2|) (-969 |#1| (-543 |#2|) |#2|) (-1071) (-862)) (T -1147)) +NIL +(-969 |#1| (-543 |#2|) |#2|) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1998 (((-657 |#2|) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2143 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-1866 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2120 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-2166 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) NIL T CONST)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-2991 (((-972 |#1|) $ (-784)) NIL) (((-972 |#1|) $ (-784) (-784)) NIL)) (-3155 (((-112) $) NIL)) (-1622 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-784) $ |#2|) NIL) (((-784) $ |#2| (-784)) NIL)) (-3994 (((-112) $) NIL)) (-3856 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2343 (((-112) $) NIL)) (-1974 (($ $ (-657 |#2|) (-657 (-543 |#2|))) NIL) (($ $ |#2| (-543 |#2|)) NIL) (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-784)) 63) (($ $ (-657 |#2|) (-657 (-784))) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3707 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-2320 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-576)))))) (-1460 (((-1142) $) NIL)) (-3931 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-576)))))) (-1456 (($ $ (-784)) 16)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4056 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3205 (($ $ |#2| $) 106) (($ $ (-657 |#2|) (-657 $)) 99) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL)) (-2209 (($ $ (-657 |#2|) (-657 (-784))) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|)) NIL) (($ $ |#2|) 109)) (-4265 (((-543 |#2|) $) NIL)) (-4113 (((-1 (-1179 |#3|) |#3|) (-657 |#2|) (-657 (-1179 |#3|))) 87)) (-2177 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) 18)) (-3515 (((-877) $) 198) (($ (-576)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#2|) 70) (($ |#3|) 68)) (-2498 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|) (-657 (-784))) NIL) ((|#3| $ (-784)) 43)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2188 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-1864 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) 52 T CONST)) (-2725 (($) 62 T CONST)) (-2066 (($ $ (-657 |#2|) (-657 (-784))) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|)) NIL) (($ $ |#2|) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) 200 (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 66)) (** (($ $ (-941)) NIL) (($ $ (-784)) 77) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 112 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ $ (-419 (-576))) 117 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 115 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1148 |#1| |#2| |#3|) (-13 (-753 |#1| |#2|) (-10 -8 (-15 -2498 (|#3| $ (-784))) (-15 -3515 ($ |#2|)) (-15 -3515 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4113 ((-1 (-1179 |#3|) |#3|) (-657 |#2|) (-657 (-1179 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2320 ($ $ |#2| |#1|)) (-15 -3931 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1071) (-862) (-969 |#1| (-543 |#2|) |#2|)) (T -1148)) +((-2498 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *2 (-969 *4 (-543 *5) *5)) (-5 *1 (-1148 *4 *5 *2)) (-4 *4 (-1071)) (-4 *5 (-862)))) (-3515 (*1 *1 *2) (-12 (-4 *3 (-1071)) (-4 *2 (-862)) (-5 *1 (-1148 *3 *2 *4)) (-4 *4 (-969 *3 (-543 *2) *2)))) (-3515 (*1 *1 *2) (-12 (-4 *3 (-1071)) (-4 *4 (-862)) (-5 *1 (-1148 *3 *4 *2)) (-4 *2 (-969 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-862)) (-5 *1 (-1148 *3 *4 *2)) (-4 *2 (-969 *3 (-543 *4) *4)))) (-4113 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 (-1179 *7))) (-4 *6 (-862)) (-4 *7 (-969 *5 (-543 *6) *6)) (-4 *5 (-1071)) (-5 *2 (-1 (-1179 *7) *7)) (-5 *1 (-1148 *5 *6 *7)))) (-2320 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-4 *2 (-862)) (-5 *1 (-1148 *3 *2 *4)) (-4 *4 (-969 *3 (-543 *2) *2)))) (-3931 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1148 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1071)) (-4 *3 (-862)) (-5 *1 (-1148 *4 *3 *5)) (-4 *5 (-969 *4 (-543 *3) *3))))) +(-13 (-753 |#1| |#2|) (-10 -8 (-15 -2498 (|#3| $ (-784))) (-15 -3515 ($ |#2|)) (-15 -3515 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4113 ((-1 (-1179 |#3|) |#3|) (-657 |#2|) (-657 (-1179 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2320 ($ $ |#2| |#1|)) (-15 -3931 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3423 (((-112) $ $) 7)) (-2112 (((-657 (-2 (|:| -1988 $) (|:| -3179 (-657 |#4|)))) (-657 |#4|)) 86)) (-1578 (((-657 $) (-657 |#4|)) 87) (((-657 $) (-657 |#4|) (-112)) 112)) (-1998 (((-657 |#3|) $) 34)) (-2250 (((-112) $) 27)) (-4334 (((-112) $) 18 (|has| |#1| (-568)))) (-2605 (((-112) |#4| $) 102) (((-112) $) 98)) (-3300 ((|#4| |#4| $) 93)) (-3188 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 $))) |#4| $) 127)) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |#3|) 28)) (-4284 (((-112) $ (-784)) 45)) (-2007 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 80)) (-2515 (($) 46 T CONST)) (-2697 (((-112) $) 23 (|has| |#1| (-568)))) (-3025 (((-112) $ $) 25 (|has| |#1| (-568)))) (-2936 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1978 (((-112) $) 26 (|has| |#1| (-568)))) (-1835 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1494 (((-657 |#4|) (-657 |#4|) $) 19 (|has| |#1| (-568)))) (-4203 (((-657 |#4|) (-657 |#4|) $) 20 (|has| |#1| (-568)))) (-1593 (((-3 $ "failed") (-657 |#4|)) 37)) (-2830 (($ (-657 |#4|)) 36)) (-3542 (((-3 $ "failed") $) 83)) (-1815 ((|#4| |#4| $) 90)) (-1620 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4466)))) (-3951 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3427 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1979 ((|#4| |#4| $) 88)) (-3662 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1492 (((-2 (|:| -1988 (-657 |#4|)) (|:| -3179 (-657 |#4|))) $) 106)) (-1381 (((-112) |#4| $) 137)) (-1526 (((-112) |#4| $) 134)) (-3883 (((-112) |#4| $) 138) (((-112) $) 135)) (-1448 (((-657 |#4|) $) 53 (|has| $ (-6 -4466)))) (-3537 (((-112) |#4| $) 105) (((-112) $) 104)) (-1428 ((|#3| $) 35)) (-1786 (((-112) $ (-784)) 44)) (-3855 (((-657 |#4|) $) 54 (|has| $ (-6 -4466)))) (-3326 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#4| |#4|) $) 48)) (-3944 (((-657 |#3|) $) 33)) (-2611 (((-112) |#3| $) 32)) (-4326 (((-112) $ (-784)) 43)) (-1708 (((-1180) $) 10)) (-3653 (((-3 |#4| (-657 $)) |#4| |#4| $) 129)) (-3156 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 $))) |#4| |#4| $) 128)) (-3921 (((-3 |#4| "failed") $) 84)) (-4024 (((-657 $) |#4| $) 130)) (-3846 (((-3 (-112) (-657 $)) |#4| $) 133)) (-4002 (((-657 (-2 (|:| |val| (-112)) (|:| -3941 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3415 (((-657 $) |#4| $) 126) (((-657 $) (-657 |#4|) $) 125) (((-657 $) (-657 |#4|) (-657 $)) 124) (((-657 $) |#4| (-657 $)) 123)) (-3082 (($ |#4| $) 118) (($ (-657 |#4|) $) 117)) (-3218 (((-657 |#4|) $) 108)) (-3893 (((-112) |#4| $) 100) (((-112) $) 96)) (-3510 ((|#4| |#4| $) 91)) (-2304 (((-112) $ $) 111)) (-2678 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-4299 (((-112) |#4| $) 101) (((-112) $) 97)) (-3511 ((|#4| |#4| $) 92)) (-1460 (((-1142) $) 11)) (-3528 (((-3 |#4| "failed") $) 85)) (-4135 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3923 (((-3 $ "failed") $ |#4|) 79)) (-1456 (($ $ |#4|) 78) (((-657 $) |#4| $) 116) (((-657 $) |#4| (-657 $)) 115) (((-657 $) (-657 |#4|) $) 114) (((-657 $) (-657 |#4|) (-657 $)) 113)) (-2372 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#4|) (-657 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-3807 (((-112) $ $) 39)) (-1368 (((-112) $) 42)) (-3340 (($) 41)) (-4265 (((-784) $) 107)) (-1469 (((-784) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4466)))) (-1899 (($ $) 40)) (-4136 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3529 (($ (-657 |#4|)) 61)) (-2764 (($ $ |#3|) 29)) (-2555 (($ $ |#3|) 31)) (-2038 (($ $) 89)) (-2267 (($ $ |#3|) 30)) (-3515 (((-877) $) 12) (((-657 |#4|) $) 38)) (-4384 (((-784) $) 77 (|has| |#3| (-379)))) (-4166 (((-112) $ $) 6)) (-2726 (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3741 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) 99)) (-1360 (((-657 $) |#4| $) 122) (((-657 $) |#4| (-657 $)) 121) (((-657 $) (-657 |#4|) $) 120) (((-657 $) (-657 |#4|) (-657 $)) 119)) (-3258 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4466)))) (-2330 (((-657 |#3|) $) 82)) (-2374 (((-112) |#4| $) 136)) (-2137 (((-112) |#3| $) 81)) (-2881 (((-112) $ $) 8)) (-3437 (((-784) $) 47 (|has| $ (-6 -4466))))) +(((-1149 |#1| |#2| |#3| |#4|) (-141) (-464) (-806) (-862) (-1087 |t#1| |t#2| |t#3|)) (T -1149)) +NIL +(-13 (-1131 |t#1| |t#2| |t#3| |t#4|) (-797 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-625 (-657 |#4|)) . T) ((-625 (-877)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-797 |#1| |#2| |#3| |#4|) . T) ((-998 |#1| |#2| |#3| |#4|) . T) ((-1093 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1131 |#1| |#2| |#3| |#4|) . T) ((-1232 |#1| |#2| |#3| |#4|) . T) ((-1239) . T)) +((-2632 (((-657 |#2|) |#1|) 15)) (-4246 (((-657 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-657 |#2|) |#1|) 61)) (-2438 (((-657 |#2|) |#2| |#2| |#2|) 45) (((-657 |#2|) |#1|) 59)) (-4318 ((|#2| |#1|) 54)) (-3057 (((-2 (|:| |solns| (-657 |#2|)) (|:| |maps| (-657 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2968 (((-657 |#2|) |#2| |#2|) 42) (((-657 |#2|) |#1|) 58)) (-3134 (((-657 |#2|) |#2| |#2| |#2| |#2|) 46) (((-657 |#2|) |#1|) 60)) (-2662 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-2604 ((|#2| |#2| |#2| |#2|) 51)) (-2563 ((|#2| |#2| |#2|) 50)) (-2378 ((|#2| |#2| |#2| |#2| |#2|) 52))) +(((-1150 |#1| |#2|) (-10 -7 (-15 -2632 ((-657 |#2|) |#1|)) (-15 -4318 (|#2| |#1|)) (-15 -3057 ((-2 (|:| |solns| (-657 |#2|)) (|:| |maps| (-657 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2968 ((-657 |#2|) |#1|)) (-15 -2438 ((-657 |#2|) |#1|)) (-15 -3134 ((-657 |#2|) |#1|)) (-15 -4246 ((-657 |#2|) |#1|)) (-15 -2968 ((-657 |#2|) |#2| |#2|)) (-15 -2438 ((-657 |#2|) |#2| |#2| |#2|)) (-15 -3134 ((-657 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4246 ((-657 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2563 (|#2| |#2| |#2|)) (-15 -2604 (|#2| |#2| |#2| |#2|)) (-15 -2378 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2662 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1265 |#2|) (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (T -1150)) +((-2662 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2)))) (-2378 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2)))) (-2604 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2)))) (-2563 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2)))) (-4246 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3)))) (-3134 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3)))) (-2438 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3)))) (-2968 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3)))) (-4246 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) (-3134 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) (-2438 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) (-2968 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) (-3057 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-2 (|:| |solns| (-657 *5)) (|:| |maps| (-657 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1150 *3 *5)) (-4 *3 (-1265 *5)))) (-4318 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2)))) (-2632 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4))))) +(-10 -7 (-15 -2632 ((-657 |#2|) |#1|)) (-15 -4318 (|#2| |#1|)) (-15 -3057 ((-2 (|:| |solns| (-657 |#2|)) (|:| |maps| (-657 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2968 ((-657 |#2|) |#1|)) (-15 -2438 ((-657 |#2|) |#1|)) (-15 -3134 ((-657 |#2|) |#1|)) (-15 -4246 ((-657 |#2|) |#1|)) (-15 -2968 ((-657 |#2|) |#2| |#2|)) (-15 -2438 ((-657 |#2|) |#2| |#2| |#2|)) (-15 -3134 ((-657 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4246 ((-657 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2563 (|#2| |#2| |#2|)) (-15 -2604 (|#2| |#2| |#2| |#2|)) (-15 -2378 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2662 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-4070 (((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-419 (-972 |#1|))))) 118) (((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-419 (-972 |#1|)))) (-657 (-1198))) 117) (((-657 (-657 (-304 (-326 |#1|)))) (-657 (-419 (-972 |#1|)))) 115) (((-657 (-657 (-304 (-326 |#1|)))) (-657 (-419 (-972 |#1|))) (-657 (-1198))) 113) (((-657 (-304 (-326 |#1|))) (-304 (-419 (-972 |#1|)))) 97) (((-657 (-304 (-326 |#1|))) (-304 (-419 (-972 |#1|))) (-1198)) 98) (((-657 (-304 (-326 |#1|))) (-419 (-972 |#1|))) 92) (((-657 (-304 (-326 |#1|))) (-419 (-972 |#1|)) (-1198)) 82)) (-2392 (((-657 (-657 (-326 |#1|))) (-657 (-419 (-972 |#1|))) (-657 (-1198))) 111) (((-657 (-326 |#1|)) (-419 (-972 |#1|)) (-1198)) 54)) (-1908 (((-1187 (-657 (-326 |#1|)) (-657 (-304 (-326 |#1|)))) (-419 (-972 |#1|)) (-1198)) 122) (((-1187 (-657 (-326 |#1|)) (-657 (-304 (-326 |#1|)))) (-304 (-419 (-972 |#1|))) (-1198)) 121))) +(((-1151 |#1|) (-10 -7 (-15 -4070 ((-657 (-304 (-326 |#1|))) (-419 (-972 |#1|)) (-1198))) (-15 -4070 ((-657 (-304 (-326 |#1|))) (-419 (-972 |#1|)))) (-15 -4070 ((-657 (-304 (-326 |#1|))) (-304 (-419 (-972 |#1|))) (-1198))) (-15 -4070 ((-657 (-304 (-326 |#1|))) (-304 (-419 (-972 |#1|))))) (-15 -4070 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -4070 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-419 (-972 |#1|))))) (-15 -4070 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-419 (-972 |#1|)))) (-657 (-1198)))) (-15 -4070 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-419 (-972 |#1|)))))) (-15 -2392 ((-657 (-326 |#1|)) (-419 (-972 |#1|)) (-1198))) (-15 -2392 ((-657 (-657 (-326 |#1|))) (-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -1908 ((-1187 (-657 (-326 |#1|)) (-657 (-304 (-326 |#1|)))) (-304 (-419 (-972 |#1|))) (-1198))) (-15 -1908 ((-1187 (-657 (-326 |#1|)) (-657 (-304 (-326 |#1|)))) (-419 (-972 |#1|)) (-1198)))) (-13 (-317) (-148))) (T -1151)) +((-1908 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1187 (-657 (-326 *5)) (-657 (-304 (-326 *5))))) (-5 *1 (-1151 *5)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-972 *5)))) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1187 (-657 (-326 *5)) (-657 (-304 (-326 *5))))) (-5 *1 (-1151 *5)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-326 *5)))) (-5 *1 (-1151 *5)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-326 *5))) (-5 *1 (-1151 *5)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-657 (-304 (-419 (-972 *4))))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *4))))) (-5 *1 (-1151 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-304 (-419 (-972 *5))))) (-5 *4 (-657 (-1198))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *5))))) (-5 *1 (-1151 *5)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-657 (-419 (-972 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *4))))) (-5 *1 (-1151 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *5))))) (-5 *1 (-1151 *5)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-304 (-419 (-972 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1151 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-972 *5)))) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-304 (-326 *5)))) (-5 *1 (-1151 *5)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1151 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-304 (-326 *5)))) (-5 *1 (-1151 *5))))) +(-10 -7 (-15 -4070 ((-657 (-304 (-326 |#1|))) (-419 (-972 |#1|)) (-1198))) (-15 -4070 ((-657 (-304 (-326 |#1|))) (-419 (-972 |#1|)))) (-15 -4070 ((-657 (-304 (-326 |#1|))) (-304 (-419 (-972 |#1|))) (-1198))) (-15 -4070 ((-657 (-304 (-326 |#1|))) (-304 (-419 (-972 |#1|))))) (-15 -4070 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -4070 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-419 (-972 |#1|))))) (-15 -4070 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-419 (-972 |#1|)))) (-657 (-1198)))) (-15 -4070 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-419 (-972 |#1|)))))) (-15 -2392 ((-657 (-326 |#1|)) (-419 (-972 |#1|)) (-1198))) (-15 -2392 ((-657 (-657 (-326 |#1|))) (-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -1908 ((-1187 (-657 (-326 |#1|)) (-657 (-304 (-326 |#1|)))) (-304 (-419 (-972 |#1|))) (-1198))) (-15 -1908 ((-1187 (-657 (-326 |#1|)) (-657 (-304 (-326 |#1|)))) (-419 (-972 |#1|)) (-1198)))) +((-2692 (((-419 (-1194 (-326 |#1|))) (-1289 (-326 |#1|)) (-419 (-1194 (-326 |#1|))) (-576)) 36)) (-1668 (((-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|)))) 48))) +(((-1152 |#1|) (-10 -7 (-15 -1668 ((-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))))) (-15 -2692 ((-419 (-1194 (-326 |#1|))) (-1289 (-326 |#1|)) (-419 (-1194 (-326 |#1|))) (-576)))) (-568)) (T -1152)) +((-2692 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1194 (-326 *5)))) (-5 *3 (-1289 (-326 *5))) (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1152 *5)))) (-1668 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1194 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1152 *3))))) +(-10 -7 (-15 -1668 ((-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))))) (-15 -2692 ((-419 (-1194 (-326 |#1|))) (-1289 (-326 |#1|)) (-419 (-1194 (-326 |#1|))) (-576)))) +((-2632 (((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-326 |#1|))) (-657 (-1198))) 244) (((-657 (-304 (-326 |#1|))) (-326 |#1|) (-1198)) 23) (((-657 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1198)) 29) (((-657 (-304 (-326 |#1|))) (-304 (-326 |#1|))) 28) (((-657 (-304 (-326 |#1|))) (-326 |#1|)) 24))) +(((-1153 |#1|) (-10 -7 (-15 -2632 ((-657 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -2632 ((-657 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -2632 ((-657 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1198))) (-15 -2632 ((-657 (-304 (-326 |#1|))) (-326 |#1|) (-1198))) (-15 -2632 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-326 |#1|))) (-657 (-1198))))) (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (T -1153)) +((-2632 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-1198))) (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *5))))) (-5 *1 (-1153 *5)) (-5 *3 (-657 (-304 (-326 *5)))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-657 (-304 (-326 *5)))) (-5 *1 (-1153 *5)) (-5 *3 (-326 *5)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-657 (-304 (-326 *5)))) (-5 *1 (-1153 *5)) (-5 *3 (-304 (-326 *5))))) (-2632 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1153 *4)) (-5 *3 (-304 (-326 *4))))) (-2632 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1153 *4)) (-5 *3 (-326 *4))))) +(-10 -7 (-15 -2632 ((-657 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -2632 ((-657 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -2632 ((-657 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1198))) (-15 -2632 ((-657 (-304 (-326 |#1|))) (-326 |#1|) (-1198))) (-15 -2632 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-326 |#1|))) (-657 (-1198))))) +((-2182 ((|#2| |#2|) 28 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-1781 ((|#2| |#2|) 27 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1154 |#1| |#2|) (-10 -7 (-15 -1781 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2182 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -1781 (|#2| |#2|)) (-15 -2182 (|#2| |#2|))) |%noBranch|)) (-1239) (-13 (-616 (-576) |#1|) (-10 -7 (-6 -4466) (-6 -4467)))) (T -1154)) +((-2182 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1239)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4466) (-6 -4467)))))) (-1781 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1239)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4466) (-6 -4467)))))) (-2182 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4466) (-6 -4467)))))) (-1781 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4466) (-6 -4467))))))) +(-10 -7 (-15 -1781 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2182 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -1781 (|#2| |#2|)) (-15 -2182 (|#2| |#2|))) |%noBranch|)) +((-3423 (((-112) $ $) NIL)) (-2756 (((-1186 3 |#1|) $) 141)) (-3644 (((-112) $) 101)) (-3729 (($ $ (-657 (-963 |#1|))) 44) (($ $ (-657 (-657 |#1|))) 104) (($ (-657 (-963 |#1|))) 103) (((-657 (-963 |#1|)) $) 102)) (-4128 (((-112) $) 72)) (-3664 (($ $ (-963 |#1|)) 76) (($ $ (-657 |#1|)) 81) (($ $ (-784)) 83) (($ (-963 |#1|)) 77) (((-963 |#1|) $) 75)) (-4117 (((-2 (|:| -1500 (-784)) (|:| |curves| (-784)) (|:| |polygons| (-784)) (|:| |constructs| (-784))) $) 139)) (-2858 (((-784) $) 53)) (-3728 (((-784) $) 52)) (-3237 (($ $ (-784) (-963 |#1|)) 67)) (-1716 (((-112) $) 111)) (-3232 (($ $ (-657 (-657 (-963 |#1|))) (-657 (-173)) (-173)) 118) (($ $ (-657 (-657 (-657 |#1|))) (-657 (-173)) (-173)) 120) (($ $ (-657 (-657 (-963 |#1|))) (-112) (-112)) 115) (($ $ (-657 (-657 (-657 |#1|))) (-112) (-112)) 127) (($ (-657 (-657 (-963 |#1|)))) 116) (($ (-657 (-657 (-963 |#1|))) (-112) (-112)) 117) (((-657 (-657 (-963 |#1|))) $) 114)) (-1661 (($ (-657 $)) 56) (($ $ $) 57)) (-1522 (((-657 (-173)) $) 133)) (-2623 (((-657 (-963 |#1|)) $) 130)) (-4040 (((-657 (-657 (-173))) $) 132)) (-2089 (((-657 (-657 (-657 (-963 |#1|)))) $) NIL)) (-1357 (((-657 (-657 (-657 (-784)))) $) 131)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3615 (((-784) $ (-657 (-963 |#1|))) 65)) (-3117 (((-112) $) 84)) (-4352 (($ $ (-657 (-963 |#1|))) 86) (($ $ (-657 (-657 |#1|))) 92) (($ (-657 (-963 |#1|))) 87) (((-657 (-963 |#1|)) $) 85)) (-3552 (($) 48) (($ (-1186 3 |#1|)) 49)) (-1899 (($ $) 63)) (-3484 (((-657 $) $) 62)) (-2375 (($ (-657 $)) 59)) (-3781 (((-657 $) $) 61)) (-3515 (((-877) $) 146)) (-1903 (((-112) $) 94)) (-3769 (($ $ (-657 (-963 |#1|))) 96) (($ $ (-657 (-657 |#1|))) 99) (($ (-657 (-963 |#1|))) 97) (((-657 (-963 |#1|)) $) 95)) (-1569 (($ $) 140)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1155 |#1|) (-1156 |#1|) (-1071)) (T -1155)) +NIL +(-1156 |#1|) +((-3423 (((-112) $ $) 7)) (-2756 (((-1186 3 |#1|) $) 14)) (-3644 (((-112) $) 30)) (-3729 (($ $ (-657 (-963 |#1|))) 34) (($ $ (-657 (-657 |#1|))) 33) (($ (-657 (-963 |#1|))) 32) (((-657 (-963 |#1|)) $) 31)) (-4128 (((-112) $) 45)) (-3664 (($ $ (-963 |#1|)) 50) (($ $ (-657 |#1|)) 49) (($ $ (-784)) 48) (($ (-963 |#1|)) 47) (((-963 |#1|) $) 46)) (-4117 (((-2 (|:| -1500 (-784)) (|:| |curves| (-784)) (|:| |polygons| (-784)) (|:| |constructs| (-784))) $) 16)) (-2858 (((-784) $) 59)) (-3728 (((-784) $) 60)) (-3237 (($ $ (-784) (-963 |#1|)) 51)) (-1716 (((-112) $) 22)) (-3232 (($ $ (-657 (-657 (-963 |#1|))) (-657 (-173)) (-173)) 29) (($ $ (-657 (-657 (-657 |#1|))) (-657 (-173)) (-173)) 28) (($ $ (-657 (-657 (-963 |#1|))) (-112) (-112)) 27) (($ $ (-657 (-657 (-657 |#1|))) (-112) (-112)) 26) (($ (-657 (-657 (-963 |#1|)))) 25) (($ (-657 (-657 (-963 |#1|))) (-112) (-112)) 24) (((-657 (-657 (-963 |#1|))) $) 23)) (-1661 (($ (-657 $)) 58) (($ $ $) 57)) (-1522 (((-657 (-173)) $) 17)) (-2623 (((-657 (-963 |#1|)) $) 21)) (-4040 (((-657 (-657 (-173))) $) 18)) (-2089 (((-657 (-657 (-657 (-963 |#1|)))) $) 19)) (-1357 (((-657 (-657 (-657 (-784)))) $) 20)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3615 (((-784) $ (-657 (-963 |#1|))) 52)) (-3117 (((-112) $) 40)) (-4352 (($ $ (-657 (-963 |#1|))) 44) (($ $ (-657 (-657 |#1|))) 43) (($ (-657 (-963 |#1|))) 42) (((-657 (-963 |#1|)) $) 41)) (-3552 (($) 62) (($ (-1186 3 |#1|)) 61)) (-1899 (($ $) 53)) (-3484 (((-657 $) $) 54)) (-2375 (($ (-657 $)) 56)) (-3781 (((-657 $) $) 55)) (-3515 (((-877) $) 12)) (-1903 (((-112) $) 35)) (-3769 (($ $ (-657 (-963 |#1|))) 39) (($ $ (-657 (-657 |#1|))) 38) (($ (-657 (-963 |#1|))) 37) (((-657 (-963 |#1|)) $) 36)) (-1569 (($ $) 15)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) +(((-1156 |#1|) (-141) (-1071)) (T -1156)) +((-3515 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-877)))) (-3552 (*1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071)))) (-3552 (*1 *1 *2) (-12 (-5 *2 (-1186 3 *3)) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) (-2858 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) (-1661 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-1661 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3781 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-5 *2 (-657 *1)) (-4 *1 (-1156 *3)))) (-3484 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-5 *2 (-657 *1)) (-4 *1 (-1156 *3)))) (-1899 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071)))) (-3615 (*1 *2 *1 *3) (-12 (-5 *3 (-657 (-963 *4))) (-4 *1 (-1156 *4)) (-4 *4 (-1071)) (-5 *2 (-784)))) (-3237 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-963 *4)) (-4 *1 (-1156 *4)) (-4 *4 (-1071)))) (-3664 (*1 *1 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3664 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3664 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3664 (*1 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-963 *3)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (-4352 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-963 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-4352 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-4352 (*1 *1 *2) (-12 (-5 *2 (-657 (-963 *3))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) (-4352 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-963 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3769 (*1 *1 *2) (-12 (-5 *2 (-657 (-963 *3))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) (-1903 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (-3729 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-963 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3729 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3729 (*1 *1 *2) (-12 (-5 *2 (-657 (-963 *3))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (-3232 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-657 (-657 (-963 *5)))) (-5 *3 (-657 (-173))) (-5 *4 (-173)) (-4 *1 (-1156 *5)) (-4 *5 (-1071)))) (-3232 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-657 (-657 (-657 *5)))) (-5 *3 (-657 (-173))) (-5 *4 (-173)) (-4 *1 (-1156 *5)) (-4 *5 (-1071)))) (-3232 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-657 (-657 (-963 *4)))) (-5 *3 (-112)) (-4 *1 (-1156 *4)) (-4 *4 (-1071)))) (-3232 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-657 (-657 (-657 *4)))) (-5 *3 (-112)) (-4 *1 (-1156 *4)) (-4 *4 (-1071)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-963 *3)))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) (-3232 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-657 (-657 (-963 *4)))) (-5 *3 (-112)) (-4 *4 (-1071)) (-4 *1 (-1156 *4)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-657 (-963 *3)))))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (-2623 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-657 (-657 (-784))))))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-657 (-657 (-963 *3))))))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-657 (-173)))))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-173))))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| -1500 (-784)) (|:| |curves| (-784)) (|:| |polygons| (-784)) (|:| |constructs| (-784)))))) (-1569 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071)))) (-2756 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-1186 3 *3))))) +(-13 (-1122) (-10 -8 (-15 -3552 ($)) (-15 -3552 ($ (-1186 3 |t#1|))) (-15 -3728 ((-784) $)) (-15 -2858 ((-784) $)) (-15 -1661 ($ (-657 $))) (-15 -1661 ($ $ $)) (-15 -2375 ($ (-657 $))) (-15 -3781 ((-657 $) $)) (-15 -3484 ((-657 $) $)) (-15 -1899 ($ $)) (-15 -3615 ((-784) $ (-657 (-963 |t#1|)))) (-15 -3237 ($ $ (-784) (-963 |t#1|))) (-15 -3664 ($ $ (-963 |t#1|))) (-15 -3664 ($ $ (-657 |t#1|))) (-15 -3664 ($ $ (-784))) (-15 -3664 ($ (-963 |t#1|))) (-15 -3664 ((-963 |t#1|) $)) (-15 -4128 ((-112) $)) (-15 -4352 ($ $ (-657 (-963 |t#1|)))) (-15 -4352 ($ $ (-657 (-657 |t#1|)))) (-15 -4352 ($ (-657 (-963 |t#1|)))) (-15 -4352 ((-657 (-963 |t#1|)) $)) (-15 -3117 ((-112) $)) (-15 -3769 ($ $ (-657 (-963 |t#1|)))) (-15 -3769 ($ $ (-657 (-657 |t#1|)))) (-15 -3769 ($ (-657 (-963 |t#1|)))) (-15 -3769 ((-657 (-963 |t#1|)) $)) (-15 -1903 ((-112) $)) (-15 -3729 ($ $ (-657 (-963 |t#1|)))) (-15 -3729 ($ $ (-657 (-657 |t#1|)))) (-15 -3729 ($ (-657 (-963 |t#1|)))) (-15 -3729 ((-657 (-963 |t#1|)) $)) (-15 -3644 ((-112) $)) (-15 -3232 ($ $ (-657 (-657 (-963 |t#1|))) (-657 (-173)) (-173))) (-15 -3232 ($ $ (-657 (-657 (-657 |t#1|))) (-657 (-173)) (-173))) (-15 -3232 ($ $ (-657 (-657 (-963 |t#1|))) (-112) (-112))) (-15 -3232 ($ $ (-657 (-657 (-657 |t#1|))) (-112) (-112))) (-15 -3232 ($ (-657 (-657 (-963 |t#1|))))) (-15 -3232 ($ (-657 (-657 (-963 |t#1|))) (-112) (-112))) (-15 -3232 ((-657 (-657 (-963 |t#1|))) $)) (-15 -1716 ((-112) $)) (-15 -2623 ((-657 (-963 |t#1|)) $)) (-15 -1357 ((-657 (-657 (-657 (-784)))) $)) (-15 -2089 ((-657 (-657 (-657 (-963 |t#1|)))) $)) (-15 -4040 ((-657 (-657 (-173))) $)) (-15 -1522 ((-657 (-173)) $)) (-15 -4117 ((-2 (|:| -1500 (-784)) (|:| |curves| (-784)) (|:| |polygons| (-784)) (|:| |constructs| (-784))) $)) (-15 -1569 ($ $)) (-15 -2756 ((-1186 3 |t#1|) $)) (-15 -3515 ((-877) $)))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 184) (($ (-1203)) NIL) (((-1203) $) 7)) (-2704 (((-112) $ (|[\|\|]| (-536))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-689))) 27) (((-112) $ (|[\|\|]| (-1299))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-618))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1137))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-694))) 55) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1088))) 63) (((-112) $ (|[\|\|]| (-1300))) 67) (((-112) $ (|[\|\|]| (-537))) 71) (((-112) $ (|[\|\|]| (-1173))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-684))) 83) (((-112) $ (|[\|\|]| (-321))) 87) (((-112) $ (|[\|\|]| (-1058))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-992))) 99) (((-112) $ (|[\|\|]| (-1095))) 103) (((-112) $ (|[\|\|]| (-1112))) 107) (((-112) $ (|[\|\|]| (-1118))) 111) (((-112) $ (|[\|\|]| (-638))) 115) (((-112) $ (|[\|\|]| (-1188))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-490))) 131) (((-112) $ (|[\|\|]| (-604))) 135) (((-112) $ (|[\|\|]| (-518))) 139) (((-112) $ (|[\|\|]| (-1180))) 143) (((-112) $ (|[\|\|]| (-576))) 147)) (-4166 (((-112) $ $) NIL)) (-1952 (((-536) $) 20) (((-220) $) 24) (((-689) $) 28) (((-1299) $) 32) (((-139) $) 36) (((-618) $) 40) (((-134) $) 44) (((-1137) $) 48) (((-96) $) 52) (((-694) $) 56) (((-529) $) 60) (((-1088) $) 64) (((-1300) $) 68) (((-537) $) 72) (((-1173) $) 76) (((-155) $) 80) (((-684) $) 84) (((-321) $) 88) (((-1058) $) 92) (((-182) $) 96) (((-992) $) 100) (((-1095) $) 104) (((-1112) $) 108) (((-1118) $) 112) (((-638) $) 116) (((-1188) $) 120) (((-157) $) 124) (((-138) $) 128) (((-490) $) 132) (((-604) $) 136) (((-518) $) 140) (((-1180) $) 144) (((-576) $) 148)) (-2881 (((-112) $ $) NIL))) +(((-1157) (-1159)) (T -1157)) +NIL +(-1159) +((-4330 (((-657 (-1203)) (-1180)) 9))) +(((-1158) (-10 -7 (-15 -4330 ((-657 (-1203)) (-1180))))) (T -1158)) +((-4330 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-657 (-1203))) (-5 *1 (-1158))))) +(-10 -7 (-15 -4330 ((-657 (-1203)) (-1180)))) +((-3423 (((-112) $ $) 7)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-1203)) 17) (((-1203) $) 16)) (-2704 (((-112) $ (|[\|\|]| (-536))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-689))) 81) (((-112) $ (|[\|\|]| (-1299))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-618))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1137))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-694))) 67) (((-112) $ (|[\|\|]| (-529))) 65) (((-112) $ (|[\|\|]| (-1088))) 63) (((-112) $ (|[\|\|]| (-1300))) 61) (((-112) $ (|[\|\|]| (-537))) 59) (((-112) $ (|[\|\|]| (-1173))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-684))) 53) (((-112) $ (|[\|\|]| (-321))) 51) (((-112) $ (|[\|\|]| (-1058))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-992))) 45) (((-112) $ (|[\|\|]| (-1095))) 43) (((-112) $ (|[\|\|]| (-1112))) 41) (((-112) $ (|[\|\|]| (-1118))) 39) (((-112) $ (|[\|\|]| (-638))) 37) (((-112) $ (|[\|\|]| (-1188))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-490))) 29) (((-112) $ (|[\|\|]| (-604))) 27) (((-112) $ (|[\|\|]| (-518))) 25) (((-112) $ (|[\|\|]| (-1180))) 23) (((-112) $ (|[\|\|]| (-576))) 21)) (-4166 (((-112) $ $) 6)) (-1952 (((-536) $) 84) (((-220) $) 82) (((-689) $) 80) (((-1299) $) 78) (((-139) $) 76) (((-618) $) 74) (((-134) $) 72) (((-1137) $) 70) (((-96) $) 68) (((-694) $) 66) (((-529) $) 64) (((-1088) $) 62) (((-1300) $) 60) (((-537) $) 58) (((-1173) $) 56) (((-155) $) 54) (((-684) $) 52) (((-321) $) 50) (((-1058) $) 48) (((-182) $) 46) (((-992) $) 44) (((-1095) $) 42) (((-1112) $) 40) (((-1118) $) 38) (((-638) $) 36) (((-1188) $) 34) (((-157) $) 32) (((-138) $) 30) (((-490) $) 28) (((-604) $) 26) (((-518) $) 24) (((-1180) $) 22) (((-576) $) 20)) (-2881 (((-112) $ $) 8))) +(((-1159) (-141)) (T -1159)) +((-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-536)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-220)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-689))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-689)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1299)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-139)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-618)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-134)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1137)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-96)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-694))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-694)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-529)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1088)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1300))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1300)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-537)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1173))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1173)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-155)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-684))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-684)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-321)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1058))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1058)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-182)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-992))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-992)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1095)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1112)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1118))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1118)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-638)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1188)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-157)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-138)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-490)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-604)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-518)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1180)))) (-2704 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-576))))) +(-13 (-1105) (-1284) (-10 -8 (-15 -2704 ((-112) $ (|[\|\|]| (-536)))) (-15 -1952 ((-536) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-220)))) (-15 -1952 ((-220) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-689)))) (-15 -1952 ((-689) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1299)))) (-15 -1952 ((-1299) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-139)))) (-15 -1952 ((-139) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-618)))) (-15 -1952 ((-618) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-134)))) (-15 -1952 ((-134) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1137)))) (-15 -1952 ((-1137) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-96)))) (-15 -1952 ((-96) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-694)))) (-15 -1952 ((-694) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-529)))) (-15 -1952 ((-529) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1088)))) (-15 -1952 ((-1088) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1300)))) (-15 -1952 ((-1300) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-537)))) (-15 -1952 ((-537) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1173)))) (-15 -1952 ((-1173) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-155)))) (-15 -1952 ((-155) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-684)))) (-15 -1952 ((-684) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-321)))) (-15 -1952 ((-321) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1058)))) (-15 -1952 ((-1058) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-182)))) (-15 -1952 ((-182) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-992)))) (-15 -1952 ((-992) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1095)))) (-15 -1952 ((-1095) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1112)))) (-15 -1952 ((-1112) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1118)))) (-15 -1952 ((-1118) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-638)))) (-15 -1952 ((-638) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1188)))) (-15 -1952 ((-1188) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-157)))) (-15 -1952 ((-157) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-138)))) (-15 -1952 ((-138) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-490)))) (-15 -1952 ((-490) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-604)))) (-15 -1952 ((-604) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-518)))) (-15 -1952 ((-518) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-1180)))) (-15 -1952 ((-1180) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-576)))) (-15 -1952 ((-576) $)))) +(((-93) . T) ((-102) . T) ((-628 #0=(-1203)) . T) ((-625 (-877)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1122) . T) ((-1105) . T) ((-1239) . T) ((-1284) . T)) +((-3497 (((-1294) (-657 (-877))) 22) (((-1294) (-877)) 21)) (-2956 (((-1294) (-657 (-877))) 20) (((-1294) (-877)) 19)) (-2063 (((-1294) (-657 (-877))) 18) (((-1294) (-877)) 10) (((-1294) (-1180) (-877)) 16))) +(((-1160) (-10 -7 (-15 -2063 ((-1294) (-1180) (-877))) (-15 -2063 ((-1294) (-877))) (-15 -2956 ((-1294) (-877))) (-15 -3497 ((-1294) (-877))) (-15 -2063 ((-1294) (-657 (-877)))) (-15 -2956 ((-1294) (-657 (-877)))) (-15 -3497 ((-1294) (-657 (-877)))))) (T -1160)) +((-3497 (*1 *2 *3) (-12 (-5 *3 (-657 (-877))) (-5 *2 (-1294)) (-5 *1 (-1160)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-657 (-877))) (-5 *2 (-1294)) (-5 *1 (-1160)))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-657 (-877))) (-5 *2 (-1294)) (-5 *1 (-1160)))) (-3497 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) (-2063 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160))))) +(-10 -7 (-15 -2063 ((-1294) (-1180) (-877))) (-15 -2063 ((-1294) (-877))) (-15 -2956 ((-1294) (-877))) (-15 -3497 ((-1294) (-877))) (-15 -2063 ((-1294) (-657 (-877)))) (-15 -2956 ((-1294) (-657 (-877)))) (-15 -3497 ((-1294) (-657 (-877))))) +((-2985 (($ $ $) 10)) (-2847 (($ $) 9)) (-3966 (($ $ $) 13)) (-1756 (($ $ $) 15)) (-2491 (($ $ $) 12)) (-3771 (($ $ $) 14)) (-3129 (($ $) 17)) (-3758 (($ $) 16)) (-2127 (($ $) 6)) (-3571 (($ $ $) 11) (($ $) 7)) (-3939 (($ $ $) 8))) +(((-1161) (-141)) (T -1161)) +((-3129 (*1 *1 *1) (-4 *1 (-1161))) (-3758 (*1 *1 *1) (-4 *1 (-1161))) (-1756 (*1 *1 *1 *1) (-4 *1 (-1161))) (-3771 (*1 *1 *1 *1) (-4 *1 (-1161))) (-3966 (*1 *1 *1 *1) (-4 *1 (-1161))) (-2491 (*1 *1 *1 *1) (-4 *1 (-1161))) (-3571 (*1 *1 *1 *1) (-4 *1 (-1161))) (-2985 (*1 *1 *1 *1) (-4 *1 (-1161))) (-2847 (*1 *1 *1) (-4 *1 (-1161))) (-3939 (*1 *1 *1 *1) (-4 *1 (-1161))) (-3571 (*1 *1 *1) (-4 *1 (-1161))) (-2127 (*1 *1 *1) (-4 *1 (-1161)))) +(-13 (-10 -8 (-15 -2127 ($ $)) (-15 -3571 ($ $)) (-15 -3939 ($ $ $)) (-15 -2847 ($ $)) (-15 -2985 ($ $ $)) (-15 -3571 ($ $ $)) (-15 -2491 ($ $ $)) (-15 -3966 ($ $ $)) (-15 -3771 ($ $ $)) (-15 -1756 ($ $ $)) (-15 -3758 ($ $)) (-15 -3129 ($ $)))) +((-3423 (((-112) $ $) 44)) (-3037 ((|#1| $) 17)) (-1705 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2037 (((-112) $) 19)) (-4126 (($ $ |#1|) 30)) (-4232 (($ $ (-112)) 32)) (-1376 (($ $) 33)) (-4092 (($ $ |#2|) 31)) (-1708 (((-1180) $) NIL)) (-2926 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-1460 (((-1142) $) NIL)) (-1368 (((-112) $) 16)) (-3340 (($) 13)) (-1899 (($ $) 29)) (-3529 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3941 |#2|))) 23) (((-657 $) (-657 (-2 (|:| |val| |#1|) (|:| -3941 |#2|)))) 26) (((-657 $) |#1| (-657 |#2|)) 28)) (-3940 ((|#2| $) 18)) (-3515 (((-877) $) 53)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 42))) +(((-1162 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -3340 ($)) (-15 -1368 ((-112) $)) (-15 -3037 (|#1| $)) (-15 -3940 (|#2| $)) (-15 -2037 ((-112) $)) (-15 -3529 ($ |#1| |#2| (-112))) (-15 -3529 ($ |#1| |#2|)) (-15 -3529 ($ (-2 (|:| |val| |#1|) (|:| -3941 |#2|)))) (-15 -3529 ((-657 $) (-657 (-2 (|:| |val| |#1|) (|:| -3941 |#2|))))) (-15 -3529 ((-657 $) |#1| (-657 |#2|))) (-15 -1899 ($ $)) (-15 -4126 ($ $ |#1|)) (-15 -4092 ($ $ |#2|)) (-15 -4232 ($ $ (-112))) (-15 -1376 ($ $)) (-15 -2926 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1705 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1122) (-34)) (-13 (-1122) (-34))) (T -1162)) +((-3340 (*1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-3037 (*1 *2 *1) (-12 (-4 *2 (-13 (-1122) (-34))) (-5 *1 (-1162 *2 *3)) (-4 *3 (-13 (-1122) (-34))))) (-3940 (*1 *2 *1) (-12 (-4 *2 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *2)) (-4 *3 (-13 (-1122) (-34))))) (-2037 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3529 (*1 *1 *2 *3) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3941 *4))) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *4)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| |val| *4) (|:| -3941 *5)))) (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-657 (-1162 *4 *5))) (-5 *1 (-1162 *4 *5)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *5)) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-657 (-1162 *3 *5))) (-5 *1 (-1162 *3 *5)) (-4 *3 (-13 (-1122) (-34))))) (-1899 (*1 *1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-4126 (*1 *1 *1 *2) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-4092 (*1 *1 *1 *2) (-12 (-5 *1 (-1162 *3 *2)) (-4 *3 (-13 (-1122) (-34))) (-4 *2 (-13 (-1122) (-34))))) (-4232 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-1376 (*1 *1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-2926 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1122) (-34))) (-4 *6 (-13 (-1122) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *5 *6)))) (-1705 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *4 *5)) (-4 *4 (-13 (-1122) (-34)))))) +(-13 (-1122) (-10 -8 (-15 -3340 ($)) (-15 -1368 ((-112) $)) (-15 -3037 (|#1| $)) (-15 -3940 (|#2| $)) (-15 -2037 ((-112) $)) (-15 -3529 ($ |#1| |#2| (-112))) (-15 -3529 ($ |#1| |#2|)) (-15 -3529 ($ (-2 (|:| |val| |#1|) (|:| -3941 |#2|)))) (-15 -3529 ((-657 $) (-657 (-2 (|:| |val| |#1|) (|:| -3941 |#2|))))) (-15 -3529 ((-657 $) |#1| (-657 |#2|))) (-15 -1899 ($ $)) (-15 -4126 ($ $ |#1|)) (-15 -4092 ($ $ |#2|)) (-15 -4232 ($ $ (-112))) (-15 -1376 ($ $)) (-15 -2926 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1705 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-3423 (((-112) $ $) NIL (|has| (-1162 |#1| |#2|) (-102)))) (-3037 (((-1162 |#1| |#2|) $) 27)) (-3278 (($ $) 91)) (-1721 (((-112) (-1162 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-4034 (($ $ $ (-657 (-1162 |#1| |#2|))) 108) (($ $ $ (-657 (-1162 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-4284 (((-112) $ (-784)) NIL)) (-1439 (((-1162 |#1| |#2|) $ (-1162 |#1| |#2|)) 46 (|has| $ (-6 -4467)))) (-3719 (((-1162 |#1| |#2|) $ "value" (-1162 |#1| |#2|)) NIL (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) 44 (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-2543 (((-657 (-2 (|:| |val| |#1|) (|:| -3941 |#2|))) $) 95)) (-1920 (($ (-1162 |#1| |#2|) $) 42)) (-3901 (($ (-1162 |#1| |#2|) $) 34)) (-1448 (((-657 (-1162 |#1| |#2|)) $) NIL (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) 54)) (-4116 (((-112) (-1162 |#1| |#2|) $) 97)) (-4257 (((-112) $ $) NIL (|has| (-1162 |#1| |#2|) (-1122)))) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 (-1162 |#1| |#2|)) $) 58 (|has| $ (-6 -4466)))) (-3326 (((-112) (-1162 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-1162 |#1| |#2|) (-1122))))) (-1799 (($ (-1 (-1162 |#1| |#2|) (-1162 |#1| |#2|)) $) 50 (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-1162 |#1| |#2|) (-1162 |#1| |#2|)) $) 49)) (-4326 (((-112) $ (-784)) NIL)) (-2397 (((-657 (-1162 |#1| |#2|)) $) 56)) (-1743 (((-112) $) 45)) (-1708 (((-1180) $) NIL (|has| (-1162 |#1| |#2|) (-1122)))) (-1460 (((-1142) $) NIL (|has| (-1162 |#1| |#2|) (-1122)))) (-1873 (((-3 $ "failed") $) 89)) (-2372 (((-112) (-1 (-112) (-1162 |#1| |#2|)) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-1162 |#1| |#2|)))) NIL (-12 (|has| (-1162 |#1| |#2|) (-319 (-1162 |#1| |#2|))) (|has| (-1162 |#1| |#2|) (-1122)))) (($ $ (-304 (-1162 |#1| |#2|))) NIL (-12 (|has| (-1162 |#1| |#2|) (-319 (-1162 |#1| |#2|))) (|has| (-1162 |#1| |#2|) (-1122)))) (($ $ (-1162 |#1| |#2|) (-1162 |#1| |#2|)) NIL (-12 (|has| (-1162 |#1| |#2|) (-319 (-1162 |#1| |#2|))) (|has| (-1162 |#1| |#2|) (-1122)))) (($ $ (-657 (-1162 |#1| |#2|)) (-657 (-1162 |#1| |#2|))) NIL (-12 (|has| (-1162 |#1| |#2|) (-319 (-1162 |#1| |#2|))) (|has| (-1162 |#1| |#2|) (-1122))))) (-3807 (((-112) $ $) 53)) (-1368 (((-112) $) 24)) (-3340 (($) 26)) (-2780 (((-1162 |#1| |#2|) $ "value") NIL)) (-3064 (((-576) $ $) NIL)) (-4392 (((-112) $) 47)) (-1469 (((-784) (-1 (-112) (-1162 |#1| |#2|)) $) NIL (|has| $ (-6 -4466))) (((-784) (-1162 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-1162 |#1| |#2|) (-1122))))) (-1899 (($ $) 52)) (-3529 (($ (-1162 |#1| |#2|)) 10) (($ |#1| |#2| (-657 $)) 13) (($ |#1| |#2| (-657 (-1162 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-657 |#2|)) 18)) (-1351 (((-657 |#2|) $) 96)) (-3515 (((-877) $) 87 (|has| (-1162 |#1| |#2|) (-625 (-877))))) (-4160 (((-657 $) $) 31)) (-3631 (((-112) $ $) NIL (|has| (-1162 |#1| |#2|) (-1122)))) (-4166 (((-112) $ $) NIL (|has| (-1162 |#1| |#2|) (-102)))) (-3258 (((-112) (-1 (-112) (-1162 |#1| |#2|)) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 70 (|has| (-1162 |#1| |#2|) (-102)))) (-3437 (((-784) $) 64 (|has| $ (-6 -4466))))) +(((-1163 |#1| |#2|) (-13 (-1032 (-1162 |#1| |#2|)) (-10 -8 (-6 -4467) (-6 -4466) (-15 -1873 ((-3 $ "failed") $)) (-15 -3278 ($ $)) (-15 -3529 ($ (-1162 |#1| |#2|))) (-15 -3529 ($ |#1| |#2| (-657 $))) (-15 -3529 ($ |#1| |#2| (-657 (-1162 |#1| |#2|)))) (-15 -3529 ($ |#1| |#2| |#1| (-657 |#2|))) (-15 -1351 ((-657 |#2|) $)) (-15 -2543 ((-657 (-2 (|:| |val| |#1|) (|:| -3941 |#2|))) $)) (-15 -4116 ((-112) (-1162 |#1| |#2|) $)) (-15 -1721 ((-112) (-1162 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3901 ($ (-1162 |#1| |#2|) $)) (-15 -1920 ($ (-1162 |#1| |#2|) $)) (-15 -4034 ($ $ $ (-657 (-1162 |#1| |#2|)))) (-15 -4034 ($ $ $ (-657 (-1162 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1122) (-34)) (-13 (-1122) (-34))) (T -1163)) +((-1873 (*1 *1 *1) (|partial| -12 (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3278 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4)))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-657 (-1163 *2 *3))) (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-657 (-1162 *2 *3))) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))) (-5 *1 (-1163 *2 *3)))) (-3529 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-13 (-1122) (-34))) (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))))) (-1351 (*1 *2 *1) (-12 (-5 *2 (-657 *4)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) (-5 *1 (-1163 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-4116 (*1 *2 *3 *1) (-12 (-5 *3 (-1162 *4 *5)) (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-112)) (-5 *1 (-1163 *4 *5)))) (-1721 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1162 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1122) (-34))) (-4 *6 (-13 (-1122) (-34))) (-5 *2 (-112)) (-5 *1 (-1163 *5 *6)))) (-3901 (*1 *1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4)))) (-1920 (*1 *1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4)))) (-4034 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-657 (-1162 *3 *4))) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4)))) (-4034 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-1162 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) (-5 *1 (-1163 *4 *5))))) +(-13 (-1032 (-1162 |#1| |#2|)) (-10 -8 (-6 -4467) (-6 -4466) (-15 -1873 ((-3 $ "failed") $)) (-15 -3278 ($ $)) (-15 -3529 ($ (-1162 |#1| |#2|))) (-15 -3529 ($ |#1| |#2| (-657 $))) (-15 -3529 ($ |#1| |#2| (-657 (-1162 |#1| |#2|)))) (-15 -3529 ($ |#1| |#2| |#1| (-657 |#2|))) (-15 -1351 ((-657 |#2|) $)) (-15 -2543 ((-657 (-2 (|:| |val| |#1|) (|:| -3941 |#2|))) $)) (-15 -4116 ((-112) (-1162 |#1| |#2|) $)) (-15 -1721 ((-112) (-1162 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3901 ($ (-1162 |#1| |#2|) $)) (-15 -1920 ($ (-1162 |#1| |#2|) $)) (-15 -4034 ($ $ $ (-657 (-1162 |#1| |#2|)))) (-15 -4034 ($ $ $ (-657 (-1162 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3564 (($ $) NIL)) (-2256 ((|#2| $) NIL)) (-1616 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2342 (($ (-702 |#2|)) 56)) (-3425 (((-112) $) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-1868 (($ |#2|) 14)) (-2515 (($) NIL T CONST)) (-4389 (($ $) 69 (|has| |#2| (-317)))) (-3520 (((-245 |#1| |#2|) $ (-576)) 42)) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) ((|#2| $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) 83)) (-4343 (((-784) $) 71 (|has| |#2| (-568)))) (-1741 ((|#2| $ (-576) (-576)) NIL)) (-1448 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3994 (((-112) $) NIL)) (-3652 (((-784) $) 73 (|has| |#2| (-568)))) (-2992 (((-657 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-568)))) (-2334 (((-784) $) NIL)) (-4096 (($ |#2|) 25)) (-2344 (((-784) $) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3242 ((|#2| $) 67 (|has| |#2| (-6 (-4468 "*"))))) (-4076 (((-576) $) NIL)) (-2581 (((-576) $) NIL)) (-3855 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2898 (((-576) $) NIL)) (-4230 (((-576) $) NIL)) (-2484 (($ (-657 (-657 |#2|))) 37)) (-1799 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2819 (((-657 (-657 |#2|)) $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-1708 (((-1180) $) NIL)) (-1455 (((-3 $ "failed") $) 80 (|has| |#2| (-374)))) (-1460 (((-1142) $) NIL)) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-2372 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) NIL)) (-2209 (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237))) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-3176 ((|#2| $) NIL)) (-2959 (($ (-657 |#2|)) 50)) (-3249 (((-112) $) NIL)) (-3500 (((-245 |#1| |#2|) $) NIL)) (-3917 ((|#2| $) 65 (|has| |#2| (-6 (-4468 "*"))))) (-1469 (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1899 (($ $) NIL)) (-4136 (((-548) $) 89 (|has| |#2| (-626 (-548))))) (-1612 (((-245 |#1| |#2|) $ (-576)) 44)) (-3515 (((-877) $) 47) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1060 (-419 (-576))))) (($ |#2|) NIL) (((-702 |#2|) $) 52)) (-3845 (((-784)) 23 T CONST)) (-4166 (((-112) $ $) NIL)) (-3258 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2203 (((-112) $) NIL)) (-2716 (($) 16 T CONST)) (-2725 (($) 21 T CONST)) (-2066 (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237))) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) 63) (($ $ (-576)) 82 (|has| |#2| (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1164 |#1| |#2|) (-13 (-1145 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-702 |#2|)) (-10 -8 (-15 -4096 ($ |#2|)) (-15 -3564 ($ $)) (-15 -2342 ($ (-702 |#2|))) (IF (|has| |#2| (-6 (-4468 "*"))) (-6 -4455) |%noBranch|) (IF (|has| |#2| (-6 (-4468 "*"))) (IF (|has| |#2| (-6 -4463)) (-6 -4463) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-784) (-1071)) (T -1164)) +((-4096 (*1 *1 *2) (-12 (-5 *1 (-1164 *3 *2)) (-14 *3 (-784)) (-4 *2 (-1071)))) (-3564 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-784)) (-4 *3 (-1071)))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-702 *4)) (-4 *4 (-1071)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-784))))) +(-13 (-1145 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-702 |#2|)) (-10 -8 (-15 -4096 ($ |#2|)) (-15 -3564 ($ $)) (-15 -2342 ($ (-702 |#2|))) (IF (|has| |#2| (-6 (-4468 "*"))) (-6 -4455) |%noBranch|) (IF (|has| |#2| (-6 (-4468 "*"))) (IF (|has| |#2| (-6 -4463)) (-6 -4463) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) +((-1804 (($ $) 19)) (-3839 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-4114 (((-112) $ $) 24)) (-1858 (($ $) 17)) (-2780 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1256 (-576))) NIL) (($ $ $) 31)) (-3515 (($ (-145)) 29) (((-877) $) NIL))) +(((-1165 |#1|) (-10 -8 (-15 -3515 ((-877) |#1|)) (-15 -2780 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1| (-142))) (-15 -3839 (|#1| |#1| (-145))) (-15 -3515 (|#1| (-145))) (-15 -4114 ((-112) |#1| |#1|)) (-15 -1804 (|#1| |#1|)) (-15 -1858 (|#1| |#1|)) (-15 -2780 (|#1| |#1| (-1256 (-576)))) (-15 -2780 ((-145) |#1| (-576))) (-15 -2780 ((-145) |#1| (-576) (-145)))) (-1166)) (T -1165)) +NIL +(-10 -8 (-15 -3515 ((-877) |#1|)) (-15 -2780 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1| (-142))) (-15 -3839 (|#1| |#1| (-145))) (-15 -3515 (|#1| (-145))) (-15 -4114 ((-112) |#1| |#1|)) (-15 -1804 (|#1| |#1|)) (-15 -1858 (|#1| |#1|)) (-15 -2780 (|#1| |#1| (-1256 (-576)))) (-15 -2780 ((-145) |#1| (-576))) (-15 -2780 ((-145) |#1| (-576) (-145)))) +((-3423 (((-112) $ $) 20 (|has| (-145) (-102)))) (-2990 (($ $) 123)) (-1804 (($ $) 124)) (-3839 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3590 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-4087 (((-112) $ $) 121)) (-4062 (((-112) $ $ (-576)) 120)) (-3610 (((-657 $) $ (-145)) 113) (((-657 $) $ (-142)) 112)) (-3925 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-862)))) (-1698 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4467))) (($ $) 91 (-12 (|has| (-145) (-862)) (|has| $ (-6 -4467))))) (-1832 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-862)))) (-4284 (((-112) $ (-784)) 8)) (-3719 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4467))) (((-145) $ (-1256 (-576)) (-145)) 60 (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-2641 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-4072 (($ $) 93 (|has| $ (-6 -4467)))) (-3796 (($ $) 103)) (-2111 (($ $ (-1256 (-576)) $) 117)) (-1620 (($ $) 80 (-12 (|has| (-145) (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ (-145) $) 79 (-12 (|has| (-145) (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4466)))) (-3662 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1122)) (|has| $ (-6 -4466)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4466))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4466)))) (-1810 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4467)))) (-1741 (((-145) $ (-576)) 52)) (-4114 (((-112) $ $) 122)) (-3619 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1122))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1122))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-1448 (((-657 (-145)) $) 31 (|has| $ (-6 -4466)))) (-4096 (($ (-784) (-145)) 70)) (-1786 (((-112) $ (-784)) 9)) (-3363 (((-576) $) 44 (|has| (-576) (-862)))) (-3740 (($ $ $) 85 (|has| (-145) (-862)))) (-1661 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-862)))) (-3855 (((-657 (-145)) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1122)) (|has| $ (-6 -4466))))) (-1833 (((-576) $) 45 (|has| (-576) (-862)))) (-2249 (($ $ $) 86 (|has| (-145) (-862)))) (-1945 (((-112) $ $ (-145)) 118)) (-1365 (((-784) $ $ (-145)) 119)) (-1799 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2518 (($ $) 125)) (-1858 (($ $) 126)) (-4326 (((-112) $ (-784)) 10)) (-2652 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-1708 (((-1180) $) 23 (|has| (-145) (-1122)))) (-2225 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-3309 (((-657 (-576)) $) 47)) (-4324 (((-112) (-576) $) 48)) (-1460 (((-1142) $) 22 (|has| (-145) (-1122)))) (-3528 (((-145) $) 43 (|has| (-576) (-862)))) (-4135 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-1495 (($ $ (-145)) 42 (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-657 (-145)) (-657 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-3585 (((-657 (-145)) $) 49)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1256 (-576))) 71) (($ $ $) 105)) (-3395 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-1469 (((-784) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4466))) (((-784) (-145) $) 29 (-12 (|has| (-145) (-1122)) (|has| $ (-6 -4466))))) (-1818 (($ $ $ (-576)) 94 (|has| $ (-6 -4467)))) (-1899 (($ $) 13)) (-4136 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-3529 (($ (-657 (-145))) 72)) (-1637 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3515 (($ (-145)) 114) (((-877) $) 18 (|has| (-145) (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| (-145) (-102)))) (-3258 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) 87 (|has| (-145) (-862)))) (-2913 (((-112) $ $) 89 (|has| (-145) (-862)))) (-2881 (((-112) $ $) 19 (|has| (-145) (-102)))) (-2925 (((-112) $ $) 88 (|has| (-145) (-862)))) (-2901 (((-112) $ $) 90 (|has| (-145) (-862)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-1166) (-141)) (T -1166)) +((-1858 (*1 *1 *1) (-4 *1 (-1166))) (-2518 (*1 *1 *1) (-4 *1 (-1166))) (-1804 (*1 *1 *1) (-4 *1 (-1166))) (-2990 (*1 *1 *1) (-4 *1 (-1166))) (-4114 (*1 *2 *1 *1) (-12 (-4 *1 (-1166)) (-5 *2 (-112)))) (-4087 (*1 *2 *1 *1) (-12 (-4 *1 (-1166)) (-5 *2 (-112)))) (-4062 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1166)) (-5 *3 (-576)) (-5 *2 (-112)))) (-1365 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1166)) (-5 *3 (-145)) (-5 *2 (-784)))) (-1945 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1166)) (-5 *3 (-145)) (-5 *2 (-112)))) (-2111 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1166)) (-5 *2 (-1256 (-576))))) (-3619 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-576)))) (-3619 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-576)) (-5 *3 (-142)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1166)))) (-3610 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-657 *1)) (-4 *1 (-1166)))) (-3610 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-657 *1)) (-4 *1 (-1166)))) (-3839 (*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-145)))) (-3839 (*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-142)))) (-2652 (*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-145)))) (-2652 (*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-142)))) (-2641 (*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-145)))) (-2641 (*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-142)))) (-2780 (*1 *1 *1 *1) (-4 *1 (-1166)))) +(-13 (-19 (-145)) (-10 -8 (-15 -1858 ($ $)) (-15 -2518 ($ $)) (-15 -1804 ($ $)) (-15 -2990 ($ $)) (-15 -4114 ((-112) $ $)) (-15 -4087 ((-112) $ $)) (-15 -4062 ((-112) $ $ (-576))) (-15 -1365 ((-784) $ $ (-145))) (-15 -1945 ((-112) $ $ (-145))) (-15 -2111 ($ $ (-1256 (-576)) $)) (-15 -3619 ((-576) $ $ (-576))) (-15 -3619 ((-576) (-142) $ (-576))) (-15 -3515 ($ (-145))) (-15 -3610 ((-657 $) $ (-145))) (-15 -3610 ((-657 $) $ (-142))) (-15 -3839 ($ $ (-145))) (-15 -3839 ($ $ (-142))) (-15 -2652 ($ $ (-145))) (-15 -2652 ($ $ (-142))) (-15 -2641 ($ $ (-145))) (-15 -2641 ($ $ (-142))) (-15 -2780 ($ $ $)))) +(((-34) . T) ((-102) -2748 (|has| (-145) (-1122)) (|has| (-145) (-862)) (|has| (-145) (-102))) ((-625 (-877)) -2748 (|has| (-145) (-1122)) (|has| (-145) (-862)) (|has| (-145) (-625 (-877)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122))) ((-664 #0#) . T) ((-19 #0#) . T) ((-862) |has| (-145) (-862)) ((-865) |has| (-145) (-862)) ((-1122) -2748 (|has| (-145) (-1122)) (|has| (-145) (-862))) ((-1239) . T)) +((-4370 (((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-657 |#4|) (-657 |#5|) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) (-784)) 112)) (-2579 (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784)) 61)) (-4398 (((-1294) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-784)) 97)) (-2700 (((-784) (-657 |#4|) (-657 |#5|)) 30)) (-3433 (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784)) 63) (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784) (-112)) 65)) (-3545 (((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112)) 85)) (-4136 (((-1180) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) 90)) (-3663 (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|) 60)) (-3056 (((-784) (-657 |#4|) (-657 |#5|)) 21))) +(((-1167 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3056 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -2700 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -3663 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|)) (-15 -2579 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784))) (-15 -2579 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|)) (-15 -3433 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784) (-112))) (-15 -3433 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784))) (-15 -3433 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|)) (-15 -3545 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -3545 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4370 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-657 |#4|) (-657 |#5|) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) (-784))) (-15 -4136 ((-1180) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)))) (-15 -4398 ((-1294) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-784)))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1131 |#1| |#2| |#3| |#4|)) (T -1167)) +((-4398 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3941 *9)))) (-5 *4 (-784)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-1294)) (-5 *1 (-1167 *5 *6 *7 *8 *9)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3941 *8))) (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1131 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1180)) (-5 *1 (-1167 *4 *5 *6 *7 *8)))) (-4370 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-657 *11)) (|:| |todo| (-657 (-2 (|:| |val| *3) (|:| -3941 *11)))))) (-5 *6 (-784)) (-5 *2 (-657 (-2 (|:| |val| (-657 *10)) (|:| -3941 *11)))) (-5 *3 (-657 *10)) (-5 *4 (-657 *11)) (-4 *10 (-1087 *7 *8 *9)) (-4 *11 (-1131 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-806)) (-4 *9 (-862)) (-5 *1 (-1167 *7 *8 *9 *10 *11)))) (-3545 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1167 *5 *6 *7 *8 *9)))) (-3545 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1167 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) (-5 *1 (-1167 *5 *6 *7 *3 *4)) (-4 *4 (-1131 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) (-5 *1 (-1167 *6 *7 *8 *3 *4)) (-4 *4 (-1131 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-784)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-806)) (-4 *9 (-862)) (-4 *3 (-1087 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) (-5 *1 (-1167 *7 *8 *9 *3 *4)) (-4 *4 (-1131 *7 *8 *9 *3)))) (-2579 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) (-5 *1 (-1167 *5 *6 *7 *3 *4)) (-4 *4 (-1131 *5 *6 *7 *3)))) (-2579 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) (-5 *1 (-1167 *6 *7 *8 *3 *4)) (-4 *4 (-1131 *6 *7 *8 *3)))) (-3663 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) (-5 *1 (-1167 *5 *6 *7 *3 *4)) (-4 *4 (-1131 *5 *6 *7 *3)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1167 *5 *6 *7 *8 *9)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1167 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3056 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -2700 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -3663 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|)) (-15 -2579 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784))) (-15 -2579 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|)) (-15 -3433 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784) (-112))) (-15 -3433 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5| (-784))) (-15 -3433 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) |#4| |#5|)) (-15 -3545 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -3545 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4370 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-657 |#4|) (-657 |#5|) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))))) (-784))) (-15 -4136 ((-1180) (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|)))) (-15 -4398 ((-1294) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3941 |#5|))) (-784)))) +((-3423 (((-112) $ $) NIL)) (-2112 (((-657 (-2 (|:| -1988 $) (|:| -3179 (-657 |#4|)))) (-657 |#4|)) NIL)) (-1578 (((-657 $) (-657 |#4|)) 124) (((-657 $) (-657 |#4|) (-112)) 125) (((-657 $) (-657 |#4|) (-112) (-112)) 123) (((-657 $) (-657 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1998 (((-657 |#3|) $) NIL)) (-2250 (((-112) $) NIL)) (-4334 (((-112) $) NIL (|has| |#1| (-568)))) (-2605 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3300 ((|#4| |#4| $) NIL)) (-3188 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 $))) |#4| $) 97)) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |#3|) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-2007 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 75)) (-2515 (($) NIL T CONST)) (-2697 (((-112) $) 29 (|has| |#1| (-568)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1978 (((-112) $) NIL (|has| |#1| (-568)))) (-1835 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1494 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-4203 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-1593 (((-3 $ "failed") (-657 |#4|)) NIL)) (-2830 (($ (-657 |#4|)) NIL)) (-3542 (((-3 $ "failed") $) 45)) (-1815 ((|#4| |#4| $) 78)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-3901 (($ |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3951 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-568)))) (-3427 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1979 ((|#4| |#4| $) NIL)) (-3662 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1492 (((-2 (|:| -1988 (-657 |#4|)) (|:| -3179 (-657 |#4|))) $) NIL)) (-1381 (((-112) |#4| $) NIL)) (-1526 (((-112) |#4| $) NIL)) (-3883 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2674 (((-2 (|:| |val| (-657 |#4|)) (|:| |towers| (-657 $))) (-657 |#4|) (-112) (-112)) 139)) (-1448 (((-657 |#4|) $) 18 (|has| $ (-6 -4466)))) (-3537 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1428 ((|#3| $) 38)) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#4|) $) 19 (|has| $ (-6 -4466)))) (-3326 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-1799 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#4| |#4|) $) 23)) (-3944 (((-657 |#3|) $) NIL)) (-2611 (((-112) |#3| $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-3653 (((-3 |#4| (-657 $)) |#4| |#4| $) NIL)) (-3156 (((-657 (-2 (|:| |val| |#4|) (|:| -3941 $))) |#4| |#4| $) 117)) (-3921 (((-3 |#4| "failed") $) 42)) (-4024 (((-657 $) |#4| $) 102)) (-3846 (((-3 (-112) (-657 $)) |#4| $) NIL)) (-4002 (((-657 (-2 (|:| |val| (-112)) (|:| -3941 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3415 (((-657 $) |#4| $) 121) (((-657 $) (-657 |#4|) $) NIL) (((-657 $) (-657 |#4|) (-657 $)) 122) (((-657 $) |#4| (-657 $)) NIL)) (-4390 (((-657 $) (-657 |#4|) (-112) (-112) (-112)) 134)) (-3082 (($ |#4| $) 88) (($ (-657 |#4|) $) 89) (((-657 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-3218 (((-657 |#4|) $) NIL)) (-3893 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3510 ((|#4| |#4| $) NIL)) (-2304 (((-112) $ $) NIL)) (-2678 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-4299 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3511 ((|#4| |#4| $) NIL)) (-1460 (((-1142) $) NIL)) (-3528 (((-3 |#4| "failed") $) 40)) (-4135 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3923 (((-3 $ "failed") $ |#4|) 59)) (-1456 (($ $ |#4|) NIL) (((-657 $) |#4| $) 104) (((-657 $) |#4| (-657 $)) NIL) (((-657 $) (-657 |#4|) $) NIL) (((-657 $) (-657 |#4|) (-657 $)) 99)) (-2372 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#4|) (-657 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 17)) (-3340 (($) 14)) (-4265 (((-784) $) NIL)) (-1469 (((-784) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (((-784) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) 13)) (-4136 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3529 (($ (-657 |#4|)) 22)) (-2764 (($ $ |#3|) 52)) (-2555 (($ $ |#3|) 54)) (-2038 (($ $) NIL)) (-2267 (($ $ |#3|) NIL)) (-3515 (((-877) $) 35) (((-657 |#4|) $) 46)) (-4384 (((-784) $) NIL (|has| |#3| (-379)))) (-4166 (((-112) $ $) NIL)) (-2726 (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3741 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) NIL)) (-1360 (((-657 $) |#4| $) 66) (((-657 $) |#4| (-657 $)) NIL) (((-657 $) (-657 |#4|) $) NIL) (((-657 $) (-657 |#4|) (-657 $)) NIL)) (-3258 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-2330 (((-657 |#3|) $) NIL)) (-2374 (((-112) |#4| $) NIL)) (-2137 (((-112) |#3| $) 74)) (-2881 (((-112) $ $) NIL)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1168 |#1| |#2| |#3| |#4|) (-13 (-1131 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3082 ((-657 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1578 ((-657 $) (-657 |#4|) (-112) (-112))) (-15 -1578 ((-657 $) (-657 |#4|) (-112) (-112) (-112) (-112))) (-15 -4390 ((-657 $) (-657 |#4|) (-112) (-112) (-112))) (-15 -2674 ((-2 (|:| |val| (-657 |#4|)) (|:| |towers| (-657 $))) (-657 |#4|) (-112) (-112))))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|)) (T -1168)) +((-3082 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1168 *5 *6 *7 *3))) (-5 *1 (-1168 *5 *6 *7 *3)) (-4 *3 (-1087 *5 *6 *7)))) (-1578 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1168 *5 *6 *7 *8))) (-5 *1 (-1168 *5 *6 *7 *8)))) (-1578 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1168 *5 *6 *7 *8))) (-5 *1 (-1168 *5 *6 *7 *8)))) (-4390 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1168 *5 *6 *7 *8))) (-5 *1 (-1168 *5 *6 *7 *8)))) (-2674 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-657 *8)) (|:| |towers| (-657 (-1168 *5 *6 *7 *8))))) (-5 *1 (-1168 *5 *6 *7 *8)) (-5 *3 (-657 *8))))) +(-13 (-1131 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3082 ((-657 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1578 ((-657 $) (-657 |#4|) (-112) (-112))) (-15 -1578 ((-657 $) (-657 |#4|) (-112) (-112) (-112) (-112))) (-15 -4390 ((-657 $) (-657 |#4|) (-112) (-112) (-112))) (-15 -2674 ((-2 (|:| |val| (-657 |#4|)) (|:| |towers| (-657 $))) (-657 |#4|) (-112) (-112))))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1425 ((|#1| $) 37)) (-2660 (($ (-657 |#1|)) 45)) (-4284 (((-112) $ (-784)) NIL)) (-2515 (($) NIL T CONST)) (-3240 ((|#1| |#1| $) 40)) (-2477 ((|#1| $) 35)) (-1448 (((-657 |#1|) $) 18 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1799 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 22)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3107 ((|#1| $) 38)) (-2701 (($ |#1| $) 41)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2184 ((|#1| $) 36)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 32)) (-3340 (($) 43)) (-3106 (((-784) $) 30)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) 27)) (-3515 (((-877) $) 14 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1636 (($ (-657 |#1|)) NIL)) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 17 (|has| |#1| (-102)))) (-3437 (((-784) $) 31 (|has| $ (-6 -4466))))) +(((-1169 |#1|) (-13 (-1143 |#1|) (-10 -8 (-15 -2660 ($ (-657 |#1|))))) (-1239)) (T -1169)) +((-2660 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-1169 *3))))) +(-13 (-1143 |#1|) (-10 -8 (-15 -2660 ($ (-657 |#1|))))) +((-3719 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1256 (-576)) |#2|) 53) ((|#2| $ (-576) |#2|) 50)) (-2872 (((-112) $) 12)) (-1799 (($ (-1 |#2| |#2|) $) 48)) (-3528 ((|#2| $) NIL) (($ $ (-784)) 17)) (-1495 (($ $ |#2|) 49)) (-1533 (((-112) $) 11)) (-2780 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1256 (-576))) 36) ((|#2| $ (-576)) 26) ((|#2| $ (-576) |#2|) NIL)) (-2752 (($ $ $) 56) (($ $ |#2|) NIL)) (-1637 (($ $ $) 38) (($ |#2| $) NIL) (($ (-657 $)) 45) (($ $ |#2|) NIL))) +(((-1170 |#1| |#2|) (-10 -8 (-15 -2872 ((-112) |#1|)) (-15 -1533 ((-112) |#1|)) (-15 -3719 (|#2| |#1| (-576) |#2|)) (-15 -2780 (|#2| |#1| (-576) |#2|)) (-15 -2780 (|#2| |#1| (-576))) (-15 -1495 (|#1| |#1| |#2|)) (-15 -2780 (|#1| |#1| (-1256 (-576)))) (-15 -1637 (|#1| |#1| |#2|)) (-15 -1637 (|#1| (-657 |#1|))) (-15 -3719 (|#2| |#1| (-1256 (-576)) |#2|)) (-15 -3719 (|#2| |#1| "last" |#2|)) (-15 -3719 (|#1| |#1| "rest" |#1|)) (-15 -3719 (|#2| |#1| "first" |#2|)) (-15 -2752 (|#1| |#1| |#2|)) (-15 -2752 (|#1| |#1| |#1|)) (-15 -2780 (|#2| |#1| "last")) (-15 -2780 (|#1| |#1| "rest")) (-15 -3528 (|#1| |#1| (-784))) (-15 -2780 (|#2| |#1| "first")) (-15 -3528 (|#2| |#1|)) (-15 -1637 (|#1| |#2| |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -3719 (|#2| |#1| "value" |#2|)) (-15 -2780 (|#2| |#1| "value")) (-15 -1799 (|#1| (-1 |#2| |#2|) |#1|))) (-1171 |#2|) (-1239)) (T -1170)) +NIL +(-10 -8 (-15 -2872 ((-112) |#1|)) (-15 -1533 ((-112) |#1|)) (-15 -3719 (|#2| |#1| (-576) |#2|)) (-15 -2780 (|#2| |#1| (-576) |#2|)) (-15 -2780 (|#2| |#1| (-576))) (-15 -1495 (|#1| |#1| |#2|)) (-15 -2780 (|#1| |#1| (-1256 (-576)))) (-15 -1637 (|#1| |#1| |#2|)) (-15 -1637 (|#1| (-657 |#1|))) (-15 -3719 (|#2| |#1| (-1256 (-576)) |#2|)) (-15 -3719 (|#2| |#1| "last" |#2|)) (-15 -3719 (|#1| |#1| "rest" |#1|)) (-15 -3719 (|#2| |#1| "first" |#2|)) (-15 -2752 (|#1| |#1| |#2|)) (-15 -2752 (|#1| |#1| |#1|)) (-15 -2780 (|#2| |#1| "last")) (-15 -2780 (|#1| |#1| "rest")) (-15 -3528 (|#1| |#1| (-784))) (-15 -2780 (|#2| |#1| "first")) (-15 -3528 (|#2| |#1|)) (-15 -1637 (|#1| |#2| |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -3719 (|#2| |#1| "value" |#2|)) (-15 -2780 (|#2| |#1| "value")) (-15 -1799 (|#1| (-1 |#2| |#2|) |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3037 ((|#1| $) 49)) (-2860 ((|#1| $) 66)) (-4425 (($ $) 68)) (-3590 (((-1294) $ (-576) (-576)) 99 (|has| $ (-6 -4467)))) (-3342 (($ $ (-576)) 53 (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) 8)) (-1439 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-3509 (($ $ $) 57 (|has| $ (-6 -4467)))) (-3554 ((|#1| $ |#1|) 55 (|has| $ (-6 -4467)))) (-1629 ((|#1| $ |#1|) 59 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4467))) (($ $ "rest" $) 56 (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 119 (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4466)))) (-2849 ((|#1| $) 67)) (-2515 (($) 7 T CONST)) (-3542 (($ $) 74) (($ $ (-784)) 72)) (-1620 (($ $) 101 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4466))) (($ |#1| $) 102 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1810 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) 89)) (-2872 (((-112) $) 85)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) 51)) (-4257 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-4096 (($ (-784) |#1|) 111)) (-1786 (((-112) $ (-784)) 9)) (-3363 (((-576) $) 97 (|has| (-576) (-862)))) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1833 (((-576) $) 96 (|has| (-576) (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-4326 (((-112) $ (-784)) 10)) (-2397 (((-657 |#1|) $) 46)) (-1743 (((-112) $) 50)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3921 ((|#1| $) 71) (($ $ (-784)) 69)) (-2225 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3309 (((-657 (-576)) $) 94)) (-4324 (((-112) (-576) $) 93)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3528 ((|#1| $) 77) (($ $ (-784)) 75)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1495 (($ $ |#1|) 98 (|has| $ (-6 -4467)))) (-1533 (((-112) $) 86)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) 92)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1256 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3064 (((-576) $ $) 45)) (-3395 (($ $ (-1256 (-576))) 116) (($ $ (-576)) 115)) (-4392 (((-112) $) 47)) (-3645 (($ $) 63)) (-2463 (($ $) 60 (|has| $ (-6 -4467)))) (-2933 (((-784) $) 64)) (-1961 (($ $) 65)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-4136 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 109)) (-2752 (($ $ $) 62 (|has| $ (-6 -4467))) (($ $ |#1|) 61 (|has| $ (-6 -4467)))) (-1637 (($ $ $) 79) (($ |#1| $) 78) (($ (-657 $)) 113) (($ $ |#1|) 112)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) 52)) (-3631 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-1171 |#1|) (-141) (-1239)) (T -1171)) +((-1533 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1239)) (-5 *2 (-112))))) +(-13 (-1277 |t#1|) (-664 |t#1|) (-10 -8 (-15 -1533 ((-112) $)) (-15 -2872 ((-112) $)))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-1032 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1239) . T) ((-1277 |#1|) . T)) +((-3423 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4082 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3590 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#2| $ |#1| |#2|) NIL)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2244 (((-3 |#2| "failed") |#1| $) NIL)) (-2515 (($) NIL T CONST)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-1920 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) NIL)) (-3901 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#2| $ |#1|) NIL)) (-1448 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 ((|#1| $) NIL (|has| |#1| (-862)))) (-3855 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1833 ((|#1| $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3135 (((-657 |#1|) $) NIL)) (-2559 (((-112) |#1| $) NIL)) (-3107 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2701 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3309 (((-657 |#1|) $) NIL)) (-4324 (((-112) |#1| $) NIL)) (-1460 (((-1142) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3528 ((|#2| $) NIL (|has| |#1| (-862)))) (-4135 (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1495 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3585 (((-657 |#2|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3009 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3515 (((-877) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-4166 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1172 |#1| |#2| |#3|) (-1215 |#1| |#2|) (-1122) (-1122) |#2|) (T -1172)) +NIL +(-1215 |#1| |#2|) +((-3423 (((-112) $ $) NIL)) (-2787 (((-704 (-1157)) $) 27)) (-1639 (((-1157) $) 15)) (-4035 (((-1157) $) 17)) (-1708 (((-1180) $) NIL)) (-2000 (((-518) $) 13)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 37) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1173) (-13 (-1105) (-10 -8 (-15 -2000 ((-518) $)) (-15 -4035 ((-1157) $)) (-15 -2787 ((-704 (-1157)) $)) (-15 -1639 ((-1157) $))))) (T -1173)) +((-2000 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1173)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1173)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-704 (-1157))) (-5 *1 (-1173)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1173))))) +(-13 (-1105) (-10 -8 (-15 -2000 ((-518) $)) (-15 -4035 ((-1157) $)) (-15 -2787 ((-704 (-1157)) $)) (-15 -1639 ((-1157) $)))) +((-3423 (((-112) $ $) 7)) (-1955 (((-3 $ "failed") $) 14)) (-1708 (((-1180) $) 10)) (-1679 (($) 15 T CONST)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2881 (((-112) $ $) 8))) +(((-1174) (-141)) (T -1174)) +((-1679 (*1 *1) (-4 *1 (-1174))) (-1955 (*1 *1 *1) (|partial| -4 *1 (-1174)))) +(-13 (-1122) (-10 -8 (-15 -1679 ($) -1491) (-15 -1955 ((-3 $ "failed") $)))) +(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) +((-1574 (((-1179 |#1|) (-1179 |#1|)) 17)) (-1757 (((-1179 |#1|) (-1179 |#1|)) 13)) (-2142 (((-1179 |#1|) (-1179 |#1|) (-576) (-576)) 20)) (-3102 (((-1179 |#1|) (-1179 |#1|)) 15))) +(((-1175 |#1|) (-10 -7 (-15 -1757 ((-1179 |#1|) (-1179 |#1|))) (-15 -3102 ((-1179 |#1|) (-1179 |#1|))) (-15 -1574 ((-1179 |#1|) (-1179 |#1|))) (-15 -2142 ((-1179 |#1|) (-1179 |#1|) (-576) (-576)))) (-13 (-568) (-148))) (T -1175)) +((-2142 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1175 *4)))) (-1574 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1175 *3)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1175 *3)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1175 *3))))) +(-10 -7 (-15 -1757 ((-1179 |#1|) (-1179 |#1|))) (-15 -3102 ((-1179 |#1|) (-1179 |#1|))) (-15 -1574 ((-1179 |#1|) (-1179 |#1|))) (-15 -2142 ((-1179 |#1|) (-1179 |#1|) (-576) (-576)))) +((-1637 (((-1179 |#1|) (-1179 (-1179 |#1|))) 15))) +(((-1176 |#1|) (-10 -7 (-15 -1637 ((-1179 |#1|) (-1179 (-1179 |#1|))))) (-1239)) (T -1176)) +((-1637 (*1 *2 *3) (-12 (-5 *3 (-1179 (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1239))))) +(-10 -7 (-15 -1637 ((-1179 |#1|) (-1179 (-1179 |#1|))))) +((-3899 (((-1179 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1179 |#1|)) 25)) (-3662 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1179 |#1|)) 26)) (-4071 (((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|)) 16))) +(((-1177 |#1| |#2|) (-10 -7 (-15 -4071 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|))) (-15 -3899 ((-1179 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1179 |#1|))) (-15 -3662 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1179 |#1|)))) (-1239) (-1239)) (T -1177)) +((-3662 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1179 *5)) (-4 *5 (-1239)) (-4 *2 (-1239)) (-5 *1 (-1177 *5 *2)))) (-3899 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1179 *6)) (-4 *6 (-1239)) (-4 *3 (-1239)) (-5 *2 (-1179 *3)) (-5 *1 (-1177 *6 *3)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1179 *6)) (-5 *1 (-1177 *5 *6))))) +(-10 -7 (-15 -4071 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|))) (-15 -3899 ((-1179 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1179 |#1|))) (-15 -3662 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1179 |#1|)))) +((-4071 (((-1179 |#3|) (-1 |#3| |#1| |#2|) (-1179 |#1|) (-1179 |#2|)) 21))) +(((-1178 |#1| |#2| |#3|) (-10 -7 (-15 -4071 ((-1179 |#3|) (-1 |#3| |#1| |#2|) (-1179 |#1|) (-1179 |#2|)))) (-1239) (-1239) (-1239)) (T -1178)) +((-4071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1179 *6)) (-5 *5 (-1179 *7)) (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-1179 *8)) (-5 *1 (-1178 *6 *7 *8))))) +(-10 -7 (-15 -4071 ((-1179 |#3|) (-1 |#3| |#1| |#2|) (-1179 |#1|) (-1179 |#2|)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3037 ((|#1| $) NIL)) (-2860 ((|#1| $) NIL)) (-4425 (($ $) 67)) (-3590 (((-1294) $ (-576) (-576)) 99 (|has| $ (-6 -4467)))) (-3342 (($ $ (-576)) 128 (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) NIL)) (-1549 (((-877) $) 56 (|has| |#1| (-1122)))) (-1739 (((-112)) 55 (|has| |#1| (-1122)))) (-1439 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-3509 (($ $ $) 115 (|has| $ (-6 -4467))) (($ $ (-576) $) 141)) (-3554 ((|#1| $ |#1|) 125 (|has| $ (-6 -4467)))) (-1629 ((|#1| $ |#1|) 120 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4467))) (($ $ "rest" $) 124 (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 112 (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) 77 (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) 80)) (-2849 ((|#1| $) NIL)) (-2515 (($) NIL T CONST)) (-3428 (($ $) 14)) (-3542 (($ $) 40) (($ $ (-784)) 111)) (-3087 (((-112) (-657 |#1|) $) 134 (|has| |#1| (-1122)))) (-1617 (($ (-657 |#1|)) 130)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3901 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) 79)) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1810 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) NIL)) (-2872 (((-112) $) NIL)) (-1448 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2741 (((-1294) (-576) $) 140 (|has| |#1| (-1122)))) (-1483 (((-784) $) 137)) (-2754 (((-657 $) $) NIL)) (-4257 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4096 (($ (-784) |#1|) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-4326 (((-112) $ (-784)) NIL)) (-2397 (((-657 |#1|) $) NIL)) (-1743 (((-112) $) NIL)) (-2241 (($ $) 113)) (-3476 (((-112) $) 13)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3921 ((|#1| $) NIL) (($ $ (-784)) NIL)) (-2225 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) 96)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-4344 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-3629 ((|#1| $) 10)) (-3528 ((|#1| $) 39) (($ $ (-784)) 65)) (-3360 (((-2 (|:| |cycle?| (-112)) (|:| -3959 (-784)) (|:| |period| (-784))) (-784) $) 34)) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1983 (($ (-1 (-112) |#1|) $) 145)) (-1997 (($ (-1 (-112) |#1|) $) 146)) (-1495 (($ $ |#1|) 90 (|has| $ (-6 -4467)))) (-1456 (($ $ (-576)) 45)) (-1533 (((-112) $) 94)) (-1640 (((-112) $) 12)) (-1694 (((-112) $) 136)) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 30)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) 20)) (-3340 (($) 60)) (-2780 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1256 (-576))) NIL) ((|#1| $ (-576)) 75) ((|#1| $ (-576) |#1|) NIL)) (-3064 (((-576) $ $) 64)) (-3395 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-1764 (($ (-1 $)) 63)) (-4392 (((-112) $) 91)) (-3645 (($ $) 92)) (-2463 (($ $) 116 (|has| $ (-6 -4467)))) (-2933 (((-784) $) NIL)) (-1961 (($ $) NIL)) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) 59)) (-4136 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 73)) (-2814 (($ |#1| $) 114)) (-2752 (($ $ $) 118 (|has| $ (-6 -4467))) (($ $ |#1|) 119 (|has| $ (-6 -4467)))) (-1637 (($ $ $) 101) (($ |#1| $) 61) (($ (-657 $)) 106) (($ $ |#1|) 100)) (-1557 (($ $) 66)) (-3515 (($ (-657 |#1|)) 129) (((-877) $) 57 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) NIL)) (-3631 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 132 (|has| |#1| (-102)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1179 |#1|) (-13 (-687 |#1|) (-628 (-657 |#1|)) (-10 -8 (-6 -4467) (-15 -1617 ($ (-657 |#1|))) (IF (|has| |#1| (-1122)) (-15 -3087 ((-112) (-657 |#1|) $)) |%noBranch|) (-15 -3360 ((-2 (|:| |cycle?| (-112)) (|:| -3959 (-784)) (|:| |period| (-784))) (-784) $)) (-15 -1764 ($ (-1 $))) (-15 -2814 ($ |#1| $)) (IF (|has| |#1| (-1122)) (PROGN (-15 -2741 ((-1294) (-576) $)) (-15 -1549 ((-877) $)) (-15 -1739 ((-112)))) |%noBranch|) (-15 -3509 ($ $ (-576) $)) (-15 -4344 ($ (-1 |#1|))) (-15 -4344 ($ (-1 |#1| |#1|) |#1|)) (-15 -1983 ($ (-1 (-112) |#1|) $)) (-15 -1997 ($ (-1 (-112) |#1|) $)))) (-1239)) (T -1179)) +((-1617 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3)))) (-3087 (*1 *2 *3 *1) (-12 (-5 *3 (-657 *4)) (-4 *4 (-1122)) (-4 *4 (-1239)) (-5 *2 (-112)) (-5 *1 (-1179 *4)))) (-3360 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3959 (-784)) (|:| |period| (-784)))) (-5 *1 (-1179 *4)) (-4 *4 (-1239)) (-5 *3 (-784)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-1 (-1179 *3))) (-5 *1 (-1179 *3)) (-4 *3 (-1239)))) (-2814 (*1 *1 *2 *1) (-12 (-5 *1 (-1179 *2)) (-4 *2 (-1239)))) (-2741 (*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1179 *4)) (-4 *4 (-1122)) (-4 *4 (-1239)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1179 *3)) (-4 *3 (-1122)) (-4 *3 (-1239)))) (-1739 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-1122)) (-4 *3 (-1239)))) (-3509 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1179 *3)) (-4 *3 (-1239)))) (-4344 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3)))) (-4344 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3)))) (-1983 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3)))) (-1997 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3))))) +(-13 (-687 |#1|) (-628 (-657 |#1|)) (-10 -8 (-6 -4467) (-15 -1617 ($ (-657 |#1|))) (IF (|has| |#1| (-1122)) (-15 -3087 ((-112) (-657 |#1|) $)) |%noBranch|) (-15 -3360 ((-2 (|:| |cycle?| (-112)) (|:| -3959 (-784)) (|:| |period| (-784))) (-784) $)) (-15 -1764 ($ (-1 $))) (-15 -2814 ($ |#1| $)) (IF (|has| |#1| (-1122)) (PROGN (-15 -2741 ((-1294) (-576) $)) (-15 -1549 ((-877) $)) (-15 -1739 ((-112)))) |%noBranch|) (-15 -3509 ($ $ (-576) $)) (-15 -4344 ($ (-1 |#1|))) (-15 -4344 ($ (-1 |#1| |#1|) |#1|)) (-15 -1983 ($ (-1 (-112) |#1|) $)) (-15 -1997 ($ (-1 (-112) |#1|) $)))) +((-3423 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2990 (($ $) NIL)) (-1804 (($ $) NIL)) (-3839 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-4087 (((-112) $ $) NIL)) (-4062 (((-112) $ $ (-576)) NIL)) (-1331 (($ (-576)) 8) (($ (-227)) 10)) (-3610 (((-657 $) $ (-145)) NIL) (((-657 $) $ (-142)) NIL)) (-3925 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-1698 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| (-145) (-862))))) (-1832 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4467))) (((-145) $ (-1256 (-576)) (-145)) NIL (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-2641 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-2111 (($ $ (-1256 (-576)) $) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-3901 (($ (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4466))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4466)))) (-1810 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4467)))) (-1741 (((-145) $ (-576)) NIL)) (-4114 (((-112) $ $) NIL)) (-3619 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1122))) (((-576) (-145) $ (-576)) NIL (|has| (-145) (-1122))) (((-576) $ $ (-576)) NIL) (((-576) (-142) $ (-576)) NIL)) (-1448 (((-657 (-145)) $) NIL (|has| $ (-6 -4466)))) (-4096 (($ (-784) (-145)) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| (-145) (-862)))) (-1661 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-3855 (((-657 (-145)) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-1833 (((-576) $) NIL (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| (-145) (-862)))) (-1945 (((-112) $ $ (-145)) NIL)) (-1365 (((-784) $ $ (-145)) NIL)) (-1799 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2518 (($ $) NIL)) (-1858 (($ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-2652 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1708 (((-1180) $) NIL (|has| (-145) (-1122)))) (-2225 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| (-145) (-1122)))) (-3528 (((-145) $) NIL (|has| (-576) (-862)))) (-4135 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1495 (($ $ (-145)) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-657 (-145)) (-657 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-3585 (((-657 (-145)) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1256 (-576))) NIL) (($ $ $) NIL)) (-3395 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1469 (((-784) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466))) (((-784) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-3529 (($ (-657 (-145))) NIL)) (-1637 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3515 (($ (-145)) NIL) (((-877) $) NIL (|has| (-145) (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| (-145) (-102)))) (-3258 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-4019 (((-1180) $) 21) (((-1180) $ (-112)) 23) (((-1294) (-835) $) 24) (((-1294) (-835) $ (-112)) 25)) (-2938 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2913 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2881 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2925 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2901 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1180) (-13 (-1166) (-841) (-10 -8 (-15 -1331 ($ (-576))) (-15 -1331 ($ (-227)))))) (T -1180)) +((-1331 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1180)))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1180))))) +(-13 (-1166) (-841) (-10 -8 (-15 -1331 ($ (-576))) (-15 -1331 ($ (-227))))) +((-3423 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-102)) (|has| |#1| (-102))))) (-4082 (($) NIL) (($ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) NIL)) (-3590 (((-1294) $ (-1180) (-1180)) NIL (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#1| $ (-1180) |#1|) NIL)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-2244 (((-3 |#1| "failed") (-1180) $) NIL)) (-2515 (($) NIL T CONST)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122))))) (-1920 (($ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#1| "failed") (-1180) $) NIL)) (-3901 (($ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)))) (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-1180) |#1|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-1180)) NIL)) (-1448 (((-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-1180) $) NIL (|has| (-1180) (-862)))) (-3855 (((-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-1180) $) NIL (|has| (-1180) (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (-2748 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)) (|has| |#1| (-1122))))) (-3135 (((-657 (-1180)) $) NIL)) (-2559 (((-112) (-1180) $) NIL)) (-3107 (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL)) (-2701 (($ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL)) (-3309 (((-657 (-1180)) $) NIL)) (-4324 (((-112) (-1180) $) NIL)) (-1460 (((-1142) $) NIL (-2748 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)) (|has| |#1| (-1122))))) (-3528 ((|#1| $) NIL (|has| (-1180) (-862)))) (-4135 (((-3 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) "failed") (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL)) (-1495 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))))) NIL (-12 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) NIL (-12 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) NIL (-12 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) NIL (-12 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ (-1180)) NIL) ((|#1| $ (-1180) |#1|) NIL)) (-3009 (($) NIL) (($ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) NIL)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-1122)))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) NIL)) (-3515 (((-877) $) NIL (-2748 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-625 (-877))) (|has| |#1| (-625 (-877)))))) (-4166 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-102)) (|has| |#1| (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)))) NIL)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 (-1180)) (|:| -4440 |#1|)) (-102)) (|has| |#1| (-102))))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1181 |#1|) (-13 (-1215 (-1180) |#1|) (-10 -7 (-6 -4466))) (-1122)) (T -1181)) +NIL +(-13 (-1215 (-1180) |#1|) (-10 -7 (-6 -4466))) +((-2233 (((-1179 |#1|) (-1179 |#1|)) 83)) (-3969 (((-3 (-1179 |#1|) "failed") (-1179 |#1|)) 39)) (-3649 (((-1179 |#1|) (-419 (-576)) (-1179 |#1|)) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3066 (((-1179 |#1|) |#1| (-1179 |#1|)) 139 (|has| |#1| (-374)))) (-4013 (((-1179 |#1|) (-1179 |#1|)) 97)) (-4058 (((-1179 (-576)) (-576)) 63)) (-1924 (((-1179 |#1|) (-1179 (-1179 |#1|))) 116 (|has| |#1| (-38 (-419 (-576)))))) (-3819 (((-1179 |#1|) (-576) (-576) (-1179 |#1|)) 102)) (-3646 (((-1179 |#1|) |#1| (-576)) 51)) (-3058 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 66)) (-2189 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 136 (|has| |#1| (-374)))) (-1438 (((-1179 |#1|) |#1| (-1 (-1179 |#1|))) 115 (|has| |#1| (-38 (-419 (-576)))))) (-4196 (((-1179 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1179 |#1|))) 137 (|has| |#1| (-374)))) (-4220 (((-1179 |#1|) (-1179 |#1|)) 96)) (-3314 (((-1179 |#1|) (-1179 |#1|)) 82)) (-1531 (((-1179 |#1|) (-576) (-576) (-1179 |#1|)) 103)) (-2320 (((-1179 |#1|) |#1| (-1179 |#1|)) 112 (|has| |#1| (-38 (-419 (-576)))))) (-2493 (((-1179 (-576)) (-576)) 62)) (-3860 (((-1179 |#1|) |#1|) 65)) (-3967 (((-1179 |#1|) (-1179 |#1|) (-576) (-576)) 99)) (-3426 (((-1179 |#1|) (-1 |#1| (-576)) (-1179 |#1|)) 72)) (-3409 (((-3 (-1179 |#1|) "failed") (-1179 |#1|) (-1179 |#1|)) 37)) (-2207 (((-1179 |#1|) (-1179 |#1|)) 98)) (-3205 (((-1179 |#1|) (-1179 |#1|) |#1|) 77)) (-1718 (((-1179 |#1|) (-1179 |#1|)) 68)) (-3380 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 78)) (-3515 (((-1179 |#1|) |#1|) 73)) (-2979 (((-1179 |#1|) (-1179 (-1179 |#1|))) 88)) (-2995 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 38)) (-2982 (((-1179 |#1|) (-1179 |#1|)) 21) (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 23)) (-2971 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 17)) (* (((-1179 |#1|) (-1179 |#1|) |#1|) 29) (((-1179 |#1|) |#1| (-1179 |#1|)) 26) (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 27))) +(((-1182 |#1|) (-10 -7 (-15 -2971 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2982 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2982 ((-1179 |#1|) (-1179 |#1|))) (-15 * ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 * ((-1179 |#1|) |#1| (-1179 |#1|))) (-15 * ((-1179 |#1|) (-1179 |#1|) |#1|)) (-15 -3409 ((-3 (-1179 |#1|) "failed") (-1179 |#1|) (-1179 |#1|))) (-15 -2995 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3969 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -3646 ((-1179 |#1|) |#1| (-576))) (-15 -2493 ((-1179 (-576)) (-576))) (-15 -4058 ((-1179 (-576)) (-576))) (-15 -3860 ((-1179 |#1|) |#1|)) (-15 -3058 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -1718 ((-1179 |#1|) (-1179 |#1|))) (-15 -3426 ((-1179 |#1|) (-1 |#1| (-576)) (-1179 |#1|))) (-15 -3515 ((-1179 |#1|) |#1|)) (-15 -3205 ((-1179 |#1|) (-1179 |#1|) |#1|)) (-15 -3380 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3314 ((-1179 |#1|) (-1179 |#1|))) (-15 -2233 ((-1179 |#1|) (-1179 |#1|))) (-15 -2979 ((-1179 |#1|) (-1179 (-1179 |#1|)))) (-15 -4220 ((-1179 |#1|) (-1179 |#1|))) (-15 -4013 ((-1179 |#1|) (-1179 |#1|))) (-15 -2207 ((-1179 |#1|) (-1179 |#1|))) (-15 -3967 ((-1179 |#1|) (-1179 |#1|) (-576) (-576))) (-15 -3819 ((-1179 |#1|) (-576) (-576) (-1179 |#1|))) (-15 -1531 ((-1179 |#1|) (-576) (-576) (-1179 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2320 ((-1179 |#1|) |#1| (-1179 |#1|))) (-15 -1438 ((-1179 |#1|) |#1| (-1 (-1179 |#1|)))) (-15 -1924 ((-1179 |#1|) (-1179 (-1179 |#1|)))) (-15 -3649 ((-1179 |#1|) (-419 (-576)) (-1179 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2189 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -4196 ((-1179 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1179 |#1|)))) (-15 -3066 ((-1179 |#1|) |#1| (-1179 |#1|)))) |%noBranch|)) (-1071)) (T -1182)) +((-3066 (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-374)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1179 *4))) (-4 *4 (-374)) (-4 *4 (-1071)) (-5 *2 (-1179 *4)) (-5 *1 (-1182 *4)))) (-2189 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-374)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3649 (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1071)) (-5 *3 (-419 (-576))) (-5 *1 (-1182 *4)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-1179 (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1182 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1071)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1179 *3))) (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)))) (-2320 (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-1531 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-1071)) (-5 *1 (-1182 *4)))) (-3819 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-1071)) (-5 *1 (-1182 *4)))) (-3967 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-1071)) (-5 *1 (-1182 *4)))) (-2207 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-4220 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-1179 (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1182 *4)) (-4 *4 (-1071)))) (-2233 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3380 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3205 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3515 (*1 *2 *3) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1071)))) (-3426 (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1071)) (-5 *1 (-1182 *4)))) (-1718 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3058 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3860 (*1 *2 *3) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1071)))) (-4058 (*1 *2 *3) (-12 (-5 *2 (-1179 (-576))) (-5 *1 (-1182 *4)) (-4 *4 (-1071)) (-5 *3 (-576)))) (-2493 (*1 *2 *3) (-12 (-5 *2 (-1179 (-576))) (-5 *1 (-1182 *4)) (-4 *4 (-1071)) (-5 *3 (-576)))) (-3646 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1071)))) (-3969 (*1 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-2995 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3409 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-2982 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-2982 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-2971 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3))))) +(-10 -7 (-15 -2971 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2982 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2982 ((-1179 |#1|) (-1179 |#1|))) (-15 * ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 * ((-1179 |#1|) |#1| (-1179 |#1|))) (-15 * ((-1179 |#1|) (-1179 |#1|) |#1|)) (-15 -3409 ((-3 (-1179 |#1|) "failed") (-1179 |#1|) (-1179 |#1|))) (-15 -2995 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3969 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -3646 ((-1179 |#1|) |#1| (-576))) (-15 -2493 ((-1179 (-576)) (-576))) (-15 -4058 ((-1179 (-576)) (-576))) (-15 -3860 ((-1179 |#1|) |#1|)) (-15 -3058 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -1718 ((-1179 |#1|) (-1179 |#1|))) (-15 -3426 ((-1179 |#1|) (-1 |#1| (-576)) (-1179 |#1|))) (-15 -3515 ((-1179 |#1|) |#1|)) (-15 -3205 ((-1179 |#1|) (-1179 |#1|) |#1|)) (-15 -3380 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3314 ((-1179 |#1|) (-1179 |#1|))) (-15 -2233 ((-1179 |#1|) (-1179 |#1|))) (-15 -2979 ((-1179 |#1|) (-1179 (-1179 |#1|)))) (-15 -4220 ((-1179 |#1|) (-1179 |#1|))) (-15 -4013 ((-1179 |#1|) (-1179 |#1|))) (-15 -2207 ((-1179 |#1|) (-1179 |#1|))) (-15 -3967 ((-1179 |#1|) (-1179 |#1|) (-576) (-576))) (-15 -3819 ((-1179 |#1|) (-576) (-576) (-1179 |#1|))) (-15 -1531 ((-1179 |#1|) (-576) (-576) (-1179 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2320 ((-1179 |#1|) |#1| (-1179 |#1|))) (-15 -1438 ((-1179 |#1|) |#1| (-1 (-1179 |#1|)))) (-15 -1924 ((-1179 |#1|) (-1179 (-1179 |#1|)))) (-15 -3649 ((-1179 |#1|) (-419 (-576)) (-1179 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2189 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -4196 ((-1179 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1179 |#1|)))) (-15 -3066 ((-1179 |#1|) |#1| (-1179 |#1|)))) |%noBranch|)) +((-2143 (((-1179 |#1|) (-1179 |#1|)) 60)) (-2012 (((-1179 |#1|) (-1179 |#1|)) 42)) (-2120 (((-1179 |#1|) (-1179 |#1|)) 56)) (-1989 (((-1179 |#1|) (-1179 |#1|)) 38)) (-2166 (((-1179 |#1|) (-1179 |#1|)) 63)) (-2033 (((-1179 |#1|) (-1179 |#1|)) 45)) (-3707 (((-1179 |#1|) (-1179 |#1|)) 34)) (-4056 (((-1179 |#1|) (-1179 |#1|)) 29)) (-2177 (((-1179 |#1|) (-1179 |#1|)) 64)) (-2042 (((-1179 |#1|) (-1179 |#1|)) 46)) (-2155 (((-1179 |#1|) (-1179 |#1|)) 61)) (-2023 (((-1179 |#1|) (-1179 |#1|)) 43)) (-2131 (((-1179 |#1|) (-1179 |#1|)) 58)) (-2002 (((-1179 |#1|) (-1179 |#1|)) 40)) (-4110 (((-1179 |#1|) (-1179 |#1|)) 68)) (-2082 (((-1179 |#1|) (-1179 |#1|)) 50)) (-2188 (((-1179 |#1|) (-1179 |#1|)) 66)) (-2055 (((-1179 |#1|) (-1179 |#1|)) 48)) (-4137 (((-1179 |#1|) (-1179 |#1|)) 71)) (-2100 (((-1179 |#1|) (-1179 |#1|)) 53)) (-1864 (((-1179 |#1|) (-1179 |#1|)) 72)) (-2110 (((-1179 |#1|) (-1179 |#1|)) 54)) (-4123 (((-1179 |#1|) (-1179 |#1|)) 70)) (-2090 (((-1179 |#1|) (-1179 |#1|)) 52)) (-4097 (((-1179 |#1|) (-1179 |#1|)) 69)) (-2070 (((-1179 |#1|) (-1179 |#1|)) 51)) (** (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 36))) +(((-1183 |#1|) (-10 -7 (-15 -4056 ((-1179 |#1|) (-1179 |#1|))) (-15 -3707 ((-1179 |#1|) (-1179 |#1|))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -1989 ((-1179 |#1|) (-1179 |#1|))) (-15 -2002 ((-1179 |#1|) (-1179 |#1|))) (-15 -2012 ((-1179 |#1|) (-1179 |#1|))) (-15 -2023 ((-1179 |#1|) (-1179 |#1|))) (-15 -2033 ((-1179 |#1|) (-1179 |#1|))) (-15 -2042 ((-1179 |#1|) (-1179 |#1|))) (-15 -2055 ((-1179 |#1|) (-1179 |#1|))) (-15 -2070 ((-1179 |#1|) (-1179 |#1|))) (-15 -2082 ((-1179 |#1|) (-1179 |#1|))) (-15 -2090 ((-1179 |#1|) (-1179 |#1|))) (-15 -2100 ((-1179 |#1|) (-1179 |#1|))) (-15 -2110 ((-1179 |#1|) (-1179 |#1|))) (-15 -2120 ((-1179 |#1|) (-1179 |#1|))) (-15 -2131 ((-1179 |#1|) (-1179 |#1|))) (-15 -2143 ((-1179 |#1|) (-1179 |#1|))) (-15 -2155 ((-1179 |#1|) (-1179 |#1|))) (-15 -2166 ((-1179 |#1|) (-1179 |#1|))) (-15 -2177 ((-1179 |#1|) (-1179 |#1|))) (-15 -2188 ((-1179 |#1|) (-1179 |#1|))) (-15 -4097 ((-1179 |#1|) (-1179 |#1|))) (-15 -4110 ((-1179 |#1|) (-1179 |#1|))) (-15 -4123 ((-1179 |#1|) (-1179 |#1|))) (-15 -4137 ((-1179 |#1|) (-1179 |#1|))) (-15 -1864 ((-1179 |#1|) (-1179 |#1|)))) (-38 (-419 (-576)))) (T -1183)) +((-1864 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4123 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4110 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2188 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2177 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2166 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2143 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2110 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2090 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2055 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2033 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2023 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2012 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2002 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3707 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4056 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) +(-10 -7 (-15 -4056 ((-1179 |#1|) (-1179 |#1|))) (-15 -3707 ((-1179 |#1|) (-1179 |#1|))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -1989 ((-1179 |#1|) (-1179 |#1|))) (-15 -2002 ((-1179 |#1|) (-1179 |#1|))) (-15 -2012 ((-1179 |#1|) (-1179 |#1|))) (-15 -2023 ((-1179 |#1|) (-1179 |#1|))) (-15 -2033 ((-1179 |#1|) (-1179 |#1|))) (-15 -2042 ((-1179 |#1|) (-1179 |#1|))) (-15 -2055 ((-1179 |#1|) (-1179 |#1|))) (-15 -2070 ((-1179 |#1|) (-1179 |#1|))) (-15 -2082 ((-1179 |#1|) (-1179 |#1|))) (-15 -2090 ((-1179 |#1|) (-1179 |#1|))) (-15 -2100 ((-1179 |#1|) (-1179 |#1|))) (-15 -2110 ((-1179 |#1|) (-1179 |#1|))) (-15 -2120 ((-1179 |#1|) (-1179 |#1|))) (-15 -2131 ((-1179 |#1|) (-1179 |#1|))) (-15 -2143 ((-1179 |#1|) (-1179 |#1|))) (-15 -2155 ((-1179 |#1|) (-1179 |#1|))) (-15 -2166 ((-1179 |#1|) (-1179 |#1|))) (-15 -2177 ((-1179 |#1|) (-1179 |#1|))) (-15 -2188 ((-1179 |#1|) (-1179 |#1|))) (-15 -4097 ((-1179 |#1|) (-1179 |#1|))) (-15 -4110 ((-1179 |#1|) (-1179 |#1|))) (-15 -4123 ((-1179 |#1|) (-1179 |#1|))) (-15 -4137 ((-1179 |#1|) (-1179 |#1|))) (-15 -1864 ((-1179 |#1|) (-1179 |#1|)))) +((-2143 (((-1179 |#1|) (-1179 |#1|)) 102)) (-2012 (((-1179 |#1|) (-1179 |#1|)) 61)) (-3055 (((-2 (|:| -2120 (-1179 |#1|)) (|:| -2131 (-1179 |#1|))) (-1179 |#1|)) 98)) (-2120 (((-1179 |#1|) (-1179 |#1|)) 99)) (-3260 (((-2 (|:| -1989 (-1179 |#1|)) (|:| -2002 (-1179 |#1|))) (-1179 |#1|)) 54)) (-1989 (((-1179 |#1|) (-1179 |#1|)) 55)) (-2166 (((-1179 |#1|) (-1179 |#1|)) 104)) (-2033 (((-1179 |#1|) (-1179 |#1|)) 68)) (-3707 (((-1179 |#1|) (-1179 |#1|)) 40)) (-4056 (((-1179 |#1|) (-1179 |#1|)) 37)) (-2177 (((-1179 |#1|) (-1179 |#1|)) 105)) (-2042 (((-1179 |#1|) (-1179 |#1|)) 69)) (-2155 (((-1179 |#1|) (-1179 |#1|)) 103)) (-2023 (((-1179 |#1|) (-1179 |#1|)) 64)) (-2131 (((-1179 |#1|) (-1179 |#1|)) 100)) (-2002 (((-1179 |#1|) (-1179 |#1|)) 56)) (-4110 (((-1179 |#1|) (-1179 |#1|)) 113)) (-2082 (((-1179 |#1|) (-1179 |#1|)) 88)) (-2188 (((-1179 |#1|) (-1179 |#1|)) 107)) (-2055 (((-1179 |#1|) (-1179 |#1|)) 84)) (-4137 (((-1179 |#1|) (-1179 |#1|)) 117)) (-2100 (((-1179 |#1|) (-1179 |#1|)) 92)) (-1864 (((-1179 |#1|) (-1179 |#1|)) 119)) (-2110 (((-1179 |#1|) (-1179 |#1|)) 94)) (-4123 (((-1179 |#1|) (-1179 |#1|)) 115)) (-2090 (((-1179 |#1|) (-1179 |#1|)) 90)) (-4097 (((-1179 |#1|) (-1179 |#1|)) 109)) (-2070 (((-1179 |#1|) (-1179 |#1|)) 86)) (** (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 41))) +(((-1184 |#1|) (-10 -7 (-15 -4056 ((-1179 |#1|) (-1179 |#1|))) (-15 -3707 ((-1179 |#1|) (-1179 |#1|))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3260 ((-2 (|:| -1989 (-1179 |#1|)) (|:| -2002 (-1179 |#1|))) (-1179 |#1|))) (-15 -1989 ((-1179 |#1|) (-1179 |#1|))) (-15 -2002 ((-1179 |#1|) (-1179 |#1|))) (-15 -2012 ((-1179 |#1|) (-1179 |#1|))) (-15 -2023 ((-1179 |#1|) (-1179 |#1|))) (-15 -2033 ((-1179 |#1|) (-1179 |#1|))) (-15 -2042 ((-1179 |#1|) (-1179 |#1|))) (-15 -2055 ((-1179 |#1|) (-1179 |#1|))) (-15 -2070 ((-1179 |#1|) (-1179 |#1|))) (-15 -2082 ((-1179 |#1|) (-1179 |#1|))) (-15 -2090 ((-1179 |#1|) (-1179 |#1|))) (-15 -2100 ((-1179 |#1|) (-1179 |#1|))) (-15 -2110 ((-1179 |#1|) (-1179 |#1|))) (-15 -3055 ((-2 (|:| -2120 (-1179 |#1|)) (|:| -2131 (-1179 |#1|))) (-1179 |#1|))) (-15 -2120 ((-1179 |#1|) (-1179 |#1|))) (-15 -2131 ((-1179 |#1|) (-1179 |#1|))) (-15 -2143 ((-1179 |#1|) (-1179 |#1|))) (-15 -2155 ((-1179 |#1|) (-1179 |#1|))) (-15 -2166 ((-1179 |#1|) (-1179 |#1|))) (-15 -2177 ((-1179 |#1|) (-1179 |#1|))) (-15 -2188 ((-1179 |#1|) (-1179 |#1|))) (-15 -4097 ((-1179 |#1|) (-1179 |#1|))) (-15 -4110 ((-1179 |#1|) (-1179 |#1|))) (-15 -4123 ((-1179 |#1|) (-1179 |#1|))) (-15 -4137 ((-1179 |#1|) (-1179 |#1|))) (-15 -1864 ((-1179 |#1|) (-1179 |#1|)))) (-38 (-419 (-576)))) (T -1184)) +((-1864 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-4123 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-4110 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2188 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2177 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2166 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2143 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-3055 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -2120 (-1179 *4)) (|:| -2131 (-1179 *4)))) (-5 *1 (-1184 *4)) (-5 *3 (-1179 *4)))) (-2110 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2090 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2055 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2033 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2023 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2012 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2002 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-3260 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -1989 (-1179 *4)) (|:| -2002 (-1179 *4)))) (-5 *1 (-1184 *4)) (-5 *3 (-1179 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-3707 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-4056 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3))))) +(-10 -7 (-15 -4056 ((-1179 |#1|) (-1179 |#1|))) (-15 -3707 ((-1179 |#1|) (-1179 |#1|))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3260 ((-2 (|:| -1989 (-1179 |#1|)) (|:| -2002 (-1179 |#1|))) (-1179 |#1|))) (-15 -1989 ((-1179 |#1|) (-1179 |#1|))) (-15 -2002 ((-1179 |#1|) (-1179 |#1|))) (-15 -2012 ((-1179 |#1|) (-1179 |#1|))) (-15 -2023 ((-1179 |#1|) (-1179 |#1|))) (-15 -2033 ((-1179 |#1|) (-1179 |#1|))) (-15 -2042 ((-1179 |#1|) (-1179 |#1|))) (-15 -2055 ((-1179 |#1|) (-1179 |#1|))) (-15 -2070 ((-1179 |#1|) (-1179 |#1|))) (-15 -2082 ((-1179 |#1|) (-1179 |#1|))) (-15 -2090 ((-1179 |#1|) (-1179 |#1|))) (-15 -2100 ((-1179 |#1|) (-1179 |#1|))) (-15 -2110 ((-1179 |#1|) (-1179 |#1|))) (-15 -3055 ((-2 (|:| -2120 (-1179 |#1|)) (|:| -2131 (-1179 |#1|))) (-1179 |#1|))) (-15 -2120 ((-1179 |#1|) (-1179 |#1|))) (-15 -2131 ((-1179 |#1|) (-1179 |#1|))) (-15 -2143 ((-1179 |#1|) (-1179 |#1|))) (-15 -2155 ((-1179 |#1|) (-1179 |#1|))) (-15 -2166 ((-1179 |#1|) (-1179 |#1|))) (-15 -2177 ((-1179 |#1|) (-1179 |#1|))) (-15 -2188 ((-1179 |#1|) (-1179 |#1|))) (-15 -4097 ((-1179 |#1|) (-1179 |#1|))) (-15 -4110 ((-1179 |#1|) (-1179 |#1|))) (-15 -4123 ((-1179 |#1|) (-1179 |#1|))) (-15 -4137 ((-1179 |#1|) (-1179 |#1|))) (-15 -1864 ((-1179 |#1|) (-1179 |#1|)))) +((-2331 (((-978 |#2|) |#2| |#2|) 50)) (-1445 ((|#2| |#2| |#1|) 19 (|has| |#1| (-317))))) +(((-1185 |#1| |#2|) (-10 -7 (-15 -2331 ((-978 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -1445 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1265 |#1|)) (T -1185)) +((-1445 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1185 *3 *2)) (-4 *2 (-1265 *3)))) (-2331 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-978 *3)) (-5 *1 (-1185 *4 *3)) (-4 *3 (-1265 *4))))) +(-10 -7 (-15 -2331 ((-978 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -1445 (|#2| |#2| |#1|)) |%noBranch|)) +((-3423 (((-112) $ $) NIL)) (-1471 (($ $ (-657 (-784))) 79)) (-2756 (($) 33)) (-2887 (($ $) 51)) (-2580 (((-657 $) $) 60)) (-2288 (((-112) $) 19)) (-4374 (((-657 (-963 |#2|)) $) 86)) (-2161 (($ $) 80)) (-3124 (((-784) $) 47)) (-4096 (($) 32)) (-3362 (($ $ (-657 (-784)) (-963 |#2|)) 72) (($ $ (-657 (-784)) (-784)) 73) (($ $ (-784) (-963 |#2|)) 75)) (-1661 (($ $ $) 57) (($ (-657 $)) 59)) (-2795 (((-784) $) 87)) (-1743 (((-112) $) 15)) (-1708 (((-1180) $) NIL)) (-3046 (((-112) $) 22)) (-1460 (((-1142) $) NIL)) (-3817 (((-173) $) 85)) (-3349 (((-963 |#2|) $) 81)) (-2385 (((-784) $) 82)) (-4376 (((-112) $) 84)) (-4167 (($ $ (-657 (-784)) (-173)) 78)) (-1734 (($ $) 52)) (-3515 (((-877) $) 99)) (-2254 (($ $ (-657 (-784)) (-112)) 77)) (-4160 (((-657 $) $) 11)) (-1410 (($ $ (-784)) 46)) (-1870 (($ $) 43)) (-4166 (((-112) $ $) NIL)) (-2264 (($ $ $ (-963 |#2|) (-784)) 68)) (-3211 (($ $ (-963 |#2|)) 67)) (-4131 (($ $ (-657 (-784)) (-963 |#2|)) 66) (($ $ (-657 (-784)) (-784)) 70) (((-784) $ (-963 |#2|)) 71)) (-2881 (((-112) $ $) 92))) +(((-1186 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -1743 ((-112) $)) (-15 -2288 ((-112) $)) (-15 -3046 ((-112) $)) (-15 -4096 ($)) (-15 -2756 ($)) (-15 -1870 ($ $)) (-15 -1410 ($ $ (-784))) (-15 -4160 ((-657 $) $)) (-15 -3124 ((-784) $)) (-15 -2887 ($ $)) (-15 -1734 ($ $)) (-15 -1661 ($ $ $)) (-15 -1661 ($ (-657 $))) (-15 -2580 ((-657 $) $)) (-15 -4131 ($ $ (-657 (-784)) (-963 |#2|))) (-15 -3211 ($ $ (-963 |#2|))) (-15 -2264 ($ $ $ (-963 |#2|) (-784))) (-15 -3362 ($ $ (-657 (-784)) (-963 |#2|))) (-15 -4131 ($ $ (-657 (-784)) (-784))) (-15 -3362 ($ $ (-657 (-784)) (-784))) (-15 -4131 ((-784) $ (-963 |#2|))) (-15 -3362 ($ $ (-784) (-963 |#2|))) (-15 -2254 ($ $ (-657 (-784)) (-112))) (-15 -4167 ($ $ (-657 (-784)) (-173))) (-15 -1471 ($ $ (-657 (-784)))) (-15 -3349 ((-963 |#2|) $)) (-15 -2385 ((-784) $)) (-15 -4376 ((-112) $)) (-15 -3817 ((-173) $)) (-15 -2795 ((-784) $)) (-15 -2161 ($ $)) (-15 -4374 ((-657 (-963 |#2|)) $)))) (-941) (-1071)) (T -1186)) +((-1743 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-4096 (*1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-2756 (*1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-1870 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-1410 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-657 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-2887 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-1734 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-1661 (*1 *1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-1661 (*1 *1 *2) (-12 (-5 *2 (-657 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-657 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-4131 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-784))) (-5 *3 (-963 *5)) (-4 *5 (-1071)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-963 *4)) (-4 *4 (-1071)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)))) (-2264 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-963 *5)) (-5 *3 (-784)) (-4 *5 (-1071)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-784))) (-5 *3 (-963 *5)) (-4 *5 (-1071)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) (-4131 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-784))) (-5 *3 (-784)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)) (-4 *5 (-1071)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-784))) (-5 *3 (-784)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)) (-4 *5 (-1071)))) (-4131 (*1 *2 *1 *3) (-12 (-5 *3 (-963 *5)) (-4 *5 (-1071)) (-5 *2 (-784)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-963 *5)) (-4 *5 (-1071)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) (-2254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-784))) (-5 *3 (-112)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)) (-4 *5 (-1071)))) (-4167 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-784))) (-5 *3 (-173)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)) (-4 *5 (-1071)))) (-1471 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-784))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-963 *4)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-657 (-963 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071))))) +(-13 (-1122) (-10 -8 (-15 -1743 ((-112) $)) (-15 -2288 ((-112) $)) (-15 -3046 ((-112) $)) (-15 -4096 ($)) (-15 -2756 ($)) (-15 -1870 ($ $)) (-15 -1410 ($ $ (-784))) (-15 -4160 ((-657 $) $)) (-15 -3124 ((-784) $)) (-15 -2887 ($ $)) (-15 -1734 ($ $)) (-15 -1661 ($ $ $)) (-15 -1661 ($ (-657 $))) (-15 -2580 ((-657 $) $)) (-15 -4131 ($ $ (-657 (-784)) (-963 |#2|))) (-15 -3211 ($ $ (-963 |#2|))) (-15 -2264 ($ $ $ (-963 |#2|) (-784))) (-15 -3362 ($ $ (-657 (-784)) (-963 |#2|))) (-15 -4131 ($ $ (-657 (-784)) (-784))) (-15 -3362 ($ $ (-657 (-784)) (-784))) (-15 -4131 ((-784) $ (-963 |#2|))) (-15 -3362 ($ $ (-784) (-963 |#2|))) (-15 -2254 ($ $ (-657 (-784)) (-112))) (-15 -4167 ($ $ (-657 (-784)) (-173))) (-15 -1471 ($ $ (-657 (-784)))) (-15 -3349 ((-963 |#2|) $)) (-15 -2385 ((-784) $)) (-15 -4376 ((-112) $)) (-15 -3817 ((-173) $)) (-15 -2795 ((-784) $)) (-15 -2161 ($ $)) (-15 -4374 ((-657 (-963 |#2|)) $)))) +((-3423 (((-112) $ $) NIL)) (-1691 ((|#2| $) 11)) (-1678 ((|#1| $) 10)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3529 (($ |#1| |#2|) 9)) (-3515 (((-877) $) 16)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1187 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -3529 ($ |#1| |#2|)) (-15 -1678 (|#1| $)) (-15 -1691 (|#2| $)))) (-1122) (-1122)) (T -1187)) +((-3529 (*1 *1 *2 *3) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-1678 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-1122)))) (-1691 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-1122))))) +(-13 (-1122) (-10 -8 (-15 -3529 ($ |#1| |#2|)) (-15 -1678 (|#1| $)) (-15 -1691 (|#2| $)))) +((-3423 (((-112) $ $) NIL)) (-2056 (((-1157) $) 9)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 15) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1188) (-13 (-1105) (-10 -8 (-15 -2056 ((-1157) $))))) (T -1188)) +((-2056 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1188))))) +(-13 (-1105) (-10 -8 (-15 -2056 ((-1157) $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2923 (((-1196 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1998 (((-657 (-1104)) $) NIL)) (-2993 (((-1198) $) 11)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2361 (($ $) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3286 (((-112) $) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2212 (($ $ (-576)) NIL) (($ $ (-576) (-576)) 75)) (-3212 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-3485 (((-1196 |#1| |#2| |#3|) $) 42)) (-3834 (((-3 (-1196 |#1| |#2| |#3|) "failed") $) 32)) (-2053 (((-1196 |#1| |#2| |#3|) $) 33)) (-2143 (($ $) 116 (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-3188 (($ $) NIL (|has| |#1| (-374)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1866 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2120 (($ $) 112 (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-3922 (((-576) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-3696 (($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-2166 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-1196 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1198) "failed") $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-1198))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374))))) (-2830 (((-1196 |#1| |#2| |#3|) $) 140) (((-1198) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-1198))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374))))) (-1665 (($ $) 37) (($ (-576) $) 38)) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-2165 (($ $) NIL)) (-3439 (((-702 (-1196 |#1| |#2| |#3|)) (-702 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 (-1196 |#1| |#2| |#3|))) (|:| |vec| (-1289 (-1196 |#1| |#2| |#3|)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-702 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374))))) (-3969 (((-3 $ "failed") $) 54)) (-2565 (((-419 (-972 |#1|)) $ (-576)) 74 (|has| |#1| (-568))) (((-419 (-972 |#1|)) $ (-576) (-576)) 76 (|has| |#1| (-568)))) (-1876 (($) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4009 (((-112) $) NIL (|has| |#1| (-374)))) (-3810 (((-112) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-3155 (((-112) $) 28)) (-1622 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-902 (-390))) (|has| |#1| (-374)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-902 (-576))) (|has| |#1| (-374))))) (-2650 (((-576) $) NIL) (((-576) $ (-576)) 26)) (-3994 (((-112) $) NIL)) (-3502 (($ $) NIL (|has| |#1| (-374)))) (-1590 (((-1196 |#1| |#2| |#3|) $) 44 (|has| |#1| (-374)))) (-3856 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1955 (((-3 $ "failed") $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1174)) (|has| |#1| (-374))))) (-3517 (((-112) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-3920 (($ $ (-941)) NIL)) (-4162 (($ (-1 |#1| (-576)) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-576)) 19) (($ $ (-1104) (-576)) NIL) (($ $ (-657 (-1104)) (-657 (-576))) NIL)) (-3740 (($ $ $) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2249 (($ $ $) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3707 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-1993 (((-702 (-1196 |#1| |#2| |#3|)) (-1289 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 (-1196 |#1| |#2| |#3|))) (|:| |vec| (-1289 (-1196 |#1| |#2| |#3|)))) (-1289 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-1289 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374))))) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2067 (($ (-576) (-1196 |#1| |#2| |#3|)) 36)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL (|has| |#1| (-374)))) (-2320 (($ $) 79 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 80 (|has| |#1| (-38 (-419 (-576)))))) (-1679 (($) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1174)) (|has| |#1| (-374))) CONST)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2440 (($ $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-2681 (((-1196 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-1856 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-1456 (($ $ (-576)) 158)) (-3409 (((-3 $ "failed") $ $) 55 (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4056 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1198) (-1196 |#1| |#2| |#3|)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-526 (-1198) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-657 (-1198)) (-657 (-1196 |#1| |#2| |#3|))) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-526 (-1198) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-657 (-304 (-1196 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-319 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1196 |#1| |#2| |#3|))) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-319 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-319 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-657 (-1196 |#1| |#2| |#3|)) (-657 (-1196 |#1| |#2| |#3|))) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-319 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-4164 (((-784) $) NIL (|has| |#1| (-374)))) (-2780 ((|#1| $ (-576)) NIL) (($ $ $) 61 (|has| (-576) (-1134))) (($ $ (-1196 |#1| |#2| |#3|)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-296 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-2209 (($ $ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) (-784)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1285 |#2|)) 57) (($ $) 56 (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))))) (-4226 (($ $) NIL (|has| |#1| (-374)))) (-1602 (((-1196 |#1| |#2| |#3|) $) 46 (|has| |#1| (-374)))) (-4265 (((-576) $) 43)) (-2177 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) 118 (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) 114 (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-4136 (((-548) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1044)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1044)) (|has| |#1| (-374)))) (((-908 (-390)) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-626 (-908 (-390)))) (|has| |#1| (-374)))) (((-908 (-576)) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-626 (-908 (-576)))) (|has| |#1| (-374))))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-1557 (($ $) NIL)) (-3515 (((-877) $) 162) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1196 |#1| |#2| |#3|)) 30) (($ (-1285 |#2|)) 25) (($ (-1198)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-1198))) (|has| |#1| (-374)))) (($ $) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-2498 ((|#1| $ (-576)) 77)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3713 ((|#1| $) 12)) (-2140 (((-1196 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2188 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 108 (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) 110 (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-2127 (($ $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-2716 (($) 21 T CONST)) (-2725 (($) 16 T CONST)) (-2066 (($ $ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) (-784)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1285 |#2|)) NIL) (($ $) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))))) (-2938 (((-112) $ $) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2913 (((-112) $ $) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2901 (((-112) $ $) NIL (-2748 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 49 (|has| |#1| (-374))) (($ (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) 50 (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 23)) (** (($ $ (-941)) NIL) (($ $ (-784)) 60) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) 83 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 137 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1196 |#1| |#2| |#3|)) 48 (|has| |#1| (-374))) (($ (-1196 |#1| |#2| |#3|) $) 47 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1189 |#1| |#2| |#3|) (-13 (-1251 |#1| (-1196 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3515 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -1189)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-1071)) (-14 *5 *3))) (-2320 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) +(-13 (-1251 |#1| (-1196 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3515 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) +((-2598 ((|#2| |#2| (-1114 |#2|)) 26) ((|#2| |#2| (-1198)) 28))) +(((-1190 |#1| |#2|) (-10 -7 (-15 -2598 (|#2| |#2| (-1198))) (-15 -2598 (|#2| |#2| (-1114 |#2|)))) (-13 (-568) (-1060 (-576)) (-652 (-576))) (-13 (-442 |#1|) (-161) (-27) (-1224))) (T -1190)) +((-2598 (*1 *2 *2 *3) (-12 (-5 *3 (-1114 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1224))) (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1190 *4 *2)))) (-2598 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1190 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1224)))))) +(-10 -7 (-15 -2598 (|#2| |#2| (-1198))) (-15 -2598 (|#2| |#2| (-1114 |#2|)))) +((-2598 (((-3 (-419 (-972 |#1|)) (-326 |#1|)) (-419 (-972 |#1|)) (-1114 (-419 (-972 |#1|)))) 31) (((-419 (-972 |#1|)) (-972 |#1|) (-1114 (-972 |#1|))) 44) (((-3 (-419 (-972 |#1|)) (-326 |#1|)) (-419 (-972 |#1|)) (-1198)) 33) (((-419 (-972 |#1|)) (-972 |#1|) (-1198)) 36))) +(((-1191 |#1|) (-10 -7 (-15 -2598 ((-419 (-972 |#1|)) (-972 |#1|) (-1198))) (-15 -2598 ((-3 (-419 (-972 |#1|)) (-326 |#1|)) (-419 (-972 |#1|)) (-1198))) (-15 -2598 ((-419 (-972 |#1|)) (-972 |#1|) (-1114 (-972 |#1|)))) (-15 -2598 ((-3 (-419 (-972 |#1|)) (-326 |#1|)) (-419 (-972 |#1|)) (-1114 (-419 (-972 |#1|)))))) (-13 (-568) (-1060 (-576)))) (T -1191)) +((-2598 (*1 *2 *3 *4) (-12 (-5 *4 (-1114 (-419 (-972 *5)))) (-5 *3 (-419 (-972 *5))) (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1191 *5)))) (-2598 (*1 *2 *3 *4) (-12 (-5 *4 (-1114 (-972 *5))) (-5 *3 (-972 *5)) (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-419 *3)) (-5 *1 (-1191 *5)))) (-2598 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-3 (-419 (-972 *5)) (-326 *5))) (-5 *1 (-1191 *5)) (-5 *3 (-419 (-972 *5))))) (-2598 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-419 (-972 *5))) (-5 *1 (-1191 *5)) (-5 *3 (-972 *5))))) +(-10 -7 (-15 -2598 ((-419 (-972 |#1|)) (-972 |#1|) (-1198))) (-15 -2598 ((-3 (-419 (-972 |#1|)) (-326 |#1|)) (-419 (-972 |#1|)) (-1198))) (-15 -2598 ((-419 (-972 |#1|)) (-972 |#1|) (-1114 (-972 |#1|)))) (-15 -2598 ((-3 (-419 (-972 |#1|)) (-326 |#1|)) (-419 (-972 |#1|)) (-1114 (-419 (-972 |#1|)))))) +((-4071 (((-1194 |#2|) (-1 |#2| |#1|) (-1194 |#1|)) 13))) +(((-1192 |#1| |#2|) (-10 -7 (-15 -4071 ((-1194 |#2|) (-1 |#2| |#1|) (-1194 |#1|)))) (-1071) (-1071)) (T -1192)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1194 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-5 *2 (-1194 *6)) (-5 *1 (-1192 *5 *6))))) +(-10 -7 (-15 -4071 ((-1194 |#2|) (-1 |#2| |#1|) (-1194 |#1|)))) +((-4215 (((-430 (-1194 (-419 |#4|))) (-1194 (-419 |#4|))) 51)) (-1856 (((-430 (-1194 (-419 |#4|))) (-1194 (-419 |#4|))) 52))) +(((-1193 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1856 ((-430 (-1194 (-419 |#4|))) (-1194 (-419 |#4|)))) (-15 -4215 ((-430 (-1194 (-419 |#4|))) (-1194 (-419 |#4|))))) (-806) (-862) (-464) (-969 |#3| |#1| |#2|)) (T -1193)) +((-4215 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-430 (-1194 (-419 *7)))) (-5 *1 (-1193 *4 *5 *6 *7)) (-5 *3 (-1194 (-419 *7))))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-430 (-1194 (-419 *7)))) (-5 *1 (-1193 *4 *5 *6 *7)) (-5 *3 (-1194 (-419 *7)))))) +(-10 -7 (-15 -1856 ((-430 (-1194 (-419 |#4|))) (-1194 (-419 |#4|)))) (-15 -4215 ((-430 (-1194 (-419 |#4|))) (-1194 (-419 |#4|))))) +((-3423 (((-112) $ $) 171)) (-2044 (((-112) $) 43)) (-1519 (((-1289 |#1|) $ (-784)) NIL)) (-1998 (((-657 (-1104)) $) NIL)) (-1324 (($ (-1194 |#1|)) NIL)) (-1825 (((-1194 $) $ (-1104)) 82) (((-1194 |#1|) $) 71)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) 164 (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 (-1104))) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3924 (($ $ $) 158 (|has| |#1| (-568)))) (-2628 (((-430 (-1194 $)) (-1194 $)) 95 (|has| |#1| (-929)))) (-3188 (($ $) NIL (|has| |#1| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 115 (|has| |#1| (-929)))) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2104 (($ $ (-784)) 61)) (-2536 (($ $ (-784)) 63)) (-2580 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-1104) "failed") $) NIL)) (-2830 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-1104) $) NIL)) (-4351 (($ $ $ (-1104)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-2165 (($ $) 80)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-4042 (($ $ $) 131)) (-2054 (($ $ $) NIL (|has| |#1| (-568)))) (-4010 (((-2 (|:| -1735 |#1|) (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-568)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-1445 (($ $) 165 (|has| |#1| (-464))) (($ $ (-1104)) NIL (|has| |#1| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#1| (-929)))) (-2643 (($ $ |#1| (-784) $) 69)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1104) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1104) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-2899 (((-877) $ (-877)) 148)) (-2650 (((-784) $ $) NIL (|has| |#1| (-568)))) (-3994 (((-112) $) 48)) (-2977 (((-784) $) NIL)) (-1955 (((-3 $ "failed") $) NIL (|has| |#1| (-1174)))) (-1986 (($ (-1194 |#1|) (-1104)) 73) (($ (-1194 $) (-1104)) 89)) (-3920 (($ $ (-784)) 51)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-784)) 87) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ (-1104)) NIL) (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 153)) (-4219 (((-784) $) NIL) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-2308 (($ (-1 (-784) (-784)) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3518 (((-1194 |#1|) $) NIL)) (-2502 (((-3 (-1104) "failed") $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#1| $) 76)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1708 (((-1180) $) NIL)) (-1498 (((-2 (|:| -2192 $) (|:| -3951 $)) $ (-784)) 60)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| (-1104)) (|:| -2128 (-784))) "failed") $) NIL)) (-2320 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1679 (($) NIL (|has| |#1| (-1174)) CONST)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) 50)) (-2118 ((|#1| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 103 (|has| |#1| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) 167 (|has| |#1| (-464)))) (-1836 (($ $ (-784) |#1| $) 123)) (-2436 (((-430 (-1194 $)) (-1194 $)) 101 (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) 100 (|has| |#1| (-929)))) (-1856 (((-430 $) $) 108 (|has| |#1| (-929)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-3409 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1104) |#1|) NIL) (($ $ (-657 (-1104)) (-657 |#1|)) NIL) (($ $ (-1104) $) NIL) (($ $ (-657 (-1104)) (-657 $)) NIL)) (-4164 (((-784) $) NIL (|has| |#1| (-374)))) (-2780 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-3592 (((-3 $ "failed") $ (-784)) 54)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 172 (|has| |#1| (-374)))) (-1465 (($ $ (-1104)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-2209 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-4265 (((-784) $) 78) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-1104) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3614 ((|#1| $) 162 (|has| |#1| (-464))) (($ $ (-1104)) NIL (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-2375 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3515 (((-877) $) 149) (($ (-576)) NIL) (($ |#1|) 77) (($ (-1104)) NIL) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-784)) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) 41 (|has| |#1| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2716 (($) 17 T CONST)) (-2725 (($) 19 T CONST)) (-2066 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-2881 (((-112) $ $) 120)) (-2995 (($ $ |#1|) 173 (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 90)) (** (($ $ (-941)) 14) (($ $ (-784)) 12)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1194 |#1|) (-13 (-1265 |#1|) (-10 -8 (-15 -2899 ((-877) $ (-877))) (-15 -1836 ($ $ (-784) |#1| $)))) (-1071)) (T -1194)) +((-2899 (*1 *2 *1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1194 *3)) (-4 *3 (-1071)))) (-1836 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1194 *3)) (-4 *3 (-1071))))) +(-13 (-1265 |#1|) (-10 -8 (-15 -2899 ((-877) $ (-877))) (-15 -1836 ($ $ (-784) |#1| $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1998 (((-657 (-1104)) $) NIL)) (-2993 (((-1198) $) 11)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2212 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3212 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-2143 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-374)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1866 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2120 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3696 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2166 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-1189 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1196 |#1| |#2| |#3|) "failed") $) 36)) (-2830 (((-1189 |#1| |#2| |#3|) $) NIL) (((-1196 |#1| |#2| |#3|) $) NIL)) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1530 (((-419 (-576)) $) 59)) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-2079 (($ (-419 (-576)) (-1189 |#1| |#2| |#3|)) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4009 (((-112) $) NIL (|has| |#1| (-374)))) (-3155 (((-112) $) NIL)) (-1622 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-3994 (((-112) $) NIL)) (-3856 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $ (-941)) NIL) (($ $ (-419 (-576))) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-419 (-576))) 20) (($ $ (-1104) (-419 (-576))) NIL) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3707 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3681 (((-1189 |#1| |#2| |#3|) $) 41)) (-2682 (((-3 (-1189 |#1| |#2| |#3|) "failed") $) NIL)) (-2067 (((-1189 |#1| |#2| |#3|) $) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL (|has| |#1| (-374)))) (-2320 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-1456 (($ $ (-419 (-576))) NIL)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4056 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-4164 (((-784) $) NIL (|has| |#1| (-374)))) (-2780 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1134)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-2209 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1285 |#2|)) 38)) (-4265 (((-419 (-576)) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) NIL)) (-3515 (((-877) $) 62) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1189 |#1| |#2| |#3|)) 30) (($ (-1196 |#1| |#2| |#3|)) 31) (($ (-1285 |#2|)) 26) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2498 ((|#1| $ (-419 (-576))) NIL)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-3713 ((|#1| $) 12)) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) 22 T CONST)) (-2725 (($) 16 T CONST)) (-2066 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1285 |#2|)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 24)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1195 |#1| |#2| |#3|) (-13 (-1272 |#1| (-1189 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-1060 (-1196 |#1| |#2| |#3|)) (-628 (-1285 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -1195)) +((-2320 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) +(-13 (-1272 |#1| (-1189 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-1060 (-1196 |#1| |#2| |#3|)) (-628 (-1285 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 129)) (-1998 (((-657 (-1104)) $) NIL)) (-2993 (((-1198) $) 119)) (-4204 (((-1262 |#2| |#1|) $ (-784)) 69)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2212 (($ $ (-784)) 85) (($ $ (-784) (-784)) 82)) (-3212 (((-1179 (-2 (|:| |k| (-784)) (|:| |c| |#1|))) $) 105)) (-2143 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-1866 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2120 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3696 (($ (-1179 (-2 (|:| |k| (-784)) (|:| |c| |#1|)))) 118) (($ (-1179 |#1|)) 113)) (-2166 (($ $) 177 (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) NIL T CONST)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) 25)) (-1829 (($ $) 28)) (-2991 (((-972 |#1|) $ (-784)) 81) (((-972 |#1|) $ (-784) (-784)) 83)) (-3155 (((-112) $) 124)) (-1622 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-784) $) 126) (((-784) $ (-784)) 128)) (-3994 (((-112) $) NIL)) (-3856 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $ (-941)) NIL)) (-4162 (($ (-1 |#1| (-576)) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-784)) 13) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3707 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-2320 (($ $) 133 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1460 (((-1142) $) NIL)) (-1456 (($ $ (-784)) 15)) (-3409 (((-3 $ "failed") $ $) 26 (|has| |#1| (-568)))) (-4056 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-784)))))) (-2780 ((|#1| $ (-784)) 122) (($ $ $) 132 (|has| (-784) (-1134)))) (-2209 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-1285 |#2|)) 31)) (-4265 (((-784) $) NIL)) (-2177 (($ $) 179 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) NIL)) (-3515 (((-877) $) 206) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1262 |#2| |#1|)) 55) (($ (-1285 |#2|)) 36)) (-3987 (((-1179 |#1|) $) 101)) (-2498 ((|#1| $ (-784)) 121)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-3713 ((|#1| $) 58)) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2188 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 165 (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-784)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-784)))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) 167 (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) 163 (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) 159 (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) 17 T CONST)) (-2725 (($) 20 T CONST)) (-2066 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-1285 |#2|)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) 198)) (-2971 (($ $ $) 35)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ |#1|) 203 (|has| |#1| (-374))) (($ $ $) 138 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 141 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1196 |#1| |#2| |#3|) (-13 (-1280 |#1|) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3515 ($ (-1262 |#2| |#1|))) (-15 -4204 ((-1262 |#2| |#1|) $ (-784))) (-15 -3515 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -1196)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1262 *4 *3)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-1196 *3 *4 *5)))) (-4204 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1262 *5 *4)) (-5 *1 (-1196 *4 *5 *6)) (-4 *4 (-1071)) (-14 *5 (-1198)) (-14 *6 *4))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1196 *3 *4 *5)) (-4 *3 (-1071)) (-14 *5 *3))) (-2320 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1196 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) +(-13 (-1280 |#1|) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3515 ($ (-1262 |#2| |#1|))) (-15 -4204 ((-1262 |#2| |#1|) $ (-784))) (-15 -3515 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) +((-3515 (((-877) $) 33) (($ (-1198)) 35)) (-2748 (($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 46)) (-2737 (($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 39) (($ $) 40)) (-3100 (($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 41)) (-3090 (($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 43)) (-3080 (($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 42)) (-3070 (($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 44)) (-2085 (($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 45))) +(((-1197) (-13 (-625 (-877)) (-10 -8 (-15 -3515 ($ (-1198))) (-15 -3100 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3080 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3090 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3070 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2748 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2085 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2737 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2737 ($ $))))) (T -1197)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1197)))) (-3100 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3080 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3090 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3070 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-2748 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-2085 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-2737 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-2737 (*1 *1 *1) (-5 *1 (-1197)))) +(-13 (-625 (-877)) (-10 -8 (-15 -3515 ($ (-1198))) (-15 -3100 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3080 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3090 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3070 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2748 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2085 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2737 ($ (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2737 ($ $)))) +((-3423 (((-112) $ $) NIL)) (-2586 (($ $ (-657 (-877))) 62)) (-1697 (($ $ (-657 (-877))) 60)) (-1331 (((-1180) $) 101)) (-3053 (((-2 (|:| -2627 (-657 (-877))) (|:| -1323 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -3804 (-657 (-877))) (|:| |args| (-657 (-877)))) $) 108)) (-3061 (((-112) $) 23)) (-2904 (($ $ (-657 (-657 (-877)))) 59) (($ $ (-2 (|:| -2627 (-657 (-877))) (|:| -1323 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -3804 (-657 (-877))) (|:| |args| (-657 (-877))))) 99)) (-2515 (($) 163 T CONST)) (-1404 (((-1294)) 135)) (-2008 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 69) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 76)) (-4096 (($) 122) (($ $) 131)) (-2634 (($ $) 100)) (-3740 (($ $ $) NIL)) (-2249 (($ $ $) NIL)) (-1672 (((-657 $) $) 136)) (-1708 (((-1180) $) 114)) (-1460 (((-1142) $) NIL)) (-2780 (($ $ (-657 (-877))) 61)) (-4136 (((-548) $) 48) (((-1198) $) 49) (((-908 (-576)) $) 80) (((-908 (-390)) $) 78)) (-3515 (((-877) $) 55) (($ (-1180)) 50)) (-4166 (((-112) $ $) NIL)) (-1874 (($ $ (-657 (-877))) 63)) (-4019 (((-1180) $) 34) (((-1180) $ (-112)) 35) (((-1294) (-835) $) 36) (((-1294) (-835) $ (-112)) 37)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 51)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) 52))) +(((-1198) (-13 (-862) (-626 (-548)) (-841) (-626 (-1198)) (-628 (-1180)) (-626 (-908 (-576))) (-626 (-908 (-390))) (-902 (-576)) (-902 (-390)) (-10 -8 (-15 -4096 ($)) (-15 -4096 ($ $)) (-15 -1404 ((-1294))) (-15 -2634 ($ $)) (-15 -3061 ((-112) $)) (-15 -3053 ((-2 (|:| -2627 (-657 (-877))) (|:| -1323 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -3804 (-657 (-877))) (|:| |args| (-657 (-877)))) $)) (-15 -2904 ($ $ (-657 (-657 (-877))))) (-15 -2904 ($ $ (-2 (|:| -2627 (-657 (-877))) (|:| -1323 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -3804 (-657 (-877))) (|:| |args| (-657 (-877)))))) (-15 -1697 ($ $ (-657 (-877)))) (-15 -2586 ($ $ (-657 (-877)))) (-15 -1874 ($ $ (-657 (-877)))) (-15 -2780 ($ $ (-657 (-877)))) (-15 -1331 ((-1180) $)) (-15 -1672 ((-657 $) $)) (-15 -2515 ($) -1491)))) (T -1198)) +((-4096 (*1 *1) (-5 *1 (-1198))) (-4096 (*1 *1 *1) (-5 *1 (-1198))) (-1404 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1198)))) (-2634 (*1 *1 *1) (-5 *1 (-1198))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2627 (-657 (-877))) (|:| -1323 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -3804 (-657 (-877))) (|:| |args| (-657 (-877))))) (-5 *1 (-1198)))) (-2904 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-657 (-877)))) (-5 *1 (-1198)))) (-2904 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2627 (-657 (-877))) (|:| -1323 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -3804 (-657 (-877))) (|:| |args| (-657 (-877))))) (-5 *1 (-1198)))) (-1697 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198)))) (-2586 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198)))) (-1874 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198)))) (-2780 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1198)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1198)))) (-2515 (*1 *1) (-5 *1 (-1198)))) +(-13 (-862) (-626 (-548)) (-841) (-626 (-1198)) (-628 (-1180)) (-626 (-908 (-576))) (-626 (-908 (-390))) (-902 (-576)) (-902 (-390)) (-10 -8 (-15 -4096 ($)) (-15 -4096 ($ $)) (-15 -1404 ((-1294))) (-15 -2634 ($ $)) (-15 -3061 ((-112) $)) (-15 -3053 ((-2 (|:| -2627 (-657 (-877))) (|:| -1323 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -3804 (-657 (-877))) (|:| |args| (-657 (-877)))) $)) (-15 -2904 ($ $ (-657 (-657 (-877))))) (-15 -2904 ($ $ (-2 (|:| -2627 (-657 (-877))) (|:| -1323 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -3804 (-657 (-877))) (|:| |args| (-657 (-877)))))) (-15 -1697 ($ $ (-657 (-877)))) (-15 -2586 ($ $ (-657 (-877)))) (-15 -1874 ($ $ (-657 (-877)))) (-15 -2780 ($ $ (-657 (-877)))) (-15 -1331 ((-1180) $)) (-15 -1672 ((-657 $) $)) (-15 -2515 ($) -1491))) +((-1744 (((-1289 |#1|) |#1| (-941)) 18) (((-1289 |#1|) (-657 |#1|)) 25))) +(((-1199 |#1|) (-10 -7 (-15 -1744 ((-1289 |#1|) (-657 |#1|))) (-15 -1744 ((-1289 |#1|) |#1| (-941)))) (-1071)) (T -1199)) +((-1744 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-5 *2 (-1289 *3)) (-5 *1 (-1199 *3)) (-4 *3 (-1071)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-1071)) (-5 *2 (-1289 *4)) (-5 *1 (-1199 *4))))) +(-10 -7 (-15 -1744 ((-1289 |#1|) (-657 |#1|))) (-15 -1744 ((-1289 |#1|) |#1| (-941)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2830 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1445 (($ $) NIL (|has| |#1| (-464)))) (-2643 (($ $ |#1| (-993) $) NIL)) (-3994 (((-112) $) 17)) (-2977 (((-784) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-993)) NIL)) (-4219 (((-993) $) NIL)) (-2308 (($ (-1 (-993) (-993)) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) NIL)) (-2118 ((|#1| $) NIL)) (-1836 (($ $ (-993) |#1| $) NIL (-12 (|has| (-993) (-132)) (|has| |#1| (-568))))) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4265 (((-993) $) NIL)) (-3614 ((|#1| $) NIL (|has| |#1| (-464)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2748 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ (-993)) NIL)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2716 (($) 10 T CONST)) (-2725 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 21)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1200 |#1|) (-13 (-336 |#1| (-993)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-993) (-132)) (-15 -1836 ($ $ (-993) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4464)) (-6 -4464) |%noBranch|))) (-1071)) (T -1200)) +((-1836 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-993)) (-4 *2 (-132)) (-5 *1 (-1200 *3)) (-4 *3 (-568)) (-4 *3 (-1071))))) +(-13 (-336 |#1| (-993)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-993) (-132)) (-15 -1836 ($ $ (-993) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4464)) (-6 -4464) |%noBranch|))) +((-2358 (((-1202) (-1198) $) 25)) (-3765 (($) 29)) (-1566 (((-3 (|:| |fst| (-446)) (|:| -2875 "void")) (-1198) $) 22)) (-2512 (((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -2875 "void")) $) 41) (((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) 42) (((-1294) (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) 43)) (-4233 (((-1294) (-1198)) 58)) (-2544 (((-1294) (-1198) $) 55) (((-1294) (-1198)) 56) (((-1294)) 57)) (-1745 (((-1294) (-1198)) 37)) (-2863 (((-1198)) 36)) (-3340 (($) 34)) (-2220 (((-449) (-1198) (-449) (-1198) $) 45) (((-449) (-657 (-1198)) (-449) (-1198) $) 49) (((-449) (-1198) (-449)) 46) (((-449) (-1198) (-449) (-1198)) 50)) (-3732 (((-1198)) 35)) (-3515 (((-877) $) 28)) (-1722 (((-1294)) 30) (((-1294) (-1198)) 33)) (-1619 (((-657 (-1198)) (-1198) $) 24)) (-2370 (((-1294) (-1198) (-657 (-1198)) $) 38) (((-1294) (-1198) (-657 (-1198))) 39) (((-1294) (-657 (-1198))) 40))) +(((-1201) (-13 (-625 (-877)) (-10 -8 (-15 -3765 ($)) (-15 -1722 ((-1294))) (-15 -1722 ((-1294) (-1198))) (-15 -2220 ((-449) (-1198) (-449) (-1198) $)) (-15 -2220 ((-449) (-657 (-1198)) (-449) (-1198) $)) (-15 -2220 ((-449) (-1198) (-449))) (-15 -2220 ((-449) (-1198) (-449) (-1198))) (-15 -1745 ((-1294) (-1198))) (-15 -3732 ((-1198))) (-15 -2863 ((-1198))) (-15 -2370 ((-1294) (-1198) (-657 (-1198)) $)) (-15 -2370 ((-1294) (-1198) (-657 (-1198)))) (-15 -2370 ((-1294) (-657 (-1198)))) (-15 -2512 ((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -2875 "void")) $)) (-15 -2512 ((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -2875 "void")))) (-15 -2512 ((-1294) (-3 (|:| |fst| (-446)) (|:| -2875 "void")))) (-15 -2544 ((-1294) (-1198) $)) (-15 -2544 ((-1294) (-1198))) (-15 -2544 ((-1294))) (-15 -4233 ((-1294) (-1198))) (-15 -3340 ($)) (-15 -1566 ((-3 (|:| |fst| (-446)) (|:| -2875 "void")) (-1198) $)) (-15 -1619 ((-657 (-1198)) (-1198) $)) (-15 -2358 ((-1202) (-1198) $))))) (T -1201)) +((-3765 (*1 *1) (-5 *1 (-1201))) (-1722 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1201)))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-2220 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1201)))) (-2220 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-449)) (-5 *3 (-657 (-1198))) (-5 *4 (-1198)) (-5 *1 (-1201)))) (-2220 (*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1201)))) (-2220 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1201)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3732 (*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1201)))) (-2863 (*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1201)))) (-2370 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-2512 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1198)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-2544 (*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-2544 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1201)))) (-4233 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3340 (*1 *1) (-5 *1 (-1201))) (-1566 (*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-5 *1 (-1201)))) (-1619 (*1 *2 *3 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1201)) (-5 *3 (-1198)))) (-2358 (*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-1202)) (-5 *1 (-1201))))) +(-13 (-625 (-877)) (-10 -8 (-15 -3765 ($)) (-15 -1722 ((-1294))) (-15 -1722 ((-1294) (-1198))) (-15 -2220 ((-449) (-1198) (-449) (-1198) $)) (-15 -2220 ((-449) (-657 (-1198)) (-449) (-1198) $)) (-15 -2220 ((-449) (-1198) (-449))) (-15 -2220 ((-449) (-1198) (-449) (-1198))) (-15 -1745 ((-1294) (-1198))) (-15 -3732 ((-1198))) (-15 -2863 ((-1198))) (-15 -2370 ((-1294) (-1198) (-657 (-1198)) $)) (-15 -2370 ((-1294) (-1198) (-657 (-1198)))) (-15 -2370 ((-1294) (-657 (-1198)))) (-15 -2512 ((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -2875 "void")) $)) (-15 -2512 ((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -2875 "void")))) (-15 -2512 ((-1294) (-3 (|:| |fst| (-446)) (|:| -2875 "void")))) (-15 -2544 ((-1294) (-1198) $)) (-15 -2544 ((-1294) (-1198))) (-15 -2544 ((-1294))) (-15 -4233 ((-1294) (-1198))) (-15 -3340 ($)) (-15 -1566 ((-3 (|:| |fst| (-446)) (|:| -2875 "void")) (-1198) $)) (-15 -1619 ((-657 (-1198)) (-1198) $)) (-15 -2358 ((-1202) (-1198) $)))) +((-4181 (((-657 (-657 (-3 (|:| -2634 (-1198)) (|:| -2300 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576))))))))) $) 66)) (-4132 (((-657 (-3 (|:| -2634 (-1198)) (|:| -2300 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576)))))))) (-446) $) 47)) (-2019 (($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-449))))) 17)) (-4233 (((-1294) $) 73)) (-1472 (((-657 (-1198)) $) 22)) (-2480 (((-1126) $) 60)) (-1800 (((-449) (-1198) $) 27)) (-2213 (((-657 (-1198)) $) 30)) (-3340 (($) 19)) (-2220 (((-449) (-657 (-1198)) (-449) $) 25) (((-449) (-1198) (-449) $) 24)) (-3515 (((-877) $) 9) (((-1211 (-1198) (-449)) $) 13))) +(((-1202) (-13 (-625 (-877)) (-10 -8 (-15 -3515 ((-1211 (-1198) (-449)) $)) (-15 -3340 ($)) (-15 -2220 ((-449) (-657 (-1198)) (-449) $)) (-15 -2220 ((-449) (-1198) (-449) $)) (-15 -1800 ((-449) (-1198) $)) (-15 -1472 ((-657 (-1198)) $)) (-15 -4132 ((-657 (-3 (|:| -2634 (-1198)) (|:| -2300 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576)))))))) (-446) $)) (-15 -2213 ((-657 (-1198)) $)) (-15 -4181 ((-657 (-657 (-3 (|:| -2634 (-1198)) (|:| -2300 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576))))))))) $)) (-15 -2480 ((-1126) $)) (-15 -4233 ((-1294) $)) (-15 -2019 ($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-449))))))))) (T -1202)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-1211 (-1198) (-449))) (-5 *1 (-1202)))) (-3340 (*1 *1) (-5 *1 (-1202))) (-2220 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-657 (-1198))) (-5 *1 (-1202)))) (-2220 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1202)))) (-1800 (*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-449)) (-5 *1 (-1202)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1202)))) (-4132 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-657 (-3 (|:| -2634 (-1198)) (|:| -2300 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576))))))))) (-5 *1 (-1202)))) (-2213 (*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1202)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-3 (|:| -2634 (-1198)) (|:| -2300 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576)))))))))) (-5 *1 (-1202)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1202)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1202)))) (-2019 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-449))))) (-5 *1 (-1202))))) +(-13 (-625 (-877)) (-10 -8 (-15 -3515 ((-1211 (-1198) (-449)) $)) (-15 -3340 ($)) (-15 -2220 ((-449) (-657 (-1198)) (-449) $)) (-15 -2220 ((-449) (-1198) (-449) $)) (-15 -1800 ((-449) (-1198) $)) (-15 -1472 ((-657 (-1198)) $)) (-15 -4132 ((-657 (-3 (|:| -2634 (-1198)) (|:| -2300 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576)))))))) (-446) $)) (-15 -2213 ((-657 (-1198)) $)) (-15 -4181 ((-657 (-657 (-3 (|:| -2634 (-1198)) (|:| -2300 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576))))))))) $)) (-15 -2480 ((-1126) $)) (-15 -4233 ((-1294) $)) (-15 -2019 ($ (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-449)))))))) +((-3423 (((-112) $ $) NIL)) (-1593 (((-3 (-576) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-518) "failed") $) 43) (((-3 (-1180) "failed") $) 47)) (-2830 (((-576) $) 30) (((-227) $) 36) (((-518) $) 40) (((-1180) $) 48)) (-2772 (((-112) $) 53)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3947 (((-3 (-576) (-227) (-518) (-1180) $) $) 55)) (-4074 (((-657 $) $) 57)) (-4136 (((-1126) $) 24) (($ (-1126)) 25)) (-4004 (((-112) $) 56)) (-3515 (((-877) $) 23) (($ (-576)) 26) (($ (-227)) 32) (($ (-518)) 38) (($ (-1180)) 44) (((-548) $) 59) (((-576) $) 31) (((-227) $) 37) (((-518) $) 41) (((-1180) $) 49)) (-2704 (((-112) $ (|[\|\|]| (-576))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-518))) 19) (((-112) $ (|[\|\|]| (-1180))) 16)) (-3448 (($ (-518) (-657 $)) 51) (($ $ (-657 $)) 52)) (-4166 (((-112) $ $) NIL)) (-1952 (((-576) $) 27) (((-227) $) 33) (((-518) $) 39) (((-1180) $) 45)) (-2881 (((-112) $ $) 7))) +(((-1203) (-13 (-1284) (-1122) (-1060 (-576)) (-1060 (-227)) (-1060 (-518)) (-1060 (-1180)) (-625 (-548)) (-10 -8 (-15 -4136 ((-1126) $)) (-15 -4136 ($ (-1126))) (-15 -3515 ((-576) $)) (-15 -1952 ((-576) $)) (-15 -3515 ((-227) $)) (-15 -1952 ((-227) $)) (-15 -3515 ((-518) $)) (-15 -1952 ((-518) $)) (-15 -3515 ((-1180) $)) (-15 -1952 ((-1180) $)) (-15 -3448 ($ (-518) (-657 $))) (-15 -3448 ($ $ (-657 $))) (-15 -2772 ((-112) $)) (-15 -3947 ((-3 (-576) (-227) (-518) (-1180) $) $)) (-15 -4074 ((-657 $) $)) (-15 -4004 ((-112) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-576)))) (-15 -2704 ((-112) $ (|[\|\|]| (-227)))) (-15 -2704 ((-112) $ (|[\|\|]| (-518)))) (-15 -2704 ((-112) $ (|[\|\|]| (-1180))))))) (T -1203)) +((-4136 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1203)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1203)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1203)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1203)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1203)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1203)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1203)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1203)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1203)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1203)))) (-3448 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-657 (-1203))) (-5 *1 (-1203)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-1203)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1180) (-1203))) (-5 *1 (-1203)))) (-4074 (*1 *2 *1) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-1203)))) (-4004 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203)))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1203)))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1203)))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1203)))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)) (-5 *1 (-1203))))) +(-13 (-1284) (-1122) (-1060 (-576)) (-1060 (-227)) (-1060 (-518)) (-1060 (-1180)) (-625 (-548)) (-10 -8 (-15 -4136 ((-1126) $)) (-15 -4136 ($ (-1126))) (-15 -3515 ((-576) $)) (-15 -1952 ((-576) $)) (-15 -3515 ((-227) $)) (-15 -1952 ((-227) $)) (-15 -3515 ((-518) $)) (-15 -1952 ((-518) $)) (-15 -3515 ((-1180) $)) (-15 -1952 ((-1180) $)) (-15 -3448 ($ (-518) (-657 $))) (-15 -3448 ($ $ (-657 $))) (-15 -2772 ((-112) $)) (-15 -3947 ((-3 (-576) (-227) (-518) (-1180) $) $)) (-15 -4074 ((-657 $) $)) (-15 -4004 ((-112) $)) (-15 -2704 ((-112) $ (|[\|\|]| (-576)))) (-15 -2704 ((-112) $ (|[\|\|]| (-227)))) (-15 -2704 ((-112) $ (|[\|\|]| (-518)))) (-15 -2704 ((-112) $ (|[\|\|]| (-1180)))))) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784)) 22)) (-2515 (($) 12 T CONST)) (-1876 (($) 26)) (-3740 (($ $ $) NIL) (($) 19 T CONST)) (-2249 (($ $ $) NIL) (($) 20 T CONST)) (-2327 (((-941) $) 24)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) 23)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL))) +(((-1204 |#1|) (-13 (-857) (-10 -8 (-15 -2515 ($) -1491))) (-941)) (T -1204)) +((-2515 (*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-941))))) +(-13 (-857) (-10 -8 (-15 -2515 ($) -1491))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783)) NIL)) (-3170 (($) 19 T CONST)) (-4370 (($) NIL)) (-2907 (($ $ $) NIL) (($) 12 T CONST)) (-3777 (($ $ $) NIL) (($) 18 T CONST)) (-3787 (((-940) $) NIL)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-3873 (($ $ $) 21)) (-3860 (($ $ $) 20)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL))) -(((-1204 |#1|) (-13 (-856) (-10 -8 (-15 -3860 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3170 ($) -2666))) (-940)) (T -1204)) -((-3860 (*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) (-3873 (*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) (-3170 (*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940))))) -(-13 (-856) (-10 -8 (-15 -3860 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3170 ($) -2666))) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784)) NIL)) (-2515 (($) 19 T CONST)) (-1876 (($) NIL)) (-3740 (($ $ $) NIL) (($) 12 T CONST)) (-2249 (($ $ $) NIL) (($) 18 T CONST)) (-2327 (((-941) $) NIL)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-2387 (($ $ $) 21)) (-2376 (($ $ $) 20)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL))) +(((-1205 |#1|) (-13 (-857) (-10 -8 (-15 -2376 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -2515 ($) -1491))) (-941)) (T -1205)) +((-2376 (*1 *1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-941)))) (-2387 (*1 *1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-941)))) (-2515 (*1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-941))))) +(-13 (-857) (-10 -8 (-15 -2376 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -2515 ($) -1491))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 9)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 7))) -(((-1205) (-1121)) (T -1205)) -NIL -(-1121) -((-2832 (((-656 (-656 (-971 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 69)) (-4138 (((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|)))) 80) (((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|))) 76) (((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197)) 81) (((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197)) 75) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|))))) 106) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|)))) 105) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197))) 107) (((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))) (-656 (-1197))) 104))) -(((-1206 |#1|) (-10 -7 (-15 -4138 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -4138 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -4138 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))))) (-15 -4138 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -4138 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -4138 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -4138 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)))) (-15 -4138 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))))) (-15 -2832 ((-656 (-656 (-971 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))))) (-568)) (T -1206)) -((-2832 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-971 *5)))) (-5 *1 (-1206 *5)))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) (-5 *1 (-1206 *4)) (-5 *3 (-304 (-419 (-971 *4)))))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) (-5 *1 (-1206 *4)) (-5 *3 (-419 (-971 *4))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) (-5 *3 (-304 (-419 (-971 *5)))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) (-5 *3 (-419 (-971 *5))))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-1206 *4)) (-5 *3 (-656 (-304 (-419 (-971 *4))))))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-1206 *4)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-1206 *5)) (-5 *3 (-656 (-304 (-419 (-971 *5))))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-1206 *5))))) -(-10 -7 (-15 -4138 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))) (-656 (-1197)))) (-15 -4138 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))) (-656 (-1197)))) (-15 -4138 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-419 (-971 |#1|))))) (-15 -4138 ((-656 (-656 (-304 (-419 (-971 |#1|))))) (-656 (-304 (-419 (-971 |#1|)))))) (-15 -4138 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)) (-1197))) (-15 -4138 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))) (-1197))) (-15 -4138 ((-656 (-304 (-419 (-971 |#1|)))) (-419 (-971 |#1|)))) (-15 -4138 ((-656 (-304 (-419 (-971 |#1|)))) (-304 (-419 (-971 |#1|))))) (-15 -2832 ((-656 (-656 (-971 |#1|))) (-656 (-419 (-971 |#1|))) (-656 (-1197))))) -((-4041 (((-1179)) 7)) (-2104 (((-1179)) 11 T CONST)) (-3968 (((-1293) (-1179)) 13)) (-2848 (((-1179)) 8 T CONST)) (-2630 (((-131)) 10 T CONST))) -(((-1207) (-13 (-1238) (-10 -7 (-15 -4041 ((-1179))) (-15 -2848 ((-1179)) -2666) (-15 -2630 ((-131)) -2666) (-15 -2104 ((-1179)) -2666) (-15 -3968 ((-1293) (-1179)))))) (T -1207)) -((-4041 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-2848 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-2630 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1207)))) (-2104 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1207))))) -(-13 (-1238) (-10 -7 (-15 -4041 ((-1179))) (-15 -2848 ((-1179)) -2666) (-15 -2630 ((-131)) -2666) (-15 -2104 ((-1179)) -2666) (-15 -3968 ((-1293) (-1179))))) -((-4168 (((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 56)) (-4020 (((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|))) 38)) (-2413 (((-1209 (-656 |#1|)) (-656 |#1|)) 49)) (-4367 (((-656 (-656 |#1|)) (-656 |#1|)) 45)) (-4019 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))) 53)) (-2560 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|)))) 52)) (-2059 (((-656 (-656 |#1|)) (-656 (-656 |#1|))) 43)) (-3492 (((-656 |#1|) (-656 |#1|)) 46)) (-2961 (((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 32)) (-2038 (((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 29)) (-3644 (((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|))) 24)) (-3452 (((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 58)) (-1804 (((-656 (-656 |#1|)) (-1209 (-656 |#1|))) 60))) -(((-1208 |#1|) (-10 -7 (-15 -3644 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -2038 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -2961 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -4168 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -3452 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1804 ((-656 (-656 |#1|)) (-1209 (-656 |#1|)))) (-15 -4020 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -2413 ((-1209 (-656 |#1|)) (-656 |#1|))) (-15 -2059 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -4367 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -3492 ((-656 |#1|) (-656 |#1|))) (-15 -2560 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -4019 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) (-861)) (T -1208)) -((-4019 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 (-656 *4)))))) (-2560 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-861)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) (|:| |f4| (-656 *5)))) (-5 *1 (-1208 *6)) (-5 *4 (-656 *5)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-1208 *3)))) (-4367 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)) (-5 *3 (-656 *4)))) (-2059 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-861)) (-5 *1 (-1208 *3)))) (-2413 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-1209 (-656 *4))) (-5 *1 (-1208 *4)) (-5 *3 (-656 *4)))) (-4020 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 (-656 *4)))) (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 *4))))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-1209 (-656 *4))) (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)) (-4 *4 (-861)))) (-4168 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-4 *4 (-861)) (-5 *1 (-1208 *4)))) (-2961 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *1 (-1208 *4)))) (-2038 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-656 *5)) (-4 *5 (-861)) (-5 *1 (-1208 *5)))) (-3644 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-656 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) (-5 *1 (-1208 *6)) (-5 *5 (-656 *4))))) -(-10 -7 (-15 -3644 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -2038 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -2961 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -4168 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -3452 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1804 ((-656 (-656 |#1|)) (-1209 (-656 |#1|)))) (-15 -4020 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -2413 ((-1209 (-656 |#1|)) (-656 |#1|))) (-15 -2059 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -4367 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -3492 ((-656 |#1|) (-656 |#1|))) (-15 -2560 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -4019 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) -((-3026 (($ (-656 (-656 |#1|))) 10)) (-4345 (((-656 (-656 |#1|)) $) 11)) (-4113 (((-876) $) 33))) -(((-1209 |#1|) (-10 -8 (-15 -3026 ($ (-656 (-656 |#1|)))) (-15 -4345 ((-656 (-656 |#1|)) $)) (-15 -4113 ((-876) $))) (-1121)) (T -1209)) -((-4113 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1209 *3)) (-4 *3 (-1121)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1121)))) (-3026 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-1209 *3))))) -(-10 -8 (-15 -3026 ($ (-656 (-656 |#1|)))) (-15 -4345 ((-656 (-656 |#1|)) $)) (-15 -4113 ((-876) $))) -((-1957 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1978 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3657 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#2| $ |#1| |#2|) NIL)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2051 (((-3 |#2| "failed") |#1| $) NIL)) (-3170 (($) NIL T CONST)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-3872 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) NIL)) (-2825 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#2| $ |#1|) NIL)) (-3722 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) NIL)) (-1605 ((|#1| $) NIL (|has| |#1| (-861)))) (-2911 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-656 |#2|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-1829 ((|#1| $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-2353 (((-656 |#1|) $) NIL)) (-4128 (((-112) |#1| $) NIL)) (-3743 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-3695 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-2863 (((-656 |#1|) $) NIL)) (-1389 (((-112) |#1| $) NIL)) (-3116 (((-1141) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| |#2| (-1121))))) (-1755 ((|#2| $) NIL (|has| |#1| (-861)))) (-4220 (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL)) (-4267 (($ $ |#2|) NIL (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2885 (((-656 |#2|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3091 (($) NIL) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) NIL (-12 (|has| $ (-6 -4464)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-4113 (((-876) $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876))) (|has| |#2| (-625 (-876)))))) (-2950 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) NIL)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) NIL (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) NIL (-3795 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102)) (|has| |#2| (-102))))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1210 |#1| |#2|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) (-1121) (-1121)) (T -1210)) -NIL -(-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4464))) -((-1957 (((-112) $ $) NIL)) (-1401 (($ |#1| (-55)) 10)) (-4149 ((|#1| $) 12)) (-2447 (((-1179) $) NIL)) (-4227 (((-112) $ |#1|) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-2950 (((-112) $ $) NIL)) (-2771 (((-55) $) 14)) (-3939 (((-112) $ $) NIL))) -(((-1211 |#1|) (-13 (-847 |#1|) (-10 -8 (-15 -1401 ($ |#1| (-55))))) (-1121)) (T -1211)) -((-1401 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1211 *2)) (-4 *2 (-1121))))) -(-13 (-847 |#1|) (-10 -8 (-15 -1401 ($ |#1| (-55))))) -((-1961 ((|#1| (-656 |#1|)) 46)) (-1410 ((|#1| |#1| (-576)) 24)) (-3597 (((-1193 |#1|) |#1| (-940)) 20))) -(((-1212 |#1|) (-10 -7 (-15 -1961 (|#1| (-656 |#1|))) (-15 -3597 ((-1193 |#1|) |#1| (-940))) (-15 -1410 (|#1| |#1| (-576)))) (-374)) (T -1212)) -((-1410 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1212 *2)) (-4 *2 (-374)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *4 (-940)) (-5 *2 (-1193 *3)) (-5 *1 (-1212 *3)) (-4 *3 (-374)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1212 *2)) (-4 *2 (-374))))) -(-10 -7 (-15 -1961 (|#1| (-656 |#1|))) (-15 -3597 ((-1193 |#1|) |#1| (-940))) (-15 -1410 (|#1| |#1| (-576)))) -((-1978 (($) 10) (($ (-656 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)))) 14)) (-3872 (($ (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3722 (((-656 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) $) 39) (((-656 |#3|) $) 41)) (-1898 (($ (-1 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2423 (($ (-1 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3743 (((-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) $) 60)) (-3695 (($ (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) $) 16)) (-2863 (((-656 |#2|) $) 19)) (-1389 (((-112) |#2| $) 65)) (-4220 (((-3 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) "failed") (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) $) 64)) (-2372 (((-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) $) 69)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2885 (((-656 |#3|) $) 43)) (-4369 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) $) NIL) (((-783) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) $) NIL) (((-783) |#3| $) NIL) (((-783) (-1 (-112) |#3|) $) 79)) (-4113 (((-876) $) 27)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3939 (((-112) $ $) 51))) -(((-1213 |#1| |#2| |#3|) (-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -2423 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1978 (|#1| (-656 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))))) (-15 -1978 (|#1|)) (-15 -2423 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1898 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2543 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1759 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3127 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3722 ((-656 |#3|) |#1|)) (-15 -3127 ((-783) |#3| |#1|)) (-15 -4369 (|#3| |#1| |#2| |#3|)) (-15 -4369 (|#3| |#1| |#2|)) (-15 -2885 ((-656 |#3|) |#1|)) (-15 -1389 ((-112) |#2| |#1|)) (-15 -2863 ((-656 |#2|) |#1|)) (-15 -3872 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3872 (|#1| (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -3872 (|#1| (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) |#1|)) (-15 -4220 ((-3 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) "failed") (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -3743 ((-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) |#1|)) (-15 -3695 (|#1| (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) |#1|)) (-15 -2372 ((-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) |#1|)) (-15 -3127 ((-783) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) |#1|)) (-15 -3722 ((-656 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -3127 ((-783) (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -1759 ((-112) (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -2543 ((-112) (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -1898 (|#1| (-1 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -2423 (|#1| (-1 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|))) (-1214 |#2| |#3|) (-1121) (-1121)) (T -1213)) -NIL -(-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -4113 ((-876) |#1|)) (-15 -2423 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1978 (|#1| (-656 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))))) (-15 -1978 (|#1|)) (-15 -2423 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1898 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2543 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1759 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3127 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3722 ((-656 |#3|) |#1|)) (-15 -3127 ((-783) |#3| |#1|)) (-15 -4369 (|#3| |#1| |#2| |#3|)) (-15 -4369 (|#3| |#1| |#2|)) (-15 -2885 ((-656 |#3|) |#1|)) (-15 -1389 ((-112) |#2| |#1|)) (-15 -2863 ((-656 |#2|) |#1|)) (-15 -3872 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3872 (|#1| (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -3872 (|#1| (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) |#1|)) (-15 -4220 ((-3 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) "failed") (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -3743 ((-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) |#1|)) (-15 -3695 (|#1| (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) |#1|)) (-15 -2372 ((-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) |#1|)) (-15 -3127 ((-783) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) |#1|)) (-15 -3722 ((-656 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -3127 ((-783) (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -1759 ((-112) (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -2543 ((-112) (-1 (-112) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -1898 (|#1| (-1 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|)) (-15 -2423 (|#1| (-1 (-2 (|:| -2240 |#2|) (|:| -2905 |#3|)) (-2 (|:| -2240 |#2|) (|:| -2905 |#3|))) |#1|))) -((-1957 (((-112) $ $) 20 (-3795 (|has| |#2| (-102)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102))))) (-1978 (($) 73) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 72)) (-3657 (((-1293) $ |#1| |#1|) 100 (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) 8)) (-4268 ((|#2| $ |#1| |#2|) 74)) (-1954 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 46 (|has| $ (-6 -4464)))) (-3603 (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 56 (|has| $ (-6 -4464)))) (-2051 (((-3 |#2| "failed") |#1| $) 62)) (-3170 (($) 7 T CONST)) (-3841 (($ $) 59 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464))))) (-3872 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 48 (|has| $ (-6 -4464))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 47 (|has| $ (-6 -4464))) (((-3 |#2| "failed") |#1| $) 63)) (-2825 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 55 (|has| $ (-6 -4464)))) (-2721 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 57 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 54 (|has| $ (-6 -4464))) (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 53 (|has| $ (-6 -4464)))) (-1910 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4465)))) (-3721 ((|#2| $ |#1|) 89)) (-3722 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 31 (|has| $ (-6 -4464))) (((-656 |#2|) $) 80 (|has| $ (-6 -4464)))) (-3215 (((-112) $ (-783)) 9)) (-1605 ((|#1| $) 97 (|has| |#1| (-861)))) (-2911 (((-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 30 (|has| $ (-6 -4464))) (((-656 |#2|) $) 81 (|has| $ (-6 -4464)))) (-1602 (((-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464))))) (-1829 ((|#1| $) 96 (|has| |#1| (-861)))) (-1898 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 35 (|has| $ (-6 -4465))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4465)))) (-2423 (($ (-1 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-1884 (((-112) $ (-783)) 10)) (-2447 (((-1179) $) 23 (-3795 (|has| |#2| (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-2353 (((-656 |#1|) $) 64)) (-4128 (((-112) |#1| $) 65)) (-3743 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 40)) (-3695 (($ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 41)) (-2863 (((-656 |#1|) $) 94)) (-1389 (((-112) |#1| $) 93)) (-3116 (((-1141) $) 22 (-3795 (|has| |#2| (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))))) (-1755 ((|#2| $) 98 (|has| |#1| (-861)))) (-4220 (((-3 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) "failed") (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 52)) (-4267 (($ $ |#2|) 99 (|has| $ (-6 -4465)))) (-2372 (((-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 42)) (-1759 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 33 (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))))) 27 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-304 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 26 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) 25 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 24 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4464)) (|has| |#2| (-1121))))) (-2885 (((-656 |#2|) $) 92)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3091 (($) 50) (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 49)) (-3127 (((-783) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 32 (|has| $ (-6 -4464))) (((-783) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| $ (-6 -4464)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4464)))) (-4287 (($ $) 13)) (-1556 (((-548) $) 60 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))))) (-4125 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 51)) (-4113 (((-876) $) 18 (-3795 (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876)))))) (-2950 (((-112) $ $) 21 (-3795 (|has| |#2| (-102)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102))))) (-4156 (($ (-656 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) 43)) (-2543 (((-112) (-1 (-112) (-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) $) 34 (|has| $ (-6 -4464))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (-3795 (|has| |#2| (-102)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102))))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-1214 |#1| |#2|) (-141) (-1121) (-1121)) (T -1214)) -((-4268 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-1978 (*1 *1) (-12 (-4 *1 (-1214 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-1978 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2240 *3) (|:| -2905 *4)))) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *1 (-1214 *3 *4)))) (-2423 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1214 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) -(-13 (-622 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -4268 (|t#2| $ |t#1| |t#2|)) (-15 -1978 ($)) (-15 -1978 ($ (-656 (-2 (|:| -2240 |t#1|) (|:| -2905 |t#2|))))) (-15 -2423 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2240 |#1|) (|:| -2905 |#2|))) . T) ((-102) -3795 (|has| |#2| (-1121)) (|has| |#2| (-102)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-102))) ((-625 (-876)) -3795 (|has| |#2| (-1121)) (|has| |#2| (-625 (-876))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-625 (-876)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 #0#) -12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-501 #0#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-319 (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)))) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1121))) ((-622 |#1| |#2|) . T) ((-1121) -3795 (|has| |#2| (-1121)) (|has| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (-1121))) ((-1238) . T)) -((-3618 (((-112)) 29)) (-4000 (((-1293) (-1179)) 31)) (-2128 (((-112)) 41)) (-3878 (((-1293)) 39)) (-2392 (((-1293) (-1179) (-1179)) 30)) (-3131 (((-112)) 42)) (-3695 (((-1293) |#1| |#2|) 53)) (-2986 (((-1293)) 26)) (-1445 (((-3 |#2| "failed") |#1|) 51)) (-3882 (((-1293)) 40))) -(((-1215 |#1| |#2|) (-10 -7 (-15 -2986 ((-1293))) (-15 -2392 ((-1293) (-1179) (-1179))) (-15 -4000 ((-1293) (-1179))) (-15 -3878 ((-1293))) (-15 -3882 ((-1293))) (-15 -3618 ((-112))) (-15 -2128 ((-112))) (-15 -3131 ((-112))) (-15 -1445 ((-3 |#2| "failed") |#1|)) (-15 -3695 ((-1293) |#1| |#2|))) (-1121) (-1121)) (T -1215)) -((-3695 (*1 *2 *3 *4) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-1445 (*1 *2 *3) (|partial| -12 (-4 *2 (-1121)) (-5 *1 (-1215 *3 *2)) (-4 *3 (-1121)))) (-3131 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-2128 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3618 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3882 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3878 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)))) (-2392 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)))) (-2986 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) -(-10 -7 (-15 -2986 ((-1293))) (-15 -2392 ((-1293) (-1179) (-1179))) (-15 -4000 ((-1293) (-1179))) (-15 -3878 ((-1293))) (-15 -3882 ((-1293))) (-15 -3618 ((-112))) (-15 -2128 ((-112))) (-15 -3131 ((-112))) (-15 -1445 ((-3 |#2| "failed") |#1|)) (-15 -3695 ((-1293) |#1| |#2|))) -((-2115 (((-1179) (-1179)) 22)) (-2503 (((-52) (-1179)) 25))) -(((-1216) (-10 -7 (-15 -2503 ((-52) (-1179))) (-15 -2115 ((-1179) (-1179))))) (T -1216)) -((-2115 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1216)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-1216))))) -(-10 -7 (-15 -2503 ((-52) (-1179))) (-15 -2115 ((-1179) (-1179)))) -((-4113 (((-1218) |#1|) 11))) -(((-1217 |#1|) (-10 -7 (-15 -4113 ((-1218) |#1|))) (-1121)) (T -1217)) -((-4113 (*1 *2 *3) (-12 (-5 *2 (-1218)) (-5 *1 (-1217 *3)) (-4 *3 (-1121))))) -(-10 -7 (-15 -4113 ((-1218) |#1|))) -((-1957 (((-112) $ $) NIL)) (-2989 (((-656 (-1179)) $) 39)) (-2533 (((-656 (-1179)) $ (-656 (-1179))) 42)) (-3277 (((-656 (-1179)) $ (-656 (-1179))) 41)) (-1868 (((-656 (-1179)) $ (-656 (-1179))) 43)) (-1554 (((-656 (-1179)) $) 38)) (-1991 (($) 28)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1521 (((-656 (-1179)) $) 40)) (-1614 (((-1293) $ (-576)) 35) (((-1293) $) 36)) (-1556 (($ (-876) (-576)) 33) (($ (-876) (-576) (-876)) NIL)) (-4113 (((-876) $) 49) (($ (-876)) 32)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1218) (-13 (-1121) (-628 (-876)) (-10 -8 (-15 -1556 ($ (-876) (-576))) (-15 -1556 ($ (-876) (-576) (-876))) (-15 -1614 ((-1293) $ (-576))) (-15 -1614 ((-1293) $)) (-15 -1521 ((-656 (-1179)) $)) (-15 -2989 ((-656 (-1179)) $)) (-15 -1991 ($)) (-15 -1554 ((-656 (-1179)) $)) (-15 -1868 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -2533 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3277 ((-656 (-1179)) $ (-656 (-1179))))))) (T -1218)) -((-1556 (*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-1218)))) (-1556 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-1218)))) (-1614 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1218)))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1218)))) (-1521 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-2989 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-1991 (*1 *1) (-5 *1 (-1218))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-1868 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-2533 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218)))) (-3277 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) -(-13 (-1121) (-628 (-876)) (-10 -8 (-15 -1556 ($ (-876) (-576))) (-15 -1556 ($ (-876) (-576) (-876))) (-15 -1614 ((-1293) $ (-576))) (-15 -1614 ((-1293) $)) (-15 -1521 ((-656 (-1179)) $)) (-15 -2989 ((-656 (-1179)) $)) (-15 -1991 ($)) (-15 -1554 ((-656 (-1179)) $)) (-15 -1868 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -2533 ((-656 (-1179)) $ (-656 (-1179)))) (-15 -3277 ((-656 (-1179)) $ (-656 (-1179)))))) -((-1957 (((-112) $ $) NIL)) (-2077 (((-1179) $ (-1179)) 17) (((-1179) $) 16)) (-4319 (((-1179) $ (-1179)) 15)) (-2548 (($ $ (-1179)) NIL)) (-2547 (((-3 (-1179) "failed") $) 11)) (-2387 (((-1179) $) 8)) (-1763 (((-3 (-1179) "failed") $) 12)) (-3354 (((-1179) $) 9)) (-3823 (($ (-400)) NIL) (($ (-400) (-1179)) NIL)) (-4149 (((-400) $) NIL)) (-2447 (((-1179) $) NIL)) (-3709 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4082 (((-112) $) 21)) (-4113 (((-876) $) NIL)) (-2481 (($ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1219) (-13 (-375 (-400) (-1179)) (-10 -8 (-15 -2077 ((-1179) $ (-1179))) (-15 -2077 ((-1179) $)) (-15 -2387 ((-1179) $)) (-15 -2547 ((-3 (-1179) "failed") $)) (-15 -1763 ((-3 (-1179) "failed") $)) (-15 -4082 ((-112) $))))) (T -1219)) -((-2077 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-2547 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-1763 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219))))) -(-13 (-375 (-400) (-1179)) (-10 -8 (-15 -2077 ((-1179) $ (-1179))) (-15 -2077 ((-1179) $)) (-15 -2387 ((-1179) $)) (-15 -2547 ((-3 (-1179) "failed") $)) (-15 -1763 ((-3 (-1179) "failed") $)) (-15 -4082 ((-112) $)))) -((-1527 (((-3 (-576) "failed") |#1|) 19)) (-3387 (((-3 (-576) "failed") |#1|) 14)) (-2583 (((-576) (-1179)) 33))) -(((-1220 |#1|) (-10 -7 (-15 -1527 ((-3 (-576) "failed") |#1|)) (-15 -3387 ((-3 (-576) "failed") |#1|)) (-15 -2583 ((-576) (-1179)))) (-1070)) (T -1220)) -((-2583 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-1220 *4)) (-4 *4 (-1070)))) (-3387 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070)))) (-1527 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070))))) -(-10 -7 (-15 -1527 ((-3 (-576) "failed") |#1|)) (-15 -3387 ((-3 (-576) "failed") |#1|)) (-15 -2583 ((-576) (-1179)))) -((-1778 (((-1154 (-227))) 9))) -(((-1221) (-10 -7 (-15 -1778 ((-1154 (-227)))))) (T -1221)) -((-1778 (*1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1221))))) -(-10 -7 (-15 -1778 ((-1154 (-227))))) -((-2722 (($) 12)) (-3653 (($ $) 36)) (-3632 (($ $) 34)) (-3487 (($ $) 26)) (-3673 (($ $) 18)) (-1972 (($ $) 16)) (-3664 (($ $) 20)) (-3523 (($ $) 31)) (-3642 (($ $) 35)) (-3498 (($ $) 30))) -(((-1222 |#1|) (-10 -8 (-15 -2722 (|#1|)) (-15 -3653 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3673 (|#1| |#1|)) (-15 -1972 (|#1| |#1|)) (-15 -3664 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3498 (|#1| |#1|))) (-1223)) (T -1222)) -NIL -(-10 -8 (-15 -2722 (|#1|)) (-15 -3653 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3673 (|#1| |#1|)) (-15 -1972 (|#1| |#1|)) (-15 -3664 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3498 (|#1| |#1|))) -((-3586 (($ $) 26)) (-3435 (($ $) 11)) (-3562 (($ $) 27)) (-3412 (($ $) 10)) (-3612 (($ $) 28)) (-3461 (($ $) 9)) (-2722 (($) 16)) (-2608 (($ $) 19)) (-2156 (($ $) 18)) (-3623 (($ $) 29)) (-3474 (($ $) 8)) (-3599 (($ $) 30)) (-3448 (($ $) 7)) (-3574 (($ $) 31)) (-3424 (($ $) 6)) (-3653 (($ $) 20)) (-3510 (($ $) 32)) (-3632 (($ $) 21)) (-3487 (($ $) 33)) (-3673 (($ $) 22)) (-3537 (($ $) 34)) (-1972 (($ $) 23)) (-3550 (($ $) 35)) (-3664 (($ $) 24)) (-3523 (($ $) 36)) (-3642 (($ $) 25)) (-3498 (($ $) 37)) (** (($ $ $) 17))) -(((-1223) (-141)) (T -1223)) -((-2722 (*1 *1) (-4 *1 (-1223)))) -(-13 (-1226) (-95) (-505) (-35) (-294) (-10 -8 (-15 -2722 ($)))) -(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-1226) . T)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1690 ((|#1| $) 19)) (-1480 (($ |#1| (-656 $)) 28) (($ (-656 |#1|)) 35) (($ |#1|) 30)) (-4234 (((-112) $ (-783)) 72)) (-4261 ((|#1| $ |#1|) 14 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) 13 (|has| $ (-6 -4465)))) (-3170 (($) NIL T CONST)) (-3722 (((-656 |#1|) $) 77 (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) 64)) (-1878 (((-112) $ $) 50 (|has| |#1| (-1121)))) (-3215 (((-112) $ (-783)) 62)) (-2911 (((-656 |#1|) $) 78 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1898 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 27)) (-1884 (((-112) $ (-783)) 60)) (-4186 (((-656 |#1|) $) 55)) (-3211 (((-112) $) 53)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1759 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 107)) (-3617 (((-112) $) 9)) (-3307 (($) 10)) (-4369 ((|#1| $ "value") NIL)) (-2027 (((-576) $ $) 48)) (-3309 (((-656 $) $) 89)) (-1967 (((-112) $ $) 110)) (-4429 (((-656 $) $) 105)) (-4059 (($ $) 106)) (-2974 (((-112) $) 84)) (-3127 (((-783) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4464))) (((-783) |#1| $) 17 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-4287 (($ $) 88)) (-4113 (((-876) $) 91 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) 12)) (-4295 (((-112) $ $) 39 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 37 (|has| |#1| (-102)))) (-1970 (((-783) $) 58 (|has| $ (-6 -4464))))) -(((-1224 |#1|) (-13 (-1031 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -1480 ($ |#1| (-656 $))) (-15 -1480 ($ (-656 |#1|))) (-15 -1480 ($ |#1|)) (-15 -2974 ((-112) $)) (-15 -4059 ($ $)) (-15 -4429 ((-656 $) $)) (-15 -1967 ((-112) $ $)) (-15 -3309 ((-656 $) $)))) (-1121)) (T -1224)) -((-2974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-1480 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1224 *2))) (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1224 *3)))) (-1480 (*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-4059 (*1 *1 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-4429 (*1 *2 *1) (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-1967 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) -(-13 (-1031 |#1|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -1480 ($ |#1| (-656 $))) (-15 -1480 ($ (-656 |#1|))) (-15 -1480 ($ |#1|)) (-15 -2974 ((-112) $)) (-15 -4059 ($ $)) (-15 -4429 ((-656 $) $)) (-15 -1967 ((-112) $ $)) (-15 -3309 ((-656 $) $)))) -((-3435 (($ $) 15)) (-3461 (($ $) 12)) (-3474 (($ $) 10)) (-3448 (($ $) 17))) -(((-1225 |#1|) (-10 -8 (-15 -3448 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3435 (|#1| |#1|))) (-1226)) (T -1225)) -NIL -(-10 -8 (-15 -3448 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3435 (|#1| |#1|))) -((-3435 (($ $) 11)) (-3412 (($ $) 10)) (-3461 (($ $) 9)) (-3474 (($ $) 8)) (-3448 (($ $) 7)) (-3424 (($ $) 6))) -(((-1226) (-141)) (T -1226)) -((-3435 (*1 *1 *1) (-4 *1 (-1226))) (-3412 (*1 *1 *1) (-4 *1 (-1226))) (-3461 (*1 *1 *1) (-4 *1 (-1226))) (-3474 (*1 *1 *1) (-4 *1 (-1226))) (-3448 (*1 *1 *1) (-4 *1 (-1226))) (-3424 (*1 *1 *1) (-4 *1 (-1226)))) -(-13 (-10 -8 (-15 -3424 ($ $)) (-15 -3448 ($ $)) (-15 -3474 ($ $)) (-15 -3461 ($ $)) (-15 -3412 ($ $)) (-15 -3435 ($ $)))) -((-4009 ((|#2| |#2|) 98)) (-2790 (((-112) |#2|) 29)) (-1474 ((|#2| |#2|) 33)) (-1485 ((|#2| |#2|) 35)) (-3760 ((|#2| |#2| (-1197)) 92) ((|#2| |#2|) 93)) (-3132 (((-171 |#2|) |#2|) 31)) (-3137 ((|#2| |#2| (-1197)) 94) ((|#2| |#2|) 95))) -(((-1227 |#1| |#2|) (-10 -7 (-15 -3760 (|#2| |#2|)) (-15 -3760 (|#2| |#2| (-1197))) (-15 -3137 (|#2| |#2|)) (-15 -3137 (|#2| |#2| (-1197))) (-15 -4009 (|#2| |#2|)) (-15 -1474 (|#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -2790 ((-112) |#2|)) (-15 -3132 ((-171 |#2|) |#2|))) (-13 (-464) (-1059 (-576)) (-651 (-576))) (-13 (-27) (-1223) (-442 |#1|))) (T -1227)) -((-3132 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-171 *3)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-2790 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-1474 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-4009 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-3137 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) (-3760 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) -(-10 -7 (-15 -3760 (|#2| |#2|)) (-15 -3760 (|#2| |#2| (-1197))) (-15 -3137 (|#2| |#2|)) (-15 -3137 (|#2| |#2| (-1197))) (-15 -4009 (|#2| |#2|)) (-15 -1474 (|#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -2790 ((-112) |#2|)) (-15 -3132 ((-171 |#2|) |#2|))) -((-1569 ((|#4| |#4| |#1|) 31)) (-2521 ((|#4| |#4| |#1|) 32))) -(((-1228 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1569 (|#4| |#4| |#1|)) (-15 -2521 (|#4| |#4| |#1|))) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1228)) -((-2521 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1569 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -1569 (|#4| |#4| |#1|)) (-15 -2521 (|#4| |#4| |#1|))) -((-2242 ((|#2| |#2|) 148)) (-2957 ((|#2| |#2|) 145)) (-1580 ((|#2| |#2|) 136)) (-3608 ((|#2| |#2|) 133)) (-1397 ((|#2| |#2|) 141)) (-3888 ((|#2| |#2|) 129)) (-1653 ((|#2| |#2|) 44)) (-2851 ((|#2| |#2|) 105)) (-2845 ((|#2| |#2|) 88)) (-2282 ((|#2| |#2|) 143)) (-3696 ((|#2| |#2|) 131)) (-3106 ((|#2| |#2|) 153)) (-2830 ((|#2| |#2|) 151)) (-2210 ((|#2| |#2|) 152)) (-1637 ((|#2| |#2|) 150)) (-3931 ((|#2| |#2|) 163)) (-1458 ((|#2| |#2|) 30 (-12 (|has| |#2| (-626 (-907 |#1|))) (|has| |#2| (-901 |#1|)) (|has| |#1| (-626 (-907 |#1|))) (|has| |#1| (-901 |#1|))))) (-3943 ((|#2| |#2|) 89)) (-4284 ((|#2| |#2|) 154)) (-3568 ((|#2| |#2|) 155)) (-2494 ((|#2| |#2|) 142)) (-1567 ((|#2| |#2|) 130)) (-1912 ((|#2| |#2|) 149)) (-3029 ((|#2| |#2|) 147)) (-4238 ((|#2| |#2|) 137)) (-3263 ((|#2| |#2|) 135)) (-2724 ((|#2| |#2|) 139)) (-3846 ((|#2| |#2|) 127))) -(((-1229 |#1| |#2|) (-10 -7 (-15 -3568 (|#2| |#2|)) (-15 -2845 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -2851 (|#2| |#2|)) (-15 -1653 (|#2| |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -4284 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -4238 (|#2| |#2|)) (-15 -1912 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)) (-15 -3696 (|#2| |#2|)) (-15 -2282 (|#2| |#2|)) (-15 -3888 (|#2| |#2|)) (-15 -1397 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -2242 (|#2| |#2|)) (-15 -3608 (|#2| |#2|)) (-15 -2957 (|#2| |#2|)) (-15 -3263 (|#2| |#2|)) (-15 -3029 (|#2| |#2|)) (-15 -1637 (|#2| |#2|)) (-15 -2830 (|#2| |#2|)) (-15 -2210 (|#2| |#2|)) (-15 -3106 (|#2| |#2|)) (IF (|has| |#1| (-901 |#1|)) (IF (|has| |#1| (-626 (-907 |#1|))) (IF (|has| |#2| (-626 (-907 |#1|))) (IF (|has| |#2| (-901 |#1|)) (-15 -1458 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-442 |#1|) (-1223))) (T -1229)) -((-1458 (*1 *2 *2) (-12 (-4 *3 (-626 (-907 *3))) (-4 *3 (-901 *3)) (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-626 (-907 *3))) (-4 *2 (-901 *3)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3106 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2210 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2830 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1637 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3029 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3263 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2957 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3608 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1580 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1397 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3696 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2494 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1912 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-4238 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2724 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-4284 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-1653 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2851 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-2845 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223))))) (-3568 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-442 *3) (-1223)))))) -(-10 -7 (-15 -3568 (|#2| |#2|)) (-15 -2845 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -2851 (|#2| |#2|)) (-15 -1653 (|#2| |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -4284 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -4238 (|#2| |#2|)) (-15 -1912 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)) (-15 -3696 (|#2| |#2|)) (-15 -2282 (|#2| |#2|)) (-15 -3888 (|#2| |#2|)) (-15 -1397 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -2242 (|#2| |#2|)) (-15 -3608 (|#2| |#2|)) (-15 -2957 (|#2| |#2|)) (-15 -3263 (|#2| |#2|)) (-15 -3029 (|#2| |#2|)) (-15 -1637 (|#2| |#2|)) (-15 -2830 (|#2| |#2|)) (-15 -2210 (|#2| |#2|)) (-15 -3106 (|#2| |#2|)) (IF (|has| |#1| (-901 |#1|)) (IF (|has| |#1| (-626 (-907 |#1|))) (IF (|has| |#2| (-626 (-907 |#1|))) (IF (|has| |#2| (-901 |#1|)) (-15 -1458 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2417 (((-112) |#5| $) 68) (((-112) $) 110)) (-1916 ((|#5| |#5| $) 83)) (-3603 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2460 (((-656 |#5|) (-656 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-2982 (((-3 $ "failed") (-656 |#5|)) 135)) (-1764 (((-3 $ "failed") $) 120)) (-2458 ((|#5| |#5| $) 102)) (-2559 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3234 ((|#5| |#5| $) 106)) (-2721 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1794 (((-2 (|:| -1597 (-656 |#5|)) (|:| -3823 (-656 |#5|))) $) 63)) (-1938 (((-112) |#5| $) 66) (((-112) $) 111)) (-4260 ((|#4| $) 116)) (-2850 (((-3 |#5| "failed") $) 118)) (-4387 (((-656 |#5|) $) 55)) (-2915 (((-112) |#5| $) 75) (((-112) $) 115)) (-3648 ((|#5| |#5| $) 89)) (-2384 (((-112) $ $) 29)) (-2200 (((-112) |#5| $) 71) (((-112) $) 113)) (-2565 ((|#5| |#5| $) 86)) (-1755 (((-3 |#5| "failed") $) 117)) (-2419 (($ $ |#5|) 136)) (-2196 (((-783) $) 60)) (-4125 (($ (-656 |#5|)) 133)) (-4023 (($ $ |#4|) 131)) (-2715 (($ $ |#4|) 129)) (-1357 (($ $) 128)) (-4113 (((-876) $) NIL) (((-656 |#5|) $) 121)) (-2524 (((-783) $) 140)) (-1671 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-1638 (((-112) $ (-1 (-112) |#5| (-656 |#5|))) 108)) (-1754 (((-656 |#4|) $) 123)) (-1736 (((-112) |#4| $) 126)) (-3939 (((-112) $ $) 20))) -(((-1230 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2524 ((-783) |#1|)) (-15 -2419 (|#1| |#1| |#5|)) (-15 -3603 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1736 ((-112) |#4| |#1|)) (-15 -1754 ((-656 |#4|) |#1|)) (-15 -1764 ((-3 |#1| "failed") |#1|)) (-15 -2850 ((-3 |#5| "failed") |#1|)) (-15 -1755 ((-3 |#5| "failed") |#1|)) (-15 -3234 (|#5| |#5| |#1|)) (-15 -1357 (|#1| |#1|)) (-15 -2458 (|#5| |#5| |#1|)) (-15 -3648 (|#5| |#5| |#1|)) (-15 -2565 (|#5| |#5| |#1|)) (-15 -1916 (|#5| |#5| |#1|)) (-15 -2460 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2721 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2915 ((-112) |#1|)) (-15 -2200 ((-112) |#1|)) (-15 -2417 ((-112) |#1|)) (-15 -1638 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -2915 ((-112) |#5| |#1|)) (-15 -2200 ((-112) |#5| |#1|)) (-15 -2417 ((-112) |#5| |#1|)) (-15 -2559 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1938 ((-112) |#1|)) (-15 -1938 ((-112) |#5| |#1|)) (-15 -1794 ((-2 (|:| -1597 (-656 |#5|)) (|:| -3823 (-656 |#5|))) |#1|)) (-15 -2196 ((-783) |#1|)) (-15 -4387 ((-656 |#5|) |#1|)) (-15 -1671 ((-3 (-2 (|:| |bas| |#1|) (|:| -3015 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1671 ((-3 (-2 (|:| |bas| |#1|) (|:| -3015 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2384 ((-112) |#1| |#1|)) (-15 -4023 (|#1| |#1| |#4|)) (-15 -2715 (|#1| |#1| |#4|)) (-15 -4260 (|#4| |#1|)) (-15 -2982 ((-3 |#1| "failed") (-656 |#5|))) (-15 -4113 ((-656 |#5|) |#1|)) (-15 -4125 (|#1| (-656 |#5|))) (-15 -2721 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2721 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3603 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2721 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4113 ((-876) |#1|)) (-15 -3939 ((-112) |#1| |#1|))) (-1231 |#2| |#3| |#4| |#5|) (-568) (-805) (-861) (-1086 |#2| |#3| |#4|)) (T -1230)) -NIL -(-10 -8 (-15 -2524 ((-783) |#1|)) (-15 -2419 (|#1| |#1| |#5|)) (-15 -3603 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1736 ((-112) |#4| |#1|)) (-15 -1754 ((-656 |#4|) |#1|)) (-15 -1764 ((-3 |#1| "failed") |#1|)) (-15 -2850 ((-3 |#5| "failed") |#1|)) (-15 -1755 ((-3 |#5| "failed") |#1|)) (-15 -3234 (|#5| |#5| |#1|)) (-15 -1357 (|#1| |#1|)) (-15 -2458 (|#5| |#5| |#1|)) (-15 -3648 (|#5| |#5| |#1|)) (-15 -2565 (|#5| |#5| |#1|)) (-15 -1916 (|#5| |#5| |#1|)) (-15 -2460 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2721 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2915 ((-112) |#1|)) (-15 -2200 ((-112) |#1|)) (-15 -2417 ((-112) |#1|)) (-15 -1638 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -2915 ((-112) |#5| |#1|)) (-15 -2200 ((-112) |#5| |#1|)) (-15 -2417 ((-112) |#5| |#1|)) (-15 -2559 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1938 ((-112) |#1|)) (-15 -1938 ((-112) |#5| |#1|)) (-15 -1794 ((-2 (|:| -1597 (-656 |#5|)) (|:| -3823 (-656 |#5|))) |#1|)) (-15 -2196 ((-783) |#1|)) (-15 -4387 ((-656 |#5|) |#1|)) (-15 -1671 ((-3 (-2 (|:| |bas| |#1|) (|:| -3015 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1671 ((-3 (-2 (|:| |bas| |#1|) (|:| -3015 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2384 ((-112) |#1| |#1|)) (-15 -4023 (|#1| |#1| |#4|)) (-15 -2715 (|#1| |#1| |#4|)) (-15 -4260 (|#4| |#1|)) (-15 -2982 ((-3 |#1| "failed") (-656 |#5|))) (-15 -4113 ((-656 |#5|) |#1|)) (-15 -4125 (|#1| (-656 |#5|))) (-15 -2721 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2721 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3603 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2721 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4113 ((-876) |#1|)) (-15 -3939 ((-112) |#1| |#1|))) -((-1957 (((-112) $ $) 7)) (-2048 (((-656 (-2 (|:| -1597 $) (|:| -3823 (-656 |#4|)))) (-656 |#4|)) 86)) (-2739 (((-656 $) (-656 |#4|)) 87)) (-1585 (((-656 |#3|) $) 34)) (-4404 (((-112) $) 27)) (-3921 (((-112) $) 18 (|has| |#1| (-568)))) (-2417 (((-112) |#4| $) 102) (((-112) $) 98)) (-1916 ((|#4| |#4| $) 93)) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |#3|) 28)) (-4234 (((-112) $ (-783)) 45)) (-3603 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) 80)) (-3170 (($) 46 T CONST)) (-4016 (((-112) $) 23 (|has| |#1| (-568)))) (-3403 (((-112) $ $) 25 (|has| |#1| (-568)))) (-4357 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2159 (((-112) $) 26 (|has| |#1| (-568)))) (-2460 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3496 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-3588 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2982 (((-3 $ "failed") (-656 |#4|)) 37)) (-2317 (($ (-656 |#4|)) 36)) (-1764 (((-3 $ "failed") $) 83)) (-2458 ((|#4| |#4| $) 90)) (-3841 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4464)))) (-3561 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2559 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3234 ((|#4| |#4| $) 88)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1794 (((-2 (|:| -1597 (-656 |#4|)) (|:| -3823 (-656 |#4|))) $) 106)) (-3722 (((-656 |#4|) $) 53 (|has| $ (-6 -4464)))) (-1938 (((-112) |#4| $) 105) (((-112) $) 104)) (-4260 ((|#3| $) 35)) (-3215 (((-112) $ (-783)) 44)) (-2911 (((-656 |#4|) $) 54 (|has| $ (-6 -4464)))) (-1602 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#4| |#4|) $) 48)) (-3240 (((-656 |#3|) $) 33)) (-3821 (((-112) |#3| $) 32)) (-1884 (((-112) $ (-783)) 43)) (-2447 (((-1179) $) 10)) (-2850 (((-3 |#4| "failed") $) 84)) (-4387 (((-656 |#4|) $) 108)) (-2915 (((-112) |#4| $) 100) (((-112) $) 96)) (-3648 ((|#4| |#4| $) 91)) (-2384 (((-112) $ $) 111)) (-2296 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-2200 (((-112) |#4| $) 101) (((-112) $) 97)) (-2565 ((|#4| |#4| $) 92)) (-3116 (((-1141) $) 11)) (-1755 (((-3 |#4| "failed") $) 85)) (-4220 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3238 (((-3 $ "failed") $ |#4|) 79)) (-2419 (($ $ |#4|) 78)) (-1759 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-1645 (((-112) $ $) 39)) (-3617 (((-112) $) 42)) (-3307 (($) 41)) (-2196 (((-783) $) 107)) (-3127 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4464)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4464)))) (-4287 (($ $) 40)) (-1556 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4125 (($ (-656 |#4|)) 61)) (-4023 (($ $ |#3|) 29)) (-2715 (($ $ |#3|) 31)) (-1357 (($ $) 89)) (-3142 (($ $ |#3|) 30)) (-4113 (((-876) $) 12) (((-656 |#4|) $) 38)) (-2524 (((-783) $) 77 (|has| |#3| (-379)))) (-2950 (((-112) $ $) 6)) (-1671 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1638 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2543 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4464)))) (-1754 (((-656 |#3|) $) 82)) (-1736 (((-112) |#3| $) 81)) (-3939 (((-112) $ $) 8)) (-1970 (((-783) $) 47 (|has| $ (-6 -4464))))) -(((-1231 |#1| |#2| |#3| |#4|) (-141) (-568) (-805) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1231)) -((-2384 (*1 *2 *1 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-1671 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3015 (-656 *8)))) (-5 *3 (-656 *8)) (-4 *1 (-1231 *5 *6 *7 *8)))) (-1671 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3015 (-656 *9)))) (-5 *3 (-656 *9)) (-4 *1 (-1231 *6 *7 *8 *9)))) (-4387 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *6)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-783)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-2 (|:| -1597 (-656 *6)) (|:| -3823 (-656 *6)))))) (-1938 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-2559 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1231 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)))) (-2417 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2200 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2915 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-1638 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1231 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)))) (-2417 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) (-2721 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1231 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *2 (-1086 *5 *6 *7)))) (-2460 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1231 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)))) (-1916 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-2565 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3648 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-2458 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-1357 (*1 *1 *1) (-12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) (-3234 (*1 *2 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) (-4 *1 (-1231 *4 *5 *6 *7)))) (-2048 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| -1597 *1) (|:| -3823 (-656 *7))))) (-5 *3 (-656 *7)) (-4 *1 (-1231 *4 *5 *6 *7)))) (-1755 (*1 *2 *1) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-2850 (*1 *2 *1) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-1764 (*1 *1 *1) (|partial| -12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) (-1736 (*1 *2 *3 *1) (-12 (-4 *1 (-1231 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112)))) (-3603 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1231 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-861)) (-4 *2 (-1086 *4 *5 *3)))) (-3238 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-2419 (*1 *1 *1 *2) (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *5 (-379)) (-5 *2 (-783))))) -(-13 (-997 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4464) (-6 -4465) (-15 -2384 ((-112) $ $)) (-15 -1671 ((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1671 ((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4387 ((-656 |t#4|) $)) (-15 -2196 ((-783) $)) (-15 -1794 ((-2 (|:| -1597 (-656 |t#4|)) (|:| -3823 (-656 |t#4|))) $)) (-15 -1938 ((-112) |t#4| $)) (-15 -1938 ((-112) $)) (-15 -2559 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2417 ((-112) |t#4| $)) (-15 -2200 ((-112) |t#4| $)) (-15 -2915 ((-112) |t#4| $)) (-15 -1638 ((-112) $ (-1 (-112) |t#4| (-656 |t#4|)))) (-15 -2417 ((-112) $)) (-15 -2200 ((-112) $)) (-15 -2915 ((-112) $)) (-15 -2721 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2460 ((-656 |t#4|) (-656 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1916 (|t#4| |t#4| $)) (-15 -2565 (|t#4| |t#4| $)) (-15 -3648 (|t#4| |t#4| $)) (-15 -2458 (|t#4| |t#4| $)) (-15 -1357 ($ $)) (-15 -3234 (|t#4| |t#4| $)) (-15 -2739 ((-656 $) (-656 |t#4|))) (-15 -2048 ((-656 (-2 (|:| -1597 $) (|:| -3823 (-656 |t#4|)))) (-656 |t#4|))) (-15 -1755 ((-3 |t#4| "failed") $)) (-15 -2850 ((-3 |t#4| "failed") $)) (-15 -1764 ((-3 $ "failed") $)) (-15 -1754 ((-656 |t#3|) $)) (-15 -1736 ((-112) |t#3| $)) (-15 -3603 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3238 ((-3 $ "failed") $ |t#4|)) (-15 -2419 ($ $ |t#4|)) (IF (|has| |t#3| (-379)) (-15 -2524 ((-783) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-876)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1585 (((-656 (-1197)) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-3586 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3562 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3612 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) NIL T CONST)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-2818 (((-971 |#1|) $ (-783)) 17) (((-971 |#1|) $ (-783) (-783)) NIL)) (-2654 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-783) $ (-1197)) NIL) (((-783) $ (-1197) (-783)) NIL)) (-2486 (((-112) $) NIL)) (-4005 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4101 (((-112) $) NIL)) (-1564 (($ $ (-656 (-1197)) (-656 (-543 (-1197)))) NIL) (($ $ (-1197) (-543 (-1197))) NIL) (($ |#1| (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2608 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-4412 (($ $ (-1197)) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3116 (((-1141) $) NIL)) (-1528 (($ (-1 $) (-1197) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2419 (($ $ (-783)) NIL)) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2156 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2145 (($ $ (-1197) $) NIL) (($ $ (-656 (-1197)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-4107 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-2196 (((-543 (-1197)) $) NIL)) (-3623 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-1197)) NIL) (($ (-971 |#1|)) NIL)) (-2707 ((|#1| $ (-543 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL) (((-971 |#1|) $ (-783)) NIL)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3632 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1972 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3157 (($ $ (-656 (-1197)) (-656 (-783))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1232 |#1|) (-13 (-752 |#1| (-1197)) (-10 -8 (-15 -2707 ((-971 |#1|) $ (-783))) (-15 -4113 ($ (-1197))) (-15 -4113 ($ (-971 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4412 ($ $ (-1197) |#1|)) (-15 -1528 ($ (-1 $) (-1197) |#1|))) |%noBranch|))) (-1070)) (T -1232)) -((-2707 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-971 *4)) (-5 *1 (-1232 *4)) (-4 *4 (-1070)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-1070)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-5 *1 (-1232 *3)))) (-4412 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)))) (-1528 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1232 *4))) (-5 *3 (-1197)) (-5 *1 (-1232 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070))))) -(-13 (-752 |#1| (-1197)) (-10 -8 (-15 -2707 ((-971 |#1|) $ (-783))) (-15 -4113 ($ (-1197))) (-15 -4113 ($ (-971 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4412 ($ $ (-1197) |#1|)) (-15 -1528 ($ (-1 $) (-1197) |#1|))) |%noBranch|))) -((-3187 (($ |#1| (-656 (-656 (-962 (-227)))) (-112)) 19)) (-4273 (((-112) $ (-112)) 18)) (-2714 (((-112) $) 17)) (-2966 (((-656 (-656 (-962 (-227)))) $) 13)) (-3651 ((|#1| $) 8)) (-3468 (((-112) $) 15))) -(((-1233 |#1|) (-10 -8 (-15 -3651 (|#1| $)) (-15 -2966 ((-656 (-656 (-962 (-227)))) $)) (-15 -3468 ((-112) $)) (-15 -2714 ((-112) $)) (-15 -4273 ((-112) $ (-112))) (-15 -3187 ($ |#1| (-656 (-656 (-962 (-227)))) (-112)))) (-995)) (T -1233)) -((-3187 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-112)) (-5 *1 (-1233 *2)) (-4 *2 (-995)))) (-4273 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-2714 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-1233 *3)) (-4 *3 (-995)))) (-3651 (*1 *2 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-995))))) -(-10 -8 (-15 -3651 (|#1| $)) (-15 -2966 ((-656 (-656 (-962 (-227)))) $)) (-15 -3468 ((-112) $)) (-15 -2714 ((-112) $)) (-15 -4273 ((-112) $ (-112))) (-15 -3187 ($ |#1| (-656 (-656 (-962 (-227)))) (-112)))) -((-2846 (((-962 (-227)) (-962 (-227))) 31)) (-2819 (((-962 (-227)) (-227) (-227) (-227) (-227)) 10)) (-4441 (((-656 (-962 (-227))) (-962 (-227)) (-962 (-227)) (-962 (-227)) (-227) (-656 (-656 (-227)))) 56)) (-1875 (((-227) (-962 (-227)) (-962 (-227))) 27)) (-2900 (((-962 (-227)) (-962 (-227)) (-962 (-227))) 28)) (-3627 (((-656 (-656 (-227))) (-576)) 44)) (-4037 (((-962 (-227)) (-962 (-227)) (-962 (-227))) 26)) (-4026 (((-962 (-227)) (-962 (-227)) (-962 (-227))) 24)) (* (((-962 (-227)) (-227) (-962 (-227))) 22))) -(((-1234) (-10 -7 (-15 -2819 ((-962 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-962 (-227)) (-227) (-962 (-227)))) (-15 -4026 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -4037 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -1875 ((-227) (-962 (-227)) (-962 (-227)))) (-15 -2900 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -2846 ((-962 (-227)) (-962 (-227)))) (-15 -3627 ((-656 (-656 (-227))) (-576))) (-15 -4441 ((-656 (-962 (-227))) (-962 (-227)) (-962 (-227)) (-962 (-227)) (-227) (-656 (-656 (-227))))))) (T -1234)) -((-4441 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 (-962 *4))) (-5 *1 (-1234)) (-5 *3 (-962 *4)))) (-3627 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1234)))) (-2846 (*1 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (-2900 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (-1875 (*1 *2 *3 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-227)) (-5 *1 (-1234)))) (-4037 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (-4026 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-962 (-227))) (-5 *3 (-227)) (-5 *1 (-1234)))) (-2819 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)) (-5 *3 (-227))))) -(-10 -7 (-15 -2819 ((-962 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-962 (-227)) (-227) (-962 (-227)))) (-15 -4026 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -4037 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -1875 ((-227) (-962 (-227)) (-962 (-227)))) (-15 -2900 ((-962 (-227)) (-962 (-227)) (-962 (-227)))) (-15 -2846 ((-962 (-227)) (-962 (-227)))) (-15 -3627 ((-656 (-656 (-227))) (-576))) (-15 -4441 ((-656 (-962 (-227))) (-962 (-227)) (-962 (-227)) (-962 (-227)) (-227) (-656 (-656 (-227)))))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3603 ((|#1| $ (-783)) 18)) (-3108 (((-783) $) 13)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-4113 (((-977 |#1|) $) 12) (($ (-977 |#1|)) 11) (((-876) $) 29 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-3939 (((-112) $ $) 22 (|has| |#1| (-1121))))) -(((-1235 |#1|) (-13 (-502 (-977 |#1|)) (-10 -8 (-15 -3603 (|#1| $ (-783))) (-15 -3108 ((-783) $)) (IF (|has| |#1| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1238)) (T -1235)) -((-3603 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-1235 *2)) (-4 *2 (-1238)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1235 *3)) (-4 *3 (-1238))))) -(-13 (-502 (-977 |#1|)) (-10 -8 (-15 -3603 (|#1| $ (-783))) (-15 -3108 ((-783) $)) (IF (|has| |#1| (-625 (-876))) (-6 (-625 (-876))) |%noBranch|) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) -((-2147 (((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)) (-576)) 94)) (-3779 (((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|))) 86)) (-3855 (((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|))) 70))) -(((-1236 |#1|) (-10 -7 (-15 -3779 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -3855 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -2147 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)) (-576)))) (-360)) (T -1236)) -((-2147 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1193 (-1193 *5)))) (-5 *1 (-1236 *5)) (-5 *3 (-1193 (-1193 *5))))) (-3855 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4))))) (-3779 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4)))))) -(-10 -7 (-15 -3779 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -3855 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)))) (-15 -2147 ((-430 (-1193 (-1193 |#1|))) (-1193 (-1193 |#1|)) (-576)))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 9) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1237) (-1104)) (T -1237)) -NIL -(-1104) -NIL -(((-1238) (-141)) (T -1238)) -NIL -(-13 (-10 -7 (-6 -2606))) -((-3649 (((-112)) 18)) (-3793 (((-1293) (-656 |#1|) (-656 |#1|)) 22) (((-1293) (-656 |#1|)) 23)) (-3215 (((-112) |#1| |#1|) 37 (|has| |#1| (-861)))) (-1884 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-3847 ((|#1| (-656 |#1|)) 38 (|has| |#1| (-861))) ((|#1| (-656 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3515 (((-2 (|:| -3890 (-656 |#1|)) (|:| -2699 (-656 |#1|)))) 20))) -(((-1239 |#1|) (-10 -7 (-15 -3793 ((-1293) (-656 |#1|))) (-15 -3793 ((-1293) (-656 |#1|) (-656 |#1|))) (-15 -3515 ((-2 (|:| -3890 (-656 |#1|)) (|:| -2699 (-656 |#1|))))) (-15 -1884 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1884 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3847 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3649 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -3847 (|#1| (-656 |#1|))) (-15 -3215 ((-112) |#1| |#1|))) |%noBranch|)) (-1121)) (T -1239)) -((-3215 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-861)) (-4 *3 (-1121)))) (-3847 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-861)) (-5 *1 (-1239 *2)))) (-3649 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1239 *2)) (-4 *2 (-1121)))) (-1884 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1121)) (-5 *2 (-112)) (-5 *1 (-1239 *3)))) (-1884 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-3515 (*1 *2) (-12 (-5 *2 (-2 (|:| -3890 (-656 *3)) (|:| -2699 (-656 *3)))) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-3793 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) (-5 *1 (-1239 *4)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) (-5 *1 (-1239 *4))))) -(-10 -7 (-15 -3793 ((-1293) (-656 |#1|))) (-15 -3793 ((-1293) (-656 |#1|) (-656 |#1|))) (-15 -3515 ((-2 (|:| -3890 (-656 |#1|)) (|:| -2699 (-656 |#1|))))) (-15 -1884 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1884 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3847 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3649 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -3847 (|#1| (-656 |#1|))) (-15 -3215 ((-112) |#1| |#1|))) |%noBranch|)) -((-3630 (((-1293) (-656 (-1197)) (-656 (-1197))) 14) (((-1293) (-656 (-1197))) 12)) (-2202 (((-1293)) 16)) (-2838 (((-2 (|:| -2699 (-656 (-1197))) (|:| -3890 (-656 (-1197))))) 20))) -(((-1240) (-10 -7 (-15 -3630 ((-1293) (-656 (-1197)))) (-15 -3630 ((-1293) (-656 (-1197)) (-656 (-1197)))) (-15 -2838 ((-2 (|:| -2699 (-656 (-1197))) (|:| -3890 (-656 (-1197)))))) (-15 -2202 ((-1293))))) (T -1240)) -((-2202 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1240)))) (-2838 (*1 *2) (-12 (-5 *2 (-2 (|:| -2699 (-656 (-1197))) (|:| -3890 (-656 (-1197))))) (-5 *1 (-1240)))) (-3630 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240))))) -(-10 -7 (-15 -3630 ((-1293) (-656 (-1197)))) (-15 -3630 ((-1293) (-656 (-1197)) (-656 (-1197)))) (-15 -2838 ((-2 (|:| -2699 (-656 (-1197))) (|:| -3890 (-656 (-1197)))))) (-15 -2202 ((-1293)))) -((-2658 (($ $) 17)) (-2171 (((-112) $) 28))) -(((-1241 |#1|) (-10 -8 (-15 -2658 (|#1| |#1|)) (-15 -2171 ((-112) |#1|))) (-1242)) (T -1241)) -NIL -(-10 -8 (-15 -2658 (|#1| |#1|)) (-15 -2171 ((-112) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 57)) (-3589 (((-430 $) $) 58)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2171 (((-112) $) 59)) (-2486 (((-112) $) 35)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-1452 (((-430 $) $) 56)) (-1946 (((-3 $ "failed") $ $) 48)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1242) (-141)) (T -1242)) -((-2171 (*1 *2 *1) (-12 (-4 *1 (-1242)) (-5 *2 (-112)))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242)))) (-2658 (*1 *1 *1) (-4 *1 (-1242))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242))))) -(-13 (-464) (-10 -8 (-15 -2171 ((-112) $)) (-15 -3589 ((-430 $) $)) (-15 -2658 ($ $)) (-15 -1452 ((-430 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783)) NIL)) (-3170 (($) NIL T CONST)) (-4370 (($) NIL)) (-2907 (($ $ $) NIL) (($) NIL T CONST)) (-3777 (($ $ $) NIL) (($) NIL T CONST)) (-3787 (((-940) $) NIL)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-3873 (($ $ $) NIL)) (-3860 (($ $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL))) -(((-1243) (-13 (-856) (-10 -8 (-15 -3860 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3170 ($) -2666)))) (T -1243)) -((-3860 (*1 *1 *1 *1) (-5 *1 (-1243))) (-3873 (*1 *1 *1 *1) (-5 *1 (-1243))) (-3170 (*1 *1) (-5 *1 (-1243)))) -(-13 (-856) (-10 -8 (-15 -3860 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3170 ($) -2666))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 9)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 7))) +(((-1206) (-1122)) (T -1206)) +NIL +(-1122) +((-4349 (((-657 (-657 (-972 |#1|))) (-657 (-419 (-972 |#1|))) (-657 (-1198))) 69)) (-2632 (((-657 (-304 (-419 (-972 |#1|)))) (-304 (-419 (-972 |#1|)))) 80) (((-657 (-304 (-419 (-972 |#1|)))) (-419 (-972 |#1|))) 76) (((-657 (-304 (-419 (-972 |#1|)))) (-304 (-419 (-972 |#1|))) (-1198)) 81) (((-657 (-304 (-419 (-972 |#1|)))) (-419 (-972 |#1|)) (-1198)) 75) (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-304 (-419 (-972 |#1|))))) 106) (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-419 (-972 |#1|)))) 105) (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-304 (-419 (-972 |#1|)))) (-657 (-1198))) 107) (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-419 (-972 |#1|))) (-657 (-1198))) 104))) +(((-1207 |#1|) (-10 -7 (-15 -2632 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -2632 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-304 (-419 (-972 |#1|)))) (-657 (-1198)))) (-15 -2632 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-419 (-972 |#1|))))) (-15 -2632 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-304 (-419 (-972 |#1|)))))) (-15 -2632 ((-657 (-304 (-419 (-972 |#1|)))) (-419 (-972 |#1|)) (-1198))) (-15 -2632 ((-657 (-304 (-419 (-972 |#1|)))) (-304 (-419 (-972 |#1|))) (-1198))) (-15 -2632 ((-657 (-304 (-419 (-972 |#1|)))) (-419 (-972 |#1|)))) (-15 -2632 ((-657 (-304 (-419 (-972 |#1|)))) (-304 (-419 (-972 |#1|))))) (-15 -4349 ((-657 (-657 (-972 |#1|))) (-657 (-419 (-972 |#1|))) (-657 (-1198))))) (-568)) (T -1207)) +((-4349 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) (-4 *5 (-568)) (-5 *2 (-657 (-657 (-972 *5)))) (-5 *1 (-1207 *5)))) (-2632 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 (-304 (-419 (-972 *4))))) (-5 *1 (-1207 *4)) (-5 *3 (-304 (-419 (-972 *4)))))) (-2632 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 (-304 (-419 (-972 *4))))) (-5 *1 (-1207 *4)) (-5 *3 (-419 (-972 *4))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-568)) (-5 *2 (-657 (-304 (-419 (-972 *5))))) (-5 *1 (-1207 *5)) (-5 *3 (-304 (-419 (-972 *5)))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-568)) (-5 *2 (-657 (-304 (-419 (-972 *5))))) (-5 *1 (-1207 *5)) (-5 *3 (-419 (-972 *5))))) (-2632 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-1207 *4)) (-5 *3 (-657 (-304 (-419 (-972 *4))))))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-657 (-419 (-972 *4)))) (-4 *4 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-1207 *4)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-1198))) (-4 *5 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-1207 *5)) (-5 *3 (-657 (-304 (-419 (-972 *5))))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) (-4 *5 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-1207 *5))))) +(-10 -7 (-15 -2632 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -2632 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-304 (-419 (-972 |#1|)))) (-657 (-1198)))) (-15 -2632 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-419 (-972 |#1|))))) (-15 -2632 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-304 (-419 (-972 |#1|)))))) (-15 -2632 ((-657 (-304 (-419 (-972 |#1|)))) (-419 (-972 |#1|)) (-1198))) (-15 -2632 ((-657 (-304 (-419 (-972 |#1|)))) (-304 (-419 (-972 |#1|))) (-1198))) (-15 -2632 ((-657 (-304 (-419 (-972 |#1|)))) (-419 (-972 |#1|)))) (-15 -2632 ((-657 (-304 (-419 (-972 |#1|)))) (-304 (-419 (-972 |#1|))))) (-15 -4349 ((-657 (-657 (-972 |#1|))) (-657 (-419 (-972 |#1|))) (-657 (-1198))))) +((-2905 (((-1180)) 7)) (-1481 (((-1180)) 11 T CONST)) (-3660 (((-1294) (-1180)) 13)) (-1395 (((-1180)) 8 T CONST)) (-2947 (((-131)) 10 T CONST))) +(((-1208) (-13 (-1239) (-10 -7 (-15 -2905 ((-1180))) (-15 -1395 ((-1180)) -1491) (-15 -2947 ((-131)) -1491) (-15 -1481 ((-1180)) -1491) (-15 -3660 ((-1294) (-1180)))))) (T -1208)) +((-2905 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208)))) (-1395 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208)))) (-2947 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1208)))) (-1481 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208)))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1208))))) +(-13 (-1239) (-10 -7 (-15 -2905 ((-1180))) (-15 -1395 ((-1180)) -1491) (-15 -2947 ((-131)) -1491) (-15 -1481 ((-1180)) -1491) (-15 -3660 ((-1294) (-1180))))) +((-1750 (((-657 (-657 |#1|)) (-657 (-657 |#1|)) (-657 (-657 (-657 |#1|)))) 56)) (-2729 (((-657 (-657 (-657 |#1|))) (-657 (-657 |#1|))) 38)) (-2567 (((-1210 (-657 |#1|)) (-657 |#1|)) 49)) (-3032 (((-657 (-657 |#1|)) (-657 |#1|)) 45)) (-3331 (((-2 (|:| |f1| (-657 |#1|)) (|:| |f2| (-657 (-657 (-657 |#1|)))) (|:| |f3| (-657 (-657 |#1|))) (|:| |f4| (-657 (-657 (-657 |#1|))))) (-657 (-657 (-657 |#1|)))) 53)) (-3441 (((-2 (|:| |f1| (-657 |#1|)) (|:| |f2| (-657 (-657 (-657 |#1|)))) (|:| |f3| (-657 (-657 |#1|))) (|:| |f4| (-657 (-657 (-657 |#1|))))) (-657 |#1|) (-657 (-657 (-657 |#1|))) (-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))) (-657 (-657 (-657 |#1|))) (-657 (-657 (-657 |#1|)))) 52)) (-2227 (((-657 (-657 |#1|)) (-657 (-657 |#1|))) 43)) (-1455 (((-657 |#1|) (-657 |#1|)) 46)) (-4258 (((-657 (-657 (-657 |#1|))) (-657 |#1|) (-657 (-657 (-657 |#1|)))) 32)) (-3164 (((-657 (-657 (-657 |#1|))) (-1 (-112) |#1| |#1|) (-657 |#1|) (-657 (-657 (-657 |#1|)))) 29)) (-3456 (((-2 (|:| |fs| (-112)) (|:| |sd| (-657 |#1|)) (|:| |td| (-657 (-657 |#1|)))) (-1 (-112) |#1| |#1|) (-657 |#1|) (-657 (-657 |#1|))) 24)) (-2293 (((-657 (-657 |#1|)) (-657 (-657 (-657 |#1|)))) 58)) (-1579 (((-657 (-657 |#1|)) (-1210 (-657 |#1|))) 60))) +(((-1209 |#1|) (-10 -7 (-15 -3456 ((-2 (|:| |fs| (-112)) (|:| |sd| (-657 |#1|)) (|:| |td| (-657 (-657 |#1|)))) (-1 (-112) |#1| |#1|) (-657 |#1|) (-657 (-657 |#1|)))) (-15 -3164 ((-657 (-657 (-657 |#1|))) (-1 (-112) |#1| |#1|) (-657 |#1|) (-657 (-657 (-657 |#1|))))) (-15 -4258 ((-657 (-657 (-657 |#1|))) (-657 |#1|) (-657 (-657 (-657 |#1|))))) (-15 -1750 ((-657 (-657 |#1|)) (-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))))) (-15 -2293 ((-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))))) (-15 -1579 ((-657 (-657 |#1|)) (-1210 (-657 |#1|)))) (-15 -2729 ((-657 (-657 (-657 |#1|))) (-657 (-657 |#1|)))) (-15 -2567 ((-1210 (-657 |#1|)) (-657 |#1|))) (-15 -2227 ((-657 (-657 |#1|)) (-657 (-657 |#1|)))) (-15 -3032 ((-657 (-657 |#1|)) (-657 |#1|))) (-15 -1455 ((-657 |#1|) (-657 |#1|))) (-15 -3441 ((-2 (|:| |f1| (-657 |#1|)) (|:| |f2| (-657 (-657 (-657 |#1|)))) (|:| |f3| (-657 (-657 |#1|))) (|:| |f4| (-657 (-657 (-657 |#1|))))) (-657 |#1|) (-657 (-657 (-657 |#1|))) (-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))) (-657 (-657 (-657 |#1|))) (-657 (-657 (-657 |#1|))))) (-15 -3331 ((-2 (|:| |f1| (-657 |#1|)) (|:| |f2| (-657 (-657 (-657 |#1|)))) (|:| |f3| (-657 (-657 |#1|))) (|:| |f4| (-657 (-657 (-657 |#1|))))) (-657 (-657 (-657 |#1|)))))) (-862)) (T -1209)) +((-3331 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-2 (|:| |f1| (-657 *4)) (|:| |f2| (-657 (-657 (-657 *4)))) (|:| |f3| (-657 (-657 *4))) (|:| |f4| (-657 (-657 (-657 *4)))))) (-5 *1 (-1209 *4)) (-5 *3 (-657 (-657 (-657 *4)))))) (-3441 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-862)) (-5 *3 (-657 *6)) (-5 *5 (-657 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-657 *5)) (|:| |f3| *5) (|:| |f4| (-657 *5)))) (-5 *1 (-1209 *6)) (-5 *4 (-657 *5)))) (-1455 (*1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-1209 *3)))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-657 (-657 *4))) (-5 *1 (-1209 *4)) (-5 *3 (-657 *4)))) (-2227 (*1 *2 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-862)) (-5 *1 (-1209 *3)))) (-2567 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-1210 (-657 *4))) (-5 *1 (-1209 *4)) (-5 *3 (-657 *4)))) (-2729 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-657 (-657 (-657 *4)))) (-5 *1 (-1209 *4)) (-5 *3 (-657 (-657 *4))))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-1210 (-657 *4))) (-4 *4 (-862)) (-5 *2 (-657 (-657 *4))) (-5 *1 (-1209 *4)))) (-2293 (*1 *2 *3) (-12 (-5 *3 (-657 (-657 (-657 *4)))) (-5 *2 (-657 (-657 *4))) (-5 *1 (-1209 *4)) (-4 *4 (-862)))) (-1750 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-657 (-657 *4)))) (-5 *2 (-657 (-657 *4))) (-4 *4 (-862)) (-5 *1 (-1209 *4)))) (-4258 (*1 *2 *3 *2) (-12 (-5 *2 (-657 (-657 (-657 *4)))) (-5 *3 (-657 *4)) (-4 *4 (-862)) (-5 *1 (-1209 *4)))) (-3164 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-657 (-657 (-657 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-657 *5)) (-4 *5 (-862)) (-5 *1 (-1209 *5)))) (-3456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-657 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-657 *4)))) (-5 *1 (-1209 *6)) (-5 *5 (-657 *4))))) +(-10 -7 (-15 -3456 ((-2 (|:| |fs| (-112)) (|:| |sd| (-657 |#1|)) (|:| |td| (-657 (-657 |#1|)))) (-1 (-112) |#1| |#1|) (-657 |#1|) (-657 (-657 |#1|)))) (-15 -3164 ((-657 (-657 (-657 |#1|))) (-1 (-112) |#1| |#1|) (-657 |#1|) (-657 (-657 (-657 |#1|))))) (-15 -4258 ((-657 (-657 (-657 |#1|))) (-657 |#1|) (-657 (-657 (-657 |#1|))))) (-15 -1750 ((-657 (-657 |#1|)) (-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))))) (-15 -2293 ((-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))))) (-15 -1579 ((-657 (-657 |#1|)) (-1210 (-657 |#1|)))) (-15 -2729 ((-657 (-657 (-657 |#1|))) (-657 (-657 |#1|)))) (-15 -2567 ((-1210 (-657 |#1|)) (-657 |#1|))) (-15 -2227 ((-657 (-657 |#1|)) (-657 (-657 |#1|)))) (-15 -3032 ((-657 (-657 |#1|)) (-657 |#1|))) (-15 -1455 ((-657 |#1|) (-657 |#1|))) (-15 -3441 ((-2 (|:| |f1| (-657 |#1|)) (|:| |f2| (-657 (-657 (-657 |#1|)))) (|:| |f3| (-657 (-657 |#1|))) (|:| |f4| (-657 (-657 (-657 |#1|))))) (-657 |#1|) (-657 (-657 (-657 |#1|))) (-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))) (-657 (-657 (-657 |#1|))) (-657 (-657 (-657 |#1|))))) (-15 -3331 ((-2 (|:| |f1| (-657 |#1|)) (|:| |f2| (-657 (-657 (-657 |#1|)))) (|:| |f3| (-657 (-657 |#1|))) (|:| |f4| (-657 (-657 (-657 |#1|))))) (-657 (-657 (-657 |#1|)))))) +((-3642 (($ (-657 (-657 |#1|))) 10)) (-2819 (((-657 (-657 |#1|)) $) 11)) (-3515 (((-877) $) 33))) +(((-1210 |#1|) (-10 -8 (-15 -3642 ($ (-657 (-657 |#1|)))) (-15 -2819 ((-657 (-657 |#1|)) $)) (-15 -3515 ((-877) $))) (-1122)) (T -1210)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1210 *3)) (-4 *3 (-1122)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-657 (-657 *3))) (-5 *1 (-1210 *3)) (-4 *3 (-1122)))) (-3642 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-1210 *3))))) +(-10 -8 (-15 -3642 ($ (-657 (-657 |#1|)))) (-15 -2819 ((-657 (-657 |#1|)) $)) (-15 -3515 ((-877) $))) +((-3423 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4082 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3590 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#2| $ |#1| |#2|) NIL)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2244 (((-3 |#2| "failed") |#1| $) NIL)) (-2515 (($) NIL T CONST)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-1920 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) NIL)) (-3901 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#2| $ |#1|) NIL)) (-1448 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) NIL)) (-3363 ((|#1| $) NIL (|has| |#1| (-862)))) (-3855 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1833 ((|#1| $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3135 (((-657 |#1|) $) NIL)) (-2559 (((-112) |#1| $) NIL)) (-3107 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2701 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3309 (((-657 |#1|) $) NIL)) (-4324 (((-112) |#1| $) NIL)) (-1460 (((-1142) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3528 ((|#2| $) NIL (|has| |#1| (-862)))) (-4135 (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1495 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3585 (((-657 |#2|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3009 (($) NIL) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3515 (((-877) $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-4166 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) NIL)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) NIL (-2748 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1211 |#1| |#2|) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) (-1122) (-1122)) (T -1211)) +NIL +(-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) +((-3423 (((-112) $ $) NIL)) (-1803 (($ |#1| (-55)) 10)) (-2634 ((|#1| $) 12)) (-1708 (((-1180) $) NIL)) (-4216 (((-112) $ |#1|) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-4166 (((-112) $ $) NIL)) (-1853 (((-55) $) 14)) (-2881 (((-112) $ $) NIL))) +(((-1212 |#1|) (-13 (-848 |#1|) (-10 -8 (-15 -1803 ($ |#1| (-55))))) (-1122)) (T -1212)) +((-1803 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1212 *2)) (-4 *2 (-1122))))) +(-13 (-848 |#1|) (-10 -8 (-15 -1803 ($ |#1| (-55))))) +((-3779 ((|#1| (-657 |#1|)) 46)) (-3207 ((|#1| |#1| (-576)) 24)) (-4295 (((-1194 |#1|) |#1| (-941)) 20))) +(((-1213 |#1|) (-10 -7 (-15 -3779 (|#1| (-657 |#1|))) (-15 -4295 ((-1194 |#1|) |#1| (-941))) (-15 -3207 (|#1| |#1| (-576)))) (-374)) (T -1213)) +((-3207 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1213 *2)) (-4 *2 (-374)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-5 *2 (-1194 *3)) (-5 *1 (-1213 *3)) (-4 *3 (-374)))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-5 *1 (-1213 *2)) (-4 *2 (-374))))) +(-10 -7 (-15 -3779 (|#1| (-657 |#1|))) (-15 -4295 ((-1194 |#1|) |#1| (-941))) (-15 -3207 (|#1| |#1| (-576)))) +((-4082 (($) 10) (($ (-657 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)))) 14)) (-1920 (($ (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1448 (((-657 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) $) 39) (((-657 |#3|) $) 41)) (-1799 (($ (-1 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4071 (($ (-1 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3107 (((-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) $) 60)) (-2701 (($ (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) $) 16)) (-3309 (((-657 |#2|) $) 19)) (-4324 (((-112) |#2| $) 65)) (-4135 (((-3 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) "failed") (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) $) 64)) (-2184 (((-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) $) 69)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-3585 (((-657 |#3|) $) 43)) (-2780 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) $) NIL) (((-784) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) $) NIL) (((-784) |#3| $) NIL) (((-784) (-1 (-112) |#3|) $) 79)) (-3515 (((-877) $) 27)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2881 (((-112) $ $) 51))) +(((-1214 |#1| |#2| |#3|) (-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -4071 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4082 (|#1| (-657 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))))) (-15 -4082 (|#1|)) (-15 -4071 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1799 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3258 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2372 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1469 ((-784) (-1 (-112) |#3|) |#1|)) (-15 -1448 ((-657 |#3|) |#1|)) (-15 -1469 ((-784) |#3| |#1|)) (-15 -2780 (|#3| |#1| |#2| |#3|)) (-15 -2780 (|#3| |#1| |#2|)) (-15 -3585 ((-657 |#3|) |#1|)) (-15 -4324 ((-112) |#2| |#1|)) (-15 -3309 ((-657 |#2|) |#1|)) (-15 -1920 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1920 (|#1| (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1920 (|#1| (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -4135 ((-3 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) "failed") (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -3107 ((-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -2701 (|#1| (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -2184 ((-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1469 ((-784) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1448 ((-657 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1469 ((-784) (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -2372 ((-112) (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -3258 ((-112) (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1799 (|#1| (-1 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -4071 (|#1| (-1 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|))) (-1215 |#2| |#3|) (-1122) (-1122)) (T -1214)) +NIL +(-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3515 ((-877) |#1|)) (-15 -4071 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4082 (|#1| (-657 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))))) (-15 -4082 (|#1|)) (-15 -4071 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1799 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3258 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2372 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1469 ((-784) (-1 (-112) |#3|) |#1|)) (-15 -1448 ((-657 |#3|) |#1|)) (-15 -1469 ((-784) |#3| |#1|)) (-15 -2780 (|#3| |#1| |#2| |#3|)) (-15 -2780 (|#3| |#1| |#2|)) (-15 -3585 ((-657 |#3|) |#1|)) (-15 -4324 ((-112) |#2| |#1|)) (-15 -3309 ((-657 |#2|) |#1|)) (-15 -1920 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1920 (|#1| (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1920 (|#1| (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -4135 ((-3 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) "failed") (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -3107 ((-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -2701 (|#1| (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -2184 ((-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1469 ((-784) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1448 ((-657 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1469 ((-784) (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -2372 ((-112) (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -3258 ((-112) (-1 (-112) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1799 (|#1| (-1 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -4071 (|#1| (-1 (-2 (|:| -4286 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4286 |#2|) (|:| -4440 |#3|))) |#1|))) +((-3423 (((-112) $ $) 20 (-2748 (|has| |#2| (-102)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102))))) (-4082 (($) 73) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 72)) (-3590 (((-1294) $ |#1| |#1|) 100 (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) 8)) (-3719 ((|#2| $ |#1| |#2|) 74)) (-3726 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 46 (|has| $ (-6 -4466)))) (-2007 (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 56 (|has| $ (-6 -4466)))) (-2244 (((-3 |#2| "failed") |#1| $) 62)) (-2515 (($) 7 T CONST)) (-1620 (($ $) 59 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466))))) (-1920 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 47 (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) 63)) (-3901 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 55 (|has| $ (-6 -4466)))) (-3662 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 57 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 54 (|has| $ (-6 -4466))) (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 53 (|has| $ (-6 -4466)))) (-1810 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4467)))) (-1741 ((|#2| $ |#1|) 89)) (-1448 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 31 (|has| $ (-6 -4466))) (((-657 |#2|) $) 80 (|has| $ (-6 -4466)))) (-1786 (((-112) $ (-784)) 9)) (-3363 ((|#1| $) 97 (|has| |#1| (-862)))) (-3855 (((-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 30 (|has| $ (-6 -4466))) (((-657 |#2|) $) 81 (|has| $ (-6 -4466)))) (-3326 (((-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-1833 ((|#1| $) 96 (|has| |#1| (-862)))) (-1799 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 35 (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4467)))) (-4071 (($ (-1 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-4326 (((-112) $ (-784)) 10)) (-1708 (((-1180) $) 23 (-2748 (|has| |#2| (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3135 (((-657 |#1|) $) 64)) (-2559 (((-112) |#1| $) 65)) (-3107 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 40)) (-2701 (($ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 41)) (-3309 (((-657 |#1|) $) 94)) (-4324 (((-112) |#1| $) 93)) (-1460 (((-1142) $) 22 (-2748 (|has| |#2| (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3528 ((|#2| $) 98 (|has| |#1| (-862)))) (-4135 (((-3 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 52)) (-1495 (($ $ |#2|) 99 (|has| $ (-6 -4467)))) (-2184 (((-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 42)) (-2372 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 33 (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))))) 27 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 26 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) 25 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 24 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3585 (((-657 |#2|) $) 92)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3009 (($) 50) (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 49)) (-1469 (((-784) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 32 (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-784) |#2| $) 82 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4466)))) (-1899 (($ $) 13)) (-4136 (((-548) $) 60 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3529 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 51)) (-3515 (((-877) $) 18 (-2748 (|has| |#2| (-625 (-877))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877)))))) (-4166 (((-112) $ $) 21 (-2748 (|has| |#2| (-102)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102))))) (-1636 (($ (-657 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) 43)) (-3258 (((-112) (-1 (-112) (-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) $) 34 (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (-2748 (|has| |#2| (-102)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102))))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-1215 |#1| |#2|) (-141) (-1122) (-1122)) (T -1215)) +((-3719 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-4082 (*1 *1) (-12 (-4 *1 (-1215 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -4286 *3) (|:| -4440 *4)))) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *1 (-1215 *3 *4)))) (-4071 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1215 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) +(-13 (-622 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -3719 (|t#2| $ |t#1| |t#2|)) (-15 -4082 ($)) (-15 -4082 ($ (-657 (-2 (|:| -4286 |t#1|) (|:| -4440 |t#2|))))) (-15 -4071 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4286 |#1|) (|:| -4440 |#2|))) . T) ((-102) -2748 (|has| |#2| (-1122)) (|has| |#2| (-102)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-102))) ((-625 (-877)) -2748 (|has| |#2| (-1122)) (|has| |#2| (-625 (-877))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-625 (-877)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-501 #0#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-622 |#1| |#2|) . T) ((-1122) -2748 (|has| |#2| (-1122)) (|has| (-2 (|:| -4286 |#1|) (|:| -4440 |#2|)) (-1122))) ((-1239) . T)) +((-1377 (((-112)) 29)) (-3813 (((-1294) (-1180)) 31)) (-1682 (((-112)) 41)) (-1969 (((-1294)) 39)) (-2384 (((-1294) (-1180) (-1180)) 30)) (-2157 (((-112)) 42)) (-2701 (((-1294) |#1| |#2|) 53)) (-3206 (((-1294)) 26)) (-3580 (((-3 |#2| "failed") |#1|) 51)) (-2017 (((-1294)) 40))) +(((-1216 |#1| |#2|) (-10 -7 (-15 -3206 ((-1294))) (-15 -2384 ((-1294) (-1180) (-1180))) (-15 -3813 ((-1294) (-1180))) (-15 -1969 ((-1294))) (-15 -2017 ((-1294))) (-15 -1377 ((-112))) (-15 -1682 ((-112))) (-15 -2157 ((-112))) (-15 -3580 ((-3 |#2| "failed") |#1|)) (-15 -2701 ((-1294) |#1| |#2|))) (-1122) (-1122)) (T -1216)) +((-2701 (*1 *2 *3 *4) (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-3580 (*1 *2 *3) (|partial| -12 (-4 *2 (-1122)) (-5 *1 (-1216 *3 *2)) (-4 *3 (-1122)))) (-2157 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-1682 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-1377 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-2017 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-1969 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-3813 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1216 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)))) (-2384 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1216 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)))) (-3206 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) +(-10 -7 (-15 -3206 ((-1294))) (-15 -2384 ((-1294) (-1180) (-1180))) (-15 -3813 ((-1294) (-1180))) (-15 -1969 ((-1294))) (-15 -2017 ((-1294))) (-15 -1377 ((-112))) (-15 -1682 ((-112))) (-15 -2157 ((-112))) (-15 -3580 ((-3 |#2| "failed") |#1|)) (-15 -2701 ((-1294) |#1| |#2|))) +((-1567 (((-1180) (-1180)) 22)) (-4169 (((-52) (-1180)) 25))) +(((-1217) (-10 -7 (-15 -4169 ((-52) (-1180))) (-15 -1567 ((-1180) (-1180))))) (T -1217)) +((-1567 (*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1217)))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-52)) (-5 *1 (-1217))))) +(-10 -7 (-15 -4169 ((-52) (-1180))) (-15 -1567 ((-1180) (-1180)))) +((-3515 (((-1219) |#1|) 11))) +(((-1218 |#1|) (-10 -7 (-15 -3515 ((-1219) |#1|))) (-1122)) (T -1218)) +((-3515 (*1 *2 *3) (-12 (-5 *2 (-1219)) (-5 *1 (-1218 *3)) (-4 *3 (-1122))))) +(-10 -7 (-15 -3515 ((-1219) |#1|))) +((-3423 (((-112) $ $) NIL)) (-2942 (((-657 (-1180)) $) 39)) (-1355 (((-657 (-1180)) $ (-657 (-1180))) 42)) (-4333 (((-657 (-1180)) $ (-657 (-1180))) 41)) (-4155 (((-657 (-1180)) $ (-657 (-1180))) 43)) (-4195 (((-657 (-1180)) $) 38)) (-4096 (($) 28)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3871 (((-657 (-1180)) $) 40)) (-2011 (((-1294) $ (-576)) 35) (((-1294) $) 36)) (-4136 (($ (-877) (-576)) 33) (($ (-877) (-576) (-877)) NIL)) (-3515 (((-877) $) 49) (($ (-877)) 32)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1219) (-13 (-1122) (-628 (-877)) (-10 -8 (-15 -4136 ($ (-877) (-576))) (-15 -4136 ($ (-877) (-576) (-877))) (-15 -2011 ((-1294) $ (-576))) (-15 -2011 ((-1294) $)) (-15 -3871 ((-657 (-1180)) $)) (-15 -2942 ((-657 (-1180)) $)) (-15 -4096 ($)) (-15 -4195 ((-657 (-1180)) $)) (-15 -4155 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -1355 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -4333 ((-657 (-1180)) $ (-657 (-1180))))))) (T -1219)) +((-4136 (*1 *1 *2 *3) (-12 (-5 *2 (-877)) (-5 *3 (-576)) (-5 *1 (-1219)))) (-4136 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-877)) (-5 *3 (-576)) (-5 *1 (-1219)))) (-2011 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1219)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1219)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219)))) (-4096 (*1 *1) (-5 *1 (-1219))) (-4195 (*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219)))) (-4155 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219)))) (-1355 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219)))) (-4333 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) +(-13 (-1122) (-628 (-877)) (-10 -8 (-15 -4136 ($ (-877) (-576))) (-15 -4136 ($ (-877) (-576) (-877))) (-15 -2011 ((-1294) $ (-576))) (-15 -2011 ((-1294) $)) (-15 -3871 ((-657 (-1180)) $)) (-15 -2942 ((-657 (-1180)) $)) (-15 -4096 ($)) (-15 -4195 ((-657 (-1180)) $)) (-15 -4155 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -1355 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -4333 ((-657 (-1180)) $ (-657 (-1180)))))) +((-3423 (((-112) $ $) NIL)) (-2399 (((-1180) $ (-1180)) 17) (((-1180) $) 16)) (-3859 (((-1180) $ (-1180)) 15)) (-3312 (($ $ (-1180)) NIL)) (-3301 (((-3 (-1180) "failed") $) 11)) (-2332 (((-1180) $) 8)) (-2412 (((-3 (-1180) "failed") $) 12)) (-3862 (((-1180) $) 9)) (-3179 (($ (-400)) NIL) (($ (-400) (-1180)) NIL)) (-2634 (((-400) $) NIL)) (-1708 (((-1180) $) NIL)) (-2817 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2152 (((-112) $) 21)) (-3515 (((-877) $) NIL)) (-3950 (($ $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1220) (-13 (-375 (-400) (-1180)) (-10 -8 (-15 -2399 ((-1180) $ (-1180))) (-15 -2399 ((-1180) $)) (-15 -2332 ((-1180) $)) (-15 -3301 ((-3 (-1180) "failed") $)) (-15 -2412 ((-3 (-1180) "failed") $)) (-15 -2152 ((-112) $))))) (T -1220)) +((-2399 (*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-3301 (*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-2412 (*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220))))) +(-13 (-375 (-400) (-1180)) (-10 -8 (-15 -2399 ((-1180) $ (-1180))) (-15 -2399 ((-1180) $)) (-15 -2332 ((-1180) $)) (-15 -3301 ((-3 (-1180) "failed") $)) (-15 -2412 ((-3 (-1180) "failed") $)) (-15 -2152 ((-112) $)))) +((-3922 (((-3 (-576) "failed") |#1|) 19)) (-2893 (((-3 (-576) "failed") |#1|) 14)) (-3738 (((-576) (-1180)) 33))) +(((-1221 |#1|) (-10 -7 (-15 -3922 ((-3 (-576) "failed") |#1|)) (-15 -2893 ((-3 (-576) "failed") |#1|)) (-15 -3738 ((-576) (-1180)))) (-1071)) (T -1221)) +((-3738 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-576)) (-5 *1 (-1221 *4)) (-4 *4 (-1071)))) (-2893 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1221 *3)) (-4 *3 (-1071)))) (-3922 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1221 *3)) (-4 *3 (-1071))))) +(-10 -7 (-15 -3922 ((-3 (-576) "failed") |#1|)) (-15 -2893 ((-3 (-576) "failed") |#1|)) (-15 -3738 ((-576) (-1180)))) +((-2538 (((-1155 (-227))) 9))) +(((-1222) (-10 -7 (-15 -2538 ((-1155 (-227)))))) (T -1222)) +((-2538 (*1 *2) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-1222))))) +(-10 -7 (-15 -2538 ((-1155 (-227))))) +((-1622 (($) 12)) (-4110 (($ $) 36)) (-2188 (($ $) 34)) (-2055 (($ $) 26)) (-4137 (($ $) 18)) (-1864 (($ $) 16)) (-4123 (($ $) 20)) (-2090 (($ $) 31)) (-4097 (($ $) 35)) (-2070 (($ $) 30))) +(((-1223 |#1|) (-10 -8 (-15 -1622 (|#1|)) (-15 -4110 (|#1| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -1864 (|#1| |#1|)) (-15 -4123 (|#1| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -2055 (|#1| |#1|)) (-15 -2090 (|#1| |#1|)) (-15 -2070 (|#1| |#1|))) (-1224)) (T -1223)) +NIL +(-10 -8 (-15 -1622 (|#1|)) (-15 -4110 (|#1| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -1864 (|#1| |#1|)) (-15 -4123 (|#1| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -2055 (|#1| |#1|)) (-15 -2090 (|#1| |#1|)) (-15 -2070 (|#1| |#1|))) +((-2143 (($ $) 26)) (-2012 (($ $) 11)) (-2120 (($ $) 27)) (-1989 (($ $) 10)) (-2166 (($ $) 28)) (-2033 (($ $) 9)) (-1622 (($) 16)) (-3707 (($ $) 19)) (-4056 (($ $) 18)) (-2177 (($ $) 29)) (-2042 (($ $) 8)) (-2155 (($ $) 30)) (-2023 (($ $) 7)) (-2131 (($ $) 31)) (-2002 (($ $) 6)) (-4110 (($ $) 20)) (-2082 (($ $) 32)) (-2188 (($ $) 21)) (-2055 (($ $) 33)) (-4137 (($ $) 22)) (-2100 (($ $) 34)) (-1864 (($ $) 23)) (-2110 (($ $) 35)) (-4123 (($ $) 24)) (-2090 (($ $) 36)) (-4097 (($ $) 25)) (-2070 (($ $) 37)) (** (($ $ $) 17))) +(((-1224) (-141)) (T -1224)) +((-1622 (*1 *1) (-4 *1 (-1224)))) +(-13 (-1227) (-95) (-505) (-35) (-294) (-10 -8 (-15 -1622 ($)))) +(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-1227) . T)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3037 ((|#1| $) 19)) (-3178 (($ |#1| (-657 $)) 28) (($ (-657 |#1|)) 35) (($ |#1|) 30)) (-4284 (((-112) $ (-784)) 72)) (-1439 ((|#1| $ |#1|) 14 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) 13 (|has| $ (-6 -4467)))) (-2515 (($) NIL T CONST)) (-1448 (((-657 |#1|) $) 77 (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) 64)) (-4257 (((-112) $ $) 50 (|has| |#1| (-1122)))) (-1786 (((-112) $ (-784)) 62)) (-3855 (((-657 |#1|) $) 78 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1799 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 27)) (-4326 (((-112) $ (-784)) 60)) (-2397 (((-657 |#1|) $) 55)) (-1743 (((-112) $) 53)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2372 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 107)) (-1368 (((-112) $) 9)) (-3340 (($) 10)) (-2780 ((|#1| $ "value") NIL)) (-3064 (((-576) $ $) 48)) (-3352 (((-657 $) $) 89)) (-3848 (((-112) $ $) 110)) (-2490 (((-657 $) $) 105)) (-3073 (($ $) 106)) (-4392 (((-112) $) 84)) (-1469 (((-784) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4466))) (((-784) |#1| $) 17 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1899 (($ $) 88)) (-3515 (((-877) $) 91 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) 12)) (-3631 (((-112) $ $) 39 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 37 (|has| |#1| (-102)))) (-3437 (((-784) $) 58 (|has| $ (-6 -4466))))) +(((-1225 |#1|) (-13 (-1032 |#1|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -3178 ($ |#1| (-657 $))) (-15 -3178 ($ (-657 |#1|))) (-15 -3178 ($ |#1|)) (-15 -4392 ((-112) $)) (-15 -3073 ($ $)) (-15 -2490 ((-657 $) $)) (-15 -3848 ((-112) $ $)) (-15 -3352 ((-657 $) $)))) (-1122)) (T -1225)) +((-4392 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-1122)))) (-3178 (*1 *1 *2 *3) (-12 (-5 *3 (-657 (-1225 *2))) (-5 *1 (-1225 *2)) (-4 *2 (-1122)))) (-3178 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-1225 *3)))) (-3178 (*1 *1 *2) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-1122)))) (-3073 (*1 *1 *1) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-1122)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-657 (-1225 *3))) (-5 *1 (-1225 *3)) (-4 *3 (-1122)))) (-3848 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-1122)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-657 (-1225 *3))) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) +(-13 (-1032 |#1|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -3178 ($ |#1| (-657 $))) (-15 -3178 ($ (-657 |#1|))) (-15 -3178 ($ |#1|)) (-15 -4392 ((-112) $)) (-15 -3073 ($ $)) (-15 -2490 ((-657 $) $)) (-15 -3848 ((-112) $ $)) (-15 -3352 ((-657 $) $)))) +((-2012 (($ $) 15)) (-2033 (($ $) 12)) (-2042 (($ $) 10)) (-2023 (($ $) 17))) +(((-1226 |#1|) (-10 -8 (-15 -2023 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -2012 (|#1| |#1|))) (-1227)) (T -1226)) +NIL +(-10 -8 (-15 -2023 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -2012 (|#1| |#1|))) +((-2012 (($ $) 11)) (-1989 (($ $) 10)) (-2033 (($ $) 9)) (-2042 (($ $) 8)) (-2023 (($ $) 7)) (-2002 (($ $) 6))) +(((-1227) (-141)) (T -1227)) +((-2012 (*1 *1 *1) (-4 *1 (-1227))) (-1989 (*1 *1 *1) (-4 *1 (-1227))) (-2033 (*1 *1 *1) (-4 *1 (-1227))) (-2042 (*1 *1 *1) (-4 *1 (-1227))) (-2023 (*1 *1 *1) (-4 *1 (-1227))) (-2002 (*1 *1 *1) (-4 *1 (-1227)))) +(-13 (-10 -8 (-15 -2002 ($ $)) (-15 -2023 ($ $)) (-15 -2042 ($ $)) (-15 -2033 ($ $)) (-15 -1989 ($ $)) (-15 -2012 ($ $)))) +((-3892 ((|#2| |#2|) 98)) (-2028 (((-112) |#2|) 29)) (-1880 ((|#2| |#2|) 33)) (-1889 ((|#2| |#2|) 35)) (-3241 ((|#2| |#2| (-1198)) 92) ((|#2| |#2|) 93)) (-2168 (((-171 |#2|) |#2|) 31)) (-2216 ((|#2| |#2| (-1198)) 94) ((|#2| |#2|) 95))) +(((-1228 |#1| |#2|) (-10 -7 (-15 -3241 (|#2| |#2|)) (-15 -3241 (|#2| |#2| (-1198))) (-15 -2216 (|#2| |#2|)) (-15 -2216 (|#2| |#2| (-1198))) (-15 -3892 (|#2| |#2|)) (-15 -1880 (|#2| |#2|)) (-15 -1889 (|#2| |#2|)) (-15 -2028 ((-112) |#2|)) (-15 -2168 ((-171 |#2|) |#2|))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -1228)) +((-2168 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-171 *3)) (-5 *1 (-1228 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) (-2028 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-112)) (-5 *1 (-1228 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) (-1889 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) (-1880 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) (-2216 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) (-3241 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) (-3241 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3)))))) +(-10 -7 (-15 -3241 (|#2| |#2|)) (-15 -3241 (|#2| |#2| (-1198))) (-15 -2216 (|#2| |#2|)) (-15 -2216 (|#2| |#2| (-1198))) (-15 -3892 (|#2| |#2|)) (-15 -1880 (|#2| |#2|)) (-15 -1889 (|#2| |#2|)) (-15 -2028 ((-112) |#2|)) (-15 -2168 ((-171 |#2|) |#2|))) +((-4345 ((|#4| |#4| |#1|) 31)) (-4353 ((|#4| |#4| |#1|) 32))) +(((-1229 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4345 (|#4| |#4| |#1|)) (-15 -4353 (|#4| |#4| |#1|))) (-568) (-384 |#1|) (-384 |#1|) (-700 |#1| |#2| |#3|)) (T -1229)) +((-4353 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1229 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-4345 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1229 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) +(-10 -7 (-15 -4345 (|#4| |#4| |#1|)) (-15 -4353 (|#4| |#4| |#1|))) +((-3391 ((|#2| |#2|) 148)) (-4213 ((|#2| |#2|) 145)) (-4433 ((|#2| |#2|) 136)) (-4394 ((|#2| |#2|) 133)) (-3444 ((|#2| |#2|) 141)) (-2075 ((|#2| |#2|) 129)) (-2612 ((|#2| |#2|) 44)) (-1414 ((|#2| |#2|) 105)) (-1362 ((|#2| |#2|) 88)) (-3833 ((|#2| |#2|) 143)) (-2714 ((|#2| |#2|) 131)) (-3142 ((|#2| |#2|) 153)) (-4323 ((|#2| |#2|) 151)) (-4399 ((|#2| |#2|) 152)) (-3730 ((|#2| |#2|) 150)) (-4437 ((|#2| |#2|) 163)) (-1402 ((|#2| |#2|) 30 (-12 (|has| |#2| (-626 (-908 |#1|))) (|has| |#2| (-902 |#1|)) (|has| |#1| (-626 (-908 |#1|))) (|has| |#1| (-902 |#1|))))) (-1423 ((|#2| |#2|) 89)) (-3508 ((|#2| |#2|) 154)) (-1971 ((|#2| |#2|) 155)) (-4069 ((|#2| |#2|) 142)) (-4319 ((|#2| |#2|) 130)) (-3268 ((|#2| |#2|) 149)) (-3670 ((|#2| |#2|) 147)) (-4329 ((|#2| |#2|) 137)) (-4185 ((|#2| |#2|) 135)) (-2621 ((|#2| |#2|) 139)) (-1671 ((|#2| |#2|) 127))) +(((-1230 |#1| |#2|) (-10 -7 (-15 -1971 (|#2| |#2|)) (-15 -1362 (|#2| |#2|)) (-15 -4437 (|#2| |#2|)) (-15 -1414 (|#2| |#2|)) (-15 -2612 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -3508 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -2621 (|#2| |#2|)) (-15 -4329 (|#2| |#2|)) (-15 -3268 (|#2| |#2|)) (-15 -4319 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -2714 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -2075 (|#2| |#2|)) (-15 -3444 (|#2| |#2|)) (-15 -4433 (|#2| |#2|)) (-15 -3391 (|#2| |#2|)) (-15 -4394 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -4185 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3730 (|#2| |#2|)) (-15 -4323 (|#2| |#2|)) (-15 -4399 (|#2| |#2|)) (-15 -3142 (|#2| |#2|)) (IF (|has| |#1| (-902 |#1|)) (IF (|has| |#1| (-626 (-908 |#1|))) (IF (|has| |#2| (-626 (-908 |#1|))) (IF (|has| |#2| (-902 |#1|)) (-15 -1402 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-442 |#1|) (-1224))) (T -1230)) +((-1402 (*1 *2 *2) (-12 (-4 *3 (-626 (-908 *3))) (-4 *3 (-902 *3)) (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-626 (-908 *3))) (-4 *2 (-902 *3)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3142 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4399 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4323 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3730 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4394 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3391 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4433 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3444 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2075 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2714 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4319 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3268 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4329 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2621 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3508 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-1423 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2612 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-1414 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4437 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-1362 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-1971 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224)))))) +(-10 -7 (-15 -1971 (|#2| |#2|)) (-15 -1362 (|#2| |#2|)) (-15 -4437 (|#2| |#2|)) (-15 -1414 (|#2| |#2|)) (-15 -2612 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -3508 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -2621 (|#2| |#2|)) (-15 -4329 (|#2| |#2|)) (-15 -3268 (|#2| |#2|)) (-15 -4319 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -2714 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -2075 (|#2| |#2|)) (-15 -3444 (|#2| |#2|)) (-15 -4433 (|#2| |#2|)) (-15 -3391 (|#2| |#2|)) (-15 -4394 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -4185 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3730 (|#2| |#2|)) (-15 -4323 (|#2| |#2|)) (-15 -4399 (|#2| |#2|)) (-15 -3142 (|#2| |#2|)) (IF (|has| |#1| (-902 |#1|)) (IF (|has| |#1| (-626 (-908 |#1|))) (IF (|has| |#2| (-626 (-908 |#1|))) (IF (|has| |#2| (-902 |#1|)) (-15 -1402 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2605 (((-112) |#5| $) 68) (((-112) $) 110)) (-3300 ((|#5| |#5| $) 83)) (-2007 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-1835 (((-657 |#5|) (-657 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1593 (((-3 $ "failed") (-657 |#5|)) 135)) (-3542 (((-3 $ "failed") $) 120)) (-1815 ((|#5| |#5| $) 102)) (-3427 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-1979 ((|#5| |#5| $) 106)) (-3662 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1492 (((-2 (|:| -1988 (-657 |#5|)) (|:| -3179 (-657 |#5|))) $) 63)) (-3537 (((-112) |#5| $) 66) (((-112) $) 111)) (-1428 ((|#4| $) 116)) (-3921 (((-3 |#5| "failed") $) 118)) (-3218 (((-657 |#5|) $) 55)) (-3893 (((-112) |#5| $) 75) (((-112) $) 115)) (-3510 ((|#5| |#5| $) 89)) (-2304 (((-112) $ $) 29)) (-4299 (((-112) |#5| $) 71) (((-112) $) 113)) (-3511 ((|#5| |#5| $) 86)) (-3528 (((-3 |#5| "failed") $) 117)) (-1456 (($ $ |#5|) 136)) (-4265 (((-784) $) 60)) (-3529 (($ (-657 |#5|)) 133)) (-2764 (($ $ |#4|) 131)) (-2555 (($ $ |#4|) 129)) (-2038 (($ $) 128)) (-3515 (((-877) $) NIL) (((-657 |#5|) $) 121)) (-4384 (((-784) $) 140)) (-2726 (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#5|))) "failed") (-657 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#5|))) "failed") (-657 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3741 (((-112) $ (-1 (-112) |#5| (-657 |#5|))) 108)) (-2330 (((-657 |#4|) $) 123)) (-2137 (((-112) |#4| $) 126)) (-2881 (((-112) $ $) 20))) +(((-1231 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4384 ((-784) |#1|)) (-15 -1456 (|#1| |#1| |#5|)) (-15 -2007 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2137 ((-112) |#4| |#1|)) (-15 -2330 ((-657 |#4|) |#1|)) (-15 -3542 ((-3 |#1| "failed") |#1|)) (-15 -3921 ((-3 |#5| "failed") |#1|)) (-15 -3528 ((-3 |#5| "failed") |#1|)) (-15 -1979 (|#5| |#5| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -1815 (|#5| |#5| |#1|)) (-15 -3510 (|#5| |#5| |#1|)) (-15 -3511 (|#5| |#5| |#1|)) (-15 -3300 (|#5| |#5| |#1|)) (-15 -1835 ((-657 |#5|) (-657 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3662 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3893 ((-112) |#1|)) (-15 -4299 ((-112) |#1|)) (-15 -2605 ((-112) |#1|)) (-15 -3741 ((-112) |#1| (-1 (-112) |#5| (-657 |#5|)))) (-15 -3893 ((-112) |#5| |#1|)) (-15 -4299 ((-112) |#5| |#1|)) (-15 -2605 ((-112) |#5| |#1|)) (-15 -3427 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3537 ((-112) |#1|)) (-15 -3537 ((-112) |#5| |#1|)) (-15 -1492 ((-2 (|:| -1988 (-657 |#5|)) (|:| -3179 (-657 |#5|))) |#1|)) (-15 -4265 ((-784) |#1|)) (-15 -3218 ((-657 |#5|) |#1|)) (-15 -2726 ((-3 (-2 (|:| |bas| |#1|) (|:| -1425 (-657 |#5|))) "failed") (-657 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2726 ((-3 (-2 (|:| |bas| |#1|) (|:| -1425 (-657 |#5|))) "failed") (-657 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2304 ((-112) |#1| |#1|)) (-15 -2764 (|#1| |#1| |#4|)) (-15 -2555 (|#1| |#1| |#4|)) (-15 -1428 (|#4| |#1|)) (-15 -1593 ((-3 |#1| "failed") (-657 |#5|))) (-15 -3515 ((-657 |#5|) |#1|)) (-15 -3529 (|#1| (-657 |#5|))) (-15 -3662 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3662 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2007 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3662 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3515 ((-877) |#1|)) (-15 -2881 ((-112) |#1| |#1|))) (-1232 |#2| |#3| |#4| |#5|) (-568) (-806) (-862) (-1087 |#2| |#3| |#4|)) (T -1231)) +NIL +(-10 -8 (-15 -4384 ((-784) |#1|)) (-15 -1456 (|#1| |#1| |#5|)) (-15 -2007 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2137 ((-112) |#4| |#1|)) (-15 -2330 ((-657 |#4|) |#1|)) (-15 -3542 ((-3 |#1| "failed") |#1|)) (-15 -3921 ((-3 |#5| "failed") |#1|)) (-15 -3528 ((-3 |#5| "failed") |#1|)) (-15 -1979 (|#5| |#5| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -1815 (|#5| |#5| |#1|)) (-15 -3510 (|#5| |#5| |#1|)) (-15 -3511 (|#5| |#5| |#1|)) (-15 -3300 (|#5| |#5| |#1|)) (-15 -1835 ((-657 |#5|) (-657 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3662 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3893 ((-112) |#1|)) (-15 -4299 ((-112) |#1|)) (-15 -2605 ((-112) |#1|)) (-15 -3741 ((-112) |#1| (-1 (-112) |#5| (-657 |#5|)))) (-15 -3893 ((-112) |#5| |#1|)) (-15 -4299 ((-112) |#5| |#1|)) (-15 -2605 ((-112) |#5| |#1|)) (-15 -3427 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3537 ((-112) |#1|)) (-15 -3537 ((-112) |#5| |#1|)) (-15 -1492 ((-2 (|:| -1988 (-657 |#5|)) (|:| -3179 (-657 |#5|))) |#1|)) (-15 -4265 ((-784) |#1|)) (-15 -3218 ((-657 |#5|) |#1|)) (-15 -2726 ((-3 (-2 (|:| |bas| |#1|) (|:| -1425 (-657 |#5|))) "failed") (-657 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2726 ((-3 (-2 (|:| |bas| |#1|) (|:| -1425 (-657 |#5|))) "failed") (-657 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2304 ((-112) |#1| |#1|)) (-15 -2764 (|#1| |#1| |#4|)) (-15 -2555 (|#1| |#1| |#4|)) (-15 -1428 (|#4| |#1|)) (-15 -1593 ((-3 |#1| "failed") (-657 |#5|))) (-15 -3515 ((-657 |#5|) |#1|)) (-15 -3529 (|#1| (-657 |#5|))) (-15 -3662 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3662 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2007 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3662 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3515 ((-877) |#1|)) (-15 -2881 ((-112) |#1| |#1|))) +((-3423 (((-112) $ $) 7)) (-2112 (((-657 (-2 (|:| -1988 $) (|:| -3179 (-657 |#4|)))) (-657 |#4|)) 86)) (-1578 (((-657 $) (-657 |#4|)) 87)) (-1998 (((-657 |#3|) $) 34)) (-2250 (((-112) $) 27)) (-4334 (((-112) $) 18 (|has| |#1| (-568)))) (-2605 (((-112) |#4| $) 102) (((-112) $) 98)) (-3300 ((|#4| |#4| $) 93)) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |#3|) 28)) (-4284 (((-112) $ (-784)) 45)) (-2007 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 80)) (-2515 (($) 46 T CONST)) (-2697 (((-112) $) 23 (|has| |#1| (-568)))) (-3025 (((-112) $ $) 25 (|has| |#1| (-568)))) (-2936 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1978 (((-112) $) 26 (|has| |#1| (-568)))) (-1835 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1494 (((-657 |#4|) (-657 |#4|) $) 19 (|has| |#1| (-568)))) (-4203 (((-657 |#4|) (-657 |#4|) $) 20 (|has| |#1| (-568)))) (-1593 (((-3 $ "failed") (-657 |#4|)) 37)) (-2830 (($ (-657 |#4|)) 36)) (-3542 (((-3 $ "failed") $) 83)) (-1815 ((|#4| |#4| $) 90)) (-1620 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4466)))) (-3951 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3427 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1979 ((|#4| |#4| $) 88)) (-3662 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1492 (((-2 (|:| -1988 (-657 |#4|)) (|:| -3179 (-657 |#4|))) $) 106)) (-1448 (((-657 |#4|) $) 53 (|has| $ (-6 -4466)))) (-3537 (((-112) |#4| $) 105) (((-112) $) 104)) (-1428 ((|#3| $) 35)) (-1786 (((-112) $ (-784)) 44)) (-3855 (((-657 |#4|) $) 54 (|has| $ (-6 -4466)))) (-3326 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#4| |#4|) $) 48)) (-3944 (((-657 |#3|) $) 33)) (-2611 (((-112) |#3| $) 32)) (-4326 (((-112) $ (-784)) 43)) (-1708 (((-1180) $) 10)) (-3921 (((-3 |#4| "failed") $) 84)) (-3218 (((-657 |#4|) $) 108)) (-3893 (((-112) |#4| $) 100) (((-112) $) 96)) (-3510 ((|#4| |#4| $) 91)) (-2304 (((-112) $ $) 111)) (-2678 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-4299 (((-112) |#4| $) 101) (((-112) $) 97)) (-3511 ((|#4| |#4| $) 92)) (-1460 (((-1142) $) 11)) (-3528 (((-3 |#4| "failed") $) 85)) (-4135 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3923 (((-3 $ "failed") $ |#4|) 79)) (-1456 (($ $ |#4|) 78)) (-2372 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#4|) (-657 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-3807 (((-112) $ $) 39)) (-1368 (((-112) $) 42)) (-3340 (($) 41)) (-4265 (((-784) $) 107)) (-1469 (((-784) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4466)))) (-1899 (($ $) 40)) (-4136 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3529 (($ (-657 |#4|)) 61)) (-2764 (($ $ |#3|) 29)) (-2555 (($ $ |#3|) 31)) (-2038 (($ $) 89)) (-2267 (($ $ |#3|) 30)) (-3515 (((-877) $) 12) (((-657 |#4|) $) 38)) (-4384 (((-784) $) 77 (|has| |#3| (-379)))) (-4166 (((-112) $ $) 6)) (-2726 (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3741 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) 99)) (-3258 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4466)))) (-2330 (((-657 |#3|) $) 82)) (-2137 (((-112) |#3| $) 81)) (-2881 (((-112) $ $) 8)) (-3437 (((-784) $) 47 (|has| $ (-6 -4466))))) +(((-1232 |#1| |#2| |#3| |#4|) (-141) (-568) (-806) (-862) (-1087 |t#1| |t#2| |t#3|)) (T -1232)) +((-2304 (*1 *2 *1 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-2726 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1425 (-657 *8)))) (-5 *3 (-657 *8)) (-4 *1 (-1232 *5 *6 *7 *8)))) (-2726 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1087 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-806)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1425 (-657 *9)))) (-5 *3 (-657 *9)) (-4 *1 (-1232 *6 *7 *8 *9)))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *6)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-784)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-2 (|:| -1988 (-657 *6)) (|:| -3179 (-657 *6)))))) (-3537 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-3427 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1232 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-112)))) (-2605 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-4299 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-3893 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-3741 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-657 *7))) (-4 *1 (-1232 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-3662 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1232 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *2 (-1087 *5 *6 *7)))) (-1835 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-657 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1232 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)))) (-3300 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-3511 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-3510 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-1815 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-2038 (*1 *1 *1) (-12 (-4 *1 (-1232 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-1087 *2 *3 *4)))) (-1979 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1232 *4 *5 *6 *7)))) (-2112 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-657 (-2 (|:| -1988 *1) (|:| -3179 (-657 *7))))) (-5 *3 (-657 *7)) (-4 *1 (-1232 *4 *5 *6 *7)))) (-3528 (*1 *2 *1) (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-3921 (*1 *2 *1) (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-3542 (*1 *1 *1) (|partial| -12 (-4 *1 (-1232 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-1087 *2 *3 *4)))) (-2330 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *5)))) (-2137 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *3 (-862)) (-4 *6 (-1087 *4 *5 *3)) (-5 *2 (-112)))) (-2007 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1232 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *3 (-862)) (-4 *2 (-1087 *4 *5 *3)))) (-3923 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-1456 (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *5 (-379)) (-5 *2 (-784))))) +(-13 (-998 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -2304 ((-112) $ $)) (-15 -2726 ((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |t#4|))) "failed") (-657 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2726 ((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |t#4|))) "failed") (-657 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3218 ((-657 |t#4|) $)) (-15 -4265 ((-784) $)) (-15 -1492 ((-2 (|:| -1988 (-657 |t#4|)) (|:| -3179 (-657 |t#4|))) $)) (-15 -3537 ((-112) |t#4| $)) (-15 -3537 ((-112) $)) (-15 -3427 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2605 ((-112) |t#4| $)) (-15 -4299 ((-112) |t#4| $)) (-15 -3893 ((-112) |t#4| $)) (-15 -3741 ((-112) $ (-1 (-112) |t#4| (-657 |t#4|)))) (-15 -2605 ((-112) $)) (-15 -4299 ((-112) $)) (-15 -3893 ((-112) $)) (-15 -3662 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1835 ((-657 |t#4|) (-657 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3300 (|t#4| |t#4| $)) (-15 -3511 (|t#4| |t#4| $)) (-15 -3510 (|t#4| |t#4| $)) (-15 -1815 (|t#4| |t#4| $)) (-15 -2038 ($ $)) (-15 -1979 (|t#4| |t#4| $)) (-15 -1578 ((-657 $) (-657 |t#4|))) (-15 -2112 ((-657 (-2 (|:| -1988 $) (|:| -3179 (-657 |t#4|)))) (-657 |t#4|))) (-15 -3528 ((-3 |t#4| "failed") $)) (-15 -3921 ((-3 |t#4| "failed") $)) (-15 -3542 ((-3 $ "failed") $)) (-15 -2330 ((-657 |t#3|) $)) (-15 -2137 ((-112) |t#3| $)) (-15 -2007 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3923 ((-3 $ "failed") $ |t#4|)) (-15 -1456 ($ $ |t#4|)) (IF (|has| |t#3| (-379)) (-15 -4384 ((-784) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-625 (-657 |#4|)) . T) ((-625 (-877)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-998 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1998 (((-657 (-1198)) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2143 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-1866 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2166 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) NIL T CONST)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-2991 (((-972 |#1|) $ (-784)) 17) (((-972 |#1|) $ (-784) (-784)) NIL)) (-3155 (((-112) $) NIL)) (-1622 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-784) $ (-1198)) NIL) (((-784) $ (-1198) (-784)) NIL)) (-3994 (((-112) $) NIL)) (-3856 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2343 (((-112) $) NIL)) (-1974 (($ $ (-657 (-1198)) (-657 (-543 (-1198)))) NIL) (($ $ (-1198) (-543 (-1198))) NIL) (($ |#1| (-543 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3707 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-2320 (($ $ (-1198)) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1460 (((-1142) $) NIL)) (-3931 (($ (-1 $) (-1198) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1456 (($ $ (-784)) NIL)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4056 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3205 (($ $ (-1198) $) NIL) (($ $ (-657 (-1198)) (-657 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL)) (-2209 (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL)) (-4265 (((-543 (-1198)) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-1198)) NIL) (($ (-972 |#1|)) NIL)) (-2498 ((|#1| $ (-543 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (((-972 |#1|) $ (-784)) NIL)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2066 (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1233 |#1|) (-13 (-753 |#1| (-1198)) (-10 -8 (-15 -2498 ((-972 |#1|) $ (-784))) (-15 -3515 ($ (-1198))) (-15 -3515 ($ (-972 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2320 ($ $ (-1198) |#1|)) (-15 -3931 ($ (-1 $) (-1198) |#1|))) |%noBranch|))) (-1071)) (T -1233)) +((-2498 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *2 (-972 *4)) (-5 *1 (-1233 *4)) (-4 *4 (-1071)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1233 *3)) (-4 *3 (-1071)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-1071)) (-5 *1 (-1233 *3)))) (-2320 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *1 (-1233 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)))) (-3931 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1233 *4))) (-5 *3 (-1198)) (-5 *1 (-1233 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1071))))) +(-13 (-753 |#1| (-1198)) (-10 -8 (-15 -2498 ((-972 |#1|) $ (-784))) (-15 -3515 ($ (-1198))) (-15 -3515 ($ (-972 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2320 ($ $ (-1198) |#1|)) (-15 -3931 ($ (-1 $) (-1198) |#1|))) |%noBranch|))) +((-1508 (($ |#1| (-657 (-657 (-963 (-227)))) (-112)) 19)) (-3374 (((-112) $ (-112)) 18)) (-2546 (((-112) $) 17)) (-4303 (((-657 (-657 (-963 (-227)))) $) 13)) (-3539 ((|#1| $) 8)) (-2435 (((-112) $) 15))) +(((-1234 |#1|) (-10 -8 (-15 -3539 (|#1| $)) (-15 -4303 ((-657 (-657 (-963 (-227)))) $)) (-15 -2435 ((-112) $)) (-15 -2546 ((-112) $)) (-15 -3374 ((-112) $ (-112))) (-15 -1508 ($ |#1| (-657 (-657 (-963 (-227)))) (-112)))) (-996)) (T -1234)) +((-1508 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-112)) (-5 *1 (-1234 *2)) (-4 *2 (-996)))) (-3374 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-996)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-996)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-996)))) (-4303 (*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-1234 *3)) (-4 *3 (-996)))) (-3539 (*1 *2 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-996))))) +(-10 -8 (-15 -3539 (|#1| $)) (-15 -4303 ((-657 (-657 (-963 (-227)))) $)) (-15 -2435 ((-112) $)) (-15 -2546 ((-112) $)) (-15 -3374 ((-112) $ (-112))) (-15 -1508 ($ |#1| (-657 (-657 (-963 (-227)))) (-112)))) +((-1375 (((-963 (-227)) (-963 (-227))) 31)) (-3664 (((-963 (-227)) (-227) (-227) (-227) (-227)) 10)) (-2592 (((-657 (-963 (-227))) (-963 (-227)) (-963 (-227)) (-963 (-227)) (-227) (-657 (-657 (-227)))) 56)) (-4224 (((-227) (-963 (-227)) (-963 (-227))) 27)) (-3756 (((-963 (-227)) (-963 (-227)) (-963 (-227))) 28)) (-3270 (((-657 (-657 (-227))) (-576)) 44)) (-2982 (((-963 (-227)) (-963 (-227)) (-963 (-227))) 26)) (-2971 (((-963 (-227)) (-963 (-227)) (-963 (-227))) 24)) (* (((-963 (-227)) (-227) (-963 (-227))) 22))) +(((-1235) (-10 -7 (-15 -3664 ((-963 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-963 (-227)) (-227) (-963 (-227)))) (-15 -2971 ((-963 (-227)) (-963 (-227)) (-963 (-227)))) (-15 -2982 ((-963 (-227)) (-963 (-227)) (-963 (-227)))) (-15 -4224 ((-227) (-963 (-227)) (-963 (-227)))) (-15 -3756 ((-963 (-227)) (-963 (-227)) (-963 (-227)))) (-15 -1375 ((-963 (-227)) (-963 (-227)))) (-15 -3270 ((-657 (-657 (-227))) (-576))) (-15 -2592 ((-657 (-963 (-227))) (-963 (-227)) (-963 (-227)) (-963 (-227)) (-227) (-657 (-657 (-227))))))) (T -1235)) +((-2592 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-657 (-657 (-227)))) (-5 *4 (-227)) (-5 *2 (-657 (-963 *4))) (-5 *1 (-1235)) (-5 *3 (-963 *4)))) (-3270 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-657 (-657 (-227)))) (-5 *1 (-1235)))) (-1375 (*1 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) (-3756 (*1 *2 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) (-4224 (*1 *2 *3 *3) (-12 (-5 *3 (-963 (-227))) (-5 *2 (-227)) (-5 *1 (-1235)))) (-2982 (*1 *2 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) (-2971 (*1 *2 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-963 (-227))) (-5 *3 (-227)) (-5 *1 (-1235)))) (-3664 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)) (-5 *3 (-227))))) +(-10 -7 (-15 -3664 ((-963 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-963 (-227)) (-227) (-963 (-227)))) (-15 -2971 ((-963 (-227)) (-963 (-227)) (-963 (-227)))) (-15 -2982 ((-963 (-227)) (-963 (-227)) (-963 (-227)))) (-15 -4224 ((-227) (-963 (-227)) (-963 (-227)))) (-15 -3756 ((-963 (-227)) (-963 (-227)) (-963 (-227)))) (-15 -1375 ((-963 (-227)) (-963 (-227)))) (-15 -3270 ((-657 (-657 (-227))) (-576))) (-15 -2592 ((-657 (-963 (-227))) (-963 (-227)) (-963 (-227)) (-963 (-227)) (-227) (-657 (-657 (-227)))))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2007 ((|#1| $ (-784)) 18)) (-3041 (((-784) $) 13)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3515 (((-978 |#1|) $) 12) (($ (-978 |#1|)) 11) (((-877) $) 29 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2881 (((-112) $ $) 22 (|has| |#1| (-1122))))) +(((-1236 |#1|) (-13 (-502 (-978 |#1|)) (-10 -8 (-15 -2007 (|#1| $ (-784))) (-15 -3041 ((-784) $)) (IF (|has| |#1| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) (-1239)) (T -1236)) +((-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-1236 *2)) (-4 *2 (-1239)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1236 *3)) (-4 *3 (-1239))))) +(-13 (-502 (-978 |#1|)) (-10 -8 (-15 -2007 (|#1| $ (-784))) (-15 -3041 ((-784) $)) (IF (|has| |#1| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) +((-1871 (((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)) (-576)) 94)) (-2269 (((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|))) 86)) (-1766 (((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|))) 70))) +(((-1237 |#1|) (-10 -7 (-15 -2269 ((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)))) (-15 -1766 ((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)))) (-15 -1871 ((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)) (-576)))) (-360)) (T -1237)) +((-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1194 (-1194 *5)))) (-5 *1 (-1237 *5)) (-5 *3 (-1194 (-1194 *5))))) (-1766 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1194 (-1194 *4)))) (-5 *1 (-1237 *4)) (-5 *3 (-1194 (-1194 *4))))) (-2269 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1194 (-1194 *4)))) (-5 *1 (-1237 *4)) (-5 *3 (-1194 (-1194 *4)))))) +(-10 -7 (-15 -2269 ((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)))) (-15 -1766 ((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)))) (-15 -1871 ((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)) (-576)))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 9) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1238) (-1105)) (T -1238)) +NIL +(-1105) +NIL +(((-1239) (-141)) (T -1239)) +NIL +(-13 (-10 -7 (-6 -4090))) +((-3525 (((-112)) 18)) (-2391 (((-1294) (-657 |#1|) (-657 |#1|)) 22) (((-1294) (-657 |#1|)) 23)) (-1786 (((-112) |#1| |#1|) 37 (|has| |#1| (-862)))) (-4326 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-1684 ((|#1| (-657 |#1|)) 38 (|has| |#1| (-862))) ((|#1| (-657 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-1655 (((-2 (|:| -3989 (-657 |#1|)) (|:| -2421 (-657 |#1|)))) 20))) +(((-1240 |#1|) (-10 -7 (-15 -2391 ((-1294) (-657 |#1|))) (-15 -2391 ((-1294) (-657 |#1|) (-657 |#1|))) (-15 -1655 ((-2 (|:| -3989 (-657 |#1|)) (|:| -2421 (-657 |#1|))))) (-15 -4326 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4326 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1684 (|#1| (-657 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3525 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -1684 (|#1| (-657 |#1|))) (-15 -1786 ((-112) |#1| |#1|))) |%noBranch|)) (-1122)) (T -1240)) +((-1786 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-862)) (-4 *3 (-1122)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-862)) (-5 *1 (-1240 *2)))) (-3525 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-1122)))) (-1684 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1240 *2)) (-4 *2 (-1122)))) (-4326 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1122)) (-5 *2 (-112)) (-5 *1 (-1240 *3)))) (-4326 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-1122)))) (-1655 (*1 *2) (-12 (-5 *2 (-2 (|:| -3989 (-657 *3)) (|:| -2421 (-657 *3)))) (-5 *1 (-1240 *3)) (-4 *3 (-1122)))) (-2391 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-1122)) (-5 *2 (-1294)) (-5 *1 (-1240 *4)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-1122)) (-5 *2 (-1294)) (-5 *1 (-1240 *4))))) +(-10 -7 (-15 -2391 ((-1294) (-657 |#1|))) (-15 -2391 ((-1294) (-657 |#1|) (-657 |#1|))) (-15 -1655 ((-2 (|:| -3989 (-657 |#1|)) (|:| -2421 (-657 |#1|))))) (-15 -4326 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4326 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1684 (|#1| (-657 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3525 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -1684 (|#1| (-657 |#1|))) (-15 -1786 ((-112) |#1| |#1|))) |%noBranch|)) +((-3302 (((-1294) (-657 (-1198)) (-657 (-1198))) 14) (((-1294) (-657 (-1198))) 12)) (-4310 (((-1294)) 16)) (-4412 (((-2 (|:| -2421 (-657 (-1198))) (|:| -3989 (-657 (-1198))))) 20))) +(((-1241) (-10 -7 (-15 -3302 ((-1294) (-657 (-1198)))) (-15 -3302 ((-1294) (-657 (-1198)) (-657 (-1198)))) (-15 -4412 ((-2 (|:| -2421 (-657 (-1198))) (|:| -3989 (-657 (-1198)))))) (-15 -4310 ((-1294))))) (T -1241)) +((-4310 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1241)))) (-4412 (*1 *2) (-12 (-5 *2 (-2 (|:| -2421 (-657 (-1198))) (|:| -3989 (-657 (-1198))))) (-5 *1 (-1241)))) (-3302 (*1 *2 *3 *3) (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1241)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1241))))) +(-10 -7 (-15 -3302 ((-1294) (-657 (-1198)))) (-15 -3302 ((-1294) (-657 (-1198)) (-657 (-1198)))) (-15 -4412 ((-2 (|:| -2421 (-657 (-1198))) (|:| -3989 (-657 (-1198)))))) (-15 -4310 ((-1294)))) +((-3188 (($ $) 17)) (-4009 (((-112) $) 28))) +(((-1242 |#1|) (-10 -8 (-15 -3188 (|#1| |#1|)) (-15 -4009 ((-112) |#1|))) (-1243)) (T -1242)) +NIL +(-10 -8 (-15 -3188 (|#1| |#1|)) (-15 -4009 ((-112) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 57)) (-4215 (((-430 $) $) 58)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-4009 (((-112) $) 59)) (-3994 (((-112) $) 35)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-1856 (((-430 $) $) 56)) (-3409 (((-3 $ "failed") $ $) 48)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-1243) (-141)) (T -1243)) +((-4009 (*1 *2 *1) (-12 (-4 *1 (-1243)) (-5 *2 (-112)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1243)))) (-3188 (*1 *1 *1) (-4 *1 (-1243))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1243))))) +(-13 (-464) (-10 -8 (-15 -4009 ((-112) $)) (-15 -4215 ((-430 $) $)) (-15 -3188 ($ $)) (-15 -1856 ((-430 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784)) NIL)) (-2515 (($) NIL T CONST)) (-1876 (($) NIL)) (-3740 (($ $ $) NIL) (($) NIL T CONST)) (-2249 (($ $ $) NIL) (($) NIL T CONST)) (-2327 (((-941) $) NIL)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-2387 (($ $ $) NIL)) (-2376 (($ $ $) NIL)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL))) +(((-1244) (-13 (-857) (-10 -8 (-15 -2376 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -2515 ($) -1491)))) (T -1244)) +((-2376 (*1 *1 *1 *1) (-5 *1 (-1244))) (-2387 (*1 *1 *1 *1) (-5 *1 (-1244))) (-2515 (*1 *1) (-5 *1 (-1244)))) +(-13 (-857) (-10 -8 (-15 -2376 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -2515 ($) -1491))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783)) NIL)) (-3170 (($) NIL T CONST)) (-4370 (($) NIL)) (-2907 (($ $ $) NIL) (($) NIL T CONST)) (-3777 (($ $ $) NIL) (($) NIL T CONST)) (-3787 (((-940) $) NIL)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-3873 (($ $ $) NIL)) (-3860 (($ $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL))) -(((-1244) (-13 (-856) (-10 -8 (-15 -3860 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3170 ($) -2666)))) (T -1244)) -((-3860 (*1 *1 *1 *1) (-5 *1 (-1244))) (-3873 (*1 *1 *1 *1) (-5 *1 (-1244))) (-3170 (*1 *1) (-5 *1 (-1244)))) -(-13 (-856) (-10 -8 (-15 -3860 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3170 ($) -2666))) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784)) NIL)) (-2515 (($) NIL T CONST)) (-1876 (($) NIL)) (-3740 (($ $ $) NIL) (($) NIL T CONST)) (-2249 (($ $ $) NIL) (($) NIL T CONST)) (-2327 (((-941) $) NIL)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-2387 (($ $ $) NIL)) (-2376 (($ $ $) NIL)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL))) +(((-1245) (-13 (-857) (-10 -8 (-15 -2376 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -2515 ($) -1491)))) (T -1245)) +((-2376 (*1 *1 *1 *1) (-5 *1 (-1245))) (-2387 (*1 *1 *1 *1) (-5 *1 (-1245))) (-2515 (*1 *1) (-5 *1 (-1245)))) +(-13 (-857) (-10 -8 (-15 -2376 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -2515 ($) -1491))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783)) NIL)) (-3170 (($) NIL T CONST)) (-4370 (($) NIL)) (-2907 (($ $ $) NIL) (($) NIL T CONST)) (-3777 (($ $ $) NIL) (($) NIL T CONST)) (-3787 (((-940) $) NIL)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-3873 (($ $ $) NIL)) (-3860 (($ $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL))) -(((-1245) (-13 (-856) (-10 -8 (-15 -3860 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3170 ($) -2666)))) (T -1245)) -((-3860 (*1 *1 *1 *1) (-5 *1 (-1245))) (-3873 (*1 *1 *1 *1) (-5 *1 (-1245))) (-3170 (*1 *1) (-5 *1 (-1245)))) -(-13 (-856) (-10 -8 (-15 -3860 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3170 ($) -2666))) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784)) NIL)) (-2515 (($) NIL T CONST)) (-1876 (($) NIL)) (-3740 (($ $ $) NIL) (($) NIL T CONST)) (-2249 (($ $ $) NIL) (($) NIL T CONST)) (-2327 (((-941) $) NIL)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-2387 (($ $ $) NIL)) (-2376 (($ $ $) NIL)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL))) +(((-1246) (-13 (-857) (-10 -8 (-15 -2376 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -2515 ($) -1491)))) (T -1246)) +((-2376 (*1 *1 *1 *1) (-5 *1 (-1246))) (-2387 (*1 *1 *1 *1) (-5 *1 (-1246))) (-2515 (*1 *1) (-5 *1 (-1246)))) +(-13 (-857) (-10 -8 (-15 -2376 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -2515 ($) -1491))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-1957 (((-112) $ $) NIL)) (-2201 (((-783)) NIL)) (-3170 (($) NIL T CONST)) (-4370 (($) NIL)) (-2907 (($ $ $) NIL) (($) NIL T CONST)) (-3777 (($ $ $) NIL) (($) NIL T CONST)) (-3787 (((-940) $) NIL)) (-2447 (((-1179) $) NIL)) (-2411 (($ (-940)) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) NIL)) (-3873 (($ $ $) NIL)) (-3860 (($ $ $) NIL)) (-2950 (((-112) $ $) NIL)) (-3995 (((-112) $ $) NIL)) (-3975 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL)) (-3963 (((-112) $ $) NIL))) -(((-1246) (-13 (-856) (-10 -8 (-15 -3860 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3170 ($) -2666)))) (T -1246)) -((-3860 (*1 *1 *1 *1) (-5 *1 (-1246))) (-3873 (*1 *1 *1 *1) (-5 *1 (-1246))) (-3170 (*1 *1) (-5 *1 (-1246)))) -(-13 (-856) (-10 -8 (-15 -3860 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3170 ($) -2666))) +((-3423 (((-112) $ $) NIL)) (-2148 (((-784)) NIL)) (-2515 (($) NIL T CONST)) (-1876 (($) NIL)) (-3740 (($ $ $) NIL) (($) NIL T CONST)) (-2249 (($ $ $) NIL) (($) NIL T CONST)) (-2327 (((-941) $) NIL)) (-1708 (((-1180) $) NIL)) (-3146 (($ (-941)) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) NIL)) (-2387 (($ $ $) NIL)) (-2376 (($ $ $) NIL)) (-4166 (((-112) $ $) NIL)) (-2938 (((-112) $ $) NIL)) (-2913 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL)) (-2901 (((-112) $ $) NIL))) +(((-1247) (-13 (-857) (-10 -8 (-15 -2376 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -2515 ($) -1491)))) (T -1247)) +((-2376 (*1 *1 *1 *1) (-5 *1 (-1247))) (-2387 (*1 *1 *1 *1) (-5 *1 (-1247))) (-2515 (*1 *1) (-5 *1 (-1247)))) +(-13 (-857) (-10 -8 (-15 -2376 ($ $ $)) (-15 -2387 ($ $ $)) (-15 -2515 ($) -1491))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-2423 (((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)) 23))) -(((-1247 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2423 ((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)))) (-1070) (-1070) (-1197) (-1197) |#1| |#2|) (T -1247)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5 *7 *9)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1252 *6 *8 *10)) (-5 *1 (-1247 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1197))))) -(-10 -7 (-15 -2423 ((-1252 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1252 |#1| |#3| |#5|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1585 (((-656 (-1103)) $) 86)) (-1654 (((-1197) $) 118)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2390 (($ $) 64 (|has| |#1| (-568)))) (-3302 (((-112) $) 66 (|has| |#1| (-568)))) (-4087 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-4073 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-3586 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 177 (|has| |#1| (-374)))) (-3589 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1462 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4386 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3562 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2861 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-3612 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) 18 T CONST)) (-1895 (($ $ $) 172 (|has| |#1| (-374)))) (-3310 (($ $) 72)) (-1851 (((-3 $ "failed") $) 37)) (-1647 (((-419 (-971 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-1908 (($ $ $) 171 (|has| |#1| (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2171 (((-112) $) 179 (|has| |#1| (-374)))) (-2654 (((-112) $) 85)) (-2722 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-576) $) 115) (((-576) $ (-576)) 114)) (-2486 (((-112) $) 35)) (-4005 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4328 (($ $ (-940)) 116)) (-3260 (($ (-1 |#1| (-576)) $) 187)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-4101 (((-112) $) 74)) (-1564 (($ |#1| (-576)) 73) (($ $ (-1103) (-576)) 88) (($ $ (-656 (-1103)) (-656 (-576))) 87)) (-2423 (($ (-1 |#1| |#1|) $) 75)) (-2608 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) 77)) (-1711 ((|#1| $) 78)) (-3076 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2447 (((-1179) $) 10)) (-1669 (($ $) 180 (|has| |#1| (-374)))) (-4412 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-3795 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3115 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1452 (((-430 $) $) 176 (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 173 (|has| |#1| (-374)))) (-2419 (($ $ (-576)) 110)) (-1946 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2156 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2812 (((-783) $) 169 (|has| |#1| (-374)))) (-4369 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1133)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 170 (|has| |#1| (-374)))) (-4107 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2196 (((-576) $) 76)) (-3623 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) 84)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2707 ((|#1| $ (-576)) 71)) (-4276 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-3188 ((|#1| $) 117)) (-2950 (((-112) $ $) 6)) (-3653 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3632 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1248 |#1|) (-141) (-1070)) (T -1248)) -((-2861 (*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1070)) (-4 *1 (-1248 *3)))) (-3260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1248 *3)) (-4 *3 (-1070)))) (-1647 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) (-5 *2 (-419 (-971 *4))))) (-1647 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) (-5 *2 (-419 (-971 *4))))) (-4412 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) (-4412 (*1 *1 *1 *2) (-3795 (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -1585 ((-656 *2) *3))) (|has| *3 (-15 -4412 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1266 |t#1| (-576)) (-10 -8 (-15 -2861 ($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |t#1|))))) (-15 -3260 ($ (-1 |t#1| (-576)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -1647 ((-419 (-971 |t#1|)) $ (-576))) (-15 -1647 ((-419 (-971 |t#1|)) $ (-576) (-576)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -4412 ($ $)) (IF (|has| |t#1| (-15 -4412 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -1585 ((-656 (-1197)) |t#1|))) (-15 -4412 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-576))) (-15 -4412 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1223))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-576) (-1133)) ((-300) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1266 |#1| #0#) . T)) -((-3114 (((-112) $) 12)) (-2982 (((-3 |#3| "failed") $) 17) (((-3 (-1197) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL)) (-2317 ((|#3| $) 14) (((-1197) $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL))) -(((-1249 |#1| |#2| |#3|) (-10 -8 (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2982 ((-3 (-1197) "failed") |#1|)) (-15 -2317 ((-1197) |#1|)) (-15 -2982 ((-3 |#3| "failed") |#1|)) (-15 -2317 (|#3| |#1|)) (-15 -3114 ((-112) |#1|))) (-1250 |#2| |#3|) (-1070) (-1279 |#2|)) (T -1249)) -NIL -(-10 -8 (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2982 ((-3 (-1197) "failed") |#1|)) (-15 -2317 ((-1197) |#1|)) (-15 -2982 ((-3 |#3| "failed") |#1|)) (-15 -2317 (|#3| |#1|)) (-15 -3114 ((-112) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-2628 ((|#2| $) 251 (-2311 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1585 (((-656 (-1103)) $) 86)) (-1654 (((-1197) $) 118)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2390 (($ $) 64 (|has| |#1| (-568)))) (-3302 (((-112) $) 66 (|has| |#1| (-568)))) (-4087 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-4073 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-1437 ((|#2| $) 287)) (-4002 (((-3 |#2| "failed") $) 283)) (-1630 ((|#2| $) 284)) (-3586 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) 20)) (-2725 (((-430 (-1193 $)) (-1193 $)) 260 (-2311 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-2658 (($ $) 177 (|has| |#1| (-374)))) (-3589 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1462 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 257 (-2311 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-4386 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3562 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1527 (((-576) $) 269 (-2311 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2861 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-3612 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) 18 T CONST)) (-2982 (((-3 |#2| "failed") $) 290) (((-3 (-576) "failed") $) 280 (-2311 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) 278 (-2311 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-1197) "failed") $) 262 (-2311 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-2317 ((|#2| $) 291) (((-576) $) 279 (-2311 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) 277 (-2311 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-1197) $) 261 (-2311 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-3516 (($ $) 286) (($ (-576) $) 285)) (-1895 (($ $ $) 172 (|has| |#1| (-374)))) (-3310 (($ $) 72)) (-1930 (((-701 |#2|) (-701 $)) 239 (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) 238 (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 237 (-2311 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) 236 (-2311 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-1851 (((-3 $ "failed") $) 37)) (-1647 (((-419 (-971 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-4370 (($) 253 (-2311 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-1908 (($ $ $) 171 (|has| |#1| (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2171 (((-112) $) 179 (|has| |#1| (-374)))) (-2279 (((-112) $) 267 (-2311 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2654 (((-112) $) 85)) (-2722 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 245 (-2311 (|has| |#2| (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 244 (-2311 (|has| |#2| (-901 (-576))) (|has| |#1| (-374))))) (-3359 (((-576) $) 115) (((-576) $ (-576)) 114)) (-2486 (((-112) $) 35)) (-2252 (($ $) 249 (|has| |#1| (-374)))) (-2687 ((|#2| $) 247 (|has| |#1| (-374)))) (-4005 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-3552 (((-3 $ "failed") $) 281 (-2311 (|has| |#2| (-1173)) (|has| |#1| (-374))))) (-3323 (((-112) $) 268 (-2311 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4328 (($ $ (-940)) 116)) (-3260 (($ (-1 |#1| (-576)) $) 187)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-4101 (((-112) $) 74)) (-1564 (($ |#1| (-576)) 73) (($ $ (-1103) (-576)) 88) (($ $ (-656 (-1103)) (-656 (-576))) 87)) (-2907 (($ $ $) 276 (-2311 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3777 (($ $ $) 275 (-2311 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2423 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-374)))) (-2608 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2160 (((-701 |#2|) (-1288 $)) 241 (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 240 (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 235 (-2311 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) 234 (-2311 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-1700 (($ $) 77)) (-1711 ((|#1| $) 78)) (-3076 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-1639 (($ (-576) |#2|) 288)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 180 (|has| |#1| (-374)))) (-4412 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-3795 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3650 (($) 282 (-2311 (|has| |#2| (-1173)) (|has| |#1| (-374))) CONST)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3115 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-2701 (($ $) 252 (-2311 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-3058 ((|#2| $) 255 (-2311 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4112 (((-430 (-1193 $)) (-1193 $)) 258 (-2311 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-3680 (((-430 (-1193 $)) (-1193 $)) 259 (-2311 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-1452 (((-430 $) $) 176 (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 173 (|has| |#1| (-374)))) (-2419 (($ $ (-576)) 110)) (-1946 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2156 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) |#2|) 228 (-2311 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 |#2|)) 227 (-2311 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) 226 (-2311 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) 225 (-2311 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) 224 (-2311 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) 223 (-2311 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-2812 (((-783) $) 169 (|has| |#1| (-374)))) (-4369 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1133))) (($ $ |#2|) 222 (-2311 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 170 (|has| |#1| (-374)))) (-4107 (($ $ (-1 |#2| |#2|) (-783)) 231 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-374))) (($ $) 100 (-3795 (-2311 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 98 (-3795 (-2311 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) 108 (-3795 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197))) 106 (-3795 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1197) (-783)) 105 (-3795 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-3795 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-3591 (($ $) 250 (|has| |#1| (-374)))) (-2697 ((|#2| $) 248 (|has| |#1| (-374)))) (-2196 (((-576) $) 76)) (-3623 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1556 (((-227) $) 266 (-2311 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-390) $) 265 (-2311 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-548) $) 264 (-2311 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-907 (-390)) $) 243 (-2311 (|has| |#2| (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) 242 (-2311 (|has| |#2| (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 256 (-2311 (-2311 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#1| (-374))))) (-3193 (($ $) 84)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 289) (($ (-1197)) 263 (-2311 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374)))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2707 ((|#1| $ (-576)) 71)) (-4276 (((-3 $ "failed") $) 60 (-3795 (-2311 (-3795 (|has| |#2| (-146)) (-2311 (|has| $ (-146)) (|has| |#2| (-928)))) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-2910 (((-783)) 32 T CONST)) (-3188 ((|#1| $) 117)) (-4081 ((|#2| $) 254 (-2311 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2950 (((-112) $ $) 6)) (-3653 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3632 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2366 (($ $) 270 (-2311 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-1 |#2| |#2|) (-783)) 233 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-374))) (($ $) 99 (-3795 (-2311 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 97 (-3795 (-2311 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) 107 (-3795 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197))) 103 (-3795 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1197) (-783)) 102 (-3795 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-3795 (-2311 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-3995 (((-112) $ $) 274 (-2311 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3975 (((-112) $ $) 272 (-2311 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3939 (((-112) $ $) 8)) (-3984 (((-112) $ $) 273 (-2311 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3963 (((-112) $ $) 271 (-2311 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-4047 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374))) (($ |#2| |#2|) 246 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 221 (|has| |#1| (-374))) (($ |#2| $) 220 (|has| |#1| (-374))) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1250 |#1| |#2|) (-141) (-1070) (-1279 |t#1|)) (T -1250)) -((-2196 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1279 *3)) (-5 *2 (-576)))) (-1639 (*1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *4 (-1070)) (-4 *1 (-1250 *4 *3)) (-4 *3 (-1279 *4)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3)))) (-3516 (*1 *1 *1) (-12 (-4 *1 (-1250 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1279 *2)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1279 *3)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3)))) (-4002 (*1 *2 *1) (|partial| -12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3))))) -(-13 (-1248 |t#1|) (-1059 |t#2|) (-628 |t#2|) (-10 -8 (-15 -1639 ($ (-576) |t#2|)) (-15 -2196 ((-576) $)) (-15 -1437 (|t#2| $)) (-15 -3516 ($ $)) (-15 -3516 ($ (-576) $)) (-15 -1630 (|t#2| $)) (-15 -4002 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-374)) (-6 (-1013 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-374)) ((-38 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-374)) ((-111 $ $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) -3795 (-12 (|has| |#1| (-374)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -3795 (-12 (|has| |#1| (-374)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-628 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1197)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) ((-626 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) ((-626 (-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-907 (-576))))) ((-234 $) -3795 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-232 |#2|) |has| |#1| (-374)) ((-238) -3795 (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-237) -3795 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-272 |#2|) |has| |#1| (-374)) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 |#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) ((-296 $ $) |has| (-576) (-1133)) ((-300) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-374) |has| |#1| (-374)) ((-349 |#2|) |has| |#1| (-374)) ((-388 |#2|) |has| |#1| (-374)) ((-412 |#2|) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 (-1197) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1197) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-568) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-374)) ((-658 $) . T) ((-660 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 #3=(-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-660 |#1|) . T) ((-660 |#2|) |has| |#1| (-374)) ((-660 $) . T) ((-652 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 |#2|) |has| |#1| (-374)) ((-652 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-651 #3#) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-651 |#2|) |has| |#1| (-374)) ((-729 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 |#2|) |has| |#1| (-374)) ((-729 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-803) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-804) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-806) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-807) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-832) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-860) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-861) -3795 (-12 (|has| |#1| (-374)) (|has| |#2| (-861))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-864) -3795 (-12 (|has| |#1| (-374)) (|has| |#2| (-861))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-911 $ #4=(-1197)) -3795 (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((-917 (-1197)) -3795 (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((-919 #4#) -3795 (-12 (|has| |#1| (-374)) (|has| |#2| (-919 (-1197)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1197)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))) ((-901 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-390)))) ((-901 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-901 (-576)))) ((-899 |#2|) |has| |#1| (-374)) ((-928) -12 (|has| |#1| (-374)) (|has| |#2| (-928))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1013 |#2|) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1043) -12 (|has| |#1| (-374)) (|has| |#2| (-1043))) ((-1059 (-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-576)))) ((-1059 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-576)))) ((-1059 #2#) -12 (|has| |#1| (-374)) (|has| |#2| (-1059 (-1197)))) ((-1059 |#2|) . T) ((-1072 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 |#2|) |has| |#1| (-374)) ((-1072 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 |#2|) |has| |#1| (-374)) ((-1077 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) -12 (|has| |#1| (-374)) (|has| |#2| (-1173))) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1248 |#1|) . T) ((-1266 |#1| #0#) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 81)) (-2628 ((|#2| $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1585 (((-656 (-1103)) $) NIL)) (-1654 (((-1197) $) 100)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-4087 (($ $ (-576)) 109) (($ $ (-576) (-576)) 111)) (-4073 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 51)) (-1437 ((|#2| $) 11)) (-4002 (((-3 |#2| "failed") $) 35)) (-1630 ((|#2| $) 36)) (-3586 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-2658 (($ $) NIL (|has| |#1| (-374)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3562 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-1527 (((-576) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2861 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 59)) (-3612 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#2| "failed") $) 157) (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-1197) "failed") $) NIL (-12 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-2317 ((|#2| $) 156) (((-576) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1059 (-576))) (|has| |#1| (-374)))) (((-1197) $) NIL (-12 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374))))) (-3516 (($ $) 65) (($ (-576) $) 28)) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-3310 (($ $) NIL)) (-1930 (((-701 |#2|) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-1851 (((-3 $ "failed") $) 88)) (-1647 (((-419 (-971 |#1|)) $ (-576)) 124 (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) 126 (|has| |#1| (-568)))) (-4370 (($) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2171 (((-112) $) NIL (|has| |#1| (-374)))) (-2279 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2654 (((-112) $) 74)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| |#2| (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| |#2| (-901 (-576))) (|has| |#1| (-374))))) (-3359 (((-576) $) 105) (((-576) $ (-576)) 107)) (-2486 (((-112) $) NIL)) (-2252 (($ $) NIL (|has| |#1| (-374)))) (-2687 ((|#2| $) 165 (|has| |#1| (-374)))) (-4005 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3552 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1173)) (|has| |#1| (-374))))) (-3323 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4328 (($ $ (-940)) 148)) (-3260 (($ (-1 |#1| (-576)) $) 144)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-576)) 20) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-2907 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3777 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-2423 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-374)))) (-2608 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-2160 (((-701 |#2|) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1639 (($ (-576) |#2|) 10)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 159 (|has| |#1| (-374)))) (-4412 (($ $) 228 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 233 (-3795 (-12 (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223)))))) (-3650 (($) NIL (-12 (|has| |#2| (-1173)) (|has| |#1| (-374))) CONST)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2701 (($ $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-3058 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| |#2| (-928)) (|has| |#1| (-374))))) (-1452 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-2419 (($ $ (-576)) 138)) (-1946 (((-3 $ "failed") $ $) 128 (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2156 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) |#2|) NIL (-12 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 |#2|)) NIL (-12 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-2812 (((-783) $) NIL (|has| |#1| (-374)))) (-4369 ((|#1| $ (-576)) 103) (($ $ $) 90 (|has| (-576) (-1133))) (($ $ |#2|) NIL (-12 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-4107 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) 149 (-3795 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3795 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) 153 (-3795 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-3591 (($ $) NIL (|has| |#1| (-374)))) (-2697 ((|#2| $) 166 (|has| |#1| (-374)))) (-2196 (((-576) $) 12)) (-3623 (($ $) 212 (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-1556 (((-227) $) NIL (-12 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| |#2| (-1043)) (|has| |#1| (-374)))) (((-548) $) NIL (-12 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-907 (-390)) $) NIL (-12 (|has| |#2| (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) NIL (-12 (|has| |#2| (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928)) (|has| |#1| (-374))))) (-3193 (($ $) 136)) (-4113 (((-876) $) 266) (($ (-576)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1197)) NIL (-12 (|has| |#2| (-1059 (-1197))) (|has| |#1| (-374)))) (($ (-419 (-576))) 169 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2707 ((|#1| $ (-576)) 85)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#2| (-928)) (|has| |#1| (-374))) (-12 (|has| |#2| (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-2910 (((-783)) 155 T CONST)) (-3188 ((|#1| $) 102)) (-4081 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) 218 (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3632 (($ $) 214 (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) 222 (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-576)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) 224 (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) 220 (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) 216 (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-2366 (($ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4313 (($) 13 T CONST)) (-4322 (($) 18 T CONST)) (-3157 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) NIL (-3795 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3795 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| |#2| (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-3995 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3975 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3939 (((-112) $ $) 72)) (-3984 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-3963 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-374))))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374))) (($ |#2| |#2|) 164 (|has| |#1| (-374)))) (-4037 (($ $) 227) (($ $ $) 78)) (-4026 (($ $ $) 76)) (** (($ $ (-940)) NIL) (($ $ (-783)) 84) (($ $ (-576)) 160 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 172 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-374))) (($ |#2| $) 161 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1251 |#1| |#2|) (-1250 |#1| |#2|) (-1070) (-1279 |#1|)) (T -1251)) -NIL -(-1250 |#1| |#2|) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2628 (((-1280 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1585 (((-656 (-1103)) $) NIL)) (-1654 (((-1197) $) 10)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2390 (($ $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3302 (((-112) $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4087 (($ $ (-576)) NIL) (($ $ (-576) (-576)) NIL)) (-4073 (((-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-1437 (((-1280 |#1| |#2| |#3|) $) NIL)) (-4002 (((-3 (-1280 |#1| |#2| |#3|) "failed") $) NIL)) (-1630 (((-1280 |#1| |#2| |#3|) $) NIL)) (-3586 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-2658 (($ $) NIL (|has| |#1| (-374)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3562 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1527 (((-576) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2861 (($ (-1178 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-3612 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-1280 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1197) "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-2317 (((-1280 |#1| |#2| |#3|) $) NIL) (((-1197) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))))) (-3516 (($ $) NIL) (($ (-576) $) NIL)) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-3310 (($ $) NIL)) (-1930 (((-701 (-1280 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 (-1280 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1280 |#1| |#2| |#3|)))) (-701 $) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-1851 (((-3 $ "failed") $) NIL)) (-1647 (((-419 (-971 |#1|)) $ (-576)) NIL (|has| |#1| (-568))) (((-419 (-971 |#1|)) $ (-576) (-576)) NIL (|has| |#1| (-568)))) (-4370 (($) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2171 (((-112) $) NIL (|has| |#1| (-374)))) (-2279 (((-112) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2654 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-901 (-390))) (|has| |#1| (-374)))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-901 (-576))) (|has| |#1| (-374))))) (-3359 (((-576) $) NIL) (((-576) $ (-576)) NIL)) (-2486 (((-112) $) NIL)) (-2252 (($ $) NIL (|has| |#1| (-374)))) (-2687 (((-1280 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-4005 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3552 (((-3 $ "failed") $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))))) (-3323 (((-112) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4328 (($ $ (-940)) NIL)) (-3260 (($ (-1 |#1| (-576)) $) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-576)) 18) (($ $ (-1103) (-576)) NIL) (($ $ (-656 (-1103)) (-656 (-576))) NIL)) (-2907 (($ $ $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3777 (($ $ $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-2608 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2160 (((-701 (-1280 |#1| |#2| |#3|)) (-1288 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 (-1280 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1280 |#1| |#2| |#3|)))) (-1288 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1288 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1639 (($ (-576) (-1280 |#1| |#2| |#3|)) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL (|has| |#1| (-374)))) (-4412 (($ $) 27 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 28 (|has| |#1| (-38 (-419 (-576)))))) (-3650 (($) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-374))) CONST)) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2701 (($ $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-3058 (((-1280 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-1452 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-2419 (($ $ (-576)) NIL)) (-1946 (((-3 $ "failed") $ $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2156 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1197) (-1280 |#1| |#2| |#3|)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-526 (-1197) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1197)) (-656 (-1280 |#1| |#2| |#3|))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-526 (-1197) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1280 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1280 |#1| |#2| |#3|))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1280 |#1| |#2| |#3|)) (-656 (-1280 |#1| |#2| |#3|))) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-319 (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2812 (((-783) $) NIL (|has| |#1| (-374)))) (-4369 ((|#1| $ (-576)) NIL) (($ $ $) NIL (|has| (-576) (-1133))) (($ $ (-1280 |#1| |#2| |#3|)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-296 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-4107 (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) 26) (($ $) 25 (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-3591 (($ $) NIL (|has| |#1| (-374)))) (-2697 (((-1280 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-2196 (((-576) $) NIL)) (-3623 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1556 (((-548) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1043)) (|has| |#1| (-374)))) (((-907 (-390)) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-626 (-907 (-390)))) (|has| |#1| (-374)))) (((-907 (-576)) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-626 (-907 (-576)))) (|has| |#1| (-374))))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))))) (-3193 (($ $) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1280 |#1| |#2| |#3|)) NIL) (($ (-1284 |#2|)) 24) (($ (-1197)) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-1197))) (|has| |#1| (-374)))) (($ $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-1059 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-2707 ((|#1| $ (-576)) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-2910 (((-783)) NIL T CONST)) (-3188 ((|#1| $) 11)) (-4081 (((-1280 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-928)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3632 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2366 (($ $) NIL (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4313 (($) 20 T CONST)) (-4322 (($) 15 T CONST)) (-3157 (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1284 |#2|)) NIL) (($ $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197))) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-1197) (-783)) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197)))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-917 (-1197))) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-919 (-1197))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-917 (-1197))))))) (-3995 (((-112) $ $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3975 (((-112) $ $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3939 (((-112) $ $) NIL)) (-3984 (((-112) $ $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-3963 (((-112) $ $) NIL (-3795 (-12 (|has| (-1280 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1280 |#1| |#2| |#3|) (-861)) (|has| |#1| (-374)))))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374))) (($ (-1280 |#1| |#2| |#3|) (-1280 |#1| |#2| |#3|)) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 22)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1280 |#1| |#2| |#3|)) NIL (|has| |#1| (-374))) (($ (-1280 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1252 |#1| |#2| |#3|) (-13 (-1250 |#1| (-1280 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -4113 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1252)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-4412 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1250 |#1| (-1280 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -4113 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) -((-3348 (((-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| |#1|) (|:| -3172 (-576)))))) |#1| (-112)) 13)) (-4437 (((-430 |#1|) |#1|) 26)) (-1452 (((-430 |#1|) |#1|) 24))) -(((-1253 |#1|) (-10 -7 (-15 -1452 ((-430 |#1|) |#1|)) (-15 -4437 ((-430 |#1|) |#1|)) (-15 -3348 ((-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| |#1|) (|:| -3172 (-576)))))) |#1| (-112)))) (-1264 (-576))) (T -1253)) -((-3348 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| *3) (|:| -3172 (-576))))))) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576))))) (-4437 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576))))) (-1452 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) -(-10 -7 (-15 -1452 ((-430 |#1|) |#1|)) (-15 -4437 ((-430 |#1|) |#1|)) (-15 -3348 ((-2 (|:| |contp| (-576)) (|:| -3497 (-656 (-2 (|:| |irr| |#1|) (|:| -3172 (-576)))))) |#1| (-112)))) -((-2423 (((-1178 |#2|) (-1 |#2| |#1|) (-1255 |#1|)) 23 (|has| |#1| (-860))) (((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|)) 17))) -(((-1254 |#1| |#2|) (-10 -7 (-15 -2423 ((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) (IF (|has| |#1| (-860)) (-15 -2423 ((-1178 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) |%noBranch|)) (-1238) (-1238)) (T -1254)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-860)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1178 *6)) (-5 *1 (-1254 *5 *6)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1255 *6)) (-5 *1 (-1254 *5 *6))))) -(-10 -7 (-15 -2423 ((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) (IF (|has| |#1| (-860)) (-15 -2423 ((-1178 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) |%noBranch|)) -((-1957 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2402 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2423 (((-1178 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-860)))) (-3890 ((|#1| $) 15)) (-1696 ((|#1| $) 12)) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-2656 (((-576) $) 19)) (-2699 ((|#1| $) 18)) (-2668 ((|#1| $) 13)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1406 (((-112) $) 17)) (-3568 (((-1178 |#1|) $) 41 (|has| |#1| (-860))) (((-1178 |#1|) (-656 $)) 40 (|has| |#1| (-860)))) (-1556 (($ |#1|) 26)) (-4113 (($ (-1115 |#1|)) 25) (((-876) $) 37 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) NIL (|has| |#1| (-1121)))) (-2497 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3716 (($ $ (-576)) 14)) (-3939 (((-112) $ $) 30 (|has| |#1| (-1121))))) -(((-1255 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -2497 ($ |#1|)) (-15 -2402 ($ |#1|)) (-15 -4113 ($ (-1115 |#1|))) (-15 -1406 ((-112) $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-1178 |#1|))) |%noBranch|))) (-1238)) (T -1255)) -((-2497 (*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238)))) (-2402 (*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-1115 *3)) (-4 *3 (-1238)) (-5 *1 (-1255 *3)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3)) (-4 *3 (-1238))))) -(-13 (-1114 |#1|) (-10 -8 (-15 -2497 ($ |#1|)) (-15 -2402 ($ |#1|)) (-15 -4113 ($ (-1115 |#1|))) (-15 -1406 ((-112) $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-1178 |#1|))) |%noBranch|))) -((-2423 (((-1261 |#3| |#4|) (-1 |#4| |#2|) (-1261 |#1| |#2|)) 15))) -(((-1256 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2423 ((-1261 |#3| |#4|) (-1 |#4| |#2|) (-1261 |#1| |#2|)))) (-1197) (-1070) (-1197) (-1070)) (T -1256)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1261 *5 *6)) (-14 *5 (-1197)) (-4 *6 (-1070)) (-4 *8 (-1070)) (-5 *2 (-1261 *7 *8)) (-5 *1 (-1256 *5 *6 *7 *8)) (-14 *7 (-1197))))) -(-10 -7 (-15 -2423 ((-1261 |#3| |#4|) (-1 |#4| |#2|) (-1261 |#1| |#2|)))) -((-1706 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2929 ((|#1| |#3|) 13)) (-4091 ((|#3| |#3|) 19))) -(((-1257 |#1| |#2| |#3|) (-10 -7 (-15 -2929 (|#1| |#3|)) (-15 -4091 (|#3| |#3|)) (-15 -1706 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1013 |#1|) (-1264 |#2|)) (T -1257)) -((-1706 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1257 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-4091 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-1257 *3 *4 *2)) (-4 *2 (-1264 *4)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-1257 *2 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -2929 (|#1| |#3|)) (-15 -4091 (|#3| |#3|)) (-15 -1706 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3264 (((-3 |#2| "failed") |#2| (-783) |#1|) 35)) (-1454 (((-3 |#2| "failed") |#2| (-783)) 36)) (-1707 (((-3 (-2 (|:| -2102 |#2|) (|:| -2113 |#2|)) "failed") |#2|) 50)) (-4225 (((-656 |#2|) |#2|) 52)) (-3128 (((-3 |#2| "failed") |#2| |#2|) 46))) -(((-1258 |#1| |#2|) (-10 -7 (-15 -1454 ((-3 |#2| "failed") |#2| (-783))) (-15 -3264 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -3128 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1707 ((-3 (-2 (|:| -2102 |#2|) (|:| -2113 |#2|)) "failed") |#2|)) (-15 -4225 ((-656 |#2|) |#2|))) (-13 (-568) (-148)) (-1264 |#1|)) (T -1258)) -((-4225 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1264 *4)))) (-1707 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| -2102 *3) (|:| -2113 *3))) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1264 *4)))) (-3128 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1264 *3)))) (-3264 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4)))) (-1454 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4))))) -(-10 -7 (-15 -1454 ((-3 |#2| "failed") |#2| (-783))) (-15 -3264 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -3128 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1707 ((-3 (-2 (|:| -2102 |#2|) (|:| -2113 |#2|)) "failed") |#2|)) (-15 -4225 ((-656 |#2|) |#2|))) -((-3112 (((-3 (-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) "failed") |#2| |#2|) 30))) -(((-1259 |#1| |#2|) (-10 -7 (-15 -3112 ((-3 (-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) "failed") |#2| |#2|))) (-568) (-1264 |#1|)) (T -1259)) -((-3112 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-1259 *4 *3)) (-4 *3 (-1264 *4))))) -(-10 -7 (-15 -3112 ((-3 (-2 (|:| -2675 |#2|) (|:| -3561 |#2|)) "failed") |#2| |#2|))) -((-1513 ((|#2| |#2| |#2|) 22)) (-2664 ((|#2| |#2| |#2|) 36)) (-2374 ((|#2| |#2| |#2| (-783) (-783)) 44))) -(((-1260 |#1| |#2|) (-10 -7 (-15 -1513 (|#2| |#2| |#2|)) (-15 -2664 (|#2| |#2| |#2|)) (-15 -2374 (|#2| |#2| |#2| (-783) (-783)))) (-1070) (-1264 |#1|)) (T -1260)) -((-2374 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-1260 *4 *2)) (-4 *2 (-1264 *4)))) (-2664 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3)))) (-1513 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3))))) -(-10 -7 (-15 -1513 (|#2| |#2| |#2|)) (-15 -2664 (|#2| |#2| |#2|)) (-15 -2374 (|#2| |#2| |#2| (-783) (-783)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-2732 (((-1288 |#2|) $ (-783)) NIL)) (-1585 (((-656 (-1103)) $) NIL)) (-3287 (($ (-1193 |#2|)) NIL)) (-1421 (((-1193 $) $ (-1103)) NIL) (((-1193 |#2|) $) NIL)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2390 (($ $) NIL (|has| |#2| (-568)))) (-3302 (((-112) $) NIL (|has| |#2| (-568)))) (-2625 (((-783) $) NIL) (((-783) $ (-656 (-1103))) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2163 (($ $ $) NIL (|has| |#2| (-568)))) (-2725 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-2658 (($ $) NIL (|has| |#2| (-464)))) (-3589 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-4386 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2665 (($ $ (-783)) NIL)) (-2713 (($ $ (-783)) NIL)) (-2096 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1059 (-576)))) (((-3 (-1103) "failed") $) NIL)) (-2317 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1059 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1059 (-576)))) (((-1103) $) NIL)) (-2970 (($ $ $ (-1103)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-1895 (($ $ $) NIL (|has| |#2| (-374)))) (-3310 (($ $) NIL)) (-1930 (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-701 $) (-1288 $)) NIL) (((-701 |#2|) (-701 $)) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1908 (($ $ $) NIL (|has| |#2| (-374)))) (-3895 (($ $ $) NIL)) (-4201 (($ $ $) NIL (|has| |#2| (-568)))) (-2799 (((-2 (|:| -2862 |#2|) (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#2| (-568)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-1788 (($ $) NIL (|has| |#2| (-464))) (($ $ (-1103)) NIL (|has| |#2| (-464)))) (-3297 (((-656 $) $) NIL)) (-2171 (((-112) $) NIL (|has| |#2| (-928)))) (-1975 (($ $ |#2| (-783) $) NIL)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) NIL (-12 (|has| (-1103) (-901 (-390))) (|has| |#2| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) NIL (-12 (|has| (-1103) (-901 (-576))) (|has| |#2| (-901 (-576)))))) (-3359 (((-783) $ $) NIL (|has| |#2| (-568)))) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| |#2| (-1173)))) (-1574 (($ (-1193 |#2|) (-1103)) NIL) (($ (-1193 $) (-1103)) NIL)) (-4328 (($ $ (-783)) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1564 (($ |#2| (-783)) 18) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ (-1103)) NIL) (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL)) (-2192 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-3784 (($ (-1 (-783) (-783)) $) NIL)) (-2423 (($ (-1 |#2| |#2|) $) NIL)) (-2253 (((-1193 |#2|) $) NIL)) (-3477 (((-3 (-1103) "failed") $) NIL)) (-2160 (((-701 (-576)) (-1288 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL) (((-701 |#2|) (-1288 $)) NIL)) (-1700 (($ $) NIL)) (-1711 ((|#2| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2447 (((-1179) $) NIL)) (-2107 (((-2 (|:| -2675 $) (|:| -3561 $)) $ (-783)) NIL)) (-4050 (((-3 (-656 $) "failed") $) NIL)) (-2646 (((-3 (-656 $) "failed") $) NIL)) (-1608 (((-3 (-2 (|:| |var| (-1103)) (|:| -4080 (-783))) "failed") $) NIL)) (-4412 (($ $) NIL (|has| |#2| (-38 (-419 (-576)))))) (-3650 (($) NIL (|has| |#2| (-1173)) CONST)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) NIL)) (-1686 ((|#2| $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#2| (-464)))) (-3115 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4179 (($ $ (-783) |#2| $) NIL)) (-4112 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) NIL (|has| |#2| (-928)))) (-1452 (((-430 $) $) NIL (|has| |#2| (-928)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#2| (-374)))) (-1946 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2145 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#2|) NIL) (($ $ (-656 (-1103)) (-656 |#2|)) NIL) (($ $ (-1103) $) NIL) (($ $ (-656 (-1103)) (-656 $)) NIL)) (-2812 (((-783) $) NIL (|has| |#2| (-374)))) (-4369 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568))) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)))) (-4292 (((-3 $ "failed") $ (-783)) NIL)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#2| (-374)))) (-1790 (($ $ (-1103)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-4107 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-2196 (((-783) $) NIL) (((-783) $ (-1103)) NIL) (((-656 (-783)) $ (-656 (-1103))) NIL)) (-1556 (((-907 (-390)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#2| (-626 (-907 (-390)))))) (((-907 (-576)) $) NIL (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#2| (-626 (-907 (-576)))))) (((-548) $) NIL (-12 (|has| (-1103) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1944 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-1103)) NIL (|has| |#2| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-928))))) (-4105 (((-3 $ "failed") $ $) NIL (|has| |#2| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#2| (-568)))) (-4113 (((-876) $) 13) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1103)) NIL) (($ (-1284 |#1|)) 20) (($ (-419 (-576))) NIL (-3795 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1059 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3244 (((-656 |#2|) $) NIL)) (-2707 ((|#2| $ (-783)) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-4276 (((-3 $ "failed") $) NIL (-3795 (-12 (|has| $ (-146)) (|has| |#2| (-928))) (|has| |#2| (-146))))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4313 (($) NIL T CONST)) (-4322 (($) 14 T CONST)) (-3157 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1197)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197))) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-1197) (-783)) NIL (|has| |#2| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (|has| |#2| (-919 (-1197))))) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1261 |#1| |#2|) (-13 (-1264 |#2|) (-628 (-1284 |#1|)) (-10 -8 (-15 -4179 ($ $ (-783) |#2| $)))) (-1197) (-1070)) (T -1261)) -((-4179 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1261 *4 *3)) (-14 *4 (-1197)) (-4 *3 (-1070))))) -(-13 (-1264 |#2|) (-628 (-1284 |#1|)) (-10 -8 (-15 -4179 ($ $ (-783) |#2| $)))) -((-2423 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1262 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2423 (|#4| (-1 |#3| |#1|) |#2|))) (-1070) (-1264 |#1|) (-1070) (-1264 |#3|)) (T -1262)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-1264 *6)) (-5 *1 (-1262 *5 *4 *6 *2)) (-4 *4 (-1264 *5))))) -(-10 -7 (-15 -2423 (|#4| (-1 |#3| |#1|) |#2|))) -((-2732 (((-1288 |#2|) $ (-783)) 129)) (-1585 (((-656 (-1103)) $) 16)) (-3287 (($ (-1193 |#2|)) 80)) (-2625 (((-783) $) NIL) (((-783) $ (-656 (-1103))) 21)) (-2725 (((-430 (-1193 $)) (-1193 $)) 204)) (-2658 (($ $) 194)) (-3589 (((-430 $) $) 192)) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 95)) (-2665 (($ $ (-783)) 84)) (-2713 (($ $ (-783)) 86)) (-2096 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-2982 (((-3 |#2| "failed") $) 132) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-1103) "failed") $) NIL)) (-2317 ((|#2| $) 130) (((-419 (-576)) $) NIL) (((-576) $) NIL) (((-1103) $) NIL)) (-4201 (($ $ $) 170)) (-2799 (((-2 (|:| -2862 |#2|) (|:| -2675 $) (|:| -3561 $)) $ $) 172)) (-3359 (((-783) $ $) 189)) (-3552 (((-3 $ "failed") $) 138)) (-1564 (($ |#2| (-783)) NIL) (($ $ (-1103) (-783)) 59) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-2192 (((-783) $) NIL) (((-783) $ (-1103)) 54) (((-656 (-783)) $ (-656 (-1103))) 55)) (-2253 (((-1193 |#2|) $) 72)) (-3477 (((-3 (-1103) "failed") $) 52)) (-2107 (((-2 (|:| -2675 $) (|:| -3561 $)) $ (-783)) 83)) (-4412 (($ $) 219)) (-3650 (($) 134)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 201)) (-4112 (((-430 (-1193 $)) (-1193 $)) 101)) (-3680 (((-430 (-1193 $)) (-1193 $)) 99)) (-1452 (((-430 $) $) 120)) (-2145 (($ $ (-656 (-304 $))) 51) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1103) |#2|) 39) (($ $ (-656 (-1103)) (-656 |#2|)) 36) (($ $ (-1103) $) 32) (($ $ (-656 (-1103)) (-656 $)) 30)) (-2812 (((-783) $) 207)) (-4369 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) 164) ((|#2| (-419 $) |#2|) 206) (((-419 $) $ (-419 $)) 188)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 212)) (-4107 (($ $ (-656 (-1103)) (-656 (-783))) NIL) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103))) NIL) (($ $ (-1103)) 157) (($ $) 155) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1197)) NIL) (($ $ (-656 (-1197))) NIL) (($ $ (-1197) (-783)) NIL) (($ $ (-656 (-1197)) (-656 (-783))) NIL)) (-2196 (((-783) $) NIL) (((-783) $ (-1103)) 17) (((-656 (-783)) $ (-656 (-1103))) 23)) (-1944 ((|#2| $) NIL) (($ $ (-1103)) 140)) (-4105 (((-3 $ "failed") $ $) 180) (((-3 (-419 $) "failed") (-419 $) $) 176)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1103)) 64) (($ (-419 (-576))) NIL) (($ $) NIL))) -(((-1263 |#1| |#2|) (-10 -8 (-15 -4113 (|#1| |#1|)) (-15 -2142 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -3589 ((-430 |#1|) |#1|)) (-15 -2658 (|#1| |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -3650 (|#1|)) (-15 -3552 ((-3 |#1| "failed") |#1|)) (-15 -4369 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -2812 ((-783) |#1|)) (-15 -3889 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -4412 (|#1| |#1|)) (-15 -4369 (|#2| (-419 |#1|) |#2|)) (-15 -2096 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2799 ((-2 (|:| -2862 |#2|) (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -4201 (|#1| |#1| |#1|)) (-15 -4105 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -4105 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3359 ((-783) |#1| |#1|)) (-15 -4369 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2713 (|#1| |#1| (-783))) (-15 -2665 (|#1| |#1| (-783))) (-15 -2107 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| (-783))) (-15 -3287 (|#1| (-1193 |#2|))) (-15 -2253 ((-1193 |#2|) |#1|)) (-15 -2732 ((-1288 |#2|) |#1| (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 -4369 (|#1| |#1| |#1|)) (-15 -4369 (|#2| |#1| |#2|)) (-15 -1452 ((-430 |#1|) |#1|)) (-15 -2725 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3680 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4112 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1626 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -1944 (|#1| |#1| (-1103))) (-15 -1585 ((-656 (-1103)) |#1|)) (-15 -2625 ((-783) |#1| (-656 (-1103)))) (-15 -2625 ((-783) |#1|)) (-15 -1564 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -1564 (|#1| |#1| (-1103) (-783))) (-15 -2192 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -2192 ((-783) |#1| (-1103))) (-15 -3477 ((-3 (-1103) "failed") |#1|)) (-15 -2196 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -2196 ((-783) |#1| (-1103))) (-15 -4113 (|#1| (-1103))) (-15 -2982 ((-3 (-1103) "failed") |#1|)) (-15 -2317 ((-1103) |#1|)) (-15 -2145 (|#1| |#1| (-656 (-1103)) (-656 |#1|))) (-15 -2145 (|#1| |#1| (-1103) |#1|)) (-15 -2145 (|#1| |#1| (-656 (-1103)) (-656 |#2|))) (-15 -2145 (|#1| |#1| (-1103) |#2|)) (-15 -2145 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#1| |#1|)) (-15 -2145 (|#1| |#1| (-304 |#1|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2196 ((-783) |#1|)) (-15 -1564 (|#1| |#2| (-783))) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -2192 ((-783) |#1|)) (-15 -1944 (|#2| |#1|)) (-15 -4107 (|#1| |#1| (-1103))) (-15 -4107 (|#1| |#1| (-656 (-1103)))) (-15 -4107 (|#1| |#1| (-1103) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) (-1264 |#2|) (-1070)) (T -1263)) -NIL -(-10 -8 (-15 -4113 (|#1| |#1|)) (-15 -2142 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|))) (-15 -4107 (|#1| |#1| (-656 (-1197)) (-656 (-783)))) (-15 -4107 (|#1| |#1| (-1197) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1197)))) (-15 -4107 (|#1| |#1| (-1197))) (-15 -3589 ((-430 |#1|) |#1|)) (-15 -2658 (|#1| |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -3650 (|#1|)) (-15 -3552 ((-3 |#1| "failed") |#1|)) (-15 -4369 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -2812 ((-783) |#1|)) (-15 -3889 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -4412 (|#1| |#1|)) (-15 -4369 (|#2| (-419 |#1|) |#2|)) (-15 -2096 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2799 ((-2 (|:| -2862 |#2|) (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| |#1|)) (-15 -4201 (|#1| |#1| |#1|)) (-15 -4105 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -4105 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3359 ((-783) |#1| |#1|)) (-15 -4369 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2713 (|#1| |#1| (-783))) (-15 -2665 (|#1| |#1| (-783))) (-15 -2107 ((-2 (|:| -2675 |#1|) (|:| -3561 |#1|)) |#1| (-783))) (-15 -3287 (|#1| (-1193 |#2|))) (-15 -2253 ((-1193 |#2|) |#1|)) (-15 -2732 ((-1288 |#2|) |#1| (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4107 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4107 (|#1| |#1| (-783))) (-15 -4107 (|#1| |#1|)) (-15 -4369 (|#1| |#1| |#1|)) (-15 -4369 (|#2| |#1| |#2|)) (-15 -1452 ((-430 |#1|) |#1|)) (-15 -2725 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -3680 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -4112 ((-430 (-1193 |#1|)) (-1193 |#1|))) (-15 -1626 ((-3 (-656 (-1193 |#1|)) "failed") (-656 (-1193 |#1|)) (-1193 |#1|))) (-15 -1944 (|#1| |#1| (-1103))) (-15 -1585 ((-656 (-1103)) |#1|)) (-15 -2625 ((-783) |#1| (-656 (-1103)))) (-15 -2625 ((-783) |#1|)) (-15 -1564 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -1564 (|#1| |#1| (-1103) (-783))) (-15 -2192 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -2192 ((-783) |#1| (-1103))) (-15 -3477 ((-3 (-1103) "failed") |#1|)) (-15 -2196 ((-656 (-783)) |#1| (-656 (-1103)))) (-15 -2196 ((-783) |#1| (-1103))) (-15 -4113 (|#1| (-1103))) (-15 -2982 ((-3 (-1103) "failed") |#1|)) (-15 -2317 ((-1103) |#1|)) (-15 -2145 (|#1| |#1| (-656 (-1103)) (-656 |#1|))) (-15 -2145 (|#1| |#1| (-1103) |#1|)) (-15 -2145 (|#1| |#1| (-656 (-1103)) (-656 |#2|))) (-15 -2145 (|#1| |#1| (-1103) |#2|)) (-15 -2145 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2145 (|#1| |#1| |#1| |#1|)) (-15 -2145 (|#1| |#1| (-304 |#1|))) (-15 -2145 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2196 ((-783) |#1|)) (-15 -1564 (|#1| |#2| (-783))) (-15 -2982 ((-3 (-576) "failed") |#1|)) (-15 -2317 ((-576) |#1|)) (-15 -2982 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2317 ((-419 (-576)) |#1|)) (-15 -2317 (|#2| |#1|)) (-15 -2982 ((-3 |#2| "failed") |#1|)) (-15 -4113 (|#1| |#2|)) (-15 -2192 ((-783) |#1|)) (-15 -1944 (|#2| |#1|)) (-15 -4107 (|#1| |#1| (-1103))) (-15 -4107 (|#1| |#1| (-656 (-1103)))) (-15 -4107 (|#1| |#1| (-1103) (-783))) (-15 -4107 (|#1| |#1| (-656 (-1103)) (-656 (-783)))) (-15 -4113 (|#1| (-576))) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-2732 (((-1288 |#1|) $ (-783)) 256)) (-1585 (((-656 (-1103)) $) 113)) (-3287 (($ (-1193 |#1|)) 254)) (-1421 (((-1193 $) $ (-1103)) 128) (((-1193 |#1|) $) 127)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2390 (($ $) 91 (|has| |#1| (-568)))) (-3302 (((-112) $) 93 (|has| |#1| (-568)))) (-2625 (((-783) $) 115) (((-783) $ (-656 (-1103))) 114)) (-1765 (((-3 $ "failed") $ $) 20)) (-2163 (($ $ $) 241 (|has| |#1| (-568)))) (-2725 (((-430 (-1193 $)) (-1193 $)) 103 (|has| |#1| (-928)))) (-2658 (($ $) 101 (|has| |#1| (-464)))) (-3589 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1626 (((-3 (-656 (-1193 $)) "failed") (-656 (-1193 $)) (-1193 $)) 106 (|has| |#1| (-928)))) (-4386 (((-112) $ $) 226 (|has| |#1| (-374)))) (-2665 (($ $ (-783)) 249)) (-2713 (($ $ (-783)) 248)) (-2096 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-464)))) (-3170 (($) 18 T CONST)) (-2982 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1059 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1059 (-576)))) (((-3 (-1103) "failed") $) 143)) (-2317 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1059 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1059 (-576)))) (((-1103) $) 144)) (-2970 (($ $ $ (-1103)) 111 (|has| |#1| (-174))) ((|#1| $ $) 244 (|has| |#1| (-174)))) (-1895 (($ $ $) 230 (|has| |#1| (-374)))) (-3310 (($ $) 161)) (-1930 (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-701 $) (-1288 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-701 $) (-1288 $)) 137) (((-701 |#1|) (-701 $)) 136)) (-1851 (((-3 $ "failed") $) 37)) (-1908 (($ $ $) 229 (|has| |#1| (-374)))) (-3895 (($ $ $) 247)) (-4201 (($ $ $) 238 (|has| |#1| (-568)))) (-2799 (((-2 (|:| -2862 |#1|) (|:| -2675 $) (|:| -3561 $)) $ $) 237 (|has| |#1| (-568)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 224 (|has| |#1| (-374)))) (-1788 (($ $) 183 (|has| |#1| (-464))) (($ $ (-1103)) 108 (|has| |#1| (-464)))) (-3297 (((-656 $) $) 112)) (-2171 (((-112) $) 99 (|has| |#1| (-928)))) (-1975 (($ $ |#1| (-783) $) 179)) (-2477 (((-904 (-390) $) $ (-907 (-390)) (-904 (-390) $)) 87 (-12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390))))) (((-904 (-576) $) $ (-907 (-576)) (-904 (-576) $)) 86 (-12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))))) (-3359 (((-783) $ $) 242 (|has| |#1| (-568)))) (-2486 (((-112) $) 35)) (-2018 (((-783) $) 176)) (-3552 (((-3 $ "failed") $) 222 (|has| |#1| (-1173)))) (-1574 (($ (-1193 |#1|) (-1103)) 120) (($ (-1193 $) (-1103)) 119)) (-4328 (($ $ (-783)) 253)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 233 (|has| |#1| (-374)))) (-2683 (((-656 $) $) 129)) (-4101 (((-112) $) 159)) (-1564 (($ |#1| (-783)) 160) (($ $ (-1103) (-783)) 122) (($ $ (-656 (-1103)) (-656 (-783))) 121)) (-1758 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $ (-1103)) 123) (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 251)) (-2192 (((-783) $) 177) (((-783) $ (-1103)) 125) (((-656 (-783)) $ (-656 (-1103))) 124)) (-3784 (($ (-1 (-783) (-783)) $) 178)) (-2423 (($ (-1 |#1| |#1|) $) 158)) (-2253 (((-1193 |#1|) $) 255)) (-3477 (((-3 (-1103) "failed") $) 126)) (-2160 (((-701 (-576)) (-1288 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 (-576))) (|:| |vec| (-1288 (-576)))) (-1288 $) $) 140 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3563 (-701 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 135) (((-701 |#1|) (-1288 $)) 134)) (-1700 (($ $) 156)) (-1711 ((|#1| $) 155)) (-3076 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2447 (((-1179) $) 10)) (-2107 (((-2 (|:| -2675 $) (|:| -3561 $)) $ (-783)) 250)) (-4050 (((-3 (-656 $) "failed") $) 117)) (-2646 (((-3 (-656 $) "failed") $) 118)) (-1608 (((-3 (-2 (|:| |var| (-1103)) (|:| -4080 (-783))) "failed") $) 116)) (-4412 (($ $) 234 (|has| |#1| (-38 (-419 (-576)))))) (-3650 (($) 221 (|has| |#1| (-1173)) CONST)) (-3116 (((-1141) $) 11)) (-1678 (((-112) $) 173)) (-1686 ((|#1| $) 174)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 98 (|has| |#1| (-464)))) (-3115 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4112 (((-430 (-1193 $)) (-1193 $)) 105 (|has| |#1| (-928)))) (-3680 (((-430 (-1193 $)) (-1193 $)) 104 (|has| |#1| (-928)))) (-1452 (((-430 $) $) 102 (|has| |#1| (-928)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 231 (|has| |#1| (-374)))) (-1946 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 225 (|has| |#1| (-374)))) (-2145 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ (-1103) |#1|) 148) (($ $ (-656 (-1103)) (-656 |#1|)) 147) (($ $ (-1103) $) 146) (($ $ (-656 (-1103)) (-656 $)) 145)) (-2812 (((-783) $) 227 (|has| |#1| (-374)))) (-4369 ((|#1| $ |#1|) 266) (($ $ $) 265) (((-419 $) (-419 $) (-419 $)) 243 (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) 235 (|has| |#1| (-374))) (((-419 $) $ (-419 $)) 223 (|has| |#1| (-568)))) (-4292 (((-3 $ "failed") $ (-783)) 252)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 228 (|has| |#1| (-374)))) (-1790 (($ $ (-1103)) 110 (|has| |#1| (-174))) ((|#1| $) 245 (|has| |#1| (-174)))) (-4107 (($ $ (-656 (-1103)) (-656 (-783))) 44) (($ $ (-1103) (-783)) 43) (($ $ (-656 (-1103))) 42) (($ $ (-1103)) 40) (($ $) 264) (($ $ (-783)) 262) (($ $ (-1 |#1| |#1|)) 260) (($ $ (-1 |#1| |#1|) (-783)) 259) (($ $ (-1 |#1| |#1|) $) 246) (($ $ (-1197)) 220 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 218 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 217 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 216 (|has| |#1| (-919 (-1197))))) (-2196 (((-783) $) 157) (((-783) $ (-1103)) 133) (((-656 (-783)) $ (-656 (-1103))) 132)) (-1556 (((-907 (-390)) $) 85 (-12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390)))))) (((-907 (-576)) $) 84 (-12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576)))))) (((-548) $) 83 (-12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1944 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ (-1103)) 109 (|has| |#1| (-464)))) (-4055 (((-3 (-1288 $) "failed") (-701 $)) 107 (-2311 (|has| $ (-146)) (|has| |#1| (-928))))) (-4105 (((-3 $ "failed") $ $) 240 (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) 239 (|has| |#1| (-568)))) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ (-1103)) 142) (($ (-419 (-576))) 81 (-3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-3244 (((-656 |#1|) $) 175)) (-2707 ((|#1| $ (-783)) 162) (($ $ (-1103) (-783)) 131) (($ $ (-656 (-1103)) (-656 (-783))) 130)) (-4276 (((-3 $ "failed") $) 82 (-3795 (-2311 (|has| $ (-146)) (|has| |#1| (-928))) (|has| |#1| (-146))))) (-2910 (((-783)) 32 T CONST)) (-1903 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 92 (|has| |#1| (-568)))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-656 (-1103)) (-656 (-783))) 47) (($ $ (-1103) (-783)) 46) (($ $ (-656 (-1103))) 45) (($ $ (-1103)) 41) (($ $) 263) (($ $ (-783)) 261) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-783)) 257) (($ $ (-1197)) 219 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197))) 215 (|has| |#1| (-919 (-1197)))) (($ $ (-1197) (-783)) 214 (|has| |#1| (-919 (-1197)))) (($ $ (-656 (-1197)) (-656 (-783))) 213 (|has| |#1| (-919 (-1197))))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-1264 |#1|) (-141) (-1070)) (T -1264)) -((-2732 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1264 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)))) (-2253 (*1 *2 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-5 *2 (-1193 *3)))) (-3287 (*1 *1 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-1070)) (-4 *1 (-1264 *3)))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-4292 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-1758 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-1264 *3)))) (-2107 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-1264 *4)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-3895 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)))) (-4107 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174)))) (-2970 (*1 *2 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174)))) (-4369 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)))) (-3359 (*1 *2 *1 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2163 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-4105 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-4105 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)))) (-4201 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) (-2799 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2862 *3) (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-1264 *3)))) (-2096 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1264 *3)))) (-4369 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-4412 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576))))))) -(-13 (-968 |t#1| (-783) (-1103)) (-296 |t#1| |t#1|) (-296 $ $) (-238) (-232 |t#1|) (-10 -8 (-15 -2732 ((-1288 |t#1|) $ (-783))) (-15 -2253 ((-1193 |t#1|) $)) (-15 -3287 ($ (-1193 |t#1|))) (-15 -4328 ($ $ (-783))) (-15 -4292 ((-3 $ "failed") $ (-783))) (-15 -1758 ((-2 (|:| -2675 $) (|:| -3561 $)) $ $)) (-15 -2107 ((-2 (|:| -2675 $) (|:| -3561 $)) $ (-783))) (-15 -2665 ($ $ (-783))) (-15 -2713 ($ $ (-783))) (-15 -3895 ($ $ $)) (-15 -4107 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1173)) (-6 (-1173)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1790 (|t#1| $)) (-15 -2970 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-296 (-419 $) (-419 $))) (-15 -4369 ((-419 $) (-419 $) (-419 $))) (-15 -3359 ((-783) $ $)) (-15 -2163 ($ $ $)) (-15 -4105 ((-3 $ "failed") $ $)) (-15 -4105 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -4201 ($ $ $)) (-15 -2799 ((-2 (|:| -2862 |t#1|) (|:| -2675 $) (|:| -3561 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -2096 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-317)) (-6 -4460) (-15 -4369 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-15 -4412 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3795 (|has| |#1| (-1059 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1103)) . T) ((-628 |#1|) . T) ((-628 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| (-1103) (-626 (-548))) (|has| |#1| (-626 (-548)))) ((-626 (-907 (-390))) -12 (|has| (-1103) (-626 (-907 (-390)))) (|has| |#1| (-626 (-907 (-390))))) ((-626 (-907 (-576))) -12 (|has| (-1103) (-626 (-907 (-576)))) (|has| |#1| (-626 (-907 (-576))))) ((-234 $) . T) ((-232 |#1|) . T) ((-238) . T) ((-237) . T) ((-272 |#1|) . T) ((-296 (-419 $) (-419 $)) |has| |#1| (-568)) ((-296 |#1| |#1|) . T) ((-296 $ $) . T) ((-300) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 $) . T) ((-336 |#1| #0#) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3795 (|has| |#1| (-928)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-526 #2# |#1|) . T) ((-526 #2# $) . T) ((-526 $ $) . T) ((-568) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 #3=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-651 #3#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2#) . T) ((-911 $ #4=(-1197)) -3795 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) . T) ((-917 (-1197)) |has| |#1| (-917 (-1197))) ((-919 #2#) . T) ((-919 #4#) -3795 (|has| |#1| (-919 (-1197))) (|has| |#1| (-917 (-1197)))) ((-901 (-390)) -12 (|has| (-1103) (-901 (-390))) (|has| |#1| (-901 (-390)))) ((-901 (-576)) -12 (|has| (-1103) (-901 (-576))) (|has| |#1| (-901 (-576)))) ((-968 |#1| #0# #2#) . T) ((-928) |has| |#1| (-928)) ((-939) |has| |#1| (-374)) ((-1059 (-419 (-576))) |has| |#1| (-1059 (-419 (-576)))) ((-1059 (-576)) |has| |#1| (-1059 (-576))) ((-1059 #2#) . T) ((-1059 |#1|) . T) ((-1072 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-928)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1173) |has| |#1| (-1173)) ((-1238) . T) ((-1242) |has| |#1| (-928))) -((-1585 (((-656 (-1103)) $) 34)) (-3310 (($ $) 31)) (-1564 (($ |#2| |#3|) NIL) (($ $ (-1103) |#3|) 28) (($ $ (-656 (-1103)) (-656 |#3|)) 27)) (-1700 (($ $) 14)) (-1711 ((|#2| $) 12)) (-2196 ((|#3| $) 10))) -(((-1265 |#1| |#2| |#3|) (-10 -8 (-15 -1585 ((-656 (-1103)) |#1|)) (-15 -1564 (|#1| |#1| (-656 (-1103)) (-656 |#3|))) (-15 -1564 (|#1| |#1| (-1103) |#3|)) (-15 -3310 (|#1| |#1|)) (-15 -1564 (|#1| |#2| |#3|)) (-15 -2196 (|#3| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -1711 (|#2| |#1|))) (-1266 |#2| |#3|) (-1070) (-804)) (T -1265)) -NIL -(-10 -8 (-15 -1585 ((-656 (-1103)) |#1|)) (-15 -1564 (|#1| |#1| (-656 (-1103)) (-656 |#3|))) (-15 -1564 (|#1| |#1| (-1103) |#3|)) (-15 -3310 (|#1| |#1|)) (-15 -1564 (|#1| |#2| |#3|)) (-15 -2196 (|#3| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -1711 (|#2| |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1585 (((-656 (-1103)) $) 86)) (-1654 (((-1197) $) 118)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2390 (($ $) 64 (|has| |#1| (-568)))) (-3302 (((-112) $) 66 (|has| |#1| (-568)))) (-4087 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-4073 (((-1178 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-3310 (($ $) 72)) (-1851 (((-3 $ "failed") $) 37)) (-2654 (((-112) $) 85)) (-3359 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-2486 (((-112) $) 35)) (-4328 (($ $ (-940)) 116)) (-4101 (((-112) $) 74)) (-1564 (($ |#1| |#2|) 73) (($ $ (-1103) |#2|) 88) (($ $ (-656 (-1103)) (-656 |#2|)) 87)) (-2423 (($ (-1 |#1| |#1|) $) 75)) (-1700 (($ $) 77)) (-1711 ((|#1| $) 78)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2419 (($ $ |#2|) 110)) (-1946 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2145 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4369 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1133)))) (-4107 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2196 ((|#2| $) 76)) (-3193 (($ $) 84)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2707 ((|#1| $ |#2|) 71)) (-4276 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-3188 ((|#1| $) 117)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2642 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1266 |#1| |#2|) (-141) (-1070) (-804)) (T -1266)) -((-4073 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-1178 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (-5 *2 (-1197)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-3359 (*1 *2 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-4087 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-4087 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-2642 (*1 *2 *1 *3) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4113 (*2 (-1197)))) (-4 *2 (-1070)))) (-2419 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) (-2145 (*1 *2 *1 *3) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1178 *3))))) -(-13 (-994 |t#1| |t#2| (-1103)) (-296 |t#2| |t#1|) (-10 -8 (-15 -4073 ((-1178 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1654 ((-1197) $)) (-15 -3188 (|t#1| $)) (-15 -4328 ($ $ (-940))) (-15 -3359 (|t#2| $)) (-15 -3359 (|t#2| $ |t#2|)) (-15 -4087 ($ $ |t#2|)) (-15 -4087 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4113 (|t#1| (-1197)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2642 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2419 ($ $ |t#2|)) (IF (|has| |t#2| (-1133)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-917 (-1197))) (-6 (-917 (-1197))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2145 ((-1178 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-296 |#2| |#1|) . T) ((-296 $ $) |has| |#2| (-1133)) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-911 $ #1=(-1197)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| |#2| (-1103)) . T) ((-1072 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-2658 ((|#2| |#2|) 12)) (-3589 (((-430 |#2|) |#2|) 14)) (-2951 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))) 30))) -(((-1267 |#1| |#2|) (-10 -7 (-15 -3589 ((-430 |#2|) |#2|)) (-15 -2658 (|#2| |#2|)) (-15 -2951 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) (-568) (-13 (-1264 |#1|) (-568) (-10 -8 (-15 -3115 ($ $ $))))) (T -1267)) -((-2951 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-576)))) (-4 *4 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3115 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1267 *3 *4)))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1267 *3 *2)) (-4 *2 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3115 ($ $ $))))))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1267 *4 *3)) (-4 *3 (-13 (-1264 *4) (-568) (-10 -8 (-15 -3115 ($ $ $)))))))) -(-10 -7 (-15 -3589 ((-430 |#2|) |#2|)) (-15 -2658 (|#2| |#2|)) (-15 -2951 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) -((-2423 (((-1273 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1273 |#1| |#3| |#5|)) 24))) -(((-1268 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2423 ((-1273 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1273 |#1| |#3| |#5|)))) (-1070) (-1070) (-1197) (-1197) |#1| |#2|) (T -1268)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1273 *5 *7 *9)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1273 *6 *8 *10)) (-5 *1 (-1268 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1197))))) -(-10 -7 (-15 -2423 ((-1273 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1273 |#1| |#3| |#5|)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1585 (((-656 (-1103)) $) 86)) (-1654 (((-1197) $) 118)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2390 (($ $) 64 (|has| |#1| (-568)))) (-3302 (((-112) $) 66 (|has| |#1| (-568)))) (-4087 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-4073 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-3586 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 177 (|has| |#1| (-374)))) (-3589 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1462 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4386 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3562 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2861 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-3612 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) 18 T CONST)) (-1895 (($ $ $) 172 (|has| |#1| (-374)))) (-3310 (($ $) 72)) (-1851 (((-3 $ "failed") $) 37)) (-1908 (($ $ $) 171 (|has| |#1| (-374)))) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2171 (((-112) $) 179 (|has| |#1| (-374)))) (-2654 (((-112) $) 85)) (-2722 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-2486 (((-112) $) 35)) (-4005 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4328 (($ $ (-940)) 116) (($ $ (-419 (-576))) 185)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-4101 (((-112) $) 74)) (-1564 (($ |#1| (-419 (-576))) 73) (($ $ (-1103) (-419 (-576))) 88) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) 87)) (-2423 (($ (-1 |#1| |#1|) $) 75)) (-2608 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) 77)) (-1711 ((|#1| $) 78)) (-3076 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2447 (((-1179) $) 10)) (-1669 (($ $) 180 (|has| |#1| (-374)))) (-4412 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-3795 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3115 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1452 (((-430 $) $) 176 (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 173 (|has| |#1| (-374)))) (-2419 (($ $ (-419 (-576))) 110)) (-1946 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2156 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2812 (((-783) $) 169 (|has| |#1| (-374)))) (-4369 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1133)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 170 (|has| |#1| (-374)))) (-4107 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2196 (((-419 (-576)) $) 76)) (-3623 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) 84)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2707 ((|#1| $ (-419 (-576))) 71)) (-4276 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-3188 ((|#1| $) 117)) (-2950 (((-112) $ $) 6)) (-3653 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3632 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1269 |#1|) (-141) (-1070)) (T -1269)) -((-2861 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) (-4 *4 (-1070)) (-4 *1 (-1269 *4)))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1269 *3)) (-4 *3 (-1070)))) (-4412 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) (-4412 (*1 *1 *1 *2) (-3795 (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -1585 ((-656 *2) *3))) (|has| *3 (-15 -4412 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1266 |t#1| (-419 (-576))) (-10 -8 (-15 -2861 ($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |t#1|))))) (-15 -4328 ($ $ (-419 (-576)))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -4412 ($ $)) (IF (|has| |t#1| (-15 -4412 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -1585 ((-656 (-1197)) |t#1|))) (-15 -4412 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-576))) (-15 -4412 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1223))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1133)) ((-300) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1266 |#1| #0#) . T)) -((-3114 (((-112) $) 12)) (-2982 (((-3 |#3| "failed") $) 17)) (-2317 ((|#3| $) 14))) -(((-1270 |#1| |#2| |#3|) (-10 -8 (-15 -2982 ((-3 |#3| "failed") |#1|)) (-15 -2317 (|#3| |#1|)) (-15 -3114 ((-112) |#1|))) (-1271 |#2| |#3|) (-1070) (-1248 |#2|)) (T -1270)) -NIL -(-10 -8 (-15 -2982 ((-3 |#3| "failed") |#1|)) (-15 -2317 (|#3| |#1|)) (-15 -3114 ((-112) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1585 (((-656 (-1103)) $) 86)) (-1654 (((-1197) $) 118)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2390 (($ $) 64 (|has| |#1| (-568)))) (-3302 (((-112) $) 66 (|has| |#1| (-568)))) (-4087 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-4073 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-3586 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 177 (|has| |#1| (-374)))) (-3589 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1462 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4386 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3562 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2861 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-3612 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) 18 T CONST)) (-2982 (((-3 |#2| "failed") $) 197)) (-2317 ((|#2| $) 198)) (-1895 (($ $ $) 172 (|has| |#1| (-374)))) (-3310 (($ $) 72)) (-1851 (((-3 $ "failed") $) 37)) (-3831 (((-419 (-576)) $) 194)) (-1908 (($ $ $) 171 (|has| |#1| (-374)))) (-1648 (($ (-419 (-576)) |#2|) 195)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2171 (((-112) $) 179 (|has| |#1| (-374)))) (-2654 (((-112) $) 85)) (-2722 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-2486 (((-112) $) 35)) (-4005 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4328 (($ $ (-940)) 116) (($ $ (-419 (-576))) 185)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-4101 (((-112) $) 74)) (-1564 (($ |#1| (-419 (-576))) 73) (($ $ (-1103) (-419 (-576))) 88) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) 87)) (-2423 (($ (-1 |#1| |#1|) $) 75)) (-2608 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) 77)) (-1711 ((|#1| $) 78)) (-3076 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-1950 ((|#2| $) 193)) (-1981 (((-3 |#2| "failed") $) 191)) (-1639 ((|#2| $) 192)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 180 (|has| |#1| (-374)))) (-4412 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 183 (-3795 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 165 (|has| |#1| (-374)))) (-3115 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1452 (((-430 $) $) 176 (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 173 (|has| |#1| (-374)))) (-2419 (($ $ (-419 (-576))) 110)) (-1946 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2156 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2812 (((-783) $) 169 (|has| |#1| (-374)))) (-4369 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1133)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 170 (|has| |#1| (-374)))) (-4107 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2196 (((-419 (-576)) $) 76)) (-3623 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) 84)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2707 ((|#1| $ (-419 (-576))) 71)) (-4276 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-3188 ((|#1| $) 117)) (-2950 (((-112) $ $) 6)) (-3653 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3632 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1271 |#1| |#2|) (-141) (-1070) (-1248 |t#1|)) (T -1271)) -((-2196 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) (-5 *2 (-419 (-576))))) (-1648 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1070)) (-4 *1 (-1271 *4 *3)) (-4 *3 (-1248 *4)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) (-5 *2 (-419 (-576))))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3)))) (-1981 (*1 *2 *1) (|partial| -12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3))))) -(-13 (-1269 |t#1|) (-1059 |t#2|) (-628 |t#2|) (-10 -8 (-15 -1648 ($ (-419 (-576)) |t#2|)) (-15 -3831 ((-419 (-576)) $)) (-15 -1950 (|t#2| $)) (-15 -2196 ((-419 (-576)) $)) (-15 -1639 (|t#2| $)) (-15 -1981 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1133)) ((-300) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-939) |has| |#1| (-374)) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1059 |#2|) . T) ((-1072 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1077 #1#) -3795 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1242) |has| |#1| (-374)) ((-1266 |#1| #0#) . T) ((-1269 |#1|) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1585 (((-656 (-1103)) $) NIL)) (-1654 (((-1197) $) 104)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-4087 (($ $ (-419 (-576))) 116) (($ $ (-419 (-576)) (-419 (-576))) 118)) (-4073 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 54)) (-3586 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL (|has| |#1| (-374)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3562 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-2861 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 65)) (-3612 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#2| "failed") $) NIL)) (-2317 ((|#2| $) NIL)) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) 85)) (-3831 (((-419 (-576)) $) 13)) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-1648 (($ (-419 (-576)) |#2|) 11)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2171 (((-112) $) NIL (|has| |#1| (-374)))) (-2654 (((-112) $) 74)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-419 (-576)) $) 113) (((-419 (-576)) $ (-419 (-576))) 114)) (-2486 (((-112) $) NIL)) (-4005 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4328 (($ $ (-940)) 130) (($ $ (-419 (-576))) 128)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-419 (-576))) 33) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-2423 (($ (-1 |#1| |#1|) $) 125)) (-2608 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1950 ((|#2| $) 12)) (-1981 (((-3 |#2| "failed") $) 44)) (-1639 ((|#2| $) 45)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) 101 (|has| |#1| (-374)))) (-4412 (($ $) 146 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 151 (-3795 (-12 (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223)))))) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-2419 (($ $ (-419 (-576))) 122)) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2156 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2812 (((-783) $) NIL (|has| |#1| (-374)))) (-4369 ((|#1| $ (-419 (-576))) 108) (($ $ $) 94 (|has| (-419 (-576)) (-1133)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-4107 (($ $ (-1197)) 138 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2196 (((-419 (-576)) $) 16)) (-3623 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) 120)) (-4113 (((-876) $) NIL) (($ (-576)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-419 (-576))) 139 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2707 ((|#1| $ (-419 (-576))) 107)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) 127 T CONST)) (-3188 ((|#1| $) 106)) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3632 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) 21 T CONST)) (-4322 (($) 17 T CONST)) (-3157 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3939 (((-112) $ $) 72)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 100 (|has| |#1| (-374)))) (-4037 (($ $) 142) (($ $ $) 78)) (-4026 (($ $ $) 76)) (** (($ $ (-940)) NIL) (($ $ (-783)) 82) (($ $ (-576)) 157 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 158 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1272 |#1| |#2|) (-1271 |#1| |#2|) (-1070) (-1248 |#1|)) (T -1272)) -NIL -(-1271 |#1| |#2|) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1585 (((-656 (-1103)) $) NIL)) (-1654 (((-1197) $) 11)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) NIL (|has| |#1| (-568)))) (-4087 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-4073 (((-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3586 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-2658 (($ $) NIL (|has| |#1| (-374)))) (-3589 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4386 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3562 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2861 (($ (-783) (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-3612 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-1252 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1280 |#1| |#2| |#3|) "failed") $) 22)) (-2317 (((-1252 |#1| |#2| |#3|) $) NIL) (((-1280 |#1| |#2| |#3|) $) NIL)) (-1895 (($ $ $) NIL (|has| |#1| (-374)))) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-3831 (((-419 (-576)) $) 69)) (-1908 (($ $ $) NIL (|has| |#1| (-374)))) (-1648 (($ (-419 (-576)) (-1252 |#1| |#2| |#3|)) NIL)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2171 (((-112) $) NIL (|has| |#1| (-374)))) (-2654 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-2486 (((-112) $) NIL)) (-4005 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4328 (($ $ (-940)) NIL) (($ $ (-419 (-576))) NIL)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-419 (-576))) 30) (($ $ (-1103) (-419 (-576))) NIL) (($ $ (-656 (-1103)) (-656 (-419 (-576)))) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-2608 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-3076 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1950 (((-1252 |#1| |#2| |#3|) $) 72)) (-1981 (((-3 (-1252 |#1| |#2| |#3|) "failed") $) NIL)) (-1639 (((-1252 |#1| |#2| |#3|) $) NIL)) (-2447 (((-1179) $) NIL)) (-1669 (($ $) NIL (|has| |#1| (-374)))) (-4412 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) NIL (-3795 (-12 (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-3116 (((-1141) $) NIL)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) NIL (|has| |#1| (-374)))) (-3115 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1452 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4397 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) NIL (|has| |#1| (-374)))) (-2419 (($ $ (-419 (-576))) NIL)) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4377 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2156 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2812 (((-783) $) NIL (|has| |#1| (-374)))) (-4369 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1133)))) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) NIL (|has| |#1| (-374)))) (-4107 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) 38)) (-2196 (((-419 (-576)) $) NIL)) (-3623 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) NIL)) (-4113 (((-876) $) 107) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1252 |#1| |#2| |#3|)) 16) (($ (-1280 |#1| |#2| |#3|)) 17) (($ (-1284 |#2|)) 36) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2707 ((|#1| $ (-419 (-576))) NIL)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-3188 ((|#1| $) 12)) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3632 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-419 (-576))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) 32 T CONST)) (-4322 (($) 26 T CONST)) (-3157 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 34)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1273 |#1| |#2| |#3|) (-13 (-1271 |#1| (-1252 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1280 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1273)) -((-4412 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1271 |#1| (-1252 |#1| |#2| |#3|)) (-911 $ (-1284 |#2|)) (-1059 (-1280 |#1| |#2| |#3|)) (-628 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 37)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL)) (-2390 (($ $) NIL)) (-3302 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 (-576) "failed") $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-419 (-576))))) (((-3 (-1273 |#2| |#3| |#4|) "failed") $) 22)) (-2317 (((-576) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-576)))) (((-419 (-576)) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-1059 (-419 (-576))))) (((-1273 |#2| |#3| |#4|) $) NIL)) (-3310 (($ $) 41)) (-1851 (((-3 $ "failed") $) 27)) (-1788 (($ $) NIL (|has| (-1273 |#2| |#3| |#4|) (-464)))) (-1975 (($ $ (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|) $) NIL)) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) 11)) (-4101 (((-112) $) NIL)) (-1564 (($ (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) 25)) (-2192 (((-329 |#2| |#3| |#4|) $) NIL)) (-3784 (($ (-1 (-329 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) $) NIL)) (-2423 (($ (-1 (-1273 |#2| |#3| |#4|) (-1273 |#2| |#3| |#4|)) $) NIL)) (-2394 (((-3 (-855 |#2|) "failed") $) 90)) (-1700 (($ $) NIL)) (-1711 (((-1273 |#2| |#3| |#4|) $) 20)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1678 (((-112) $) NIL)) (-1686 (((-1273 |#2| |#3| |#4|) $) NIL)) (-1946 (((-3 $ "failed") $ (-1273 |#2| |#3| |#4|)) NIL (|has| (-1273 |#2| |#3| |#4|) (-568))) (((-3 $ "failed") $ $) NIL)) (-2306 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) "failed") $) 74)) (-2196 (((-329 |#2| |#3| |#4|) $) 17)) (-1944 (((-1273 |#2| |#3| |#4|) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-464)))) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ (-1273 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL (-3795 (|has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576)))) (|has| (-1273 |#2| |#3| |#4|) (-1059 (-419 (-576))))))) (-3244 (((-656 (-1273 |#2| |#3| |#4|)) $) NIL)) (-2707 (((-1273 |#2| |#3| |#4|) $ (-329 |#2| |#3| |#4|)) NIL)) (-4276 (((-3 $ "failed") $) NIL (|has| (-1273 |#2| |#3| |#4|) (-146)))) (-2910 (((-783)) NIL T CONST)) (-1903 (($ $ $ (-783)) NIL (|has| (-1273 |#2| |#3| |#4|) (-174)))) (-2950 (((-112) $ $) NIL)) (-4134 (((-112) $ $) NIL)) (-4313 (($) NIL T CONST)) (-4322 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ (-1273 |#2| |#3| |#4|)) NIL (|has| (-1273 |#2| |#3| |#4|) (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-1273 |#2| |#3| |#4|)) NIL) (($ (-1273 |#2| |#3| |#4|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| (-1273 |#2| |#3| |#4|) (-38 (-419 (-576))))))) -(((-1274 |#1| |#2| |#3| |#4|) (-13 (-336 (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -2394 ((-3 (-855 |#2|) "failed") $)) (-15 -2306 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) "failed") $)))) (-13 (-1059 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1223) (-442 |#1|)) (-1197) |#2|) (T -1274)) -((-2394 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4))) (-2306 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 *4 *5 *6)) (|:| |%expon| (-329 *4 *5 *6)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) (|:| |%type| (-1179)))) (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) (-14 *6 *4)))) -(-13 (-336 (-1273 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -2394 ((-3 (-855 |#2|) "failed") $)) (-15 -2306 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1273 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) "failed") $)))) -((-1690 ((|#2| $) 34)) (-3457 ((|#2| $) 18)) (-3095 (($ $) 53)) (-2867 (($ $ (-576)) 85)) (-4234 (((-112) $ (-783)) 46)) (-4261 ((|#2| $ |#2|) 82)) (-3652 ((|#2| $ |#2|) 78)) (-4268 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-2184 (($ $ (-656 $)) 81)) (-3443 ((|#2| $) 17)) (-1764 (($ $) NIL) (($ $ (-783)) 59)) (-3065 (((-656 $) $) 31)) (-1878 (((-112) $ $) 69)) (-3215 (((-112) $ (-783)) 45)) (-1884 (((-112) $ (-783)) 43)) (-3211 (((-112) $) 33)) (-2850 ((|#2| $) 25) (($ $ (-783)) 64)) (-4369 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2974 (((-112) $) 23)) (-4297 (($ $) 56)) (-1769 (($ $) 86)) (-3083 (((-783) $) 58)) (-2783 (($ $) 57)) (-2767 (($ $ $) 77) (($ |#2| $) NIL)) (-1549 (((-656 $) $) 32)) (-3939 (((-112) $ $) 67)) (-1970 (((-783) $) 52))) -(((-1275 |#1| |#2|) (-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -2867 (|#1| |#1| (-576))) (-15 -4268 (|#2| |#1| "last" |#2|)) (-15 -3652 (|#2| |#1| |#2|)) (-15 -4268 (|#1| |#1| "rest" |#1|)) (-15 -4268 (|#2| |#1| "first" |#2|)) (-15 -1769 (|#1| |#1|)) (-15 -4297 (|#1| |#1|)) (-15 -3083 ((-783) |#1|)) (-15 -2783 (|#1| |#1|)) (-15 -3457 (|#2| |#1|)) (-15 -3443 (|#2| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -2850 (|#1| |#1| (-783))) (-15 -4369 (|#2| |#1| "last")) (-15 -2850 (|#2| |#1|)) (-15 -1764 (|#1| |#1| (-783))) (-15 -4369 (|#1| |#1| "rest")) (-15 -1764 (|#1| |#1|)) (-15 -4369 (|#2| |#1| "first")) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -4261 (|#2| |#1| |#2|)) (-15 -4268 (|#2| |#1| "value" |#2|)) (-15 -2184 (|#1| |#1| (-656 |#1|))) (-15 -1878 ((-112) |#1| |#1|)) (-15 -2974 ((-112) |#1|)) (-15 -4369 (|#2| |#1| "value")) (-15 -1690 (|#2| |#1|)) (-15 -3211 ((-112) |#1|)) (-15 -3065 ((-656 |#1|) |#1|)) (-15 -1549 ((-656 |#1|) |#1|)) (-15 -1970 ((-783) |#1|)) (-15 -4234 ((-112) |#1| (-783))) (-15 -3215 ((-112) |#1| (-783))) (-15 -1884 ((-112) |#1| (-783)))) (-1276 |#2|) (-1238)) (T -1275)) -NIL -(-10 -8 (-15 -3939 ((-112) |#1| |#1|)) (-15 -2867 (|#1| |#1| (-576))) (-15 -4268 (|#2| |#1| "last" |#2|)) (-15 -3652 (|#2| |#1| |#2|)) (-15 -4268 (|#1| |#1| "rest" |#1|)) (-15 -4268 (|#2| |#1| "first" |#2|)) (-15 -1769 (|#1| |#1|)) (-15 -4297 (|#1| |#1|)) (-15 -3083 ((-783) |#1|)) (-15 -2783 (|#1| |#1|)) (-15 -3457 (|#2| |#1|)) (-15 -3443 (|#2| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -2850 (|#1| |#1| (-783))) (-15 -4369 (|#2| |#1| "last")) (-15 -2850 (|#2| |#1|)) (-15 -1764 (|#1| |#1| (-783))) (-15 -4369 (|#1| |#1| "rest")) (-15 -1764 (|#1| |#1|)) (-15 -4369 (|#2| |#1| "first")) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -4261 (|#2| |#1| |#2|)) (-15 -4268 (|#2| |#1| "value" |#2|)) (-15 -2184 (|#1| |#1| (-656 |#1|))) (-15 -1878 ((-112) |#1| |#1|)) (-15 -2974 ((-112) |#1|)) (-15 -4369 (|#2| |#1| "value")) (-15 -1690 (|#2| |#1|)) (-15 -3211 ((-112) |#1|)) (-15 -3065 ((-656 |#1|) |#1|)) (-15 -1549 ((-656 |#1|) |#1|)) (-15 -1970 ((-783) |#1|)) (-15 -4234 ((-112) |#1| (-783))) (-15 -3215 ((-112) |#1| (-783))) (-15 -1884 ((-112) |#1| (-783)))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1690 ((|#1| $) 49)) (-3457 ((|#1| $) 66)) (-3095 (($ $) 68)) (-2867 (($ $ (-576)) 53 (|has| $ (-6 -4465)))) (-4234 (((-112) $ (-783)) 8)) (-4261 ((|#1| $ |#1|) 40 (|has| $ (-6 -4465)))) (-1331 (($ $ $) 57 (|has| $ (-6 -4465)))) (-3652 ((|#1| $ |#1|) 55 (|has| $ (-6 -4465)))) (-2122 ((|#1| $ |#1|) 59 (|has| $ (-6 -4465)))) (-4268 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4465))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4465))) (($ $ "rest" $) 56 (|has| $ (-6 -4465))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4465)))) (-2184 (($ $ (-656 $)) 42 (|has| $ (-6 -4465)))) (-3443 ((|#1| $) 67)) (-3170 (($) 7 T CONST)) (-1764 (($ $) 74) (($ $ (-783)) 72)) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-3065 (((-656 $) $) 51)) (-1878 (((-112) $ $) 43 (|has| |#1| (-1121)))) (-3215 (((-112) $ (-783)) 9)) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36)) (-1884 (((-112) $ (-783)) 10)) (-4186 (((-656 |#1|) $) 46)) (-3211 (((-112) $) 50)) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-2850 ((|#1| $) 71) (($ $ (-783)) 69)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1755 ((|#1| $) 77) (($ $ (-783)) 75)) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-2027 (((-576) $ $) 45)) (-2974 (((-112) $) 47)) (-4297 (($ $) 63)) (-1769 (($ $) 60 (|has| $ (-6 -4465)))) (-3083 (((-783) $) 64)) (-2783 (($ $) 65)) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-4287 (($ $) 13)) (-4022 (($ $ $) 62 (|has| $ (-6 -4465))) (($ $ |#1|) 61 (|has| $ (-6 -4465)))) (-2767 (($ $ $) 79) (($ |#1| $) 78)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-1549 (((-656 $) $) 52)) (-4295 (((-112) $ $) 44 (|has| |#1| (-1121)))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-1276 |#1|) (-141) (-1238)) (T -1276)) -((-2767 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2767 (*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-1755 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-1764 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-1764 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-2850 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2850 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-3095 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2783 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) (-4297 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-4022 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-4022 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-1769 (*1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2122 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-4268 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-1331 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-4268 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) (-3652 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-4268 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) (-2867 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4465)) (-4 *1 (-1276 *3)) (-4 *3 (-1238))))) -(-13 (-1031 |t#1|) (-10 -8 (-15 -2767 ($ $ $)) (-15 -2767 ($ |t#1| $)) (-15 -1755 (|t#1| $)) (-15 -4369 (|t#1| $ "first")) (-15 -1755 ($ $ (-783))) (-15 -1764 ($ $)) (-15 -4369 ($ $ "rest")) (-15 -1764 ($ $ (-783))) (-15 -2850 (|t#1| $)) (-15 -4369 (|t#1| $ "last")) (-15 -2850 ($ $ (-783))) (-15 -3095 ($ $)) (-15 -3443 (|t#1| $)) (-15 -3457 (|t#1| $)) (-15 -2783 ($ $)) (-15 -3083 ((-783) $)) (-15 -4297 ($ $)) (IF (|has| $ (-6 -4465)) (PROGN (-15 -4022 ($ $ $)) (-15 -4022 ($ $ |t#1|)) (-15 -1769 ($ $)) (-15 -2122 (|t#1| $ |t#1|)) (-15 -4268 (|t#1| $ "first" |t#1|)) (-15 -1331 ($ $ $)) (-15 -4268 ($ $ "rest" $)) (-15 -3652 (|t#1| $ |t#1|)) (-15 -4268 (|t#1| $ "last" |t#1|)) (-15 -2867 ($ $ (-576)))) |%noBranch|))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-625 (-876)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-1031 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1238) . T)) -((-2423 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1277 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2423 (|#4| (-1 |#2| |#1|) |#3|))) (-1070) (-1070) (-1279 |#1|) (-1279 |#2|)) (T -1277)) -((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-1279 *6)) (-5 *1 (-1277 *5 *6 *4 *2)) (-4 *4 (-1279 *5))))) -(-10 -7 (-15 -2423 (|#4| (-1 |#2| |#1|) |#3|))) -((-3114 (((-112) $) 17)) (-3586 (($ $) 105)) (-3435 (($ $) 81)) (-3562 (($ $) 101)) (-3412 (($ $) 77)) (-3612 (($ $) 109)) (-3461 (($ $) 85)) (-2608 (($ $) 75)) (-2156 (($ $) 73)) (-3623 (($ $) 111)) (-3474 (($ $) 87)) (-3599 (($ $) 107)) (-3448 (($ $) 83)) (-3574 (($ $) 103)) (-3424 (($ $) 79)) (-4113 (((-876) $) 61) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3653 (($ $) 117)) (-3510 (($ $) 93)) (-3632 (($ $) 113)) (-3487 (($ $) 89)) (-3673 (($ $) 121)) (-3537 (($ $) 97)) (-1972 (($ $) 123)) (-3550 (($ $) 99)) (-3664 (($ $) 119)) (-3523 (($ $) 95)) (-3642 (($ $) 115)) (-3498 (($ $) 91)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-419 (-576))) 71))) -(((-1278 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3435 (|#1| |#1|)) (-15 -3412 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3424 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3510 (|#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -3599 (|#1| |#1|)) (-15 -3623 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3664 (|#1| |#1|)) (-15 -1972 (|#1| |#1|)) (-15 -3673 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3653 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -2156 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4113 (|#1| |#2|)) (-15 -4113 (|#1| |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -4113 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -3114 ((-112) |#1|)) (-15 -4113 ((-876) |#1|))) (-1279 |#2|) (-1070)) (T -1278)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3435 (|#1| |#1|)) (-15 -3412 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3424 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3510 (|#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -3599 (|#1| |#1|)) (-15 -3623 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3664 (|#1| |#1|)) (-15 -1972 (|#1| |#1|)) (-15 -3673 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3653 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -2156 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4113 (|#1| |#2|)) (-15 -4113 (|#1| |#1|)) (-15 -4113 (|#1| (-419 (-576)))) (-15 -4113 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-940))) (-15 -3114 ((-112) |#1|)) (-15 -4113 ((-876) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1585 (((-656 (-1103)) $) 86)) (-1654 (((-1197) $) 118)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2390 (($ $) 64 (|has| |#1| (-568)))) (-3302 (((-112) $) 66 (|has| |#1| (-568)))) (-4087 (($ $ (-783)) 113) (($ $ (-783) (-783)) 112)) (-4073 (((-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 119)) (-3586 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) 20)) (-1462 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3562 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2861 (($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 170) (($ (-1178 |#1|)) 168)) (-3612 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) 18 T CONST)) (-3310 (($ $) 72)) (-1851 (((-3 $ "failed") $) 37)) (-3219 (($ $) 167)) (-2818 (((-971 |#1|) $ (-783)) 165) (((-971 |#1|) $ (-783) (-783)) 164)) (-2654 (((-112) $) 85)) (-2722 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-783) $) 115) (((-783) $ (-783)) 114)) (-2486 (((-112) $) 35)) (-4005 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4328 (($ $ (-940)) 116)) (-3260 (($ (-1 |#1| (-576)) $) 166)) (-4101 (((-112) $) 74)) (-1564 (($ |#1| (-783)) 73) (($ $ (-1103) (-783)) 88) (($ $ (-656 (-1103)) (-656 (-783))) 87)) (-2423 (($ (-1 |#1| |#1|) $) 75)) (-2608 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) 77)) (-1711 ((|#1| $) 78)) (-2447 (((-1179) $) 10)) (-4412 (($ $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 161 (-3795 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3116 (((-1141) $) 11)) (-2419 (($ $ (-783)) 110)) (-1946 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2156 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2145 (((-1178 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-4369 ((|#1| $ (-783)) 120) (($ $ $) 96 (|has| (-783) (-1133)))) (-4107 (($ $ (-1197)) 108 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197))) 106 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1197) (-783)) 105 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 104 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-2196 (((-783) $) 76)) (-3623 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) 84)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3244 (((-1178 |#1|) $) 169)) (-2707 ((|#1| $ (-783)) 71)) (-4276 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2910 (((-783)) 32 T CONST)) (-3188 ((|#1| $) 117)) (-2950 (((-112) $ $) 6)) (-3653 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3632 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-783)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3157 (($ $ (-1197)) 107 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197))) 103 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1197) (-783)) 102 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1197)) (-656 (-783))) 101 (-12 (|has| |#1| (-917 (-1197))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ |#1|) 163 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1279 |#1|) (-141) (-1070)) (T -1279)) -((-2861 (*1 *1 *2) (-12 (-5 *2 (-1178 (-2 (|:| |k| (-783)) (|:| |c| *3)))) (-4 *3 (-1070)) (-4 *1 (-1279 *3)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-5 *2 (-1178 *3)))) (-2861 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-4 *1 (-1279 *3)))) (-3219 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)))) (-3260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1279 *3)) (-4 *3 (-1070)))) (-2818 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) (-5 *2 (-971 *4)))) (-2818 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) (-5 *2 (-971 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) (-4412 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) (-4412 (*1 *1 *1 *2) (-3795 (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -1585 ((-656 *2) *3))) (|has| *3 (-15 -4412 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1266 |t#1| (-783)) (-10 -8 (-15 -2861 ($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |t#1|))))) (-15 -3244 ((-1178 |t#1|) $)) (-15 -2861 ($ (-1178 |t#1|))) (-15 -3219 ($ $)) (-15 -3260 ($ (-1 |t#1| (-576)) $)) (-15 -2818 ((-971 |t#1|) $ (-783))) (-15 -2818 ((-971 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-374)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -4412 ($ $)) (IF (|has| |t#1| (-15 -4412 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -1585 ((-656 (-1197)) |t#1|))) (-15 -4412 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-576))) (-15 -4412 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1223))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-876)) . T) ((-174) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-783) (-1133)) ((-300) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-911 $ #2=(-1197)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197)))) ((-919 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197)))) ((-994 |#1| #0# (-1103)) . T) ((-1023) |has| |#1| (-38 (-419 (-576)))) ((-1072 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1072 |#1|) . T) ((-1072 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1077 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1077 |#1|) . T) ((-1077 $) -3795 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-576)))) ((-1226) |has| |#1| (-38 (-419 (-576)))) ((-1238) . T) ((-1266 |#1| #0#) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1585 (((-656 (-1103)) $) NIL)) (-1654 (((-1197) $) 90)) (-4226 (((-1261 |#2| |#1|) $ (-783)) 73)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2390 (($ $) NIL (|has| |#1| (-568)))) (-3302 (((-112) $) 142 (|has| |#1| (-568)))) (-4087 (($ $ (-783)) 127) (($ $ (-783) (-783)) 130)) (-4073 (((-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 43)) (-3586 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3435 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1765 (((-3 $ "failed") $ $) NIL)) (-1462 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3562 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3412 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2861 (($ (-1178 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 52) (($ (-1178 |#1|)) NIL)) (-3612 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3170 (($) NIL T CONST)) (-3442 (($ $) 134)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-3219 (($ $) 140)) (-2818 (((-971 |#1|) $ (-783)) 63) (((-971 |#1|) $ (-783) (-783)) 65)) (-2654 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-783) $) NIL) (((-783) $ (-783)) NIL)) (-2486 (((-112) $) NIL)) (-2937 (($ $) 117)) (-4005 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4315 (($ (-576) (-576) $) 136)) (-4328 (($ $ (-940)) 139)) (-3260 (($ (-1 |#1| (-576)) $) 111)) (-4101 (((-112) $) NIL)) (-1564 (($ |#1| (-783)) 16) (($ $ (-1103) (-783)) NIL) (($ $ (-656 (-1103)) (-656 (-783))) NIL)) (-2423 (($ (-1 |#1| |#1|) $) 98)) (-2608 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1700 (($ $) NIL)) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-3266 (($ $) 115)) (-1423 (($ $) 113)) (-1798 (($ (-576) (-576) $) 138)) (-4412 (($ $) 150 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1197)) 156 (-3795 (-12 (|has| |#1| (-15 -4412 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -1585 ((-656 (-1197)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-978)) (|has| |#1| (-1223))))) (($ $ (-1284 |#2|)) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3116 (((-1141) $) NIL)) (-2167 (($ $ (-576) (-576)) 121)) (-2419 (($ $ (-783)) 123)) (-1946 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2156 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4400 (($ $) 119)) (-2145 (((-1178 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-4369 ((|#1| $ (-783)) 95) (($ $ $) 132 (|has| (-783) (-1133)))) (-4107 (($ $ (-1197)) 108 (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) 103)) (-2196 (((-783) $) NIL)) (-3623 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3599 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3574 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3424 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3193 (($ $) 125)) (-4113 (((-876) $) NIL) (($ (-576)) 26) (($ (-419 (-576))) 148 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1261 |#2| |#1|)) 81) (($ (-1284 |#2|)) 22)) (-3244 (((-1178 |#1|) $) NIL)) (-2707 ((|#1| $ (-783)) 94)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2910 (((-783)) NIL T CONST)) (-3188 ((|#1| $) 91)) (-2950 (((-112) $ $) NIL)) (-3653 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3510 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4134 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3632 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3487 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3673 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3537 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2642 ((|#1| $ (-783)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -4113 (|#1| (-1197))))))) (-1972 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3550 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3664 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3523 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3642 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3498 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4313 (($) 18 T CONST)) (-4322 (($) 13 T CONST)) (-3157 (($ $ (-1197)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-1197) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $ (-656 (-1197)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-917 (-1197))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1284 |#2|)) NIL)) (-3939 (((-112) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) 107)) (-4026 (($ $ $) 20)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 145 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1280 |#1| |#2| |#3|) (-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -4113 ($ (-1261 |#2| |#1|))) (-15 -4226 ((-1261 |#2| |#1|) $ (-783))) (-15 -4113 ($ (-1284 |#2|))) (-15 -1423 ($ $)) (-15 -3266 ($ $)) (-15 -2937 ($ $)) (-15 -4400 ($ $)) (-15 -2167 ($ $ (-576) (-576))) (-15 -3442 ($ $)) (-15 -4315 ($ (-576) (-576) $)) (-15 -1798 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) (-1070) (-1197) |#1|) (T -1280)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-1261 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-1280 *3 *4 *5)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1280 *4 *5 *6)) (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-1423 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-3266 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-2937 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-4400 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-2167 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3))) (-3442 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) (-14 *4 *2))) (-4315 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3))) (-1798 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) (-14 *5 *3))) (-4412 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(-13 (-1279 |#1|) (-911 $ (-1284 |#2|)) (-10 -8 (-15 -4113 ($ (-1261 |#2| |#1|))) (-15 -4226 ((-1261 |#2| |#1|) $ (-783))) (-15 -4113 ($ (-1284 |#2|))) (-15 -1423 ($ $)) (-15 -3266 ($ $)) (-15 -2937 ($ $)) (-15 -4400 ($ $)) (-15 -2167 ($ $ (-576) (-576))) (-15 -3442 ($ $)) (-15 -4315 ($ (-576) (-576) $)) (-15 -1798 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4412 ($ $ (-1284 |#2|))) |%noBranch|))) -((-3668 (((-1 (-1178 |#1|) (-656 (-1178 |#1|))) (-1 |#2| (-656 |#2|))) 24)) (-2177 (((-1 (-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3111 (((-1 (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2|)) 13)) (-1332 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2389 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2705 ((|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|)) 60)) (-2659 (((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))) 66)) (-1976 ((|#2| |#2| |#2|) 43))) -(((-1281 |#1| |#2|) (-10 -7 (-15 -3111 ((-1 (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2|))) (-15 -2177 ((-1 (-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3668 ((-1 (-1178 |#1|) (-656 (-1178 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -1976 (|#2| |#2| |#2|)) (-15 -2389 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1332 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2705 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -2659 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) (-38 (-419 (-576))) (-1279 |#1|)) (T -1281)) -((-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1279 *5)) (-5 *2 (-656 *6)) (-5 *1 (-1281 *5 *6)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1279 *5)) (-5 *1 (-1281 *5 *2)))) (-1332 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-2389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-1976 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1281 *3 *2)) (-4 *2 (-1279 *3)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-656 (-1178 *4)))) (-5 *1 (-1281 *4 *5)))) (-2177 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-1178 *4) (-1178 *4))) (-5 *1 (-1281 *4 *5)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1279 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-1178 *4))) (-5 *1 (-1281 *4 *5))))) -(-10 -7 (-15 -3111 ((-1 (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2|))) (-15 -2177 ((-1 (-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3668 ((-1 (-1178 |#1|) (-656 (-1178 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -1976 (|#2| |#2| |#2|)) (-15 -2389 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1332 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2705 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -2659 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) -((-3020 ((|#2| |#4| (-783)) 31)) (-1847 ((|#4| |#2|) 26)) (-3774 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)))) (-4049 (((-1 |#4| (-656 |#4|)) |#3|) 43))) -(((-1282 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1847 (|#4| |#2|)) (-15 -3020 (|#2| |#4| (-783))) (-15 -4049 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -3774 (|#4| (-419 |#2|))) |%noBranch|)) (-1070) (-1264 |#1|) (-668 |#2|) (-1279 |#1|)) (T -1282)) -((-3774 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-568)) (-4 *4 (-1070)) (-4 *2 (-1279 *4)) (-5 *1 (-1282 *4 *5 *6 *2)) (-4 *6 (-668 *5)))) (-4049 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-1264 *4)) (-5 *2 (-1 *6 (-656 *6))) (-5 *1 (-1282 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1279 *4)))) (-3020 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-1282 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1279 *5)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *3 (-1264 *4)) (-4 *2 (-1279 *4)) (-5 *1 (-1282 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) -(-10 -7 (-15 -1847 (|#4| |#2|)) (-15 -3020 (|#2| |#4| (-783))) (-15 -4049 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -3774 (|#4| (-419 |#2|))) |%noBranch|)) -NIL -(((-1283) (-141)) (T -1283)) -NIL -(-13 (-10 -7 (-6 -2606))) -((-1957 (((-112) $ $) NIL)) (-1654 (((-1197)) 12)) (-2447 (((-1179) $) 18)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 11) (((-1197) $) 8)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 15))) -(((-1284 |#1|) (-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -4113 ((-1197) $)) (-15 -1654 ((-1197))))) (-1197)) (T -1284)) -((-4113 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2))) (-1654 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2)))) -(-13 (-1121) (-625 (-1197)) (-10 -8 (-15 -4113 ((-1197) $)) (-15 -1654 ((-1197))))) -((-2155 (($ (-783)) 19)) (-1665 (((-701 |#2|) $ $) 41)) (-2396 ((|#2| $) 51)) (-3108 ((|#2| $) 50)) (-1875 ((|#2| $ $) 36)) (-2900 (($ $ $) 47)) (-4037 (($ $) 23) (($ $ $) 29)) (-4026 (($ $ $) 15)) (* (($ (-576) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1285 |#1| |#2|) (-10 -8 (-15 -2396 (|#2| |#1|)) (-15 -3108 (|#2| |#1|)) (-15 -2900 (|#1| |#1| |#1|)) (-15 -1665 ((-701 |#2|) |#1| |#1|)) (-15 -1875 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 -2155 (|#1| (-783))) (-15 -4026 (|#1| |#1| |#1|))) (-1286 |#2|) (-1238)) (T -1285)) -NIL -(-10 -8 (-15 -2396 (|#2| |#1|)) (-15 -3108 (|#2| |#1|)) (-15 -2900 (|#1| |#1| |#1|)) (-15 -1665 ((-701 |#2|) |#1| |#1|)) (-15 -1875 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4037 (|#1| |#1| |#1|)) (-15 -4037 (|#1| |#1|)) (-15 -2155 (|#1| (-783))) (-15 -4026 (|#1| |#1| |#1|))) -((-1957 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2155 (($ (-783)) 115 (|has| |#1| (-23)))) (-3657 (((-1293) $ (-576) (-576)) 41 (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4465))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4465))))) (-2380 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-4234 (((-112) $ (-783)) 8)) (-4268 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) 60 (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4464)))) (-3170 (($) 7 T CONST)) (-1542 (($ $) 93 (|has| $ (-6 -4465)))) (-4204 (($ $) 103)) (-3841 (($ $) 80 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-2825 (($ |#1| $) 79 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) 52)) (-3539 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1121)))) (-3722 (((-656 |#1|) $) 31 (|has| $ (-6 -4464)))) (-1665 (((-701 |#1|) $ $) 108 (|has| |#1| (-1070)))) (-1991 (($ (-783) |#1|) 70)) (-3215 (((-112) $ (-783)) 9)) (-1605 (((-576) $) 44 (|has| (-576) (-861)))) (-2907 (($ $ $) 85 (|has| |#1| (-861)))) (-2748 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) 30 (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-1829 (((-576) $) 45 (|has| (-576) (-861)))) (-3777 (($ $ $) 86 (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2396 ((|#1| $) 105 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-1884 (((-112) $ (-783)) 10)) (-3108 ((|#1| $) 106 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))))) (-2447 (((-1179) $) 23 (|has| |#1| (-1121)))) (-3386 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2863 (((-656 (-576)) $) 47)) (-1389 (((-112) (-576) $) 48)) (-3116 (((-1141) $) 22 (|has| |#1| (-1121)))) (-1755 ((|#1| $) 43 (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4267 (($ $ |#1|) 42 (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) 14)) (-2021 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) 49)) (-3617 (((-112) $) 11)) (-3307 (($) 12)) (-4369 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1255 (-576))) 71)) (-1875 ((|#1| $ $) 109 (|has| |#1| (-1070)))) (-2335 (($ $ (-576)) 64) (($ $ (-1255 (-576))) 63)) (-2900 (($ $ $) 107 (|has| |#1| (-1070)))) (-3127 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4464))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4464))))) (-3218 (($ $ $ (-576)) 94 (|has| $ (-6 -4465)))) (-4287 (($ $) 13)) (-1556 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 72)) (-2767 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4113 (((-876) $) 18 (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3975 (((-112) $ $) 89 (|has| |#1| (-861)))) (-3939 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3984 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3963 (((-112) $ $) 90 (|has| |#1| (-861)))) (-4037 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4026 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-1970 (((-783) $) 6 (|has| $ (-6 -4464))))) -(((-1286 |#1|) (-141) (-1238)) (T -1286)) -((-4026 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-25)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1286 *3)) (-4 *3 (-23)) (-4 *3 (-1238)))) (-4037 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) (-4037 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-738)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-738)))) (-1875 (*1 *2 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) (-1665 (*1 *2 *1 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-1070)) (-5 *2 (-701 *3)))) (-2900 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070)))) (-2396 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4026 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2155 ($ (-783))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4037 ($ $)) (-15 -4037 ($ $ $)) (-15 * ($ (-576) $))) |%noBranch|) (IF (|has| |t#1| (-738)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1070)) (PROGN (-15 -1875 (|t#1| $ $)) (-15 -1665 ((-701 |t#1|) $ $)) (-15 -2900 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1023)) (IF (|has| |t#1| (-1070)) (PROGN (-15 -3108 (|t#1| $)) (-15 -2396 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-625 (-876)) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861)) (|has| |#1| (-625 (-876)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1255 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1121) -3795 (|has| |#1| (-1121)) (|has| |#1| (-861))) ((-1238) . T)) -((-4324 (((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|) 13)) (-2721 ((|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|) 15)) (-2423 (((-3 (-1288 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1288 |#1|)) 30) (((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|)) 18))) -(((-1287 |#1| |#2|) (-10 -7 (-15 -4324 ((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -2423 ((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|))) (-15 -2423 ((-3 (-1288 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1288 |#1|)))) (-1238) (-1238)) (T -1287)) -((-2423 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1287 *5 *6)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1287 *5 *6)))) (-2721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-1287 *5 *2)))) (-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1288 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-1288 *5)) (-5 *1 (-1287 *6 *5))))) -(-10 -7 (-15 -4324 ((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -2721 (|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -2423 ((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|))) (-15 -2423 ((-3 (-1288 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1288 |#1|)))) -((-1957 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2155 (($ (-783)) NIL (|has| |#1| (-23)))) (-4096 (($ (-656 |#1|)) 11)) (-3657 (((-1293) $ (-576) (-576)) NIL (|has| $ (-6 -4465)))) (-2919 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4465))) (($ $) NIL (-12 (|has| $ (-6 -4465)) (|has| |#1| (-861))))) (-2380 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-4234 (((-112) $ (-783)) NIL)) (-4268 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465))) ((|#1| $ (-1255 (-576)) |#1|) NIL (|has| $ (-6 -4465)))) (-3603 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3170 (($) NIL T CONST)) (-1542 (($ $) NIL (|has| $ (-6 -4465)))) (-4204 (($ $) NIL)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2721 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4464))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4464)))) (-1910 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4465)))) (-3721 ((|#1| $ (-576)) NIL)) (-3539 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1121))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1121)))) (-3722 (((-656 |#1|) $) 16 (|has| $ (-6 -4464)))) (-1665 (((-701 |#1|) $ $) NIL (|has| |#1| (-1070)))) (-1991 (($ (-783) |#1|) NIL)) (-3215 (((-112) $ (-783)) NIL)) (-1605 (((-576) $) NIL (|has| (-576) (-861)))) (-2907 (($ $ $) NIL (|has| |#1| (-861)))) (-2748 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-2911 (((-656 |#1|) $) NIL (|has| $ (-6 -4464)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-1829 (((-576) $) 12 (|has| (-576) (-861)))) (-3777 (($ $ $) NIL (|has| |#1| (-861)))) (-1898 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2396 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-1884 (((-112) $ (-783)) NIL)) (-3108 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))))) (-2447 (((-1179) $) NIL (|has| |#1| (-1121)))) (-3386 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2863 (((-656 (-576)) $) NIL)) (-1389 (((-112) (-576) $) NIL)) (-3116 (((-1141) $) NIL (|has| |#1| (-1121)))) (-1755 ((|#1| $) NIL (|has| (-576) (-861)))) (-4220 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4267 (($ $ |#1|) NIL (|has| $ (-6 -4465)))) (-1759 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1121))))) (-1645 (((-112) $ $) NIL)) (-2021 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-2885 (((-656 |#1|) $) NIL)) (-3617 (((-112) $) NIL)) (-3307 (($) NIL)) (-4369 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-1875 ((|#1| $ $) NIL (|has| |#1| (-1070)))) (-2335 (($ $ (-576)) NIL) (($ $ (-1255 (-576))) NIL)) (-2900 (($ $ $) NIL (|has| |#1| (-1070)))) (-3127 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#1| (-1121))))) (-3218 (($ $ $ (-576)) NIL (|has| $ (-6 -4465)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) 20 (|has| |#1| (-626 (-548))))) (-4125 (($ (-656 |#1|)) 10)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4113 (((-876) $) NIL (|has| |#1| (-625 (-876))))) (-2950 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2543 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4464)))) (-3995 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3975 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3939 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3984 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4037 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4026 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1288 |#1|) (-13 (-1286 |#1|) (-10 -8 (-15 -4096 ($ (-656 |#1|))))) (-1238)) (T -1288)) -((-4096 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1288 *3))))) -(-13 (-1286 |#1|) (-10 -8 (-15 -4096 ($ (-656 |#1|))))) -((-1957 (((-112) $ $) NIL)) (-2538 (((-1179) $ (-1179)) 107) (((-1179) $ (-1179) (-1179)) 105) (((-1179) $ (-1179) (-656 (-1179))) 104)) (-2681 (($) 69)) (-3476 (((-1293) $ (-480) (-940)) 54)) (-3479 (((-1293) $ (-940) (-1179)) 89) (((-1293) $ (-940) (-888)) 90)) (-3818 (((-1293) $ (-940) (-390) (-390)) 57)) (-3751 (((-1293) $ (-1179)) 84)) (-3810 (((-1293) $ (-940) (-1179)) 94)) (-2897 (((-1293) $ (-940) (-390) (-390)) 58)) (-2755 (((-1293) $ (-940) (-940)) 55)) (-2515 (((-1293) $) 85)) (-3656 (((-1293) $ (-940) (-1179)) 93)) (-2484 (((-1293) $ (-480) (-940)) 41)) (-2729 (((-1293) $ (-940) (-1179)) 92)) (-1503 (((-656 (-270)) $) 29) (($ $ (-656 (-270))) 30)) (-3595 (((-1293) $ (-783) (-783)) 52)) (-3480 (($ $) 70) (($ (-480) (-656 (-270))) 71)) (-2447 (((-1179) $) NIL)) (-2240 (((-576) $) 48)) (-3116 (((-1141) $) NIL)) (-2652 (((-1288 (-3 (-480) "undefined")) $) 47)) (-3894 (((-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2729 (-576)) (|:| -3204 (-576)) (|:| |spline| (-576)) (|:| -2792 (-576)) (|:| |axesColor| (-888)) (|:| -3479 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576)))) $) 46)) (-2251 (((-1293) $ (-940) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-888) (-576) (-888) (-576)) 83)) (-2369 (((-656 (-962 (-227))) $) NIL)) (-3216 (((-480) $ (-940)) 43)) (-4355 (((-1293) $ (-783) (-783) (-940) (-940)) 50)) (-1358 (((-1293) $ (-1179)) 95)) (-3204 (((-1293) $ (-940) (-1179)) 91)) (-4113 (((-876) $) 102)) (-1597 (((-1293) $) 96)) (-2950 (((-112) $ $) NIL)) (-2792 (((-1293) $ (-940) (-1179)) 87) (((-1293) $ (-940) (-888)) 88)) (-3939 (((-112) $ $) NIL))) -(((-1289) (-13 (-1121) (-10 -8 (-15 -2369 ((-656 (-962 (-227))) $)) (-15 -2681 ($)) (-15 -3480 ($ $)) (-15 -1503 ((-656 (-270)) $)) (-15 -1503 ($ $ (-656 (-270)))) (-15 -3480 ($ (-480) (-656 (-270)))) (-15 -2251 ((-1293) $ (-940) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-888) (-576) (-888) (-576))) (-15 -3894 ((-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2729 (-576)) (|:| -3204 (-576)) (|:| |spline| (-576)) (|:| -2792 (-576)) (|:| |axesColor| (-888)) (|:| -3479 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576)))) $)) (-15 -2652 ((-1288 (-3 (-480) "undefined")) $)) (-15 -3751 ((-1293) $ (-1179))) (-15 -2484 ((-1293) $ (-480) (-940))) (-15 -3216 ((-480) $ (-940))) (-15 -2792 ((-1293) $ (-940) (-1179))) (-15 -2792 ((-1293) $ (-940) (-888))) (-15 -3479 ((-1293) $ (-940) (-1179))) (-15 -3479 ((-1293) $ (-940) (-888))) (-15 -2729 ((-1293) $ (-940) (-1179))) (-15 -3656 ((-1293) $ (-940) (-1179))) (-15 -3204 ((-1293) $ (-940) (-1179))) (-15 -1358 ((-1293) $ (-1179))) (-15 -1597 ((-1293) $)) (-15 -4355 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -2897 ((-1293) $ (-940) (-390) (-390))) (-15 -3818 ((-1293) $ (-940) (-390) (-390))) (-15 -3810 ((-1293) $ (-940) (-1179))) (-15 -3595 ((-1293) $ (-783) (-783))) (-15 -3476 ((-1293) $ (-480) (-940))) (-15 -2755 ((-1293) $ (-940) (-940))) (-15 -2538 ((-1179) $ (-1179))) (-15 -2538 ((-1179) $ (-1179) (-1179))) (-15 -2538 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -2515 ((-1293) $)) (-15 -2240 ((-576) $)) (-15 -4113 ((-876) $))))) (T -1289)) -((-4113 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1289)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-656 (-962 (-227)))) (-5 *1 (-1289)))) (-2681 (*1 *1) (-5 *1 (-1289))) (-3480 (*1 *1 *1) (-5 *1 (-1289))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-1503 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-3480 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) (-2251 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-940)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2729 (-576)) (|:| -3204 (-576)) (|:| |spline| (-576)) (|:| -2792 (-576)) (|:| |axesColor| (-888)) (|:| -3479 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576))))) (-5 *1 (-1289)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-1288 (-3 (-480) "undefined"))) (-5 *1 (-1289)))) (-3751 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2484 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3216 (*1 *2 *1 *3) (-12 (-5 *3 (-940)) (-5 *2 (-480)) (-5 *1 (-1289)))) (-2792 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2792 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3479 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3479 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2729 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3656 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3204 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1358 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) (-4355 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2897 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3818 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3810 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3595 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-3476 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2755 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2538 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) (-2538 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) (-2538 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1289)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289))))) -(-13 (-1121) (-10 -8 (-15 -2369 ((-656 (-962 (-227))) $)) (-15 -2681 ($)) (-15 -3480 ($ $)) (-15 -1503 ((-656 (-270)) $)) (-15 -1503 ($ $ (-656 (-270)))) (-15 -3480 ($ (-480) (-656 (-270)))) (-15 -2251 ((-1293) $ (-940) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-888) (-576) (-888) (-576))) (-15 -3894 ((-1288 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2729 (-576)) (|:| -3204 (-576)) (|:| |spline| (-576)) (|:| -2792 (-576)) (|:| |axesColor| (-888)) (|:| -3479 (-576)) (|:| |unitsColor| (-888)) (|:| |showing| (-576)))) $)) (-15 -2652 ((-1288 (-3 (-480) "undefined")) $)) (-15 -3751 ((-1293) $ (-1179))) (-15 -2484 ((-1293) $ (-480) (-940))) (-15 -3216 ((-480) $ (-940))) (-15 -2792 ((-1293) $ (-940) (-1179))) (-15 -2792 ((-1293) $ (-940) (-888))) (-15 -3479 ((-1293) $ (-940) (-1179))) (-15 -3479 ((-1293) $ (-940) (-888))) (-15 -2729 ((-1293) $ (-940) (-1179))) (-15 -3656 ((-1293) $ (-940) (-1179))) (-15 -3204 ((-1293) $ (-940) (-1179))) (-15 -1358 ((-1293) $ (-1179))) (-15 -1597 ((-1293) $)) (-15 -4355 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -2897 ((-1293) $ (-940) (-390) (-390))) (-15 -3818 ((-1293) $ (-940) (-390) (-390))) (-15 -3810 ((-1293) $ (-940) (-1179))) (-15 -3595 ((-1293) $ (-783) (-783))) (-15 -3476 ((-1293) $ (-480) (-940))) (-15 -2755 ((-1293) $ (-940) (-940))) (-15 -2538 ((-1179) $ (-1179))) (-15 -2538 ((-1179) $ (-1179) (-1179))) (-15 -2538 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -2515 ((-1293) $)) (-15 -2240 ((-576) $)) (-15 -4113 ((-876) $)))) -((-1957 (((-112) $ $) NIL)) (-2300 (((-1293) $ (-390)) 169) (((-1293) $ (-390) (-390) (-390)) 170)) (-2538 (((-1179) $ (-1179)) 179) (((-1179) $ (-1179) (-1179)) 177) (((-1179) $ (-1179) (-656 (-1179))) 176)) (-2009 (($) 67)) (-2333 (((-1293) $ (-390) (-390) (-390) (-390) (-390)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1293) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1293) $ (-576) (-576) (-390) (-390) (-390)) 144) (((-1293) $ (-390) (-390)) 145) (((-1293) $ (-390) (-390) (-390)) 152)) (-1599 (((-390)) 122) (((-390) (-390)) 123)) (-2144 (((-390)) 117) (((-390) (-390)) 119)) (-1965 (((-390)) 120) (((-390) (-390)) 121)) (-3005 (((-390)) 126) (((-390) (-390)) 127)) (-3990 (((-390)) 124) (((-390) (-390)) 125)) (-3818 (((-1293) $ (-390) (-390)) 171)) (-3751 (((-1293) $ (-1179)) 153)) (-3702 (((-1154 (-227)) $) 68) (($ $ (-1154 (-227))) 69)) (-4139 (((-1293) $ (-1179)) 187)) (-3224 (((-1293) $ (-1179)) 188)) (-1838 (((-1293) $ (-390) (-390)) 151) (((-1293) $ (-576) (-576)) 168)) (-2755 (((-1293) $ (-940) (-940)) 160)) (-2515 (((-1293) $) 137)) (-2692 (((-1293) $ (-1179)) 186)) (-3055 (((-1293) $ (-1179)) 134)) (-1503 (((-656 (-270)) $) 70) (($ $ (-656 (-270))) 71)) (-3595 (((-1293) $ (-783) (-783)) 159)) (-2990 (((-1293) $ (-783) (-962 (-227))) 193)) (-2661 (($ $) 73) (($ (-1154 (-227)) (-1179)) 74) (($ (-1154 (-227)) (-656 (-270))) 75)) (-1396 (((-1293) $ (-390) (-390) (-390)) 131)) (-2447 (((-1179) $) NIL)) (-2240 (((-576) $) 128)) (-2894 (((-1293) $ (-390)) 174)) (-2143 (((-1293) $ (-390)) 191)) (-3116 (((-1141) $) NIL)) (-2814 (((-1293) $ (-390)) 190)) (-3892 (((-1293) $ (-1179)) 136)) (-4355 (((-1293) $ (-783) (-783) (-940) (-940)) 158)) (-3505 (((-1293) $ (-1179)) 133)) (-1358 (((-1293) $ (-1179)) 135)) (-2213 (((-1293) $ (-158) (-158)) 157)) (-4113 (((-876) $) 166)) (-1597 (((-1293) $) 138)) (-3162 (((-1293) $ (-1179)) 189)) (-2950 (((-112) $ $) NIL)) (-2792 (((-1293) $ (-1179)) 132)) (-3939 (((-112) $ $) NIL))) -(((-1290) (-13 (-1121) (-10 -8 (-15 -2144 ((-390))) (-15 -2144 ((-390) (-390))) (-15 -1965 ((-390))) (-15 -1965 ((-390) (-390))) (-15 -1599 ((-390))) (-15 -1599 ((-390) (-390))) (-15 -3990 ((-390))) (-15 -3990 ((-390) (-390))) (-15 -3005 ((-390))) (-15 -3005 ((-390) (-390))) (-15 -2009 ($)) (-15 -2661 ($ $)) (-15 -2661 ($ (-1154 (-227)) (-1179))) (-15 -2661 ($ (-1154 (-227)) (-656 (-270)))) (-15 -3702 ((-1154 (-227)) $)) (-15 -3702 ($ $ (-1154 (-227)))) (-15 -2990 ((-1293) $ (-783) (-962 (-227)))) (-15 -1503 ((-656 (-270)) $)) (-15 -1503 ($ $ (-656 (-270)))) (-15 -3595 ((-1293) $ (-783) (-783))) (-15 -2755 ((-1293) $ (-940) (-940))) (-15 -3751 ((-1293) $ (-1179))) (-15 -4355 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -2333 ((-1293) $ (-390) (-390) (-390) (-390) (-390))) (-15 -2333 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2333 ((-1293) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2333 ((-1293) $ (-576) (-576) (-390) (-390) (-390))) (-15 -2333 ((-1293) $ (-390) (-390))) (-15 -2333 ((-1293) $ (-390) (-390) (-390))) (-15 -1358 ((-1293) $ (-1179))) (-15 -2792 ((-1293) $ (-1179))) (-15 -3505 ((-1293) $ (-1179))) (-15 -3055 ((-1293) $ (-1179))) (-15 -3892 ((-1293) $ (-1179))) (-15 -1838 ((-1293) $ (-390) (-390))) (-15 -1838 ((-1293) $ (-576) (-576))) (-15 -2300 ((-1293) $ (-390))) (-15 -2300 ((-1293) $ (-390) (-390) (-390))) (-15 -3818 ((-1293) $ (-390) (-390))) (-15 -2692 ((-1293) $ (-1179))) (-15 -2814 ((-1293) $ (-390))) (-15 -2143 ((-1293) $ (-390))) (-15 -4139 ((-1293) $ (-1179))) (-15 -3224 ((-1293) $ (-1179))) (-15 -3162 ((-1293) $ (-1179))) (-15 -1396 ((-1293) $ (-390) (-390) (-390))) (-15 -2894 ((-1293) $ (-390))) (-15 -2515 ((-1293) $)) (-15 -2213 ((-1293) $ (-158) (-158))) (-15 -2538 ((-1179) $ (-1179))) (-15 -2538 ((-1179) $ (-1179) (-1179))) (-15 -2538 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1597 ((-1293) $)) (-15 -2240 ((-576) $))))) (T -1290)) -((-2144 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-2144 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-1965 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-1965 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-1599 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3990 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3990 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3005 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) (-2009 (*1 *1) (-5 *1 (-1290))) (-2661 (*1 *1 *1) (-5 *1 (-1290))) (-2661 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1179)) (-5 *1 (-1290)))) (-2661 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1290)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290)))) (-2990 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290)))) (-1503 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290)))) (-3595 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2755 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3751 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4355 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2333 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1290)))) (-2333 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2333 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2333 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2333 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1358 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3505 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3055 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3892 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1838 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1838 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2300 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3818 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2692 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2814 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2143 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4139 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-3162 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-1396 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2894 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2213 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2538 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) (-2538 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) (-2538 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1290)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1290))))) -(-13 (-1121) (-10 -8 (-15 -2144 ((-390))) (-15 -2144 ((-390) (-390))) (-15 -1965 ((-390))) (-15 -1965 ((-390) (-390))) (-15 -1599 ((-390))) (-15 -1599 ((-390) (-390))) (-15 -3990 ((-390))) (-15 -3990 ((-390) (-390))) (-15 -3005 ((-390))) (-15 -3005 ((-390) (-390))) (-15 -2009 ($)) (-15 -2661 ($ $)) (-15 -2661 ($ (-1154 (-227)) (-1179))) (-15 -2661 ($ (-1154 (-227)) (-656 (-270)))) (-15 -3702 ((-1154 (-227)) $)) (-15 -3702 ($ $ (-1154 (-227)))) (-15 -2990 ((-1293) $ (-783) (-962 (-227)))) (-15 -1503 ((-656 (-270)) $)) (-15 -1503 ($ $ (-656 (-270)))) (-15 -3595 ((-1293) $ (-783) (-783))) (-15 -2755 ((-1293) $ (-940) (-940))) (-15 -3751 ((-1293) $ (-1179))) (-15 -4355 ((-1293) $ (-783) (-783) (-940) (-940))) (-15 -2333 ((-1293) $ (-390) (-390) (-390) (-390) (-390))) (-15 -2333 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2333 ((-1293) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2333 ((-1293) $ (-576) (-576) (-390) (-390) (-390))) (-15 -2333 ((-1293) $ (-390) (-390))) (-15 -2333 ((-1293) $ (-390) (-390) (-390))) (-15 -1358 ((-1293) $ (-1179))) (-15 -2792 ((-1293) $ (-1179))) (-15 -3505 ((-1293) $ (-1179))) (-15 -3055 ((-1293) $ (-1179))) (-15 -3892 ((-1293) $ (-1179))) (-15 -1838 ((-1293) $ (-390) (-390))) (-15 -1838 ((-1293) $ (-576) (-576))) (-15 -2300 ((-1293) $ (-390))) (-15 -2300 ((-1293) $ (-390) (-390) (-390))) (-15 -3818 ((-1293) $ (-390) (-390))) (-15 -2692 ((-1293) $ (-1179))) (-15 -2814 ((-1293) $ (-390))) (-15 -2143 ((-1293) $ (-390))) (-15 -4139 ((-1293) $ (-1179))) (-15 -3224 ((-1293) $ (-1179))) (-15 -3162 ((-1293) $ (-1179))) (-15 -1396 ((-1293) $ (-390) (-390) (-390))) (-15 -2894 ((-1293) $ (-390))) (-15 -2515 ((-1293) $)) (-15 -2213 ((-1293) $ (-158) (-158))) (-15 -2538 ((-1179) $ (-1179))) (-15 -2538 ((-1179) $ (-1179) (-1179))) (-15 -2538 ((-1179) $ (-1179) (-656 (-1179)))) (-15 -1597 ((-1293) $)) (-15 -2240 ((-576) $)))) -((-4266 (((-656 (-1179)) (-656 (-1179))) 104) (((-656 (-1179))) 96)) (-1743 (((-656 (-1179))) 94)) (-3800 (((-656 (-940)) (-656 (-940))) 69) (((-656 (-940))) 64)) (-3620 (((-656 (-783)) (-656 (-783))) 61) (((-656 (-783))) 55)) (-3754 (((-1293)) 71)) (-1762 (((-940) (-940)) 87) (((-940)) 86)) (-1753 (((-940) (-940)) 85) (((-940)) 84)) (-2909 (((-888) (-888)) 81) (((-888)) 80)) (-2478 (((-227)) 91) (((-227) (-390)) 93)) (-3545 (((-940)) 88) (((-940) (-940)) 89)) (-3416 (((-940) (-940)) 83) (((-940)) 82)) (-2519 (((-888) (-888)) 75) (((-888)) 73)) (-2972 (((-888) (-888)) 77) (((-888)) 76)) (-2325 (((-888) (-888)) 79) (((-888)) 78))) -(((-1291) (-10 -7 (-15 -2519 ((-888))) (-15 -2519 ((-888) (-888))) (-15 -2972 ((-888))) (-15 -2972 ((-888) (-888))) (-15 -2325 ((-888))) (-15 -2325 ((-888) (-888))) (-15 -2909 ((-888))) (-15 -2909 ((-888) (-888))) (-15 -3416 ((-940))) (-15 -3416 ((-940) (-940))) (-15 -3620 ((-656 (-783)))) (-15 -3620 ((-656 (-783)) (-656 (-783)))) (-15 -3800 ((-656 (-940)))) (-15 -3800 ((-656 (-940)) (-656 (-940)))) (-15 -3754 ((-1293))) (-15 -4266 ((-656 (-1179)))) (-15 -4266 ((-656 (-1179)) (-656 (-1179)))) (-15 -1743 ((-656 (-1179)))) (-15 -1753 ((-940))) (-15 -1762 ((-940))) (-15 -1753 ((-940) (-940))) (-15 -1762 ((-940) (-940))) (-15 -3545 ((-940) (-940))) (-15 -3545 ((-940))) (-15 -2478 ((-227) (-390))) (-15 -2478 ((-227))))) (T -1291)) -((-2478 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1291)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1291)))) (-3545 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3545 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-1762 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-1753 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-1762 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-1753 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-1743 (*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) (-4266 (*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) (-4266 (*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) (-3754 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1291)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291)))) (-3800 (*1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291)))) (-3620 (*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291)))) (-3620 (*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291)))) (-3416 (*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-3416 (*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) (-2909 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2909 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2325 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2325 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2972 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2972 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2519 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) (-2519 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) -(-10 -7 (-15 -2519 ((-888))) (-15 -2519 ((-888) (-888))) (-15 -2972 ((-888))) (-15 -2972 ((-888) (-888))) (-15 -2325 ((-888))) (-15 -2325 ((-888) (-888))) (-15 -2909 ((-888))) (-15 -2909 ((-888) (-888))) (-15 -3416 ((-940))) (-15 -3416 ((-940) (-940))) (-15 -3620 ((-656 (-783)))) (-15 -3620 ((-656 (-783)) (-656 (-783)))) (-15 -3800 ((-656 (-940)))) (-15 -3800 ((-656 (-940)) (-656 (-940)))) (-15 -3754 ((-1293))) (-15 -4266 ((-656 (-1179)))) (-15 -4266 ((-656 (-1179)) (-656 (-1179)))) (-15 -1743 ((-656 (-1179)))) (-15 -1753 ((-940))) (-15 -1762 ((-940))) (-15 -1753 ((-940) (-940))) (-15 -1762 ((-940) (-940))) (-15 -3545 ((-940) (-940))) (-15 -3545 ((-940))) (-15 -2478 ((-227) (-390))) (-15 -2478 ((-227)))) -((-4339 (((-480) (-656 (-656 (-962 (-227)))) (-656 (-270))) 22) (((-480) (-656 (-656 (-962 (-227))))) 21) (((-480) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270))) 20)) (-1413 (((-1289) (-656 (-656 (-962 (-227)))) (-656 (-270))) 30) (((-1289) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270))) 29)) (-4113 (((-1289) (-480)) 46))) -(((-1292) (-10 -7 (-15 -4339 ((-480) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -4339 ((-480) (-656 (-656 (-962 (-227)))))) (-15 -4339 ((-480) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -1413 ((-1289) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -1413 ((-1289) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -4113 ((-1289) (-480))))) (T -1292)) -((-4113 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1289)) (-5 *1 (-1292)))) (-1413 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-1292)))) (-1413 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-1292)))) (-4339 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1292)))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-480)) (-5 *1 (-1292)))) (-4339 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1292))))) -(-10 -7 (-15 -4339 ((-480) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -4339 ((-480) (-656 (-656 (-962 (-227)))))) (-15 -4339 ((-480) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -1413 ((-1289) (-656 (-656 (-962 (-227)))) (-888) (-888) (-940) (-656 (-270)))) (-15 -1413 ((-1289) (-656 (-656 (-962 (-227)))) (-656 (-270)))) (-15 -4113 ((-1289) (-480)))) -((-2435 (($) 6)) (-4113 (((-876) $) 9))) -(((-1293) (-13 (-625 (-876)) (-10 -8 (-15 -2435 ($))))) (T -1293)) -((-2435 (*1 *1) (-5 *1 (-1293)))) -(-13 (-625 (-876)) (-10 -8 (-15 -2435 ($)))) -((-4047 (($ $ |#2|) 10))) -(((-1294 |#1| |#2|) (-10 -8 (-15 -4047 (|#1| |#1| |#2|))) (-1295 |#2|) (-374)) (T -1294)) -NIL -(-10 -8 (-15 -4047 (|#1| |#1| |#2|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-3181 (((-135)) 33)) (-4113 (((-876) $) 12)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-3939 (((-112) $ $) 8)) (-4047 (($ $ |#1|) 34)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1295 |#1|) (-141) (-374)) (T -1295)) -((-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-374)))) (-3181 (*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) -(-13 (-729 |t#1|) (-10 -8 (-15 -4047 ($ $ |t#1|)) (-15 -3181 ((-135))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1121) . T) ((-1238) . T)) -((-2679 (((-656 (-1232 |#1|)) (-1197) (-1232 |#1|)) 83)) (-2233 (((-1178 (-1178 (-971 |#1|))) (-1197) (-1178 (-971 |#1|))) 63)) (-1461 (((-1 (-1178 (-1232 |#1|)) (-1178 (-1232 |#1|))) (-783) (-1232 |#1|) (-1178 (-1232 |#1|))) 74)) (-1857 (((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783)) 65)) (-2769 (((-1 (-1193 (-971 |#1|)) (-971 |#1|)) (-1197)) 32)) (-3092 (((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783)) 64))) -(((-1296 |#1|) (-10 -7 (-15 -1857 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -3092 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -2233 ((-1178 (-1178 (-971 |#1|))) (-1197) (-1178 (-971 |#1|)))) (-15 -2769 ((-1 (-1193 (-971 |#1|)) (-971 |#1|)) (-1197))) (-15 -2679 ((-656 (-1232 |#1|)) (-1197) (-1232 |#1|))) (-15 -1461 ((-1 (-1178 (-1232 |#1|)) (-1178 (-1232 |#1|))) (-783) (-1232 |#1|) (-1178 (-1232 |#1|))))) (-374)) (T -1296)) -((-1461 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1232 *6)) (-5 *2 (-1 (-1178 *4) (-1178 *4))) (-5 *1 (-1296 *6)) (-5 *5 (-1178 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-656 (-1232 *5))) (-5 *1 (-1296 *5)) (-5 *4 (-1232 *5)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 (-1193 (-971 *4)) (-971 *4))) (-5 *1 (-1296 *4)) (-4 *4 (-374)))) (-2233 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-1178 (-1178 (-971 *5)))) (-5 *1 (-1296 *5)) (-5 *4 (-1178 (-971 *5))))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) (-5 *1 (-1296 *4)) (-4 *4 (-374)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) (-5 *1 (-1296 *4)) (-4 *4 (-374))))) -(-10 -7 (-15 -1857 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -3092 ((-1 (-1178 (-971 |#1|)) (-1178 (-971 |#1|))) (-783))) (-15 -2233 ((-1178 (-1178 (-971 |#1|))) (-1197) (-1178 (-971 |#1|)))) (-15 -2769 ((-1 (-1193 (-971 |#1|)) (-971 |#1|)) (-1197))) (-15 -2679 ((-656 (-1232 |#1|)) (-1197) (-1232 |#1|))) (-15 -1461 ((-1 (-1178 (-1232 |#1|)) (-1178 (-1232 |#1|))) (-783) (-1232 |#1|) (-1178 (-1232 |#1|))))) -((-3876 (((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 80)) (-4329 (((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 79))) -(((-1297 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4329 ((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -3876 ((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) (-360) (-1264 |#1|) (-1264 |#2|) (-421 |#2| |#3|)) (T -1297)) -((-3876 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) (-5 *2 (-2 (|:| -2704 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1297 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))) (-4329 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -2704 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1297 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) -(-10 -7 (-15 -4329 ((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -3876 ((-2 (|:| -2704 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) -((-1957 (((-112) $ $) NIL)) (-2425 (((-1156) $) 11)) (-3763 (((-1156) $) 9)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 17) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1298) (-13 (-1104) (-10 -8 (-15 -3763 ((-1156) $)) (-15 -2425 ((-1156) $))))) (T -1298)) -((-3763 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298)))) (-2425 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298))))) -(-13 (-1104) (-10 -8 (-15 -3763 ((-1156) $)) (-15 -2425 ((-1156) $)))) -((-1957 (((-112) $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3271 (((-1156) $) 9)) (-4113 (((-876) $) 15) (($ (-1202)) NIL) (((-1202) $) NIL)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) NIL))) -(((-1299) (-13 (-1104) (-10 -8 (-15 -3271 ((-1156) $))))) (T -1299)) -((-3271 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1299))))) -(-13 (-1104) (-10 -8 (-15 -3271 ((-1156) $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 58)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) NIL)) (-2486 (((-112) $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 81) (($ (-576)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-2910 (((-783)) NIL T CONST)) (-3572 (((-1293) (-783)) 16)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 37 T CONST)) (-4322 (($) 84 T CONST)) (-3939 (((-112) $ $) 87)) (-4047 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4037 (($ $) 89) (($ $ $) NIL)) (-4026 (($ $ $) 63)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-1300 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1070) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4047 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3572 ((-1293) (-783))))) (-1070) (-861) (-805) (-968 |#1| |#3| |#2|) (-656 |#2|) (-656 (-783)) (-783)) (T -1300)) -((-4047 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-805)) (-14 *6 (-656 *3)) (-5 *1 (-1300 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-968 *2 *4 *3)) (-14 *7 (-656 (-783))) (-14 *8 (-783)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) (-14 *8 (-656 *5)) (-5 *2 (-1293)) (-5 *1 (-1300 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-968 *4 *6 *5)) (-14 *9 (-656 *3)) (-14 *10 *3)))) -(-13 (-1070) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4047 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3572 ((-1293) (-783))))) -((-1957 (((-112) $ $) NIL)) (-2048 (((-656 (-2 (|:| -1597 $) (|:| -3823 (-656 |#4|)))) (-656 |#4|)) NIL)) (-2739 (((-656 $) (-656 |#4|)) 96)) (-1585 (((-656 |#3|) $) NIL)) (-4404 (((-112) $) NIL)) (-3921 (((-112) $) NIL (|has| |#1| (-568)))) (-2417 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1916 ((|#4| |#4| $) NIL)) (-2380 (((-2 (|:| |under| $) (|:| -3058 $) (|:| |upper| $)) $ |#3|) NIL)) (-4234 (((-112) $ (-783)) NIL)) (-3603 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3170 (($) NIL T CONST)) (-4016 (((-112) $) NIL (|has| |#1| (-568)))) (-3403 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4357 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2159 (((-112) $) NIL (|has| |#1| (-568)))) (-2460 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3496 (((-656 |#4|) (-656 |#4|) $) 28 (|has| |#1| (-568)))) (-3588 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2982 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2317 (($ (-656 |#4|)) NIL)) (-1764 (((-3 $ "failed") $) 78)) (-2458 ((|#4| |#4| $) 83)) (-3841 (($ $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-2825 (($ |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-3561 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2559 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3234 ((|#4| |#4| $) NIL)) (-2721 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4464))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4464))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1794 (((-2 (|:| -1597 (-656 |#4|)) (|:| -3823 (-656 |#4|))) $) NIL)) (-3722 (((-656 |#4|) $) NIL (|has| $ (-6 -4464)))) (-1938 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4260 ((|#3| $) 84)) (-3215 (((-112) $ (-783)) NIL)) (-2911 (((-656 |#4|) $) 32 (|has| $ (-6 -4464)))) (-1602 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121))))) (-3788 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-656 |#4|)) 38)) (-1898 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4465)))) (-2423 (($ (-1 |#4| |#4|) $) NIL)) (-3240 (((-656 |#3|) $) NIL)) (-3821 (((-112) |#3| $) NIL)) (-1884 (((-112) $ (-783)) NIL)) (-2447 (((-1179) $) NIL)) (-2850 (((-3 |#4| "failed") $) NIL)) (-4387 (((-656 |#4|) $) 54)) (-2915 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3648 ((|#4| |#4| $) 82)) (-2384 (((-112) $ $) 93)) (-2296 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2200 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2565 ((|#4| |#4| $) NIL)) (-3116 (((-1141) $) NIL)) (-1755 (((-3 |#4| "failed") $) 77)) (-4220 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3238 (((-3 $ "failed") $ |#4|) NIL)) (-2419 (($ $ |#4|) NIL)) (-1759 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-2145 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1121))))) (-1645 (((-112) $ $) NIL)) (-3617 (((-112) $) 75)) (-3307 (($) 46)) (-2196 (((-783) $) NIL)) (-3127 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4464)) (|has| |#4| (-1121)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-4287 (($ $) NIL)) (-1556 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-4125 (($ (-656 |#4|)) NIL)) (-4023 (($ $ |#3|) NIL)) (-2715 (($ $ |#3|) NIL)) (-1357 (($ $) NIL)) (-3142 (($ $ |#3|) NIL)) (-4113 (((-876) $) NIL) (((-656 |#4|) $) 63)) (-2524 (((-783) $) NIL (|has| |#3| (-379)))) (-4123 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-656 |#4|)) 45)) (-2348 (((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-656 $) (-656 |#4|)) 74)) (-2950 (((-112) $ $) NIL)) (-1671 (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3015 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1638 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2543 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4464)))) (-1754 (((-656 |#3|) $) NIL)) (-1736 (((-112) |#3| $) NIL)) (-3939 (((-112) $ $) NIL)) (-1970 (((-783) $) NIL (|has| $ (-6 -4464))))) -(((-1301 |#1| |#2| |#3| |#4|) (-13 (-1231 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3788 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3788 ((-3 $ "failed") (-656 |#4|))) (-15 -4123 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4123 ((-3 $ "failed") (-656 |#4|))) (-15 -2348 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2348 ((-656 $) (-656 |#4|))))) (-568) (-805) (-861) (-1086 |#1| |#2| |#3|)) (T -1301)) -((-3788 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8)))) (-3788 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1301 *3 *4 *5 *6)))) (-4123 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8)))) (-4123 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1301 *3 *4 *5 *6)))) (-2348 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-656 (-1301 *6 *7 *8 *9))) (-5 *1 (-1301 *6 *7 *8 *9)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-1301 *4 *5 *6 *7))) (-5 *1 (-1301 *4 *5 *6 *7))))) -(-13 (-1231 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3788 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3788 ((-3 $ "failed") (-656 |#4|))) (-15 -4123 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4123 ((-3 $ "failed") (-656 |#4|))) (-15 -2348 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2348 ((-656 $) (-656 |#4|))))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1765 (((-3 $ "failed") $ $) 20)) (-3170 (($) 18 T CONST)) (-1851 (((-3 $ "failed") $) 37)) (-2486 (((-112) $) 35)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#1|) 45)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1302 |#1|) (-141) (-1070)) (T -1302)) -NIL -(-13 (-1070) (-111 |t#1| |t#1|) (-628 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T)) -((-1957 (((-112) $ $) 67)) (-3114 (((-112) $) NIL)) (-1418 (((-656 |#1|) $) 52)) (-4034 (($ $ (-783)) 46)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2501 (($ $ (-783)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3170 (($) NIL T CONST)) (-4085 (($ $ $) 70) (($ $ (-831 |#1|)) 56) (($ $ |#1|) 60)) (-2982 (((-3 (-831 |#1|) "failed") $) NIL)) (-2317 (((-831 |#1|) $) NIL)) (-3310 (($ $) 39)) (-1851 (((-3 $ "failed") $) NIL)) (-1770 (((-112) $) NIL)) (-2203 (($ $) NIL)) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1619 (($ (-831 |#1|) |#2|) 38)) (-4027 (($ $) 40)) (-4325 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 12)) (-3710 (((-831 |#1|) $) NIL)) (-4364 (((-831 |#1|) $) 41)) (-2423 (($ (-1 |#2| |#2|) $) NIL)) (-3324 (($ $ $) 69) (($ $ (-831 |#1|)) 58) (($ $ |#1|) 62)) (-3988 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1700 (((-831 |#1|) $) 35)) (-1711 ((|#2| $) 37)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2196 (((-783) $) 43)) (-1505 (((-112) $) 47)) (-2666 ((|#2| $) NIL)) (-4113 (((-876) $) NIL) (($ (-831 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-576)) NIL)) (-3244 (((-656 |#2|) $) NIL)) (-2707 ((|#2| $ (-831 |#1|)) NIL)) (-2862 ((|#2| $ $) 76) ((|#2| $ (-831 |#1|)) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 13 T CONST)) (-4322 (($) 19 T CONST)) (-2618 (((-656 (-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3939 (((-112) $ $) 44)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 28)) (** (($ $ (-783)) NIL) (($ $ (-940)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-831 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1303 |#1| |#2|) (-13 (-393 |#2| (-831 |#1|)) (-1309 |#1| |#2|)) (-861) (-1070)) (T -1303)) -NIL -(-13 (-393 |#2| (-831 |#1|)) (-1309 |#1| |#2|)) -((-2608 ((|#3| |#3| (-783)) 28)) (-2156 ((|#3| |#3| (-783)) 34)) (-3391 ((|#3| |#3| |#3| (-783)) 35))) -(((-1304 |#1| |#2| |#3|) (-10 -7 (-15 -2156 (|#3| |#3| (-783))) (-15 -2608 (|#3| |#3| (-783))) (-15 -3391 (|#3| |#3| |#3| (-783)))) (-13 (-1070) (-729 (-419 (-576)))) (-861) (-1309 |#2| |#1|)) (T -1304)) -((-3391 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) (-2156 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4))))) -(-10 -7 (-15 -2156 (|#3| |#3| (-783))) (-15 -2608 (|#3| |#3| (-783))) (-15 -3391 (|#3| |#3| |#3| (-783)))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1418 (((-656 |#1|) $) 47)) (-1765 (((-3 $ "failed") $ $) 20)) (-2501 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-3170 (($) 18 T CONST)) (-4085 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-2982 (((-3 (-831 |#1|) "failed") $) 71)) (-2317 (((-831 |#1|) $) 72)) (-1851 (((-3 $ "failed") $) 37)) (-1770 (((-112) $) 52)) (-2203 (($ $) 51)) (-2486 (((-112) $) 35)) (-4101 (((-112) $) 57)) (-1619 (($ (-831 |#1|) |#2|) 58)) (-4027 (($ $) 56)) (-4325 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-3710 (((-831 |#1|) $) 68)) (-2423 (($ (-1 |#2| |#2|) $) 48)) (-3324 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-1505 (((-112) $) 54)) (-2666 ((|#2| $) 53)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-2862 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1305 |#1| |#2|) (-141) (-861) (-1070)) (T -1305)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-831 *3)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4))))) (-2862 (*1 *2 *1 *3) (-12 (-5 *3 (-831 *4)) (-4 *1 (-1305 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1070)))) (-2862 (*1 *2 *1 *1) (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (-3324 (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-3324 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-3324 (*1 *1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4085 (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4085 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-4085 (*1 *1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-1619 (*1 *1 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-861)) (-4 *1 (-1305 *4 *3)) (-4 *3 (-1070)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-112)))) (-4027 (*1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4113 (*1 *1 *2) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-112)))) (-2666 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-112)))) (-2203 (*1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-2501 (*1 *1 *1 *1) (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)) (-4 *3 (-174)))) (-2501 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-4 *4 (-174)))) (-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-1418 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-656 *3))))) -(-13 (-1070) (-1302 |t#2|) (-1059 (-831 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3710 ((-831 |t#1|) $)) (-15 -4325 ((-2 (|:| |k| (-831 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2862 (|t#2| $ (-831 |t#1|))) (-15 -2862 (|t#2| $ $)) (-15 -3324 ($ $ |t#1|)) (-15 -3324 ($ $ (-831 |t#1|))) (-15 -3324 ($ $ $)) (-15 -4085 ($ $ |t#1|)) (-15 -4085 ($ $ (-831 |t#1|))) (-15 -4085 ($ $ $)) (-15 -1619 ($ (-831 |t#1|) |t#2|)) (-15 -4101 ((-112) $)) (-15 -4027 ($ $)) (-15 -4113 ($ |t#1|)) (-15 -1505 ((-112) $)) (-15 -2666 (|t#2| $)) (-15 -1770 ((-112) $)) (-15 -2203 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -2501 ($ $ $)) (-15 -2501 ($ $ (-783)))) |%noBranch|) (-15 -2423 ($ (-1 |t#2| |t#2|) $)) (-15 -1418 ((-656 |t#1|) $)) (IF (|has| |t#2| (-6 -4457)) (-6 -4457) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1059 #0#) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1302 |#2|) . T)) -((-2536 (((-112) $) 15)) (-1736 (((-112) $) 14)) (-2510 (($ $) 19) (($ $ (-783)) 21))) -(((-1306 |#1| |#2|) (-10 -8 (-15 -2510 (|#1| |#1| (-783))) (-15 -2510 (|#1| |#1|)) (-15 -2536 ((-112) |#1|)) (-15 -1736 ((-112) |#1|))) (-1307 |#2|) (-374)) (T -1306)) -NIL -(-10 -8 (-15 -2510 (|#1| |#1| (-783))) (-15 -2510 (|#1| |#1|)) (-15 -2536 ((-112) |#1|)) (-15 -1736 ((-112) |#1|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1432 (((-2 (|:| -2946 $) (|:| -4451 $) (|:| |associate| $)) $) 47)) (-2390 (($ $) 46)) (-3302 (((-112) $) 44)) (-2536 (((-112) $) 104)) (-3570 (((-783)) 100)) (-1765 (((-3 $ "failed") $ $) 20)) (-2658 (($ $) 81)) (-3589 (((-430 $) $) 80)) (-4386 (((-112) $ $) 65)) (-3170 (($) 18 T CONST)) (-2982 (((-3 |#1| "failed") $) 111)) (-2317 ((|#1| $) 112)) (-1895 (($ $ $) 61)) (-1851 (((-3 $ "failed") $) 37)) (-1908 (($ $ $) 62)) (-1607 (((-2 (|:| -2862 (-656 $)) (|:| -2549 $)) (-656 $)) 57)) (-2824 (($ $ (-783)) 97 (-3795 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2171 (((-112) $) 79)) (-3359 (((-845 (-940)) $) 94 (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2486 (((-112) $) 35)) (-2500 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3076 (($ $ $) 52) (($ (-656 $)) 51)) (-2447 (((-1179) $) 10)) (-1669 (($ $) 78)) (-3464 (((-112) $) 103)) (-3116 (((-1141) $) 11)) (-2142 (((-1193 $) (-1193 $) (-1193 $)) 50)) (-3115 (($ $ $) 54) (($ (-656 $)) 53)) (-1452 (((-430 $) $) 82)) (-3835 (((-845 (-940))) 101)) (-4397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2549 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1946 (((-3 $ "failed") $ $) 48)) (-4377 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2812 (((-783) $) 64)) (-3889 (((-2 (|:| -2675 $) (|:| -3561 $)) $ $) 63)) (-3168 (((-3 (-783) "failed") $ $) 95 (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3181 (((-135)) 109)) (-2196 (((-845 (-940)) $) 102)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-4276 (((-3 $ "failed") $) 93 (-3795 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4134 (((-112) $ $) 45)) (-1736 (((-112) $) 105)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-2510 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-3939 (((-112) $ $) 8)) (-4047 (($ $ $) 73) (($ $ |#1|) 108)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-1307 |#1|) (-141) (-374)) (T -1307)) -((-1736 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940))))) (-3835 (*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940))))) (-3570 (*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-783)))) (-2510 (*1 *1 *1) (-12 (-4 *1 (-1307 *2)) (-4 *2 (-374)) (-4 *2 (-379)))) (-2510 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-4 *3 (-379))))) -(-13 (-374) (-1059 |t#1|) (-1295 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-414)) |%noBranch|) (-15 -1736 ((-112) $)) (-15 -2536 ((-112) $)) (-15 -3464 ((-112) $)) (-15 -2196 ((-845 (-940)) $)) (-15 -3835 ((-845 (-940)))) (-15 -3570 ((-783))) (IF (|has| |t#1| (-379)) (PROGN (-6 (-414)) (-15 -2510 ($ $)) (-15 -2510 ($ $ (-783)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3795 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-876)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) -3795 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-939) . T) ((-1059 |#1|) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 #0#) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1242) . T) ((-1295 |#1|) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1418 (((-656 |#1|) $) 98)) (-4034 (($ $ (-783)) 102)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2501 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-783)) NIL (|has| |#2| (-174)))) (-3170 (($) NIL T CONST)) (-4085 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-2982 (((-3 (-831 |#1|) "failed") $) NIL) (((-3 (-908 |#1|) "failed") $) NIL)) (-2317 (((-831 |#1|) $) NIL) (((-908 |#1|) $) NIL)) (-3310 (($ $) 101)) (-1851 (((-3 $ "failed") $) NIL)) (-1770 (((-112) $) 90)) (-2203 (($ $) 93)) (-4332 (($ $ $ (-783)) 103)) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1619 (($ (-831 |#1|) |#2|) NIL) (($ (-908 |#1|) |#2|) 29)) (-4027 (($ $) 119)) (-4325 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3710 (((-831 |#1|) $) NIL)) (-4364 (((-831 |#1|) $) NIL)) (-2423 (($ (-1 |#2| |#2|) $) NIL)) (-3324 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-2608 (($ $ (-783)) 112 (|has| |#2| (-729 (-419 (-576)))))) (-3988 (((-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1700 (((-908 |#1|) $) 83)) (-1711 ((|#2| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-2156 (($ $ (-783)) 109 (|has| |#2| (-729 (-419 (-576)))))) (-2196 (((-783) $) 99)) (-1505 (((-112) $) 84)) (-2666 ((|#2| $) 88)) (-4113 (((-876) $) 69) (($ (-576)) NIL) (($ |#2|) 60) (($ (-831 |#1|)) NIL) (($ |#1|) 71) (($ (-908 |#1|)) NIL) (($ (-676 |#1| |#2|)) 48) (((-1303 |#1| |#2|) $) 76) (((-1312 |#1| |#2|) $) 81)) (-3244 (((-656 |#2|) $) NIL)) (-2707 ((|#2| $ (-908 |#1|)) NIL)) (-2862 ((|#2| $ (-831 |#1|)) NIL) ((|#2| $ $) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 21 T CONST)) (-4322 (($) 28 T CONST)) (-2618 (((-656 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2067 (((-3 (-676 |#1| |#2|) "failed") $) 118)) (-3939 (((-112) $ $) 77)) (-4037 (($ $) 111) (($ $ $) 110)) (-4026 (($ $ $) 20)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-908 |#1|)) NIL))) -(((-1308 |#1| |#2|) (-13 (-1309 |#1| |#2|) (-393 |#2| (-908 |#1|)) (-10 -8 (-15 -4113 ($ (-676 |#1| |#2|))) (-15 -4113 ((-1303 |#1| |#2|) $)) (-15 -4113 ((-1312 |#1| |#2|) $)) (-15 -2067 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -4332 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -2156 ($ $ (-783))) (-15 -2608 ($ $ (-783)))) |%noBranch|))) (-861) (-174)) (T -1308)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-1308 *3 *4)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-2067 (*1 *2 *1) (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4332 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174)))) (-2608 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) -(-13 (-1309 |#1| |#2|) (-393 |#2| (-908 |#1|)) (-10 -8 (-15 -4113 ($ (-676 |#1| |#2|))) (-15 -4113 ((-1303 |#1| |#2|) $)) (-15 -4113 ((-1312 |#1| |#2|) $)) (-15 -2067 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -4332 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -2156 ($ $ (-783))) (-15 -2608 ($ $ (-783)))) |%noBranch|))) -((-1957 (((-112) $ $) 7)) (-3114 (((-112) $) 17)) (-1418 (((-656 |#1|) $) 47)) (-4034 (($ $ (-783)) 80)) (-1765 (((-3 $ "failed") $ $) 20)) (-2501 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-3170 (($) 18 T CONST)) (-4085 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-2982 (((-3 (-831 |#1|) "failed") $) 71)) (-2317 (((-831 |#1|) $) 72)) (-1851 (((-3 $ "failed") $) 37)) (-1770 (((-112) $) 52)) (-2203 (($ $) 51)) (-2486 (((-112) $) 35)) (-4101 (((-112) $) 57)) (-1619 (($ (-831 |#1|) |#2|) 58)) (-4027 (($ $) 56)) (-4325 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-3710 (((-831 |#1|) $) 68)) (-4364 (((-831 |#1|) $) 82)) (-2423 (($ (-1 |#2| |#2|) $) 48)) (-3324 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-2447 (((-1179) $) 10)) (-3116 (((-1141) $) 11)) (-2196 (((-783) $) 81)) (-1505 (((-112) $) 54)) (-2666 ((|#2| $) 53)) (-4113 (((-876) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-2862 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-2910 (((-783)) 32 T CONST)) (-2950 (((-112) $ $) 6)) (-4313 (($) 19 T CONST)) (-4322 (($) 34 T CONST)) (-3939 (((-112) $ $) 8)) (-4037 (($ $) 23) (($ $ $) 22)) (-4026 (($ $ $) 15)) (** (($ $ (-940)) 28) (($ $ (-783)) 36)) (* (($ (-940) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1309 |#1| |#2|) (-141) (-861) (-1070)) (T -1309)) -((-4364 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-831 *3)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-783)))) (-4034 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) -(-13 (-1305 |t#1| |t#2|) (-10 -8 (-15 -4364 ((-831 |t#1|) $)) (-15 -2196 ((-783) $)) (-15 -4034 ($ $ (-783))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-876)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1059 #0#) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1079) . T) ((-1133) . T) ((-1121) . T) ((-1238) . T) ((-1302 |#2|) . T) ((-1305 |#1| |#2|) . T)) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1418 (((-656 (-1197)) $) NIL)) (-1463 (($ (-1303 (-1197) |#1|)) NIL)) (-4034 (($ $ (-783)) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2501 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-783)) NIL (|has| |#1| (-174)))) (-3170 (($) NIL T CONST)) (-4085 (($ $ (-1197)) NIL) (($ $ (-831 (-1197))) NIL) (($ $ $) NIL)) (-2982 (((-3 (-831 (-1197)) "failed") $) NIL)) (-2317 (((-831 (-1197)) $) NIL)) (-1851 (((-3 $ "failed") $) NIL)) (-1770 (((-112) $) NIL)) (-2203 (($ $) NIL)) (-2486 (((-112) $) NIL)) (-4101 (((-112) $) NIL)) (-1619 (($ (-831 (-1197)) |#1|) NIL)) (-4027 (($ $) NIL)) (-4325 (((-2 (|:| |k| (-831 (-1197))) (|:| |c| |#1|)) $) NIL)) (-3710 (((-831 (-1197)) $) NIL)) (-4364 (((-831 (-1197)) $) NIL)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-3324 (($ $ (-1197)) NIL) (($ $ (-831 (-1197))) NIL) (($ $ $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3568 (((-1303 (-1197) |#1|) $) NIL)) (-2196 (((-783) $) NIL)) (-1505 (((-112) $) NIL)) (-2666 ((|#1| $) NIL)) (-4113 (((-876) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-831 (-1197))) NIL) (($ (-1197)) NIL)) (-2862 ((|#1| $ (-831 (-1197))) NIL) ((|#1| $ $) NIL)) (-2910 (((-783)) NIL T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) NIL T CONST)) (-3490 (((-656 (-2 (|:| |k| (-1197)) (|:| |c| $))) $) NIL)) (-4322 (($) NIL T CONST)) (-3939 (((-112) $ $) NIL)) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) NIL)) (** (($ $ (-940)) NIL) (($ $ (-783)) NIL)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1197) $) NIL))) -(((-1310 |#1|) (-13 (-1309 (-1197) |#1|) (-10 -8 (-15 -3568 ((-1303 (-1197) |#1|) $)) (-15 -1463 ($ (-1303 (-1197) |#1|))) (-15 -3490 ((-656 (-2 (|:| |k| (-1197)) (|:| |c| $))) $)))) (-1070)) (T -1310)) -((-3568 (*1 *2 *1) (-12 (-5 *2 (-1303 (-1197) *3)) (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) (-1463 (*1 *1 *2) (-12 (-5 *2 (-1303 (-1197) *3)) (-4 *3 (-1070)) (-5 *1 (-1310 *3)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-1197)) (|:| |c| (-1310 *3))))) (-5 *1 (-1310 *3)) (-4 *3 (-1070))))) -(-13 (-1309 (-1197) |#1|) (-10 -8 (-15 -3568 ((-1303 (-1197) |#1|) $)) (-15 -1463 ($ (-1303 (-1197) |#1|))) (-15 -3490 ((-656 (-2 (|:| |k| (-1197)) (|:| |c| $))) $)))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) NIL)) (-1765 (((-3 $ "failed") $ $) NIL)) (-3170 (($) NIL T CONST)) (-2982 (((-3 |#2| "failed") $) NIL)) (-2317 ((|#2| $) NIL)) (-3310 (($ $) NIL)) (-1851 (((-3 $ "failed") $) 42)) (-1770 (((-112) $) 35)) (-2203 (($ $) 37)) (-2486 (((-112) $) NIL)) (-2018 (((-783) $) NIL)) (-2683 (((-656 $) $) NIL)) (-4101 (((-112) $) NIL)) (-1619 (($ |#2| |#1|) NIL)) (-3710 ((|#2| $) 24)) (-4364 ((|#2| $) 22)) (-2423 (($ (-1 |#1| |#1|) $) NIL)) (-3988 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1700 ((|#2| $) NIL)) (-1711 ((|#1| $) NIL)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-1505 (((-112) $) 32)) (-2666 ((|#1| $) 33)) (-4113 (((-876) $) 65) (($ (-576)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3244 (((-656 |#1|) $) NIL)) (-2707 ((|#1| $ |#2|) NIL)) (-2862 ((|#1| $ |#2|) 28)) (-2910 (((-783)) 14 T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 29 T CONST)) (-4322 (($) 11 T CONST)) (-2618 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3939 (((-112) $ $) 30)) (-4047 (($ $ |#1|) 67 (|has| |#1| (-374)))) (-4037 (($ $) NIL) (($ $ $) NIL)) (-4026 (($ $ $) 50)) (** (($ $ (-940)) NIL) (($ $ (-783)) 52)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-1970 (((-783) $) 16))) -(((-1311 |#1| |#2|) (-13 (-1070) (-1302 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1970 ((-783) $)) (-15 -4364 (|#2| $)) (-15 -3710 (|#2| $)) (-15 -3310 ($ $)) (-15 -2862 (|#1| $ |#2|)) (-15 -1505 ((-112) $)) (-15 -2666 (|#1| $)) (-15 -1770 ((-112) $)) (-15 -2203 ($ $)) (-15 -2423 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -4047 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |#1| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) (-1070) (-858)) (T -1311)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858)))) (-3310 (*1 *1 *1) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858)))) (-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-1311 *3 *4)) (-4 *4 (-858)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-858)))) (-4364 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070)))) (-3710 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070)))) (-2862 (*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858)))) (-1505 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-858)))) (-2666 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-858)))) (-2203 (*1 *1 *1) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1070)) (-4 *3 (-858))))) -(-13 (-1070) (-1302 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1970 ((-783) $)) (-15 -4364 (|#2| $)) (-15 -3710 (|#2| $)) (-15 -3310 ($ $)) (-15 -2862 (|#1| $ |#2|)) (-15 -1505 ((-112) $)) (-15 -2666 (|#1| $)) (-15 -1770 ((-112) $)) (-15 -2203 ($ $)) (-15 -2423 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -4047 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |#1| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |#1| (-6 -4462)) (-6 -4462) |%noBranch|))) -((-1957 (((-112) $ $) 27)) (-3114 (((-112) $) NIL)) (-1418 (((-656 |#1|) $) 132)) (-1463 (($ (-1303 |#1| |#2|)) 50)) (-4034 (($ $ (-783)) 38)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2501 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-783)) 52 (|has| |#2| (-174)))) (-3170 (($) NIL T CONST)) (-4085 (($ $ |#1|) 114) (($ $ (-831 |#1|)) 115) (($ $ $) 26)) (-2982 (((-3 (-831 |#1|) "failed") $) NIL)) (-2317 (((-831 |#1|) $) NIL)) (-1851 (((-3 $ "failed") $) 122)) (-1770 (((-112) $) 117)) (-2203 (($ $) 118)) (-2486 (((-112) $) NIL)) (-4101 (((-112) $) NIL)) (-1619 (($ (-831 |#1|) |#2|) 20)) (-4027 (($ $) NIL)) (-4325 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3710 (((-831 |#1|) $) 123)) (-4364 (((-831 |#1|) $) 126)) (-2423 (($ (-1 |#2| |#2|) $) 131)) (-3324 (($ $ |#1|) 112) (($ $ (-831 |#1|)) 113) (($ $ $) 62)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-3568 (((-1303 |#1| |#2|) $) 94)) (-2196 (((-783) $) 129)) (-1505 (((-112) $) 81)) (-2666 ((|#2| $) 32)) (-4113 (((-876) $) 73) (($ (-576)) 87) (($ |#2|) 85) (($ (-831 |#1|)) 18) (($ |#1|) 84)) (-2862 ((|#2| $ (-831 |#1|)) 116) ((|#2| $ $) 28)) (-2910 (((-783)) 120 T CONST)) (-2950 (((-112) $ $) NIL)) (-4313 (($) 15 T CONST)) (-3490 (((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-4322 (($) 33 T CONST)) (-3939 (((-112) $ $) 14)) (-4037 (($ $) 98) (($ $ $) 101)) (-4026 (($ $ $) 61)) (** (($ $ (-940)) NIL) (($ $ (-783)) 55)) (* (($ (-940) $) NIL) (($ (-783) $) 53) (($ (-576) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1312 |#1| |#2|) (-13 (-1309 |#1| |#2|) (-10 -8 (-15 -3568 ((-1303 |#1| |#2|) $)) (-15 -1463 ($ (-1303 |#1| |#2|))) (-15 -3490 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-861) (-1070)) (T -1312)) -((-3568 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-1463 (*1 *1 *2) (-12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *1 (-1312 *3 *4)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1312 *3 *4))))) (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) -(-13 (-1309 |#1| |#2|) (-10 -8 (-15 -3568 ((-1303 |#1| |#2|) $)) (-15 -1463 ($ (-1303 |#1| |#2|))) (-15 -3490 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1957 (((-112) $ $) NIL)) (-2303 (($ (-656 (-940))) 10)) (-2901 (((-992) $) 12)) (-2447 (((-1179) $) NIL)) (-3116 (((-1141) $) NIL)) (-4113 (((-876) $) 25) (($ (-992)) 14) (((-992) $) 13)) (-2950 (((-112) $ $) NIL)) (-3939 (((-112) $ $) 17))) -(((-1313) (-13 (-1121) (-502 (-992)) (-10 -8 (-15 -2303 ($ (-656 (-940)))) (-15 -2901 ((-992) $))))) (T -1313)) -((-2303 (*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1313)))) (-2901 (*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-1313))))) -(-13 (-1121) (-502 (-992)) (-10 -8 (-15 -2303 ($ (-656 (-940)))) (-15 -2901 ((-992) $)))) -((-1439 (((-656 (-1178 |#1|)) (-1 (-656 (-1178 |#1|)) (-656 (-1178 |#1|))) (-576)) 16) (((-1178 |#1|) (-1 (-1178 |#1|) (-1178 |#1|))) 13))) -(((-1314 |#1|) (-10 -7 (-15 -1439 ((-1178 |#1|) (-1 (-1178 |#1|) (-1178 |#1|)))) (-15 -1439 ((-656 (-1178 |#1|)) (-1 (-656 (-1178 |#1|)) (-656 (-1178 |#1|))) (-576)))) (-1238)) (T -1314)) -((-1439 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 (-1178 *5)) (-656 (-1178 *5)))) (-5 *4 (-576)) (-5 *2 (-656 (-1178 *5))) (-5 *1 (-1314 *5)) (-4 *5 (-1238)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-1 (-1178 *4) (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1314 *4)) (-4 *4 (-1238))))) -(-10 -7 (-15 -1439 ((-1178 |#1|) (-1 (-1178 |#1|) (-1178 |#1|)))) (-15 -1439 ((-656 (-1178 |#1|)) (-1 (-656 (-1178 |#1|)) (-656 (-1178 |#1|))) (-576)))) -((-1819 (((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|))) 174) (((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112)) 173) (((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112)) 172) (((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112) (-112)) 171) (((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-1067 |#1| |#2|)) 156)) (-1932 (((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|))) 85) (((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112)) 84) (((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112) (-112)) 83)) (-3589 (((-656 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) (-1067 |#1| |#2|)) 73)) (-2588 (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|))) 140) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112)) 139) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112)) 138) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112) (-112)) 137) (((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|)) 132)) (-2265 (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|))) 145) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112)) 144) (((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112)) 143) (((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|)) 142)) (-1556 (((-656 (-792 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) 111) (((-1193 (-1045 (-419 |#1|))) (-1193 |#1|)) 102) (((-971 (-1045 (-419 |#1|))) (-792 |#1| (-878 |#3|))) 109) (((-971 (-1045 (-419 |#1|))) (-971 |#1|)) 107) (((-792 |#1| (-878 |#3|)) (-792 |#1| (-878 |#2|))) 33))) -(((-1315 |#1| |#2| |#3|) (-10 -7 (-15 -1932 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112) (-112))) (-15 -1932 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112))) (-15 -1932 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)))) (-15 -1819 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-1067 |#1| |#2|))) (-15 -1819 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -1819 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -1819 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -1819 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -2588 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -2588 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -2588 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -2588 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -2588 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -2265 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -2265 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -2265 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -2265 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -3589 ((-656 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) (-1067 |#1| |#2|))) (-15 -1556 ((-792 |#1| (-878 |#3|)) (-792 |#1| (-878 |#2|)))) (-15 -1556 ((-971 (-1045 (-419 |#1|))) (-971 |#1|))) (-15 -1556 ((-971 (-1045 (-419 |#1|))) (-792 |#1| (-878 |#3|)))) (-15 -1556 ((-1193 (-1045 (-419 |#1|))) (-1193 |#1|))) (-15 -1556 ((-656 (-792 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))))) (-13 (-860) (-317) (-148) (-1043)) (-656 (-1197)) (-656 (-1197))) (T -1315)) -((-1556 (*1 *2 *3) (-12 (-5 *3 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6)))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-792 *4 (-878 *6)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-1193 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-1193 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-878 *6))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) (-5 *2 (-971 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-971 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-878 *5))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-792 *4 (-878 *6))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-2265 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-2588 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-2588 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-1819 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -2785 (-1193 *4)) (|:| -4314 (-656 (-971 *4)))))) (-5 *1 (-1315 *4 *5 *6)) (-5 *3 (-656 (-971 *4))) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-1819 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -2785 (-1193 *5)) (|:| -4314 (-656 (-971 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-1819 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -2785 (-1193 *5)) (|:| -4314 (-656 (-971 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-1819 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-2 (|:| -2785 (-1193 *5)) (|:| -4314 (-656 (-971 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-2 (|:| -2785 (-1193 *4)) (|:| -4314 (-656 (-971 *4)))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-1067 *4 *5))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) (-1932 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197)))))) -(-10 -7 (-15 -1932 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112) (-112))) (-15 -1932 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)) (-112))) (-15 -1932 ((-656 (-1067 |#1| |#2|)) (-656 (-971 |#1|)))) (-15 -1819 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-1067 |#1| |#2|))) (-15 -1819 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -1819 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -1819 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)) (-112))) (-15 -1819 ((-656 (-2 (|:| -2785 (-1193 |#1|)) (|:| -4314 (-656 (-971 |#1|))))) (-656 (-971 |#1|)))) (-15 -2588 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -2588 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112) (-112))) (-15 -2588 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -2588 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -2588 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -2265 ((-656 (-656 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -2265 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112) (-112))) (-15 -2265 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)) (-112))) (-15 -2265 ((-656 (-656 (-1045 (-419 |#1|)))) (-656 (-971 |#1|)))) (-15 -3589 ((-656 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))) (-1067 |#1| |#2|))) (-15 -1556 ((-792 |#1| (-878 |#3|)) (-792 |#1| (-878 |#2|)))) (-15 -1556 ((-971 (-1045 (-419 |#1|))) (-971 |#1|))) (-15 -1556 ((-971 (-1045 (-419 |#1|))) (-792 |#1| (-878 |#3|)))) (-15 -1556 ((-1193 (-1045 (-419 |#1|))) (-1193 |#1|))) (-15 -1556 ((-656 (-792 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-792 |#1| (-878 |#3|)))))) -((-3051 (((-3 (-1288 (-419 (-576))) "failed") (-1288 |#1|) |#1|) 21)) (-2614 (((-112) (-1288 |#1|)) 12)) (-2193 (((-3 (-1288 (-576)) "failed") (-1288 |#1|)) 16))) -(((-1316 |#1|) (-10 -7 (-15 -2614 ((-112) (-1288 |#1|))) (-15 -2193 ((-3 (-1288 (-576)) "failed") (-1288 |#1|))) (-15 -3051 ((-3 (-1288 (-419 (-576))) "failed") (-1288 |#1|) |#1|))) (-13 (-1070) (-651 (-576)))) (T -1316)) -((-3051 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) (-5 *2 (-1288 (-419 (-576)))) (-5 *1 (-1316 *4)))) (-2193 (*1 *2 *3) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) (-5 *2 (-1288 (-576))) (-5 *1 (-1316 *4)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1316 *4))))) -(-10 -7 (-15 -2614 ((-112) (-1288 |#1|))) (-15 -2193 ((-3 (-1288 (-576)) "failed") (-1288 |#1|))) (-15 -3051 ((-3 (-1288 (-419 (-576))) "failed") (-1288 |#1|) |#1|))) -((-1957 (((-112) $ $) NIL)) (-3114 (((-112) $) 11)) (-1765 (((-3 $ "failed") $ $) NIL)) (-2201 (((-783)) 8)) (-3170 (($) NIL T CONST)) (-1851 (((-3 $ "failed") $) 58)) (-4370 (($) 49)) (-2486 (((-112) $) 57)) (-3552 (((-3 $ "failed") $) 40)) (-3787 (((-940) $) 15)) (-2447 (((-1179) $) NIL)) (-3650 (($) 32 T CONST)) (-2411 (($ (-940)) 50)) (-3116 (((-1141) $) NIL)) (-1556 (((-576) $) 13)) (-4113 (((-876) $) 27) (($ (-576)) 24)) (-2910 (((-783)) 9 T CONST)) (-2950 (((-112) $ $) 60)) (-4313 (($) 29 T CONST)) (-4322 (($) 31 T CONST)) (-3939 (((-112) $ $) 38)) (-4037 (($ $) 52) (($ $ $) 47)) (-4026 (($ $ $) 35)) (** (($ $ (-940)) NIL) (($ $ (-783)) 54)) (* (($ (-940) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 43))) -(((-1317 |#1|) (-13 (-174) (-379) (-626 (-576)) (-1173)) (-940)) (T -1317)) -NIL -(-13 (-174) (-379) (-626 (-576)) (-1173)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3262806 3262811 3262816 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3262791 3262796 3262801 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3262776 3262781 3262786 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3262761 3262766 3262771 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1317 3261904 3262636 3262713 "ZMOD" 3262718 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1316 3260958 3261122 3261345 "ZLINDEP" 3261736 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1315 3250258 3252026 3253998 "ZDSOLVE" 3259088 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1314 3249504 3249645 3249834 "YSTREAM" 3250104 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1313 3248932 3249178 3249291 "YDIAGRAM" 3249413 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1312 3246706 3248233 3248437 "XRPOLY" 3248775 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1311 3243259 3244577 3245152 "XPR" 3246178 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1310 3240980 3242590 3242794 "XPOLY" 3243090 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1309 3238619 3239987 3240042 "XPOLYC" 3240330 NIL XPOLYC (NIL T T) -9 NIL 3240443 NIL) (-1308 3234995 3237136 3237524 "XPBWPOLY" 3238277 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1307 3230676 3232971 3233013 "XF" 3233634 NIL XF (NIL T) -9 NIL 3234034 NIL) (-1306 3230297 3230385 3230554 "XF-" 3230559 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1305 3225479 3226768 3226823 "XFALG" 3228995 NIL XFALG (NIL T T) -9 NIL 3229784 NIL) (-1304 3224612 3224716 3224921 "XEXPPKG" 3225371 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1303 3222721 3224462 3224558 "XDPOLY" 3224563 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1302 3221514 3222114 3222157 "XALG" 3222162 NIL XALG (NIL T) -9 NIL 3222273 NIL) (-1301 3214956 3219491 3219985 "WUTSET" 3221106 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1300 3213212 3214008 3214331 "WP" 3214767 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1299 3212814 3213034 3213104 "WHILEAST" 3213164 T WHILEAST (NIL) -8 NIL NIL NIL) (-1298 3212286 3212531 3212625 "WHEREAST" 3212742 T WHEREAST (NIL) -8 NIL NIL NIL) (-1297 3211172 3211370 3211665 "WFFINTBS" 3212083 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1296 3209076 3209503 3209965 "WEIER" 3210744 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1295 3208108 3208558 3208600 "VSPACE" 3208736 NIL VSPACE (NIL T) -9 NIL 3208810 NIL) (-1294 3207946 3207973 3208064 "VSPACE-" 3208069 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1293 3207755 3207797 3207865 "VOID" 3207900 T VOID (NIL) -8 NIL NIL NIL) (-1292 3205891 3206250 3206656 "VIEW" 3207371 T VIEW (NIL) -7 NIL NIL NIL) (-1291 3202315 3202954 3203691 "VIEWDEF" 3205176 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1290 3191619 3193863 3196036 "VIEW3D" 3200164 T VIEW3D (NIL) -8 NIL NIL NIL) (-1289 3183870 3185530 3187109 "VIEW2D" 3190062 T VIEW2D (NIL) -8 NIL NIL NIL) (-1288 3179226 3183640 3183732 "VECTOR" 3183813 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1287 3177803 3178062 3178380 "VECTOR2" 3178956 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1286 3171201 3175507 3175550 "VECTCAT" 3176545 NIL VECTCAT (NIL T) -9 NIL 3177132 NIL) (-1285 3170215 3170469 3170859 "VECTCAT-" 3170864 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1284 3169669 3169866 3169986 "VARIABLE" 3170130 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1283 3169602 3169607 3169637 "UTYPE" 3169642 T UTYPE (NIL) -9 NIL NIL NIL) (-1282 3168432 3168586 3168848 "UTSODETL" 3169428 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1281 3165872 3166332 3166856 "UTSODE" 3167973 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1280 3157820 3163633 3164113 "UTS" 3165450 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1279 3148384 3153754 3153797 "UTSCAT" 3154909 NIL UTSCAT (NIL T) -9 NIL 3155667 NIL) (-1278 3145732 3146454 3147443 "UTSCAT-" 3147448 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1277 3145359 3145402 3145535 "UTS2" 3145683 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1276 3139560 3142169 3142212 "URAGG" 3144282 NIL URAGG (NIL T) -9 NIL 3145005 NIL) (-1275 3136499 3137362 3138485 "URAGG-" 3138490 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1274 3132208 3135134 3135599 "UPXSSING" 3136163 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1273 3124384 3131590 3131854 "UPXS" 3132002 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1272 3117457 3124288 3124360 "UPXSCONS" 3124365 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1271 3106864 3113660 3113722 "UPXSCCA" 3114296 NIL UPXSCCA (NIL T T) -9 NIL 3114529 NIL) (-1270 3106502 3106587 3106761 "UPXSCCA-" 3106766 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1269 3095761 3102330 3102373 "UPXSCAT" 3103021 NIL UPXSCAT (NIL T) -9 NIL 3103630 NIL) (-1268 3095191 3095270 3095449 "UPXS2" 3095676 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1267 3093845 3094098 3094449 "UPSQFREE" 3094934 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1266 3087053 3090113 3090168 "UPSCAT" 3091248 NIL UPSCAT (NIL T T) -9 NIL 3092013 NIL) (-1265 3086257 3086464 3086791 "UPSCAT-" 3086796 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1264 3071339 3079384 3079427 "UPOLYC" 3081528 NIL UPOLYC (NIL T) -9 NIL 3082749 NIL) (-1263 3062667 3065093 3068240 "UPOLYC-" 3068245 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1262 3062294 3062337 3062470 "UPOLYC2" 3062618 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1261 3053829 3061977 3062106 "UP" 3062213 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1260 3053168 3053275 3053439 "UPMP" 3053718 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1259 3052721 3052802 3052941 "UPDIVP" 3053081 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1258 3051289 3051538 3051854 "UPDECOMP" 3052470 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1257 3050520 3050632 3050818 "UPCDEN" 3051173 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1256 3050039 3050108 3050257 "UP2" 3050445 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1255 3048506 3049243 3049520 "UNISEG" 3049797 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1254 3047721 3047848 3048053 "UNISEG2" 3048349 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1253 3046781 3046961 3047187 "UNIFACT" 3047537 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1252 3029533 3046093 3046335 "ULS" 3046597 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1251 3017163 3029437 3029509 "ULSCONS" 3029514 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1250 2997884 3010244 3010306 "ULSCCAT" 3010944 NIL ULSCCAT (NIL T T) -9 NIL 3011233 NIL) (-1249 2996934 2997179 2997567 "ULSCCAT-" 2997572 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1248 2985998 2992481 2992524 "ULSCAT" 2993387 NIL ULSCAT (NIL T) -9 NIL 2994118 NIL) (-1247 2985428 2985507 2985686 "ULS2" 2985913 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1246 2984547 2985057 2985164 "UINT8" 2985275 T UINT8 (NIL) -8 NIL NIL 2985360) (-1245 2983665 2984175 2984282 "UINT64" 2984393 T UINT64 (NIL) -8 NIL NIL 2984478) (-1244 2982783 2983293 2983400 "UINT32" 2983511 T UINT32 (NIL) -8 NIL NIL 2983596) (-1243 2981901 2982411 2982518 "UINT16" 2982629 T UINT16 (NIL) -8 NIL NIL 2982714) (-1242 2980190 2981147 2981177 "UFD" 2981389 T UFD (NIL) -9 NIL 2981503 NIL) (-1241 2979984 2980030 2980125 "UFD-" 2980130 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1240 2979066 2979249 2979465 "UDVO" 2979790 T UDVO (NIL) -7 NIL NIL NIL) (-1239 2976882 2977291 2977762 "UDPO" 2978630 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1238 2976815 2976820 2976850 "TYPE" 2976855 T TYPE (NIL) -9 NIL NIL NIL) (-1237 2976575 2976770 2976801 "TYPEAST" 2976806 T TYPEAST (NIL) -8 NIL NIL NIL) (-1236 2975546 2975748 2975988 "TWOFACT" 2976369 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1235 2974569 2974955 2975190 "TUPLE" 2975346 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1234 2972260 2972779 2973318 "TUBETOOL" 2974052 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1233 2971109 2971314 2971555 "TUBE" 2972053 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1232 2965838 2970081 2970364 "TS" 2970861 NIL TS (NIL T) -8 NIL NIL NIL) (-1231 2954478 2958597 2958694 "TSETCAT" 2963963 NIL TSETCAT (NIL T T T T) -9 NIL 2965494 NIL) (-1230 2949210 2950810 2952701 "TSETCAT-" 2952706 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1229 2943849 2944696 2945625 "TRMANIP" 2948346 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1228 2943290 2943353 2943516 "TRIMAT" 2943781 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1227 2941156 2941393 2941750 "TRIGMNIP" 2943039 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1226 2940676 2940789 2940819 "TRIGCAT" 2941032 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1225 2940345 2940424 2940565 "TRIGCAT-" 2940570 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1224 2937193 2939203 2939484 "TREE" 2940099 NIL TREE (NIL T) -8 NIL NIL NIL) (-1223 2936467 2936995 2937025 "TRANFUN" 2937060 T TRANFUN (NIL) -9 NIL 2937126 NIL) (-1222 2935746 2935937 2936217 "TRANFUN-" 2936222 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1221 2935550 2935582 2935643 "TOPSP" 2935707 T TOPSP (NIL) -7 NIL NIL NIL) (-1220 2934898 2935013 2935167 "TOOLSIGN" 2935431 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1219 2933532 2934075 2934314 "TEXTFILE" 2934681 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1218 2931444 2931985 2932414 "TEX" 2933125 T TEX (NIL) -8 NIL NIL NIL) (-1217 2931225 2931256 2931328 "TEX1" 2931407 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1216 2930873 2930936 2931026 "TEMUTL" 2931157 T TEMUTL (NIL) -7 NIL NIL NIL) (-1215 2929027 2929307 2929632 "TBCMPPK" 2930596 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1214 2920736 2927113 2927169 "TBAGG" 2927569 NIL TBAGG (NIL T T) -9 NIL 2927780 NIL) (-1213 2915806 2917294 2919048 "TBAGG-" 2919053 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1212 2915190 2915297 2915442 "TANEXP" 2915695 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1211 2914701 2914965 2915055 "TALGOP" 2915135 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1210 2908097 2914558 2914651 "TABLE" 2914656 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1209 2907509 2907608 2907746 "TABLEAU" 2907994 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1208 2902117 2903337 2904585 "TABLBUMP" 2906295 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1207 2901339 2901486 2901667 "SYSTEM" 2901958 T SYSTEM (NIL) -8 NIL NIL NIL) (-1206 2897798 2898497 2899280 "SYSSOLP" 2900590 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1205 2897596 2897753 2897784 "SYSPTR" 2897789 T SYSPTR (NIL) -8 NIL NIL NIL) (-1204 2896632 2897137 2897256 "SYSNNI" 2897442 NIL SYSNNI (NIL NIL) -8 NIL NIL 2897527) (-1203 2895931 2896390 2896469 "SYSINT" 2896529 NIL SYSINT (NIL NIL) -8 NIL NIL 2896574) (-1202 2892263 2893209 2893919 "SYNTAX" 2895243 T SYNTAX (NIL) -8 NIL NIL NIL) (-1201 2889421 2890023 2890655 "SYMTAB" 2891653 T SYMTAB (NIL) -8 NIL NIL NIL) (-1200 2884670 2885572 2886555 "SYMS" 2888460 T SYMS (NIL) -8 NIL NIL NIL) (-1199 2881905 2884128 2884358 "SYMPOLY" 2884475 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1198 2881422 2881497 2881620 "SYMFUNC" 2881817 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1197 2877442 2878734 2879547 "SYMBOL" 2880631 T SYMBOL (NIL) -8 NIL NIL NIL) (-1196 2870981 2872670 2874390 "SWITCH" 2875744 T SWITCH (NIL) -8 NIL NIL NIL) (-1195 2864325 2869937 2870231 "SUTS" 2870745 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1194 2856501 2863707 2863971 "SUPXS" 2864119 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1193 2847984 2856119 2856245 "SUP" 2856410 NIL SUP (NIL T) -8 NIL NIL NIL) (-1192 2847143 2847270 2847487 "SUPFRACF" 2847852 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1191 2846764 2846823 2846936 "SUP2" 2847078 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1190 2845212 2845486 2845842 "SUMRF" 2846463 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1189 2844547 2844613 2844805 "SUMFS" 2845133 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1188 2827334 2843859 2844101 "SULS" 2844363 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1187 2826936 2827156 2827226 "SUCHTAST" 2827286 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1186 2826231 2826461 2826601 "SUCH" 2826844 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1185 2820098 2821137 2822096 "SUBSPACE" 2825319 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1184 2819528 2819618 2819782 "SUBRESP" 2819986 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1183 2812896 2814193 2815504 "STTF" 2818264 NIL STTF (NIL T) -7 NIL NIL NIL) (-1182 2807069 2808189 2809336 "STTFNC" 2811796 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1181 2798382 2800251 2802045 "STTAYLOR" 2805310 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1180 2791518 2798246 2798329 "STRTBL" 2798334 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1179 2786479 2791227 2791326 "STRING" 2791441 T STRING (NIL) -8 NIL NIL NIL) (-1178 2779235 2784098 2784709 "STREAM" 2785903 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1177 2778745 2778822 2778966 "STREAM3" 2779152 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1176 2777727 2777910 2778145 "STREAM2" 2778558 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1175 2777415 2777467 2777560 "STREAM1" 2777669 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1174 2776431 2776612 2776843 "STINPROD" 2777231 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1173 2775969 2776179 2776209 "STEP" 2776289 T STEP (NIL) -9 NIL 2776367 NIL) (-1172 2775156 2775458 2775606 "STEPAST" 2775843 T STEPAST (NIL) -8 NIL NIL NIL) (-1171 2768594 2775055 2775132 "STBL" 2775137 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1170 2763664 2767757 2767800 "STAGG" 2767953 NIL STAGG (NIL T) -9 NIL 2768042 NIL) (-1169 2761366 2761968 2762840 "STAGG-" 2762845 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1168 2759516 2761136 2761228 "STACK" 2761309 NIL STACK (NIL T) -8 NIL NIL NIL) (-1167 2752211 2757657 2758113 "SREGSET" 2759146 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1166 2744636 2746005 2747518 "SRDCMPK" 2750817 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1165 2737473 2741995 2742025 "SRAGG" 2743328 T SRAGG (NIL) -9 NIL 2743936 NIL) (-1164 2736490 2736745 2737124 "SRAGG-" 2737129 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1163 2730674 2735437 2735858 "SQMATRIX" 2736116 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1162 2724362 2727392 2728119 "SPLTREE" 2730019 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1161 2720325 2721018 2721664 "SPLNODE" 2723788 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1160 2719372 2719605 2719635 "SPFCAT" 2720079 T SPFCAT (NIL) -9 NIL NIL NIL) (-1159 2718109 2718319 2718583 "SPECOUT" 2719130 T SPECOUT (NIL) -7 NIL NIL NIL) (-1158 2709205 2711077 2711107 "SPADXPT" 2715783 T SPADXPT (NIL) -9 NIL 2717947 NIL) (-1157 2708966 2709006 2709075 "SPADPRSR" 2709158 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1156 2707015 2708921 2708952 "SPADAST" 2708957 T SPADAST (NIL) -8 NIL NIL NIL) (-1155 2698946 2700719 2700762 "SPACEC" 2705135 NIL SPACEC (NIL T) -9 NIL 2706951 NIL) (-1154 2697076 2698878 2698927 "SPACE3" 2698932 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1153 2695828 2695999 2696290 "SORTPAK" 2696881 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1152 2693920 2694223 2694635 "SOLVETRA" 2695492 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1151 2692970 2693192 2693453 "SOLVESER" 2693693 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1150 2688274 2689162 2690157 "SOLVERAD" 2692022 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1149 2684089 2684698 2685427 "SOLVEFOR" 2687641 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1148 2678359 2683438 2683535 "SNTSCAT" 2683540 NIL SNTSCAT (NIL T T T T) -9 NIL 2683610 NIL) (-1147 2672465 2676682 2677073 "SMTS" 2678049 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1146 2666874 2672353 2672430 "SMP" 2672435 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1145 2665033 2665334 2665732 "SMITH" 2666571 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1144 2657137 2661612 2661715 "SMATCAT" 2663066 NIL SMATCAT (NIL NIL T T T) -9 NIL 2663616 NIL) (-1143 2654077 2654900 2656078 "SMATCAT-" 2656083 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1142 2651718 2653285 2653328 "SKAGG" 2653589 NIL SKAGG (NIL T) -9 NIL 2653724 NIL) (-1141 2647908 2651191 2651375 "SINT" 2651527 T SINT (NIL) -8 NIL NIL 2651689) (-1140 2647680 2647718 2647784 "SIMPAN" 2647864 T SIMPAN (NIL) -7 NIL NIL NIL) (-1139 2646959 2647215 2647355 "SIG" 2647562 T SIG (NIL) -8 NIL NIL NIL) (-1138 2645797 2646018 2646293 "SIGNRF" 2646718 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1137 2644630 2644781 2645065 "SIGNEF" 2645626 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1136 2643936 2644213 2644337 "SIGAST" 2644528 T SIGAST (NIL) -8 NIL NIL NIL) (-1135 2641626 2642080 2642586 "SHP" 2643477 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1134 2635455 2641527 2641603 "SHDP" 2641608 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1133 2635014 2635206 2635236 "SGROUP" 2635329 T SGROUP (NIL) -9 NIL 2635391 NIL) (-1132 2634872 2634898 2634971 "SGROUP-" 2634976 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1131 2631663 2632361 2633084 "SGCF" 2634171 T SGCF (NIL) -7 NIL NIL NIL) (-1130 2626031 2631110 2631207 "SFRTCAT" 2631212 NIL SFRTCAT (NIL T T T T) -9 NIL 2631251 NIL) (-1129 2619452 2620470 2621606 "SFRGCD" 2625014 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1128 2612578 2613651 2614837 "SFQCMPK" 2618385 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1127 2612198 2612287 2612398 "SFORT" 2612519 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1126 2611316 2612038 2612159 "SEXOF" 2612164 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1125 2610423 2611197 2611265 "SEX" 2611270 T SEX (NIL) -8 NIL NIL NIL) (-1124 2606204 2606919 2607014 "SEXCAT" 2609636 NIL SEXCAT (NIL T T T T T) -9 NIL 2610196 NIL) (-1123 2603357 2606138 2606186 "SET" 2606191 NIL SET (NIL T) -8 NIL NIL NIL) (-1122 2601581 2602070 2602375 "SETMN" 2603098 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1121 2601147 2601299 2601329 "SETCAT" 2601446 T SETCAT (NIL) -9 NIL 2601531 NIL) (-1120 2600927 2600979 2601078 "SETCAT-" 2601083 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1119 2597288 2599388 2599431 "SETAGG" 2600301 NIL SETAGG (NIL T) -9 NIL 2600641 NIL) (-1118 2596746 2596862 2597099 "SETAGG-" 2597104 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1117 2596189 2596442 2596543 "SEQAST" 2596667 T SEQAST (NIL) -8 NIL NIL NIL) (-1116 2595388 2595682 2595743 "SEGXCAT" 2596029 NIL SEGXCAT (NIL T T) -9 NIL 2596149 NIL) (-1115 2594394 2595054 2595236 "SEG" 2595241 NIL SEG (NIL T) -8 NIL NIL NIL) (-1114 2593373 2593587 2593630 "SEGCAT" 2594152 NIL SEGCAT (NIL T) -9 NIL 2594373 NIL) (-1113 2592305 2592736 2592944 "SEGBIND" 2593200 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1112 2591926 2591985 2592098 "SEGBIND2" 2592240 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1111 2591499 2591727 2591804 "SEGAST" 2591871 T SEGAST (NIL) -8 NIL NIL NIL) (-1110 2590718 2590844 2591048 "SEG2" 2591343 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1109 2590089 2590653 2590700 "SDVAR" 2590705 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1108 2582340 2589859 2589989 "SDPOL" 2589994 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1107 2580933 2581199 2581518 "SCPKG" 2582055 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1106 2580097 2580269 2580461 "SCOPE" 2580763 T SCOPE (NIL) -8 NIL NIL NIL) (-1105 2579317 2579451 2579630 "SCACHE" 2579952 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1104 2578949 2579135 2579165 "SASTCAT" 2579170 T SASTCAT (NIL) -9 NIL 2579183 NIL) (-1103 2578436 2578784 2578860 "SAOS" 2578895 T SAOS (NIL) -8 NIL NIL NIL) (-1102 2578001 2578036 2578209 "SAERFFC" 2578395 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1101 2571664 2577898 2577978 "SAE" 2577983 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1100 2571257 2571292 2571451 "SAEFACT" 2571623 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1099 2569578 2569892 2570293 "RURPK" 2570923 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1098 2568215 2568521 2568826 "RULESET" 2569412 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1097 2565438 2565968 2566426 "RULE" 2567896 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1096 2565050 2565232 2565315 "RULECOLD" 2565390 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1095 2564840 2564868 2564939 "RTVALUE" 2565001 T RTVALUE (NIL) -8 NIL NIL NIL) (-1094 2564311 2564557 2564651 "RSTRCAST" 2564768 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1093 2559159 2559954 2560874 "RSETGCD" 2563510 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1092 2548389 2553468 2553565 "RSETCAT" 2557684 NIL RSETCAT (NIL T T T T) -9 NIL 2558781 NIL) (-1091 2546316 2546855 2547679 "RSETCAT-" 2547684 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1090 2538702 2540078 2541598 "RSDCMPK" 2544915 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1089 2536667 2537134 2537208 "RRCC" 2538294 NIL RRCC (NIL T T) -9 NIL 2538638 NIL) (-1088 2536018 2536192 2536471 "RRCC-" 2536476 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1087 2535461 2535714 2535815 "RPTAST" 2535939 T RPTAST (NIL) -8 NIL NIL NIL) (-1086 2508937 2518573 2518640 "RPOLCAT" 2529306 NIL RPOLCAT (NIL T T T) -9 NIL 2532466 NIL) (-1085 2500435 2502775 2505897 "RPOLCAT-" 2505902 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1084 2491372 2498646 2499128 "ROUTINE" 2499975 T ROUTINE (NIL) -8 NIL NIL NIL) (-1083 2488033 2490998 2491138 "ROMAN" 2491254 T ROMAN (NIL) -8 NIL NIL NIL) (-1082 2486277 2486893 2487153 "ROIRC" 2487838 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1081 2482481 2484766 2484796 "RNS" 2485100 T RNS (NIL) -9 NIL 2485374 NIL) (-1080 2480990 2481373 2481907 "RNS-" 2481982 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1079 2480379 2480787 2480817 "RNG" 2480822 T RNG (NIL) -9 NIL 2480843 NIL) (-1078 2479382 2479744 2479946 "RNGBIND" 2480230 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1077 2478767 2479155 2479198 "RMODULE" 2479203 NIL RMODULE (NIL T) -9 NIL 2479230 NIL) (-1076 2477603 2477697 2478033 "RMCAT2" 2478668 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1075 2474453 2476949 2477246 "RMATRIX" 2477365 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1074 2467280 2469540 2469655 "RMATCAT" 2473014 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2473996 NIL) (-1073 2466655 2466802 2467109 "RMATCAT-" 2467114 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1072 2466270 2466442 2466485 "RLINSET" 2466547 NIL RLINSET (NIL T) -9 NIL 2466591 NIL) (-1071 2465837 2465912 2466040 "RINTERP" 2466189 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1070 2464881 2465435 2465465 "RING" 2465521 T RING (NIL) -9 NIL 2465613 NIL) (-1069 2464673 2464717 2464814 "RING-" 2464819 NIL RING- (NIL T) -8 NIL NIL NIL) (-1068 2463514 2463751 2464009 "RIDIST" 2464437 T RIDIST (NIL) -7 NIL NIL NIL) (-1067 2454803 2462982 2463188 "RGCHAIN" 2463362 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1066 2454139 2454545 2454586 "RGBCSPC" 2454644 NIL RGBCSPC (NIL T) -9 NIL 2454696 NIL) (-1065 2453283 2453664 2453705 "RGBCMDL" 2453937 NIL RGBCMDL (NIL T) -9 NIL 2454051 NIL) (-1064 2450277 2450891 2451561 "RF" 2452647 NIL RF (NIL T) -7 NIL NIL NIL) (-1063 2449923 2449986 2450089 "RFFACTOR" 2450208 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1062 2449648 2449683 2449780 "RFFACT" 2449882 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1061 2447765 2448129 2448511 "RFDIST" 2449288 T RFDIST (NIL) -7 NIL NIL NIL) (-1060 2447218 2447310 2447473 "RETSOL" 2447667 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1059 2446854 2446934 2446977 "RETRACT" 2447110 NIL RETRACT (NIL T) -9 NIL 2447197 NIL) (-1058 2446703 2446728 2446815 "RETRACT-" 2446820 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1057 2446305 2446525 2446595 "RETAST" 2446655 T RETAST (NIL) -8 NIL NIL NIL) (-1056 2439049 2445958 2446085 "RESULT" 2446200 T RESULT (NIL) -8 NIL NIL NIL) (-1055 2437640 2438318 2438517 "RESRING" 2438952 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1054 2437276 2437325 2437423 "RESLATC" 2437577 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1053 2436981 2437016 2437123 "REPSQ" 2437235 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1052 2434403 2434983 2435585 "REP" 2436401 T REP (NIL) -7 NIL NIL NIL) (-1051 2434100 2434135 2434246 "REPDB" 2434362 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1050 2428000 2429389 2430612 "REP2" 2432912 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1049 2424377 2425058 2425866 "REP1" 2427227 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1048 2417073 2422518 2422974 "REGSET" 2424007 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1047 2415838 2416221 2416471 "REF" 2416858 NIL REF (NIL T) -8 NIL NIL NIL) (-1046 2415215 2415318 2415485 "REDORDER" 2415722 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1045 2411183 2414428 2414655 "RECLOS" 2415043 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1044 2410235 2410416 2410631 "REALSOLV" 2410990 T REALSOLV (NIL) -7 NIL NIL NIL) (-1043 2410081 2410122 2410152 "REAL" 2410157 T REAL (NIL) -9 NIL 2410192 NIL) (-1042 2406564 2407366 2408250 "REAL0Q" 2409246 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1041 2402165 2403153 2404214 "REAL0" 2405545 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1040 2401636 2401882 2401976 "RDUCEAST" 2402093 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1039 2401041 2401113 2401320 "RDIV" 2401558 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1038 2400109 2400283 2400496 "RDIST" 2400863 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1037 2398706 2398993 2399365 "RDETRS" 2399817 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1036 2396518 2396972 2397510 "RDETR" 2398248 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1035 2395143 2395421 2395818 "RDEEFS" 2396234 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1034 2393652 2393958 2394383 "RDEEF" 2394831 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1033 2387685 2390606 2390636 "RCFIELD" 2391931 T RCFIELD (NIL) -9 NIL 2392662 NIL) (-1032 2385749 2386253 2386949 "RCFIELD-" 2387024 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1031 2381993 2383822 2383865 "RCAGG" 2384949 NIL RCAGG (NIL T) -9 NIL 2385414 NIL) (-1030 2381621 2381715 2381878 "RCAGG-" 2381883 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1029 2380956 2381068 2381233 "RATRET" 2381505 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1028 2380509 2380576 2380697 "RATFACT" 2380884 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1027 2379817 2379937 2380089 "RANDSRC" 2380379 T RANDSRC (NIL) -7 NIL NIL NIL) (-1026 2379551 2379595 2379668 "RADUTIL" 2379766 T RADUTIL (NIL) -7 NIL NIL NIL) (-1025 2372379 2378382 2378693 "RADIX" 2379274 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1024 2362839 2372221 2372351 "RADFF" 2372356 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1023 2362486 2362561 2362591 "RADCAT" 2362751 T RADCAT (NIL) -9 NIL NIL NIL) (-1022 2362268 2362316 2362416 "RADCAT-" 2362421 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1021 2360369 2362038 2362130 "QUEUE" 2362211 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1020 2356630 2360302 2360350 "QUAT" 2360355 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1019 2356261 2356304 2356435 "QUATCT2" 2356581 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1018 2349059 2352684 2352726 "QUATCAT" 2353517 NIL QUATCAT (NIL T) -9 NIL 2354283 NIL) (-1017 2345198 2346235 2347625 "QUATCAT-" 2347721 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1016 2342638 2344246 2344289 "QUAGG" 2344670 NIL QUAGG (NIL T) -9 NIL 2344845 NIL) (-1015 2342240 2342460 2342530 "QQUTAST" 2342590 T QQUTAST (NIL) -8 NIL NIL NIL) (-1014 2341253 2341753 2341918 "QFORM" 2342121 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1013 2331585 2337100 2337142 "QFCAT" 2337810 NIL QFCAT (NIL T) -9 NIL 2338811 NIL) (-1012 2327152 2328353 2329947 "QFCAT-" 2330043 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1011 2326783 2326826 2326957 "QFCAT2" 2327103 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1010 2326238 2326348 2326480 "QEQUAT" 2326673 T QEQUAT (NIL) -8 NIL NIL NIL) (-1009 2319364 2320437 2321623 "QCMPACK" 2325171 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1008 2316902 2317350 2317780 "QALGSET" 2319019 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1007 2316137 2316313 2316549 "QALGSET2" 2316720 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1006 2314822 2315046 2315365 "PWFFINTB" 2315910 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1005 2312997 2313165 2313521 "PUSHVAR" 2314636 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1004 2308886 2309940 2309983 "PTRANFN" 2311894 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1003 2307277 2307568 2307892 "PTPACK" 2308597 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1002 2306906 2306963 2307074 "PTFUNC2" 2307214 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1001 2301301 2305695 2305738 "PTCAT" 2306038 NIL PTCAT (NIL T) -9 NIL 2306191 NIL) (-1000 2300956 2300991 2301117 "PSQFR" 2301260 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-999 2299551 2299849 2300183 "PSEUDLIN" 2300654 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-998 2286314 2288685 2291009 "PSETPK" 2297311 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-997 2279332 2282072 2282168 "PSETCAT" 2285189 NIL PSETCAT (NIL T T T T) -9 NIL 2286003 NIL) (-996 2277168 2277802 2278623 "PSETCAT-" 2278628 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-995 2276517 2276682 2276710 "PSCURVE" 2276978 T PSCURVE (NIL) -9 NIL 2277145 NIL) (-994 2272501 2274017 2274082 "PSCAT" 2274926 NIL PSCAT (NIL T T T) -9 NIL 2275166 NIL) (-993 2271564 2271780 2272180 "PSCAT-" 2272185 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-992 2269923 2270633 2270896 "PRTITION" 2271321 T PRTITION (NIL) -8 NIL NIL NIL) (-991 2269398 2269644 2269736 "PRTDAST" 2269851 T PRTDAST (NIL) -8 NIL NIL NIL) (-990 2258488 2260702 2262890 "PRS" 2267260 NIL PRS (NIL T T) -7 NIL NIL NIL) (-989 2256274 2257810 2257850 "PRQAGG" 2258033 NIL PRQAGG (NIL T) -9 NIL 2258135 NIL) (-988 2255610 2255915 2255943 "PROPLOG" 2256082 T PROPLOG (NIL) -9 NIL 2256197 NIL) (-987 2255214 2255271 2255394 "PROPFUN2" 2255533 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-986 2254529 2254650 2254822 "PROPFUN1" 2255075 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-985 2252710 2253276 2253573 "PROPFRML" 2254265 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-984 2252179 2252286 2252414 "PROPERTY" 2252602 T PROPERTY (NIL) -8 NIL NIL NIL) (-983 2246237 2250345 2251165 "PRODUCT" 2251405 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-982 2243515 2245695 2245929 "PR" 2246048 NIL PR (NIL T T) -8 NIL NIL NIL) (-981 2243311 2243343 2243402 "PRINT" 2243476 T PRINT (NIL) -7 NIL NIL NIL) (-980 2242651 2242768 2242920 "PRIMES" 2243191 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-979 2240716 2241117 2241583 "PRIMELT" 2242230 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-978 2240445 2240494 2240522 "PRIMCAT" 2240646 T PRIMCAT (NIL) -9 NIL NIL NIL) (-977 2236563 2240383 2240428 "PRIMARR" 2240433 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-976 2235570 2235748 2235976 "PRIMARR2" 2236381 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-975 2235213 2235269 2235380 "PREASSOC" 2235508 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-974 2234688 2234821 2234849 "PPCURVE" 2235054 T PPCURVE (NIL) -9 NIL 2235190 NIL) (-973 2234283 2234483 2234566 "PORTNUM" 2234625 T PORTNUM (NIL) -8 NIL NIL NIL) (-972 2231642 2232041 2232633 "POLYROOT" 2233864 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-971 2225548 2231246 2231406 "POLY" 2231515 NIL POLY (NIL T) -8 NIL NIL NIL) (-970 2224931 2224989 2225223 "POLYLIFT" 2225484 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-969 2221206 2221655 2222284 "POLYCATQ" 2224476 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-968 2207548 2212953 2213018 "POLYCAT" 2216532 NIL POLYCAT (NIL T T T) -9 NIL 2218410 NIL) (-967 2200997 2202859 2205243 "POLYCAT-" 2205248 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-966 2200584 2200652 2200772 "POLY2UP" 2200923 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-965 2200216 2200273 2200382 "POLY2" 2200521 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-964 2198901 2199140 2199416 "POLUTIL" 2199990 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-963 2197256 2197533 2197864 "POLTOPOL" 2198623 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-962 2192722 2197190 2197237 "POINT" 2197242 NIL POINT (NIL T) -8 NIL NIL NIL) (-961 2190909 2191266 2191641 "PNTHEORY" 2192367 T PNTHEORY (NIL) -7 NIL NIL NIL) (-960 2189367 2189664 2190063 "PMTOOLS" 2190607 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-959 2188960 2189038 2189155 "PMSYM" 2189283 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-958 2188468 2188537 2188712 "PMQFCAT" 2188885 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-957 2187823 2187933 2188089 "PMPRED" 2188345 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-956 2187216 2187302 2187464 "PMPREDFS" 2187724 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-955 2185880 2186088 2186466 "PMPLCAT" 2186978 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-954 2185412 2185491 2185643 "PMLSAGG" 2185795 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-953 2184885 2184961 2185143 "PMKERNEL" 2185330 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-952 2184502 2184577 2184690 "PMINS" 2184804 NIL PMINS (NIL T) -7 NIL NIL NIL) (-951 2183944 2184013 2184222 "PMFS" 2184427 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-950 2183172 2183290 2183495 "PMDOWN" 2183821 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-949 2182339 2182497 2182678 "PMASS" 2183011 T PMASS (NIL) -7 NIL NIL NIL) (-948 2181612 2181722 2181885 "PMASSFS" 2182226 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-947 2181267 2181335 2181429 "PLOTTOOL" 2181538 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-946 2175874 2177078 2178226 "PLOT" 2180139 T PLOT (NIL) -8 NIL NIL NIL) (-945 2171678 2172722 2173643 "PLOT3D" 2174973 T PLOT3D (NIL) -8 NIL NIL NIL) (-944 2170590 2170767 2171002 "PLOT1" 2171482 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-943 2145981 2150656 2155507 "PLEQN" 2165856 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-942 2145299 2145421 2145601 "PINTERP" 2145846 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-941 2144992 2145039 2145142 "PINTERPA" 2145246 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-940 2144208 2144756 2144843 "PI" 2144883 T PI (NIL) -8 NIL NIL 2144950) (-939 2142491 2143466 2143494 "PID" 2143676 T PID (NIL) -9 NIL 2143810 NIL) (-938 2142242 2142279 2142354 "PICOERCE" 2142448 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-937 2141562 2141701 2141877 "PGROEB" 2142098 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-936 2137149 2137963 2138868 "PGE" 2140677 T PGE (NIL) -7 NIL NIL NIL) (-935 2135272 2135519 2135885 "PGCD" 2136866 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-934 2134610 2134713 2134874 "PFRPAC" 2135156 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-933 2131250 2133158 2133511 "PFR" 2134289 NIL PFR (NIL T) -8 NIL NIL NIL) (-932 2129639 2129883 2130208 "PFOTOOLS" 2130997 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-931 2128172 2128411 2128762 "PFOQ" 2129396 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-930 2126673 2126885 2127241 "PFO" 2127956 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-929 2123226 2126562 2126631 "PF" 2126636 NIL PF (NIL NIL) -8 NIL NIL NIL) (-928 2120546 2121817 2121845 "PFECAT" 2122430 T PFECAT (NIL) -9 NIL 2122814 NIL) (-927 2119991 2120145 2120359 "PFECAT-" 2120364 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-926 2118594 2118846 2119147 "PFBRU" 2119740 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-925 2116460 2116812 2117244 "PFBR" 2118245 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-924 2112506 2113972 2114619 "PERM" 2115846 NIL PERM (NIL T) -8 NIL NIL NIL) (-923 2107740 2108713 2109583 "PERMGRP" 2111669 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-922 2105804 2106764 2106805 "PERMCAT" 2107205 NIL PERMCAT (NIL T) -9 NIL 2107503 NIL) (-921 2105457 2105498 2105622 "PERMAN" 2105757 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-920 2102948 2105122 2105244 "PENDTREE" 2105368 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-919 2101877 2102092 2102133 "PDSPC" 2102666 NIL PDSPC (NIL T) -9 NIL 2102911 NIL) (-918 2100980 2101198 2101560 "PDSPC-" 2101565 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-917 2099862 2100630 2100671 "PDRING" 2100676 NIL PDRING (NIL T) -9 NIL 2100704 NIL) (-916 2098749 2099367 2099421 "PDMOD" 2099426 NIL PDMOD (NIL T T) -9 NIL 2099530 NIL) (-915 2095964 2096742 2097410 "PDEPROB" 2098101 T PDEPROB (NIL) -8 NIL NIL NIL) (-914 2093509 2094013 2094568 "PDEPACK" 2095429 T PDEPACK (NIL) -7 NIL NIL NIL) (-913 2092421 2092611 2092862 "PDECOMP" 2093308 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-912 2089986 2090829 2090857 "PDECAT" 2091644 T PDECAT (NIL) -9 NIL 2092357 NIL) (-911 2089615 2089670 2089724 "PDDOM" 2089889 NIL PDDOM (NIL T T) -9 NIL 2089969 NIL) (-910 2089434 2089464 2089571 "PDDOM-" 2089576 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-909 2089185 2089218 2089308 "PCOMP" 2089395 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-908 2087363 2087986 2088283 "PBWLB" 2088914 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-907 2079836 2081436 2082774 "PATTERN" 2086046 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-906 2079468 2079525 2079634 "PATTERN2" 2079773 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-905 2077225 2077613 2078070 "PATTERN1" 2079057 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-904 2074593 2075174 2075655 "PATRES" 2076790 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-903 2074157 2074224 2074356 "PATRES2" 2074520 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-902 2072040 2072445 2072852 "PATMATCH" 2073824 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-901 2071536 2071745 2071786 "PATMAB" 2071893 NIL PATMAB (NIL T) -9 NIL 2071976 NIL) (-900 2070054 2070390 2070648 "PATLRES" 2071341 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-899 2069600 2069723 2069764 "PATAB" 2069769 NIL PATAB (NIL T) -9 NIL 2069941 NIL) (-898 2067782 2068177 2068600 "PARTPERM" 2069197 T PARTPERM (NIL) -7 NIL NIL NIL) (-897 2067403 2067466 2067568 "PARSURF" 2067713 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-896 2067035 2067092 2067201 "PARSU2" 2067340 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-895 2066799 2066839 2066906 "PARSER" 2066988 T PARSER (NIL) -7 NIL NIL NIL) (-894 2066420 2066483 2066585 "PARSCURV" 2066730 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-893 2066052 2066109 2066218 "PARSC2" 2066357 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-892 2065691 2065749 2065846 "PARPCURV" 2065988 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-891 2065323 2065380 2065489 "PARPC2" 2065628 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-890 2064384 2064696 2064878 "PARAMAST" 2065161 T PARAMAST (NIL) -8 NIL NIL NIL) (-889 2063904 2063990 2064109 "PAN2EXPR" 2064285 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-888 2062681 2063025 2063253 "PALETTE" 2063696 T PALETTE (NIL) -8 NIL NIL NIL) (-887 2061074 2061686 2062046 "PAIR" 2062367 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-886 2054666 2060331 2060526 "PADICRC" 2060928 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-885 2047582 2054010 2054195 "PADICRAT" 2054513 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-884 2045897 2047519 2047564 "PADIC" 2047569 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-883 2042993 2044557 2044597 "PADICCT" 2045178 NIL PADICCT (NIL NIL) -9 NIL 2045460 NIL) (-882 2041950 2042150 2042418 "PADEPAC" 2042780 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-881 2041162 2041295 2041501 "PADE" 2041812 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-880 2039549 2040370 2040650 "OWP" 2040966 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-879 2039042 2039255 2039352 "OVERSET" 2039472 T OVERSET (NIL) -8 NIL NIL NIL) (-878 2038088 2038647 2038819 "OVAR" 2038910 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-877 2037352 2037473 2037634 "OUT" 2037947 T OUT (NIL) -7 NIL NIL NIL) (-876 2026224 2028461 2030661 "OUTFORM" 2035172 T OUTFORM (NIL) -8 NIL NIL NIL) (-875 2025560 2025821 2025948 "OUTBFILE" 2026117 T OUTBFILE (NIL) -8 NIL NIL NIL) (-874 2024867 2025032 2025060 "OUTBCON" 2025378 T OUTBCON (NIL) -9 NIL 2025544 NIL) (-873 2024468 2024580 2024737 "OUTBCON-" 2024742 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-872 2023848 2024197 2024286 "OSI" 2024399 T OSI (NIL) -8 NIL NIL NIL) (-871 2023351 2023689 2023717 "OSGROUP" 2023722 T OSGROUP (NIL) -9 NIL 2023744 NIL) (-870 2022096 2022323 2022608 "ORTHPOL" 2023098 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-869 2019647 2021931 2022052 "OREUP" 2022057 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-868 2017050 2019338 2019465 "ORESUP" 2019589 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-867 2014578 2015078 2015639 "OREPCTO" 2016539 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-866 2008250 2010451 2010492 "OREPCAT" 2012840 NIL OREPCAT (NIL T) -9 NIL 2013944 NIL) (-865 2005397 2006179 2007237 "OREPCAT-" 2007242 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-864 2004644 2004867 2004895 "ORDTYPE" 2005204 T ORDTYPE (NIL) -9 NIL 2005367 NIL) (-863 2003987 2004161 2004416 "ORDTYPE-" 2004421 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-862 2003600 2003870 2003956 "ORDSTRCT" 2003961 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-861 2003170 2003468 2003496 "ORDSET" 2003501 T ORDSET (NIL) -9 NIL 2003523 NIL) (-860 2001708 2002499 2002527 "ORDRING" 2002729 T ORDRING (NIL) -9 NIL 2002854 NIL) (-859 2001353 2001447 2001591 "ORDRING-" 2001596 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-858 2000706 2001169 2001197 "ORDMON" 2001202 T ORDMON (NIL) -9 NIL 2001223 NIL) (-857 1999868 2000015 2000210 "ORDFUNS" 2000555 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-856 1999179 1999598 1999626 "ORDFIN" 1999691 T ORDFIN (NIL) -9 NIL 1999765 NIL) (-855 1995738 1997765 1998174 "ORDCOMP" 1998803 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-854 1995004 1995131 1995317 "ORDCOMP2" 1995598 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-853 1991585 1992495 1993309 "OPTPROB" 1994210 T OPTPROB (NIL) -8 NIL NIL NIL) (-852 1988387 1989026 1989730 "OPTPACK" 1990901 T OPTPACK (NIL) -7 NIL NIL NIL) (-851 1986060 1986826 1986854 "OPTCAT" 1987673 T OPTCAT (NIL) -9 NIL 1988323 NIL) (-850 1985444 1985737 1985842 "OPSIG" 1985975 T OPSIG (NIL) -8 NIL NIL NIL) (-849 1985212 1985251 1985317 "OPQUERY" 1985398 T OPQUERY (NIL) -7 NIL NIL NIL) (-848 1982343 1983523 1984027 "OP" 1984741 NIL OP (NIL T) -8 NIL NIL NIL) (-847 1981703 1981929 1981970 "OPERCAT" 1982182 NIL OPERCAT (NIL T) -9 NIL 1982279 NIL) (-846 1981458 1981514 1981631 "OPERCAT-" 1981636 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-845 1978271 1980255 1980624 "ONECOMP" 1981122 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-844 1977576 1977691 1977865 "ONECOMP2" 1978143 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-843 1976995 1977101 1977231 "OMSERVER" 1977466 T OMSERVER (NIL) -7 NIL NIL NIL) (-842 1973857 1976435 1976475 "OMSAGG" 1976536 NIL OMSAGG (NIL T) -9 NIL 1976600 NIL) (-841 1972480 1972743 1973025 "OMPKG" 1973595 T OMPKG (NIL) -7 NIL NIL NIL) (-840 1971910 1972013 1972041 "OM" 1972340 T OM (NIL) -9 NIL NIL NIL) (-839 1970457 1971459 1971628 "OMLO" 1971791 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-838 1969417 1969564 1969784 "OMEXPR" 1970283 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-837 1968708 1968963 1969099 "OMERR" 1969301 T OMERR (NIL) -8 NIL NIL NIL) (-836 1967859 1968129 1968289 "OMERRK" 1968568 T OMERRK (NIL) -8 NIL NIL NIL) (-835 1967310 1967536 1967644 "OMENC" 1967771 T OMENC (NIL) -8 NIL NIL NIL) (-834 1961205 1962390 1963561 "OMDEV" 1966159 T OMDEV (NIL) -8 NIL NIL NIL) (-833 1960274 1960445 1960639 "OMCONN" 1961031 T OMCONN (NIL) -8 NIL NIL NIL) (-832 1958768 1959744 1959772 "OINTDOM" 1959777 T OINTDOM (NIL) -9 NIL 1959798 NIL) (-831 1956106 1957456 1957793 "OFMONOID" 1958463 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-830 1955478 1956043 1956088 "ODVAR" 1956093 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-829 1952901 1955223 1955378 "ODR" 1955383 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-828 1945206 1952677 1952803 "ODPOL" 1952808 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-827 1939005 1945078 1945183 "ODP" 1945188 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-826 1937771 1937986 1938261 "ODETOOLS" 1938779 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-825 1934738 1935396 1936112 "ODESYS" 1937104 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-824 1929620 1930528 1931553 "ODERTRIC" 1933813 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-823 1929046 1929128 1929322 "ODERED" 1929532 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-822 1925934 1926482 1927159 "ODERAT" 1928469 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-821 1922893 1923358 1923955 "ODEPRRIC" 1925463 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-820 1920836 1921432 1921918 "ODEPROB" 1922427 T ODEPROB (NIL) -8 NIL NIL NIL) (-819 1917356 1917841 1918488 "ODEPRIM" 1920315 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-818 1916605 1916707 1916967 "ODEPAL" 1917248 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-817 1912767 1913558 1914422 "ODEPACK" 1915761 T ODEPACK (NIL) -7 NIL NIL NIL) (-816 1911828 1911935 1912157 "ODEINT" 1912656 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-815 1905929 1907354 1908801 "ODEIFTBL" 1910401 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-814 1901327 1902113 1903065 "ODEEF" 1905088 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-813 1900676 1900765 1900988 "ODECONST" 1901232 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-812 1898787 1899448 1899476 "ODECAT" 1900081 T ODECAT (NIL) -9 NIL 1900612 NIL) (-811 1895642 1898492 1898614 "OCT" 1898697 NIL OCT (NIL T) -8 NIL NIL NIL) (-810 1895280 1895323 1895450 "OCTCT2" 1895593 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-809 1889887 1892323 1892363 "OC" 1893460 NIL OC (NIL T) -9 NIL 1894318 NIL) (-808 1887114 1887862 1888852 "OC-" 1888946 NIL OC- (NIL T T) -8 NIL NIL NIL) (-807 1886439 1886907 1886935 "OCAMON" 1886940 T OCAMON (NIL) -9 NIL 1886961 NIL) (-806 1885943 1886284 1886312 "OASGP" 1886317 T OASGP (NIL) -9 NIL 1886337 NIL) (-805 1885177 1885666 1885694 "OAMONS" 1885734 T OAMONS (NIL) -9 NIL 1885777 NIL) (-804 1884564 1884997 1885025 "OAMON" 1885030 T OAMON (NIL) -9 NIL 1885050 NIL) (-803 1883795 1884313 1884341 "OAGROUP" 1884346 T OAGROUP (NIL) -9 NIL 1884366 NIL) (-802 1883485 1883535 1883623 "NUMTUBE" 1883739 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-801 1877058 1878576 1880112 "NUMQUAD" 1881969 T NUMQUAD (NIL) -7 NIL NIL NIL) (-800 1872814 1873802 1874827 "NUMODE" 1876053 T NUMODE (NIL) -7 NIL NIL NIL) (-799 1870155 1871035 1871063 "NUMINT" 1871986 T NUMINT (NIL) -9 NIL 1872750 NIL) (-798 1869103 1869300 1869518 "NUMFMT" 1869957 T NUMFMT (NIL) -7 NIL NIL NIL) (-797 1855462 1858407 1860939 "NUMERIC" 1866610 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-796 1849832 1854911 1855006 "NTSCAT" 1855011 NIL NTSCAT (NIL T T T T) -9 NIL 1855050 NIL) (-795 1849026 1849191 1849384 "NTPOLFN" 1849671 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-794 1836827 1845851 1846663 "NSUP" 1848247 NIL NSUP (NIL T) -8 NIL NIL NIL) (-793 1836459 1836516 1836625 "NSUP2" 1836764 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-792 1826409 1836233 1836366 "NSMP" 1836371 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-791 1824841 1825142 1825499 "NREP" 1826097 NIL NREP (NIL T) -7 NIL NIL NIL) (-790 1823432 1823684 1824042 "NPCOEF" 1824584 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-789 1822498 1822613 1822829 "NORMRETR" 1823313 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-788 1820539 1820829 1821238 "NORMPK" 1822206 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-787 1820224 1820252 1820376 "NORMMA" 1820505 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-786 1820024 1820181 1820210 "NONE" 1820215 T NONE (NIL) -8 NIL NIL NIL) (-785 1819813 1819842 1819911 "NONE1" 1819988 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-784 1819310 1819372 1819551 "NODE1" 1819745 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-783 1817591 1818442 1818697 "NNI" 1819044 T NNI (NIL) -8 NIL NIL 1819279) (-782 1816011 1816324 1816688 "NLINSOL" 1817259 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-781 1812252 1813247 1814146 "NIPROB" 1815132 T NIPROB (NIL) -8 NIL NIL NIL) (-780 1811009 1811243 1811545 "NFINTBAS" 1812014 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-779 1810183 1810659 1810700 "NETCLT" 1810872 NIL NETCLT (NIL T) -9 NIL 1810954 NIL) (-778 1808891 1809122 1809403 "NCODIV" 1809951 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-777 1808653 1808690 1808765 "NCNTFRAC" 1808848 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-776 1806833 1807197 1807617 "NCEP" 1808278 NIL NCEP (NIL T) -7 NIL NIL NIL) (-775 1805670 1806443 1806471 "NASRING" 1806581 T NASRING (NIL) -9 NIL 1806661 NIL) (-774 1805465 1805509 1805603 "NASRING-" 1805608 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-773 1804558 1805083 1805111 "NARNG" 1805228 T NARNG (NIL) -9 NIL 1805319 NIL) (-772 1804250 1804317 1804451 "NARNG-" 1804456 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-771 1803129 1803336 1803571 "NAGSP" 1804035 T NAGSP (NIL) -7 NIL NIL NIL) (-770 1794401 1796085 1797758 "NAGS" 1801476 T NAGS (NIL) -7 NIL NIL NIL) (-769 1792949 1793257 1793588 "NAGF07" 1794090 T NAGF07 (NIL) -7 NIL NIL NIL) (-768 1787487 1788778 1790085 "NAGF04" 1791662 T NAGF04 (NIL) -7 NIL NIL NIL) (-767 1780455 1782069 1783702 "NAGF02" 1785874 T NAGF02 (NIL) -7 NIL NIL NIL) (-766 1775679 1776779 1777896 "NAGF01" 1779358 T NAGF01 (NIL) -7 NIL NIL NIL) (-765 1769307 1770873 1772458 "NAGE04" 1774114 T NAGE04 (NIL) -7 NIL NIL NIL) (-764 1760476 1762597 1764727 "NAGE02" 1767197 T NAGE02 (NIL) -7 NIL NIL NIL) (-763 1756429 1757376 1758340 "NAGE01" 1759532 T NAGE01 (NIL) -7 NIL NIL NIL) (-762 1754224 1754758 1755316 "NAGD03" 1755891 T NAGD03 (NIL) -7 NIL NIL NIL) (-761 1745974 1747902 1749856 "NAGD02" 1752290 T NAGD02 (NIL) -7 NIL NIL NIL) (-760 1739785 1741210 1742650 "NAGD01" 1744554 T NAGD01 (NIL) -7 NIL NIL NIL) (-759 1735994 1736816 1737653 "NAGC06" 1738968 T NAGC06 (NIL) -7 NIL NIL NIL) (-758 1734459 1734791 1735147 "NAGC05" 1735658 T NAGC05 (NIL) -7 NIL NIL NIL) (-757 1733835 1733954 1734098 "NAGC02" 1734335 T NAGC02 (NIL) -7 NIL NIL NIL) (-756 1732780 1733363 1733403 "NAALG" 1733482 NIL NAALG (NIL T) -9 NIL 1733543 NIL) (-755 1732615 1732644 1732734 "NAALG-" 1732739 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-754 1726565 1727673 1728860 "MULTSQFR" 1731511 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-753 1725884 1725959 1726143 "MULTFACT" 1726477 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-752 1718555 1722469 1722522 "MTSCAT" 1723592 NIL MTSCAT (NIL T T) -9 NIL 1724107 NIL) (-751 1718267 1718321 1718413 "MTHING" 1718495 NIL MTHING (NIL T) -7 NIL NIL NIL) (-750 1718059 1718092 1718152 "MSYSCMD" 1718227 T MSYSCMD (NIL) -7 NIL NIL NIL) (-749 1714141 1716814 1717134 "MSET" 1717772 NIL MSET (NIL T) -8 NIL NIL NIL) (-748 1711210 1713702 1713743 "MSETAGG" 1713748 NIL MSETAGG (NIL T) -9 NIL 1713782 NIL) (-747 1707052 1708589 1709334 "MRING" 1710510 NIL MRING (NIL T T) -8 NIL NIL NIL) (-746 1706618 1706685 1706816 "MRF2" 1706979 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-745 1706236 1706271 1706415 "MRATFAC" 1706577 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-744 1703848 1704143 1704574 "MPRFF" 1705941 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-743 1697869 1703702 1703799 "MPOLY" 1703804 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-742 1697359 1697394 1697602 "MPCPF" 1697828 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-741 1696873 1696916 1697100 "MPC3" 1697310 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-740 1696068 1696149 1696370 "MPC2" 1696788 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-739 1694369 1694706 1695096 "MONOTOOL" 1695728 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-738 1693580 1693897 1693925 "MONOID" 1694144 T MONOID (NIL) -9 NIL 1694291 NIL) (-737 1693126 1693245 1693426 "MONOID-" 1693431 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-736 1682716 1688946 1689005 "MONOGEN" 1689679 NIL MONOGEN (NIL T T) -9 NIL 1690135 NIL) (-735 1679934 1680669 1681669 "MONOGEN-" 1681788 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-734 1678753 1679199 1679227 "MONADWU" 1679619 T MONADWU (NIL) -9 NIL 1679857 NIL) (-733 1678125 1678284 1678532 "MONADWU-" 1678537 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-732 1677470 1677714 1677742 "MONAD" 1677949 T MONAD (NIL) -9 NIL 1678061 NIL) (-731 1677155 1677233 1677365 "MONAD-" 1677370 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-730 1675444 1676068 1676347 "MOEBIUS" 1676908 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-729 1674708 1675112 1675152 "MODULE" 1675157 NIL MODULE (NIL T) -9 NIL 1675196 NIL) (-728 1674276 1674372 1674562 "MODULE-" 1674567 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-727 1671956 1672640 1672967 "MODRING" 1674100 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-726 1668900 1670061 1670582 "MODOP" 1671485 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-725 1667488 1667967 1668244 "MODMONOM" 1668763 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-724 1657256 1665779 1666193 "MODMON" 1667125 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-723 1654412 1656100 1656376 "MODFIELD" 1657131 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-722 1653389 1653693 1653883 "MMLFORM" 1654242 T MMLFORM (NIL) -8 NIL NIL NIL) (-721 1652915 1652958 1653137 "MMAP" 1653340 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-720 1650980 1651747 1651788 "MLO" 1652211 NIL MLO (NIL T) -9 NIL 1652453 NIL) (-719 1648346 1648862 1649464 "MLIFT" 1650461 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-718 1647737 1647821 1647975 "MKUCFUNC" 1648257 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-717 1647336 1647406 1647529 "MKRECORD" 1647660 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-716 1646383 1646545 1646773 "MKFUNC" 1647147 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-715 1645771 1645875 1646031 "MKFLCFN" 1646266 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-714 1645048 1645150 1645335 "MKBCFUNC" 1645664 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-713 1641637 1644602 1644738 "MINT" 1644932 T MINT (NIL) -8 NIL NIL NIL) (-712 1640449 1640692 1640969 "MHROWRED" 1641392 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-711 1635829 1638984 1639389 "MFLOAT" 1640064 T MFLOAT (NIL) -8 NIL NIL NIL) (-710 1635186 1635262 1635433 "MFINFACT" 1635741 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-709 1631501 1632349 1633233 "MESH" 1634322 T MESH (NIL) -7 NIL NIL NIL) (-708 1629891 1630203 1630556 "MDDFACT" 1631188 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-707 1626661 1629022 1629063 "MDAGG" 1629318 NIL MDAGG (NIL T) -9 NIL 1629461 NIL) (-706 1615355 1625954 1626161 "MCMPLX" 1626474 T MCMPLX (NIL) -8 NIL NIL NIL) (-705 1614492 1614638 1614839 "MCDEN" 1615204 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-704 1612382 1612652 1613032 "MCALCFN" 1614222 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-703 1611307 1611547 1611780 "MAYBE" 1612188 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-702 1608919 1609442 1610004 "MATSTOR" 1610778 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-701 1604831 1608291 1608539 "MATRIX" 1608704 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-700 1600597 1601304 1602040 "MATLIN" 1604188 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-699 1590423 1593654 1593731 "MATCAT" 1598763 NIL MATCAT (NIL T T T) -9 NIL 1600235 NIL) (-698 1586616 1587686 1589099 "MATCAT-" 1589104 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-697 1585210 1585363 1585696 "MATCAT2" 1586451 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-696 1583322 1583646 1584030 "MAPPKG3" 1584885 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-695 1582303 1582476 1582698 "MAPPKG2" 1583146 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-694 1580802 1581086 1581413 "MAPPKG1" 1582009 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-693 1579881 1580208 1580385 "MAPPAST" 1580645 T MAPPAST (NIL) -8 NIL NIL NIL) (-692 1579492 1579550 1579673 "MAPHACK3" 1579817 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-691 1579084 1579145 1579259 "MAPHACK2" 1579424 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-690 1578522 1578625 1578767 "MAPHACK1" 1578975 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-689 1576601 1577222 1577526 "MAGMA" 1578250 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-688 1576080 1576325 1576416 "MACROAST" 1576530 T MACROAST (NIL) -8 NIL NIL NIL) (-687 1572501 1574319 1574780 "M3D" 1575652 NIL M3D (NIL T) -8 NIL NIL NIL) (-686 1566551 1570812 1570853 "LZSTAGG" 1571635 NIL LZSTAGG (NIL T) -9 NIL 1571930 NIL) (-685 1562509 1563682 1565139 "LZSTAGG-" 1565144 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-684 1559596 1560400 1560887 "LWORD" 1562054 NIL LWORD (NIL T) -8 NIL NIL NIL) (-683 1559172 1559400 1559475 "LSTAST" 1559541 T LSTAST (NIL) -8 NIL NIL NIL) (-682 1552062 1558943 1559077 "LSQM" 1559082 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-681 1551286 1551425 1551653 "LSPP" 1551917 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-680 1549098 1549399 1549855 "LSMP" 1550975 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-679 1545877 1546551 1547281 "LSMP1" 1548400 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-678 1539679 1544967 1545008 "LSAGG" 1545070 NIL LSAGG (NIL T) -9 NIL 1545148 NIL) (-677 1536374 1537298 1538511 "LSAGG-" 1538516 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-676 1533973 1535518 1535767 "LPOLY" 1536169 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-675 1533555 1533640 1533763 "LPEFRAC" 1533882 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-674 1531876 1532649 1532902 "LO" 1533387 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1531488 1531626 1531654 "LOGIC" 1531765 T LOGIC (NIL) -9 NIL 1531846 NIL) (-672 1531350 1531373 1531444 "LOGIC-" 1531449 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-671 1530543 1530683 1530876 "LODOOPS" 1531206 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-670 1527966 1530459 1530525 "LODO" 1530530 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-669 1526504 1526739 1527092 "LODOF" 1527713 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-668 1522708 1525139 1525180 "LODOCAT" 1525618 NIL LODOCAT (NIL T) -9 NIL 1525829 NIL) (-667 1522441 1522499 1522626 "LODOCAT-" 1522631 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-666 1519761 1522282 1522400 "LODO2" 1522405 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-665 1517196 1519698 1519743 "LODO1" 1519748 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-664 1516077 1516242 1516547 "LODEEF" 1517019 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-663 1511355 1514243 1514284 "LNAGG" 1515146 NIL LNAGG (NIL T) -9 NIL 1515581 NIL) (-662 1510502 1510716 1511058 "LNAGG-" 1511063 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-661 1506638 1507427 1508066 "LMOPS" 1509917 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-660 1506027 1506415 1506456 "LMODULE" 1506461 NIL LMODULE (NIL T) -9 NIL 1506487 NIL) (-659 1503228 1505672 1505795 "LMDICT" 1505937 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-658 1502846 1503018 1503059 "LLINSET" 1503120 NIL LLINSET (NIL T) -9 NIL 1503164 NIL) (-657 1502545 1502754 1502814 "LITERAL" 1502819 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-656 1495711 1501479 1501783 "LIST" 1502274 NIL LIST (NIL T) -8 NIL NIL NIL) (-655 1495236 1495310 1495449 "LIST3" 1495631 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-654 1494243 1494421 1494649 "LIST2" 1495054 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-653 1492377 1492689 1493088 "LIST2MAP" 1493890 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-652 1492008 1492196 1492237 "LINSET" 1492242 NIL LINSET (NIL T) -9 NIL 1492276 NIL) (-651 1490421 1491035 1491076 "LINEXP" 1491566 NIL LINEXP (NIL T) -9 NIL 1491839 NIL) (-650 1488998 1489258 1489569 "LINDEP" 1490173 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-649 1485765 1486484 1487261 "LIMITRF" 1488253 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-648 1484068 1484364 1484773 "LIMITPS" 1485460 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-647 1478496 1483579 1483807 "LIE" 1483889 NIL LIE (NIL T T) -8 NIL NIL NIL) (-646 1477430 1477899 1477939 "LIECAT" 1478079 NIL LIECAT (NIL T) -9 NIL 1478230 NIL) (-645 1477271 1477298 1477386 "LIECAT-" 1477391 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-644 1469864 1476811 1476967 "LIB" 1477135 T LIB (NIL) -8 NIL NIL NIL) (-643 1465499 1466382 1467317 "LGROBP" 1468981 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-642 1463497 1463771 1464121 "LF" 1465220 NIL LF (NIL T T) -7 NIL NIL NIL) (-641 1462337 1463029 1463057 "LFCAT" 1463264 T LFCAT (NIL) -9 NIL 1463403 NIL) (-640 1459239 1459869 1460557 "LEXTRIPK" 1461701 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-639 1455983 1456809 1457312 "LEXP" 1458819 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-638 1455459 1455704 1455796 "LETAST" 1455911 T LETAST (NIL) -8 NIL NIL NIL) (-637 1453857 1454170 1454571 "LEADCDET" 1455141 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-636 1453047 1453121 1453350 "LAZM3PK" 1453778 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-635 1447964 1451124 1451662 "LAUPOL" 1452559 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-634 1447543 1447587 1447748 "LAPLACE" 1447914 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-633 1445482 1446644 1446895 "LA" 1447376 NIL LA (NIL T T T) -8 NIL NIL NIL) (-632 1444462 1445046 1445087 "LALG" 1445149 NIL LALG (NIL T) -9 NIL 1445208 NIL) (-631 1444176 1444235 1444371 "LALG-" 1444376 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-630 1444011 1444035 1444076 "KVTFROM" 1444138 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-629 1442934 1443378 1443563 "KTVLOGIC" 1443846 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-628 1442769 1442793 1442834 "KRCFROM" 1442896 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-627 1441673 1441860 1442159 "KOVACIC" 1442569 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-626 1441508 1441532 1441573 "KONVERT" 1441635 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-625 1441343 1441367 1441408 "KOERCE" 1441470 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-624 1439174 1439936 1440313 "KERNEL" 1440999 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-623 1438670 1438751 1438883 "KERNEL2" 1439088 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-622 1432381 1437147 1437201 "KDAGG" 1437578 NIL KDAGG (NIL T T) -9 NIL 1437784 NIL) (-621 1431910 1432034 1432239 "KDAGG-" 1432244 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-620 1425058 1431571 1431726 "KAFILE" 1431788 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-619 1419486 1424569 1424797 "JORDAN" 1424879 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1418865 1419135 1419256 "JOINAST" 1419385 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1418711 1418770 1418825 "JAVACODE" 1418830 T JAVACODE (NIL) -8 NIL NIL NIL) (-616 1414938 1416888 1416942 "IXAGG" 1417871 NIL IXAGG (NIL T T) -9 NIL 1418330 NIL) (-615 1413857 1414163 1414582 "IXAGG-" 1414587 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1409390 1413779 1413838 "IVECTOR" 1413843 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1408156 1408393 1408659 "ITUPLE" 1409157 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1406658 1406835 1407130 "ITRIGMNP" 1407978 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1405403 1405607 1405890 "ITFUN3" 1406434 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1405035 1405092 1405201 "ITFUN2" 1405340 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1404194 1404515 1404689 "ITFORM" 1404881 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1402155 1403214 1403492 "ITAYLOR" 1403949 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1391100 1396292 1397455 "ISUPS" 1401025 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1390204 1390344 1390580 "ISUMP" 1390947 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1385582 1390149 1390190 "ISTRING" 1390195 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1385058 1385303 1385395 "ISAST" 1385510 T ISAST (NIL) -8 NIL NIL NIL) (-603 1384267 1384349 1384565 "IRURPK" 1384972 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1383203 1383404 1383644 "IRSN" 1384047 T IRSN (NIL) -7 NIL NIL NIL) (-601 1381274 1381629 1382058 "IRRF2F" 1382841 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1381021 1381059 1381135 "IRREDFFX" 1381230 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1379636 1379895 1380194 "IROOT" 1380754 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1376240 1377320 1378012 "IR" 1378976 NIL IR (NIL T) -8 NIL NIL NIL) (-597 1375445 1375733 1375884 "IRFORM" 1376109 T IRFORM (NIL) -8 NIL NIL NIL) (-596 1373058 1373553 1374119 "IR2" 1374923 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1372158 1372271 1372485 "IR2F" 1372941 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-594 1371949 1371983 1372043 "IPRNTPK" 1372118 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1368530 1371838 1371907 "IPF" 1371912 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1366857 1368455 1368512 "IPADIC" 1368517 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1366169 1366417 1366547 "IP4ADDR" 1366747 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1365543 1365798 1365930 "IOMODE" 1366057 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1364616 1365140 1365267 "IOBFILE" 1365436 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1364104 1364520 1364548 "IOBCON" 1364553 T IOBCON (NIL) -9 NIL 1364574 NIL) (-587 1363615 1363673 1363856 "INVLAPLA" 1364040 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1353263 1355617 1358003 "INTTR" 1361279 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1349598 1350340 1351205 "INTTOOLS" 1352448 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1349184 1349275 1349392 "INTSLPE" 1349501 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1347137 1349107 1349166 "INTRVL" 1349171 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1344739 1345251 1345826 "INTRF" 1346622 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1344150 1344247 1344389 "INTRET" 1344637 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1342147 1342536 1343006 "INTRAT" 1343758 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1339410 1339993 1340612 "INTPM" 1341632 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1336155 1336754 1337492 "INTPAF" 1338796 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1331334 1332296 1333347 "INTPACK" 1335124 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1328146 1331131 1331240 "INT" 1331245 T INT (NIL) -8 NIL NIL NIL) (-575 1327398 1327550 1327758 "INTHERTR" 1327988 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1326837 1326917 1327105 "INTHERAL" 1327312 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1324683 1325126 1325583 "INTHEORY" 1326400 T INTHEORY (NIL) -7 NIL NIL NIL) (-572 1316089 1317710 1319482 "INTG0" 1323035 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1296662 1301452 1306262 "INTFTBL" 1311299 T INTFTBL (NIL) -8 NIL NIL NIL) (-570 1295911 1296049 1296222 "INTFACT" 1296521 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1293338 1293784 1294341 "INTEF" 1295465 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1291691 1292430 1292458 "INTDOM" 1292759 T INTDOM (NIL) -9 NIL 1292966 NIL) (-567 1291060 1291234 1291476 "INTDOM-" 1291481 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-566 1287420 1289349 1289403 "INTCAT" 1290202 NIL INTCAT (NIL T) -9 NIL 1290523 NIL) (-565 1286892 1286995 1287123 "INTBIT" 1287312 T INTBIT (NIL) -7 NIL NIL NIL) (-564 1285591 1285745 1286052 "INTALG" 1286737 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1285074 1285164 1285321 "INTAF" 1285495 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1278423 1284884 1285024 "INTABL" 1285029 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1277756 1278222 1278287 "INT8" 1278321 T INT8 (NIL) -8 NIL NIL 1278366) (-560 1277088 1277554 1277619 "INT64" 1277653 T INT64 (NIL) -8 NIL NIL 1277698) (-559 1276420 1276886 1276951 "INT32" 1276985 T INT32 (NIL) -8 NIL NIL 1277030) (-558 1275752 1276218 1276283 "INT16" 1276317 T INT16 (NIL) -8 NIL NIL 1276362) (-557 1270447 1273300 1273328 "INS" 1274262 T INS (NIL) -9 NIL 1274927 NIL) (-556 1267687 1268458 1269432 "INS-" 1269505 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1266462 1266689 1266987 "INPSIGN" 1267440 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1265580 1265697 1265894 "INPRODPF" 1266342 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1264474 1264591 1264828 "INPRODFF" 1265460 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1263474 1263626 1263886 "INNMFACT" 1264310 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1262671 1262768 1262956 "INMODGCD" 1263373 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1261179 1261424 1261748 "INFSP" 1262416 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1260363 1260480 1260663 "INFPROD0" 1261059 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1257218 1258428 1258943 "INFORM" 1259856 T INFORM (NIL) -8 NIL NIL NIL) (-547 1256828 1256888 1256986 "INFORM1" 1257153 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1256351 1256440 1256554 "INFINITY" 1256734 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1255527 1256071 1256172 "INETCLTS" 1256270 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1254143 1254393 1254714 "INEP" 1255275 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1253348 1254040 1254105 "INDE" 1254110 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1252912 1252980 1253097 "INCRMAPS" 1253275 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1251730 1252181 1252387 "INBFILE" 1252726 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1247029 1247966 1248910 "INBFF" 1250818 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1245937 1246206 1246234 "INBCON" 1246747 T INBCON (NIL) -9 NIL 1247013 NIL) (-538 1245189 1245412 1245688 "INBCON-" 1245693 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1244668 1244913 1245004 "INAST" 1245118 T INAST (NIL) -8 NIL NIL NIL) (-536 1244095 1244347 1244453 "IMPTAST" 1244582 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1240496 1243939 1244043 "IMATRIX" 1244048 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1239204 1239327 1239643 "IMATQF" 1240352 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1237424 1237651 1237988 "IMATLIN" 1238960 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1232005 1237348 1237406 "ILIST" 1237411 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1229913 1231865 1231978 "IIARRAY2" 1231983 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1225311 1229824 1229888 "IFF" 1229893 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1224658 1224928 1225044 "IFAST" 1225215 T IFAST (NIL) -8 NIL NIL NIL) (-528 1219656 1223950 1224138 "IFARRAY" 1224515 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1218836 1219560 1219633 "IFAMON" 1219638 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1218420 1218485 1218539 "IEVALAB" 1218746 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1218095 1218163 1218323 "IEVALAB-" 1218328 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1217542 1218010 1218072 "IDPO" 1218077 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1216750 1217431 1217506 "IDPOAMS" 1217511 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-522 1216015 1216639 1216714 "IDPOAM" 1216719 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-521 1214561 1215022 1215074 "IDPC" 1215586 NIL IDPC (NIL T T) -9 NIL 1215867 NIL) (-520 1213989 1214453 1214526 "IDPAM" 1214531 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1213324 1213881 1213954 "IDPAG" 1213959 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1212969 1213160 1213235 "IDENT" 1213269 T IDENT (NIL) -8 NIL NIL NIL) (-517 1209224 1210072 1210967 "IDECOMP" 1212126 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1202061 1203147 1204194 "IDEAL" 1208260 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1201221 1201333 1201533 "ICDEN" 1201945 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1200292 1200701 1200848 "ICARD" 1201094 T ICARD (NIL) -8 NIL NIL NIL) (-513 1198352 1198665 1199070 "IBPTOOLS" 1199969 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1193959 1197972 1198085 "IBITS" 1198271 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1190682 1191258 1191953 "IBATOOL" 1193376 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1188461 1188923 1189456 "IBACHIN" 1190217 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1186293 1188307 1188410 "IARRAY2" 1188415 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1182402 1186219 1186276 "IARRAY1" 1186281 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1176262 1180814 1181295 "IAN" 1181941 T IAN (NIL) -8 NIL NIL NIL) (-506 1175773 1175830 1176003 "IALGFACT" 1176199 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1175301 1175414 1175442 "HYPCAT" 1175649 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1174839 1174956 1175142 "HYPCAT-" 1175147 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1174434 1174634 1174717 "HOSTNAME" 1174776 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1174279 1174316 1174357 "HOMOTOP" 1174362 NIL HOMOTOP (NIL T) -9 NIL 1174395 NIL) (-501 1170836 1172211 1172252 "HOAGG" 1173233 NIL HOAGG (NIL T) -9 NIL 1173962 NIL) (-500 1169430 1169829 1170355 "HOAGG-" 1170360 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1163146 1169023 1169173 "HEXADEC" 1169300 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1161894 1162116 1162379 "HEUGCD" 1162923 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1160970 1161731 1161861 "HELLFDIV" 1161866 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1159152 1160747 1160835 "HEAP" 1160914 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1158415 1158704 1158838 "HEADAST" 1159038 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1152258 1158330 1158392 "HDP" 1158397 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1145970 1151893 1152045 "HDMP" 1152159 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1145294 1145434 1145598 "HB" 1145826 T HB (NIL) -7 NIL NIL NIL) (-491 1138686 1145140 1145244 "HASHTBL" 1145249 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1138162 1138407 1138499 "HASAST" 1138614 T HASAST (NIL) -8 NIL NIL NIL) (-489 1135940 1137784 1137966 "HACKPI" 1138000 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1131608 1135793 1135906 "GTSET" 1135911 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1125029 1131486 1131584 "GSTBL" 1131589 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1117416 1124194 1124450 "GSERIES" 1124829 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1116543 1116960 1116988 "GROUP" 1117191 T GROUP (NIL) -9 NIL 1117325 NIL) (-484 1115909 1116068 1116319 "GROUP-" 1116324 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1114276 1114597 1114984 "GROEBSOL" 1115586 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1113176 1113464 1113515 "GRMOD" 1114044 NIL GRMOD (NIL T T) -9 NIL 1114212 NIL) (-481 1112944 1112980 1113108 "GRMOD-" 1113113 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1108234 1109298 1110298 "GRIMAGE" 1111964 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1106700 1106961 1107285 "GRDEF" 1107930 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1106144 1106260 1106401 "GRAY" 1106579 T GRAY (NIL) -7 NIL NIL NIL) (-477 1105317 1105723 1105774 "GRALG" 1105927 NIL GRALG (NIL T T) -9 NIL 1106020 NIL) (-476 1104978 1105051 1105214 "GRALG-" 1105219 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1101755 1104563 1104741 "GPOLSET" 1104885 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1101109 1101166 1101424 "GOSPER" 1101692 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1096841 1097547 1098073 "GMODPOL" 1100808 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1095846 1096030 1096268 "GHENSEL" 1096653 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1090002 1090845 1091865 "GENUPS" 1094930 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1089699 1089750 1089839 "GENUFACT" 1089945 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1089111 1089188 1089353 "GENPGCD" 1089617 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1088585 1088620 1088833 "GENMFACT" 1089070 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1087151 1087408 1087715 "GENEEZ" 1088328 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1081023 1086762 1086924 "GDMP" 1087074 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1070366 1074794 1075900 "GCNAALG" 1080006 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1068679 1069541 1069569 "GCDDOM" 1069824 T GCDDOM (NIL) -9 NIL 1069981 NIL) (-463 1068149 1068276 1068491 "GCDDOM-" 1068496 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1066821 1067006 1067310 "GB" 1067928 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-461 1055437 1057767 1060159 "GBINTERN" 1064512 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-460 1053274 1053566 1053987 "GBF" 1055112 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-459 1052055 1052220 1052487 "GBEUCLID" 1053090 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-458 1051404 1051529 1051678 "GAUSSFAC" 1051926 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1049771 1050073 1050387 "GALUTIL" 1051123 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1048079 1048353 1048677 "GALPOLYU" 1049498 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1045444 1045734 1046141 "GALFACTU" 1047776 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1037250 1038749 1040357 "GALFACT" 1043876 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1034638 1035296 1035324 "FVFUN" 1036480 T FVFUN (NIL) -9 NIL 1037200 NIL) (-452 1033904 1034086 1034114 "FVC" 1034405 T FVC (NIL) -9 NIL 1034588 NIL) (-451 1033547 1033729 1033797 "FUNDESC" 1033856 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1033162 1033344 1033425 "FUNCTION" 1033499 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1030906 1031484 1031950 "FT" 1032716 T FT (NIL) -8 NIL NIL NIL) (-448 1029697 1030207 1030410 "FTEM" 1030723 T FTEM (NIL) -8 NIL NIL NIL) (-447 1027988 1028277 1028674 "FSUPFACT" 1029388 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1026385 1026674 1027006 "FST" 1027676 T FST (NIL) -8 NIL NIL NIL) (-445 1025584 1025690 1025878 "FSRED" 1026267 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1024283 1024539 1024886 "FSPRMELT" 1025299 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1021589 1022027 1022513 "FSPECF" 1023846 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 1002654 1011363 1011404 "FS" 1015288 NIL FS (NIL T) -9 NIL 1017577 NIL) (-441 991297 994290 998347 "FS-" 998647 NIL FS- (NIL T T) -8 NIL NIL NIL) (-440 990825 990879 991049 "FSINT" 991238 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-439 989117 989818 990121 "FSERIES" 990604 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-438 988159 988275 988499 "FSCINT" 988997 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-437 984367 987103 987144 "FSAGG" 987514 NIL FSAGG (NIL T) -9 NIL 987773 NIL) (-436 982129 982730 983526 "FSAGG-" 983621 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-435 981171 981314 981541 "FSAGG2" 981982 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-434 978849 979129 979677 "FS2UPS" 980889 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-433 978483 978526 978655 "FS2" 978800 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-432 977361 977532 977834 "FS2EXPXP" 978308 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-431 976787 976902 977054 "FRUTIL" 977241 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 968200 972282 973640 "FR" 975461 NIL FR (NIL T) -8 NIL NIL NIL) (-429 963214 965889 965929 "FRNAALG" 967249 NIL FRNAALG (NIL T) -9 NIL 967847 NIL) (-428 958887 959963 961238 "FRNAALG-" 961988 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-427 958525 958568 958695 "FRNAAF2" 958838 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-426 956900 957374 957670 "FRMOD" 958337 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-425 954643 955275 955593 "FRIDEAL" 956691 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 953834 953921 954212 "FRIDEAL2" 954550 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-423 952967 953381 953422 "FRETRCT" 953427 NIL FRETRCT (NIL T) -9 NIL 953603 NIL) (-422 952079 952310 952661 "FRETRCT-" 952666 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-421 949153 950363 950422 "FRAMALG" 951304 NIL FRAMALG (NIL T T) -9 NIL 951596 NIL) (-420 947287 947742 948372 "FRAMALG-" 948595 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-419 940930 946760 947037 "FRAC" 947042 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 940566 940623 940730 "FRAC2" 940867 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-417 940202 940259 940366 "FR2" 940503 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-416 934687 937581 937609 "FPS" 938728 T FPS (NIL) -9 NIL 939285 NIL) (-415 934136 934245 934409 "FPS-" 934555 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 931424 933093 933121 "FPC" 933346 T FPC (NIL) -9 NIL 933488 NIL) (-413 931217 931257 931354 "FPC-" 931359 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 930007 930705 930746 "FPATMAB" 930751 NIL FPATMAB (NIL T) -9 NIL 930903 NIL) (-411 928246 928749 929096 "FPARFRAC" 929723 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 923640 924138 924820 "FORTRAN" 927678 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 921356 921856 922395 "FORT" 923121 T FORT (NIL) -7 NIL NIL NIL) (-408 919032 919594 919622 "FORTFN" 920682 T FORTFN (NIL) -9 NIL 921306 NIL) (-407 918796 918846 918874 "FORTCAT" 918933 T FORTCAT (NIL) -9 NIL 918995 NIL) (-406 916902 917412 917802 "FORMULA" 918426 T FORMULA (NIL) -8 NIL NIL NIL) (-405 916690 916720 916789 "FORMULA1" 916866 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-404 916213 916265 916438 "FORDER" 916632 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-403 915309 915473 915666 "FOP" 916040 T FOP (NIL) -7 NIL NIL NIL) (-402 913890 914589 914763 "FNLA" 915191 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-401 912605 913020 913048 "FNCAT" 913508 T FNCAT (NIL) -9 NIL 913768 NIL) (-400 912144 912564 912592 "FNAME" 912597 T FNAME (NIL) -8 NIL NIL NIL) (-399 910680 911643 911671 "FMTC" 911676 T FMTC (NIL) -9 NIL 911712 NIL) (-398 909426 910616 910662 "FMONOID" 910667 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-397 906213 907381 907422 "FMONCAT" 908639 NIL FMONCAT (NIL T) -9 NIL 909244 NIL) (-396 905363 905955 906104 "FM" 906109 NIL FM (NIL T T) -8 NIL NIL NIL) (-395 902787 903433 903461 "FMFUN" 904605 T FMFUN (NIL) -9 NIL 905313 NIL) (-394 902056 902237 902265 "FMC" 902555 T FMC (NIL) -9 NIL 902737 NIL) (-393 899121 899981 900035 "FMCAT" 901230 NIL FMCAT (NIL T T) -9 NIL 901725 NIL) (-392 897987 898887 898987 "FM1" 899066 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-391 895761 896177 896671 "FLOATRP" 897538 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-390 889339 893490 894111 "FLOAT" 895160 T FLOAT (NIL) -8 NIL NIL NIL) (-389 886777 887277 887855 "FLOATCP" 888806 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-388 885425 886369 886410 "FLINEXP" 886415 NIL FLINEXP (NIL T) -9 NIL 886508 NIL) (-387 884579 884814 885142 "FLINEXP-" 885147 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-386 883655 883799 884023 "FLASORT" 884431 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-385 880757 881625 881677 "FLALG" 882904 NIL FLALG (NIL T T) -9 NIL 883371 NIL) (-384 874417 878166 878207 "FLAGG" 879469 NIL FLAGG (NIL T) -9 NIL 880121 NIL) (-383 873143 873482 873972 "FLAGG-" 873977 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-382 872185 872328 872555 "FLAGG2" 872996 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-381 869022 870030 870089 "FINRALG" 871217 NIL FINRALG (NIL T T) -9 NIL 871725 NIL) (-380 868182 868411 868750 "FINRALG-" 868755 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-379 867548 867787 867815 "FINITE" 868011 T FINITE (NIL) -9 NIL 868118 NIL) (-378 859891 862078 862118 "FINAALG" 865785 NIL FINAALG (NIL T) -9 NIL 867238 NIL) (-377 855223 856273 857417 "FINAALG-" 858796 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-376 854591 854978 855081 "FILE" 855153 NIL FILE (NIL T) -8 NIL NIL NIL) (-375 853235 853573 853627 "FILECAT" 854311 NIL FILECAT (NIL T T) -9 NIL 854527 NIL) (-374 850937 852465 852493 "FIELD" 852533 T FIELD (NIL) -9 NIL 852613 NIL) (-373 849557 849942 850453 "FIELD-" 850458 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-372 847407 848192 848539 "FGROUP" 849243 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-371 846497 846661 846881 "FGLMICPK" 847239 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-370 842329 846422 846479 "FFX" 846484 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-369 841930 841991 842126 "FFSLPE" 842262 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-368 837920 838702 839498 "FFPOLY" 841166 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-367 837424 837460 837669 "FFPOLY2" 837878 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-366 833270 837343 837406 "FFP" 837411 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-365 828668 833181 833245 "FF" 833250 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-364 823794 828011 828201 "FFNBX" 828522 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-363 818722 822929 823187 "FFNBP" 823648 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-362 813355 818006 818217 "FFNB" 818555 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-361 812187 812385 812700 "FFINTBAS" 813152 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-360 808213 810434 810462 "FFIELDC" 811082 T FFIELDC (NIL) -9 NIL 811458 NIL) (-359 806875 807246 807743 "FFIELDC-" 807748 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-358 806444 806490 806614 "FFHOM" 806817 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-357 804139 804626 805143 "FFF" 805959 NIL FFF (NIL T) -7 NIL NIL NIL) (-356 799757 803881 803982 "FFCGX" 804082 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-355 795379 799489 799596 "FFCGP" 799700 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-354 790562 795106 795214 "FFCG" 795315 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-353 770091 780294 780380 "FFCAT" 785545 NIL FFCAT (NIL T T T) -9 NIL 786996 NIL) (-352 765288 766336 767650 "FFCAT-" 768880 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-351 764699 764742 764977 "FFCAT2" 765239 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 754022 757671 758891 "FEXPR" 763551 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-349 752984 753419 753460 "FEVALAB" 753544 NIL FEVALAB (NIL T) -9 NIL 753805 NIL) (-348 752143 752353 752691 "FEVALAB-" 752696 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-347 750709 751526 751729 "FDIV" 752042 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-346 747715 748456 748571 "FDIVCAT" 750139 NIL FDIVCAT (NIL T T T T) -9 NIL 750576 NIL) (-345 747477 747504 747674 "FDIVCAT-" 747679 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-344 746697 746784 747061 "FDIV2" 747384 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 745671 745992 746194 "FCTRDATA" 746515 T FCTRDATA (NIL) -8 NIL NIL NIL) (-342 744357 744616 744905 "FCPAK1" 745402 T FCPAK1 (NIL) -7 NIL NIL NIL) (-341 743456 743857 743998 "FCOMP" 744248 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-340 727161 730606 734144 "FC" 739938 T FC (NIL) -8 NIL NIL NIL) (-339 719454 723482 723522 "FAXF" 725324 NIL FAXF (NIL T) -9 NIL 726016 NIL) (-338 716731 717388 718213 "FAXF-" 718678 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-337 711786 716107 716283 "FARRAY" 716588 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-336 706666 708733 708786 "FAMR" 709809 NIL FAMR (NIL T T) -9 NIL 710269 NIL) (-335 705556 705858 706293 "FAMR-" 706298 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-334 704725 705478 705531 "FAMONOID" 705536 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-333 702497 703207 703260 "FAMONC" 704201 NIL FAMONC (NIL T T) -9 NIL 704587 NIL) (-332 701161 702251 702388 "FAGROUP" 702393 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-331 698956 699275 699678 "FACUTIL" 700842 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-330 698055 698240 698462 "FACTFUNC" 698766 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-329 690477 697358 697557 "EXPUPXS" 697911 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-328 687960 688500 689086 "EXPRTUBE" 689911 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-327 684231 684823 685553 "EXPRODE" 687299 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-326 669715 682880 683309 "EXPR" 683835 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 664269 664856 665662 "EXPR2UPS" 669013 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-324 663901 663958 664067 "EXPR2" 664206 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-323 654898 663052 663343 "EXPEXPAN" 663737 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-322 654698 654855 654884 "EXIT" 654889 T EXIT (NIL) -8 NIL NIL NIL) (-321 654178 654422 654513 "EXITAST" 654627 T EXITAST (NIL) -8 NIL NIL NIL) (-320 653805 653867 653980 "EVALCYC" 654110 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-319 653346 653464 653505 "EVALAB" 653675 NIL EVALAB (NIL T) -9 NIL 653779 NIL) (-318 652827 652949 653170 "EVALAB-" 653175 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-317 650181 651483 651511 "EUCDOM" 652066 T EUCDOM (NIL) -9 NIL 652416 NIL) (-316 648586 649028 649618 "EUCDOM-" 649623 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-315 636125 638884 641634 "ESTOOLS" 645856 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 635757 635814 635923 "ESTOOLS2" 636062 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-313 635508 635550 635630 "ESTOOLS1" 635709 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-312 629531 631139 631167 "ES" 633935 T ES (NIL) -9 NIL 635345 NIL) (-311 624478 625765 627582 "ES-" 627746 NIL ES- (NIL T) -8 NIL NIL NIL) (-310 620852 621613 622393 "ESCONT" 623718 T ESCONT (NIL) -7 NIL NIL NIL) (-309 620597 620629 620711 "ESCONT1" 620814 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-308 620272 620322 620422 "ES2" 620541 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-307 619902 619960 620069 "ES1" 620208 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-306 619118 619247 619423 "ERROR" 619746 T ERROR (NIL) -7 NIL NIL NIL) (-305 612516 618977 619068 "EQTBL" 619073 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-304 605019 607830 609279 "EQ" 611100 NIL -3042 (NIL T) -8 NIL NIL NIL) (-303 604651 604708 604817 "EQ2" 604956 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-302 599942 600989 602082 "EP" 603590 NIL EP (NIL T) -7 NIL NIL NIL) (-301 598542 598833 599139 "ENV" 599656 T ENV (NIL) -8 NIL NIL NIL) (-300 597622 598176 598204 "ENTIRER" 598209 T ENTIRER (NIL) -9 NIL 598255 NIL) (-299 594316 595804 596165 "EMR" 597430 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-298 593446 593631 593685 "ELTAGG" 594065 NIL ELTAGG (NIL T T) -9 NIL 594276 NIL) (-297 593165 593227 593368 "ELTAGG-" 593373 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-296 592929 592958 593012 "ELTAB" 593096 NIL ELTAB (NIL T T) -9 NIL 593148 NIL) (-295 592055 592201 592400 "ELFUTS" 592780 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-294 591797 591853 591881 "ELEMFUN" 591986 T ELEMFUN (NIL) -9 NIL NIL NIL) (-293 591667 591688 591756 "ELEMFUN-" 591761 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-292 586456 589709 589750 "ELAGG" 590690 NIL ELAGG (NIL T) -9 NIL 591153 NIL) (-291 584741 585175 585838 "ELAGG-" 585843 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-290 584053 584190 584346 "ELABOR" 584605 T ELABOR (NIL) -8 NIL NIL NIL) (-289 582714 582993 583287 "ELABEXPR" 583779 T ELABEXPR (NIL) -8 NIL NIL NIL) (-288 575548 577351 578180 "EFUPXS" 581989 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-287 568996 570797 571608 "EFULS" 574823 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-286 566481 566839 567311 "EFSTRUC" 568628 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-285 556272 557838 559386 "EF" 564996 NIL EF (NIL T T) -7 NIL NIL NIL) (-284 555346 555757 555906 "EAB" 556143 T EAB (NIL) -8 NIL NIL NIL) (-283 554528 555305 555333 "E04UCFA" 555338 T E04UCFA (NIL) -8 NIL NIL NIL) (-282 553710 554487 554515 "E04NAFA" 554520 T E04NAFA (NIL) -8 NIL NIL NIL) (-281 552892 553669 553697 "E04MBFA" 553702 T E04MBFA (NIL) -8 NIL NIL NIL) (-280 552074 552851 552879 "E04JAFA" 552884 T E04JAFA (NIL) -8 NIL NIL NIL) (-279 551258 552033 552061 "E04GCFA" 552066 T E04GCFA (NIL) -8 NIL NIL NIL) (-278 550442 551217 551245 "E04FDFA" 551250 T E04FDFA (NIL) -8 NIL NIL NIL) (-277 549624 550401 550429 "E04DGFA" 550434 T E04DGFA (NIL) -8 NIL NIL NIL) (-276 543797 545149 546513 "E04AGNT" 548280 T E04AGNT (NIL) -7 NIL NIL NIL) (-275 542555 543098 543138 "DVARCAT" 543479 NIL DVARCAT (NIL T) -9 NIL 543642 NIL) (-274 541759 541971 542285 "DVARCAT-" 542290 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-273 534620 541558 541687 "DSMP" 541692 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-272 533043 533762 533803 "DSEXT" 534166 NIL DSEXT (NIL T) -9 NIL 534460 NIL) (-271 531328 531756 532422 "DSEXT-" 532427 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-270 526109 527273 528341 "DROPT" 530280 T DROPT (NIL) -8 NIL NIL NIL) (-269 525774 525833 525931 "DROPT1" 526044 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 520889 522015 523152 "DROPT0" 524657 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 519234 519559 519945 "DRAWPT" 520523 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 513821 514744 515823 "DRAW" 518208 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 513454 513507 513625 "DRAWHACK" 513762 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 512185 512454 512745 "DRAWCX" 513183 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 511700 511769 511920 "DRAWCURV" 512111 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 502168 504130 506245 "DRAWCFUN" 509605 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 498907 500833 500874 "DQAGG" 501503 NIL DQAGG (NIL T) -9 NIL 501777 NIL) (-260 486372 493118 493201 "DPOLCAT" 495053 NIL DPOLCAT (NIL T T T T) -9 NIL 495598 NIL) (-259 481209 482557 484515 "DPOLCAT-" 484520 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 474556 481070 481168 "DPMO" 481173 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 467806 474336 474503 "DPMM" 474508 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 467376 467590 467679 "DOMTMPLT" 467737 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 466809 467178 467258 "DOMCTOR" 467316 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 466021 466289 466440 "DOMAIN" 466678 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 459733 465656 465808 "DMP" 465922 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 457678 458800 458841 "DMEXT" 458846 NIL DMEXT (NIL T) -9 NIL 459022 NIL) (-251 457278 457334 457478 "DLP" 457616 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 451103 456605 456795 "DLIST" 457120 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 447875 449928 449969 "DLAGG" 450519 NIL DLAGG (NIL T) -9 NIL 450749 NIL) (-248 446537 447201 447229 "DIVRING" 447321 T DIVRING (NIL) -9 NIL 447404 NIL) (-247 445774 445964 446264 "DIVRING-" 446269 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 443876 444233 444639 "DISPLAY" 445388 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 437739 443790 443853 "DIRPROD" 443858 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 436587 436790 437055 "DIRPROD2" 437532 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 425262 431298 431351 "DIRPCAT" 431609 NIL DIRPCAT (NIL NIL T) -9 NIL 432484 NIL) (-242 422588 423230 424111 "DIRPCAT-" 424448 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 421875 422035 422221 "DIOSP" 422422 T DIOSP (NIL) -7 NIL NIL NIL) (-240 418505 420759 420800 "DIOPS" 421234 NIL DIOPS (NIL T) -9 NIL 421463 NIL) (-239 418054 418168 418359 "DIOPS-" 418364 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 417105 417733 417761 "DIFRING" 417766 T DIFRING (NIL) -9 NIL 417788 NIL) (-237 416777 416851 416879 "DIFFSPC" 416998 T DIFFSPC (NIL) -9 NIL 417073 NIL) (-236 416422 416500 416652 "DIFFSPC-" 416657 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 415478 415956 415997 "DIFFMOD" 416002 NIL DIFFMOD (NIL T) -9 NIL 416100 NIL) (-234 415186 415231 415272 "DIFFDOM" 415393 NIL DIFFDOM (NIL T) -9 NIL 415461 NIL) (-233 415039 415063 415147 "DIFFDOM-" 415152 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-232 412971 414243 414284 "DIFEXT" 414289 NIL DIFEXT (NIL T) -9 NIL 414442 NIL) (-231 410221 412475 412516 "DIAGG" 412521 NIL DIAGG (NIL T) -9 NIL 412541 NIL) (-230 409605 409762 410014 "DIAGG-" 410019 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 404977 408564 408841 "DHMATRIX" 409374 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 400589 401498 402508 "DFSFUN" 403987 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 395667 399520 399832 "DFLOAT" 400297 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 393930 394211 394600 "DFINTTLS" 395375 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 390959 391951 392351 "DERHAM" 393596 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 388763 390734 390823 "DEQUEUE" 390903 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 388017 388150 388333 "DEGRED" 388625 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 384447 385192 386038 "DEFINTRF" 387245 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 382002 382471 383063 "DEFINTEF" 383966 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 381352 381622 381737 "DEFAST" 381907 T DEFAST (NIL) -8 NIL NIL NIL) (-219 375068 380945 381095 "DECIMAL" 381222 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 372580 373038 373544 "DDFACT" 374612 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 372176 372219 372370 "DBLRESP" 372531 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 370044 370406 370767 "DBASE" 371942 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 369286 369524 369670 "DATAARY" 369943 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 368392 369245 369273 "D03FAFA" 369278 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 367499 368351 368379 "D03EEFA" 368384 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 365449 365915 366404 "D03AGNT" 367030 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 364738 365408 365436 "D02EJFA" 365441 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 364027 364697 364725 "D02CJFA" 364730 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 363316 363986 364014 "D02BHFA" 364019 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 362605 363275 363303 "D02BBFA" 363308 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 355802 357391 358997 "D02AGNT" 361019 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 353570 354093 354639 "D01WGTS" 355276 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 352637 353529 353557 "D01TRNS" 353562 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 351705 352596 352624 "D01GBFA" 352629 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 350773 351664 351692 "D01FCFA" 351697 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 349841 350732 350760 "D01ASFA" 350765 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 348909 349800 349828 "D01AQFA" 349833 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 347977 348868 348896 "D01APFA" 348901 T D01APFA (NIL) -8 NIL NIL NIL) (-199 347045 347936 347964 "D01ANFA" 347969 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 346113 347004 347032 "D01AMFA" 347037 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 345181 346072 346100 "D01ALFA" 346105 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 344249 345140 345168 "D01AKFA" 345173 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 343317 344208 344236 "D01AJFA" 344241 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 336612 338165 339726 "D01AGNT" 341776 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 335949 336077 336229 "CYCLOTOM" 336480 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 332682 333397 334124 "CYCLES" 335242 T CYCLES (NIL) -7 NIL NIL NIL) (-191 331994 332128 332299 "CVMP" 332543 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 329835 330093 330462 "CTRIGMNP" 331722 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 329271 329629 329702 "CTOR" 329782 T CTOR (NIL) -8 NIL NIL NIL) (-188 328780 329002 329103 "CTORKIND" 329190 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 328057 328373 328401 "CTORCAT" 328583 T CTORCAT (NIL) -9 NIL 328696 NIL) (-186 327655 327766 327925 "CTORCAT-" 327930 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 327117 327329 327437 "CTORCALL" 327579 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 326491 326590 326743 "CSTTOOLS" 327014 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 322290 322947 323705 "CRFP" 325803 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 321765 322011 322103 "CRCEAST" 322218 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 320812 320997 321225 "CRAPACK" 321569 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 320196 320297 320501 "CPMATCH" 320688 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 319921 319949 320055 "CPIMA" 320162 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 316269 316941 317660 "COORDSYS" 319256 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 315681 315802 315944 "CONTOUR" 316147 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 311572 313684 314176 "CONTFRAC" 315221 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 311452 311473 311501 "CONDUIT" 311538 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 310526 311080 311108 "COMRING" 311113 T COMRING (NIL) -9 NIL 311165 NIL) (-173 309580 309884 310068 "COMPPROP" 310362 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 309241 309276 309404 "COMPLPAT" 309539 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 298544 309050 309159 "COMPLEX" 309164 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 298180 298237 298344 "COMPLEX2" 298481 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 297519 297640 297800 "COMPILER" 298040 T COMPILER (NIL) -8 NIL NIL NIL) (-168 297237 297272 297370 "COMPFACT" 297478 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 279516 290941 290981 "COMPCAT" 291985 NIL COMPCAT (NIL T) -9 NIL 293333 NIL) (-166 269028 271955 275582 "COMPCAT-" 275938 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 268757 268785 268888 "COMMUPC" 268994 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 268551 268585 268644 "COMMONOP" 268718 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 268107 268302 268389 "COMM" 268484 T COMM (NIL) -8 NIL NIL NIL) (-162 267683 267911 267986 "COMMAAST" 268052 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 266932 267126 267154 "COMBOPC" 267492 T COMBOPC (NIL) -9 NIL 267667 NIL) (-160 265828 266038 266280 "COMBINAT" 266722 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 262285 262859 263486 "COMBF" 265250 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 261043 261401 261636 "COLOR" 262070 T COLOR (NIL) -8 NIL NIL NIL) (-157 260519 260764 260856 "COLONAST" 260971 T COLONAST (NIL) -8 NIL NIL NIL) (-156 260159 260206 260331 "CMPLXRT" 260466 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 259607 259859 259958 "CLLCTAST" 260080 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 255109 256137 257217 "CLIP" 258547 T CLIP (NIL) -7 NIL NIL NIL) (-153 253450 254210 254450 "CLIF" 254936 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 249600 251568 251609 "CLAGG" 252538 NIL CLAGG (NIL T) -9 NIL 253074 NIL) (-151 248022 248479 249062 "CLAGG-" 249067 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 247566 247651 247791 "CINTSLPE" 247931 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 245067 245538 246086 "CHVAR" 247094 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 244227 244781 244809 "CHARZ" 244814 T CHARZ (NIL) -9 NIL 244829 NIL) (-147 243981 244021 244099 "CHARPOL" 244181 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 243025 243612 243640 "CHARNZ" 243687 T CHARNZ (NIL) -9 NIL 243743 NIL) (-145 240931 241679 242032 "CHAR" 242692 T CHAR (NIL) -8 NIL NIL NIL) (-144 240657 240718 240746 "CFCAT" 240857 T CFCAT (NIL) -9 NIL NIL NIL) (-143 239898 240009 240192 "CDEN" 240541 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 235863 239051 239331 "CCLASS" 239638 T CCLASS (NIL) -8 NIL NIL NIL) (-141 235114 235271 235448 "CATEGORY" 235706 T -10 (NIL) -8 NIL NIL NIL) (-140 234687 235033 235081 "CATCTOR" 235086 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 234138 234390 234488 "CATAST" 234609 T CATAST (NIL) -8 NIL NIL NIL) (-138 233614 233859 233951 "CASEAST" 234066 T CASEAST (NIL) -8 NIL NIL NIL) (-137 228752 229771 230515 "CARTEN" 232926 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 227860 228008 228229 "CARTEN2" 228599 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 226176 227010 227267 "CARD" 227623 T CARD (NIL) -8 NIL NIL NIL) (-134 225752 225980 226055 "CAPSLAST" 226121 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 225242 225450 225478 "CACHSET" 225610 T CACHSET (NIL) -9 NIL 225688 NIL) (-132 224698 225020 225048 "CABMON" 225098 T CABMON (NIL) -9 NIL 225154 NIL) (-131 224171 224402 224512 "BYTEORD" 224608 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 223148 223700 223842 "BYTE" 224005 T BYTE (NIL) -8 NIL NIL 224127) (-129 218501 222653 222825 "BYTEBUF" 222996 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 216013 218193 218300 "BTREE" 218427 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 213465 215661 215783 "BTOURN" 215923 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 210810 212907 212948 "BTCAT" 213016 NIL BTCAT (NIL T) -9 NIL 213093 NIL) (-125 210477 210557 210706 "BTCAT-" 210711 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 205842 209723 209751 "BTAGG" 209865 T BTAGG (NIL) -9 NIL 209975 NIL) (-123 205332 205457 205663 "BTAGG-" 205668 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 202330 204610 204825 "BSTREE" 205149 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 201468 201594 201778 "BRILL" 202186 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 198095 200166 200207 "BRAGG" 200856 NIL BRAGG (NIL T) -9 NIL 201114 NIL) (-119 196624 197030 197585 "BRAGG-" 197590 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 189540 195968 196153 "BPADICRT" 196471 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 187855 189477 189522 "BPADIC" 189527 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 187553 187583 187697 "BOUNDZRO" 187819 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 182781 183979 184891 "BOP" 186661 T BOP (NIL) -8 NIL NIL NIL) (-114 180562 180966 181441 "BOP1" 182339 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 180263 180324 180352 "BOOLE" 180463 T BOOLE (NIL) -9 NIL 180545 NIL) (-112 179088 179837 179986 "BOOLEAN" 180134 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 178353 178757 178811 "BMODULE" 178816 NIL BMODULE (NIL T T) -9 NIL 178881 NIL) (-110 174154 178151 178224 "BITS" 178300 T BITS (NIL) -8 NIL NIL NIL) (-109 173575 173694 173834 "BINDING" 174034 T BINDING (NIL) -8 NIL NIL NIL) (-108 167294 173170 173319 "BINARY" 173446 T BINARY (NIL) -8 NIL NIL NIL) (-107 165049 166521 166562 "BGAGG" 166822 NIL BGAGG (NIL T) -9 NIL 166959 NIL) (-106 164880 164912 165003 "BGAGG-" 165008 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 163951 164264 164469 "BFUNCT" 164695 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 162641 162819 163107 "BEZOUT" 163775 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 159113 161493 161823 "BBTREE" 162344 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158714 158792 158820 "BASTYPE" 158997 T BASTYPE (NIL) -9 NIL 159096 NIL) (-101 158390 158471 158606 "BASTYPE-" 158611 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 157824 157900 158052 "BALFACT" 158301 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156680 157239 157425 "AUTOMOR" 157669 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156406 156411 156437 "ATTREG" 156442 T ATTREG (NIL) -9 NIL NIL NIL) (-97 154658 155103 155455 "ATTRBUT" 156072 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 154266 154486 154552 "ATTRAST" 154610 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 153802 153915 153941 "ATRIG" 154142 T ATRIG (NIL) -9 NIL NIL NIL) (-94 153611 153652 153739 "ATRIG-" 153744 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 153242 153428 153454 "ASTCAT" 153459 T ASTCAT (NIL) -9 NIL 153489 NIL) (-92 152969 153028 153147 "ASTCAT-" 153152 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 151121 152745 152833 "ASTACK" 152912 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149626 149923 150288 "ASSOCEQ" 150803 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148658 149285 149409 "ASP9" 149533 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 148421 148606 148645 "ASP8" 148650 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 147289 148026 148168 "ASP80" 148310 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 146187 146924 147056 "ASP7" 147188 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 145141 145864 145982 "ASP78" 146100 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 144110 144821 144938 "ASP77" 145055 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 143022 143748 143879 "ASP74" 144010 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 141922 142657 142789 "ASP73" 142921 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 141026 141748 141848 "ASP6" 141853 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139973 140703 140821 "ASP55" 140939 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 138922 139647 139766 "ASP50" 139885 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 138010 138623 138733 "ASP4" 138843 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 137098 137711 137821 "ASP49" 137931 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 135882 136637 136805 "ASP42" 136987 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134659 135415 135585 "ASP41" 135769 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 133609 134336 134454 "ASP35" 134572 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133374 133557 133596 "ASP34" 133601 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 133111 133178 133254 "ASP33" 133329 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 132005 132746 132878 "ASP31" 133010 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 131770 131953 131992 "ASP30" 131997 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131505 131574 131650 "ASP29" 131725 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 131270 131453 131492 "ASP28" 131497 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 131035 131218 131257 "ASP27" 131262 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 130119 130733 130844 "ASP24" 130955 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 129196 129921 130033 "ASP20" 130038 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 128284 128897 129007 "ASP1" 129117 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 127227 127958 128077 "ASP19" 128196 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126964 127031 127107 "ASP12" 127182 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 125816 126563 126707 "ASP10" 126851 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 123670 125660 125751 "ARRAY2" 125756 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119438 123318 123432 "ARRAY1" 123587 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 118470 118643 118864 "ARRAY12" 119261 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 112757 114672 114747 "ARR2CAT" 117377 NIL ARR2CAT (NIL T T T) -9 NIL 118135 NIL) (-56 110191 110935 111889 "ARR2CAT-" 111894 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 109508 109818 109943 "ARITY" 110084 T ARITY (NIL) -8 NIL NIL NIL) (-54 108284 108436 108735 "APPRULE" 109344 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107935 107983 108102 "APPLYORE" 108230 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 107289 107528 107648 "ANY" 107833 T ANY (NIL) -8 NIL NIL NIL) (-51 106567 106690 106847 "ANY1" 107163 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 104097 105004 105331 "ANTISYM" 106291 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 103589 103804 103900 "ANON" 104019 T ANON (NIL) -8 NIL NIL NIL) (-48 97589 102128 102582 "AN" 103153 T AN (NIL) -8 NIL NIL NIL) (-47 93473 94861 94912 "AMR" 95660 NIL AMR (NIL T T) -9 NIL 96260 NIL) (-46 92585 92806 93169 "AMR-" 93174 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 77030 92502 92563 "ALIST" 92568 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73835 76624 76793 "ALGSC" 76948 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70391 70945 71552 "ALGPKG" 73275 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69668 69769 69953 "ALGMFACT" 70277 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 65703 66282 66876 "ALGMANIP" 69252 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55914 65329 65479 "ALGFF" 65636 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55110 55241 55420 "ALGFACT" 55772 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54037 54637 54675 "ALGEBRA" 54680 NIL ALGEBRA (NIL T) -9 NIL 54721 NIL) (-37 53755 53814 53946 "ALGEBRA-" 53951 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35692 51592 51644 "ALAGG" 51780 NIL ALAGG (NIL T T) -9 NIL 51941 NIL) (-35 35228 35341 35367 "AHYP" 35568 T AHYP (NIL) -9 NIL NIL NIL) (-34 34159 34407 34433 "AGG" 34932 T AGG (NIL) -9 NIL 35211 NIL) (-33 33593 33755 33969 "AGG-" 33974 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 31399 31822 32227 "AF" 33235 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30879 31124 31214 "ADDAST" 31327 T ADDAST (NIL) -8 NIL NIL NIL) (-30 30147 30406 30562 "ACPLOT" 30741 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18770 27079 27117 "ACFS" 27724 NIL ACFS (NIL T) -9 NIL 27963 NIL) (-28 16797 17287 18049 "ACFS-" 18054 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12901 14830 14856 "ACF" 15735 T ACF (NIL) -9 NIL 16148 NIL) (-26 11605 11939 12432 "ACF-" 12437 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11163 11358 11384 "ABELSG" 11476 T ABELSG (NIL) -9 NIL 11541 NIL) (-24 11030 11055 11121 "ABELSG-" 11126 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10359 10646 10672 "ABELMON" 10842 T ABELMON (NIL) -9 NIL 10954 NIL) (-22 10023 10107 10245 "ABELMON-" 10250 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9357 9729 9755 "ABELGRP" 9827 T ABELGRP (NIL) -9 NIL 9902 NIL) (-20 8820 8949 9165 "ABELGRP-" 9170 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8082 8121 "A1AGG" 8126 NIL A1AGG (NIL T) -9 NIL 8166 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-4071 (((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)) 23))) +(((-1248 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4071 ((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)))) (-1071) (-1071) (-1198) (-1198) |#1| |#2|) (T -1248)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5 *7 *9)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-14 *7 (-1198)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1253 *6 *8 *10)) (-5 *1 (-1248 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1198))))) +(-10 -7 (-15 -4071 ((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-1998 (((-657 (-1104)) $) 86)) (-2993 (((-1198) $) 118)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2361 (($ $) 64 (|has| |#1| (-568)))) (-3286 (((-112) $) 66 (|has| |#1| (-568)))) (-2212 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-3212 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-2143 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 177 (|has| |#1| (-374)))) (-4215 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1866 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3210 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2120 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3696 (($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-2166 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) 18 T CONST)) (-3355 (($ $ $) 172 (|has| |#1| (-374)))) (-2165 (($ $) 72)) (-3969 (((-3 $ "failed") $) 37)) (-2565 (((-419 (-972 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-972 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-3369 (($ $ $) 171 (|has| |#1| (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 166 (|has| |#1| (-374)))) (-4009 (((-112) $) 179 (|has| |#1| (-374)))) (-3155 (((-112) $) 85)) (-1622 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-576) $) 115) (((-576) $ (-576)) 114)) (-3994 (((-112) $) 35)) (-3856 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $ (-941)) 116)) (-4162 (($ (-1 |#1| (-576)) $) 187)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 175 (|has| |#1| (-374)))) (-2343 (((-112) $) 74)) (-1974 (($ |#1| (-576)) 73) (($ $ (-1104) (-576)) 88) (($ $ (-657 (-1104)) (-657 (-576))) 87)) (-4071 (($ (-1 |#1| |#1|) $) 75)) (-3707 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) 77)) (-2141 ((|#1| $) 78)) (-3388 (($ (-657 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-1708 (((-1180) $) 10)) (-2098 (($ $) 180 (|has| |#1| (-374)))) (-2320 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 183 (-2748 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 165 (|has| |#1| (-374)))) (-3431 (($ (-657 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1856 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 173 (|has| |#1| (-374)))) (-1456 (($ $ (-576)) 110)) (-3409 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 167 (|has| |#1| (-374)))) (-4056 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-4164 (((-784) $) 169 (|has| |#1| (-374)))) (-2780 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1134)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 170 (|has| |#1| (-374)))) (-2209 (($ $ (-1198)) 108 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-657 (-1198))) 106 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198) (-784)) 105 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 104 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-784)) 98 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-4265 (((-576) $) 76)) (-2177 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) 84)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2498 ((|#1| $ (-576)) 71)) (-3414 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-3713 ((|#1| $) 117)) (-4166 (((-112) $ $) 6)) (-4110 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2188 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-1198)) 107 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-657 (-1198))) 103 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198) (-784)) 102 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 101 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-784)) 97 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1249 |#1|) (-141) (-1071)) (T -1249)) +((-3696 (*1 *1 *2) (-12 (-5 *2 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1071)) (-4 *1 (-1249 *3)))) (-4162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1249 *3)) (-4 *3 (-1071)))) (-2565 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1249 *4)) (-4 *4 (-1071)) (-4 *4 (-568)) (-5 *2 (-419 (-972 *4))))) (-2565 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1249 *4)) (-4 *4 (-1071)) (-4 *4 (-568)) (-5 *2 (-419 (-972 *4))))) (-2320 (*1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) (-2320 (*1 *1 *1 *2) (-2748 (-12 (-5 *2 (-1198)) (-4 *1 (-1249 *3)) (-4 *3 (-1071)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-979)) (-4 *3 (-1224)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1198)) (-4 *1 (-1249 *3)) (-4 *3 (-1071)) (-12 (|has| *3 (-15 -1998 ((-657 *2) *3))) (|has| *3 (-15 -2320 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) +(-13 (-1267 |t#1| (-576)) (-10 -8 (-15 -3696 ($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |t#1|))))) (-15 -4162 ($ (-1 |t#1| (-576)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -2565 ((-419 (-972 |t#1|)) $ (-576))) (-15 -2565 ((-419 (-972 |t#1|)) $ (-576) (-576)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2320 ($ $)) (IF (|has| |t#1| (-15 -2320 (|t#1| |t#1| (-1198)))) (IF (|has| |t#1| (-15 -1998 ((-657 (-1198)) |t#1|))) (-15 -2320 ($ $ (-1198))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1224)) (IF (|has| |t#1| (-979)) (IF (|has| |t#1| (-29 (-576))) (-15 -2320 ($ $ (-1198))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1024)) (-6 (-1224))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-576) (-1134)) ((-300) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-659 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-730 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-739) . T) ((-912 $ #2=(-1198)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))) ((-918 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))) ((-920 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))) ((-995 |#1| #0# (-1104)) . T) ((-940) |has| |#1| (-374)) ((-1024) |has| |#1| (-38 (-419 (-576)))) ((-1073 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1078 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1227) |has| |#1| (-38 (-419 (-576)))) ((-1239) . T) ((-1243) |has| |#1| (-374)) ((-1267 |#1| #0#) . T)) +((-2044 (((-112) $) 12)) (-1593 (((-3 |#3| "failed") $) 17) (((-3 (-1198) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL)) (-2830 ((|#3| $) 14) (((-1198) $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL))) +(((-1250 |#1| |#2| |#3|) (-10 -8 (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -1593 ((-3 (-1198) "failed") |#1|)) (-15 -2830 ((-1198) |#1|)) (-15 -1593 ((-3 |#3| "failed") |#1|)) (-15 -2830 (|#3| |#1|)) (-15 -2044 ((-112) |#1|))) (-1251 |#2| |#3|) (-1071) (-1280 |#2|)) (T -1250)) +NIL +(-10 -8 (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -1593 ((-3 (-1198) "failed") |#1|)) (-15 -2830 ((-1198) |#1|)) (-15 -1593 ((-3 |#3| "failed") |#1|)) (-15 -2830 (|#3| |#1|)) (-15 -2044 ((-112) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2923 ((|#2| $) 251 (-2675 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1998 (((-657 (-1104)) $) 86)) (-2993 (((-1198) $) 118)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2361 (($ $) 64 (|has| |#1| (-568)))) (-3286 (((-112) $) 66 (|has| |#1| (-568)))) (-2212 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-3212 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-3485 ((|#2| $) 287)) (-3834 (((-3 |#2| "failed") $) 283)) (-2053 ((|#2| $) 284)) (-2143 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) 20)) (-2628 (((-430 (-1194 $)) (-1194 $)) 260 (-2675 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-3188 (($ $) 177 (|has| |#1| (-374)))) (-4215 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1866 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 257 (-2675 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-3210 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2120 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3922 (((-576) $) 269 (-2675 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-3696 (($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-2166 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) 18 T CONST)) (-1593 (((-3 |#2| "failed") $) 290) (((-3 (-576) "failed") $) 280 (-2675 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) 278 (-2675 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-3 (-1198) "failed") $) 262 (-2675 (|has| |#2| (-1060 (-1198))) (|has| |#1| (-374))))) (-2830 ((|#2| $) 291) (((-576) $) 279 (-2675 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) 277 (-2675 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-1198) $) 261 (-2675 (|has| |#2| (-1060 (-1198))) (|has| |#1| (-374))))) (-1665 (($ $) 286) (($ (-576) $) 285)) (-3355 (($ $ $) 172 (|has| |#1| (-374)))) (-2165 (($ $) 72)) (-3439 (((-702 |#2|) (-702 $)) 239 (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) 238 (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 237 (-2675 (|has| |#2| (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-702 $)) 236 (-2675 (|has| |#2| (-652 (-576))) (|has| |#1| (-374))))) (-3969 (((-3 $ "failed") $) 37)) (-2565 (((-419 (-972 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-972 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-1876 (($) 253 (-2675 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3369 (($ $ $) 171 (|has| |#1| (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 166 (|has| |#1| (-374)))) (-4009 (((-112) $) 179 (|has| |#1| (-374)))) (-3810 (((-112) $) 267 (-2675 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-3155 (((-112) $) 85)) (-1622 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 245 (-2675 (|has| |#2| (-902 (-390))) (|has| |#1| (-374)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 244 (-2675 (|has| |#2| (-902 (-576))) (|has| |#1| (-374))))) (-2650 (((-576) $) 115) (((-576) $ (-576)) 114)) (-3994 (((-112) $) 35)) (-3502 (($ $) 249 (|has| |#1| (-374)))) (-1590 ((|#2| $) 247 (|has| |#1| (-374)))) (-3856 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-1955 (((-3 $ "failed") $) 281 (-2675 (|has| |#2| (-1174)) (|has| |#1| (-374))))) (-3517 (((-112) $) 268 (-2675 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-3920 (($ $ (-941)) 116)) (-4162 (($ (-1 |#1| (-576)) $) 187)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 175 (|has| |#1| (-374)))) (-2343 (((-112) $) 74)) (-1974 (($ |#1| (-576)) 73) (($ $ (-1104) (-576)) 88) (($ $ (-657 (-1104)) (-657 (-576))) 87)) (-3740 (($ $ $) 276 (-2675 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2249 (($ $ $) 275 (-2675 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-4071 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-374)))) (-3707 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1993 (((-702 |#2|) (-1289 $)) 241 (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) 240 (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 235 (-2675 (|has| |#2| (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-1289 $)) 234 (-2675 (|has| |#2| (-652 (-576))) (|has| |#1| (-374))))) (-2129 (($ $) 77)) (-2141 ((|#1| $) 78)) (-3388 (($ (-657 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2067 (($ (-576) |#2|) 288)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 180 (|has| |#1| (-374)))) (-2320 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 183 (-2748 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1679 (($) 282 (-2675 (|has| |#2| (-1174)) (|has| |#1| (-374))) CONST)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 165 (|has| |#1| (-374)))) (-3431 (($ (-657 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-2440 (($ $) 252 (-2675 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-2681 ((|#2| $) 255 (-2675 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2436 (((-430 (-1194 $)) (-1194 $)) 258 (-2675 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-3828 (((-430 (-1194 $)) (-1194 $)) 259 (-2675 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-1856 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 173 (|has| |#1| (-374)))) (-1456 (($ $ (-576)) 110)) (-3409 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 167 (|has| |#1| (-374)))) (-4056 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1198) |#2|) 228 (-2675 (|has| |#2| (-526 (-1198) |#2|)) (|has| |#1| (-374)))) (($ $ (-657 (-1198)) (-657 |#2|)) 227 (-2675 (|has| |#2| (-526 (-1198) |#2|)) (|has| |#1| (-374)))) (($ $ (-657 (-304 |#2|))) 226 (-2675 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) 225 (-2675 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) 224 (-2675 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-657 |#2|) (-657 |#2|)) 223 (-2675 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-4164 (((-784) $) 169 (|has| |#1| (-374)))) (-2780 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1134))) (($ $ |#2|) 222 (-2675 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 170 (|has| |#1| (-374)))) (-2209 (($ $ (-1 |#2| |#2|) (-784)) 231 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-374))) (($ $) 100 (-2748 (-2675 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) 98 (-2748 (-2675 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) 108 (-2748 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-657 (-1198))) 106 (-2748 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1198) (-784)) 105 (-2748 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-657 (-1198)) (-657 (-784))) 104 (-2748 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-4226 (($ $) 250 (|has| |#1| (-374)))) (-1602 ((|#2| $) 248 (|has| |#1| (-374)))) (-4265 (((-576) $) 76)) (-2177 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-4136 (((-227) $) 266 (-2675 (|has| |#2| (-1044)) (|has| |#1| (-374)))) (((-390) $) 265 (-2675 (|has| |#2| (-1044)) (|has| |#1| (-374)))) (((-548) $) 264 (-2675 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-908 (-390)) $) 243 (-2675 (|has| |#2| (-626 (-908 (-390)))) (|has| |#1| (-374)))) (((-908 (-576)) $) 242 (-2675 (|has| |#2| (-626 (-908 (-576)))) (|has| |#1| (-374))))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 256 (-2675 (-2675 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#1| (-374))))) (-1557 (($ $) 84)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 289) (($ (-1198)) 263 (-2675 (|has| |#2| (-1060 (-1198))) (|has| |#1| (-374)))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2498 ((|#1| $ (-576)) 71)) (-3414 (((-3 $ "failed") $) 60 (-2748 (-2675 (-2748 (|has| |#2| (-146)) (-2675 (|has| $ (-146)) (|has| |#2| (-929)))) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3845 (((-784)) 32 T CONST)) (-3713 ((|#1| $) 117)) (-2140 ((|#2| $) 254 (-2675 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4166 (((-112) $ $) 6)) (-4110 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2188 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2127 (($ $) 270 (-2675 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-1 |#2| |#2|) (-784)) 233 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-374))) (($ $) 99 (-2748 (-2675 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) 97 (-2748 (-2675 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) 107 (-2748 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-657 (-1198))) 103 (-2748 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1198) (-784)) 102 (-2748 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-657 (-1198)) (-657 (-784))) 101 (-2748 (-2675 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-2938 (((-112) $ $) 274 (-2675 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2913 (((-112) $ $) 272 (-2675 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2881 (((-112) $ $) 8)) (-2925 (((-112) $ $) 273 (-2675 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2901 (((-112) $ $) 271 (-2675 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2995 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374))) (($ |#2| |#2|) 246 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 221 (|has| |#1| (-374))) (($ |#2| $) 220 (|has| |#1| (-374))) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1251 |#1| |#2|) (-141) (-1071) (-1280 |t#1|)) (T -1251)) +((-4265 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1280 *3)) (-5 *2 (-576)))) (-2067 (*1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *4 (-1071)) (-4 *1 (-1251 *4 *3)) (-4 *3 (-1280 *4)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1280 *3)))) (-1665 (*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-1280 *2)))) (-1665 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1280 *3)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1280 *3)))) (-3834 (*1 *2 *1) (|partial| -12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1280 *3))))) +(-13 (-1249 |t#1|) (-1060 |t#2|) (-628 |t#2|) (-10 -8 (-15 -2067 ($ (-576) |t#2|)) (-15 -4265 ((-576) $)) (-15 -3485 (|t#2| $)) (-15 -1665 ($ $)) (-15 -1665 ($ (-576) $)) (-15 -2053 (|t#2| $)) (-15 -3834 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-374)) (-6 (-1014 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-374)) ((-38 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-374)) ((-111 $ $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2748 (-12 (|has| |#1| (-374)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2748 (-12 (|has| |#1| (-374)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-628 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1198)) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-1198)))) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1044))) ((-626 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1044))) ((-626 (-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))) ((-626 (-908 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-908 (-390))))) ((-626 (-908 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-908 (-576))))) ((-234 $) -2748 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-232 |#2|) |has| |#1| (-374)) ((-238) -2748 (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-237) -2748 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-272 |#2|) |has| |#1| (-374)) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 |#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) ((-296 $ $) |has| (-576) (-1134)) ((-300) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-374) |has| |#1| (-374)) ((-349 |#2|) |has| |#1| (-374)) ((-388 |#2|) |has| |#1| (-374)) ((-412 |#2|) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 (-1198) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1198) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-568) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-659 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 |#2|) |has| |#1| (-374)) ((-659 $) . T) ((-661 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-661 #3=(-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-652 (-576)))) ((-661 |#1|) . T) ((-661 |#2|) |has| |#1| (-374)) ((-661 $) . T) ((-653 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-653 |#1|) |has| |#1| (-174)) ((-653 |#2|) |has| |#1| (-374)) ((-653 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-652 #3#) -12 (|has| |#1| (-374)) (|has| |#2| (-652 (-576)))) ((-652 |#2|) |has| |#1| (-374)) ((-730 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-730 |#1|) |has| |#1| (-174)) ((-730 |#2|) |has| |#1| (-374)) ((-730 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-739) . T) ((-804) -12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((-805) -12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((-807) -12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((-808) -12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((-833) -12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((-861) -12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((-862) -2748 (-12 (|has| |#1| (-374)) (|has| |#2| (-862))) (-12 (|has| |#1| (-374)) (|has| |#2| (-833)))) ((-865) -2748 (-12 (|has| |#1| (-374)) (|has| |#2| (-862))) (-12 (|has| |#1| (-374)) (|has| |#2| (-833)))) ((-912 $ #4=(-1198)) -2748 (-12 (|has| |#1| (-374)) (|has| |#2| (-920 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1198)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) ((-918 (-1198)) -2748 (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1198)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) ((-920 #4#) -2748 (-12 (|has| |#1| (-374)) (|has| |#2| (-920 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1198)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) ((-902 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-902 (-390)))) ((-902 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-902 (-576)))) ((-900 |#2|) |has| |#1| (-374)) ((-929) -12 (|has| |#1| (-374)) (|has| |#2| (-929))) ((-995 |#1| #0# (-1104)) . T) ((-940) |has| |#1| (-374)) ((-1014 |#2|) |has| |#1| (-374)) ((-1024) |has| |#1| (-38 (-419 (-576)))) ((-1044) -12 (|has| |#1| (-374)) (|has| |#2| (-1044))) ((-1060 (-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-576)))) ((-1060 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-576)))) ((-1060 #2#) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-1198)))) ((-1060 |#2|) . T) ((-1073 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1073 |#1|) . T) ((-1073 |#2|) |has| |#1| (-374)) ((-1073 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1078 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1078 |#1|) . T) ((-1078 |#2|) |has| |#1| (-374)) ((-1078 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) -12 (|has| |#1| (-374)) (|has| |#2| (-1174))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1227) |has| |#1| (-38 (-419 (-576)))) ((-1239) . T) ((-1243) |has| |#1| (-374)) ((-1249 |#1|) . T) ((-1267 |#1| #0#) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 81)) (-2923 ((|#2| $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1998 (((-657 (-1104)) $) NIL)) (-2993 (((-1198) $) 100)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2212 (($ $ (-576)) 109) (($ $ (-576) (-576)) 111)) (-3212 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 51)) (-3485 ((|#2| $) 11)) (-3834 (((-3 |#2| "failed") $) 35)) (-2053 ((|#2| $) 36)) (-2143 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-3188 (($ $) NIL (|has| |#1| (-374)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1866 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2120 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-3922 (((-576) $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-3696 (($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 59)) (-2166 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#2| "failed") $) 157) (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-3 (-1198) "failed") $) NIL (-12 (|has| |#2| (-1060 (-1198))) (|has| |#1| (-374))))) (-2830 ((|#2| $) 156) (((-576) $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-1198) $) NIL (-12 (|has| |#2| (-1060 (-1198))) (|has| |#1| (-374))))) (-1665 (($ $) 65) (($ (-576) $) 28)) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-2165 (($ $) NIL)) (-3439 (((-702 |#2|) (-702 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#1| (-374))))) (-3969 (((-3 $ "failed") $) 88)) (-2565 (((-419 (-972 |#1|)) $ (-576)) 124 (|has| |#1| (-568))) (((-419 (-972 |#1|)) $ (-576) (-576)) 126 (|has| |#1| (-568)))) (-1876 (($) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4009 (((-112) $) NIL (|has| |#1| (-374)))) (-3810 (((-112) $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-3155 (((-112) $) 74)) (-1622 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| |#2| (-902 (-390))) (|has| |#1| (-374)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| |#2| (-902 (-576))) (|has| |#1| (-374))))) (-2650 (((-576) $) 105) (((-576) $ (-576)) 107)) (-3994 (((-112) $) NIL)) (-3502 (($ $) NIL (|has| |#1| (-374)))) (-1590 ((|#2| $) 165 (|has| |#1| (-374)))) (-3856 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1955 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1174)) (|has| |#1| (-374))))) (-3517 (((-112) $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-3920 (($ $ (-941)) 148)) (-4162 (($ (-1 |#1| (-576)) $) 144)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-576)) 20) (($ $ (-1104) (-576)) NIL) (($ $ (-657 (-1104)) (-657 (-576))) NIL)) (-3740 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2249 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-4071 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-374)))) (-3707 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-1993 (((-702 |#2|) (-1289 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#1| (-374))))) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2067 (($ (-576) |#2|) 10)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 159 (|has| |#1| (-374)))) (-2320 (($ $) 228 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 233 (-2748 (-12 (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224)))))) (-1679 (($) NIL (-12 (|has| |#2| (-1174)) (|has| |#1| (-374))) CONST)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2440 (($ $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-2681 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-1856 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-1456 (($ $ (-576)) 138)) (-3409 (((-3 $ "failed") $ $) 128 (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4056 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1198) |#2|) NIL (-12 (|has| |#2| (-526 (-1198) |#2|)) (|has| |#1| (-374)))) (($ $ (-657 (-1198)) (-657 |#2|)) NIL (-12 (|has| |#2| (-526 (-1198) |#2|)) (|has| |#1| (-374)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-4164 (((-784) $) NIL (|has| |#1| (-374)))) (-2780 ((|#1| $ (-576)) 103) (($ $ $) 90 (|has| (-576) (-1134))) (($ $ |#2|) NIL (-12 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-2209 (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) 149 (-2748 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) NIL (-2748 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) 153 (-2748 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))))) (-4226 (($ $) NIL (|has| |#1| (-374)))) (-1602 ((|#2| $) 166 (|has| |#1| (-374)))) (-4265 (((-576) $) 12)) (-2177 (($ $) 212 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-4136 (((-227) $) NIL (-12 (|has| |#2| (-1044)) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| |#2| (-1044)) (|has| |#1| (-374)))) (((-548) $) NIL (-12 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-908 (-390)) $) NIL (-12 (|has| |#2| (-626 (-908 (-390)))) (|has| |#1| (-374)))) (((-908 (-576)) $) NIL (-12 (|has| |#2| (-626 (-908 (-576)))) (|has| |#1| (-374))))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929)) (|has| |#1| (-374))))) (-1557 (($ $) 136)) (-3515 (((-877) $) 266) (($ (-576)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1198)) NIL (-12 (|has| |#2| (-1060 (-1198))) (|has| |#1| (-374)))) (($ (-419 (-576))) 169 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2498 ((|#1| $ (-576)) 85)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#2| (-929)) (|has| |#1| (-374))) (-12 (|has| |#2| (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3845 (((-784)) 155 T CONST)) (-3713 ((|#1| $) 102)) (-2140 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) 218 (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2188 (($ $) 214 (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 222 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-576)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) 224 (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) 220 (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) 216 (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-2127 (($ $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-2716 (($) 13 T CONST)) (-2725 (($) 18 T CONST)) (-2066 (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) NIL (-2748 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) NIL (-2748 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))))) (-2938 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2913 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2881 (((-112) $ $) 72)) (-2925 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2901 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374))) (($ |#2| |#2|) 164 (|has| |#1| (-374)))) (-2982 (($ $) 227) (($ $ $) 78)) (-2971 (($ $ $) 76)) (** (($ $ (-941)) NIL) (($ $ (-784)) 84) (($ $ (-576)) 160 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 172 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-374))) (($ |#2| $) 161 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1252 |#1| |#2|) (-1251 |#1| |#2|) (-1071) (-1280 |#1|)) (T -1252)) +NIL +(-1251 |#1| |#2|) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2923 (((-1281 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1998 (((-657 (-1104)) $) NIL)) (-2993 (((-1198) $) 10)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2361 (($ $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3286 (((-112) $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2212 (($ $ (-576)) NIL) (($ $ (-576) (-576)) NIL)) (-3212 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-3485 (((-1281 |#1| |#2| |#3|) $) NIL)) (-3834 (((-3 (-1281 |#1| |#2| |#3|) "failed") $) NIL)) (-2053 (((-1281 |#1| |#2| |#3|) $) NIL)) (-2143 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-3188 (($ $) NIL (|has| |#1| (-374)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1866 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2120 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3922 (((-576) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-3696 (($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-2166 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-1281 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-1198))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374))))) (-2830 (((-1281 |#1| |#2| |#3|) $) NIL) (((-1198) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-1198))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374))))) (-1665 (($ $) NIL) (($ (-576) $) NIL)) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-2165 (($ $) NIL)) (-3439 (((-702 (-1281 |#1| |#2| |#3|)) (-702 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 (-1281 |#1| |#2| |#3|))) (|:| |vec| (-1289 (-1281 |#1| |#2| |#3|)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-702 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374))))) (-3969 (((-3 $ "failed") $) NIL)) (-2565 (((-419 (-972 |#1|)) $ (-576)) NIL (|has| |#1| (-568))) (((-419 (-972 |#1|)) $ (-576) (-576)) NIL (|has| |#1| (-568)))) (-1876 (($) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4009 (((-112) $) NIL (|has| |#1| (-374)))) (-3810 (((-112) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-3155 (((-112) $) NIL)) (-1622 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-902 (-390))) (|has| |#1| (-374)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-902 (-576))) (|has| |#1| (-374))))) (-2650 (((-576) $) NIL) (((-576) $ (-576)) NIL)) (-3994 (((-112) $) NIL)) (-3502 (($ $) NIL (|has| |#1| (-374)))) (-1590 (((-1281 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-3856 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1955 (((-3 $ "failed") $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1174)) (|has| |#1| (-374))))) (-3517 (((-112) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-3920 (($ $ (-941)) NIL)) (-4162 (($ (-1 |#1| (-576)) $) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-576)) 18) (($ $ (-1104) (-576)) NIL) (($ $ (-657 (-1104)) (-657 (-576))) NIL)) (-3740 (($ $ $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2249 (($ $ $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3707 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1993 (((-702 (-1281 |#1| |#2| |#3|)) (-1289 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 (-1281 |#1| |#2| |#3|))) (|:| |vec| (-1289 (-1281 |#1| |#2| |#3|)))) (-1289 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-1289 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374))))) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2067 (($ (-576) (-1281 |#1| |#2| |#3|)) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL (|has| |#1| (-374)))) (-2320 (($ $) 27 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 28 (|has| |#1| (-38 (-419 (-576)))))) (-1679 (($) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1174)) (|has| |#1| (-374))) CONST)) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2440 (($ $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-2681 (((-1281 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-1856 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-1456 (($ $ (-576)) NIL)) (-3409 (((-3 $ "failed") $ $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4056 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1198) (-1281 |#1| |#2| |#3|)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-526 (-1198) (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-657 (-1198)) (-657 (-1281 |#1| |#2| |#3|))) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-526 (-1198) (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-657 (-304 (-1281 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-319 (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1281 |#1| |#2| |#3|))) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-319 (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-319 (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-657 (-1281 |#1| |#2| |#3|)) (-657 (-1281 |#1| |#2| |#3|))) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-319 (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-4164 (((-784) $) NIL (|has| |#1| (-374)))) (-2780 ((|#1| $ (-576)) NIL) (($ $ $) NIL (|has| (-576) (-1134))) (($ $ (-1281 |#1| |#2| |#3|)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-296 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-2209 (($ $ (-1 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|)) (-784)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1285 |#2|)) 26) (($ $) 25 (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))))) (-4226 (($ $) NIL (|has| |#1| (-374)))) (-1602 (((-1281 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-4265 (((-576) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4136 (((-548) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1044)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1044)) (|has| |#1| (-374)))) (((-908 (-390)) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-626 (-908 (-390)))) (|has| |#1| (-374)))) (((-908 (-576)) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-626 (-908 (-576)))) (|has| |#1| (-374))))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-1557 (($ $) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1281 |#1| |#2| |#3|)) NIL) (($ (-1285 |#2|)) 24) (($ (-1198)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-1198))) (|has| |#1| (-374)))) (($ $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-2498 ((|#1| $ (-576)) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3713 ((|#1| $) 11)) (-2140 (((-1281 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2127 (($ $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-2716 (($) 20 T CONST)) (-2725 (($) 15 T CONST)) (-2066 (($ $ (-1 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|)) (-784)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1285 |#2|)) NIL) (($ $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))))) (-2938 (((-112) $ $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2913 (((-112) $ $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2881 (((-112) $ $) NIL)) (-2925 (((-112) $ $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2901 (((-112) $ $) NIL (-2748 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374))) (($ (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|)) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 22)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1281 |#1| |#2| |#3|)) NIL (|has| |#1| (-374))) (($ (-1281 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1253 |#1| |#2| |#3|) (-13 (-1251 |#1| (-1281 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3515 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -1253)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1253 *3 *4 *5)) (-4 *3 (-1071)) (-14 *5 *3))) (-2320 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1253 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) +(-13 (-1251 |#1| (-1281 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3515 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) +((-3811 (((-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| |#1|) (|:| -2534 (-576)))))) |#1| (-112)) 13)) (-2556 (((-430 |#1|) |#1|) 26)) (-1856 (((-430 |#1|) |#1|) 24))) +(((-1254 |#1|) (-10 -7 (-15 -1856 ((-430 |#1|) |#1|)) (-15 -2556 ((-430 |#1|) |#1|)) (-15 -3811 ((-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| |#1|) (|:| -2534 (-576)))))) |#1| (-112)))) (-1265 (-576))) (T -1254)) +((-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| *3) (|:| -2534 (-576))))))) (-5 *1 (-1254 *3)) (-4 *3 (-1265 (-576))))) (-2556 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1265 (-576))))) (-1856 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1265 (-576)))))) +(-10 -7 (-15 -1856 ((-430 |#1|) |#1|)) (-15 -2556 ((-430 |#1|) |#1|)) (-15 -3811 ((-2 (|:| |contp| (-576)) (|:| -1502 (-657 (-2 (|:| |irr| |#1|) (|:| -2534 (-576)))))) |#1| (-112)))) +((-4071 (((-1179 |#2|) (-1 |#2| |#1|) (-1256 |#1|)) 23 (|has| |#1| (-861))) (((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|)) 17))) +(((-1255 |#1| |#2|) (-10 -7 (-15 -4071 ((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) (IF (|has| |#1| (-861)) (-15 -4071 ((-1179 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) |%noBranch|)) (-1239) (-1239)) (T -1255)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-861)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1179 *6)) (-5 *1 (-1255 *5 *6)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1256 *6)) (-5 *1 (-1255 *5 *6))))) +(-10 -7 (-15 -4071 ((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) (IF (|has| |#1| (-861)) (-15 -4071 ((-1179 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) |%noBranch|)) +((-3423 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2290 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4071 (((-1179 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-861)))) (-3989 ((|#1| $) 15)) (-3045 ((|#1| $) 12)) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-4193 (((-576) $) 19)) (-2421 ((|#1| $) 18)) (-4206 ((|#1| $) 13)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3166 (((-112) $) 17)) (-1971 (((-1179 |#1|) $) 41 (|has| |#1| (-861))) (((-1179 |#1|) (-657 $)) 40 (|has| |#1| (-861)))) (-4136 (($ |#1|) 26)) (-3515 (($ (-1116 |#1|)) 25) (((-877) $) 37 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-1812 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2670 (($ $ (-576)) 14)) (-2881 (((-112) $ $) 30 (|has| |#1| (-1122))))) +(((-1256 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -1812 ($ |#1|)) (-15 -2290 ($ |#1|)) (-15 -3515 ($ (-1116 |#1|))) (-15 -3166 ((-112) $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-1117 |#1| (-1179 |#1|))) |%noBranch|))) (-1239)) (T -1256)) +((-1812 (*1 *1 *2) (-12 (-5 *1 (-1256 *2)) (-4 *2 (-1239)))) (-2290 (*1 *1 *2) (-12 (-5 *1 (-1256 *2)) (-4 *2 (-1239)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1239)) (-5 *1 (-1256 *3)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1256 *3)) (-4 *3 (-1239))))) +(-13 (-1115 |#1|) (-10 -8 (-15 -1812 ($ |#1|)) (-15 -2290 ($ |#1|)) (-15 -3515 ($ (-1116 |#1|))) (-15 -3166 ((-112) $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-1117 |#1| (-1179 |#1|))) |%noBranch|))) +((-4071 (((-1262 |#3| |#4|) (-1 |#4| |#2|) (-1262 |#1| |#2|)) 15))) +(((-1257 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 ((-1262 |#3| |#4|) (-1 |#4| |#2|) (-1262 |#1| |#2|)))) (-1198) (-1071) (-1198) (-1071)) (T -1257)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1262 *5 *6)) (-14 *5 (-1198)) (-4 *6 (-1071)) (-4 *8 (-1071)) (-5 *2 (-1262 *7 *8)) (-5 *1 (-1257 *5 *6 *7 *8)) (-14 *7 (-1198))))) +(-10 -7 (-15 -4071 ((-1262 |#3| |#4|) (-1 |#4| |#2|) (-1262 |#1| |#2|)))) +((-3005 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3927 ((|#1| |#3|) 13)) (-2255 ((|#3| |#3|) 19))) +(((-1258 |#1| |#2| |#3|) (-10 -7 (-15 -3927 (|#1| |#3|)) (-15 -2255 (|#3| |#3|)) (-15 -3005 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1014 |#1|) (-1265 |#2|)) (T -1258)) +((-3005 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1258 *4 *5 *3)) (-4 *3 (-1265 *5)))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1014 *3)) (-5 *1 (-1258 *3 *4 *2)) (-4 *2 (-1265 *4)))) (-3927 (*1 *2 *3) (-12 (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-1258 *2 *4 *3)) (-4 *3 (-1265 *4))))) +(-10 -7 (-15 -3927 (|#1| |#3|)) (-15 -2255 (|#3| |#3|)) (-15 -3005 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4197 (((-3 |#2| "failed") |#2| (-784) |#1|) 35)) (-1358 (((-3 |#2| "failed") |#2| (-784)) 36)) (-3014 (((-3 (-2 (|:| -4217 |#2|) (|:| -4228 |#2|)) "failed") |#2|) 50)) (-4192 (((-657 |#2|) |#2|) 52)) (-2133 (((-3 |#2| "failed") |#2| |#2|) 46))) +(((-1259 |#1| |#2|) (-10 -7 (-15 -1358 ((-3 |#2| "failed") |#2| (-784))) (-15 -4197 ((-3 |#2| "failed") |#2| (-784) |#1|)) (-15 -2133 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3014 ((-3 (-2 (|:| -4217 |#2|) (|:| -4228 |#2|)) "failed") |#2|)) (-15 -4192 ((-657 |#2|) |#2|))) (-13 (-568) (-148)) (-1265 |#1|)) (T -1259)) +((-4192 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-657 *3)) (-5 *1 (-1259 *4 *3)) (-4 *3 (-1265 *4)))) (-3014 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| -4217 *3) (|:| -4228 *3))) (-5 *1 (-1259 *4 *3)) (-4 *3 (-1265 *4)))) (-2133 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1265 *3)))) (-4197 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-784)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1259 *4 *2)) (-4 *2 (-1265 *4)))) (-1358 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-784)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1259 *4 *2)) (-4 *2 (-1265 *4))))) +(-10 -7 (-15 -1358 ((-3 |#2| "failed") |#2| (-784))) (-15 -4197 ((-3 |#2| "failed") |#2| (-784) |#1|)) (-15 -2133 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3014 ((-3 (-2 (|:| -4217 |#2|) (|:| -4228 |#2|)) "failed") |#2|)) (-15 -4192 ((-657 |#2|) |#2|))) +((-2025 (((-3 (-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) "failed") |#2| |#2|) 30))) +(((-1260 |#1| |#2|) (-10 -7 (-15 -2025 ((-3 (-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) "failed") |#2| |#2|))) (-568) (-1265 |#1|)) (T -1260)) +((-2025 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-1260 *4 *3)) (-4 *3 (-1265 *4))))) +(-10 -7 (-15 -2025 ((-3 (-2 (|:| -2192 |#2|) (|:| -3951 |#2|)) "failed") |#2| |#2|))) +((-1894 ((|#2| |#2| |#2|) 22)) (-2094 ((|#2| |#2| |#2|) 36)) (-2211 ((|#2| |#2| |#2| (-784) (-784)) 44))) +(((-1261 |#1| |#2|) (-10 -7 (-15 -1894 (|#2| |#2| |#2|)) (-15 -2094 (|#2| |#2| |#2|)) (-15 -2211 (|#2| |#2| |#2| (-784) (-784)))) (-1071) (-1265 |#1|)) (T -1261)) +((-2211 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-784)) (-4 *4 (-1071)) (-5 *1 (-1261 *4 *2)) (-4 *2 (-1265 *4)))) (-2094 (*1 *2 *2 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1265 *3)))) (-1894 (*1 *2 *2 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1265 *3))))) +(-10 -7 (-15 -1894 (|#2| |#2| |#2|)) (-15 -2094 (|#2| |#2| |#2|)) (-15 -2211 (|#2| |#2| |#2| (-784) (-784)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1519 (((-1289 |#2|) $ (-784)) NIL)) (-1998 (((-657 (-1104)) $) NIL)) (-1324 (($ (-1194 |#2|)) NIL)) (-1825 (((-1194 $) $ (-1104)) NIL) (((-1194 |#2|) $) NIL)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2361 (($ $) NIL (|has| |#2| (-568)))) (-3286 (((-112) $) NIL (|has| |#2| (-568)))) (-2889 (((-784) $) NIL) (((-784) $ (-657 (-1104))) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-3924 (($ $ $) NIL (|has| |#2| (-568)))) (-2628 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3188 (($ $) NIL (|has| |#2| (-464)))) (-4215 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3210 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2104 (($ $ (-784)) NIL)) (-2536 (($ $ (-784)) NIL)) (-2580 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-1104) "failed") $) NIL)) (-2830 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-1104) $) NIL)) (-4351 (($ $ $ (-1104)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-3355 (($ $ $) NIL (|has| |#2| (-374)))) (-2165 (($ $) NIL)) (-3439 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-3369 (($ $ $) NIL (|has| |#2| (-374)))) (-4042 (($ $ $) NIL)) (-2054 (($ $ $) NIL (|has| |#2| (-568)))) (-4010 (((-2 (|:| -1735 |#2|) (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#2| (-568)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#2| (-374)))) (-1445 (($ $) NIL (|has| |#2| (-464))) (($ $ (-1104)) NIL (|has| |#2| (-464)))) (-2153 (((-657 $) $) NIL)) (-4009 (((-112) $) NIL (|has| |#2| (-929)))) (-2643 (($ $ |#2| (-784) $) NIL)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1104) (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1104) (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-2650 (((-784) $ $) NIL (|has| |#2| (-568)))) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-1955 (((-3 $ "failed") $) NIL (|has| |#2| (-1174)))) (-1986 (($ (-1194 |#2|) (-1104)) NIL) (($ (-1194 $) (-1104)) NIL)) (-3920 (($ $ (-784)) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#2| (-374)))) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-1974 (($ |#2| (-784)) 18) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ (-1104)) NIL) (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL)) (-4219 (((-784) $) NIL) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-2308 (($ (-1 (-784) (-784)) $) NIL)) (-4071 (($ (-1 |#2| |#2|) $) NIL)) (-3518 (((-1194 |#2|) $) NIL)) (-2502 (((-3 (-1104) "failed") $) NIL)) (-1993 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2129 (($ $) NIL)) (-2141 ((|#2| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1708 (((-1180) $) NIL)) (-1498 (((-2 (|:| -2192 $) (|:| -3951 $)) $ (-784)) NIL)) (-2998 (((-3 (-657 $) "failed") $) NIL)) (-3097 (((-3 (-657 $) "failed") $) NIL)) (-3403 (((-3 (-2 (|:| |var| (-1104)) (|:| -2128 (-784))) "failed") $) NIL)) (-2320 (($ $) NIL (|has| |#2| (-38 (-419 (-576)))))) (-1679 (($) NIL (|has| |#2| (-1174)) CONST)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) NIL)) (-2118 ((|#2| $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#2| (-464)))) (-3431 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1836 (($ $ (-784) |#2| $) NIL)) (-2436 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-1856 (((-430 $) $) NIL (|has| |#2| (-929)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#2| (-374)))) (-3409 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#2| (-374)))) (-3205 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1104) |#2|) NIL) (($ $ (-657 (-1104)) (-657 |#2|)) NIL) (($ $ (-1104) $) NIL) (($ $ (-657 (-1104)) (-657 $)) NIL)) (-4164 (((-784) $) NIL (|has| |#2| (-374)))) (-2780 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568))) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)))) (-3592 (((-3 $ "failed") $ (-784)) NIL)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#2| (-374)))) (-1465 (($ $ (-1104)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-2209 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-4265 (((-784) $) NIL) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-4136 (((-908 (-390)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-1104) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3614 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-1104)) NIL (|has| |#2| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929))))) (-2375 (((-3 $ "failed") $ $) NIL (|has| |#2| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#2| (-568)))) (-3515 (((-877) $) 13) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1104)) NIL) (($ (-1285 |#1|)) 20) (($ (-419 (-576))) NIL (-2748 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3987 (((-657 |#2|) $) NIL)) (-2498 ((|#2| $ (-784)) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-3414 (((-3 $ "failed") $) NIL (-2748 (-12 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#2| (-146))))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| |#2| (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2716 (($) NIL T CONST)) (-2725 (($) 14 T CONST)) (-2066 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1262 |#1| |#2|) (-13 (-1265 |#2|) (-628 (-1285 |#1|)) (-10 -8 (-15 -1836 ($ $ (-784) |#2| $)))) (-1198) (-1071)) (T -1262)) +((-1836 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1262 *4 *3)) (-14 *4 (-1198)) (-4 *3 (-1071))))) +(-13 (-1265 |#2|) (-628 (-1285 |#1|)) (-10 -8 (-15 -1836 ($ $ (-784) |#2| $)))) +((-4071 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1263 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 (|#4| (-1 |#3| |#1|) |#2|))) (-1071) (-1265 |#1|) (-1071) (-1265 |#3|)) (T -1263)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-4 *2 (-1265 *6)) (-5 *1 (-1263 *5 *4 *6 *2)) (-4 *4 (-1265 *5))))) +(-10 -7 (-15 -4071 (|#4| (-1 |#3| |#1|) |#2|))) +((-1519 (((-1289 |#2|) $ (-784)) 129)) (-1998 (((-657 (-1104)) $) 16)) (-1324 (($ (-1194 |#2|)) 80)) (-2889 (((-784) $) NIL) (((-784) $ (-657 (-1104))) 21)) (-2628 (((-430 (-1194 $)) (-1194 $)) 204)) (-3188 (($ $) 194)) (-4215 (((-430 $) $) 192)) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 95)) (-2104 (($ $ (-784)) 84)) (-2536 (($ $ (-784)) 86)) (-2580 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1593 (((-3 |#2| "failed") $) 132) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-1104) "failed") $) NIL)) (-2830 ((|#2| $) 130) (((-419 (-576)) $) NIL) (((-576) $) NIL) (((-1104) $) NIL)) (-2054 (($ $ $) 170)) (-4010 (((-2 (|:| -1735 |#2|) (|:| -2192 $) (|:| -3951 $)) $ $) 172)) (-2650 (((-784) $ $) 189)) (-1955 (((-3 $ "failed") $) 138)) (-1974 (($ |#2| (-784)) NIL) (($ $ (-1104) (-784)) 59) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-4219 (((-784) $) NIL) (((-784) $ (-1104)) 54) (((-657 (-784)) $ (-657 (-1104))) 55)) (-3518 (((-1194 |#2|) $) 72)) (-2502 (((-3 (-1104) "failed") $) 52)) (-1498 (((-2 (|:| -2192 $) (|:| -3951 $)) $ (-784)) 83)) (-2320 (($ $) 219)) (-1679 (($) 134)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 201)) (-2436 (((-430 (-1194 $)) (-1194 $)) 101)) (-3828 (((-430 (-1194 $)) (-1194 $)) 99)) (-1856 (((-430 $) $) 120)) (-3205 (($ $ (-657 (-304 $))) 51) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1104) |#2|) 39) (($ $ (-657 (-1104)) (-657 |#2|)) 36) (($ $ (-1104) $) 32) (($ $ (-657 (-1104)) (-657 $)) 30)) (-4164 (((-784) $) 207)) (-2780 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) 164) ((|#2| (-419 $) |#2|) 206) (((-419 $) $ (-419 $)) 188)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 212)) (-2209 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) 157) (($ $) 155) (($ $ (-784)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-4265 (((-784) $) NIL) (((-784) $ (-1104)) 17) (((-657 (-784)) $ (-657 (-1104))) 23)) (-3614 ((|#2| $) NIL) (($ $ (-1104)) 140)) (-2375 (((-3 $ "failed") $ $) 180) (((-3 (-419 $) "failed") (-419 $) $) 176)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1104)) 64) (($ (-419 (-576))) NIL) (($ $) NIL))) +(((-1264 |#1| |#2|) (-10 -8 (-15 -3515 (|#1| |#1|)) (-15 -1828 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|))) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -4215 ((-430 |#1|) |#1|)) (-15 -3188 (|#1| |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -1679 (|#1|)) (-15 -1955 ((-3 |#1| "failed") |#1|)) (-15 -2780 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -4164 ((-784) |#1|)) (-15 -3977 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2780 (|#2| (-419 |#1|) |#2|)) (-15 -2580 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4010 ((-2 (|:| -1735 |#2|) (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -2054 (|#1| |#1| |#1|)) (-15 -2375 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -2375 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2650 ((-784) |#1| |#1|)) (-15 -2780 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2536 (|#1| |#1| (-784))) (-15 -2104 (|#1| |#1| (-784))) (-15 -1498 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| (-784))) (-15 -1324 (|#1| (-1194 |#2|))) (-15 -3518 ((-1194 |#2|) |#1|)) (-15 -1519 ((-1289 |#2|) |#1| (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|)) (-15 -2780 (|#2| |#1| |#2|)) (-15 -1856 ((-430 |#1|) |#1|)) (-15 -2628 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -3828 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2436 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -3606 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -3614 (|#1| |#1| (-1104))) (-15 -1998 ((-657 (-1104)) |#1|)) (-15 -2889 ((-784) |#1| (-657 (-1104)))) (-15 -2889 ((-784) |#1|)) (-15 -1974 (|#1| |#1| (-657 (-1104)) (-657 (-784)))) (-15 -1974 (|#1| |#1| (-1104) (-784))) (-15 -4219 ((-657 (-784)) |#1| (-657 (-1104)))) (-15 -4219 ((-784) |#1| (-1104))) (-15 -2502 ((-3 (-1104) "failed") |#1|)) (-15 -4265 ((-657 (-784)) |#1| (-657 (-1104)))) (-15 -4265 ((-784) |#1| (-1104))) (-15 -3515 (|#1| (-1104))) (-15 -1593 ((-3 (-1104) "failed") |#1|)) (-15 -2830 ((-1104) |#1|)) (-15 -3205 (|#1| |#1| (-657 (-1104)) (-657 |#1|))) (-15 -3205 (|#1| |#1| (-1104) |#1|)) (-15 -3205 (|#1| |#1| (-657 (-1104)) (-657 |#2|))) (-15 -3205 (|#1| |#1| (-1104) |#2|)) (-15 -3205 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#1| |#1|)) (-15 -3205 (|#1| |#1| (-304 |#1|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -4265 ((-784) |#1|)) (-15 -1974 (|#1| |#2| (-784))) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -4219 ((-784) |#1|)) (-15 -3614 (|#2| |#1|)) (-15 -2209 (|#1| |#1| (-1104))) (-15 -2209 (|#1| |#1| (-657 (-1104)))) (-15 -2209 (|#1| |#1| (-1104) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1104)) (-657 (-784)))) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) (-1265 |#2|) (-1071)) (T -1264)) +NIL +(-10 -8 (-15 -3515 (|#1| |#1|)) (-15 -1828 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|))) (-15 -2209 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2209 (|#1| |#1| (-1198) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1198)))) (-15 -2209 (|#1| |#1| (-1198))) (-15 -4215 ((-430 |#1|) |#1|)) (-15 -3188 (|#1| |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -1679 (|#1|)) (-15 -1955 ((-3 |#1| "failed") |#1|)) (-15 -2780 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -4164 ((-784) |#1|)) (-15 -3977 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2780 (|#2| (-419 |#1|) |#2|)) (-15 -2580 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4010 ((-2 (|:| -1735 |#2|) (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| |#1|)) (-15 -2054 (|#1| |#1| |#1|)) (-15 -2375 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -2375 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2650 ((-784) |#1| |#1|)) (-15 -2780 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2536 (|#1| |#1| (-784))) (-15 -2104 (|#1| |#1| (-784))) (-15 -1498 ((-2 (|:| -2192 |#1|) (|:| -3951 |#1|)) |#1| (-784))) (-15 -1324 (|#1| (-1194 |#2|))) (-15 -3518 ((-1194 |#2|) |#1|)) (-15 -1519 ((-1289 |#2|) |#1| (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-784))) (-15 -2209 (|#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|)) (-15 -2780 (|#2| |#1| |#2|)) (-15 -1856 ((-430 |#1|) |#1|)) (-15 -2628 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -3828 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2436 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -3606 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -3614 (|#1| |#1| (-1104))) (-15 -1998 ((-657 (-1104)) |#1|)) (-15 -2889 ((-784) |#1| (-657 (-1104)))) (-15 -2889 ((-784) |#1|)) (-15 -1974 (|#1| |#1| (-657 (-1104)) (-657 (-784)))) (-15 -1974 (|#1| |#1| (-1104) (-784))) (-15 -4219 ((-657 (-784)) |#1| (-657 (-1104)))) (-15 -4219 ((-784) |#1| (-1104))) (-15 -2502 ((-3 (-1104) "failed") |#1|)) (-15 -4265 ((-657 (-784)) |#1| (-657 (-1104)))) (-15 -4265 ((-784) |#1| (-1104))) (-15 -3515 (|#1| (-1104))) (-15 -1593 ((-3 (-1104) "failed") |#1|)) (-15 -2830 ((-1104) |#1|)) (-15 -3205 (|#1| |#1| (-657 (-1104)) (-657 |#1|))) (-15 -3205 (|#1| |#1| (-1104) |#1|)) (-15 -3205 (|#1| |#1| (-657 (-1104)) (-657 |#2|))) (-15 -3205 (|#1| |#1| (-1104) |#2|)) (-15 -3205 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3205 (|#1| |#1| |#1| |#1|)) (-15 -3205 (|#1| |#1| (-304 |#1|))) (-15 -3205 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -4265 ((-784) |#1|)) (-15 -1974 (|#1| |#2| (-784))) (-15 -1593 ((-3 (-576) "failed") |#1|)) (-15 -2830 ((-576) |#1|)) (-15 -1593 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2830 ((-419 (-576)) |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -1593 ((-3 |#2| "failed") |#1|)) (-15 -3515 (|#1| |#2|)) (-15 -4219 ((-784) |#1|)) (-15 -3614 (|#2| |#1|)) (-15 -2209 (|#1| |#1| (-1104))) (-15 -2209 (|#1| |#1| (-657 (-1104)))) (-15 -2209 (|#1| |#1| (-1104) (-784))) (-15 -2209 (|#1| |#1| (-657 (-1104)) (-657 (-784)))) (-15 -3515 (|#1| (-576))) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-1519 (((-1289 |#1|) $ (-784)) 256)) (-1998 (((-657 (-1104)) $) 113)) (-1324 (($ (-1194 |#1|)) 254)) (-1825 (((-1194 $) $ (-1104)) 128) (((-1194 |#1|) $) 127)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2361 (($ $) 91 (|has| |#1| (-568)))) (-3286 (((-112) $) 93 (|has| |#1| (-568)))) (-2889 (((-784) $) 115) (((-784) $ (-657 (-1104))) 114)) (-2423 (((-3 $ "failed") $ $) 20)) (-3924 (($ $ $) 241 (|has| |#1| (-568)))) (-2628 (((-430 (-1194 $)) (-1194 $)) 103 (|has| |#1| (-929)))) (-3188 (($ $) 101 (|has| |#1| (-464)))) (-4215 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3606 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 106 (|has| |#1| (-929)))) (-3210 (((-112) $ $) 226 (|has| |#1| (-374)))) (-2104 (($ $ (-784)) 249)) (-2536 (($ $ (-784)) 248)) (-2580 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-464)))) (-2515 (($) 18 T CONST)) (-1593 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1060 (-576)))) (((-3 (-1104) "failed") $) 143)) (-2830 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1060 (-576)))) (((-1104) $) 144)) (-4351 (($ $ $ (-1104)) 111 (|has| |#1| (-174))) ((|#1| $ $) 244 (|has| |#1| (-174)))) (-3355 (($ $ $) 230 (|has| |#1| (-374)))) (-2165 (($ $) 161)) (-3439 (((-702 (-576)) (-702 $)) 139 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 138 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 137) (((-702 |#1|) (-702 $)) 136)) (-3969 (((-3 $ "failed") $) 37)) (-3369 (($ $ $) 229 (|has| |#1| (-374)))) (-4042 (($ $ $) 247)) (-2054 (($ $ $) 238 (|has| |#1| (-568)))) (-4010 (((-2 (|:| -1735 |#1|) (|:| -2192 $) (|:| -3951 $)) $ $) 237 (|has| |#1| (-568)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 224 (|has| |#1| (-374)))) (-1445 (($ $) 183 (|has| |#1| (-464))) (($ $ (-1104)) 108 (|has| |#1| (-464)))) (-2153 (((-657 $) $) 112)) (-4009 (((-112) $) 99 (|has| |#1| (-929)))) (-2643 (($ $ |#1| (-784) $) 179)) (-2008 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 87 (-12 (|has| (-1104) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 86 (-12 (|has| (-1104) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-2650 (((-784) $ $) 242 (|has| |#1| (-568)))) (-3994 (((-112) $) 35)) (-2977 (((-784) $) 176)) (-1955 (((-3 $ "failed") $) 222 (|has| |#1| (-1174)))) (-1986 (($ (-1194 |#1|) (-1104)) 120) (($ (-1194 $) (-1104)) 119)) (-3920 (($ $ (-784)) 253)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 233 (|has| |#1| (-374)))) (-2278 (((-657 $) $) 129)) (-2343 (((-112) $) 159)) (-1974 (($ |#1| (-784)) 160) (($ $ (-1104) (-784)) 122) (($ $ (-657 (-1104)) (-657 (-784))) 121)) (-2360 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $ (-1104)) 123) (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 251)) (-4219 (((-784) $) 177) (((-784) $ (-1104)) 125) (((-657 (-784)) $ (-657 (-1104))) 124)) (-2308 (($ (-1 (-784) (-784)) $) 178)) (-4071 (($ (-1 |#1| |#1|) $) 158)) (-3518 (((-1194 |#1|) $) 255)) (-2502 (((-3 (-1104) "failed") $) 126)) (-1993 (((-702 (-576)) (-1289 $)) 141 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 140 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3962 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 135) (((-702 |#1|) (-1289 $)) 134)) (-2129 (($ $) 156)) (-2141 ((|#1| $) 155)) (-3388 (($ (-657 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-1708 (((-1180) $) 10)) (-1498 (((-2 (|:| -2192 $) (|:| -3951 $)) $ (-784)) 250)) (-2998 (((-3 (-657 $) "failed") $) 117)) (-3097 (((-3 (-657 $) "failed") $) 118)) (-3403 (((-3 (-2 (|:| |var| (-1104)) (|:| -2128 (-784))) "failed") $) 116)) (-2320 (($ $) 234 (|has| |#1| (-38 (-419 (-576)))))) (-1679 (($) 221 (|has| |#1| (-1174)) CONST)) (-1460 (((-1142) $) 11)) (-2108 (((-112) $) 173)) (-2118 ((|#1| $) 174)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 98 (|has| |#1| (-464)))) (-3431 (($ (-657 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-2436 (((-430 (-1194 $)) (-1194 $)) 105 (|has| |#1| (-929)))) (-3828 (((-430 (-1194 $)) (-1194 $)) 104 (|has| |#1| (-929)))) (-1856 (((-430 $) $) 102 (|has| |#1| (-929)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 231 (|has| |#1| (-374)))) (-3409 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 225 (|has| |#1| (-374)))) (-3205 (($ $ (-657 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-657 $) (-657 $)) 149) (($ $ (-1104) |#1|) 148) (($ $ (-657 (-1104)) (-657 |#1|)) 147) (($ $ (-1104) $) 146) (($ $ (-657 (-1104)) (-657 $)) 145)) (-4164 (((-784) $) 227 (|has| |#1| (-374)))) (-2780 ((|#1| $ |#1|) 266) (($ $ $) 265) (((-419 $) (-419 $) (-419 $)) 243 (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) 235 (|has| |#1| (-374))) (((-419 $) $ (-419 $)) 223 (|has| |#1| (-568)))) (-3592 (((-3 $ "failed") $ (-784)) 252)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 228 (|has| |#1| (-374)))) (-1465 (($ $ (-1104)) 110 (|has| |#1| (-174))) ((|#1| $) 245 (|has| |#1| (-174)))) (-2209 (($ $ (-657 (-1104)) (-657 (-784))) 44) (($ $ (-1104) (-784)) 43) (($ $ (-657 (-1104))) 42) (($ $ (-1104)) 40) (($ $) 264) (($ $ (-784)) 262) (($ $ (-1 |#1| |#1|)) 260) (($ $ (-1 |#1| |#1|) (-784)) 259) (($ $ (-1 |#1| |#1|) $) 246) (($ $ (-1198)) 220 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 218 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 217 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 216 (|has| |#1| (-920 (-1198))))) (-4265 (((-784) $) 157) (((-784) $ (-1104)) 133) (((-657 (-784)) $ (-657 (-1104))) 132)) (-4136 (((-908 (-390)) $) 85 (-12 (|has| (-1104) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) 84 (-12 (|has| (-1104) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) 83 (-12 (|has| (-1104) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3614 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ (-1104)) 109 (|has| |#1| (-464)))) (-3036 (((-3 (-1289 $) "failed") (-702 $)) 107 (-2675 (|has| $ (-146)) (|has| |#1| (-929))))) (-2375 (((-3 $ "failed") $ $) 240 (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) 239 (|has| |#1| (-568)))) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ (-1104)) 142) (($ (-419 (-576))) 81 (-2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-3987 (((-657 |#1|) $) 175)) (-2498 ((|#1| $ (-784)) 162) (($ $ (-1104) (-784)) 131) (($ $ (-657 (-1104)) (-657 (-784))) 130)) (-3414 (((-3 $ "failed") $) 82 (-2748 (-2675 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-3845 (((-784)) 32 T CONST)) (-3194 (($ $ $ (-784)) 180 (|has| |#1| (-174)))) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-657 (-1104)) (-657 (-784))) 47) (($ $ (-1104) (-784)) 46) (($ $ (-657 (-1104))) 45) (($ $ (-1104)) 41) (($ $) 263) (($ $ (-784)) 261) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-784)) 257) (($ $ (-1198)) 219 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 215 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 214 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 213 (|has| |#1| (-920 (-1198))))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-1265 |#1|) (-141) (-1071)) (T -1265)) +((-1519 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-1265 *4)) (-4 *4 (-1071)) (-5 *2 (-1289 *4)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1071)) (-5 *2 (-1194 *3)))) (-1324 (*1 *1 *2) (-12 (-5 *2 (-1194 *3)) (-4 *3 (-1071)) (-4 *1 (-1265 *3)))) (-3920 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)))) (-3592 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)))) (-2360 (*1 *2 *1 *1) (-12 (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-1265 *3)))) (-1498 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *4 (-1071)) (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-1265 *4)))) (-2104 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)))) (-2536 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)))) (-4042 (*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)))) (-2209 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)))) (-1465 (*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-174)))) (-4351 (*1 *2 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-174)))) (-2780 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)) (-4 *3 (-568)))) (-2650 (*1 *2 *1 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1071)) (-4 *3 (-568)) (-5 *2 (-784)))) (-3924 (*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-568)))) (-2375 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-568)))) (-2375 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)) (-4 *3 (-568)))) (-2054 (*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-568)))) (-4010 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| -1735 *3) (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-1265 *3)))) (-2580 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1265 *3)))) (-2780 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-2320 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576))))))) +(-13 (-969 |t#1| (-784) (-1104)) (-296 |t#1| |t#1|) (-296 $ $) (-238) (-232 |t#1|) (-10 -8 (-15 -1519 ((-1289 |t#1|) $ (-784))) (-15 -3518 ((-1194 |t#1|) $)) (-15 -1324 ($ (-1194 |t#1|))) (-15 -3920 ($ $ (-784))) (-15 -3592 ((-3 $ "failed") $ (-784))) (-15 -2360 ((-2 (|:| -2192 $) (|:| -3951 $)) $ $)) (-15 -1498 ((-2 (|:| -2192 $) (|:| -3951 $)) $ (-784))) (-15 -2104 ($ $ (-784))) (-15 -2536 ($ $ (-784))) (-15 -4042 ($ $ $)) (-15 -2209 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1174)) (-6 (-1174)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1465 (|t#1| $)) (-15 -4351 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-296 (-419 $) (-419 $))) (-15 -2780 ((-419 $) (-419 $) (-419 $))) (-15 -2650 ((-784) $ $)) (-15 -3924 ($ $ $)) (-15 -2375 ((-3 $ "failed") $ $)) (-15 -2375 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -2054 ($ $ $)) (-15 -4010 ((-2 (|:| -1735 |t#1|) (|:| -2192 $) (|:| -3951 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -2580 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-317)) (-6 -4462) (-15 -2780 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-15 -2320 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-784)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2748 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1104)) . T) ((-628 |#1|) . T) ((-628 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| (-1104) (-626 (-548))) (|has| |#1| (-626 (-548)))) ((-626 (-908 (-390))) -12 (|has| (-1104) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390))))) ((-626 (-908 (-576))) -12 (|has| (-1104) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576))))) ((-234 $) . T) ((-232 |#1|) . T) ((-238) . T) ((-237) . T) ((-272 |#1|) . T) ((-296 (-419 $) (-419 $)) |has| |#1| (-568)) ((-296 |#1| |#1|) . T) ((-296 $ $) . T) ((-300) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 $) . T) ((-336 |#1| #0#) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2748 (|has| |#1| (-929)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-526 #2# |#1|) . T) ((-526 #2# $) . T) ((-526 $ $) . T) ((-568) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-659 #1#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #1#) |has| |#1| (-38 (-419 (-576)))) ((-661 #3=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #1#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-652 #3#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #1#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-739) . T) ((-912 $ #2#) . T) ((-912 $ #4=(-1198)) -2748 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-918 #2#) . T) ((-918 (-1198)) |has| |#1| (-918 (-1198))) ((-920 #2#) . T) ((-920 #4#) -2748 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-902 (-390)) -12 (|has| (-1104) (-902 (-390))) (|has| |#1| (-902 (-390)))) ((-902 (-576)) -12 (|has| (-1104) (-902 (-576))) (|has| |#1| (-902 (-576)))) ((-969 |#1| #0# #2#) . T) ((-929) |has| |#1| (-929)) ((-940) |has| |#1| (-374)) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 #2#) . T) ((-1060 |#1|) . T) ((-1073 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1078 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) |has| |#1| (-1174)) ((-1239) . T) ((-1243) |has| |#1| (-929))) +((-1998 (((-657 (-1104)) $) 34)) (-2165 (($ $) 31)) (-1974 (($ |#2| |#3|) NIL) (($ $ (-1104) |#3|) 28) (($ $ (-657 (-1104)) (-657 |#3|)) 27)) (-2129 (($ $) 14)) (-2141 ((|#2| $) 12)) (-4265 ((|#3| $) 10))) +(((-1266 |#1| |#2| |#3|) (-10 -8 (-15 -1998 ((-657 (-1104)) |#1|)) (-15 -1974 (|#1| |#1| (-657 (-1104)) (-657 |#3|))) (-15 -1974 (|#1| |#1| (-1104) |#3|)) (-15 -2165 (|#1| |#1|)) (-15 -1974 (|#1| |#2| |#3|)) (-15 -4265 (|#3| |#1|)) (-15 -2129 (|#1| |#1|)) (-15 -2141 (|#2| |#1|))) (-1267 |#2| |#3|) (-1071) (-805)) (T -1266)) +NIL +(-10 -8 (-15 -1998 ((-657 (-1104)) |#1|)) (-15 -1974 (|#1| |#1| (-657 (-1104)) (-657 |#3|))) (-15 -1974 (|#1| |#1| (-1104) |#3|)) (-15 -2165 (|#1| |#1|)) (-15 -1974 (|#1| |#2| |#3|)) (-15 -4265 (|#3| |#1|)) (-15 -2129 (|#1| |#1|)) (-15 -2141 (|#2| |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-1998 (((-657 (-1104)) $) 86)) (-2993 (((-1198) $) 118)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2361 (($ $) 64 (|has| |#1| (-568)))) (-3286 (((-112) $) 66 (|has| |#1| (-568)))) (-2212 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-3212 (((-1179 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-2165 (($ $) 72)) (-3969 (((-3 $ "failed") $) 37)) (-3155 (((-112) $) 85)) (-2650 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-3994 (((-112) $) 35)) (-3920 (($ $ (-941)) 116)) (-2343 (((-112) $) 74)) (-1974 (($ |#1| |#2|) 73) (($ $ (-1104) |#2|) 88) (($ $ (-657 (-1104)) (-657 |#2|)) 87)) (-4071 (($ (-1 |#1| |#1|) $) 75)) (-2129 (($ $) 77)) (-2141 ((|#1| $) 78)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1456 (($ $ |#2|) 110)) (-3409 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3205 (((-1179 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2780 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1134)))) (-2209 (($ $ (-1198)) 108 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-657 (-1198))) 106 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1198) (-784)) 105 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 104 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-784)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4265 ((|#2| $) 76)) (-1557 (($ $) 84)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2498 ((|#1| $ |#2|) 71)) (-3414 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-3713 ((|#1| $) 117)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4130 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-1198)) 107 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-657 (-1198))) 103 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1198) (-784)) 102 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 101 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-784)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1267 |#1| |#2|) (-141) (-1071) (-805)) (T -1267)) +((-3212 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-1179 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-1198)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1267 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) (-3920 (*1 *1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-2650 (*1 *2 *1 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-2212 (*1 *1 *1 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-2212 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-4130 (*1 *2 *1 *3) (-12 (-4 *1 (-1267 *2 *3)) (-4 *3 (-805)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3515 (*2 (-1198)))) (-4 *2 (-1071)))) (-1456 (*1 *1 *1 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-3205 (*1 *2 *1 *3) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1179 *3))))) +(-13 (-995 |t#1| |t#2| (-1104)) (-296 |t#2| |t#1|) (-10 -8 (-15 -3212 ((-1179 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2993 ((-1198) $)) (-15 -3713 (|t#1| $)) (-15 -3920 ($ $ (-941))) (-15 -2650 (|t#2| $)) (-15 -2650 (|t#2| $ |t#2|)) (-15 -2212 ($ $ |t#2|)) (-15 -2212 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3515 (|t#1| (-1198)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4130 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1456 ($ $ |t#2|)) (IF (|has| |t#2| (-1134)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-918 (-1198))) (-6 (-918 (-1198))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3205 ((-1179 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-296 |#2| |#1|) . T) ((-296 $ $) |has| |#2| (-1134)) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) . T) ((-912 $ #1=(-1198)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-918 (-1198)))) ((-918 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-918 (-1198)))) ((-920 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-918 (-1198)))) ((-995 |#1| |#2| (-1104)) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3188 ((|#2| |#2|) 12)) (-4215 (((-430 |#2|) |#2|) 14)) (-4178 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))) 30))) +(((-1268 |#1| |#2|) (-10 -7 (-15 -4215 ((-430 |#2|) |#2|)) (-15 -3188 (|#2| |#2|)) (-15 -4178 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) (-568) (-13 (-1265 |#1|) (-568) (-10 -8 (-15 -3431 ($ $ $))))) (T -1268)) +((-4178 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-576)))) (-4 *4 (-13 (-1265 *3) (-568) (-10 -8 (-15 -3431 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1268 *3 *4)))) (-3188 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1268 *3 *2)) (-4 *2 (-13 (-1265 *3) (-568) (-10 -8 (-15 -3431 ($ $ $))))))) (-4215 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1268 *4 *3)) (-4 *3 (-13 (-1265 *4) (-568) (-10 -8 (-15 -3431 ($ $ $)))))))) +(-10 -7 (-15 -4215 ((-430 |#2|) |#2|)) (-15 -3188 (|#2| |#2|)) (-15 -4178 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) +((-4071 (((-1274 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1274 |#1| |#3| |#5|)) 24))) +(((-1269 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4071 ((-1274 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1274 |#1| |#3| |#5|)))) (-1071) (-1071) (-1198) (-1198) |#1| |#2|) (T -1269)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1274 *5 *7 *9)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-14 *7 (-1198)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1274 *6 *8 *10)) (-5 *1 (-1269 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1198))))) +(-10 -7 (-15 -4071 ((-1274 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1274 |#1| |#3| |#5|)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-1998 (((-657 (-1104)) $) 86)) (-2993 (((-1198) $) 118)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2361 (($ $) 64 (|has| |#1| (-568)))) (-3286 (((-112) $) 66 (|has| |#1| (-568)))) (-2212 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-3212 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-2143 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 177 (|has| |#1| (-374)))) (-4215 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1866 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3210 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2120 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3696 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-2166 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) 18 T CONST)) (-3355 (($ $ $) 172 (|has| |#1| (-374)))) (-2165 (($ $) 72)) (-3969 (((-3 $ "failed") $) 37)) (-3369 (($ $ $) 171 (|has| |#1| (-374)))) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 166 (|has| |#1| (-374)))) (-4009 (((-112) $) 179 (|has| |#1| (-374)))) (-3155 (((-112) $) 85)) (-1622 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-3994 (((-112) $) 35)) (-3856 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $ (-941)) 116) (($ $ (-419 (-576))) 185)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 175 (|has| |#1| (-374)))) (-2343 (((-112) $) 74)) (-1974 (($ |#1| (-419 (-576))) 73) (($ $ (-1104) (-419 (-576))) 88) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) 87)) (-4071 (($ (-1 |#1| |#1|) $) 75)) (-3707 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) 77)) (-2141 ((|#1| $) 78)) (-3388 (($ (-657 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-1708 (((-1180) $) 10)) (-2098 (($ $) 180 (|has| |#1| (-374)))) (-2320 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 183 (-2748 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 165 (|has| |#1| (-374)))) (-3431 (($ (-657 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1856 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 173 (|has| |#1| (-374)))) (-1456 (($ $ (-419 (-576))) 110)) (-3409 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 167 (|has| |#1| (-374)))) (-4056 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-4164 (((-784) $) 169 (|has| |#1| (-374)))) (-2780 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1134)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 170 (|has| |#1| (-374)))) (-2209 (($ $ (-1198)) 108 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198))) 106 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1198) (-784)) 105 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 104 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-4265 (((-419 (-576)) $) 76)) (-2177 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) 84)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2498 ((|#1| $ (-419 (-576))) 71)) (-3414 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-3713 ((|#1| $) 117)) (-4166 (((-112) $ $) 6)) (-4110 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2188 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-1198)) 107 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198))) 103 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1198) (-784)) 102 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 101 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1270 |#1|) (-141) (-1071)) (T -1270)) +((-3696 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) (-4 *4 (-1071)) (-4 *1 (-1270 *4)))) (-3920 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1270 *3)) (-4 *3 (-1071)))) (-2320 (*1 *1 *1) (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) (-2320 (*1 *1 *1 *2) (-2748 (-12 (-5 *2 (-1198)) (-4 *1 (-1270 *3)) (-4 *3 (-1071)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-979)) (-4 *3 (-1224)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1198)) (-4 *1 (-1270 *3)) (-4 *3 (-1071)) (-12 (|has| *3 (-15 -1998 ((-657 *2) *3))) (|has| *3 (-15 -2320 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) +(-13 (-1267 |t#1| (-419 (-576))) (-10 -8 (-15 -3696 ($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |t#1|))))) (-15 -3920 ($ $ (-419 (-576)))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2320 ($ $)) (IF (|has| |t#1| (-15 -2320 (|t#1| |t#1| (-1198)))) (IF (|has| |t#1| (-15 -1998 ((-657 (-1198)) |t#1|))) (-15 -2320 ($ $ (-1198))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1224)) (IF (|has| |t#1| (-979)) (IF (|has| |t#1| (-29 (-576))) (-15 -2320 ($ $ (-1198))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1024)) (-6 (-1224))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1134)) ((-300) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-659 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-730 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-739) . T) ((-912 $ #2=(-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198)))) ((-918 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198)))) ((-920 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198)))) ((-995 |#1| #0# (-1104)) . T) ((-940) |has| |#1| (-374)) ((-1024) |has| |#1| (-38 (-419 (-576)))) ((-1073 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1078 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1227) |has| |#1| (-38 (-419 (-576)))) ((-1239) . T) ((-1243) |has| |#1| (-374)) ((-1267 |#1| #0#) . T)) +((-2044 (((-112) $) 12)) (-1593 (((-3 |#3| "failed") $) 17)) (-2830 ((|#3| $) 14))) +(((-1271 |#1| |#2| |#3|) (-10 -8 (-15 -1593 ((-3 |#3| "failed") |#1|)) (-15 -2830 (|#3| |#1|)) (-15 -2044 ((-112) |#1|))) (-1272 |#2| |#3|) (-1071) (-1249 |#2|)) (T -1271)) +NIL +(-10 -8 (-15 -1593 ((-3 |#3| "failed") |#1|)) (-15 -2830 (|#3| |#1|)) (-15 -2044 ((-112) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-1998 (((-657 (-1104)) $) 86)) (-2993 (((-1198) $) 118)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2361 (($ $) 64 (|has| |#1| (-568)))) (-3286 (((-112) $) 66 (|has| |#1| (-568)))) (-2212 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-3212 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-2143 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 177 (|has| |#1| (-374)))) (-4215 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1866 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3210 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2120 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3696 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-2166 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) 18 T CONST)) (-1593 (((-3 |#2| "failed") $) 197)) (-2830 ((|#2| $) 198)) (-3355 (($ $ $) 172 (|has| |#1| (-374)))) (-2165 (($ $) 72)) (-3969 (((-3 $ "failed") $) 37)) (-1530 (((-419 (-576)) $) 194)) (-3369 (($ $ $) 171 (|has| |#1| (-374)))) (-2079 (($ (-419 (-576)) |#2|) 195)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 166 (|has| |#1| (-374)))) (-4009 (((-112) $) 179 (|has| |#1| (-374)))) (-3155 (((-112) $) 85)) (-1622 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-3994 (((-112) $) 35)) (-3856 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $ (-941)) 116) (($ $ (-419 (-576))) 185)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 175 (|has| |#1| (-374)))) (-2343 (((-112) $) 74)) (-1974 (($ |#1| (-419 (-576))) 73) (($ $ (-1104) (-419 (-576))) 88) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) 87)) (-4071 (($ (-1 |#1| |#1|) $) 75)) (-3707 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) 77)) (-2141 ((|#1| $) 78)) (-3388 (($ (-657 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-3681 ((|#2| $) 193)) (-2682 (((-3 |#2| "failed") $) 191)) (-2067 ((|#2| $) 192)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 180 (|has| |#1| (-374)))) (-2320 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 183 (-2748 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 165 (|has| |#1| (-374)))) (-3431 (($ (-657 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1856 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 173 (|has| |#1| (-374)))) (-1456 (($ $ (-419 (-576))) 110)) (-3409 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 167 (|has| |#1| (-374)))) (-4056 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-4164 (((-784) $) 169 (|has| |#1| (-374)))) (-2780 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1134)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 170 (|has| |#1| (-374)))) (-2209 (($ $ (-1198)) 108 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198))) 106 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1198) (-784)) 105 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 104 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-4265 (((-419 (-576)) $) 76)) (-2177 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) 84)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2498 ((|#1| $ (-419 (-576))) 71)) (-3414 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-3713 ((|#1| $) 117)) (-4166 (((-112) $ $) 6)) (-4110 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2188 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-1198)) 107 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198))) 103 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1198) (-784)) 102 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 101 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1272 |#1| |#2|) (-141) (-1071) (-1249 |t#1|)) (T -1272)) +((-4265 (*1 *2 *1) (-12 (-4 *1 (-1272 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1249 *3)) (-5 *2 (-419 (-576))))) (-2079 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1071)) (-4 *1 (-1272 *4 *3)) (-4 *3 (-1249 *4)))) (-1530 (*1 *2 *1) (-12 (-4 *1 (-1272 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1249 *3)) (-5 *2 (-419 (-576))))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1249 *3)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1249 *3)))) (-2682 (*1 *2 *1) (|partial| -12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1249 *3))))) +(-13 (-1270 |t#1|) (-1060 |t#2|) (-628 |t#2|) (-10 -8 (-15 -2079 ($ (-419 (-576)) |t#2|)) (-15 -1530 ((-419 (-576)) $)) (-15 -3681 (|t#2| $)) (-15 -4265 ((-419 (-576)) $)) (-15 -2067 (|t#2| $)) (-15 -2682 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1134)) ((-300) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-659 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-730 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-739) . T) ((-912 $ #2=(-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198)))) ((-918 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198)))) ((-920 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198)))) ((-995 |#1| #0# (-1104)) . T) ((-940) |has| |#1| (-374)) ((-1024) |has| |#1| (-38 (-419 (-576)))) ((-1060 |#2|) . T) ((-1073 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1078 #1#) -2748 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1227) |has| |#1| (-38 (-419 (-576)))) ((-1239) . T) ((-1243) |has| |#1| (-374)) ((-1267 |#1| #0#) . T) ((-1270 |#1|) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1998 (((-657 (-1104)) $) NIL)) (-2993 (((-1198) $) 104)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2212 (($ $ (-419 (-576))) 116) (($ $ (-419 (-576)) (-419 (-576))) 118)) (-3212 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 54)) (-2143 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-374)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1866 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2120 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3696 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 65)) (-2166 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#2| "failed") $) NIL)) (-2830 ((|#2| $) NIL)) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) 85)) (-1530 (((-419 (-576)) $) 13)) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-2079 (($ (-419 (-576)) |#2|) 11)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4009 (((-112) $) NIL (|has| |#1| (-374)))) (-3155 (((-112) $) 74)) (-1622 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-419 (-576)) $) 113) (((-419 (-576)) $ (-419 (-576))) 114)) (-3994 (((-112) $) NIL)) (-3856 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $ (-941)) 130) (($ $ (-419 (-576))) 128)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-419 (-576))) 33) (($ $ (-1104) (-419 (-576))) NIL) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) NIL)) (-4071 (($ (-1 |#1| |#1|) $) 125)) (-3707 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3681 ((|#2| $) 12)) (-2682 (((-3 |#2| "failed") $) 44)) (-2067 ((|#2| $) 45)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) 101 (|has| |#1| (-374)))) (-2320 (($ $) 146 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 151 (-2748 (-12 (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224)))))) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-1456 (($ $ (-419 (-576))) 122)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4056 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-4164 (((-784) $) NIL (|has| |#1| (-374)))) (-2780 ((|#1| $ (-419 (-576))) 108) (($ $ $) 94 (|has| (-419 (-576)) (-1134)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-2209 (($ $ (-1198)) 138 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-4265 (((-419 (-576)) $) 16)) (-2177 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) 120)) (-3515 (((-877) $) NIL) (($ (-576)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-419 (-576))) 139 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2498 ((|#1| $ (-419 (-576))) 107)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) 127 T CONST)) (-3713 ((|#1| $) 106)) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2188 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) 21 T CONST)) (-2725 (($) 17 T CONST)) (-2066 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2881 (((-112) $ $) 72)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 100 (|has| |#1| (-374)))) (-2982 (($ $) 142) (($ $ $) 78)) (-2971 (($ $ $) 76)) (** (($ $ (-941)) NIL) (($ $ (-784)) 82) (($ $ (-576)) 157 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 158 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1273 |#1| |#2|) (-1272 |#1| |#2|) (-1071) (-1249 |#1|)) (T -1273)) +NIL +(-1272 |#1| |#2|) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1998 (((-657 (-1104)) $) NIL)) (-2993 (((-1198) $) 11)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) NIL (|has| |#1| (-568)))) (-2212 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3212 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-2143 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-374)))) (-4215 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1866 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3210 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2120 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3696 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2166 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-1253 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1281 |#1| |#2| |#3|) "failed") $) 22)) (-2830 (((-1253 |#1| |#2| |#3|) $) NIL) (((-1281 |#1| |#2| |#3|) $) NIL)) (-3355 (($ $ $) NIL (|has| |#1| (-374)))) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1530 (((-419 (-576)) $) 69)) (-3369 (($ $ $) NIL (|has| |#1| (-374)))) (-2079 (($ (-419 (-576)) (-1253 |#1| |#2| |#3|)) NIL)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4009 (((-112) $) NIL (|has| |#1| (-374)))) (-3155 (((-112) $) NIL)) (-1622 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-3994 (((-112) $) NIL)) (-3856 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $ (-941)) NIL) (($ $ (-419 (-576))) NIL)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-419 (-576))) 30) (($ $ (-1104) (-419 (-576))) NIL) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3707 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-3388 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3681 (((-1253 |#1| |#2| |#3|) $) 72)) (-2682 (((-3 (-1253 |#1| |#2| |#3|) "failed") $) NIL)) (-2067 (((-1253 |#1| |#2| |#3|) $) NIL)) (-1708 (((-1180) $) NIL)) (-2098 (($ $) NIL (|has| |#1| (-374)))) (-2320 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) NIL (-2748 (-12 (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-1460 (((-1142) $) NIL)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3431 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1856 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2171 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) NIL (|has| |#1| (-374)))) (-1456 (($ $ (-419 (-576))) NIL)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3118 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4056 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-4164 (((-784) $) NIL (|has| |#1| (-374)))) (-2780 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1134)))) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) NIL (|has| |#1| (-374)))) (-2209 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1285 |#2|)) 38)) (-4265 (((-419 (-576)) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) NIL)) (-3515 (((-877) $) 107) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1253 |#1| |#2| |#3|)) 16) (($ (-1281 |#1| |#2| |#3|)) 17) (($ (-1285 |#2|)) 36) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2498 ((|#1| $ (-419 (-576))) NIL)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-3713 ((|#1| $) 12)) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-419 (-576))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) 32 T CONST)) (-2725 (($) 26 T CONST)) (-2066 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1285 |#2|)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 34)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1274 |#1| |#2| |#3|) (-13 (-1272 |#1| (-1253 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-1060 (-1281 |#1| |#2| |#3|)) (-628 (-1285 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -1274)) +((-2320 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1274 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) +(-13 (-1272 |#1| (-1253 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-1060 (-1281 |#1| |#2| |#3|)) (-628 (-1285 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 37)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-2361 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 (-576) "failed") $) NIL (|has| (-1274 |#2| |#3| |#4|) (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1274 |#2| |#3| |#4|) (-1060 (-419 (-576))))) (((-3 (-1274 |#2| |#3| |#4|) "failed") $) 22)) (-2830 (((-576) $) NIL (|has| (-1274 |#2| |#3| |#4|) (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| (-1274 |#2| |#3| |#4|) (-1060 (-419 (-576))))) (((-1274 |#2| |#3| |#4|) $) NIL)) (-2165 (($ $) 41)) (-3969 (((-3 $ "failed") $) 27)) (-1445 (($ $) NIL (|has| (-1274 |#2| |#3| |#4|) (-464)))) (-2643 (($ $ (-1274 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|) $) NIL)) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) 11)) (-2343 (((-112) $) NIL)) (-1974 (($ (-1274 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) 25)) (-4219 (((-329 |#2| |#3| |#4|) $) NIL)) (-2308 (($ (-1 (-329 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) $) NIL)) (-4071 (($ (-1 (-1274 |#2| |#3| |#4|) (-1274 |#2| |#3| |#4|)) $) NIL)) (-2405 (((-3 (-856 |#2|) "failed") $) 90)) (-2129 (($ $) NIL)) (-2141 (((-1274 |#2| |#3| |#4|) $) 20)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-2108 (((-112) $) NIL)) (-2118 (((-1274 |#2| |#3| |#4|) $) NIL)) (-3409 (((-3 $ "failed") $ (-1274 |#2| |#3| |#4|)) NIL (|has| (-1274 |#2| |#3| |#4|) (-568))) (((-3 $ "failed") $ $) NIL)) (-2762 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1274 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-657 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1180))) "failed") $) 74)) (-4265 (((-329 |#2| |#3| |#4|) $) 17)) (-3614 (((-1274 |#2| |#3| |#4|) $) NIL (|has| (-1274 |#2| |#3| |#4|) (-464)))) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ (-1274 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL (-2748 (|has| (-1274 |#2| |#3| |#4|) (-38 (-419 (-576)))) (|has| (-1274 |#2| |#3| |#4|) (-1060 (-419 (-576))))))) (-3987 (((-657 (-1274 |#2| |#3| |#4|)) $) NIL)) (-2498 (((-1274 |#2| |#3| |#4|) $ (-329 |#2| |#3| |#4|)) NIL)) (-3414 (((-3 $ "failed") $) NIL (|has| (-1274 |#2| |#3| |#4|) (-146)))) (-3845 (((-784)) NIL T CONST)) (-3194 (($ $ $ (-784)) NIL (|has| (-1274 |#2| |#3| |#4|) (-174)))) (-4166 (((-112) $ $) NIL)) (-2607 (((-112) $ $) NIL)) (-2716 (($) NIL T CONST)) (-2725 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ (-1274 |#2| |#3| |#4|)) NIL (|has| (-1274 |#2| |#3| |#4|) (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-1274 |#2| |#3| |#4|)) NIL) (($ (-1274 |#2| |#3| |#4|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-1274 |#2| |#3| |#4|) (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| (-1274 |#2| |#3| |#4|) (-38 (-419 (-576))))))) +(((-1275 |#1| |#2| |#3| |#4|) (-13 (-336 (-1274 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -2405 ((-3 (-856 |#2|) "failed") $)) (-15 -2762 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1274 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-657 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1180))) "failed") $)))) (-13 (-1060 (-576)) (-652 (-576)) (-464)) (-13 (-27) (-1224) (-442 |#1|)) (-1198) |#2|) (T -1275)) +((-2405 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) (-5 *2 (-856 *4)) (-5 *1 (-1275 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-442 *3))) (-14 *5 (-1198)) (-14 *6 *4))) (-2762 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1274 *4 *5 *6)) (|:| |%expon| (-329 *4 *5 *6)) (|:| |%expTerms| (-657 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) (|:| |%type| (-1180)))) (-5 *1 (-1275 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-442 *3))) (-14 *5 (-1198)) (-14 *6 *4)))) +(-13 (-336 (-1274 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -2405 ((-3 (-856 |#2|) "failed") $)) (-15 -2762 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1274 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-657 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1180))) "failed") $)))) +((-3037 ((|#2| $) 34)) (-2860 ((|#2| $) 18)) (-4425 (($ $) 53)) (-3342 (($ $ (-576)) 85)) (-4284 (((-112) $ (-784)) 46)) (-1439 ((|#2| $ |#2|) 82)) (-3554 ((|#2| $ |#2|) 78)) (-3719 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-4140 (($ $ (-657 $)) 81)) (-2849 ((|#2| $) 17)) (-3542 (($ $) NIL) (($ $ (-784)) 59)) (-2754 (((-657 $) $) 31)) (-4257 (((-112) $ $) 69)) (-1786 (((-112) $ (-784)) 45)) (-4326 (((-112) $ (-784)) 43)) (-1743 (((-112) $) 33)) (-3921 ((|#2| $) 25) (($ $ (-784)) 64)) (-2780 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4392 (((-112) $) 23)) (-3645 (($ $) 56)) (-2463 (($ $) 86)) (-2933 (((-784) $) 58)) (-1961 (($ $) 57)) (-1637 (($ $ $) 77) (($ |#2| $) NIL)) (-4160 (((-657 $) $) 32)) (-2881 (((-112) $ $) 67)) (-3437 (((-784) $) 52))) +(((-1276 |#1| |#2|) (-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3342 (|#1| |#1| (-576))) (-15 -3719 (|#2| |#1| "last" |#2|)) (-15 -3554 (|#2| |#1| |#2|)) (-15 -3719 (|#1| |#1| "rest" |#1|)) (-15 -3719 (|#2| |#1| "first" |#2|)) (-15 -2463 (|#1| |#1|)) (-15 -3645 (|#1| |#1|)) (-15 -2933 ((-784) |#1|)) (-15 -1961 (|#1| |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2849 (|#2| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -3921 (|#1| |#1| (-784))) (-15 -2780 (|#2| |#1| "last")) (-15 -3921 (|#2| |#1|)) (-15 -3542 (|#1| |#1| (-784))) (-15 -2780 (|#1| |#1| "rest")) (-15 -3542 (|#1| |#1|)) (-15 -2780 (|#2| |#1| "first")) (-15 -1637 (|#1| |#2| |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1439 (|#2| |#1| |#2|)) (-15 -3719 (|#2| |#1| "value" |#2|)) (-15 -4140 (|#1| |#1| (-657 |#1|))) (-15 -4257 ((-112) |#1| |#1|)) (-15 -4392 ((-112) |#1|)) (-15 -2780 (|#2| |#1| "value")) (-15 -3037 (|#2| |#1|)) (-15 -1743 ((-112) |#1|)) (-15 -2754 ((-657 |#1|) |#1|)) (-15 -4160 ((-657 |#1|) |#1|)) (-15 -3437 ((-784) |#1|)) (-15 -4284 ((-112) |#1| (-784))) (-15 -1786 ((-112) |#1| (-784))) (-15 -4326 ((-112) |#1| (-784)))) (-1277 |#2|) (-1239)) (T -1276)) +NIL +(-10 -8 (-15 -2881 ((-112) |#1| |#1|)) (-15 -3342 (|#1| |#1| (-576))) (-15 -3719 (|#2| |#1| "last" |#2|)) (-15 -3554 (|#2| |#1| |#2|)) (-15 -3719 (|#1| |#1| "rest" |#1|)) (-15 -3719 (|#2| |#1| "first" |#2|)) (-15 -2463 (|#1| |#1|)) (-15 -3645 (|#1| |#1|)) (-15 -2933 ((-784) |#1|)) (-15 -1961 (|#1| |#1|)) (-15 -2860 (|#2| |#1|)) (-15 -2849 (|#2| |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -3921 (|#1| |#1| (-784))) (-15 -2780 (|#2| |#1| "last")) (-15 -3921 (|#2| |#1|)) (-15 -3542 (|#1| |#1| (-784))) (-15 -2780 (|#1| |#1| "rest")) (-15 -3542 (|#1| |#1|)) (-15 -2780 (|#2| |#1| "first")) (-15 -1637 (|#1| |#2| |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1439 (|#2| |#1| |#2|)) (-15 -3719 (|#2| |#1| "value" |#2|)) (-15 -4140 (|#1| |#1| (-657 |#1|))) (-15 -4257 ((-112) |#1| |#1|)) (-15 -4392 ((-112) |#1|)) (-15 -2780 (|#2| |#1| "value")) (-15 -3037 (|#2| |#1|)) (-15 -1743 ((-112) |#1|)) (-15 -2754 ((-657 |#1|) |#1|)) (-15 -4160 ((-657 |#1|) |#1|)) (-15 -3437 ((-784) |#1|)) (-15 -4284 ((-112) |#1| (-784))) (-15 -1786 ((-112) |#1| (-784))) (-15 -4326 ((-112) |#1| (-784)))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3037 ((|#1| $) 49)) (-2860 ((|#1| $) 66)) (-4425 (($ $) 68)) (-3342 (($ $ (-576)) 53 (|has| $ (-6 -4467)))) (-4284 (((-112) $ (-784)) 8)) (-1439 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-3509 (($ $ $) 57 (|has| $ (-6 -4467)))) (-3554 ((|#1| $ |#1|) 55 (|has| $ (-6 -4467)))) (-1629 ((|#1| $ |#1|) 59 (|has| $ (-6 -4467)))) (-3719 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4467))) (($ $ "rest" $) 56 (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4467)))) (-4140 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-2849 ((|#1| $) 67)) (-2515 (($) 7 T CONST)) (-3542 (($ $) 74) (($ $ (-784)) 72)) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2754 (((-657 $) $) 51)) (-4257 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-1786 (((-112) $ (-784)) 9)) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36)) (-4326 (((-112) $ (-784)) 10)) (-2397 (((-657 |#1|) $) 46)) (-1743 (((-112) $) 50)) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3921 ((|#1| $) 71) (($ $ (-784)) 69)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3528 ((|#1| $) 77) (($ $ (-784)) 75)) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3064 (((-576) $ $) 45)) (-4392 (((-112) $) 47)) (-3645 (($ $) 63)) (-2463 (($ $) 60 (|has| $ (-6 -4467)))) (-2933 (((-784) $) 64)) (-1961 (($ $) 65)) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1899 (($ $) 13)) (-2752 (($ $ $) 62 (|has| $ (-6 -4467))) (($ $ |#1|) 61 (|has| $ (-6 -4467)))) (-1637 (($ $ $) 79) (($ |#1| $) 78)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4160 (((-657 $) $) 52)) (-3631 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-1277 |#1|) (-141) (-1239)) (T -1277)) +((-1637 (*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-1637 (*1 *1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3528 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3528 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) (-3542 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2780 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3921 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) (-4425 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2860 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-1961 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1239)) (-5 *2 (-784)))) (-3645 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2752 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2752 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2463 (*1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-1629 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3719 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3509 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3719 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4467)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) (-3554 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3719 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4467)) (-4 *1 (-1277 *3)) (-4 *3 (-1239))))) +(-13 (-1032 |t#1|) (-10 -8 (-15 -1637 ($ $ $)) (-15 -1637 ($ |t#1| $)) (-15 -3528 (|t#1| $)) (-15 -2780 (|t#1| $ "first")) (-15 -3528 ($ $ (-784))) (-15 -3542 ($ $)) (-15 -2780 ($ $ "rest")) (-15 -3542 ($ $ (-784))) (-15 -3921 (|t#1| $)) (-15 -2780 (|t#1| $ "last")) (-15 -3921 ($ $ (-784))) (-15 -4425 ($ $)) (-15 -2849 (|t#1| $)) (-15 -2860 (|t#1| $)) (-15 -1961 ($ $)) (-15 -2933 ((-784) $)) (-15 -3645 ($ $)) (IF (|has| $ (-6 -4467)) (PROGN (-15 -2752 ($ $ $)) (-15 -2752 ($ $ |t#1|)) (-15 -2463 ($ $)) (-15 -1629 (|t#1| $ |t#1|)) (-15 -3719 (|t#1| $ "first" |t#1|)) (-15 -3509 ($ $ $)) (-15 -3719 ($ $ "rest" $)) (-15 -3554 (|t#1| $ |t#1|)) (-15 -3719 (|t#1| $ "last" |t#1|)) (-15 -3342 ($ $ (-576)))) |%noBranch|))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1032 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-4071 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1278 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 (|#4| (-1 |#2| |#1|) |#3|))) (-1071) (-1071) (-1280 |#1|) (-1280 |#2|)) (T -1278)) +((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-4 *2 (-1280 *6)) (-5 *1 (-1278 *5 *6 *4 *2)) (-4 *4 (-1280 *5))))) +(-10 -7 (-15 -4071 (|#4| (-1 |#2| |#1|) |#3|))) +((-2044 (((-112) $) 17)) (-2143 (($ $) 105)) (-2012 (($ $) 81)) (-2120 (($ $) 101)) (-1989 (($ $) 77)) (-2166 (($ $) 109)) (-2033 (($ $) 85)) (-3707 (($ $) 75)) (-4056 (($ $) 73)) (-2177 (($ $) 111)) (-2042 (($ $) 87)) (-2155 (($ $) 107)) (-2023 (($ $) 83)) (-2131 (($ $) 103)) (-2002 (($ $) 79)) (-3515 (((-877) $) 61) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4110 (($ $) 117)) (-2082 (($ $) 93)) (-2188 (($ $) 113)) (-2055 (($ $) 89)) (-4137 (($ $) 121)) (-2100 (($ $) 97)) (-1864 (($ $) 123)) (-2110 (($ $) 99)) (-4123 (($ $) 119)) (-2090 (($ $) 95)) (-4097 (($ $) 115)) (-2070 (($ $) 91)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-419 (-576))) 71))) +(((-1279 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2012 (|#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2023 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -2090 (|#1| |#1|)) (-15 -2110 (|#1| |#1|)) (-15 -2100 (|#1| |#1|)) (-15 -2055 (|#1| |#1|)) (-15 -2082 (|#1| |#1|)) (-15 -2131 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2177 (|#1| |#1|)) (-15 -2166 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2143 (|#1| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -4123 (|#1| |#1|)) (-15 -1864 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -4056 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3515 (|#1| |#2|)) (-15 -3515 (|#1| |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -3515 (|#1| (-576))) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941))) (-15 -2044 ((-112) |#1|)) (-15 -3515 ((-877) |#1|))) (-1280 |#2|) (-1071)) (T -1279)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2012 (|#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2023 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -2090 (|#1| |#1|)) (-15 -2110 (|#1| |#1|)) (-15 -2100 (|#1| |#1|)) (-15 -2055 (|#1| |#1|)) (-15 -2082 (|#1| |#1|)) (-15 -2131 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2177 (|#1| |#1|)) (-15 -2166 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2143 (|#1| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -4123 (|#1| |#1|)) (-15 -1864 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -4056 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3515 (|#1| |#2|)) (-15 -3515 (|#1| |#1|)) (-15 -3515 (|#1| (-419 (-576)))) (-15 -3515 (|#1| (-576))) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941))) (-15 -2044 ((-112) |#1|)) (-15 -3515 ((-877) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-1998 (((-657 (-1104)) $) 86)) (-2993 (((-1198) $) 118)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2361 (($ $) 64 (|has| |#1| (-568)))) (-3286 (((-112) $) 66 (|has| |#1| (-568)))) (-2212 (($ $ (-784)) 113) (($ $ (-784) (-784)) 112)) (-3212 (((-1179 (-2 (|:| |k| (-784)) (|:| |c| |#1|))) $) 119)) (-2143 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) 20)) (-1866 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2120 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3696 (($ (-1179 (-2 (|:| |k| (-784)) (|:| |c| |#1|)))) 170) (($ (-1179 |#1|)) 168)) (-2166 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) 18 T CONST)) (-2165 (($ $) 72)) (-3969 (((-3 $ "failed") $) 37)) (-1829 (($ $) 167)) (-2991 (((-972 |#1|) $ (-784)) 165) (((-972 |#1|) $ (-784) (-784)) 164)) (-3155 (((-112) $) 85)) (-1622 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-784) $) 115) (((-784) $ (-784)) 114)) (-3994 (((-112) $) 35)) (-3856 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-3920 (($ $ (-941)) 116)) (-4162 (($ (-1 |#1| (-576)) $) 166)) (-2343 (((-112) $) 74)) (-1974 (($ |#1| (-784)) 73) (($ $ (-1104) (-784)) 88) (($ $ (-657 (-1104)) (-657 (-784))) 87)) (-4071 (($ (-1 |#1| |#1|) $) 75)) (-3707 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) 77)) (-2141 ((|#1| $) 78)) (-1708 (((-1180) $) 10)) (-2320 (($ $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 161 (-2748 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1460 (((-1142) $) 11)) (-1456 (($ $ (-784)) 110)) (-3409 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4056 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3205 (((-1179 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-784)))))) (-2780 ((|#1| $ (-784)) 120) (($ $ $) 96 (|has| (-784) (-1134)))) (-2209 (($ $ (-1198)) 108 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $ (-657 (-1198))) 106 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $ (-1198) (-784)) 105 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 104 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-784)) 98 (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (-4265 (((-784) $) 76)) (-2177 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) 84)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3987 (((-1179 |#1|) $) 169)) (-2498 ((|#1| $ (-784)) 71)) (-3414 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3845 (((-784)) 32 T CONST)) (-3713 ((|#1| $) 117)) (-4166 (((-112) $ $) 6)) (-4110 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2188 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-784)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-784)))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2066 (($ $ (-1198)) 107 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $ (-657 (-1198))) 103 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $ (-1198) (-784)) 102 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 101 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-784)) 97 (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ |#1|) 163 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1280 |#1|) (-141) (-1071)) (T -1280)) +((-3696 (*1 *1 *2) (-12 (-5 *2 (-1179 (-2 (|:| |k| (-784)) (|:| |c| *3)))) (-4 *3 (-1071)) (-4 *1 (-1280 *3)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-1071)) (-5 *2 (-1179 *3)))) (-3696 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-4 *1 (-1280 *3)))) (-1829 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1071)))) (-4162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1280 *3)) (-4 *3 (-1071)))) (-2991 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-1280 *4)) (-4 *4 (-1071)) (-5 *2 (-972 *4)))) (-2991 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-784)) (-4 *1 (-1280 *4)) (-4 *4 (-1071)) (-5 *2 (-972 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-2320 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) (-2320 (*1 *1 *1 *2) (-2748 (-12 (-5 *2 (-1198)) (-4 *1 (-1280 *3)) (-4 *3 (-1071)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-979)) (-4 *3 (-1224)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1198)) (-4 *1 (-1280 *3)) (-4 *3 (-1071)) (-12 (|has| *3 (-15 -1998 ((-657 *2) *3))) (|has| *3 (-15 -2320 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) +(-13 (-1267 |t#1| (-784)) (-10 -8 (-15 -3696 ($ (-1179 (-2 (|:| |k| (-784)) (|:| |c| |t#1|))))) (-15 -3987 ((-1179 |t#1|) $)) (-15 -3696 ($ (-1179 |t#1|))) (-15 -1829 ($ $)) (-15 -4162 ($ (-1 |t#1| (-576)) $)) (-15 -2991 ((-972 |t#1|) $ (-784))) (-15 -2991 ((-972 |t#1|) $ (-784) (-784))) (IF (|has| |t#1| (-374)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2320 ($ $)) (IF (|has| |t#1| (-15 -2320 (|t#1| |t#1| (-1198)))) (IF (|has| |t#1| (-15 -1998 ((-657 (-1198)) |t#1|))) (-15 -2320 ($ $ (-1198))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1224)) (IF (|has| |t#1| (-979)) (IF (|has| |t#1| (-29 (-576))) (-15 -2320 ($ $ (-1198))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1024)) (-6 (-1224))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-784)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-784) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-784) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-784) |#1|))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-784) (-1134)) ((-300) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) |has| |#1| (-568)) ((-659 #1#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #1#) |has| |#1| (-38 (-419 (-576)))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #1#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-730 #1#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) . T) ((-912 $ #2=(-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198)))) ((-918 #2#) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198)))) ((-920 #2#) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198)))) ((-995 |#1| #0# (-1104)) . T) ((-1024) |has| |#1| (-38 (-419 (-576)))) ((-1073 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1078 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2748 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1227) |has| |#1| (-38 (-419 (-576)))) ((-1239) . T) ((-1267 |#1| #0#) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-1998 (((-657 (-1104)) $) NIL)) (-2993 (((-1198) $) 90)) (-4204 (((-1262 |#2| |#1|) $ (-784)) 73)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2361 (($ $) NIL (|has| |#1| (-568)))) (-3286 (((-112) $) 142 (|has| |#1| (-568)))) (-2212 (($ $ (-784)) 127) (($ $ (-784) (-784)) 130)) (-3212 (((-1179 (-2 (|:| |k| (-784)) (|:| |c| |#1|))) $) 43)) (-2143 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2012 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2423 (((-3 $ "failed") $ $) NIL)) (-1866 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1989 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3696 (($ (-1179 (-2 (|:| |k| (-784)) (|:| |c| |#1|)))) 52) (($ (-1179 |#1|)) NIL)) (-2166 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2033 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2515 (($) NIL T CONST)) (-2233 (($ $) 134)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-1829 (($ $) 140)) (-2991 (((-972 |#1|) $ (-784)) 63) (((-972 |#1|) $ (-784) (-784)) 65)) (-3155 (((-112) $) NIL)) (-1622 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2650 (((-784) $) NIL) (((-784) $ (-784)) NIL)) (-3994 (((-112) $) NIL)) (-4013 (($ $) 117)) (-3856 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3819 (($ (-576) (-576) $) 136)) (-3920 (($ $ (-941)) 139)) (-4162 (($ (-1 |#1| (-576)) $) 111)) (-2343 (((-112) $) NIL)) (-1974 (($ |#1| (-784)) 16) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-4071 (($ (-1 |#1| |#1|) $) 98)) (-3707 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-4220 (($ $) 115)) (-3314 (($ $) 113)) (-1531 (($ (-576) (-576) $) 138)) (-2320 (($ $) 150 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 156 (-2748 (-12 (|has| |#1| (-15 -2320 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -1998 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 151 (|has| |#1| (-38 (-419 (-576)))))) (-1460 (((-1142) $) NIL)) (-3967 (($ $ (-576) (-576)) 121)) (-1456 (($ $ (-784)) 123)) (-3409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4056 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) 119)) (-3205 (((-1179 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-784)))))) (-2780 ((|#1| $ (-784)) 95) (($ $ $) 132 (|has| (-784) (-1134)))) (-2209 (($ $ (-1198)) 108 (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-1285 |#2|)) 103)) (-4265 (((-784) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2155 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2023 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2002 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1557 (($ $) 125)) (-3515 (((-877) $) NIL) (($ (-576)) 26) (($ (-419 (-576))) 148 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1262 |#2| |#1|)) 81) (($ (-1285 |#2|)) 22)) (-3987 (((-1179 |#1|) $) NIL)) (-2498 ((|#1| $ (-784)) 94)) (-3414 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3845 (((-784)) NIL T CONST)) (-3713 ((|#1| $) 91)) (-4166 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2082 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2607 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2055 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4130 ((|#1| $ (-784)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-784)))) (|has| |#1| (-15 -3515 (|#1| (-1198))))))) (-1864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2070 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2716 (($) 18 T CONST)) (-2725 (($) 13 T CONST)) (-2066 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-1285 |#2|)) NIL)) (-2881 (((-112) $ $) NIL)) (-2995 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) 107)) (-2971 (($ $ $) 20)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ |#1|) 145 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1281 |#1| |#2| |#3|) (-13 (-1280 |#1|) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3515 ($ (-1262 |#2| |#1|))) (-15 -4204 ((-1262 |#2| |#1|) $ (-784))) (-15 -3515 ($ (-1285 |#2|))) (-15 -3314 ($ $)) (-15 -4220 ($ $)) (-15 -4013 ($ $)) (-15 -2207 ($ $)) (-15 -3967 ($ $ (-576) (-576))) (-15 -2233 ($ $)) (-15 -3819 ($ (-576) (-576) $)) (-15 -1531 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -1281)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-1262 *4 *3)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-1281 *3 *4 *5)))) (-4204 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1262 *5 *4)) (-5 *1 (-1281 *4 *5 *6)) (-4 *4 (-1071)) (-14 *5 (-1198)) (-14 *6 *4))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) (-14 *5 *3))) (-3314 (*1 *1 *1) (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) (-14 *4 *2))) (-4220 (*1 *1 *1) (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) (-14 *4 *2))) (-4013 (*1 *1 *1) (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) (-14 *4 *2))) (-2207 (*1 *1 *1) (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) (-14 *4 *2))) (-3967 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3))) (-2233 (*1 *1 *1) (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) (-14 *4 *2))) (-3819 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3))) (-1531 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3))) (-2320 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) +(-13 (-1280 |#1|) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3515 ($ (-1262 |#2| |#1|))) (-15 -4204 ((-1262 |#2| |#1|) $ (-784))) (-15 -3515 ($ (-1285 |#2|))) (-15 -3314 ($ $)) (-15 -4220 ($ $)) (-15 -4013 ($ $)) (-15 -2207 ($ $)) (-15 -3967 ($ $ (-576) (-576))) (-15 -2233 ($ $)) (-15 -3819 ($ (-576) (-576) $)) (-15 -1531 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2320 ($ $ (-1285 |#2|))) |%noBranch|))) +((-3704 (((-1 (-1179 |#1|) (-657 (-1179 |#1|))) (-1 |#2| (-657 |#2|))) 24)) (-4063 (((-1 (-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2014 (((-1 (-1179 |#1|) (-1179 |#1|)) (-1 |#2| |#2|)) 13)) (-3527 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2352 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2479 ((|#2| (-1 |#2| (-657 |#2|)) (-657 |#1|)) 60)) (-3197 (((-657 |#2|) (-657 |#1|) (-657 (-1 |#2| (-657 |#2|)))) 66)) (-2653 ((|#2| |#2| |#2|) 43))) +(((-1282 |#1| |#2|) (-10 -7 (-15 -2014 ((-1 (-1179 |#1|) (-1179 |#1|)) (-1 |#2| |#2|))) (-15 -4063 ((-1 (-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3704 ((-1 (-1179 |#1|) (-657 (-1179 |#1|))) (-1 |#2| (-657 |#2|)))) (-15 -2653 (|#2| |#2| |#2|)) (-15 -2352 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3527 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2479 (|#2| (-1 |#2| (-657 |#2|)) (-657 |#1|))) (-15 -3197 ((-657 |#2|) (-657 |#1|) (-657 (-1 |#2| (-657 |#2|)))))) (-38 (-419 (-576))) (-1280 |#1|)) (T -1282)) +((-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 (-1 *6 (-657 *6)))) (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1280 *5)) (-5 *2 (-657 *6)) (-5 *1 (-1282 *5 *6)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-657 *2))) (-5 *4 (-657 *5)) (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1280 *5)) (-5 *1 (-1282 *5 *2)))) (-3527 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1280 *4)) (-5 *1 (-1282 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-2352 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1280 *4)) (-5 *1 (-1282 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-2653 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1282 *3 *2)) (-4 *2 (-1280 *3)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-657 *5))) (-4 *5 (-1280 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1179 *4) (-657 (-1179 *4)))) (-5 *1 (-1282 *4 *5)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1280 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1179 *4) (-1179 *4) (-1179 *4))) (-5 *1 (-1282 *4 *5)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1280 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1179 *4) (-1179 *4))) (-5 *1 (-1282 *4 *5))))) +(-10 -7 (-15 -2014 ((-1 (-1179 |#1|) (-1179 |#1|)) (-1 |#2| |#2|))) (-15 -4063 ((-1 (-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3704 ((-1 (-1179 |#1|) (-657 (-1179 |#1|))) (-1 |#2| (-657 |#2|)))) (-15 -2653 (|#2| |#2| |#2|)) (-15 -2352 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3527 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2479 (|#2| (-1 |#2| (-657 |#2|)) (-657 |#1|))) (-15 -3197 ((-657 |#2|) (-657 |#1|) (-657 (-1 |#2| (-657 |#2|)))))) +((-3576 ((|#2| |#4| (-784)) 31)) (-3928 ((|#4| |#2|) 26)) (-2218 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)))) (-2986 (((-1 |#4| (-657 |#4|)) |#3|) 43))) +(((-1283 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3928 (|#4| |#2|)) (-15 -3576 (|#2| |#4| (-784))) (-15 -2986 ((-1 |#4| (-657 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -2218 (|#4| (-419 |#2|))) |%noBranch|)) (-1071) (-1265 |#1|) (-669 |#2|) (-1280 |#1|)) (T -1283)) +((-2218 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-568)) (-4 *4 (-1071)) (-4 *2 (-1280 *4)) (-5 *1 (-1283 *4 *5 *6 *2)) (-4 *6 (-669 *5)))) (-2986 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-1265 *4)) (-5 *2 (-1 *6 (-657 *6))) (-5 *1 (-1283 *4 *5 *3 *6)) (-4 *3 (-669 *5)) (-4 *6 (-1280 *4)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-1071)) (-4 *2 (-1265 *5)) (-5 *1 (-1283 *5 *2 *6 *3)) (-4 *6 (-669 *2)) (-4 *3 (-1280 *5)))) (-3928 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *3 (-1265 *4)) (-4 *2 (-1280 *4)) (-5 *1 (-1283 *4 *3 *5 *2)) (-4 *5 (-669 *3))))) +(-10 -7 (-15 -3928 (|#4| |#2|)) (-15 -3576 (|#2| |#4| (-784))) (-15 -2986 ((-1 |#4| (-657 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -2218 (|#4| (-419 |#2|))) |%noBranch|)) +NIL +(((-1284) (-141)) (T -1284)) +NIL +(-13 (-10 -7 (-6 -4090))) +((-3423 (((-112) $ $) NIL)) (-2993 (((-1198)) 12)) (-1708 (((-1180) $) 18)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 11) (((-1198) $) 8)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 15))) +(((-1285 |#1|) (-13 (-1122) (-625 (-1198)) (-10 -8 (-15 -3515 ((-1198) $)) (-15 -2993 ((-1198))))) (-1198)) (T -1285)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1285 *3)) (-14 *3 *2))) (-2993 (*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1285 *3)) (-14 *3 *2)))) +(-13 (-1122) (-625 (-1198)) (-10 -8 (-15 -3515 ((-1198) $)) (-15 -2993 ((-1198))))) +((-3793 (($ (-784)) 19)) (-2386 (((-702 |#2|) $ $) 41)) (-2425 ((|#2| $) 51)) (-3041 ((|#2| $) 50)) (-4224 ((|#2| $ $) 36)) (-3756 (($ $ $) 47)) (-2982 (($ $) 23) (($ $ $) 29)) (-2971 (($ $ $) 15)) (* (($ (-576) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1286 |#1| |#2|) (-10 -8 (-15 -2425 (|#2| |#1|)) (-15 -3041 (|#2| |#1|)) (-15 -3756 (|#1| |#1| |#1|)) (-15 -2386 ((-702 |#2|) |#1| |#1|)) (-15 -4224 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 -3793 (|#1| (-784))) (-15 -2971 (|#1| |#1| |#1|))) (-1287 |#2|) (-1239)) (T -1286)) +NIL +(-10 -8 (-15 -2425 (|#2| |#1|)) (-15 -3041 (|#2| |#1|)) (-15 -3756 (|#1| |#1| |#1|)) (-15 -2386 ((-702 |#2|) |#1| |#1|)) (-15 -4224 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2982 (|#1| |#1| |#1|)) (-15 -2982 (|#1| |#1|)) (-15 -3793 (|#1| (-784))) (-15 -2971 (|#1| |#1| |#1|))) +((-3423 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3793 (($ (-784)) 115 (|has| |#1| (-23)))) (-3590 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-1698 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4467))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4467))))) (-1832 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-4284 (((-112) $ (-784)) 8)) (-3719 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 60 (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466)))) (-2515 (($) 7 T CONST)) (-4072 (($ $) 93 (|has| $ (-6 -4467)))) (-3796 (($ $) 103)) (-1620 (($ $) 80 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3901 (($ |#1| $) 79 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) 52)) (-3619 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1122)))) (-1448 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2386 (((-702 |#1|) $ $) 108 (|has| |#1| (-1071)))) (-4096 (($ (-784) |#1|) 70)) (-1786 (((-112) $ (-784)) 9)) (-3363 (((-576) $) 44 (|has| (-576) (-862)))) (-3740 (($ $ $) 85 (|has| |#1| (-862)))) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1833 (((-576) $) 45 (|has| (-576) (-862)))) (-2249 (($ $ $) 86 (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2425 ((|#1| $) 105 (-12 (|has| |#1| (-1071)) (|has| |#1| (-1024))))) (-4326 (((-112) $ (-784)) 10)) (-3041 ((|#1| $) 106 (-12 (|has| |#1| (-1071)) (|has| |#1| (-1024))))) (-1708 (((-1180) $) 23 (|has| |#1| (-1122)))) (-2225 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3309 (((-657 (-576)) $) 47)) (-4324 (((-112) (-576) $) 48)) (-1460 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3528 ((|#1| $) 43 (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1495 (($ $ |#1|) 42 (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) 14)) (-3010 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) 49)) (-1368 (((-112) $) 11)) (-3340 (($) 12)) (-2780 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1256 (-576))) 71)) (-4224 ((|#1| $ $) 109 (|has| |#1| (-1071)))) (-3395 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-3756 (($ $ $) 107 (|has| |#1| (-1071)))) (-1469 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1818 (($ $ $ (-576)) 94 (|has| $ (-6 -4467)))) (-1899 (($ $) 13)) (-4136 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 72)) (-1637 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3515 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) 87 (|has| |#1| (-862)))) (-2913 (((-112) $ $) 89 (|has| |#1| (-862)))) (-2881 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2925 (((-112) $ $) 88 (|has| |#1| (-862)))) (-2901 (((-112) $ $) 90 (|has| |#1| (-862)))) (-2982 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-2971 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-739))) (($ $ |#1|) 110 (|has| |#1| (-739)))) (-3437 (((-784) $) 6 (|has| $ (-6 -4466))))) +(((-1287 |#1|) (-141) (-1239)) (T -1287)) +((-2971 (*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-25)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1287 *3)) (-4 *3 (-23)) (-4 *3 (-1239)))) (-2982 (*1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-21)))) (-2982 (*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1287 *3)) (-4 *3 (-1239)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-739)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-739)))) (-4224 (*1 *2 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1071)))) (-2386 (*1 *2 *1 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-1239)) (-4 *3 (-1071)) (-5 *2 (-702 *3)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1071)))) (-3041 (*1 *2 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1024)) (-4 *2 (-1071)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1024)) (-4 *2 (-1071))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2971 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3793 ($ (-784))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2982 ($ $)) (-15 -2982 ($ $ $)) (-15 * ($ (-576) $))) |%noBranch|) (IF (|has| |t#1| (-739)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1071)) (PROGN (-15 -4224 (|t#1| $ $)) (-15 -2386 ((-702 |t#1|) $ $)) (-15 -3756 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1024)) (IF (|has| |t#1| (-1071)) (PROGN (-15 -3041 (|t#1| $)) (-15 -2425 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-102))) ((-625 (-877)) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1122) -2748 (|has| |#1| (-1122)) (|has| |#1| (-862))) ((-1239) . T)) +((-3899 (((-1289 |#2|) (-1 |#2| |#1| |#2|) (-1289 |#1|) |#2|) 13)) (-3662 ((|#2| (-1 |#2| |#1| |#2|) (-1289 |#1|) |#2|) 15)) (-4071 (((-3 (-1289 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1289 |#1|)) 30) (((-1289 |#2|) (-1 |#2| |#1|) (-1289 |#1|)) 18))) +(((-1288 |#1| |#2|) (-10 -7 (-15 -3899 ((-1289 |#2|) (-1 |#2| |#1| |#2|) (-1289 |#1|) |#2|)) (-15 -3662 (|#2| (-1 |#2| |#1| |#2|) (-1289 |#1|) |#2|)) (-15 -4071 ((-1289 |#2|) (-1 |#2| |#1|) (-1289 |#1|))) (-15 -4071 ((-3 (-1289 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1289 |#1|)))) (-1239) (-1239)) (T -1288)) +((-4071 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1289 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1289 *6)) (-5 *1 (-1288 *5 *6)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1289 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1289 *6)) (-5 *1 (-1288 *5 *6)))) (-3662 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1289 *5)) (-4 *5 (-1239)) (-4 *2 (-1239)) (-5 *1 (-1288 *5 *2)))) (-3899 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1289 *6)) (-4 *6 (-1239)) (-4 *5 (-1239)) (-5 *2 (-1289 *5)) (-5 *1 (-1288 *6 *5))))) +(-10 -7 (-15 -3899 ((-1289 |#2|) (-1 |#2| |#1| |#2|) (-1289 |#1|) |#2|)) (-15 -3662 (|#2| (-1 |#2| |#1| |#2|) (-1289 |#1|) |#2|)) (-15 -4071 ((-1289 |#2|) (-1 |#2| |#1|) (-1289 |#1|))) (-15 -4071 ((-3 (-1289 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1289 |#1|)))) +((-3423 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3793 (($ (-784)) NIL (|has| |#1| (-23)))) (-2196 (($ (-657 |#1|)) 11)) (-3590 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3925 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1698 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1832 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-4284 (((-112) $ (-784)) NIL)) (-3719 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-2007 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2515 (($) NIL T CONST)) (-4072 (($ $) NIL (|has| $ (-6 -4467)))) (-3796 (($ $) NIL)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3901 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3662 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1810 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-1741 ((|#1| $ (-576)) NIL)) (-3619 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-1448 (((-657 |#1|) $) 16 (|has| $ (-6 -4466)))) (-2386 (((-702 |#1|) $ $) NIL (|has| |#1| (-1071)))) (-4096 (($ (-784) |#1|) NIL)) (-1786 (((-112) $ (-784)) NIL)) (-3363 (((-576) $) NIL (|has| (-576) (-862)))) (-3740 (($ $ $) NIL (|has| |#1| (-862)))) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3855 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3326 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1833 (((-576) $) 12 (|has| (-576) (-862)))) (-2249 (($ $ $) NIL (|has| |#1| (-862)))) (-1799 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2425 ((|#1| $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1071))))) (-4326 (((-112) $ (-784)) NIL)) (-3041 ((|#1| $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1071))))) (-1708 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2225 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3309 (((-657 (-576)) $) NIL)) (-4324 (((-112) (-576) $) NIL)) (-1460 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3528 ((|#1| $) NIL (|has| (-576) (-862)))) (-4135 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1495 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-2372 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-3807 (((-112) $ $) NIL)) (-3010 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3585 (((-657 |#1|) $) NIL)) (-1368 (((-112) $) NIL)) (-3340 (($) NIL)) (-2780 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-4224 ((|#1| $ $) NIL (|has| |#1| (-1071)))) (-3395 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-3756 (($ $ $) NIL (|has| |#1| (-1071)))) (-1469 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1818 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) 20 (|has| |#1| (-626 (-548))))) (-3529 (($ (-657 |#1|)) 10)) (-1637 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3515 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-4166 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3258 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2938 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2913 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2881 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2925 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2901 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2982 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2971 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-739))) (($ $ |#1|) NIL (|has| |#1| (-739)))) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1289 |#1|) (-13 (-1287 |#1|) (-10 -8 (-15 -2196 ($ (-657 |#1|))))) (-1239)) (T -1289)) +((-2196 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-1289 *3))))) +(-13 (-1287 |#1|) (-10 -8 (-15 -2196 ($ (-657 |#1|))))) +((-3423 (((-112) $ $) NIL)) (-1387 (((-1180) $ (-1180)) 107) (((-1180) $ (-1180) (-1180)) 105) (((-1180) $ (-1180) (-657 (-1180))) 104)) (-2260 (($) 69)) (-3555 (((-1294) $ (-480) (-941)) 54)) (-2364 (((-1294) $ (-941) (-1180)) 89) (((-1294) $ (-941) (-889)) 90)) (-1909 (((-1294) $ (-941) (-390) (-390)) 57)) (-1363 (((-1294) $ (-1180)) 84)) (-2235 (((-1294) $ (-941) (-1180)) 94)) (-3734 (((-1294) $ (-941) (-390) (-390)) 58)) (-1724 (((-1294) $ (-941) (-941)) 55)) (-1369 (((-1294) $) 85)) (-3578 (((-1294) $ (-941) (-1180)) 93)) (-3983 (((-1294) $ (-480) (-941)) 41)) (-1500 (((-1294) $ (-941) (-1180)) 92)) (-4417 (((-657 (-270)) $) 29) (($ $ (-657 (-270))) 30)) (-4272 (((-1294) $ (-784) (-784)) 52)) (-2522 (($ $) 70) (($ (-480) (-657 (-270))) 71)) (-1708 (((-1180) $) NIL)) (-4286 (((-576) $) 48)) (-1460 (((-1142) $) NIL)) (-3144 (((-1289 (-3 (-480) "undefined")) $) 47)) (-4031 (((-1289 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1500 (-576)) (|:| -1669 (-576)) (|:| |spline| (-576)) (|:| -2046 (-576)) (|:| |axesColor| (-889)) (|:| -2364 (-576)) (|:| |unitsColor| (-889)) (|:| |showing| (-576)))) $) 46)) (-3488 (((-1294) $ (-941) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-889) (-576) (-889) (-576)) 83)) (-2163 (((-657 (-963 (-227))) $) NIL)) (-1798 (((-480) $ (-941)) 43)) (-2924 (((-1294) $ (-784) (-784) (-941) (-941)) 50)) (-2047 (((-1294) $ (-1180)) 95)) (-1669 (((-1294) $ (-941) (-1180)) 91)) (-3515 (((-877) $) 102)) (-1988 (((-1294) $) 96)) (-4166 (((-112) $ $) NIL)) (-2046 (((-1294) $ (-941) (-1180)) 87) (((-1294) $ (-941) (-889)) 88)) (-2881 (((-112) $ $) NIL))) +(((-1290) (-13 (-1122) (-10 -8 (-15 -2163 ((-657 (-963 (-227))) $)) (-15 -2260 ($)) (-15 -2522 ($ $)) (-15 -4417 ((-657 (-270)) $)) (-15 -4417 ($ $ (-657 (-270)))) (-15 -2522 ($ (-480) (-657 (-270)))) (-15 -3488 ((-1294) $ (-941) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-889) (-576) (-889) (-576))) (-15 -4031 ((-1289 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1500 (-576)) (|:| -1669 (-576)) (|:| |spline| (-576)) (|:| -2046 (-576)) (|:| |axesColor| (-889)) (|:| -2364 (-576)) (|:| |unitsColor| (-889)) (|:| |showing| (-576)))) $)) (-15 -3144 ((-1289 (-3 (-480) "undefined")) $)) (-15 -1363 ((-1294) $ (-1180))) (-15 -3983 ((-1294) $ (-480) (-941))) (-15 -1798 ((-480) $ (-941))) (-15 -2046 ((-1294) $ (-941) (-1180))) (-15 -2046 ((-1294) $ (-941) (-889))) (-15 -2364 ((-1294) $ (-941) (-1180))) (-15 -2364 ((-1294) $ (-941) (-889))) (-15 -1500 ((-1294) $ (-941) (-1180))) (-15 -3578 ((-1294) $ (-941) (-1180))) (-15 -1669 ((-1294) $ (-941) (-1180))) (-15 -2047 ((-1294) $ (-1180))) (-15 -1988 ((-1294) $)) (-15 -2924 ((-1294) $ (-784) (-784) (-941) (-941))) (-15 -3734 ((-1294) $ (-941) (-390) (-390))) (-15 -1909 ((-1294) $ (-941) (-390) (-390))) (-15 -2235 ((-1294) $ (-941) (-1180))) (-15 -4272 ((-1294) $ (-784) (-784))) (-15 -3555 ((-1294) $ (-480) (-941))) (-15 -1724 ((-1294) $ (-941) (-941))) (-15 -1387 ((-1180) $ (-1180))) (-15 -1387 ((-1180) $ (-1180) (-1180))) (-15 -1387 ((-1180) $ (-1180) (-657 (-1180)))) (-15 -1369 ((-1294) $)) (-15 -4286 ((-576) $)) (-15 -3515 ((-877) $))))) (T -1290)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1290)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-657 (-963 (-227)))) (-5 *1 (-1290)))) (-2260 (*1 *1) (-5 *1 (-1290))) (-2522 (*1 *1 *1) (-5 *1 (-1290))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1290)))) (-4417 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1290)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-657 (-270))) (-5 *1 (-1290)))) (-3488 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-941)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-889)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-1289 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1500 (-576)) (|:| -1669 (-576)) (|:| |spline| (-576)) (|:| -2046 (-576)) (|:| |axesColor| (-889)) (|:| -2364 (-576)) (|:| |unitsColor| (-889)) (|:| |showing| (-576))))) (-5 *1 (-1290)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-1289 (-3 (-480) "undefined"))) (-5 *1 (-1290)))) (-1363 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-3983 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (-941)) (-5 *2 (-480)) (-5 *1 (-1290)))) (-2046 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2046 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-889)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2364 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2364 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-889)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-1500 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-3578 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-1669 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2047 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2924 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-784)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-3734 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-941)) (-5 *4 (-390)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-1909 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-941)) (-5 *4 (-390)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2235 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-4272 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-3555 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-1724 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-1387 (*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1290)))) (-1387 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1290)))) (-1387 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1180)) (-5 *1 (-1290)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1290)))) (-4286 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1290))))) +(-13 (-1122) (-10 -8 (-15 -2163 ((-657 (-963 (-227))) $)) (-15 -2260 ($)) (-15 -2522 ($ $)) (-15 -4417 ((-657 (-270)) $)) (-15 -4417 ($ $ (-657 (-270)))) (-15 -2522 ($ (-480) (-657 (-270)))) (-15 -3488 ((-1294) $ (-941) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-889) (-576) (-889) (-576))) (-15 -4031 ((-1289 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1500 (-576)) (|:| -1669 (-576)) (|:| |spline| (-576)) (|:| -2046 (-576)) (|:| |axesColor| (-889)) (|:| -2364 (-576)) (|:| |unitsColor| (-889)) (|:| |showing| (-576)))) $)) (-15 -3144 ((-1289 (-3 (-480) "undefined")) $)) (-15 -1363 ((-1294) $ (-1180))) (-15 -3983 ((-1294) $ (-480) (-941))) (-15 -1798 ((-480) $ (-941))) (-15 -2046 ((-1294) $ (-941) (-1180))) (-15 -2046 ((-1294) $ (-941) (-889))) (-15 -2364 ((-1294) $ (-941) (-1180))) (-15 -2364 ((-1294) $ (-941) (-889))) (-15 -1500 ((-1294) $ (-941) (-1180))) (-15 -3578 ((-1294) $ (-941) (-1180))) (-15 -1669 ((-1294) $ (-941) (-1180))) (-15 -2047 ((-1294) $ (-1180))) (-15 -1988 ((-1294) $)) (-15 -2924 ((-1294) $ (-784) (-784) (-941) (-941))) (-15 -3734 ((-1294) $ (-941) (-390) (-390))) (-15 -1909 ((-1294) $ (-941) (-390) (-390))) (-15 -2235 ((-1294) $ (-941) (-1180))) (-15 -4272 ((-1294) $ (-784) (-784))) (-15 -3555 ((-1294) $ (-480) (-941))) (-15 -1724 ((-1294) $ (-941) (-941))) (-15 -1387 ((-1180) $ (-1180))) (-15 -1387 ((-1180) $ (-1180) (-1180))) (-15 -1387 ((-1180) $ (-1180) (-657 (-1180)))) (-15 -1369 ((-1294) $)) (-15 -4286 ((-576) $)) (-15 -3515 ((-877) $)))) +((-3423 (((-112) $ $) NIL)) (-2707 (((-1294) $ (-390)) 169) (((-1294) $ (-390) (-390) (-390)) 170)) (-1387 (((-1180) $ (-1180)) 179) (((-1180) $ (-1180) (-1180)) 177) (((-1180) $ (-1180) (-657 (-1180))) 176)) (-2908 (($) 67)) (-3007 (((-1294) $ (-390) (-390) (-390) (-390) (-390)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1294) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1294) $ (-576) (-576) (-390) (-390) (-390)) 144) (((-1294) $ (-390) (-390)) 145) (((-1294) $ (-390) (-390) (-390)) 152)) (-3294 (((-390)) 122) (((-390) (-390)) 123)) (-1851 (((-390)) 117) (((-390) (-390)) 119)) (-3827 (((-390)) 120) (((-390) (-390)) 121)) (-3398 (((-390)) 126) (((-390) (-390)) 127)) (-3712 (((-390)) 124) (((-390) (-390)) 125)) (-1909 (((-1294) $ (-390) (-390)) 171)) (-1363 (((-1294) $ (-1180)) 153)) (-2756 (((-1155 (-227)) $) 68) (($ $ (-1155 (-227))) 69)) (-2642 (((-1294) $ (-1180)) 187)) (-1872 (((-1294) $ (-1180)) 188)) (-1932 (((-1294) $ (-390) (-390)) 151) (((-1294) $ (-576) (-576)) 168)) (-1724 (((-1294) $ (-941) (-941)) 160)) (-1369 (((-1294) $) 137)) (-2357 (((-1294) $ (-1180)) 186)) (-2654 (((-1294) $ (-1180)) 134)) (-4417 (((-657 (-270)) $) 70) (($ $ (-657 (-270))) 71)) (-4272 (((-1294) $ (-784) (-784)) 159)) (-3237 (((-1294) $ (-784) (-963 (-227))) 193)) (-3217 (($ $) 73) (($ (-1155 (-227)) (-1180)) 74) (($ (-1155 (-227)) (-657 (-270))) 75)) (-1553 (((-1294) $ (-390) (-390) (-390)) 131)) (-1708 (((-1180) $) NIL)) (-4286 (((-576) $) 128)) (-3700 (((-1294) $ (-390)) 174)) (-1840 (((-1294) $ (-390)) 191)) (-1460 (((-1142) $) NIL)) (-4187 (((-1294) $ (-390)) 190)) (-4011 (((-1294) $ (-1180)) 136)) (-2924 (((-1294) $ (-784) (-784) (-941) (-941)) 158)) (-1572 (((-1294) $ (-1180)) 133)) (-2047 (((-1294) $ (-1180)) 135)) (-4435 (((-1294) $ (-158) (-158)) 157)) (-3515 (((-877) $) 166)) (-1988 (((-1294) $) 138)) (-2439 (((-1294) $ (-1180)) 189)) (-4166 (((-112) $ $) NIL)) (-2046 (((-1294) $ (-1180)) 132)) (-2881 (((-112) $ $) NIL))) +(((-1291) (-13 (-1122) (-10 -8 (-15 -1851 ((-390))) (-15 -1851 ((-390) (-390))) (-15 -3827 ((-390))) (-15 -3827 ((-390) (-390))) (-15 -3294 ((-390))) (-15 -3294 ((-390) (-390))) (-15 -3712 ((-390))) (-15 -3712 ((-390) (-390))) (-15 -3398 ((-390))) (-15 -3398 ((-390) (-390))) (-15 -2908 ($)) (-15 -3217 ($ $)) (-15 -3217 ($ (-1155 (-227)) (-1180))) (-15 -3217 ($ (-1155 (-227)) (-657 (-270)))) (-15 -2756 ((-1155 (-227)) $)) (-15 -2756 ($ $ (-1155 (-227)))) (-15 -3237 ((-1294) $ (-784) (-963 (-227)))) (-15 -4417 ((-657 (-270)) $)) (-15 -4417 ($ $ (-657 (-270)))) (-15 -4272 ((-1294) $ (-784) (-784))) (-15 -1724 ((-1294) $ (-941) (-941))) (-15 -1363 ((-1294) $ (-1180))) (-15 -2924 ((-1294) $ (-784) (-784) (-941) (-941))) (-15 -3007 ((-1294) $ (-390) (-390) (-390) (-390) (-390))) (-15 -3007 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3007 ((-1294) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3007 ((-1294) $ (-576) (-576) (-390) (-390) (-390))) (-15 -3007 ((-1294) $ (-390) (-390))) (-15 -3007 ((-1294) $ (-390) (-390) (-390))) (-15 -2047 ((-1294) $ (-1180))) (-15 -2046 ((-1294) $ (-1180))) (-15 -1572 ((-1294) $ (-1180))) (-15 -2654 ((-1294) $ (-1180))) (-15 -4011 ((-1294) $ (-1180))) (-15 -1932 ((-1294) $ (-390) (-390))) (-15 -1932 ((-1294) $ (-576) (-576))) (-15 -2707 ((-1294) $ (-390))) (-15 -2707 ((-1294) $ (-390) (-390) (-390))) (-15 -1909 ((-1294) $ (-390) (-390))) (-15 -2357 ((-1294) $ (-1180))) (-15 -4187 ((-1294) $ (-390))) (-15 -1840 ((-1294) $ (-390))) (-15 -2642 ((-1294) $ (-1180))) (-15 -1872 ((-1294) $ (-1180))) (-15 -2439 ((-1294) $ (-1180))) (-15 -1553 ((-1294) $ (-390) (-390) (-390))) (-15 -3700 ((-1294) $ (-390))) (-15 -1369 ((-1294) $)) (-15 -4435 ((-1294) $ (-158) (-158))) (-15 -1387 ((-1180) $ (-1180))) (-15 -1387 ((-1180) $ (-1180) (-1180))) (-15 -1387 ((-1180) $ (-1180) (-657 (-1180)))) (-15 -1988 ((-1294) $)) (-15 -4286 ((-576) $))))) (T -1291)) +((-1851 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-3827 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-3294 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-3294 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-3712 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-3712 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-3398 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-3398 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-2908 (*1 *1) (-5 *1 (-1291))) (-3217 (*1 *1 *1) (-5 *1 (-1291))) (-3217 (*1 *1 *2 *3) (-12 (-5 *2 (-1155 (-227))) (-5 *3 (-1180)) (-5 *1 (-1291)))) (-3217 (*1 *1 *2 *3) (-12 (-5 *2 (-1155 (-227))) (-5 *3 (-657 (-270))) (-5 *1 (-1291)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-1291)))) (-2756 (*1 *1 *1 *2) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-1291)))) (-3237 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-963 (-227))) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1291)))) (-4417 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1291)))) (-4272 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1724 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1363 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2924 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-784)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-3007 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1291)))) (-3007 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-3007 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-3007 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-3007 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2047 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2046 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1572 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2654 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4011 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1932 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1932 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2707 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1909 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2357 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4187 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1840 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2642 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2439 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1553 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-3700 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4435 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1387 (*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1291)))) (-1387 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1291)))) (-1387 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1180)) (-5 *1 (-1291)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4286 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1291))))) +(-13 (-1122) (-10 -8 (-15 -1851 ((-390))) (-15 -1851 ((-390) (-390))) (-15 -3827 ((-390))) (-15 -3827 ((-390) (-390))) (-15 -3294 ((-390))) (-15 -3294 ((-390) (-390))) (-15 -3712 ((-390))) (-15 -3712 ((-390) (-390))) (-15 -3398 ((-390))) (-15 -3398 ((-390) (-390))) (-15 -2908 ($)) (-15 -3217 ($ $)) (-15 -3217 ($ (-1155 (-227)) (-1180))) (-15 -3217 ($ (-1155 (-227)) (-657 (-270)))) (-15 -2756 ((-1155 (-227)) $)) (-15 -2756 ($ $ (-1155 (-227)))) (-15 -3237 ((-1294) $ (-784) (-963 (-227)))) (-15 -4417 ((-657 (-270)) $)) (-15 -4417 ($ $ (-657 (-270)))) (-15 -4272 ((-1294) $ (-784) (-784))) (-15 -1724 ((-1294) $ (-941) (-941))) (-15 -1363 ((-1294) $ (-1180))) (-15 -2924 ((-1294) $ (-784) (-784) (-941) (-941))) (-15 -3007 ((-1294) $ (-390) (-390) (-390) (-390) (-390))) (-15 -3007 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3007 ((-1294) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3007 ((-1294) $ (-576) (-576) (-390) (-390) (-390))) (-15 -3007 ((-1294) $ (-390) (-390))) (-15 -3007 ((-1294) $ (-390) (-390) (-390))) (-15 -2047 ((-1294) $ (-1180))) (-15 -2046 ((-1294) $ (-1180))) (-15 -1572 ((-1294) $ (-1180))) (-15 -2654 ((-1294) $ (-1180))) (-15 -4011 ((-1294) $ (-1180))) (-15 -1932 ((-1294) $ (-390) (-390))) (-15 -1932 ((-1294) $ (-576) (-576))) (-15 -2707 ((-1294) $ (-390))) (-15 -2707 ((-1294) $ (-390) (-390) (-390))) (-15 -1909 ((-1294) $ (-390) (-390))) (-15 -2357 ((-1294) $ (-1180))) (-15 -4187 ((-1294) $ (-390))) (-15 -1840 ((-1294) $ (-390))) (-15 -2642 ((-1294) $ (-1180))) (-15 -1872 ((-1294) $ (-1180))) (-15 -2439 ((-1294) $ (-1180))) (-15 -1553 ((-1294) $ (-390) (-390) (-390))) (-15 -3700 ((-1294) $ (-390))) (-15 -1369 ((-1294) $)) (-15 -4435 ((-1294) $ (-158) (-158))) (-15 -1387 ((-1180) $ (-1180))) (-15 -1387 ((-1180) $ (-1180) (-1180))) (-15 -1387 ((-1180) $ (-1180) (-657 (-1180)))) (-15 -1988 ((-1294) $)) (-15 -4286 ((-576) $)))) +((-1485 (((-657 (-1180)) (-657 (-1180))) 104) (((-657 (-1180))) 96)) (-2221 (((-657 (-1180))) 94)) (-2452 (((-657 (-941)) (-657 (-941))) 69) (((-657 (-941))) 64)) (-1400 (((-657 (-784)) (-657 (-784))) 61) (((-657 (-784))) 55)) (-3198 (((-1294)) 71)) (-2403 (((-941) (-941)) 87) (((-941)) 86)) (-2321 (((-941) (-941)) 85) (((-941)) 84)) (-3835 (((-889) (-889)) 81) (((-889)) 80)) (-2021 (((-227)) 91) (((-227) (-390)) 93)) (-1914 (((-941)) 88) (((-941) (-941)) 89)) (-3130 (((-941) (-941)) 83) (((-941)) 82)) (-4328 (((-889) (-889)) 75) (((-889)) 73)) (-4372 (((-889) (-889)) 77) (((-889)) 76)) (-2928 (((-889) (-889)) 79) (((-889)) 78))) +(((-1292) (-10 -7 (-15 -4328 ((-889))) (-15 -4328 ((-889) (-889))) (-15 -4372 ((-889))) (-15 -4372 ((-889) (-889))) (-15 -2928 ((-889))) (-15 -2928 ((-889) (-889))) (-15 -3835 ((-889))) (-15 -3835 ((-889) (-889))) (-15 -3130 ((-941))) (-15 -3130 ((-941) (-941))) (-15 -1400 ((-657 (-784)))) (-15 -1400 ((-657 (-784)) (-657 (-784)))) (-15 -2452 ((-657 (-941)))) (-15 -2452 ((-657 (-941)) (-657 (-941)))) (-15 -3198 ((-1294))) (-15 -1485 ((-657 (-1180)))) (-15 -1485 ((-657 (-1180)) (-657 (-1180)))) (-15 -2221 ((-657 (-1180)))) (-15 -2321 ((-941))) (-15 -2403 ((-941))) (-15 -2321 ((-941) (-941))) (-15 -2403 ((-941) (-941))) (-15 -1914 ((-941) (-941))) (-15 -1914 ((-941))) (-15 -2021 ((-227) (-390))) (-15 -2021 ((-227))))) (T -1292)) +((-2021 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1292)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1292)))) (-1914 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-1914 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-2321 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-2403 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-2321 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-2221 (*1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1292)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1292)))) (-1485 (*1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1292)))) (-3198 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1292)))) (-2452 (*1 *2 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1292)))) (-2452 (*1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1292)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-657 (-784))) (-5 *1 (-1292)))) (-1400 (*1 *2) (-12 (-5 *2 (-657 (-784))) (-5 *1 (-1292)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-3130 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-3835 (*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-2928 (*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-2928 (*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-4372 (*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-4372 (*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-4328 (*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-4328 (*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292))))) +(-10 -7 (-15 -4328 ((-889))) (-15 -4328 ((-889) (-889))) (-15 -4372 ((-889))) (-15 -4372 ((-889) (-889))) (-15 -2928 ((-889))) (-15 -2928 ((-889) (-889))) (-15 -3835 ((-889))) (-15 -3835 ((-889) (-889))) (-15 -3130 ((-941))) (-15 -3130 ((-941) (-941))) (-15 -1400 ((-657 (-784)))) (-15 -1400 ((-657 (-784)) (-657 (-784)))) (-15 -2452 ((-657 (-941)))) (-15 -2452 ((-657 (-941)) (-657 (-941)))) (-15 -3198 ((-1294))) (-15 -1485 ((-657 (-1180)))) (-15 -1485 ((-657 (-1180)) (-657 (-1180)))) (-15 -2221 ((-657 (-1180)))) (-15 -2321 ((-941))) (-15 -2403 ((-941))) (-15 -2321 ((-941) (-941))) (-15 -2403 ((-941) (-941))) (-15 -1914 ((-941) (-941))) (-15 -1914 ((-941))) (-15 -2021 ((-227) (-390))) (-15 -2021 ((-227)))) +((-2758 (((-480) (-657 (-657 (-963 (-227)))) (-657 (-270))) 22) (((-480) (-657 (-657 (-963 (-227))))) 21) (((-480) (-657 (-657 (-963 (-227)))) (-889) (-889) (-941) (-657 (-270))) 20)) (-3239 (((-1290) (-657 (-657 (-963 (-227)))) (-657 (-270))) 30) (((-1290) (-657 (-657 (-963 (-227)))) (-889) (-889) (-941) (-657 (-270))) 29)) (-3515 (((-1290) (-480)) 46))) +(((-1293) (-10 -7 (-15 -2758 ((-480) (-657 (-657 (-963 (-227)))) (-889) (-889) (-941) (-657 (-270)))) (-15 -2758 ((-480) (-657 (-657 (-963 (-227)))))) (-15 -2758 ((-480) (-657 (-657 (-963 (-227)))) (-657 (-270)))) (-15 -3239 ((-1290) (-657 (-657 (-963 (-227)))) (-889) (-889) (-941) (-657 (-270)))) (-15 -3239 ((-1290) (-657 (-657 (-963 (-227)))) (-657 (-270)))) (-15 -3515 ((-1290) (-480))))) (T -1293)) +((-3515 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1290)) (-5 *1 (-1293)))) (-3239 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-1293)))) (-3239 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-889)) (-5 *5 (-941)) (-5 *6 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-1293)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-657 (-270))) (-5 *2 (-480)) (-5 *1 (-1293)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *2 (-480)) (-5 *1 (-1293)))) (-2758 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-889)) (-5 *5 (-941)) (-5 *6 (-657 (-270))) (-5 *2 (-480)) (-5 *1 (-1293))))) +(-10 -7 (-15 -2758 ((-480) (-657 (-657 (-963 (-227)))) (-889) (-889) (-941) (-657 (-270)))) (-15 -2758 ((-480) (-657 (-657 (-963 (-227)))))) (-15 -2758 ((-480) (-657 (-657 (-963 (-227)))) (-657 (-270)))) (-15 -3239 ((-1290) (-657 (-657 (-963 (-227)))) (-889) (-889) (-941) (-657 (-270)))) (-15 -3239 ((-1290) (-657 (-657 (-963 (-227)))) (-657 (-270)))) (-15 -3515 ((-1290) (-480)))) +((-2875 (($) 6)) (-3515 (((-877) $) 9))) +(((-1294) (-13 (-625 (-877)) (-10 -8 (-15 -2875 ($))))) (T -1294)) +((-2875 (*1 *1) (-5 *1 (-1294)))) +(-13 (-625 (-877)) (-10 -8 (-15 -2875 ($)))) +((-2995 (($ $ |#2|) 10))) +(((-1295 |#1| |#2|) (-10 -8 (-15 -2995 (|#1| |#1| |#2|))) (-1296 |#2|) (-374)) (T -1295)) +NIL +(-10 -8 (-15 -2995 (|#1| |#1| |#2|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1451 (((-135)) 33)) (-3515 (((-877) $) 12)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2881 (((-112) $ $) 8)) (-2995 (($ $ |#1|) 34)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1296 |#1|) (-141) (-374)) (T -1296)) +((-2995 (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-374)))) (-1451 (*1 *2) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) +(-13 (-730 |t#1|) (-10 -8 (-15 -2995 ($ $ |t#1|)) (-15 -1451 ((-135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) +((-2239 (((-657 (-1233 |#1|)) (-1198) (-1233 |#1|)) 83)) (-3318 (((-1179 (-1179 (-972 |#1|))) (-1198) (-1179 (-972 |#1|))) 63)) (-1430 (((-1 (-1179 (-1233 |#1|)) (-1179 (-1233 |#1|))) (-784) (-1233 |#1|) (-1179 (-1233 |#1|))) 74)) (-4023 (((-1 (-1179 (-972 |#1|)) (-1179 (-972 |#1|))) (-784)) 65)) (-1831 (((-1 (-1194 (-972 |#1|)) (-972 |#1|)) (-1198)) 32)) (-3019 (((-1 (-1179 (-972 |#1|)) (-1179 (-972 |#1|))) (-784)) 64))) +(((-1297 |#1|) (-10 -7 (-15 -4023 ((-1 (-1179 (-972 |#1|)) (-1179 (-972 |#1|))) (-784))) (-15 -3019 ((-1 (-1179 (-972 |#1|)) (-1179 (-972 |#1|))) (-784))) (-15 -3318 ((-1179 (-1179 (-972 |#1|))) (-1198) (-1179 (-972 |#1|)))) (-15 -1831 ((-1 (-1194 (-972 |#1|)) (-972 |#1|)) (-1198))) (-15 -2239 ((-657 (-1233 |#1|)) (-1198) (-1233 |#1|))) (-15 -1430 ((-1 (-1179 (-1233 |#1|)) (-1179 (-1233 |#1|))) (-784) (-1233 |#1|) (-1179 (-1233 |#1|))))) (-374)) (T -1297)) +((-1430 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-784)) (-4 *6 (-374)) (-5 *4 (-1233 *6)) (-5 *2 (-1 (-1179 *4) (-1179 *4))) (-5 *1 (-1297 *6)) (-5 *5 (-1179 *4)))) (-2239 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-4 *5 (-374)) (-5 *2 (-657 (-1233 *5))) (-5 *1 (-1297 *5)) (-5 *4 (-1233 *5)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1 (-1194 (-972 *4)) (-972 *4))) (-5 *1 (-1297 *4)) (-4 *4 (-374)))) (-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-4 *5 (-374)) (-5 *2 (-1179 (-1179 (-972 *5)))) (-5 *1 (-1297 *5)) (-5 *4 (-1179 (-972 *5))))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-1179 (-972 *4)) (-1179 (-972 *4)))) (-5 *1 (-1297 *4)) (-4 *4 (-374)))) (-4023 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-1179 (-972 *4)) (-1179 (-972 *4)))) (-5 *1 (-1297 *4)) (-4 *4 (-374))))) +(-10 -7 (-15 -4023 ((-1 (-1179 (-972 |#1|)) (-1179 (-972 |#1|))) (-784))) (-15 -3019 ((-1 (-1179 (-972 |#1|)) (-1179 (-972 |#1|))) (-784))) (-15 -3318 ((-1179 (-1179 (-972 |#1|))) (-1198) (-1179 (-972 |#1|)))) (-15 -1831 ((-1 (-1194 (-972 |#1|)) (-972 |#1|)) (-1198))) (-15 -2239 ((-657 (-1233 |#1|)) (-1198) (-1233 |#1|))) (-15 -1430 ((-1 (-1179 (-1233 |#1|)) (-1179 (-1233 |#1|))) (-784) (-1233 |#1|) (-1179 (-1233 |#1|))))) +((-1951 (((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) |#2|) 80)) (-3929 (((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) 79))) +(((-1298 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3929 ((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))))) (-15 -1951 ((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) |#2|))) (-360) (-1265 |#1|) (-1265 |#2|) (-421 |#2| |#3|)) (T -1298)) +((-1951 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 *3)) (-5 *2 (-2 (|:| -2469 (-702 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-702 *3)))) (-5 *1 (-1298 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))) (-3929 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| -2469 (-702 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-702 *4)))) (-5 *1 (-1298 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) +(-10 -7 (-15 -3929 ((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))))) (-15 -1951 ((-2 (|:| -2469 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) |#2|))) +((-3423 (((-112) $ $) NIL)) (-1503 (((-1157) $) 11)) (-2114 (((-1157) $) 9)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 17) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1299) (-13 (-1105) (-10 -8 (-15 -2114 ((-1157) $)) (-15 -1503 ((-1157) $))))) (T -1299)) +((-2114 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1299)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1299))))) +(-13 (-1105) (-10 -8 (-15 -2114 ((-1157) $)) (-15 -1503 ((-1157) $)))) +((-3423 (((-112) $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3940 (((-1157) $) 9)) (-3515 (((-877) $) 15) (($ (-1203)) NIL) (((-1203) $) NIL)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) NIL))) +(((-1300) (-13 (-1105) (-10 -8 (-15 -3940 ((-1157) $))))) (T -1300)) +((-3940 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1300))))) +(-13 (-1105) (-10 -8 (-15 -3940 ((-1157) $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 58)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 81) (($ (-576)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-3845 (((-784)) NIL T CONST)) (-4047 (((-1294) (-784)) 16)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 37 T CONST)) (-2725 (($) 84 T CONST)) (-2881 (((-112) $ $) 87)) (-2995 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2982 (($ $) 89) (($ $ $) NIL)) (-2971 (($ $ $) 63)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-1301 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1071) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2995 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4047 ((-1294) (-784))))) (-1071) (-862) (-806) (-969 |#1| |#3| |#2|) (-657 |#2|) (-657 (-784)) (-784)) (T -1301)) +((-2995 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1071)) (-4 *3 (-862)) (-4 *4 (-806)) (-14 *6 (-657 *3)) (-5 *1 (-1301 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-969 *2 *4 *3)) (-14 *7 (-657 (-784))) (-14 *8 (-784)))) (-4047 (*1 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-1071)) (-4 *5 (-862)) (-4 *6 (-806)) (-14 *8 (-657 *5)) (-5 *2 (-1294)) (-5 *1 (-1301 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-969 *4 *6 *5)) (-14 *9 (-657 *3)) (-14 *10 *3)))) +(-13 (-1071) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2995 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4047 ((-1294) (-784))))) +((-3423 (((-112) $ $) NIL)) (-2112 (((-657 (-2 (|:| -1988 $) (|:| -3179 (-657 |#4|)))) (-657 |#4|)) NIL)) (-1578 (((-657 $) (-657 |#4|)) 96)) (-1998 (((-657 |#3|) $) NIL)) (-2250 (((-112) $) NIL)) (-4334 (((-112) $) NIL (|has| |#1| (-568)))) (-2605 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3300 ((|#4| |#4| $) NIL)) (-1832 (((-2 (|:| |under| $) (|:| -2681 $) (|:| |upper| $)) $ |#3|) NIL)) (-4284 (((-112) $ (-784)) NIL)) (-2007 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2515 (($) NIL T CONST)) (-2697 (((-112) $) NIL (|has| |#1| (-568)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1978 (((-112) $) NIL (|has| |#1| (-568)))) (-1835 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-1494 (((-657 |#4|) (-657 |#4|) $) 28 (|has| |#1| (-568)))) (-4203 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-1593 (((-3 $ "failed") (-657 |#4|)) NIL)) (-2830 (($ (-657 |#4|)) NIL)) (-3542 (((-3 $ "failed") $) 78)) (-1815 ((|#4| |#4| $) 83)) (-1620 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-3901 (($ |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3951 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3427 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1979 ((|#4| |#4| $) NIL)) (-3662 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1492 (((-2 (|:| -1988 (-657 |#4|)) (|:| -3179 (-657 |#4|))) $) NIL)) (-1448 (((-657 |#4|) $) NIL (|has| $ (-6 -4466)))) (-3537 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1428 ((|#3| $) 84)) (-1786 (((-112) $ (-784)) NIL)) (-3855 (((-657 |#4|) $) 32 (|has| $ (-6 -4466)))) (-3326 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-2338 (((-3 $ "failed") (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-657 |#4|)) 38)) (-1799 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4467)))) (-4071 (($ (-1 |#4| |#4|) $) NIL)) (-3944 (((-657 |#3|) $) NIL)) (-2611 (((-112) |#3| $) NIL)) (-4326 (((-112) $ (-784)) NIL)) (-1708 (((-1180) $) NIL)) (-3921 (((-3 |#4| "failed") $) NIL)) (-3218 (((-657 |#4|) $) 54)) (-3893 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3510 ((|#4| |#4| $) 82)) (-2304 (((-112) $ $) 93)) (-2678 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-4299 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3511 ((|#4| |#4| $) NIL)) (-1460 (((-1142) $) NIL)) (-3528 (((-3 |#4| "failed") $) 77)) (-4135 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3923 (((-3 $ "failed") $ |#4|) NIL)) (-1456 (($ $ |#4|) NIL)) (-2372 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3205 (($ $ (-657 |#4|) (-657 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-3807 (((-112) $ $) NIL)) (-1368 (((-112) $) 75)) (-3340 (($) 46)) (-4265 (((-784) $) NIL)) (-1469 (((-784) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (((-784) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-1899 (($ $) NIL)) (-4136 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3529 (($ (-657 |#4|)) NIL)) (-2764 (($ $ |#3|) NIL)) (-2555 (($ $ |#3|) NIL)) (-2038 (($ $) NIL)) (-2267 (($ $ |#3|) NIL)) (-3515 (((-877) $) NIL) (((-657 |#4|) $) 63)) (-4384 (((-784) $) NIL (|has| |#3| (-379)))) (-2523 (((-3 $ "failed") (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-657 |#4|)) 45)) (-3139 (((-657 $) (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-657 $) (-657 |#4|)) 74)) (-4166 (((-112) $ $) NIL)) (-2726 (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -1425 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3741 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) NIL)) (-3258 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-2330 (((-657 |#3|) $) NIL)) (-2137 (((-112) |#3| $) NIL)) (-2881 (((-112) $ $) NIL)) (-3437 (((-784) $) NIL (|has| $ (-6 -4466))))) +(((-1302 |#1| |#2| |#3| |#4|) (-13 (-1232 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2338 ((-3 $ "failed") (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2338 ((-3 $ "failed") (-657 |#4|))) (-15 -2523 ((-3 $ "failed") (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2523 ((-3 $ "failed") (-657 |#4|))) (-15 -3139 ((-657 $) (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3139 ((-657 $) (-657 |#4|))))) (-568) (-806) (-862) (-1087 |#1| |#2| |#3|)) (T -1302)) +((-2338 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-657 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1302 *5 *6 *7 *8)))) (-2338 (*1 *1 *2) (|partial| -12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1302 *3 *4 *5 *6)))) (-2523 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-657 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1302 *5 *6 *7 *8)))) (-2523 (*1 *1 *2) (|partial| -12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1302 *3 *4 *5 *6)))) (-3139 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1087 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-806)) (-4 *8 (-862)) (-5 *2 (-657 (-1302 *6 *7 *8 *9))) (-5 *1 (-1302 *6 *7 *8 *9)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 (-1302 *4 *5 *6 *7))) (-5 *1 (-1302 *4 *5 *6 *7))))) +(-13 (-1232 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2338 ((-3 $ "failed") (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2338 ((-3 $ "failed") (-657 |#4|))) (-15 -2523 ((-3 $ "failed") (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2523 ((-3 $ "failed") (-657 |#4|))) (-15 -3139 ((-657 $) (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3139 ((-657 $) (-657 |#4|))))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-2423 (((-3 $ "failed") $ $) 20)) (-2515 (($) 18 T CONST)) (-3969 (((-3 $ "failed") $) 37)) (-3994 (((-112) $) 35)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 45)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1303 |#1|) (-141) (-1071)) (T -1303)) +NIL +(-13 (-1071) (-111 |t#1| |t#1|) (-628 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-739) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) +((-3423 (((-112) $ $) 67)) (-2044 (((-112) $) NIL)) (-3375 (((-657 |#1|) $) 52)) (-2843 (($ $ (-784)) 46)) (-2423 (((-3 $ "failed") $ $) NIL)) (-4147 (($ $ (-784)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-2515 (($) NIL T CONST)) (-2186 (($ $ $) 70) (($ $ (-832 |#1|)) 56) (($ $ |#1|) 60)) (-1593 (((-3 (-832 |#1|) "failed") $) NIL)) (-2830 (((-832 |#1|) $) NIL)) (-2165 (($ $) 39)) (-3969 (((-3 $ "failed") $) NIL)) (-2472 (((-112) $) NIL)) (-4321 (($ $) NIL)) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3646 (($ (-832 |#1|) |#2|) 38)) (-2774 (($ $) 40)) (-3910 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) 12)) (-2828 (((-832 |#1|) $) NIL)) (-3013 (((-832 |#1|) $) 41)) (-4071 (($ (-1 |#2| |#2|) $) NIL)) (-3532 (($ $ $) 69) (($ $ (-832 |#1|)) 58) (($ $ |#1|) 62)) (-3688 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2129 (((-832 |#1|) $) 35)) (-2141 ((|#2| $) 37)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-4265 (((-784) $) 43)) (-1807 (((-112) $) 47)) (-1491 ((|#2| $) NIL)) (-3515 (((-877) $) NIL) (($ (-832 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-576)) NIL)) (-3987 (((-657 |#2|) $) NIL)) (-2498 ((|#2| $ (-832 |#1|)) NIL)) (-1735 ((|#2| $ $) 76) ((|#2| $ (-832 |#1|)) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 13 T CONST)) (-2725 (($) 19 T CONST)) (-2818 (((-657 (-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2881 (((-112) $ $) 44)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 28)) (** (($ $ (-784)) NIL) (($ $ (-941)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-832 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1304 |#1| |#2|) (-13 (-393 |#2| (-832 |#1|)) (-1310 |#1| |#2|)) (-862) (-1071)) (T -1304)) +NIL +(-13 (-393 |#2| (-832 |#1|)) (-1310 |#1| |#2|)) +((-3707 ((|#3| |#3| (-784)) 28)) (-4056 ((|#3| |#3| (-784)) 34)) (-2940 ((|#3| |#3| |#3| (-784)) 35))) +(((-1305 |#1| |#2| |#3|) (-10 -7 (-15 -4056 (|#3| |#3| (-784))) (-15 -3707 (|#3| |#3| (-784))) (-15 -2940 (|#3| |#3| |#3| (-784)))) (-13 (-1071) (-730 (-419 (-576)))) (-862) (-1310 |#2| |#1|)) (T -1305)) +((-2940 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-13 (-1071) (-730 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1310 *5 *4)))) (-3707 (*1 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-13 (-1071) (-730 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1310 *5 *4)))) (-4056 (*1 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-13 (-1071) (-730 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1310 *5 *4))))) +(-10 -7 (-15 -4056 (|#3| |#3| (-784))) (-15 -3707 (|#3| |#3| (-784))) (-15 -2940 (|#3| |#3| |#3| (-784)))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3375 (((-657 |#1|) $) 47)) (-2423 (((-3 $ "failed") $ $) 20)) (-4147 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-784)) 49 (|has| |#2| (-174)))) (-2515 (($) 18 T CONST)) (-2186 (($ $ |#1|) 61) (($ $ (-832 |#1|)) 60) (($ $ $) 59)) (-1593 (((-3 (-832 |#1|) "failed") $) 71)) (-2830 (((-832 |#1|) $) 72)) (-3969 (((-3 $ "failed") $) 37)) (-2472 (((-112) $) 52)) (-4321 (($ $) 51)) (-3994 (((-112) $) 35)) (-2343 (((-112) $) 57)) (-3646 (($ (-832 |#1|) |#2|) 58)) (-2774 (($ $) 56)) (-3910 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) 67)) (-2828 (((-832 |#1|) $) 68)) (-4071 (($ (-1 |#2| |#2|) $) 48)) (-3532 (($ $ |#1|) 64) (($ $ (-832 |#1|)) 63) (($ $ $) 62)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-1807 (((-112) $) 54)) (-1491 ((|#2| $) 53)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-832 |#1|)) 70) (($ |#1|) 55)) (-1735 ((|#2| $ (-832 |#1|)) 66) ((|#2| $ $) 65)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1306 |#1| |#2|) (-141) (-862) (-1071)) (T -1306)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1071)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-832 *3)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-2 (|:| |k| (-832 *3)) (|:| |c| *4))))) (-1735 (*1 *2 *1 *3) (-12 (-5 *3 (-832 *4)) (-4 *1 (-1306 *4 *2)) (-4 *4 (-862)) (-4 *2 (-1071)))) (-1735 (*1 *2 *1 *1) (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1071)))) (-3532 (*1 *1 *1 *2) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-832 *3)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)))) (-3532 (*1 *1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-2186 (*1 *1 *1 *2) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-2186 (*1 *1 *1 *2) (-12 (-5 *2 (-832 *3)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)))) (-2186 (*1 *1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-3646 (*1 *1 *2 *3) (-12 (-5 *2 (-832 *4)) (-4 *4 (-862)) (-4 *1 (-1306 *4 *3)) (-4 *3 (-1071)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-112)))) (-2774 (*1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-3515 (*1 *1 *2) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-112)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1071)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-112)))) (-4321 (*1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-4147 (*1 *1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)) (-4 *3 (-174)))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-4 *4 (-174)))) (-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-657 *3))))) +(-13 (-1071) (-1303 |t#2|) (-1060 (-832 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2828 ((-832 |t#1|) $)) (-15 -3910 ((-2 (|:| |k| (-832 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1735 (|t#2| $ (-832 |t#1|))) (-15 -1735 (|t#2| $ $)) (-15 -3532 ($ $ |t#1|)) (-15 -3532 ($ $ (-832 |t#1|))) (-15 -3532 ($ $ $)) (-15 -2186 ($ $ |t#1|)) (-15 -2186 ($ $ (-832 |t#1|))) (-15 -2186 ($ $ $)) (-15 -3646 ($ (-832 |t#1|) |t#2|)) (-15 -2343 ((-112) $)) (-15 -2774 ($ $)) (-15 -3515 ($ |t#1|)) (-15 -1807 ((-112) $)) (-15 -1491 (|t#2| $)) (-15 -2472 ((-112) $)) (-15 -4321 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -4147 ($ $ $)) (-15 -4147 ($ $ (-784)))) |%noBranch|) (-15 -4071 ($ (-1 |t#2| |t#2|) $)) (-15 -3375 ((-657 |t#1|) $)) (IF (|has| |t#2| (-6 -4459)) (-6 -4459) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-832 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#2|) . T) ((-659 $) . T) ((-661 |#2|) . T) ((-661 $) . T) ((-653 |#2|) |has| |#2| (-174)) ((-730 |#2|) |has| |#2| (-174)) ((-739) . T) ((-1060 #0#) . T) ((-1073 |#2|) . T) ((-1078 |#2|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1303 |#2|) . T)) +((-1388 (((-112) $) 15)) (-2137 (((-112) $) 14)) (-4237 (($ $) 19) (($ $ (-784)) 21))) +(((-1307 |#1| |#2|) (-10 -8 (-15 -4237 (|#1| |#1| (-784))) (-15 -4237 (|#1| |#1|)) (-15 -1388 ((-112) |#1|)) (-15 -2137 ((-112) |#1|))) (-1308 |#2|) (-374)) (T -1307)) +NIL +(-10 -8 (-15 -4237 (|#1| |#1| (-784))) (-15 -4237 (|#1| |#1|)) (-15 -1388 ((-112) |#1|)) (-15 -2137 ((-112) |#1|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3422 (((-2 (|:| -4119 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-2361 (($ $) 46)) (-3286 (((-112) $) 44)) (-1388 (((-112) $) 104)) (-4025 (((-784)) 100)) (-2423 (((-3 $ "failed") $ $) 20)) (-3188 (($ $) 81)) (-4215 (((-430 $) $) 80)) (-3210 (((-112) $ $) 65)) (-2515 (($) 18 T CONST)) (-1593 (((-3 |#1| "failed") $) 111)) (-2830 ((|#1| $) 112)) (-3355 (($ $ $) 61)) (-3969 (((-3 $ "failed") $) 37)) (-3369 (($ $ $) 62)) (-3389 (((-2 (|:| -1735 (-657 $)) (|:| -4083 $)) (-657 $)) 57)) (-4266 (($ $ (-784)) 97 (-2748 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4009 (((-112) $) 79)) (-2650 (((-846 (-941)) $) 94 (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3994 (((-112) $) 35)) (-4134 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3388 (($ $ $) 52) (($ (-657 $)) 51)) (-1708 (((-1180) $) 10)) (-2098 (($ $) 78)) (-2395 (((-112) $) 103)) (-1460 (((-1142) $) 11)) (-1828 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3431 (($ $ $) 54) (($ (-657 $)) 53)) (-1856 (((-430 $) $) 82)) (-1559 (((-846 (-941))) 101)) (-2171 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4083 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3409 (((-3 $ "failed") $ $) 48)) (-3118 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-4164 (((-784) $) 64)) (-3977 (((-2 (|:| -2192 $) (|:| -3951 $)) $ $) 63)) (-2495 (((-3 (-784) "failed") $ $) 95 (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1451 (((-135)) 109)) (-4265 (((-846 (-941)) $) 102)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3414 (((-3 $ "failed") $) 93 (-2748 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2607 (((-112) $ $) 45)) (-2137 (((-112) $) 105)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-4237 (($ $) 99 (|has| |#1| (-379))) (($ $ (-784)) 98 (|has| |#1| (-379)))) (-2881 (((-112) $ $) 8)) (-2995 (($ $ $) 73) (($ $ |#1|) 108)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-1308 |#1|) (-141) (-374)) (T -1308)) +((-2137 (*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-1388 (*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-846 (-941))))) (-1559 (*1 *2) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-846 (-941))))) (-4025 (*1 *2) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-784)))) (-4237 (*1 *1 *1) (-12 (-4 *1 (-1308 *2)) (-4 *2 (-374)) (-4 *2 (-379)))) (-4237 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-4 *3 (-379))))) +(-13 (-374) (-1060 |t#1|) (-1296 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-414)) |%noBranch|) (-15 -2137 ((-112) $)) (-15 -1388 ((-112) $)) (-15 -2395 ((-112) $)) (-15 -4265 ((-846 (-941)) $)) (-15 -1559 ((-846 (-941)))) (-15 -4025 ((-784))) (IF (|has| |t#1| (-379)) (PROGN (-6 (-414)) (-15 -4237 ($ $)) (-15 -4237 ($ $ (-784)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2748 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) -2748 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 |#1|) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1060 |#1|) . T) ((-1073 #0#) . T) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 |#1|) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T) ((-1296 |#1|) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3375 (((-657 |#1|) $) 98)) (-2843 (($ $ (-784)) 102)) (-2423 (((-3 $ "failed") $ $) NIL)) (-4147 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-784)) NIL (|has| |#2| (-174)))) (-2515 (($) NIL T CONST)) (-2186 (($ $ |#1|) NIL) (($ $ (-832 |#1|)) NIL) (($ $ $) NIL)) (-1593 (((-3 (-832 |#1|) "failed") $) NIL) (((-3 (-909 |#1|) "failed") $) NIL)) (-2830 (((-832 |#1|) $) NIL) (((-909 |#1|) $) NIL)) (-2165 (($ $) 101)) (-3969 (((-3 $ "failed") $) NIL)) (-2472 (((-112) $) 90)) (-4321 (($ $) 93)) (-3964 (($ $ $ (-784)) 103)) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3646 (($ (-832 |#1|) |#2|) NIL) (($ (-909 |#1|) |#2|) 29)) (-2774 (($ $) 119)) (-3910 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2828 (((-832 |#1|) $) NIL)) (-3013 (((-832 |#1|) $) NIL)) (-4071 (($ (-1 |#2| |#2|) $) NIL)) (-3532 (($ $ |#1|) NIL) (($ $ (-832 |#1|)) NIL) (($ $ $) NIL)) (-3707 (($ $ (-784)) 112 (|has| |#2| (-730 (-419 (-576)))))) (-3688 (((-2 (|:| |k| (-909 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2129 (((-909 |#1|) $) 83)) (-2141 ((|#2| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-4056 (($ $ (-784)) 109 (|has| |#2| (-730 (-419 (-576)))))) (-4265 (((-784) $) 99)) (-1807 (((-112) $) 84)) (-1491 ((|#2| $) 88)) (-3515 (((-877) $) 69) (($ (-576)) NIL) (($ |#2|) 60) (($ (-832 |#1|)) NIL) (($ |#1|) 71) (($ (-909 |#1|)) NIL) (($ (-677 |#1| |#2|)) 48) (((-1304 |#1| |#2|) $) 76) (((-1313 |#1| |#2|) $) 81)) (-3987 (((-657 |#2|) $) NIL)) (-2498 ((|#2| $ (-909 |#1|)) NIL)) (-1735 ((|#2| $ (-832 |#1|)) NIL) ((|#2| $ $) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 21 T CONST)) (-2725 (($) 28 T CONST)) (-2818 (((-657 (-2 (|:| |k| (-909 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2307 (((-3 (-677 |#1| |#2|) "failed") $) 118)) (-2881 (((-112) $ $) 77)) (-2982 (($ $) 111) (($ $ $) 110)) (-2971 (($ $ $) 20)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-909 |#1|)) NIL))) +(((-1309 |#1| |#2|) (-13 (-1310 |#1| |#2|) (-393 |#2| (-909 |#1|)) (-10 -8 (-15 -3515 ($ (-677 |#1| |#2|))) (-15 -3515 ((-1304 |#1| |#2|) $)) (-15 -3515 ((-1313 |#1| |#2|) $)) (-15 -2307 ((-3 (-677 |#1| |#2|) "failed") $)) (-15 -3964 ($ $ $ (-784))) (IF (|has| |#2| (-730 (-419 (-576)))) (PROGN (-15 -4056 ($ $ (-784))) (-15 -3707 ($ $ (-784)))) |%noBranch|))) (-862) (-174)) (T -1309)) +((-3515 (*1 *1 *2) (-12 (-5 *2 (-677 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-1309 *3 *4)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2307 (*1 *2 *1) (|partial| -12 (-5 *2 (-677 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3964 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-4056 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1309 *3 *4)) (-4 *4 (-730 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))) (-3707 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1309 *3 *4)) (-4 *4 (-730 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) +(-13 (-1310 |#1| |#2|) (-393 |#2| (-909 |#1|)) (-10 -8 (-15 -3515 ($ (-677 |#1| |#2|))) (-15 -3515 ((-1304 |#1| |#2|) $)) (-15 -3515 ((-1313 |#1| |#2|) $)) (-15 -2307 ((-3 (-677 |#1| |#2|) "failed") $)) (-15 -3964 ($ $ $ (-784))) (IF (|has| |#2| (-730 (-419 (-576)))) (PROGN (-15 -4056 ($ $ (-784))) (-15 -3707 ($ $ (-784)))) |%noBranch|))) +((-3423 (((-112) $ $) 7)) (-2044 (((-112) $) 17)) (-3375 (((-657 |#1|) $) 47)) (-2843 (($ $ (-784)) 80)) (-2423 (((-3 $ "failed") $ $) 20)) (-4147 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-784)) 49 (|has| |#2| (-174)))) (-2515 (($) 18 T CONST)) (-2186 (($ $ |#1|) 61) (($ $ (-832 |#1|)) 60) (($ $ $) 59)) (-1593 (((-3 (-832 |#1|) "failed") $) 71)) (-2830 (((-832 |#1|) $) 72)) (-3969 (((-3 $ "failed") $) 37)) (-2472 (((-112) $) 52)) (-4321 (($ $) 51)) (-3994 (((-112) $) 35)) (-2343 (((-112) $) 57)) (-3646 (($ (-832 |#1|) |#2|) 58)) (-2774 (($ $) 56)) (-3910 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) 67)) (-2828 (((-832 |#1|) $) 68)) (-3013 (((-832 |#1|) $) 82)) (-4071 (($ (-1 |#2| |#2|) $) 48)) (-3532 (($ $ |#1|) 64) (($ $ (-832 |#1|)) 63) (($ $ $) 62)) (-1708 (((-1180) $) 10)) (-1460 (((-1142) $) 11)) (-4265 (((-784) $) 81)) (-1807 (((-112) $) 54)) (-1491 ((|#2| $) 53)) (-3515 (((-877) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-832 |#1|)) 70) (($ |#1|) 55)) (-1735 ((|#2| $ (-832 |#1|)) 66) ((|#2| $ $) 65)) (-3845 (((-784)) 32 T CONST)) (-4166 (((-112) $ $) 6)) (-2716 (($) 19 T CONST)) (-2725 (($) 34 T CONST)) (-2881 (((-112) $ $) 8)) (-2982 (($ $) 23) (($ $ $) 22)) (-2971 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1310 |#1| |#2|) (-141) (-862) (-1071)) (T -1310)) +((-3013 (*1 *2 *1) (-12 (-4 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-832 *3)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-784)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071))))) +(-13 (-1306 |t#1| |t#2|) (-10 -8 (-15 -3013 ((-832 |t#1|) $)) (-15 -4265 ((-784) $)) (-15 -2843 ($ $ (-784))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-832 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#2|) . T) ((-659 $) . T) ((-661 |#2|) . T) ((-661 $) . T) ((-653 |#2|) |has| |#2| (-174)) ((-730 |#2|) |has| |#2| (-174)) ((-739) . T) ((-1060 #0#) . T) ((-1073 |#2|) . T) ((-1078 |#2|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1303 |#2|) . T) ((-1306 |#1| |#2|) . T)) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-3375 (((-657 (-1198)) $) NIL)) (-1440 (($ (-1304 (-1198) |#1|)) NIL)) (-2843 (($ $ (-784)) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-4147 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-784)) NIL (|has| |#1| (-174)))) (-2515 (($) NIL T CONST)) (-2186 (($ $ (-1198)) NIL) (($ $ (-832 (-1198))) NIL) (($ $ $) NIL)) (-1593 (((-3 (-832 (-1198)) "failed") $) NIL)) (-2830 (((-832 (-1198)) $) NIL)) (-3969 (((-3 $ "failed") $) NIL)) (-2472 (((-112) $) NIL)) (-4321 (($ $) NIL)) (-3994 (((-112) $) NIL)) (-2343 (((-112) $) NIL)) (-3646 (($ (-832 (-1198)) |#1|) NIL)) (-2774 (($ $) NIL)) (-3910 (((-2 (|:| |k| (-832 (-1198))) (|:| |c| |#1|)) $) NIL)) (-2828 (((-832 (-1198)) $) NIL)) (-3013 (((-832 (-1198)) $) NIL)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3532 (($ $ (-1198)) NIL) (($ $ (-832 (-1198))) NIL) (($ $ $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1971 (((-1304 (-1198) |#1|) $) NIL)) (-4265 (((-784) $) NIL)) (-1807 (((-112) $) NIL)) (-1491 ((|#1| $) NIL)) (-3515 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-832 (-1198))) NIL) (($ (-1198)) NIL)) (-1735 ((|#1| $ (-832 (-1198))) NIL) ((|#1| $ $) NIL)) (-3845 (((-784)) NIL T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) NIL T CONST)) (-2606 (((-657 (-2 (|:| |k| (-1198)) (|:| |c| $))) $) NIL)) (-2725 (($) NIL T CONST)) (-2881 (((-112) $ $) NIL)) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1198) $) NIL))) +(((-1311 |#1|) (-13 (-1310 (-1198) |#1|) (-10 -8 (-15 -1971 ((-1304 (-1198) |#1|) $)) (-15 -1440 ($ (-1304 (-1198) |#1|))) (-15 -2606 ((-657 (-2 (|:| |k| (-1198)) (|:| |c| $))) $)))) (-1071)) (T -1311)) +((-1971 (*1 *2 *1) (-12 (-5 *2 (-1304 (-1198) *3)) (-5 *1 (-1311 *3)) (-4 *3 (-1071)))) (-1440 (*1 *1 *2) (-12 (-5 *2 (-1304 (-1198) *3)) (-4 *3 (-1071)) (-5 *1 (-1311 *3)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |k| (-1198)) (|:| |c| (-1311 *3))))) (-5 *1 (-1311 *3)) (-4 *3 (-1071))))) +(-13 (-1310 (-1198) |#1|) (-10 -8 (-15 -1971 ((-1304 (-1198) |#1|) $)) (-15 -1440 ($ (-1304 (-1198) |#1|))) (-15 -2606 ((-657 (-2 (|:| |k| (-1198)) (|:| |c| $))) $)))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) NIL)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2515 (($) NIL T CONST)) (-1593 (((-3 |#2| "failed") $) NIL)) (-2830 ((|#2| $) NIL)) (-2165 (($ $) NIL)) (-3969 (((-3 $ "failed") $) 42)) (-2472 (((-112) $) 35)) (-4321 (($ $) 37)) (-3994 (((-112) $) NIL)) (-2977 (((-784) $) NIL)) (-2278 (((-657 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3646 (($ |#2| |#1|) NIL)) (-2828 ((|#2| $) 24)) (-3013 ((|#2| $) 22)) (-4071 (($ (-1 |#1| |#1|) $) NIL)) (-3688 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2129 ((|#2| $) NIL)) (-2141 ((|#1| $) NIL)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1807 (((-112) $) 32)) (-1491 ((|#1| $) 33)) (-3515 (((-877) $) 65) (($ (-576)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3987 (((-657 |#1|) $) NIL)) (-2498 ((|#1| $ |#2|) NIL)) (-1735 ((|#1| $ |#2|) 28)) (-3845 (((-784)) 14 T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 29 T CONST)) (-2725 (($) 11 T CONST)) (-2818 (((-657 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2881 (((-112) $ $) 30)) (-2995 (($ $ |#1|) 67 (|has| |#1| (-374)))) (-2982 (($ $) NIL) (($ $ $) NIL)) (-2971 (($ $ $) 50)) (** (($ $ (-941)) NIL) (($ $ (-784)) 52)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3437 (((-784) $) 16))) +(((-1312 |#1| |#2|) (-13 (-1071) (-1303 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3437 ((-784) $)) (-15 -3013 (|#2| $)) (-15 -2828 (|#2| $)) (-15 -2165 ($ $)) (-15 -1735 (|#1| $ |#2|)) (-15 -1807 ((-112) $)) (-15 -1491 (|#1| $)) (-15 -2472 ((-112) $)) (-15 -4321 ($ $)) (-15 -4071 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -2995 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |#1| (-6 -4464)) (-6 -4464) |%noBranch|))) (-1071) (-859)) (T -1312)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-859)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-859)))) (-4071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-1312 *3 *4)) (-4 *4 (-859)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-859)))) (-3013 (*1 *2 *1) (-12 (-4 *2 (-859)) (-5 *1 (-1312 *3 *2)) (-4 *3 (-1071)))) (-2828 (*1 *2 *1) (-12 (-4 *2 (-859)) (-5 *1 (-1312 *3 *2)) (-4 *3 (-1071)))) (-1735 (*1 *2 *1 *3) (-12 (-4 *2 (-1071)) (-5 *1 (-1312 *2 *3)) (-4 *3 (-859)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-859)))) (-1491 (*1 *2 *1) (-12 (-4 *2 (-1071)) (-5 *1 (-1312 *2 *3)) (-4 *3 (-859)))) (-2472 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-859)))) (-4321 (*1 *1 *1) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-859)))) (-2995 (*1 *1 *1 *2) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1071)) (-4 *3 (-859))))) +(-13 (-1071) (-1303 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3437 ((-784) $)) (-15 -3013 (|#2| $)) (-15 -2828 (|#2| $)) (-15 -2165 ($ $)) (-15 -1735 (|#1| $ |#2|)) (-15 -1807 ((-112) $)) (-15 -1491 (|#1| $)) (-15 -2472 ((-112) $)) (-15 -4321 ($ $)) (-15 -4071 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -2995 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |#1| (-6 -4464)) (-6 -4464) |%noBranch|))) +((-3423 (((-112) $ $) 27)) (-2044 (((-112) $) NIL)) (-3375 (((-657 |#1|) $) 132)) (-1440 (($ (-1304 |#1| |#2|)) 50)) (-2843 (($ $ (-784)) 38)) (-2423 (((-3 $ "failed") $ $) NIL)) (-4147 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-784)) 52 (|has| |#2| (-174)))) (-2515 (($) NIL T CONST)) (-2186 (($ $ |#1|) 114) (($ $ (-832 |#1|)) 115) (($ $ $) 26)) (-1593 (((-3 (-832 |#1|) "failed") $) NIL)) (-2830 (((-832 |#1|) $) NIL)) (-3969 (((-3 $ "failed") $) 122)) (-2472 (((-112) $) 117)) (-4321 (($ $) 118)) (-3994 (((-112) $) NIL)) (-2343 (((-112) $) NIL)) (-3646 (($ (-832 |#1|) |#2|) 20)) (-2774 (($ $) NIL)) (-3910 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2828 (((-832 |#1|) $) 123)) (-3013 (((-832 |#1|) $) 126)) (-4071 (($ (-1 |#2| |#2|) $) 131)) (-3532 (($ $ |#1|) 112) (($ $ (-832 |#1|)) 113) (($ $ $) 62)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-1971 (((-1304 |#1| |#2|) $) 94)) (-4265 (((-784) $) 129)) (-1807 (((-112) $) 81)) (-1491 ((|#2| $) 32)) (-3515 (((-877) $) 73) (($ (-576)) 87) (($ |#2|) 85) (($ (-832 |#1|)) 18) (($ |#1|) 84)) (-1735 ((|#2| $ (-832 |#1|)) 116) ((|#2| $ $) 28)) (-3845 (((-784)) 120 T CONST)) (-4166 (((-112) $ $) NIL)) (-2716 (($) 15 T CONST)) (-2606 (((-657 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2725 (($) 33 T CONST)) (-2881 (((-112) $ $) 14)) (-2982 (($ $) 98) (($ $ $) 101)) (-2971 (($ $ $) 61)) (** (($ $ (-941)) NIL) (($ $ (-784)) 55)) (* (($ (-941) $) NIL) (($ (-784) $) 53) (($ (-576) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1313 |#1| |#2|) (-13 (-1310 |#1| |#2|) (-10 -8 (-15 -1971 ((-1304 |#1| |#2|) $)) (-15 -1440 ($ (-1304 |#1| |#2|))) (-15 -2606 ((-657 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-862) (-1071)) (T -1313)) +((-1971 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1313 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)))) (-1440 (*1 *1 *2) (-12 (-5 *2 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *1 (-1313 *3 *4)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |k| *3) (|:| |c| (-1313 *3 *4))))) (-5 *1 (-1313 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071))))) +(-13 (-1310 |#1| |#2|) (-10 -8 (-15 -1971 ((-1304 |#1| |#2|) $)) (-15 -1440 ($ (-1304 |#1| |#2|))) (-15 -2606 ((-657 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-3423 (((-112) $ $) NIL)) (-2740 (($ (-657 (-941))) 10)) (-3767 (((-993) $) 12)) (-1708 (((-1180) $) NIL)) (-1460 (((-1142) $) NIL)) (-3515 (((-877) $) 25) (($ (-993)) 14) (((-993) $) 13)) (-4166 (((-112) $ $) NIL)) (-2881 (((-112) $ $) 17))) +(((-1314) (-13 (-1122) (-502 (-993)) (-10 -8 (-15 -2740 ($ (-657 (-941)))) (-15 -3767 ((-993) $))))) (T -1314)) +((-2740 (*1 *1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1314)))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-993)) (-5 *1 (-1314))))) +(-13 (-1122) (-502 (-993)) (-10 -8 (-15 -2740 ($ (-657 (-941)))) (-15 -3767 ((-993) $)))) +((-2509 (((-657 (-1179 |#1|)) (-1 (-657 (-1179 |#1|)) (-657 (-1179 |#1|))) (-576)) 16) (((-1179 |#1|) (-1 (-1179 |#1|) (-1179 |#1|))) 13))) +(((-1315 |#1|) (-10 -7 (-15 -2509 ((-1179 |#1|) (-1 (-1179 |#1|) (-1179 |#1|)))) (-15 -2509 ((-657 (-1179 |#1|)) (-1 (-657 (-1179 |#1|)) (-657 (-1179 |#1|))) (-576)))) (-1239)) (T -1315)) +((-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-657 (-1179 *5)) (-657 (-1179 *5)))) (-5 *4 (-576)) (-5 *2 (-657 (-1179 *5))) (-5 *1 (-1315 *5)) (-4 *5 (-1239)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-1 (-1179 *4) (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1315 *4)) (-4 *4 (-1239))))) +(-10 -7 (-15 -2509 ((-1179 |#1|) (-1 (-1179 |#1|) (-1179 |#1|)))) (-15 -2509 ((-657 (-1179 |#1|)) (-1 (-657 (-1179 |#1|)) (-657 (-1179 |#1|))) (-576)))) +((-1736 (((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|))) 174) (((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112)) 173) (((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112)) 172) (((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112) (-112)) 171) (((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-1068 |#1| |#2|)) 156)) (-3468 (((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|))) 85) (((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)) (-112)) 84) (((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)) (-112) (-112)) 83)) (-4215 (((-657 (-1168 |#1| (-543 (-879 |#3|)) (-879 |#3|) (-793 |#1| (-879 |#3|)))) (-1068 |#1| |#2|)) 73)) (-3792 (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|))) 140) (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112)) 139) (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112)) 138) (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112) (-112)) 137) (((-657 (-657 (-1046 (-419 |#1|)))) (-1068 |#1| |#2|)) 132)) (-3651 (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|))) 145) (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112)) 144) (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112)) 143) (((-657 (-657 (-1046 (-419 |#1|)))) (-1068 |#1| |#2|)) 142)) (-4136 (((-657 (-793 |#1| (-879 |#3|))) (-1168 |#1| (-543 (-879 |#3|)) (-879 |#3|) (-793 |#1| (-879 |#3|)))) 111) (((-1194 (-1046 (-419 |#1|))) (-1194 |#1|)) 102) (((-972 (-1046 (-419 |#1|))) (-793 |#1| (-879 |#3|))) 109) (((-972 (-1046 (-419 |#1|))) (-972 |#1|)) 107) (((-793 |#1| (-879 |#3|)) (-793 |#1| (-879 |#2|))) 33))) +(((-1316 |#1| |#2| |#3|) (-10 -7 (-15 -3468 ((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)) (-112) (-112))) (-15 -3468 ((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)) (-112))) (-15 -3468 ((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)))) (-15 -1736 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-1068 |#1| |#2|))) (-15 -1736 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112) (-112))) (-15 -1736 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112))) (-15 -1736 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112))) (-15 -1736 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)))) (-15 -3792 ((-657 (-657 (-1046 (-419 |#1|)))) (-1068 |#1| |#2|))) (-15 -3792 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112) (-112))) (-15 -3792 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112))) (-15 -3792 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112))) (-15 -3792 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)))) (-15 -3651 ((-657 (-657 (-1046 (-419 |#1|)))) (-1068 |#1| |#2|))) (-15 -3651 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112))) (-15 -3651 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112))) (-15 -3651 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)))) (-15 -4215 ((-657 (-1168 |#1| (-543 (-879 |#3|)) (-879 |#3|) (-793 |#1| (-879 |#3|)))) (-1068 |#1| |#2|))) (-15 -4136 ((-793 |#1| (-879 |#3|)) (-793 |#1| (-879 |#2|)))) (-15 -4136 ((-972 (-1046 (-419 |#1|))) (-972 |#1|))) (-15 -4136 ((-972 (-1046 (-419 |#1|))) (-793 |#1| (-879 |#3|)))) (-15 -4136 ((-1194 (-1046 (-419 |#1|))) (-1194 |#1|))) (-15 -4136 ((-657 (-793 |#1| (-879 |#3|))) (-1168 |#1| (-543 (-879 |#3|)) (-879 |#3|) (-793 |#1| (-879 |#3|)))))) (-13 (-861) (-317) (-148) (-1044)) (-657 (-1198)) (-657 (-1198))) (T -1316)) +((-4136 (*1 *2 *3) (-12 (-5 *3 (-1168 *4 (-543 (-879 *6)) (-879 *6) (-793 *4 (-879 *6)))) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-793 *4 (-879 *6)))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-1194 *4)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-1194 (-1046 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-793 *4 (-879 *6))) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *6 (-657 (-1198))) (-5 *2 (-972 (-1046 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-972 *4)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-972 (-1046 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-793 *4 (-879 *5))) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *5 (-657 (-1198))) (-5 *2 (-793 *4 (-879 *6))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) (-4215 (*1 *2 *3) (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *5 (-657 (-1198))) (-5 *2 (-657 (-1168 *4 (-543 (-879 *6)) (-879 *6) (-793 *4 (-879 *6))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) (-3651 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) (-3651 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-3651 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-3651 (*1 *2 *3) (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *5 (-657 (-1198))) (-5 *2 (-657 (-657 (-1046 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) (-3792 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-3792 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-3792 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *5 (-657 (-1198))) (-5 *2 (-657 (-657 (-1046 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) (-1736 (*1 *2 *3) (-12 (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-2 (|:| -1980 (-1194 *4)) (|:| -3806 (-657 (-972 *4)))))) (-5 *1 (-1316 *4 *5 *6)) (-5 *3 (-657 (-972 *4))) (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) (-1736 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-2 (|:| -1980 (-1194 *5)) (|:| -3806 (-657 (-972 *5)))))) (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-657 (-972 *5))) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-1736 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-2 (|:| -1980 (-1194 *5)) (|:| -3806 (-657 (-972 *5)))))) (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-657 (-972 *5))) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-1736 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-2 (|:| -1980 (-1194 *5)) (|:| -3806 (-657 (-972 *5)))))) (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-657 (-972 *5))) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *5 (-657 (-1198))) (-5 *2 (-657 (-2 (|:| -1980 (-1194 *4)) (|:| -3806 (-657 (-972 *4)))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-1068 *4 *5))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-3468 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198)))))) +(-10 -7 (-15 -3468 ((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)) (-112) (-112))) (-15 -3468 ((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)) (-112))) (-15 -3468 ((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)))) (-15 -1736 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-1068 |#1| |#2|))) (-15 -1736 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112) (-112))) (-15 -1736 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112))) (-15 -1736 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112))) (-15 -1736 ((-657 (-2 (|:| -1980 (-1194 |#1|)) (|:| -3806 (-657 (-972 |#1|))))) (-657 (-972 |#1|)))) (-15 -3792 ((-657 (-657 (-1046 (-419 |#1|)))) (-1068 |#1| |#2|))) (-15 -3792 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112) (-112))) (-15 -3792 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112))) (-15 -3792 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112))) (-15 -3792 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)))) (-15 -3651 ((-657 (-657 (-1046 (-419 |#1|)))) (-1068 |#1| |#2|))) (-15 -3651 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112))) (-15 -3651 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112))) (-15 -3651 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)))) (-15 -4215 ((-657 (-1168 |#1| (-543 (-879 |#3|)) (-879 |#3|) (-793 |#1| (-879 |#3|)))) (-1068 |#1| |#2|))) (-15 -4136 ((-793 |#1| (-879 |#3|)) (-793 |#1| (-879 |#2|)))) (-15 -4136 ((-972 (-1046 (-419 |#1|))) (-972 |#1|))) (-15 -4136 ((-972 (-1046 (-419 |#1|))) (-793 |#1| (-879 |#3|)))) (-15 -4136 ((-1194 (-1046 (-419 |#1|))) (-1194 |#1|))) (-15 -4136 ((-657 (-793 |#1| (-879 |#3|))) (-1168 |#1| (-543 (-879 |#3|)) (-879 |#3|) (-793 |#1| (-879 |#3|)))))) +((-2635 (((-3 (-1289 (-419 (-576))) "failed") (-1289 |#1|) |#1|) 21)) (-2778 (((-112) (-1289 |#1|)) 12)) (-4231 (((-3 (-1289 (-576)) "failed") (-1289 |#1|)) 16))) +(((-1317 |#1|) (-10 -7 (-15 -2778 ((-112) (-1289 |#1|))) (-15 -4231 ((-3 (-1289 (-576)) "failed") (-1289 |#1|))) (-15 -2635 ((-3 (-1289 (-419 (-576))) "failed") (-1289 |#1|) |#1|))) (-13 (-1071) (-652 (-576)))) (T -1317)) +((-2635 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 (-576)))) (-5 *2 (-1289 (-419 (-576)))) (-5 *1 (-1317 *4)))) (-4231 (*1 *2 *3) (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 (-576)))) (-5 *2 (-1289 (-576))) (-5 *1 (-1317 *4)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 (-576)))) (-5 *2 (-112)) (-5 *1 (-1317 *4))))) +(-10 -7 (-15 -2778 ((-112) (-1289 |#1|))) (-15 -4231 ((-3 (-1289 (-576)) "failed") (-1289 |#1|))) (-15 -2635 ((-3 (-1289 (-419 (-576))) "failed") (-1289 |#1|) |#1|))) +((-3423 (((-112) $ $) NIL)) (-2044 (((-112) $) 11)) (-2423 (((-3 $ "failed") $ $) NIL)) (-2148 (((-784)) 8)) (-2515 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) 58)) (-1876 (($) 49)) (-3994 (((-112) $) 57)) (-1955 (((-3 $ "failed") $) 40)) (-2327 (((-941) $) 15)) (-1708 (((-1180) $) NIL)) (-1679 (($) 32 T CONST)) (-3146 (($ (-941)) 50)) (-1460 (((-1142) $) NIL)) (-4136 (((-576) $) 13)) (-3515 (((-877) $) 27) (($ (-576)) 24)) (-3845 (((-784)) 9 T CONST)) (-4166 (((-112) $ $) 60)) (-2716 (($) 29 T CONST)) (-2725 (($) 31 T CONST)) (-2881 (((-112) $ $) 38)) (-2982 (($ $) 52) (($ $ $) 47)) (-2971 (($ $ $) 35)) (** (($ $ (-941)) NIL) (($ $ (-784)) 54)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 44) (($ $ $) 43))) +(((-1318 |#1|) (-13 (-174) (-379) (-626 (-576)) (-1174)) (-941)) (T -1318)) +NIL +(-13 (-174) (-379) (-626 (-576)) (-1174)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3264106 3264111 3264116 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3264091 3264096 3264101 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3264076 3264081 3264086 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3264061 3264066 3264071 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1318 3263204 3263936 3264013 "ZMOD" 3264018 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1317 3262258 3262422 3262645 "ZLINDEP" 3263036 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1316 3251558 3253326 3255298 "ZDSOLVE" 3260388 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1315 3250804 3250945 3251134 "YSTREAM" 3251404 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1314 3250232 3250478 3250591 "YDIAGRAM" 3250713 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1313 3248006 3249533 3249737 "XRPOLY" 3250075 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1312 3244559 3245877 3246452 "XPR" 3247478 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1311 3242280 3243890 3244094 "XPOLY" 3244390 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1310 3239919 3241287 3241342 "XPOLYC" 3241630 NIL XPOLYC (NIL T T) -9 NIL 3241743 NIL) (-1309 3236295 3238436 3238824 "XPBWPOLY" 3239577 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1308 3231976 3234271 3234313 "XF" 3234934 NIL XF (NIL T) -9 NIL 3235334 NIL) (-1307 3231597 3231685 3231854 "XF-" 3231859 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1306 3226779 3228068 3228123 "XFALG" 3230295 NIL XFALG (NIL T T) -9 NIL 3231084 NIL) (-1305 3225912 3226016 3226221 "XEXPPKG" 3226671 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1304 3224021 3225762 3225858 "XDPOLY" 3225863 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1303 3222814 3223414 3223457 "XALG" 3223462 NIL XALG (NIL T) -9 NIL 3223573 NIL) (-1302 3216256 3220791 3221285 "WUTSET" 3222406 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1301 3214512 3215308 3215631 "WP" 3216067 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1300 3214114 3214334 3214404 "WHILEAST" 3214464 T WHILEAST (NIL) -8 NIL NIL NIL) (-1299 3213586 3213831 3213925 "WHEREAST" 3214042 T WHEREAST (NIL) -8 NIL NIL NIL) (-1298 3212472 3212670 3212965 "WFFINTBS" 3213383 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1297 3210376 3210803 3211265 "WEIER" 3212044 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1296 3209408 3209858 3209900 "VSPACE" 3210036 NIL VSPACE (NIL T) -9 NIL 3210110 NIL) (-1295 3209246 3209273 3209364 "VSPACE-" 3209369 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1294 3209055 3209097 3209165 "VOID" 3209200 T VOID (NIL) -8 NIL NIL NIL) (-1293 3207191 3207550 3207956 "VIEW" 3208671 T VIEW (NIL) -7 NIL NIL NIL) (-1292 3203615 3204254 3204991 "VIEWDEF" 3206476 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1291 3192919 3195163 3197336 "VIEW3D" 3201464 T VIEW3D (NIL) -8 NIL NIL NIL) (-1290 3185170 3186830 3188409 "VIEW2D" 3191362 T VIEW2D (NIL) -8 NIL NIL NIL) (-1289 3180526 3184940 3185032 "VECTOR" 3185113 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1288 3179103 3179362 3179680 "VECTOR2" 3180256 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1287 3172501 3176807 3176850 "VECTCAT" 3177845 NIL VECTCAT (NIL T) -9 NIL 3178432 NIL) (-1286 3171515 3171769 3172159 "VECTCAT-" 3172164 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1285 3170969 3171166 3171286 "VARIABLE" 3171430 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1284 3170902 3170907 3170937 "UTYPE" 3170942 T UTYPE (NIL) -9 NIL NIL NIL) (-1283 3169732 3169886 3170148 "UTSODETL" 3170728 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1282 3167172 3167632 3168156 "UTSODE" 3169273 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1281 3159120 3164933 3165413 "UTS" 3166750 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1280 3149684 3155054 3155097 "UTSCAT" 3156209 NIL UTSCAT (NIL T) -9 NIL 3156967 NIL) (-1279 3147032 3147754 3148743 "UTSCAT-" 3148748 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1278 3146659 3146702 3146835 "UTS2" 3146983 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1277 3140860 3143469 3143512 "URAGG" 3145582 NIL URAGG (NIL T) -9 NIL 3146305 NIL) (-1276 3137799 3138662 3139785 "URAGG-" 3139790 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1275 3133508 3136434 3136899 "UPXSSING" 3137463 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1274 3125684 3132890 3133154 "UPXS" 3133302 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1273 3118757 3125588 3125660 "UPXSCONS" 3125665 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1272 3108164 3114960 3115022 "UPXSCCA" 3115596 NIL UPXSCCA (NIL T T) -9 NIL 3115829 NIL) (-1271 3107802 3107887 3108061 "UPXSCCA-" 3108066 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1270 3097061 3103630 3103673 "UPXSCAT" 3104321 NIL UPXSCAT (NIL T) -9 NIL 3104930 NIL) (-1269 3096491 3096570 3096749 "UPXS2" 3096976 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1268 3095145 3095398 3095749 "UPSQFREE" 3096234 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1267 3088353 3091413 3091468 "UPSCAT" 3092548 NIL UPSCAT (NIL T T) -9 NIL 3093313 NIL) (-1266 3087557 3087764 3088091 "UPSCAT-" 3088096 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1265 3072639 3080684 3080727 "UPOLYC" 3082828 NIL UPOLYC (NIL T) -9 NIL 3084049 NIL) (-1264 3063967 3066393 3069540 "UPOLYC-" 3069545 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1263 3063594 3063637 3063770 "UPOLYC2" 3063918 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1262 3055129 3063277 3063406 "UP" 3063513 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1261 3054468 3054575 3054739 "UPMP" 3055018 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1260 3054021 3054102 3054241 "UPDIVP" 3054381 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1259 3052589 3052838 3053154 "UPDECOMP" 3053770 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1258 3051820 3051932 3052118 "UPCDEN" 3052473 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1257 3051339 3051408 3051557 "UP2" 3051745 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1256 3049806 3050543 3050820 "UNISEG" 3051097 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1255 3049021 3049148 3049353 "UNISEG2" 3049649 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1254 3048081 3048261 3048487 "UNIFACT" 3048837 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1253 3030833 3047393 3047635 "ULS" 3047897 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1252 3018463 3030737 3030809 "ULSCONS" 3030814 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1251 2999184 3011544 3011606 "ULSCCAT" 3012244 NIL ULSCCAT (NIL T T) -9 NIL 3012533 NIL) (-1250 2998234 2998479 2998867 "ULSCCAT-" 2998872 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1249 2987298 2993781 2993824 "ULSCAT" 2994687 NIL ULSCAT (NIL T) -9 NIL 2995418 NIL) (-1248 2986728 2986807 2986986 "ULS2" 2987213 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1247 2985847 2986357 2986464 "UINT8" 2986575 T UINT8 (NIL) -8 NIL NIL 2986660) (-1246 2984965 2985475 2985582 "UINT64" 2985693 T UINT64 (NIL) -8 NIL NIL 2985778) (-1245 2984083 2984593 2984700 "UINT32" 2984811 T UINT32 (NIL) -8 NIL NIL 2984896) (-1244 2983201 2983711 2983818 "UINT16" 2983929 T UINT16 (NIL) -8 NIL NIL 2984014) (-1243 2981490 2982447 2982477 "UFD" 2982689 T UFD (NIL) -9 NIL 2982803 NIL) (-1242 2981284 2981330 2981425 "UFD-" 2981430 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1241 2980366 2980549 2980765 "UDVO" 2981090 T UDVO (NIL) -7 NIL NIL NIL) (-1240 2978182 2978591 2979062 "UDPO" 2979930 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1239 2978115 2978120 2978150 "TYPE" 2978155 T TYPE (NIL) -9 NIL NIL NIL) (-1238 2977875 2978070 2978101 "TYPEAST" 2978106 T TYPEAST (NIL) -8 NIL NIL NIL) (-1237 2976846 2977048 2977288 "TWOFACT" 2977669 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1236 2975869 2976255 2976490 "TUPLE" 2976646 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1235 2973560 2974079 2974618 "TUBETOOL" 2975352 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1234 2972409 2972614 2972855 "TUBE" 2973353 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1233 2967138 2971381 2971664 "TS" 2972161 NIL TS (NIL T) -8 NIL NIL NIL) (-1232 2955778 2959897 2959994 "TSETCAT" 2965263 NIL TSETCAT (NIL T T T T) -9 NIL 2966794 NIL) (-1231 2950510 2952110 2954001 "TSETCAT-" 2954006 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1230 2945149 2945996 2946925 "TRMANIP" 2949646 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1229 2944590 2944653 2944816 "TRIMAT" 2945081 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1228 2942456 2942693 2943050 "TRIGMNIP" 2944339 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1227 2941976 2942089 2942119 "TRIGCAT" 2942332 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1226 2941645 2941724 2941865 "TRIGCAT-" 2941870 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1225 2938493 2940503 2940784 "TREE" 2941399 NIL TREE (NIL T) -8 NIL NIL NIL) (-1224 2937767 2938295 2938325 "TRANFUN" 2938360 T TRANFUN (NIL) -9 NIL 2938426 NIL) (-1223 2937046 2937237 2937517 "TRANFUN-" 2937522 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1222 2936850 2936882 2936943 "TOPSP" 2937007 T TOPSP (NIL) -7 NIL NIL NIL) (-1221 2936198 2936313 2936467 "TOOLSIGN" 2936731 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1220 2934832 2935375 2935614 "TEXTFILE" 2935981 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1219 2932744 2933285 2933714 "TEX" 2934425 T TEX (NIL) -8 NIL NIL NIL) (-1218 2932525 2932556 2932628 "TEX1" 2932707 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1217 2932173 2932236 2932326 "TEMUTL" 2932457 T TEMUTL (NIL) -7 NIL NIL NIL) (-1216 2930327 2930607 2930932 "TBCMPPK" 2931896 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1215 2922036 2928413 2928469 "TBAGG" 2928869 NIL TBAGG (NIL T T) -9 NIL 2929080 NIL) (-1214 2917106 2918594 2920348 "TBAGG-" 2920353 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1213 2916490 2916597 2916742 "TANEXP" 2916995 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1212 2916001 2916265 2916355 "TALGOP" 2916435 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1211 2909397 2915858 2915951 "TABLE" 2915956 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1210 2908809 2908908 2909046 "TABLEAU" 2909294 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1209 2903417 2904637 2905885 "TABLBUMP" 2907595 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1208 2902639 2902786 2902967 "SYSTEM" 2903258 T SYSTEM (NIL) -8 NIL NIL NIL) (-1207 2899098 2899797 2900580 "SYSSOLP" 2901890 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1206 2898896 2899053 2899084 "SYSPTR" 2899089 T SYSPTR (NIL) -8 NIL NIL NIL) (-1205 2897932 2898437 2898556 "SYSNNI" 2898742 NIL SYSNNI (NIL NIL) -8 NIL NIL 2898827) (-1204 2897231 2897690 2897769 "SYSINT" 2897829 NIL SYSINT (NIL NIL) -8 NIL NIL 2897874) (-1203 2893563 2894509 2895219 "SYNTAX" 2896543 T SYNTAX (NIL) -8 NIL NIL NIL) (-1202 2890721 2891323 2891955 "SYMTAB" 2892953 T SYMTAB (NIL) -8 NIL NIL NIL) (-1201 2885970 2886872 2887855 "SYMS" 2889760 T SYMS (NIL) -8 NIL NIL NIL) (-1200 2883205 2885428 2885658 "SYMPOLY" 2885775 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1199 2882722 2882797 2882920 "SYMFUNC" 2883117 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1198 2878742 2880034 2880847 "SYMBOL" 2881931 T SYMBOL (NIL) -8 NIL NIL NIL) (-1197 2872281 2873970 2875690 "SWITCH" 2877044 T SWITCH (NIL) -8 NIL NIL NIL) (-1196 2865625 2871237 2871531 "SUTS" 2872045 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1195 2857801 2865007 2865271 "SUPXS" 2865419 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1194 2849284 2857419 2857545 "SUP" 2857710 NIL SUP (NIL T) -8 NIL NIL NIL) (-1193 2848443 2848570 2848787 "SUPFRACF" 2849152 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1192 2848064 2848123 2848236 "SUP2" 2848378 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1191 2846512 2846786 2847142 "SUMRF" 2847763 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1190 2845847 2845913 2846105 "SUMFS" 2846433 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1189 2828634 2845159 2845401 "SULS" 2845663 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1188 2828236 2828456 2828526 "SUCHTAST" 2828586 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1187 2827531 2827761 2827901 "SUCH" 2828144 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1186 2821398 2822437 2823396 "SUBSPACE" 2826619 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1185 2820828 2820918 2821082 "SUBRESP" 2821286 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1184 2814196 2815493 2816804 "STTF" 2819564 NIL STTF (NIL T) -7 NIL NIL NIL) (-1183 2808369 2809489 2810636 "STTFNC" 2813096 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1182 2799682 2801551 2803345 "STTAYLOR" 2806610 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1181 2792818 2799546 2799629 "STRTBL" 2799634 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1180 2787779 2792527 2792626 "STRING" 2792741 T STRING (NIL) -8 NIL NIL NIL) (-1179 2780535 2785398 2786009 "STREAM" 2787203 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1178 2780045 2780122 2780266 "STREAM3" 2780452 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1177 2779027 2779210 2779445 "STREAM2" 2779858 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1176 2778715 2778767 2778860 "STREAM1" 2778969 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1175 2777731 2777912 2778143 "STINPROD" 2778531 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1174 2777269 2777479 2777509 "STEP" 2777589 T STEP (NIL) -9 NIL 2777667 NIL) (-1173 2776456 2776758 2776906 "STEPAST" 2777143 T STEPAST (NIL) -8 NIL NIL NIL) (-1172 2769894 2776355 2776432 "STBL" 2776437 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1171 2764964 2769057 2769100 "STAGG" 2769253 NIL STAGG (NIL T) -9 NIL 2769342 NIL) (-1170 2762666 2763268 2764140 "STAGG-" 2764145 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1169 2760816 2762436 2762528 "STACK" 2762609 NIL STACK (NIL T) -8 NIL NIL NIL) (-1168 2753511 2758957 2759413 "SREGSET" 2760446 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1167 2745936 2747305 2748818 "SRDCMPK" 2752117 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1166 2738773 2743295 2743325 "SRAGG" 2744628 T SRAGG (NIL) -9 NIL 2745236 NIL) (-1165 2737790 2738045 2738424 "SRAGG-" 2738429 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1164 2731974 2736737 2737158 "SQMATRIX" 2737416 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1163 2725662 2728692 2729419 "SPLTREE" 2731319 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1162 2721625 2722318 2722964 "SPLNODE" 2725088 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1161 2720672 2720905 2720935 "SPFCAT" 2721379 T SPFCAT (NIL) -9 NIL NIL NIL) (-1160 2719409 2719619 2719883 "SPECOUT" 2720430 T SPECOUT (NIL) -7 NIL NIL NIL) (-1159 2710505 2712377 2712407 "SPADXPT" 2717083 T SPADXPT (NIL) -9 NIL 2719247 NIL) (-1158 2710266 2710306 2710375 "SPADPRSR" 2710458 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1157 2708315 2710221 2710252 "SPADAST" 2710257 T SPADAST (NIL) -8 NIL NIL NIL) (-1156 2700246 2702019 2702062 "SPACEC" 2706435 NIL SPACEC (NIL T) -9 NIL 2708251 NIL) (-1155 2698376 2700178 2700227 "SPACE3" 2700232 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1154 2697128 2697299 2697590 "SORTPAK" 2698181 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1153 2695220 2695523 2695935 "SOLVETRA" 2696792 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1152 2694270 2694492 2694753 "SOLVESER" 2694993 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1151 2689574 2690462 2691457 "SOLVERAD" 2693322 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1150 2685389 2685998 2686727 "SOLVEFOR" 2688941 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1149 2679659 2684738 2684835 "SNTSCAT" 2684840 NIL SNTSCAT (NIL T T T T) -9 NIL 2684910 NIL) (-1148 2673765 2677982 2678373 "SMTS" 2679349 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1147 2668174 2673653 2673730 "SMP" 2673735 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1146 2666333 2666634 2667032 "SMITH" 2667871 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1145 2658437 2662912 2663015 "SMATCAT" 2664366 NIL SMATCAT (NIL NIL T T T) -9 NIL 2664916 NIL) (-1144 2655377 2656200 2657378 "SMATCAT-" 2657383 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1143 2653018 2654585 2654628 "SKAGG" 2654889 NIL SKAGG (NIL T) -9 NIL 2655024 NIL) (-1142 2649208 2652491 2652675 "SINT" 2652827 T SINT (NIL) -8 NIL NIL 2652989) (-1141 2648980 2649018 2649084 "SIMPAN" 2649164 T SIMPAN (NIL) -7 NIL NIL NIL) (-1140 2648259 2648515 2648655 "SIG" 2648862 T SIG (NIL) -8 NIL NIL NIL) (-1139 2647097 2647318 2647593 "SIGNRF" 2648018 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1138 2645930 2646081 2646365 "SIGNEF" 2646926 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1137 2645236 2645513 2645637 "SIGAST" 2645828 T SIGAST (NIL) -8 NIL NIL NIL) (-1136 2642926 2643380 2643886 "SHP" 2644777 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1135 2636755 2642827 2642903 "SHDP" 2642908 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1134 2636314 2636506 2636536 "SGROUP" 2636629 T SGROUP (NIL) -9 NIL 2636691 NIL) (-1133 2636172 2636198 2636271 "SGROUP-" 2636276 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1132 2632963 2633661 2634384 "SGCF" 2635471 T SGCF (NIL) -7 NIL NIL NIL) (-1131 2627331 2632410 2632507 "SFRTCAT" 2632512 NIL SFRTCAT (NIL T T T T) -9 NIL 2632551 NIL) (-1130 2620752 2621770 2622906 "SFRGCD" 2626314 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1129 2613878 2614951 2616137 "SFQCMPK" 2619685 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1128 2613498 2613587 2613698 "SFORT" 2613819 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1127 2612616 2613338 2613459 "SEXOF" 2613464 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1126 2611723 2612497 2612565 "SEX" 2612570 T SEX (NIL) -8 NIL NIL NIL) (-1125 2607504 2608219 2608314 "SEXCAT" 2610936 NIL SEXCAT (NIL T T T T T) -9 NIL 2611496 NIL) (-1124 2604657 2607438 2607486 "SET" 2607491 NIL SET (NIL T) -8 NIL NIL NIL) (-1123 2602881 2603370 2603675 "SETMN" 2604398 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1122 2602447 2602599 2602629 "SETCAT" 2602746 T SETCAT (NIL) -9 NIL 2602831 NIL) (-1121 2602227 2602279 2602378 "SETCAT-" 2602383 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1120 2598588 2600688 2600731 "SETAGG" 2601601 NIL SETAGG (NIL T) -9 NIL 2601941 NIL) (-1119 2598046 2598162 2598399 "SETAGG-" 2598404 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1118 2597489 2597742 2597843 "SEQAST" 2597967 T SEQAST (NIL) -8 NIL NIL NIL) (-1117 2596688 2596982 2597043 "SEGXCAT" 2597329 NIL SEGXCAT (NIL T T) -9 NIL 2597449 NIL) (-1116 2595694 2596354 2596536 "SEG" 2596541 NIL SEG (NIL T) -8 NIL NIL NIL) (-1115 2594673 2594887 2594930 "SEGCAT" 2595452 NIL SEGCAT (NIL T) -9 NIL 2595673 NIL) (-1114 2593605 2594036 2594244 "SEGBIND" 2594500 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1113 2593226 2593285 2593398 "SEGBIND2" 2593540 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1112 2592799 2593027 2593104 "SEGAST" 2593171 T SEGAST (NIL) -8 NIL NIL NIL) (-1111 2592018 2592144 2592348 "SEG2" 2592643 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1110 2591389 2591953 2592000 "SDVAR" 2592005 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1109 2583640 2591159 2591289 "SDPOL" 2591294 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1108 2582233 2582499 2582818 "SCPKG" 2583355 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1107 2581397 2581569 2581761 "SCOPE" 2582063 T SCOPE (NIL) -8 NIL NIL NIL) (-1106 2580617 2580751 2580930 "SCACHE" 2581252 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1105 2580249 2580435 2580465 "SASTCAT" 2580470 T SASTCAT (NIL) -9 NIL 2580483 NIL) (-1104 2579736 2580084 2580160 "SAOS" 2580195 T SAOS (NIL) -8 NIL NIL NIL) (-1103 2579301 2579336 2579509 "SAERFFC" 2579695 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1102 2572964 2579198 2579278 "SAE" 2579283 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1101 2572557 2572592 2572751 "SAEFACT" 2572923 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1100 2570878 2571192 2571593 "RURPK" 2572223 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1099 2569515 2569821 2570126 "RULESET" 2570712 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1098 2566738 2567268 2567726 "RULE" 2569196 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1097 2566350 2566532 2566615 "RULECOLD" 2566690 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1096 2566140 2566168 2566239 "RTVALUE" 2566301 T RTVALUE (NIL) -8 NIL NIL NIL) (-1095 2565611 2565857 2565951 "RSTRCAST" 2566068 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1094 2560459 2561254 2562174 "RSETGCD" 2564810 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1093 2549689 2554768 2554865 "RSETCAT" 2558984 NIL RSETCAT (NIL T T T T) -9 NIL 2560081 NIL) (-1092 2547616 2548155 2548979 "RSETCAT-" 2548984 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1091 2540002 2541378 2542898 "RSDCMPK" 2546215 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1090 2537967 2538434 2538508 "RRCC" 2539594 NIL RRCC (NIL T T) -9 NIL 2539938 NIL) (-1089 2537318 2537492 2537771 "RRCC-" 2537776 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1088 2536761 2537014 2537115 "RPTAST" 2537239 T RPTAST (NIL) -8 NIL NIL NIL) (-1087 2510237 2519873 2519940 "RPOLCAT" 2530606 NIL RPOLCAT (NIL T T T) -9 NIL 2533766 NIL) (-1086 2501735 2504075 2507197 "RPOLCAT-" 2507202 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1085 2492672 2499946 2500428 "ROUTINE" 2501275 T ROUTINE (NIL) -8 NIL NIL NIL) (-1084 2489333 2492298 2492438 "ROMAN" 2492554 T ROMAN (NIL) -8 NIL NIL NIL) (-1083 2487577 2488193 2488453 "ROIRC" 2489138 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1082 2483781 2486066 2486096 "RNS" 2486400 T RNS (NIL) -9 NIL 2486674 NIL) (-1081 2482290 2482673 2483207 "RNS-" 2483282 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1080 2481679 2482087 2482117 "RNG" 2482122 T RNG (NIL) -9 NIL 2482143 NIL) (-1079 2480682 2481044 2481246 "RNGBIND" 2481530 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1078 2480067 2480455 2480498 "RMODULE" 2480503 NIL RMODULE (NIL T) -9 NIL 2480530 NIL) (-1077 2478903 2478997 2479333 "RMCAT2" 2479968 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1076 2475753 2478249 2478546 "RMATRIX" 2478665 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1075 2468580 2470840 2470955 "RMATCAT" 2474314 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2475296 NIL) (-1074 2467955 2468102 2468409 "RMATCAT-" 2468414 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1073 2467570 2467742 2467785 "RLINSET" 2467847 NIL RLINSET (NIL T) -9 NIL 2467891 NIL) (-1072 2467137 2467212 2467340 "RINTERP" 2467489 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1071 2466181 2466735 2466765 "RING" 2466821 T RING (NIL) -9 NIL 2466913 NIL) (-1070 2465973 2466017 2466114 "RING-" 2466119 NIL RING- (NIL T) -8 NIL NIL NIL) (-1069 2464814 2465051 2465309 "RIDIST" 2465737 T RIDIST (NIL) -7 NIL NIL NIL) (-1068 2456103 2464282 2464488 "RGCHAIN" 2464662 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1067 2455439 2455845 2455886 "RGBCSPC" 2455944 NIL RGBCSPC (NIL T) -9 NIL 2455996 NIL) (-1066 2454583 2454964 2455005 "RGBCMDL" 2455237 NIL RGBCMDL (NIL T) -9 NIL 2455351 NIL) (-1065 2451577 2452191 2452861 "RF" 2453947 NIL RF (NIL T) -7 NIL NIL NIL) (-1064 2451223 2451286 2451389 "RFFACTOR" 2451508 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1063 2450948 2450983 2451080 "RFFACT" 2451182 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1062 2449065 2449429 2449811 "RFDIST" 2450588 T RFDIST (NIL) -7 NIL NIL NIL) (-1061 2448518 2448610 2448773 "RETSOL" 2448967 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1060 2448154 2448234 2448277 "RETRACT" 2448410 NIL RETRACT (NIL T) -9 NIL 2448497 NIL) (-1059 2448003 2448028 2448115 "RETRACT-" 2448120 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1058 2447605 2447825 2447895 "RETAST" 2447955 T RETAST (NIL) -8 NIL NIL NIL) (-1057 2440349 2447258 2447385 "RESULT" 2447500 T RESULT (NIL) -8 NIL NIL NIL) (-1056 2438940 2439618 2439817 "RESRING" 2440252 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1055 2438576 2438625 2438723 "RESLATC" 2438877 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1054 2438281 2438316 2438423 "REPSQ" 2438535 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1053 2435703 2436283 2436885 "REP" 2437701 T REP (NIL) -7 NIL NIL NIL) (-1052 2435400 2435435 2435546 "REPDB" 2435662 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1051 2429300 2430689 2431912 "REP2" 2434212 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1050 2425677 2426358 2427166 "REP1" 2428527 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1049 2418373 2423818 2424274 "REGSET" 2425307 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1048 2417138 2417521 2417771 "REF" 2418158 NIL REF (NIL T) -8 NIL NIL NIL) (-1047 2416515 2416618 2416785 "REDORDER" 2417022 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1046 2412483 2415728 2415955 "RECLOS" 2416343 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1045 2411535 2411716 2411931 "REALSOLV" 2412290 T REALSOLV (NIL) -7 NIL NIL NIL) (-1044 2411381 2411422 2411452 "REAL" 2411457 T REAL (NIL) -9 NIL 2411492 NIL) (-1043 2407864 2408666 2409550 "REAL0Q" 2410546 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1042 2403465 2404453 2405514 "REAL0" 2406845 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1041 2402936 2403182 2403276 "RDUCEAST" 2403393 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1040 2402341 2402413 2402620 "RDIV" 2402858 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1039 2401409 2401583 2401796 "RDIST" 2402163 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1038 2400006 2400293 2400665 "RDETRS" 2401117 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1037 2397818 2398272 2398810 "RDETR" 2399548 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1036 2396443 2396721 2397118 "RDEEFS" 2397534 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1035 2394952 2395258 2395683 "RDEEF" 2396131 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1034 2388985 2391906 2391936 "RCFIELD" 2393231 T RCFIELD (NIL) -9 NIL 2393962 NIL) (-1033 2387049 2387553 2388249 "RCFIELD-" 2388324 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1032 2383293 2385122 2385165 "RCAGG" 2386249 NIL RCAGG (NIL T) -9 NIL 2386714 NIL) (-1031 2382921 2383015 2383178 "RCAGG-" 2383183 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1030 2382256 2382368 2382533 "RATRET" 2382805 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1029 2381809 2381876 2381997 "RATFACT" 2382184 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1028 2381117 2381237 2381389 "RANDSRC" 2381679 T RANDSRC (NIL) -7 NIL NIL NIL) (-1027 2380851 2380895 2380968 "RADUTIL" 2381066 T RADUTIL (NIL) -7 NIL NIL NIL) (-1026 2373679 2379682 2379993 "RADIX" 2380574 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1025 2364139 2373521 2373651 "RADFF" 2373656 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1024 2363786 2363861 2363891 "RADCAT" 2364051 T RADCAT (NIL) -9 NIL NIL NIL) (-1023 2363568 2363616 2363716 "RADCAT-" 2363721 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1022 2361669 2363338 2363430 "QUEUE" 2363511 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1021 2357930 2361602 2361650 "QUAT" 2361655 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1020 2357561 2357604 2357735 "QUATCT2" 2357881 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1019 2350359 2353984 2354026 "QUATCAT" 2354817 NIL QUATCAT (NIL T) -9 NIL 2355583 NIL) (-1018 2346498 2347535 2348925 "QUATCAT-" 2349021 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1017 2343938 2345546 2345589 "QUAGG" 2345970 NIL QUAGG (NIL T) -9 NIL 2346145 NIL) (-1016 2343540 2343760 2343830 "QQUTAST" 2343890 T QQUTAST (NIL) -8 NIL NIL NIL) (-1015 2342553 2343053 2343218 "QFORM" 2343421 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1014 2332885 2338400 2338442 "QFCAT" 2339110 NIL QFCAT (NIL T) -9 NIL 2340111 NIL) (-1013 2328452 2329653 2331247 "QFCAT-" 2331343 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1012 2328083 2328126 2328257 "QFCAT2" 2328403 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1011 2327538 2327648 2327780 "QEQUAT" 2327973 T QEQUAT (NIL) -8 NIL NIL NIL) (-1010 2320664 2321737 2322923 "QCMPACK" 2326471 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1009 2318202 2318650 2319080 "QALGSET" 2320319 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1008 2317437 2317613 2317849 "QALGSET2" 2318020 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1007 2316122 2316346 2316665 "PWFFINTB" 2317210 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1006 2314297 2314465 2314821 "PUSHVAR" 2315936 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1005 2310186 2311240 2311283 "PTRANFN" 2313194 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1004 2308577 2308868 2309192 "PTPACK" 2309897 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1003 2308206 2308263 2308374 "PTFUNC2" 2308514 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1002 2302601 2306995 2307038 "PTCAT" 2307338 NIL PTCAT (NIL T) -9 NIL 2307491 NIL) (-1001 2302256 2302291 2302417 "PSQFR" 2302560 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-1000 2300846 2301144 2301480 "PSEUDLIN" 2301954 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-999 2287609 2289980 2292304 "PSETPK" 2298606 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-998 2280627 2283367 2283463 "PSETCAT" 2286484 NIL PSETCAT (NIL T T T T) -9 NIL 2287298 NIL) (-997 2278463 2279097 2279918 "PSETCAT-" 2279923 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-996 2277812 2277977 2278005 "PSCURVE" 2278273 T PSCURVE (NIL) -9 NIL 2278440 NIL) (-995 2273796 2275312 2275377 "PSCAT" 2276221 NIL PSCAT (NIL T T T) -9 NIL 2276461 NIL) (-994 2272859 2273075 2273475 "PSCAT-" 2273480 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-993 2271218 2271928 2272191 "PRTITION" 2272616 T PRTITION (NIL) -8 NIL NIL NIL) (-992 2270693 2270939 2271031 "PRTDAST" 2271146 T PRTDAST (NIL) -8 NIL NIL NIL) (-991 2259783 2261997 2264185 "PRS" 2268555 NIL PRS (NIL T T) -7 NIL NIL NIL) (-990 2257569 2259105 2259145 "PRQAGG" 2259328 NIL PRQAGG (NIL T) -9 NIL 2259430 NIL) (-989 2256905 2257210 2257238 "PROPLOG" 2257377 T PROPLOG (NIL) -9 NIL 2257492 NIL) (-988 2256509 2256566 2256689 "PROPFUN2" 2256828 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-987 2255824 2255945 2256117 "PROPFUN1" 2256370 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-986 2254005 2254571 2254868 "PROPFRML" 2255560 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-985 2253474 2253581 2253709 "PROPERTY" 2253897 T PROPERTY (NIL) -8 NIL NIL NIL) (-984 2247532 2251640 2252460 "PRODUCT" 2252700 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-983 2244810 2246990 2247224 "PR" 2247343 NIL PR (NIL T T) -8 NIL NIL NIL) (-982 2244606 2244638 2244697 "PRINT" 2244771 T PRINT (NIL) -7 NIL NIL NIL) (-981 2243946 2244063 2244215 "PRIMES" 2244486 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-980 2242011 2242412 2242878 "PRIMELT" 2243525 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-979 2241740 2241789 2241817 "PRIMCAT" 2241941 T PRIMCAT (NIL) -9 NIL NIL NIL) (-978 2237858 2241678 2241723 "PRIMARR" 2241728 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-977 2236865 2237043 2237271 "PRIMARR2" 2237676 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-976 2236508 2236564 2236675 "PREASSOC" 2236803 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-975 2235983 2236116 2236144 "PPCURVE" 2236349 T PPCURVE (NIL) -9 NIL 2236485 NIL) (-974 2235578 2235778 2235861 "PORTNUM" 2235920 T PORTNUM (NIL) -8 NIL NIL NIL) (-973 2232937 2233336 2233928 "POLYROOT" 2235159 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-972 2226843 2232541 2232701 "POLY" 2232810 NIL POLY (NIL T) -8 NIL NIL NIL) (-971 2226226 2226284 2226518 "POLYLIFT" 2226779 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-970 2222501 2222950 2223579 "POLYCATQ" 2225771 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-969 2208843 2214248 2214313 "POLYCAT" 2217827 NIL POLYCAT (NIL T T T) -9 NIL 2219705 NIL) (-968 2202292 2204154 2206538 "POLYCAT-" 2206543 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-967 2201879 2201947 2202067 "POLY2UP" 2202218 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-966 2201511 2201568 2201677 "POLY2" 2201816 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-965 2200196 2200435 2200711 "POLUTIL" 2201285 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-964 2198551 2198828 2199159 "POLTOPOL" 2199918 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-963 2194017 2198485 2198532 "POINT" 2198537 NIL POINT (NIL T) -8 NIL NIL NIL) (-962 2192204 2192561 2192936 "PNTHEORY" 2193662 T PNTHEORY (NIL) -7 NIL NIL NIL) (-961 2190662 2190959 2191358 "PMTOOLS" 2191902 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-960 2190255 2190333 2190450 "PMSYM" 2190578 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-959 2189763 2189832 2190007 "PMQFCAT" 2190180 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-958 2189118 2189228 2189384 "PMPRED" 2189640 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-957 2188511 2188597 2188759 "PMPREDFS" 2189019 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-956 2187175 2187383 2187761 "PMPLCAT" 2188273 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-955 2186707 2186786 2186938 "PMLSAGG" 2187090 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-954 2186180 2186256 2186438 "PMKERNEL" 2186625 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-953 2185797 2185872 2185985 "PMINS" 2186099 NIL PMINS (NIL T) -7 NIL NIL NIL) (-952 2185239 2185308 2185517 "PMFS" 2185722 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-951 2184467 2184585 2184790 "PMDOWN" 2185116 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-950 2183634 2183792 2183973 "PMASS" 2184306 T PMASS (NIL) -7 NIL NIL NIL) (-949 2182907 2183017 2183180 "PMASSFS" 2183521 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-948 2182562 2182630 2182724 "PLOTTOOL" 2182833 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-947 2177169 2178373 2179521 "PLOT" 2181434 T PLOT (NIL) -8 NIL NIL NIL) (-946 2172973 2174017 2174938 "PLOT3D" 2176268 T PLOT3D (NIL) -8 NIL NIL NIL) (-945 2171885 2172062 2172297 "PLOT1" 2172777 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-944 2147276 2151951 2156802 "PLEQN" 2167151 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-943 2146594 2146716 2146896 "PINTERP" 2147141 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-942 2146287 2146334 2146437 "PINTERPA" 2146541 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-941 2145503 2146051 2146138 "PI" 2146178 T PI (NIL) -8 NIL NIL 2146245) (-940 2143786 2144761 2144789 "PID" 2144971 T PID (NIL) -9 NIL 2145105 NIL) (-939 2143537 2143574 2143649 "PICOERCE" 2143743 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-938 2142857 2142996 2143172 "PGROEB" 2143393 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-937 2138444 2139258 2140163 "PGE" 2141972 T PGE (NIL) -7 NIL NIL NIL) (-936 2136567 2136814 2137180 "PGCD" 2138161 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-935 2135905 2136008 2136169 "PFRPAC" 2136451 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-934 2132545 2134453 2134806 "PFR" 2135584 NIL PFR (NIL T) -8 NIL NIL NIL) (-933 2130934 2131178 2131503 "PFOTOOLS" 2132292 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-932 2129467 2129706 2130057 "PFOQ" 2130691 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-931 2127968 2128180 2128536 "PFO" 2129251 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-930 2124521 2127857 2127926 "PF" 2127931 NIL PF (NIL NIL) -8 NIL NIL NIL) (-929 2121841 2123112 2123140 "PFECAT" 2123725 T PFECAT (NIL) -9 NIL 2124109 NIL) (-928 2121286 2121440 2121654 "PFECAT-" 2121659 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-927 2119889 2120141 2120442 "PFBRU" 2121035 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-926 2117755 2118107 2118539 "PFBR" 2119540 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-925 2113801 2115267 2115914 "PERM" 2117141 NIL PERM (NIL T) -8 NIL NIL NIL) (-924 2109035 2110008 2110878 "PERMGRP" 2112964 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-923 2107099 2108059 2108100 "PERMCAT" 2108500 NIL PERMCAT (NIL T) -9 NIL 2108798 NIL) (-922 2106752 2106793 2106917 "PERMAN" 2107052 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-921 2104243 2106417 2106539 "PENDTREE" 2106663 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-920 2103172 2103387 2103428 "PDSPC" 2103961 NIL PDSPC (NIL T) -9 NIL 2104206 NIL) (-919 2102275 2102493 2102855 "PDSPC-" 2102860 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-918 2101157 2101925 2101966 "PDRING" 2101971 NIL PDRING (NIL T) -9 NIL 2101999 NIL) (-917 2100044 2100662 2100716 "PDMOD" 2100721 NIL PDMOD (NIL T T) -9 NIL 2100825 NIL) (-916 2097259 2098037 2098705 "PDEPROB" 2099396 T PDEPROB (NIL) -8 NIL NIL NIL) (-915 2094804 2095308 2095863 "PDEPACK" 2096724 T PDEPACK (NIL) -7 NIL NIL NIL) (-914 2093716 2093906 2094157 "PDECOMP" 2094603 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-913 2091281 2092124 2092152 "PDECAT" 2092939 T PDECAT (NIL) -9 NIL 2093652 NIL) (-912 2090910 2090965 2091019 "PDDOM" 2091184 NIL PDDOM (NIL T T) -9 NIL 2091264 NIL) (-911 2090729 2090759 2090866 "PDDOM-" 2090871 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-910 2090480 2090513 2090603 "PCOMP" 2090690 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-909 2088658 2089281 2089578 "PBWLB" 2090209 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-908 2081131 2082731 2084069 "PATTERN" 2087341 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-907 2080763 2080820 2080929 "PATTERN2" 2081068 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-906 2078520 2078908 2079365 "PATTERN1" 2080352 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-905 2075888 2076469 2076950 "PATRES" 2078085 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-904 2075452 2075519 2075651 "PATRES2" 2075815 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-903 2073335 2073740 2074147 "PATMATCH" 2075119 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-902 2072831 2073040 2073081 "PATMAB" 2073188 NIL PATMAB (NIL T) -9 NIL 2073271 NIL) (-901 2071349 2071685 2071943 "PATLRES" 2072636 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-900 2070895 2071018 2071059 "PATAB" 2071064 NIL PATAB (NIL T) -9 NIL 2071236 NIL) (-899 2069077 2069472 2069895 "PARTPERM" 2070492 T PARTPERM (NIL) -7 NIL NIL NIL) (-898 2068698 2068761 2068863 "PARSURF" 2069008 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-897 2068330 2068387 2068496 "PARSU2" 2068635 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-896 2068094 2068134 2068201 "PARSER" 2068283 T PARSER (NIL) -7 NIL NIL NIL) (-895 2067715 2067778 2067880 "PARSCURV" 2068025 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-894 2067347 2067404 2067513 "PARSC2" 2067652 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-893 2066986 2067044 2067141 "PARPCURV" 2067283 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-892 2066618 2066675 2066784 "PARPC2" 2066923 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-891 2065679 2065991 2066173 "PARAMAST" 2066456 T PARAMAST (NIL) -8 NIL NIL NIL) (-890 2065199 2065285 2065404 "PAN2EXPR" 2065580 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-889 2063976 2064320 2064548 "PALETTE" 2064991 T PALETTE (NIL) -8 NIL NIL NIL) (-888 2062369 2062981 2063341 "PAIR" 2063662 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-887 2055961 2061626 2061821 "PADICRC" 2062223 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-886 2048877 2055305 2055490 "PADICRAT" 2055808 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-885 2047192 2048814 2048859 "PADIC" 2048864 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-884 2044288 2045852 2045892 "PADICCT" 2046473 NIL PADICCT (NIL NIL) -9 NIL 2046755 NIL) (-883 2043245 2043445 2043713 "PADEPAC" 2044075 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-882 2042457 2042590 2042796 "PADE" 2043107 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-881 2040844 2041665 2041945 "OWP" 2042261 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-880 2040337 2040550 2040647 "OVERSET" 2040767 T OVERSET (NIL) -8 NIL NIL NIL) (-879 2039383 2039942 2040114 "OVAR" 2040205 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-878 2038647 2038768 2038929 "OUT" 2039242 T OUT (NIL) -7 NIL NIL NIL) (-877 2027519 2029756 2031956 "OUTFORM" 2036467 T OUTFORM (NIL) -8 NIL NIL NIL) (-876 2026855 2027116 2027243 "OUTBFILE" 2027412 T OUTBFILE (NIL) -8 NIL NIL NIL) (-875 2026162 2026327 2026355 "OUTBCON" 2026673 T OUTBCON (NIL) -9 NIL 2026839 NIL) (-874 2025763 2025875 2026032 "OUTBCON-" 2026037 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-873 2025143 2025492 2025581 "OSI" 2025694 T OSI (NIL) -8 NIL NIL NIL) (-872 2024646 2024984 2025012 "OSGROUP" 2025017 T OSGROUP (NIL) -9 NIL 2025039 NIL) (-871 2023391 2023618 2023903 "ORTHPOL" 2024393 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-870 2020942 2023226 2023347 "OREUP" 2023352 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-869 2018345 2020633 2020760 "ORESUP" 2020884 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-868 2015873 2016373 2016934 "OREPCTO" 2017834 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-867 2009545 2011746 2011787 "OREPCAT" 2014135 NIL OREPCAT (NIL T) -9 NIL 2015239 NIL) (-866 2006692 2007474 2008532 "OREPCAT-" 2008537 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-865 2005939 2006162 2006190 "ORDTYPE" 2006499 T ORDTYPE (NIL) -9 NIL 2006662 NIL) (-864 2005282 2005456 2005711 "ORDTYPE-" 2005716 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-863 2004708 2005021 2005179 "ORDSTRCT" 2005184 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-862 2004278 2004576 2004604 "ORDSET" 2004609 T ORDSET (NIL) -9 NIL 2004631 NIL) (-861 2002816 2003607 2003635 "ORDRING" 2003837 T ORDRING (NIL) -9 NIL 2003962 NIL) (-860 2002461 2002555 2002699 "ORDRING-" 2002704 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-859 2001814 2002277 2002305 "ORDMON" 2002310 T ORDMON (NIL) -9 NIL 2002331 NIL) (-858 2000976 2001123 2001318 "ORDFUNS" 2001663 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-857 2000287 2000706 2000734 "ORDFIN" 2000799 T ORDFIN (NIL) -9 NIL 2000873 NIL) (-856 1996846 1998873 1999282 "ORDCOMP" 1999911 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-855 1996112 1996239 1996425 "ORDCOMP2" 1996706 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-854 1992693 1993603 1994417 "OPTPROB" 1995318 T OPTPROB (NIL) -8 NIL NIL NIL) (-853 1989495 1990134 1990838 "OPTPACK" 1992009 T OPTPACK (NIL) -7 NIL NIL NIL) (-852 1987168 1987934 1987962 "OPTCAT" 1988781 T OPTCAT (NIL) -9 NIL 1989431 NIL) (-851 1986552 1986845 1986950 "OPSIG" 1987083 T OPSIG (NIL) -8 NIL NIL NIL) (-850 1986320 1986359 1986425 "OPQUERY" 1986506 T OPQUERY (NIL) -7 NIL NIL NIL) (-849 1983451 1984631 1985135 "OP" 1985849 NIL OP (NIL T) -8 NIL NIL NIL) (-848 1982811 1983037 1983078 "OPERCAT" 1983290 NIL OPERCAT (NIL T) -9 NIL 1983387 NIL) (-847 1982566 1982622 1982739 "OPERCAT-" 1982744 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-846 1979379 1981363 1981732 "ONECOMP" 1982230 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-845 1978684 1978799 1978973 "ONECOMP2" 1979251 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-844 1978103 1978209 1978339 "OMSERVER" 1978574 T OMSERVER (NIL) -7 NIL NIL NIL) (-843 1974965 1977543 1977583 "OMSAGG" 1977644 NIL OMSAGG (NIL T) -9 NIL 1977708 NIL) (-842 1973588 1973851 1974133 "OMPKG" 1974703 T OMPKG (NIL) -7 NIL NIL NIL) (-841 1973018 1973121 1973149 "OM" 1973448 T OM (NIL) -9 NIL NIL NIL) (-840 1971565 1972567 1972736 "OMLO" 1972899 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-839 1970525 1970672 1970892 "OMEXPR" 1971391 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-838 1969816 1970071 1970207 "OMERR" 1970409 T OMERR (NIL) -8 NIL NIL NIL) (-837 1968967 1969237 1969397 "OMERRK" 1969676 T OMERRK (NIL) -8 NIL NIL NIL) (-836 1968418 1968644 1968752 "OMENC" 1968879 T OMENC (NIL) -8 NIL NIL NIL) (-835 1962313 1963498 1964669 "OMDEV" 1967267 T OMDEV (NIL) -8 NIL NIL NIL) (-834 1961382 1961553 1961747 "OMCONN" 1962139 T OMCONN (NIL) -8 NIL NIL NIL) (-833 1959876 1960852 1960880 "OINTDOM" 1960885 T OINTDOM (NIL) -9 NIL 1960906 NIL) (-832 1957214 1958564 1958901 "OFMONOID" 1959571 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-831 1956586 1957151 1957196 "ODVAR" 1957201 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-830 1954009 1956331 1956486 "ODR" 1956491 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-829 1946314 1953785 1953911 "ODPOL" 1953916 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-828 1940113 1946186 1946291 "ODP" 1946296 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-827 1938879 1939094 1939369 "ODETOOLS" 1939887 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-826 1935846 1936504 1937220 "ODESYS" 1938212 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-825 1930728 1931636 1932661 "ODERTRIC" 1934921 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-824 1930154 1930236 1930430 "ODERED" 1930640 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-823 1927042 1927590 1928267 "ODERAT" 1929577 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-822 1924001 1924466 1925063 "ODEPRRIC" 1926571 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-821 1921944 1922540 1923026 "ODEPROB" 1923535 T ODEPROB (NIL) -8 NIL NIL NIL) (-820 1918464 1918949 1919596 "ODEPRIM" 1921423 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-819 1917713 1917815 1918075 "ODEPAL" 1918356 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-818 1913875 1914666 1915530 "ODEPACK" 1916869 T ODEPACK (NIL) -7 NIL NIL NIL) (-817 1912936 1913043 1913265 "ODEINT" 1913764 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-816 1907037 1908462 1909909 "ODEIFTBL" 1911509 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-815 1902435 1903221 1904173 "ODEEF" 1906196 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-814 1901784 1901873 1902096 "ODECONST" 1902340 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-813 1899895 1900556 1900584 "ODECAT" 1901189 T ODECAT (NIL) -9 NIL 1901720 NIL) (-812 1896750 1899600 1899722 "OCT" 1899805 NIL OCT (NIL T) -8 NIL NIL NIL) (-811 1896388 1896431 1896558 "OCTCT2" 1896701 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-810 1890995 1893431 1893471 "OC" 1894568 NIL OC (NIL T) -9 NIL 1895426 NIL) (-809 1888222 1888970 1889960 "OC-" 1890054 NIL OC- (NIL T T) -8 NIL NIL NIL) (-808 1887547 1888015 1888043 "OCAMON" 1888048 T OCAMON (NIL) -9 NIL 1888069 NIL) (-807 1887051 1887392 1887420 "OASGP" 1887425 T OASGP (NIL) -9 NIL 1887445 NIL) (-806 1886285 1886774 1886802 "OAMONS" 1886842 T OAMONS (NIL) -9 NIL 1886885 NIL) (-805 1885672 1886105 1886133 "OAMON" 1886138 T OAMON (NIL) -9 NIL 1886158 NIL) (-804 1884903 1885421 1885449 "OAGROUP" 1885454 T OAGROUP (NIL) -9 NIL 1885474 NIL) (-803 1884593 1884643 1884731 "NUMTUBE" 1884847 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-802 1878166 1879684 1881220 "NUMQUAD" 1883077 T NUMQUAD (NIL) -7 NIL NIL NIL) (-801 1873922 1874910 1875935 "NUMODE" 1877161 T NUMODE (NIL) -7 NIL NIL NIL) (-800 1871263 1872143 1872171 "NUMINT" 1873094 T NUMINT (NIL) -9 NIL 1873858 NIL) (-799 1870211 1870408 1870626 "NUMFMT" 1871065 T NUMFMT (NIL) -7 NIL NIL NIL) (-798 1856570 1859515 1862047 "NUMERIC" 1867718 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-797 1850940 1856019 1856114 "NTSCAT" 1856119 NIL NTSCAT (NIL T T T T) -9 NIL 1856158 NIL) (-796 1850134 1850299 1850492 "NTPOLFN" 1850779 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-795 1837935 1846959 1847771 "NSUP" 1849355 NIL NSUP (NIL T) -8 NIL NIL NIL) (-794 1837567 1837624 1837733 "NSUP2" 1837872 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-793 1827517 1837341 1837474 "NSMP" 1837479 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-792 1825949 1826250 1826607 "NREP" 1827205 NIL NREP (NIL T) -7 NIL NIL NIL) (-791 1824540 1824792 1825150 "NPCOEF" 1825692 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-790 1823606 1823721 1823937 "NORMRETR" 1824421 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-789 1821647 1821937 1822346 "NORMPK" 1823314 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-788 1821332 1821360 1821484 "NORMMA" 1821613 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-787 1821132 1821289 1821318 "NONE" 1821323 T NONE (NIL) -8 NIL NIL NIL) (-786 1820921 1820950 1821019 "NONE1" 1821096 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-785 1820418 1820480 1820659 "NODE1" 1820853 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-784 1818699 1819550 1819805 "NNI" 1820152 T NNI (NIL) -8 NIL NIL 1820387) (-783 1817119 1817432 1817796 "NLINSOL" 1818367 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-782 1813360 1814355 1815254 "NIPROB" 1816240 T NIPROB (NIL) -8 NIL NIL NIL) (-781 1812117 1812351 1812653 "NFINTBAS" 1813122 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-780 1811291 1811767 1811808 "NETCLT" 1811980 NIL NETCLT (NIL T) -9 NIL 1812062 NIL) (-779 1809999 1810230 1810511 "NCODIV" 1811059 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-778 1809761 1809798 1809873 "NCNTFRAC" 1809956 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-777 1807941 1808305 1808725 "NCEP" 1809386 NIL NCEP (NIL T) -7 NIL NIL NIL) (-776 1806778 1807551 1807579 "NASRING" 1807689 T NASRING (NIL) -9 NIL 1807769 NIL) (-775 1806573 1806617 1806711 "NASRING-" 1806716 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-774 1805666 1806191 1806219 "NARNG" 1806336 T NARNG (NIL) -9 NIL 1806427 NIL) (-773 1805358 1805425 1805559 "NARNG-" 1805564 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-772 1804237 1804444 1804679 "NAGSP" 1805143 T NAGSP (NIL) -7 NIL NIL NIL) (-771 1795509 1797193 1798866 "NAGS" 1802584 T NAGS (NIL) -7 NIL NIL NIL) (-770 1794057 1794365 1794696 "NAGF07" 1795198 T NAGF07 (NIL) -7 NIL NIL NIL) (-769 1788595 1789886 1791193 "NAGF04" 1792770 T NAGF04 (NIL) -7 NIL NIL NIL) (-768 1781563 1783177 1784810 "NAGF02" 1786982 T NAGF02 (NIL) -7 NIL NIL NIL) (-767 1776787 1777887 1779004 "NAGF01" 1780466 T NAGF01 (NIL) -7 NIL NIL NIL) (-766 1770415 1771981 1773566 "NAGE04" 1775222 T NAGE04 (NIL) -7 NIL NIL NIL) (-765 1761584 1763705 1765835 "NAGE02" 1768305 T NAGE02 (NIL) -7 NIL NIL NIL) (-764 1757537 1758484 1759448 "NAGE01" 1760640 T NAGE01 (NIL) -7 NIL NIL NIL) (-763 1755332 1755866 1756424 "NAGD03" 1756999 T NAGD03 (NIL) -7 NIL NIL NIL) (-762 1747082 1749010 1750964 "NAGD02" 1753398 T NAGD02 (NIL) -7 NIL NIL NIL) (-761 1740893 1742318 1743758 "NAGD01" 1745662 T NAGD01 (NIL) -7 NIL NIL NIL) (-760 1737102 1737924 1738761 "NAGC06" 1740076 T NAGC06 (NIL) -7 NIL NIL NIL) (-759 1735567 1735899 1736255 "NAGC05" 1736766 T NAGC05 (NIL) -7 NIL NIL NIL) (-758 1734943 1735062 1735206 "NAGC02" 1735443 T NAGC02 (NIL) -7 NIL NIL NIL) (-757 1733888 1734471 1734511 "NAALG" 1734590 NIL NAALG (NIL T) -9 NIL 1734651 NIL) (-756 1733723 1733752 1733842 "NAALG-" 1733847 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-755 1727673 1728781 1729968 "MULTSQFR" 1732619 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-754 1726992 1727067 1727251 "MULTFACT" 1727585 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-753 1719663 1723577 1723630 "MTSCAT" 1724700 NIL MTSCAT (NIL T T) -9 NIL 1725215 NIL) (-752 1719375 1719429 1719521 "MTHING" 1719603 NIL MTHING (NIL T) -7 NIL NIL NIL) (-751 1719167 1719200 1719260 "MSYSCMD" 1719335 T MSYSCMD (NIL) -7 NIL NIL NIL) (-750 1715249 1717922 1718242 "MSET" 1718880 NIL MSET (NIL T) -8 NIL NIL NIL) (-749 1712318 1714810 1714851 "MSETAGG" 1714856 NIL MSETAGG (NIL T) -9 NIL 1714890 NIL) (-748 1708160 1709697 1710442 "MRING" 1711618 NIL MRING (NIL T T) -8 NIL NIL NIL) (-747 1707726 1707793 1707924 "MRF2" 1708087 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-746 1707344 1707379 1707523 "MRATFAC" 1707685 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-745 1704956 1705251 1705682 "MPRFF" 1707049 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-744 1698977 1704810 1704907 "MPOLY" 1704912 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-743 1698467 1698502 1698710 "MPCPF" 1698936 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-742 1697981 1698024 1698208 "MPC3" 1698418 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-741 1697176 1697257 1697478 "MPC2" 1697896 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-740 1695477 1695814 1696204 "MONOTOOL" 1696836 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-739 1694688 1695005 1695033 "MONOID" 1695252 T MONOID (NIL) -9 NIL 1695399 NIL) (-738 1694234 1694353 1694534 "MONOID-" 1694539 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-737 1683824 1690054 1690113 "MONOGEN" 1690787 NIL MONOGEN (NIL T T) -9 NIL 1691243 NIL) (-736 1681042 1681777 1682777 "MONOGEN-" 1682896 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-735 1679861 1680307 1680335 "MONADWU" 1680727 T MONADWU (NIL) -9 NIL 1680965 NIL) (-734 1679233 1679392 1679640 "MONADWU-" 1679645 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-733 1678578 1678822 1678850 "MONAD" 1679057 T MONAD (NIL) -9 NIL 1679169 NIL) (-732 1678263 1678341 1678473 "MONAD-" 1678478 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-731 1676552 1677176 1677455 "MOEBIUS" 1678016 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-730 1675816 1676220 1676260 "MODULE" 1676265 NIL MODULE (NIL T) -9 NIL 1676304 NIL) (-729 1675384 1675480 1675670 "MODULE-" 1675675 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-728 1673064 1673748 1674075 "MODRING" 1675208 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-727 1670008 1671169 1671690 "MODOP" 1672593 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-726 1668596 1669075 1669352 "MODMONOM" 1669871 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-725 1658364 1666887 1667301 "MODMON" 1668233 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-724 1655520 1657208 1657484 "MODFIELD" 1658239 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-723 1654497 1654801 1654991 "MMLFORM" 1655350 T MMLFORM (NIL) -8 NIL NIL NIL) (-722 1654023 1654066 1654245 "MMAP" 1654448 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-721 1652088 1652855 1652896 "MLO" 1653319 NIL MLO (NIL T) -9 NIL 1653561 NIL) (-720 1649454 1649970 1650572 "MLIFT" 1651569 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-719 1648845 1648929 1649083 "MKUCFUNC" 1649365 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-718 1648444 1648514 1648637 "MKRECORD" 1648768 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-717 1647491 1647653 1647881 "MKFUNC" 1648255 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-716 1646879 1646983 1647139 "MKFLCFN" 1647374 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-715 1646156 1646258 1646443 "MKBCFUNC" 1646772 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-714 1642745 1645710 1645846 "MINT" 1646040 T MINT (NIL) -8 NIL NIL NIL) (-713 1641557 1641800 1642077 "MHROWRED" 1642500 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-712 1636937 1640092 1640497 "MFLOAT" 1641172 T MFLOAT (NIL) -8 NIL NIL NIL) (-711 1636294 1636370 1636541 "MFINFACT" 1636849 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-710 1632609 1633457 1634341 "MESH" 1635430 T MESH (NIL) -7 NIL NIL NIL) (-709 1630999 1631311 1631664 "MDDFACT" 1632296 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-708 1627769 1630130 1630171 "MDAGG" 1630426 NIL MDAGG (NIL T) -9 NIL 1630569 NIL) (-707 1616463 1627062 1627269 "MCMPLX" 1627582 T MCMPLX (NIL) -8 NIL NIL NIL) (-706 1615600 1615746 1615947 "MCDEN" 1616312 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-705 1613490 1613760 1614140 "MCALCFN" 1615330 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-704 1612415 1612655 1612888 "MAYBE" 1613296 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-703 1610027 1610550 1611112 "MATSTOR" 1611886 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-702 1605939 1609399 1609647 "MATRIX" 1609812 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-701 1601705 1602412 1603148 "MATLIN" 1605296 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-700 1591531 1594762 1594839 "MATCAT" 1599871 NIL MATCAT (NIL T T T) -9 NIL 1601343 NIL) (-699 1587724 1588794 1590207 "MATCAT-" 1590212 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-698 1586318 1586471 1586804 "MATCAT2" 1587559 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-697 1584430 1584754 1585138 "MAPPKG3" 1585993 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-696 1583411 1583584 1583806 "MAPPKG2" 1584254 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-695 1581910 1582194 1582521 "MAPPKG1" 1583117 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-694 1580989 1581316 1581493 "MAPPAST" 1581753 T MAPPAST (NIL) -8 NIL NIL NIL) (-693 1580600 1580658 1580781 "MAPHACK3" 1580925 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-692 1580192 1580253 1580367 "MAPHACK2" 1580532 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-691 1579630 1579733 1579875 "MAPHACK1" 1580083 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-690 1577709 1578330 1578634 "MAGMA" 1579358 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-689 1577188 1577433 1577524 "MACROAST" 1577638 T MACROAST (NIL) -8 NIL NIL NIL) (-688 1573609 1575427 1575888 "M3D" 1576760 NIL M3D (NIL T) -8 NIL NIL NIL) (-687 1567659 1571920 1571961 "LZSTAGG" 1572743 NIL LZSTAGG (NIL T) -9 NIL 1573038 NIL) (-686 1563617 1564790 1566247 "LZSTAGG-" 1566252 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-685 1560704 1561508 1561995 "LWORD" 1563162 NIL LWORD (NIL T) -8 NIL NIL NIL) (-684 1560280 1560508 1560583 "LSTAST" 1560649 T LSTAST (NIL) -8 NIL NIL NIL) (-683 1553170 1560051 1560185 "LSQM" 1560190 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-682 1552394 1552533 1552761 "LSPP" 1553025 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-681 1550206 1550507 1550963 "LSMP" 1552083 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-680 1546985 1547659 1548389 "LSMP1" 1549508 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-679 1540787 1546075 1546116 "LSAGG" 1546178 NIL LSAGG (NIL T) -9 NIL 1546256 NIL) (-678 1537482 1538406 1539619 "LSAGG-" 1539624 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-677 1535081 1536626 1536875 "LPOLY" 1537277 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-676 1534663 1534748 1534871 "LPEFRAC" 1534990 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-675 1532984 1533757 1534010 "LO" 1534495 NIL LO (NIL T T T) -8 NIL NIL NIL) (-674 1532596 1532734 1532762 "LOGIC" 1532873 T LOGIC (NIL) -9 NIL 1532954 NIL) (-673 1532458 1532481 1532552 "LOGIC-" 1532557 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-672 1531651 1531791 1531984 "LODOOPS" 1532314 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-671 1529074 1531567 1531633 "LODO" 1531638 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-670 1527612 1527847 1528200 "LODOF" 1528821 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-669 1523816 1526247 1526288 "LODOCAT" 1526726 NIL LODOCAT (NIL T) -9 NIL 1526937 NIL) (-668 1523549 1523607 1523734 "LODOCAT-" 1523739 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-667 1520869 1523390 1523508 "LODO2" 1523513 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-666 1518304 1520806 1520851 "LODO1" 1520856 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-665 1517185 1517350 1517655 "LODEEF" 1518127 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-664 1512463 1515351 1515392 "LNAGG" 1516254 NIL LNAGG (NIL T) -9 NIL 1516689 NIL) (-663 1511610 1511824 1512166 "LNAGG-" 1512171 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-662 1507746 1508535 1509174 "LMOPS" 1511025 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-661 1507135 1507523 1507564 "LMODULE" 1507569 NIL LMODULE (NIL T) -9 NIL 1507595 NIL) (-660 1504336 1506780 1506903 "LMDICT" 1507045 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-659 1503954 1504126 1504167 "LLINSET" 1504228 NIL LLINSET (NIL T) -9 NIL 1504272 NIL) (-658 1503653 1503862 1503922 "LITERAL" 1503927 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-657 1496819 1502587 1502891 "LIST" 1503382 NIL LIST (NIL T) -8 NIL NIL NIL) (-656 1496344 1496418 1496557 "LIST3" 1496739 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-655 1495351 1495529 1495757 "LIST2" 1496162 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-654 1493485 1493797 1494196 "LIST2MAP" 1494998 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-653 1493116 1493304 1493345 "LINSET" 1493350 NIL LINSET (NIL T) -9 NIL 1493384 NIL) (-652 1491529 1492143 1492184 "LINEXP" 1492674 NIL LINEXP (NIL T) -9 NIL 1492947 NIL) (-651 1490421 1490991 1491167 "LINELT" 1491405 NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-650 1488998 1489258 1489569 "LINDEP" 1490173 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-649 1485765 1486484 1487261 "LIMITRF" 1488253 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-648 1484068 1484364 1484773 "LIMITPS" 1485460 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-647 1478496 1483579 1483807 "LIE" 1483889 NIL LIE (NIL T T) -8 NIL NIL NIL) (-646 1477430 1477899 1477939 "LIECAT" 1478079 NIL LIECAT (NIL T) -9 NIL 1478230 NIL) (-645 1477271 1477298 1477386 "LIECAT-" 1477391 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-644 1469864 1476811 1476967 "LIB" 1477135 T LIB (NIL) -8 NIL NIL NIL) (-643 1465499 1466382 1467317 "LGROBP" 1468981 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-642 1463497 1463771 1464121 "LF" 1465220 NIL LF (NIL T T) -7 NIL NIL NIL) (-641 1462337 1463029 1463057 "LFCAT" 1463264 T LFCAT (NIL) -9 NIL 1463403 NIL) (-640 1459239 1459869 1460557 "LEXTRIPK" 1461701 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-639 1455983 1456809 1457312 "LEXP" 1458819 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-638 1455459 1455704 1455796 "LETAST" 1455911 T LETAST (NIL) -8 NIL NIL NIL) (-637 1453857 1454170 1454571 "LEADCDET" 1455141 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-636 1453047 1453121 1453350 "LAZM3PK" 1453778 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-635 1447964 1451124 1451662 "LAUPOL" 1452559 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-634 1447543 1447587 1447748 "LAPLACE" 1447914 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-633 1445482 1446644 1446895 "LA" 1447376 NIL LA (NIL T T T) -8 NIL NIL NIL) (-632 1444462 1445046 1445087 "LALG" 1445149 NIL LALG (NIL T) -9 NIL 1445208 NIL) (-631 1444176 1444235 1444371 "LALG-" 1444376 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-630 1444011 1444035 1444076 "KVTFROM" 1444138 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-629 1442934 1443378 1443563 "KTVLOGIC" 1443846 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-628 1442769 1442793 1442834 "KRCFROM" 1442896 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-627 1441673 1441860 1442159 "KOVACIC" 1442569 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-626 1441508 1441532 1441573 "KONVERT" 1441635 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-625 1441343 1441367 1441408 "KOERCE" 1441470 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-624 1439174 1439936 1440313 "KERNEL" 1440999 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-623 1438670 1438751 1438883 "KERNEL2" 1439088 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-622 1432381 1437147 1437201 "KDAGG" 1437578 NIL KDAGG (NIL T T) -9 NIL 1437784 NIL) (-621 1431910 1432034 1432239 "KDAGG-" 1432244 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-620 1425058 1431571 1431726 "KAFILE" 1431788 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-619 1419486 1424569 1424797 "JORDAN" 1424879 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1418865 1419135 1419256 "JOINAST" 1419385 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1418711 1418770 1418825 "JAVACODE" 1418830 T JAVACODE (NIL) -8 NIL NIL NIL) (-616 1414938 1416888 1416942 "IXAGG" 1417871 NIL IXAGG (NIL T T) -9 NIL 1418330 NIL) (-615 1413857 1414163 1414582 "IXAGG-" 1414587 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1409390 1413779 1413838 "IVECTOR" 1413843 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1408156 1408393 1408659 "ITUPLE" 1409157 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1406658 1406835 1407130 "ITRIGMNP" 1407978 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1405403 1405607 1405890 "ITFUN3" 1406434 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1405035 1405092 1405201 "ITFUN2" 1405340 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1404194 1404515 1404689 "ITFORM" 1404881 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1402155 1403214 1403492 "ITAYLOR" 1403949 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1391100 1396292 1397455 "ISUPS" 1401025 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1390204 1390344 1390580 "ISUMP" 1390947 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1385582 1390149 1390190 "ISTRING" 1390195 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1385058 1385303 1385395 "ISAST" 1385510 T ISAST (NIL) -8 NIL NIL NIL) (-603 1384267 1384349 1384565 "IRURPK" 1384972 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1383203 1383404 1383644 "IRSN" 1384047 T IRSN (NIL) -7 NIL NIL NIL) (-601 1381274 1381629 1382058 "IRRF2F" 1382841 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1381021 1381059 1381135 "IRREDFFX" 1381230 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1379636 1379895 1380194 "IROOT" 1380754 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1376240 1377320 1378012 "IR" 1378976 NIL IR (NIL T) -8 NIL NIL NIL) (-597 1375445 1375733 1375884 "IRFORM" 1376109 T IRFORM (NIL) -8 NIL NIL NIL) (-596 1373058 1373553 1374119 "IR2" 1374923 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1372158 1372271 1372485 "IR2F" 1372941 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-594 1371949 1371983 1372043 "IPRNTPK" 1372118 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1368530 1371838 1371907 "IPF" 1371912 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1366857 1368455 1368512 "IPADIC" 1368517 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1366169 1366417 1366547 "IP4ADDR" 1366747 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1365543 1365798 1365930 "IOMODE" 1366057 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1364616 1365140 1365267 "IOBFILE" 1365436 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1364104 1364520 1364548 "IOBCON" 1364553 T IOBCON (NIL) -9 NIL 1364574 NIL) (-587 1363615 1363673 1363856 "INVLAPLA" 1364040 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1353263 1355617 1358003 "INTTR" 1361279 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1349598 1350340 1351205 "INTTOOLS" 1352448 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1349184 1349275 1349392 "INTSLPE" 1349501 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1347137 1349107 1349166 "INTRVL" 1349171 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1344739 1345251 1345826 "INTRF" 1346622 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1344150 1344247 1344389 "INTRET" 1344637 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1342147 1342536 1343006 "INTRAT" 1343758 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1339410 1339993 1340612 "INTPM" 1341632 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1336155 1336754 1337492 "INTPAF" 1338796 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1331334 1332296 1333347 "INTPACK" 1335124 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1328146 1331131 1331240 "INT" 1331245 T INT (NIL) -8 NIL NIL NIL) (-575 1327398 1327550 1327758 "INTHERTR" 1327988 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1326837 1326917 1327105 "INTHERAL" 1327312 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1324683 1325126 1325583 "INTHEORY" 1326400 T INTHEORY (NIL) -7 NIL NIL NIL) (-572 1316089 1317710 1319482 "INTG0" 1323035 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1296662 1301452 1306262 "INTFTBL" 1311299 T INTFTBL (NIL) -8 NIL NIL NIL) (-570 1295911 1296049 1296222 "INTFACT" 1296521 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1293338 1293784 1294341 "INTEF" 1295465 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1291691 1292430 1292458 "INTDOM" 1292759 T INTDOM (NIL) -9 NIL 1292966 NIL) (-567 1291060 1291234 1291476 "INTDOM-" 1291481 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-566 1287420 1289349 1289403 "INTCAT" 1290202 NIL INTCAT (NIL T) -9 NIL 1290523 NIL) (-565 1286892 1286995 1287123 "INTBIT" 1287312 T INTBIT (NIL) -7 NIL NIL NIL) (-564 1285591 1285745 1286052 "INTALG" 1286737 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1285074 1285164 1285321 "INTAF" 1285495 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1278423 1284884 1285024 "INTABL" 1285029 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1277756 1278222 1278287 "INT8" 1278321 T INT8 (NIL) -8 NIL NIL 1278366) (-560 1277088 1277554 1277619 "INT64" 1277653 T INT64 (NIL) -8 NIL NIL 1277698) (-559 1276420 1276886 1276951 "INT32" 1276985 T INT32 (NIL) -8 NIL NIL 1277030) (-558 1275752 1276218 1276283 "INT16" 1276317 T INT16 (NIL) -8 NIL NIL 1276362) (-557 1270447 1273300 1273328 "INS" 1274262 T INS (NIL) -9 NIL 1274927 NIL) (-556 1267687 1268458 1269432 "INS-" 1269505 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1266462 1266689 1266987 "INPSIGN" 1267440 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1265580 1265697 1265894 "INPRODPF" 1266342 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1264474 1264591 1264828 "INPRODFF" 1265460 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1263474 1263626 1263886 "INNMFACT" 1264310 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1262671 1262768 1262956 "INMODGCD" 1263373 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1261179 1261424 1261748 "INFSP" 1262416 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1260363 1260480 1260663 "INFPROD0" 1261059 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1257218 1258428 1258943 "INFORM" 1259856 T INFORM (NIL) -8 NIL NIL NIL) (-547 1256828 1256888 1256986 "INFORM1" 1257153 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1256351 1256440 1256554 "INFINITY" 1256734 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1255527 1256071 1256172 "INETCLTS" 1256270 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1254143 1254393 1254714 "INEP" 1255275 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1253348 1254040 1254105 "INDE" 1254110 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1252912 1252980 1253097 "INCRMAPS" 1253275 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1251730 1252181 1252387 "INBFILE" 1252726 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1247029 1247966 1248910 "INBFF" 1250818 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1245937 1246206 1246234 "INBCON" 1246747 T INBCON (NIL) -9 NIL 1247013 NIL) (-538 1245189 1245412 1245688 "INBCON-" 1245693 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1244668 1244913 1245004 "INAST" 1245118 T INAST (NIL) -8 NIL NIL NIL) (-536 1244095 1244347 1244453 "IMPTAST" 1244582 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1240496 1243939 1244043 "IMATRIX" 1244048 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1239204 1239327 1239643 "IMATQF" 1240352 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1237424 1237651 1237988 "IMATLIN" 1238960 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1232005 1237348 1237406 "ILIST" 1237411 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1229913 1231865 1231978 "IIARRAY2" 1231983 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1225311 1229824 1229888 "IFF" 1229893 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1224658 1224928 1225044 "IFAST" 1225215 T IFAST (NIL) -8 NIL NIL NIL) (-528 1219656 1223950 1224138 "IFARRAY" 1224515 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1218836 1219560 1219633 "IFAMON" 1219638 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1218420 1218485 1218539 "IEVALAB" 1218746 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1218095 1218163 1218323 "IEVALAB-" 1218328 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1217542 1218010 1218072 "IDPO" 1218077 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1216750 1217431 1217506 "IDPOAMS" 1217511 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-522 1216015 1216639 1216714 "IDPOAM" 1216719 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-521 1214561 1215022 1215074 "IDPC" 1215586 NIL IDPC (NIL T T) -9 NIL 1215867 NIL) (-520 1213989 1214453 1214526 "IDPAM" 1214531 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1213324 1213881 1213954 "IDPAG" 1213959 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1212969 1213160 1213235 "IDENT" 1213269 T IDENT (NIL) -8 NIL NIL NIL) (-517 1209224 1210072 1210967 "IDECOMP" 1212126 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1202061 1203147 1204194 "IDEAL" 1208260 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1201221 1201333 1201533 "ICDEN" 1201945 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1200292 1200701 1200848 "ICARD" 1201094 T ICARD (NIL) -8 NIL NIL NIL) (-513 1198352 1198665 1199070 "IBPTOOLS" 1199969 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1193959 1197972 1198085 "IBITS" 1198271 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1190682 1191258 1191953 "IBATOOL" 1193376 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1188461 1188923 1189456 "IBACHIN" 1190217 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1186293 1188307 1188410 "IARRAY2" 1188415 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1182402 1186219 1186276 "IARRAY1" 1186281 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1176262 1180814 1181295 "IAN" 1181941 T IAN (NIL) -8 NIL NIL NIL) (-506 1175773 1175830 1176003 "IALGFACT" 1176199 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1175301 1175414 1175442 "HYPCAT" 1175649 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1174839 1174956 1175142 "HYPCAT-" 1175147 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1174434 1174634 1174717 "HOSTNAME" 1174776 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1174279 1174316 1174357 "HOMOTOP" 1174362 NIL HOMOTOP (NIL T) -9 NIL 1174395 NIL) (-501 1170836 1172211 1172252 "HOAGG" 1173233 NIL HOAGG (NIL T) -9 NIL 1173962 NIL) (-500 1169430 1169829 1170355 "HOAGG-" 1170360 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1163146 1169023 1169173 "HEXADEC" 1169300 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1161894 1162116 1162379 "HEUGCD" 1162923 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1160970 1161731 1161861 "HELLFDIV" 1161866 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1159152 1160747 1160835 "HEAP" 1160914 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1158415 1158704 1158838 "HEADAST" 1159038 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1152258 1158330 1158392 "HDP" 1158397 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1145970 1151893 1152045 "HDMP" 1152159 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1145294 1145434 1145598 "HB" 1145826 T HB (NIL) -7 NIL NIL NIL) (-491 1138686 1145140 1145244 "HASHTBL" 1145249 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1138162 1138407 1138499 "HASAST" 1138614 T HASAST (NIL) -8 NIL NIL NIL) (-489 1135940 1137784 1137966 "HACKPI" 1138000 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1131608 1135793 1135906 "GTSET" 1135911 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1125029 1131486 1131584 "GSTBL" 1131589 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1117416 1124194 1124450 "GSERIES" 1124829 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1116543 1116960 1116988 "GROUP" 1117191 T GROUP (NIL) -9 NIL 1117325 NIL) (-484 1115909 1116068 1116319 "GROUP-" 1116324 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1114276 1114597 1114984 "GROEBSOL" 1115586 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1113176 1113464 1113515 "GRMOD" 1114044 NIL GRMOD (NIL T T) -9 NIL 1114212 NIL) (-481 1112944 1112980 1113108 "GRMOD-" 1113113 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1108234 1109298 1110298 "GRIMAGE" 1111964 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1106700 1106961 1107285 "GRDEF" 1107930 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1106144 1106260 1106401 "GRAY" 1106579 T GRAY (NIL) -7 NIL NIL NIL) (-477 1105317 1105723 1105774 "GRALG" 1105927 NIL GRALG (NIL T T) -9 NIL 1106020 NIL) (-476 1104978 1105051 1105214 "GRALG-" 1105219 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1101755 1104563 1104741 "GPOLSET" 1104885 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1101109 1101166 1101424 "GOSPER" 1101692 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1096841 1097547 1098073 "GMODPOL" 1100808 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1095846 1096030 1096268 "GHENSEL" 1096653 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1090002 1090845 1091865 "GENUPS" 1094930 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1089699 1089750 1089839 "GENUFACT" 1089945 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1089111 1089188 1089353 "GENPGCD" 1089617 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1088585 1088620 1088833 "GENMFACT" 1089070 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1087151 1087408 1087715 "GENEEZ" 1088328 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1081023 1086762 1086924 "GDMP" 1087074 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1070366 1074794 1075900 "GCNAALG" 1080006 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1068679 1069541 1069569 "GCDDOM" 1069824 T GCDDOM (NIL) -9 NIL 1069981 NIL) (-463 1068149 1068276 1068491 "GCDDOM-" 1068496 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1066821 1067006 1067310 "GB" 1067928 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-461 1055437 1057767 1060159 "GBINTERN" 1064512 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-460 1053274 1053566 1053987 "GBF" 1055112 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-459 1052055 1052220 1052487 "GBEUCLID" 1053090 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-458 1051404 1051529 1051678 "GAUSSFAC" 1051926 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1049771 1050073 1050387 "GALUTIL" 1051123 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1048079 1048353 1048677 "GALPOLYU" 1049498 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1045444 1045734 1046141 "GALFACTU" 1047776 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1037250 1038749 1040357 "GALFACT" 1043876 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1034638 1035296 1035324 "FVFUN" 1036480 T FVFUN (NIL) -9 NIL 1037200 NIL) (-452 1033904 1034086 1034114 "FVC" 1034405 T FVC (NIL) -9 NIL 1034588 NIL) (-451 1033547 1033729 1033797 "FUNDESC" 1033856 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1033162 1033344 1033425 "FUNCTION" 1033499 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1030906 1031484 1031950 "FT" 1032716 T FT (NIL) -8 NIL NIL NIL) (-448 1029697 1030207 1030410 "FTEM" 1030723 T FTEM (NIL) -8 NIL NIL NIL) (-447 1027988 1028277 1028674 "FSUPFACT" 1029388 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1026385 1026674 1027006 "FST" 1027676 T FST (NIL) -8 NIL NIL NIL) (-445 1025584 1025690 1025878 "FSRED" 1026267 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1024283 1024539 1024886 "FSPRMELT" 1025299 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1021589 1022027 1022513 "FSPECF" 1023846 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 1002654 1011363 1011404 "FS" 1015288 NIL FS (NIL T) -9 NIL 1017577 NIL) (-441 991297 994290 998347 "FS-" 998647 NIL FS- (NIL T T) -8 NIL NIL NIL) (-440 990825 990879 991049 "FSINT" 991238 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-439 989117 989818 990121 "FSERIES" 990604 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-438 988159 988275 988499 "FSCINT" 988997 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-437 984367 987103 987144 "FSAGG" 987514 NIL FSAGG (NIL T) -9 NIL 987773 NIL) (-436 982129 982730 983526 "FSAGG-" 983621 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-435 981171 981314 981541 "FSAGG2" 981982 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-434 978849 979129 979677 "FS2UPS" 980889 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-433 978483 978526 978655 "FS2" 978800 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-432 977361 977532 977834 "FS2EXPXP" 978308 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-431 976787 976902 977054 "FRUTIL" 977241 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 968200 972282 973640 "FR" 975461 NIL FR (NIL T) -8 NIL NIL NIL) (-429 963214 965889 965929 "FRNAALG" 967249 NIL FRNAALG (NIL T) -9 NIL 967847 NIL) (-428 958887 959963 961238 "FRNAALG-" 961988 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-427 958525 958568 958695 "FRNAAF2" 958838 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-426 956900 957374 957670 "FRMOD" 958337 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-425 954643 955275 955593 "FRIDEAL" 956691 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 953834 953921 954212 "FRIDEAL2" 954550 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-423 952967 953381 953422 "FRETRCT" 953427 NIL FRETRCT (NIL T) -9 NIL 953603 NIL) (-422 952079 952310 952661 "FRETRCT-" 952666 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-421 949153 950363 950422 "FRAMALG" 951304 NIL FRAMALG (NIL T T) -9 NIL 951596 NIL) (-420 947287 947742 948372 "FRAMALG-" 948595 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-419 940930 946760 947037 "FRAC" 947042 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 940566 940623 940730 "FRAC2" 940867 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-417 940202 940259 940366 "FR2" 940503 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-416 934687 937581 937609 "FPS" 938728 T FPS (NIL) -9 NIL 939285 NIL) (-415 934136 934245 934409 "FPS-" 934555 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 931424 933093 933121 "FPC" 933346 T FPC (NIL) -9 NIL 933488 NIL) (-413 931217 931257 931354 "FPC-" 931359 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 930007 930705 930746 "FPATMAB" 930751 NIL FPATMAB (NIL T) -9 NIL 930903 NIL) (-411 928246 928749 929096 "FPARFRAC" 929723 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 923640 924138 924820 "FORTRAN" 927678 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 921356 921856 922395 "FORT" 923121 T FORT (NIL) -7 NIL NIL NIL) (-408 919032 919594 919622 "FORTFN" 920682 T FORTFN (NIL) -9 NIL 921306 NIL) (-407 918796 918846 918874 "FORTCAT" 918933 T FORTCAT (NIL) -9 NIL 918995 NIL) (-406 916902 917412 917802 "FORMULA" 918426 T FORMULA (NIL) -8 NIL NIL NIL) (-405 916690 916720 916789 "FORMULA1" 916866 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-404 916213 916265 916438 "FORDER" 916632 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-403 915309 915473 915666 "FOP" 916040 T FOP (NIL) -7 NIL NIL NIL) (-402 913890 914589 914763 "FNLA" 915191 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-401 912605 913020 913048 "FNCAT" 913508 T FNCAT (NIL) -9 NIL 913768 NIL) (-400 912144 912564 912592 "FNAME" 912597 T FNAME (NIL) -8 NIL NIL NIL) (-399 910680 911643 911671 "FMTC" 911676 T FMTC (NIL) -9 NIL 911712 NIL) (-398 909426 910616 910662 "FMONOID" 910667 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-397 906213 907381 907422 "FMONCAT" 908639 NIL FMONCAT (NIL T) -9 NIL 909244 NIL) (-396 905363 905955 906104 "FM" 906109 NIL FM (NIL T T) -8 NIL NIL NIL) (-395 902787 903433 903461 "FMFUN" 904605 T FMFUN (NIL) -9 NIL 905313 NIL) (-394 902056 902237 902265 "FMC" 902555 T FMC (NIL) -9 NIL 902737 NIL) (-393 899121 899981 900035 "FMCAT" 901230 NIL FMCAT (NIL T T) -9 NIL 901725 NIL) (-392 897987 898887 898987 "FM1" 899066 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-391 895761 896177 896671 "FLOATRP" 897538 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-390 889339 893490 894111 "FLOAT" 895160 T FLOAT (NIL) -8 NIL NIL NIL) (-389 886777 887277 887855 "FLOATCP" 888806 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-388 885425 886369 886410 "FLINEXP" 886415 NIL FLINEXP (NIL T) -9 NIL 886508 NIL) (-387 884579 884814 885142 "FLINEXP-" 885147 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-386 883655 883799 884023 "FLASORT" 884431 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-385 880757 881625 881677 "FLALG" 882904 NIL FLALG (NIL T T) -9 NIL 883371 NIL) (-384 874417 878166 878207 "FLAGG" 879469 NIL FLAGG (NIL T) -9 NIL 880121 NIL) (-383 873143 873482 873972 "FLAGG-" 873977 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-382 872185 872328 872555 "FLAGG2" 872996 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-381 869022 870030 870089 "FINRALG" 871217 NIL FINRALG (NIL T T) -9 NIL 871725 NIL) (-380 868182 868411 868750 "FINRALG-" 868755 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-379 867548 867787 867815 "FINITE" 868011 T FINITE (NIL) -9 NIL 868118 NIL) (-378 859891 862078 862118 "FINAALG" 865785 NIL FINAALG (NIL T) -9 NIL 867238 NIL) (-377 855223 856273 857417 "FINAALG-" 858796 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-376 854591 854978 855081 "FILE" 855153 NIL FILE (NIL T) -8 NIL NIL NIL) (-375 853235 853573 853627 "FILECAT" 854311 NIL FILECAT (NIL T T) -9 NIL 854527 NIL) (-374 850937 852465 852493 "FIELD" 852533 T FIELD (NIL) -9 NIL 852613 NIL) (-373 849557 849942 850453 "FIELD-" 850458 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-372 847407 848192 848539 "FGROUP" 849243 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-371 846497 846661 846881 "FGLMICPK" 847239 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-370 842329 846422 846479 "FFX" 846484 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-369 841930 841991 842126 "FFSLPE" 842262 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-368 837920 838702 839498 "FFPOLY" 841166 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-367 837424 837460 837669 "FFPOLY2" 837878 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-366 833270 837343 837406 "FFP" 837411 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-365 828668 833181 833245 "FF" 833250 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-364 823794 828011 828201 "FFNBX" 828522 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-363 818722 822929 823187 "FFNBP" 823648 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-362 813355 818006 818217 "FFNB" 818555 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-361 812187 812385 812700 "FFINTBAS" 813152 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-360 808213 810434 810462 "FFIELDC" 811082 T FFIELDC (NIL) -9 NIL 811458 NIL) (-359 806875 807246 807743 "FFIELDC-" 807748 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-358 806444 806490 806614 "FFHOM" 806817 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-357 804139 804626 805143 "FFF" 805959 NIL FFF (NIL T) -7 NIL NIL NIL) (-356 799757 803881 803982 "FFCGX" 804082 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-355 795379 799489 799596 "FFCGP" 799700 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-354 790562 795106 795214 "FFCG" 795315 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-353 770091 780294 780380 "FFCAT" 785545 NIL FFCAT (NIL T T T) -9 NIL 786996 NIL) (-352 765288 766336 767650 "FFCAT-" 768880 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-351 764699 764742 764977 "FFCAT2" 765239 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 754022 757671 758891 "FEXPR" 763551 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-349 752984 753419 753460 "FEVALAB" 753544 NIL FEVALAB (NIL T) -9 NIL 753805 NIL) (-348 752143 752353 752691 "FEVALAB-" 752696 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-347 750709 751526 751729 "FDIV" 752042 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-346 747715 748456 748571 "FDIVCAT" 750139 NIL FDIVCAT (NIL T T T T) -9 NIL 750576 NIL) (-345 747477 747504 747674 "FDIVCAT-" 747679 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-344 746697 746784 747061 "FDIV2" 747384 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 745671 745992 746194 "FCTRDATA" 746515 T FCTRDATA (NIL) -8 NIL NIL NIL) (-342 744357 744616 744905 "FCPAK1" 745402 T FCPAK1 (NIL) -7 NIL NIL NIL) (-341 743456 743857 743998 "FCOMP" 744248 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-340 727161 730606 734144 "FC" 739938 T FC (NIL) -8 NIL NIL NIL) (-339 719454 723482 723522 "FAXF" 725324 NIL FAXF (NIL T) -9 NIL 726016 NIL) (-338 716731 717388 718213 "FAXF-" 718678 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-337 711786 716107 716283 "FARRAY" 716588 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-336 706666 708733 708786 "FAMR" 709809 NIL FAMR (NIL T T) -9 NIL 710269 NIL) (-335 705556 705858 706293 "FAMR-" 706298 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-334 704725 705478 705531 "FAMONOID" 705536 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-333 702497 703207 703260 "FAMONC" 704201 NIL FAMONC (NIL T T) -9 NIL 704587 NIL) (-332 701161 702251 702388 "FAGROUP" 702393 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-331 698956 699275 699678 "FACUTIL" 700842 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-330 698055 698240 698462 "FACTFUNC" 698766 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-329 690477 697358 697557 "EXPUPXS" 697911 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-328 687960 688500 689086 "EXPRTUBE" 689911 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-327 684231 684823 685553 "EXPRODE" 687299 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-326 669715 682880 683309 "EXPR" 683835 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 664269 664856 665662 "EXPR2UPS" 669013 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-324 663901 663958 664067 "EXPR2" 664206 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-323 654898 663052 663343 "EXPEXPAN" 663737 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-322 654698 654855 654884 "EXIT" 654889 T EXIT (NIL) -8 NIL NIL NIL) (-321 654178 654422 654513 "EXITAST" 654627 T EXITAST (NIL) -8 NIL NIL NIL) (-320 653805 653867 653980 "EVALCYC" 654110 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-319 653346 653464 653505 "EVALAB" 653675 NIL EVALAB (NIL T) -9 NIL 653779 NIL) (-318 652827 652949 653170 "EVALAB-" 653175 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-317 650181 651483 651511 "EUCDOM" 652066 T EUCDOM (NIL) -9 NIL 652416 NIL) (-316 648586 649028 649618 "EUCDOM-" 649623 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-315 636125 638884 641634 "ESTOOLS" 645856 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 635757 635814 635923 "ESTOOLS2" 636062 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-313 635508 635550 635630 "ESTOOLS1" 635709 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-312 629531 631139 631167 "ES" 633935 T ES (NIL) -9 NIL 635345 NIL) (-311 624478 625765 627582 "ES-" 627746 NIL ES- (NIL T) -8 NIL NIL NIL) (-310 620852 621613 622393 "ESCONT" 623718 T ESCONT (NIL) -7 NIL NIL NIL) (-309 620597 620629 620711 "ESCONT1" 620814 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-308 620272 620322 620422 "ES2" 620541 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-307 619902 619960 620069 "ES1" 620208 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-306 619118 619247 619423 "ERROR" 619746 T ERROR (NIL) -7 NIL NIL NIL) (-305 612516 618977 619068 "EQTBL" 619073 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-304 605019 607830 609279 "EQ" 611100 NIL -2085 (NIL T) -8 NIL NIL NIL) (-303 604651 604708 604817 "EQ2" 604956 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-302 599942 600989 602082 "EP" 603590 NIL EP (NIL T) -7 NIL NIL NIL) (-301 598542 598833 599139 "ENV" 599656 T ENV (NIL) -8 NIL NIL NIL) (-300 597622 598176 598204 "ENTIRER" 598209 T ENTIRER (NIL) -9 NIL 598255 NIL) (-299 594316 595804 596165 "EMR" 597430 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-298 593446 593631 593685 "ELTAGG" 594065 NIL ELTAGG (NIL T T) -9 NIL 594276 NIL) (-297 593165 593227 593368 "ELTAGG-" 593373 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-296 592929 592958 593012 "ELTAB" 593096 NIL ELTAB (NIL T T) -9 NIL 593148 NIL) (-295 592055 592201 592400 "ELFUTS" 592780 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-294 591797 591853 591881 "ELEMFUN" 591986 T ELEMFUN (NIL) -9 NIL NIL NIL) (-293 591667 591688 591756 "ELEMFUN-" 591761 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-292 586456 589709 589750 "ELAGG" 590690 NIL ELAGG (NIL T) -9 NIL 591153 NIL) (-291 584741 585175 585838 "ELAGG-" 585843 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-290 584053 584190 584346 "ELABOR" 584605 T ELABOR (NIL) -8 NIL NIL NIL) (-289 582714 582993 583287 "ELABEXPR" 583779 T ELABEXPR (NIL) -8 NIL NIL NIL) (-288 575548 577351 578180 "EFUPXS" 581989 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-287 568996 570797 571608 "EFULS" 574823 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-286 566481 566839 567311 "EFSTRUC" 568628 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-285 556272 557838 559386 "EF" 564996 NIL EF (NIL T T) -7 NIL NIL NIL) (-284 555346 555757 555906 "EAB" 556143 T EAB (NIL) -8 NIL NIL NIL) (-283 554528 555305 555333 "E04UCFA" 555338 T E04UCFA (NIL) -8 NIL NIL NIL) (-282 553710 554487 554515 "E04NAFA" 554520 T E04NAFA (NIL) -8 NIL NIL NIL) (-281 552892 553669 553697 "E04MBFA" 553702 T E04MBFA (NIL) -8 NIL NIL NIL) (-280 552074 552851 552879 "E04JAFA" 552884 T E04JAFA (NIL) -8 NIL NIL NIL) (-279 551258 552033 552061 "E04GCFA" 552066 T E04GCFA (NIL) -8 NIL NIL NIL) (-278 550442 551217 551245 "E04FDFA" 551250 T E04FDFA (NIL) -8 NIL NIL NIL) (-277 549624 550401 550429 "E04DGFA" 550434 T E04DGFA (NIL) -8 NIL NIL NIL) (-276 543797 545149 546513 "E04AGNT" 548280 T E04AGNT (NIL) -7 NIL NIL NIL) (-275 542555 543098 543138 "DVARCAT" 543479 NIL DVARCAT (NIL T) -9 NIL 543642 NIL) (-274 541759 541971 542285 "DVARCAT-" 542290 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-273 534620 541558 541687 "DSMP" 541692 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-272 533043 533762 533803 "DSEXT" 534166 NIL DSEXT (NIL T) -9 NIL 534460 NIL) (-271 531328 531756 532422 "DSEXT-" 532427 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-270 526109 527273 528341 "DROPT" 530280 T DROPT (NIL) -8 NIL NIL NIL) (-269 525774 525833 525931 "DROPT1" 526044 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 520889 522015 523152 "DROPT0" 524657 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 519234 519559 519945 "DRAWPT" 520523 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 513821 514744 515823 "DRAW" 518208 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 513454 513507 513625 "DRAWHACK" 513762 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 512185 512454 512745 "DRAWCX" 513183 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 511700 511769 511920 "DRAWCURV" 512111 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 502168 504130 506245 "DRAWCFUN" 509605 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 498907 500833 500874 "DQAGG" 501503 NIL DQAGG (NIL T) -9 NIL 501777 NIL) (-260 486372 493118 493201 "DPOLCAT" 495053 NIL DPOLCAT (NIL T T T T) -9 NIL 495598 NIL) (-259 481209 482557 484515 "DPOLCAT-" 484520 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 474556 481070 481168 "DPMO" 481173 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 467806 474336 474503 "DPMM" 474508 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 467376 467590 467679 "DOMTMPLT" 467737 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 466809 467178 467258 "DOMCTOR" 467316 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 466021 466289 466440 "DOMAIN" 466678 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 459733 465656 465808 "DMP" 465922 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 457678 458800 458841 "DMEXT" 458846 NIL DMEXT (NIL T) -9 NIL 459022 NIL) (-251 457278 457334 457478 "DLP" 457616 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 451103 456605 456795 "DLIST" 457120 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 447875 449928 449969 "DLAGG" 450519 NIL DLAGG (NIL T) -9 NIL 450749 NIL) (-248 446537 447201 447229 "DIVRING" 447321 T DIVRING (NIL) -9 NIL 447404 NIL) (-247 445774 445964 446264 "DIVRING-" 446269 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 443876 444233 444639 "DISPLAY" 445388 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 437739 443790 443853 "DIRPROD" 443858 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 436587 436790 437055 "DIRPROD2" 437532 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 425262 431298 431351 "DIRPCAT" 431609 NIL DIRPCAT (NIL NIL T) -9 NIL 432484 NIL) (-242 422588 423230 424111 "DIRPCAT-" 424448 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 421875 422035 422221 "DIOSP" 422422 T DIOSP (NIL) -7 NIL NIL NIL) (-240 418505 420759 420800 "DIOPS" 421234 NIL DIOPS (NIL T) -9 NIL 421463 NIL) (-239 418054 418168 418359 "DIOPS-" 418364 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 417105 417733 417761 "DIFRING" 417766 T DIFRING (NIL) -9 NIL 417788 NIL) (-237 416777 416851 416879 "DIFFSPC" 416998 T DIFFSPC (NIL) -9 NIL 417073 NIL) (-236 416422 416500 416652 "DIFFSPC-" 416657 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 415478 415956 415997 "DIFFMOD" 416002 NIL DIFFMOD (NIL T) -9 NIL 416100 NIL) (-234 415186 415231 415272 "DIFFDOM" 415393 NIL DIFFDOM (NIL T) -9 NIL 415461 NIL) (-233 415039 415063 415147 "DIFFDOM-" 415152 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-232 412971 414243 414284 "DIFEXT" 414289 NIL DIFEXT (NIL T) -9 NIL 414442 NIL) (-231 410221 412475 412516 "DIAGG" 412521 NIL DIAGG (NIL T) -9 NIL 412541 NIL) (-230 409605 409762 410014 "DIAGG-" 410019 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 404977 408564 408841 "DHMATRIX" 409374 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 400589 401498 402508 "DFSFUN" 403987 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 395667 399520 399832 "DFLOAT" 400297 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 393930 394211 394600 "DFINTTLS" 395375 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 390959 391951 392351 "DERHAM" 393596 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 388763 390734 390823 "DEQUEUE" 390903 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 388017 388150 388333 "DEGRED" 388625 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 384447 385192 386038 "DEFINTRF" 387245 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 382002 382471 383063 "DEFINTEF" 383966 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 381352 381622 381737 "DEFAST" 381907 T DEFAST (NIL) -8 NIL NIL NIL) (-219 375068 380945 381095 "DECIMAL" 381222 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 372580 373038 373544 "DDFACT" 374612 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 372176 372219 372370 "DBLRESP" 372531 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 370044 370406 370767 "DBASE" 371942 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 369286 369524 369670 "DATAARY" 369943 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 368392 369245 369273 "D03FAFA" 369278 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 367499 368351 368379 "D03EEFA" 368384 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 365449 365915 366404 "D03AGNT" 367030 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 364738 365408 365436 "D02EJFA" 365441 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 364027 364697 364725 "D02CJFA" 364730 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 363316 363986 364014 "D02BHFA" 364019 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 362605 363275 363303 "D02BBFA" 363308 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 355802 357391 358997 "D02AGNT" 361019 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 353570 354093 354639 "D01WGTS" 355276 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 352637 353529 353557 "D01TRNS" 353562 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 351705 352596 352624 "D01GBFA" 352629 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 350773 351664 351692 "D01FCFA" 351697 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 349841 350732 350760 "D01ASFA" 350765 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 348909 349800 349828 "D01AQFA" 349833 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 347977 348868 348896 "D01APFA" 348901 T D01APFA (NIL) -8 NIL NIL NIL) (-199 347045 347936 347964 "D01ANFA" 347969 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 346113 347004 347032 "D01AMFA" 347037 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 345181 346072 346100 "D01ALFA" 346105 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 344249 345140 345168 "D01AKFA" 345173 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 343317 344208 344236 "D01AJFA" 344241 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 336612 338165 339726 "D01AGNT" 341776 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 335949 336077 336229 "CYCLOTOM" 336480 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 332682 333397 334124 "CYCLES" 335242 T CYCLES (NIL) -7 NIL NIL NIL) (-191 331994 332128 332299 "CVMP" 332543 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 329835 330093 330462 "CTRIGMNP" 331722 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 329271 329629 329702 "CTOR" 329782 T CTOR (NIL) -8 NIL NIL NIL) (-188 328780 329002 329103 "CTORKIND" 329190 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 328057 328373 328401 "CTORCAT" 328583 T CTORCAT (NIL) -9 NIL 328696 NIL) (-186 327655 327766 327925 "CTORCAT-" 327930 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 327117 327329 327437 "CTORCALL" 327579 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 326491 326590 326743 "CSTTOOLS" 327014 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 322290 322947 323705 "CRFP" 325803 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 321765 322011 322103 "CRCEAST" 322218 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 320812 320997 321225 "CRAPACK" 321569 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 320196 320297 320501 "CPMATCH" 320688 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 319921 319949 320055 "CPIMA" 320162 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 316269 316941 317660 "COORDSYS" 319256 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 315681 315802 315944 "CONTOUR" 316147 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 311572 313684 314176 "CONTFRAC" 315221 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 311452 311473 311501 "CONDUIT" 311538 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 310526 311080 311108 "COMRING" 311113 T COMRING (NIL) -9 NIL 311165 NIL) (-173 309580 309884 310068 "COMPPROP" 310362 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 309241 309276 309404 "COMPLPAT" 309539 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 298544 309050 309159 "COMPLEX" 309164 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 298180 298237 298344 "COMPLEX2" 298481 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 297519 297640 297800 "COMPILER" 298040 T COMPILER (NIL) -8 NIL NIL NIL) (-168 297237 297272 297370 "COMPFACT" 297478 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 279516 290941 290981 "COMPCAT" 291985 NIL COMPCAT (NIL T) -9 NIL 293333 NIL) (-166 269028 271955 275582 "COMPCAT-" 275938 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 268757 268785 268888 "COMMUPC" 268994 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 268551 268585 268644 "COMMONOP" 268718 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 268107 268302 268389 "COMM" 268484 T COMM (NIL) -8 NIL NIL NIL) (-162 267683 267911 267986 "COMMAAST" 268052 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 266932 267126 267154 "COMBOPC" 267492 T COMBOPC (NIL) -9 NIL 267667 NIL) (-160 265828 266038 266280 "COMBINAT" 266722 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 262285 262859 263486 "COMBF" 265250 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 261043 261401 261636 "COLOR" 262070 T COLOR (NIL) -8 NIL NIL NIL) (-157 260519 260764 260856 "COLONAST" 260971 T COLONAST (NIL) -8 NIL NIL NIL) (-156 260159 260206 260331 "CMPLXRT" 260466 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 259607 259859 259958 "CLLCTAST" 260080 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 255109 256137 257217 "CLIP" 258547 T CLIP (NIL) -7 NIL NIL NIL) (-153 253450 254210 254450 "CLIF" 254936 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 249600 251568 251609 "CLAGG" 252538 NIL CLAGG (NIL T) -9 NIL 253074 NIL) (-151 248022 248479 249062 "CLAGG-" 249067 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 247566 247651 247791 "CINTSLPE" 247931 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 245067 245538 246086 "CHVAR" 247094 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 244227 244781 244809 "CHARZ" 244814 T CHARZ (NIL) -9 NIL 244829 NIL) (-147 243981 244021 244099 "CHARPOL" 244181 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 243025 243612 243640 "CHARNZ" 243687 T CHARNZ (NIL) -9 NIL 243743 NIL) (-145 240931 241679 242032 "CHAR" 242692 T CHAR (NIL) -8 NIL NIL NIL) (-144 240657 240718 240746 "CFCAT" 240857 T CFCAT (NIL) -9 NIL NIL NIL) (-143 239898 240009 240192 "CDEN" 240541 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 235863 239051 239331 "CCLASS" 239638 T CCLASS (NIL) -8 NIL NIL NIL) (-141 235114 235271 235448 "CATEGORY" 235706 T -10 (NIL) -8 NIL NIL NIL) (-140 234687 235033 235081 "CATCTOR" 235086 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 234138 234390 234488 "CATAST" 234609 T CATAST (NIL) -8 NIL NIL NIL) (-138 233614 233859 233951 "CASEAST" 234066 T CASEAST (NIL) -8 NIL NIL NIL) (-137 228752 229771 230515 "CARTEN" 232926 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 227860 228008 228229 "CARTEN2" 228599 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 226176 227010 227267 "CARD" 227623 T CARD (NIL) -8 NIL NIL NIL) (-134 225752 225980 226055 "CAPSLAST" 226121 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 225242 225450 225478 "CACHSET" 225610 T CACHSET (NIL) -9 NIL 225688 NIL) (-132 224698 225020 225048 "CABMON" 225098 T CABMON (NIL) -9 NIL 225154 NIL) (-131 224171 224402 224512 "BYTEORD" 224608 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 223148 223700 223842 "BYTE" 224005 T BYTE (NIL) -8 NIL NIL 224127) (-129 218501 222653 222825 "BYTEBUF" 222996 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 216013 218193 218300 "BTREE" 218427 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 213465 215661 215783 "BTOURN" 215923 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 210810 212907 212948 "BTCAT" 213016 NIL BTCAT (NIL T) -9 NIL 213093 NIL) (-125 210477 210557 210706 "BTCAT-" 210711 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 205842 209723 209751 "BTAGG" 209865 T BTAGG (NIL) -9 NIL 209975 NIL) (-123 205332 205457 205663 "BTAGG-" 205668 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 202330 204610 204825 "BSTREE" 205149 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 201468 201594 201778 "BRILL" 202186 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 198095 200166 200207 "BRAGG" 200856 NIL BRAGG (NIL T) -9 NIL 201114 NIL) (-119 196624 197030 197585 "BRAGG-" 197590 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 189540 195968 196153 "BPADICRT" 196471 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 187855 189477 189522 "BPADIC" 189527 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 187553 187583 187697 "BOUNDZRO" 187819 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 182781 183979 184891 "BOP" 186661 T BOP (NIL) -8 NIL NIL NIL) (-114 180562 180966 181441 "BOP1" 182339 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 180263 180324 180352 "BOOLE" 180463 T BOOLE (NIL) -9 NIL 180545 NIL) (-112 179088 179837 179986 "BOOLEAN" 180134 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 178353 178757 178811 "BMODULE" 178816 NIL BMODULE (NIL T T) -9 NIL 178881 NIL) (-110 174154 178151 178224 "BITS" 178300 T BITS (NIL) -8 NIL NIL NIL) (-109 173575 173694 173834 "BINDING" 174034 T BINDING (NIL) -8 NIL NIL NIL) (-108 167294 173170 173319 "BINARY" 173446 T BINARY (NIL) -8 NIL NIL NIL) (-107 165049 166521 166562 "BGAGG" 166822 NIL BGAGG (NIL T) -9 NIL 166959 NIL) (-106 164880 164912 165003 "BGAGG-" 165008 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 163951 164264 164469 "BFUNCT" 164695 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 162641 162819 163107 "BEZOUT" 163775 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 159113 161493 161823 "BBTREE" 162344 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158714 158792 158820 "BASTYPE" 158997 T BASTYPE (NIL) -9 NIL 159096 NIL) (-101 158390 158471 158606 "BASTYPE-" 158611 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 157824 157900 158052 "BALFACT" 158301 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156680 157239 157425 "AUTOMOR" 157669 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156406 156411 156437 "ATTREG" 156442 T ATTREG (NIL) -9 NIL NIL NIL) (-97 154658 155103 155455 "ATTRBUT" 156072 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 154266 154486 154552 "ATTRAST" 154610 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 153802 153915 153941 "ATRIG" 154142 T ATRIG (NIL) -9 NIL NIL NIL) (-94 153611 153652 153739 "ATRIG-" 153744 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 153242 153428 153454 "ASTCAT" 153459 T ASTCAT (NIL) -9 NIL 153489 NIL) (-92 152969 153028 153147 "ASTCAT-" 153152 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 151121 152745 152833 "ASTACK" 152912 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149626 149923 150288 "ASSOCEQ" 150803 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148658 149285 149409 "ASP9" 149533 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 148421 148606 148645 "ASP8" 148650 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 147289 148026 148168 "ASP80" 148310 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 146187 146924 147056 "ASP7" 147188 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 145141 145864 145982 "ASP78" 146100 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 144110 144821 144938 "ASP77" 145055 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 143022 143748 143879 "ASP74" 144010 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 141922 142657 142789 "ASP73" 142921 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 141026 141748 141848 "ASP6" 141853 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139973 140703 140821 "ASP55" 140939 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 138922 139647 139766 "ASP50" 139885 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 138010 138623 138733 "ASP4" 138843 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 137098 137711 137821 "ASP49" 137931 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 135882 136637 136805 "ASP42" 136987 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134659 135415 135585 "ASP41" 135769 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 133609 134336 134454 "ASP35" 134572 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133374 133557 133596 "ASP34" 133601 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 133111 133178 133254 "ASP33" 133329 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 132005 132746 132878 "ASP31" 133010 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 131770 131953 131992 "ASP30" 131997 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131505 131574 131650 "ASP29" 131725 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 131270 131453 131492 "ASP28" 131497 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 131035 131218 131257 "ASP27" 131262 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 130119 130733 130844 "ASP24" 130955 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 129196 129921 130033 "ASP20" 130038 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 128284 128897 129007 "ASP1" 129117 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 127227 127958 128077 "ASP19" 128196 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126964 127031 127107 "ASP12" 127182 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 125816 126563 126707 "ASP10" 126851 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 123670 125660 125751 "ARRAY2" 125756 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119438 123318 123432 "ARRAY1" 123587 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 118470 118643 118864 "ARRAY12" 119261 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 112757 114672 114747 "ARR2CAT" 117377 NIL ARR2CAT (NIL T T T) -9 NIL 118135 NIL) (-56 110191 110935 111889 "ARR2CAT-" 111894 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 109508 109818 109943 "ARITY" 110084 T ARITY (NIL) -8 NIL NIL NIL) (-54 108284 108436 108735 "APPRULE" 109344 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107935 107983 108102 "APPLYORE" 108230 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 107289 107528 107648 "ANY" 107833 T ANY (NIL) -8 NIL NIL NIL) (-51 106567 106690 106847 "ANY1" 107163 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 104097 105004 105331 "ANTISYM" 106291 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 103589 103804 103900 "ANON" 104019 T ANON (NIL) -8 NIL NIL NIL) (-48 97589 102128 102582 "AN" 103153 T AN (NIL) -8 NIL NIL NIL) (-47 93473 94861 94912 "AMR" 95660 NIL AMR (NIL T T) -9 NIL 96260 NIL) (-46 92585 92806 93169 "AMR-" 93174 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 77030 92502 92563 "ALIST" 92568 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73835 76624 76793 "ALGSC" 76948 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70391 70945 71552 "ALGPKG" 73275 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69668 69769 69953 "ALGMFACT" 70277 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 65703 66282 66876 "ALGMANIP" 69252 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55914 65329 65479 "ALGFF" 65636 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55110 55241 55420 "ALGFACT" 55772 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54037 54637 54675 "ALGEBRA" 54680 NIL ALGEBRA (NIL T) -9 NIL 54721 NIL) (-37 53755 53814 53946 "ALGEBRA-" 53951 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35692 51592 51644 "ALAGG" 51780 NIL ALAGG (NIL T T) -9 NIL 51941 NIL) (-35 35228 35341 35367 "AHYP" 35568 T AHYP (NIL) -9 NIL NIL NIL) (-34 34159 34407 34433 "AGG" 34932 T AGG (NIL) -9 NIL 35211 NIL) (-33 33593 33755 33969 "AGG-" 33974 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 31399 31822 32227 "AF" 33235 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30879 31124 31214 "ADDAST" 31327 T ADDAST (NIL) -8 NIL NIL NIL) (-30 30147 30406 30562 "ACPLOT" 30741 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18770 27079 27117 "ACFS" 27724 NIL ACFS (NIL T) -9 NIL 27963 NIL) (-28 16797 17287 18049 "ACFS-" 18054 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12901 14830 14856 "ACF" 15735 T ACF (NIL) -9 NIL 16148 NIL) (-26 11605 11939 12432 "ACF-" 12437 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11163 11358 11384 "ABELSG" 11476 T ABELSG (NIL) -9 NIL 11541 NIL) (-24 11030 11055 11121 "ABELSG-" 11126 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10359 10646 10672 "ABELMON" 10842 T ABELMON (NIL) -9 NIL 10954 NIL) (-22 10023 10107 10245 "ABELMON-" 10250 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9357 9729 9755 "ABELGRP" 9827 T ABELGRP (NIL) -9 NIL 9902 NIL) (-20 8820 8949 9165 "ABELGRP-" 9170 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8082 8121 "A1AGG" 8126 NIL A1AGG (NIL T) -9 NIL 8166 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 86c24fee..53671d0b 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,2358 +1,5417 @@ -(731535 . 3486852429) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) - (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) - (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) - (-5 *1 (-882 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1280 *5 *6 *7)) (-4 *5 (-374)) - (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1261 *6 *5))) - (-5 *1 (-882 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-340)))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) - (-5 *2 (-656 (-962 *4))) (-5 *1 (-1234)) (-5 *3 (-962 *4))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) - (-4 *2 (-1264 *3))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-998 *5 *6 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-142))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1264 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) - (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) - (-4 *3 (-1264 (-419 (-576)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1201))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *3 (-656 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-480))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-763))))) +(731775 . 3486916220) +(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1194 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) + (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3431 *3))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5))))) + (-12 (-5 *2 (-784)) (-5 *1 (-688 *3)) (-4 *3 (-1071)) + (-4 *3 (-1122))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-941)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-270))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1179)) (|:| -4149 (-1179)))) - (-5 *1 (-834))))) + (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-1124 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1124 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) - (-4 *5 (-464)) + (-12 + (-5 *3 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 - (-2 (|:| |gblist| (-656 (-253 *4 *5))) - (|:| |gvlist| (-656 (-576))))) - (-5 *1 (-643 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) - (-4 *7 (-1264 (-419 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -3036 *3))) - (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7)))) + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1179 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3936 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-571))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-692 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-657 *3)) (-5 *5 (-941)) (-4 *3 (-1265 *4)) + (-4 *4 (-317)) (-5 *1 (-472 *4 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-963 (-227)) (-963 (-227)))) (-5 *3 (-657 (-270))) + (-5 *1 (-268)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-963 (-227)) (-963 (-227)))) (-5 *1 (-270)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) + (-12 (-5 *4 (-657 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) + (-14 *5 (-657 (-1198))) (-4 *6 (-464)) (-5 *2 (-1289 *6)) + (-5 *1 (-643 *5 *6))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-158)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-784)) (-4 *5 (-568)) (-5 *2 - (-2 (|:| |answer| (-419 *6)) (|:| -3036 (-419 *6)) - (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) - (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) - (-5 *1 (-1150 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) - (-5 *1 (-1150 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1200)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) - (-5 *1 (-1200)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) - (-5 *1 (-1200))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1201)) (-5 *1 (-1200))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) - (-4 *7 (-968 *5 *6 *4)) (-4 *5 (-928)) (-4 *6 (-805)) - (-4 *4 (-861)) (-5 *1 (-925 *5 *6 *4 *7))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1122)) (-4 *5 (-1122)) + (-5 *2 (-1 *5)) (-5 *1 (-696 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-657 *3)) (-5 *6 (-1194 *3)) + (-4 *3 (-13 (-442 *7) (-27) (-1224))) + (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1122)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-657 *3)) + (-5 *6 (-419 (-1194 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1224))) + (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1122))))) +(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-52))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1198)) (-5 *1 (-598 *2)) (-4 *2 (-1060 *3)) + (-4 *2 (-374)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) + (-4 *2 (-13 (-442 *4) (-1024) (-1224))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1114 *2)) (-4 *2 (-13 (-442 *4) (-1024) (-1224))) + (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-979)) (-5 *2 (-1198)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1114 *1)) (-4 *1 (-979))))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)))) + ((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *2 *1) + (-12 (-4 *2 (-721 *3)) (-5 *1 (-840 *2 *3)) (-4 *3 (-1071))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1288 *4)) - (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-783)) - (-4 *5 (-13 (-464) (-1059 (-576)))) (-4 *5 (-568)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2687 ((-1146 *5 (-624 $)) $)) - (-15 -2697 ((-1146 *5 (-624 $)) $)) - (-15 -4113 ($ (-1146 *5 (-624 $)))))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-855 *3))) (-4 *3 (-13 (-1223) (-978) (-29 *5))) - (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1113 (-855 *3))) (-5 *5 (-1179)) - (-4 *3 (-13 (-1223) (-978) (-29 *6))) - (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1113 (-855 (-326 *5)))) - (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1113 (-855 (-326 *6)))) - (-5 *5 (-1179)) - (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-855 (-419 (-971 *5))))) (-5 *3 (-419 (-971 *5))) - (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1113 (-855 (-419 (-971 *6))))) (-5 *5 (-1179)) - (-5 *3 (-419 (-971 *6))) - (-4 *6 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) + (-12 (-5 *3 (-702 *6)) (-5 *5 (-1 (-430 (-1194 *6)) (-1194 *6))) + (-4 *6 (-374)) (-5 *2 - (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) + (-657 + (-2 (|:| |outval| *7) (|:| |outmult| (-576)) + (|:| |outvect| (-657 (-702 *7)))))) + (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-861)))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-576)) (-5 *5 (-1180)) (-5 *6 (-702 (-227))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1122)) (-5 *2 (-905 *3 *5)) (-5 *1 (-901 *3 *4 *5)) + (-4 *3 (-1122)) (-4 *5 (-679 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) + (-14 *4 (-657 (-1198))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) + (-14 *4 (-657 (-1198)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-657 (-1194 *7))) (-5 *3 (-1194 *7)) + (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-929)) (-4 *5 (-806)) + (-4 *6 (-862)) (-5 *1 (-926 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-657 (-1194 *5))) (-5 *3 (-1194 *5)) + (-4 *5 (-1265 *4)) (-4 *4 (-929)) (-5 *1 (-927 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1290)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1290)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1291)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1291))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *1) (-5 *1 (-1107)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-660 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-419 (-972 (-171 (-576)))))) + (-5 *2 (-657 (-657 (-304 (-972 (-171 *4)))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-861))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) - (-4 *3 (-13 (-1223) (-978) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) - (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) - (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) - (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) + (-12 (-5 *3 (-657 (-304 (-419 (-972 (-171 (-576))))))) + (-5 *2 (-657 (-657 (-304 (-972 (-171 *4)))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-861))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1115 (-855 (-390)))) - (-5 *2 (-1056)) (-5 *1 (-577)))) + (-12 (-5 *3 (-419 (-972 (-171 (-576))))) + (-5 *2 (-657 (-304 (-972 (-171 *4))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-861))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) - (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) - (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) - (-5 *5 (-390)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1115 (-855 (-390))))) - (-5 *5 (-390)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) - (-5 *5 (-1179)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) - (-5 *5 (-1197)) (-5 *2 (-1056)) (-5 *1 (-577)))) + (-12 (-5 *3 (-304 (-419 (-972 (-171 (-576)))))) + (-5 *2 (-657 (-304 (-972 (-171 *4))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-861)))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -2421 (-657 (-1198))) (|:| -3989 (-657 (-1198))))) + (-5 *1 (-1241))))) +(((*1 *2 *3) + (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) + (-5 *1 (-755 *4 *5 *6 *3)) (-4 *3 (-969 *6 *4 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-941)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-784))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1265 (-576)))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) + (-4 *5 (-1265 *4)) + (-5 *2 (-2 (|:| -3579 (-419 *5)) (|:| |coeff| (-419 *5)))) + (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *5 (-568)) + (-5 *2 + (-2 (|:| |minor| (-657 (-941))) (|:| -3981 *3) + (|:| |minors| (-657 (-657 (-941)))) (|:| |ops| (-657 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-941)) (-4 *3 (-669 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-529))))) +(((*1 *2 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3941 *9)))) + (-5 *4 (-784)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) + (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-1294)) + (-5 *1 (-1091 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3941 *9)))) + (-5 *4 (-784)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) + (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-1294)) + (-5 *1 (-1167 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) + (-4 *4 (-1265 *2))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) + (-5 *2 (-2 (|:| |num| (-1289 *4)) (|:| |den| *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1132)) (-5 *3 (-576))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-657 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-657 (-1168 *5 *6 *7 *8))) (-5 *1 (-1168 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) - (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)) - (-4 *3 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1197)) (-5 *1 (-971 *3)) (-4 *3 (-38 (-419 (-576)))) - (-4 *3 (-1070)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-4 *2 (-861)) - (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) - (-5 *1 (-1181 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1194 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-38 (-419 (-576)))) - (-4 *3 (-1070)))) - ((*1 *1 *1 *2) - (-3795 - (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1197)) (-4 *1 (-1248 *3)) (-4 *3 (-1070)) - (-12 (|has| *3 (-15 -1585 ((-656 *2) *3))) - (|has| *3 (-15 -4412 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-4 *7 (-1014 *4)) (-4 *2 (-700 *7 *8 *9)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-700 *4 *5 *6)) + (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)) (-4 *2 (-317)))) + ((*1 *2 *2) + (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) + (-4 *2 (-700 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *4 (-1071)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-105))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-688 (-227))) + (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-763))))) +(((*1 *2 *3) + (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1146 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *5 (-379)) + (-5 *2 (-784))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1057))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-657 *10)) (-5 *5 (-112)) (-4 *10 (-1093 *6 *7 *8 *9)) + (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) + (-4 *9 (-1087 *6 *7 *8)) + (-5 *2 + (-657 + (-2 (|:| -3981 (-657 *9)) (|:| -3941 *10) (|:| |ineq| (-657 *9))))) + (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-657 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-657 *10)) (-5 *5 (-112)) (-4 *10 (-1093 *6 *7 *8 *9)) + (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) + (-4 *9 (-1087 *6 *7 *8)) + (-5 *2 + (-657 + (-2 (|:| -3981 (-657 *9)) (|:| -3941 *10) (|:| |ineq| (-657 *9))))) + (-5 *1 (-1129 *6 *7 *8 *9 *10)) (-5 *3 (-657 *9))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-702 (-227))) (-5 *6 (-702 (-576))) (-5 *3 (-576)) + (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-765))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-657 (-576))) (-5 *1 (-253 *3 *4)) + (-14 *3 (-657 (-1198))) (-4 *4 (-1071)))) ((*1 *1 *1 *2) - (-3795 - (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1197)) (-4 *1 (-1269 *3)) (-4 *3 (-1070)) - (-12 (|has| *3 (-15 -1585 ((-656 *2) *3))) - (|has| *3 (-15 -4412 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-657 (-576))) (-14 *3 (-657 (-1198))) + (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1071)) + (-4 *5 (-243 (-3437 *3) (-784))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1273 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-5 *2 (-657 (-576))) (-5 *1 (-493 *3 *4)) + (-14 *3 (-657 (-1198))) (-4 *4 (-1071))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-1071))))) +(((*1 *2) + (-12 (-4 *1 (-360)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-963 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-1071))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3941 *4)))) + (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) + (-5 *2 (-1057)) (-5 *1 (-765))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-657 *11)) + (|:| |todo| (-657 (-2 (|:| |val| *3) (|:| -3941 *11)))))) + (-5 *6 (-784)) + (-5 *2 (-657 (-2 (|:| |val| (-657 *10)) (|:| -3941 *11)))) + (-5 *3 (-657 *10)) (-5 *4 (-657 *11)) (-4 *10 (-1087 *7 *8 *9)) + (-4 *11 (-1093 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-806)) + (-4 *9 (-862)) (-5 *1 (-1091 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-657 *11)) + (|:| |todo| (-657 (-2 (|:| |val| *3) (|:| -3941 *11)))))) + (-5 *6 (-784)) + (-5 *2 (-657 (-2 (|:| |val| (-657 *10)) (|:| -3941 *11)))) + (-5 *3 (-657 *10)) (-5 *4 (-657 *11)) (-4 *10 (-1087 *7 *8 *9)) + (-4 *11 (-1131 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-806)) + (-4 *9 (-862)) (-5 *1 (-1167 *7 *8 *9 *10 *11))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-340))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1180)) (-5 *4 (-1142)) (-5 *2 (-112)) (-5 *1 (-834))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-739) (-25)))))) +(((*1 *2) + (-12 (-5 *2 (-702 (-930 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-941)) + (-14 *4 (-941)))) + ((*1 *2) + (-12 (-5 *2 (-702 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) + (-14 *4 + (-3 (-1194 *3) + (-1289 (-657 (-2 (|:| -3037 *3) (|:| -3146 (-1142))))))))) + ((*1 *2) + (-12 (-5 *2 (-702 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-941))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *3 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-969 *4 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-624 *3)) (-4 *3 (-1122))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-59 *3)) (-4 *3 (-1239)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-59 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-702 *5))) (-5 *4 (-1289 *5)) (-4 *5 (-317)) + (-4 *5 (-1071)) (-5 *2 (-702 *5)) (-5 *1 (-1051 *5))))) +(((*1 *1 *2) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-986 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1265 *5)) + (-4 *7 (-1265 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) + (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-112)) + (-5 *1 (-931 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) + (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-1265 (-419 *4))) + (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-932 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-419 *2))) (-4 *2 (-1265 *4)) (-5 *1 (-823 *4 *2)) + (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-667 *2 (-419 *2))) (-4 *2 (-1265 *4)) + (-5 *1 (-823 *4 *2)) + (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576)))))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1057)) (-5 *1 (-766))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1229 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 (-963 *3))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) ((*1 *1 *1 *2) - (-3795 - (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-978)) (-4 *3 (-1223)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1197)) (-4 *1 (-1279 *3)) (-4 *3 (-1070)) - (-12 (|has| *3 (-15 -1585 ((-656 *2) *3))) - (|has| *3 (-15 -4412 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-657 (-657 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) + (-12 (-5 *2 (-657 (-963 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)) (-4 *3 (-174)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-568)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-568)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1194 *2)) (-4 *2 (-969 (-419 (-972 *6)) *5 *4)) + (-5 *1 (-745 *5 *4 *6 *2)) (-4 *5 (-806)) + (-4 *4 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $))))) + (-4 *6 (-568))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) + (-4 *5 (-568)) (-5 *2 (-657 (-657 (-972 *5)))) (-5 *1 (-1207 *5))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) + (-5 *2 (-1194 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) + (-5 *2 (-1194 *3))))) +(((*1 *1) (-5 *1 (-590)))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1229 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-1289 (-657 (-576)))) (-5 *1 (-492)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-784)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) + (-14 *4 *2) (-4 *5 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-941)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-941)))) + ((*1 *2) + (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) + (-5 *2 (-941)))) ((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-548))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) + (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 (-784)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)) (-4 *5 (-374)) + (-5 *2 (-784)) (-5 *1 (-680 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 (-784)) + (-5 *1 (-681 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-784)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-784)) (-5 *1 (-701 *4 *5 *6 *3)) + (-4 *3 (-700 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) + (-5 *2 (-784))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -1502 (-657 (-2 (|:| |irr| *10) (|:| -2534 (-576))))))) + (-5 *6 (-657 *3)) (-5 *7 (-657 *8)) (-4 *8 (-862)) (-4 *3 (-317)) + (-4 *10 (-969 *3 *9 *8)) (-4 *9 (-806)) + (-5 *2 + (-2 (|:| |polfac| (-657 *10)) (|:| |correct| *3) + (|:| |corrfact| (-657 (-1194 *3))))) + (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-657 (-1194 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) + (-5 *2 (-1289 *6)) (-5 *1 (-347 *3 *4 *5 *6)) + (-4 *6 (-353 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4)))))) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1198)) + (|:| |arrayIndex| (-657 (-972 (-576)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-112)) (|:| -2949 (-877)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) + (|:| |ints2Floats?| (-112)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1197)) (|:| |thenClause| (-340)) + (|:| |elseClause| (-340)))) + (|:| |returnBranch| + (-2 (|:| -1368 (-112)) + (|:| -3037 + (-2 (|:| |ints2Floats?| (-112)) (|:| -2949 (-877)))))) + (|:| |blockBranch| (-657 (-340))) + (|:| |commentBranch| (-657 (-1180))) (|:| |callBranch| (-1180)) + (|:| |forBranch| + (-2 (|:| -3936 (-1114 (-972 (-576)))) + (|:| |span| (-972 (-576))) (|:| -2645 (-340)))) + (|:| |labelBranch| (-1142)) + (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -2645 (-340)))) + (|:| |commonBranch| + (-2 (|:| -2634 (-1198)) (|:| |contents| (-657 (-1198))))) + (|:| |printBranch| (-657 (-877))))) + (-5 *1 (-340))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-548))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *1) (-5 *1 (-876))) - ((*1 *2 *3) - (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-833)) (-14 *5 (-1198)) + (-5 *2 (-657 *4)) (-5 *1 (-1136 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1070)) - (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1264 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) - (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1070)) - (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-941))) (-5 *4 (-657 (-576))) + (-5 *2 (-702 (-576))) (-5 *1 (-1132))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180)) (-5 *2 (-657 (-1203))) (-5 *1 (-1158))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4351 *4))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-784)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-1122)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1122)) (-5 *2 (-112)) + (-5 *1 (-1240 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1071)) + (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-969 *2 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) + (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) ((*1 *1 *1) - (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) - (-14 *4 *2)))) + (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-859))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1289 *4)) (-5 *3 (-702 *4)) (-4 *4 (-374)) + (-5 *1 (-680 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-374)) + (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4467)))) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467)))) + (-5 *1 (-681 *4 *5 *2 *3)) (-4 *3 (-700 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-657 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) + (-5 *1 (-827 *2 *3)) (-4 *3 (-669 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) + (-5 *2 (-1057)) (-5 *1 (-761))))) +(((*1 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-625 (-877)))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1193 *4)) - (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) - (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4464) (-6 -4465)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) - (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4464) (-6 -4465))))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-317)))) + (-12 (-5 *3 (-972 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-374)) (-5 *2 (-657 (-1179 *4))) (-5 *1 (-295 *4 *5)) + (-5 *3 (-1179 *4)) (-4 *5 (-1280 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-835))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1180)) (-5 *1 (-194)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-941)) (-5 *1 (-799))))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1241))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-419 *6))) (-5 *4 (-1 (-657 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-4 *6 (-1265 *5)) (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-666 (-419 *7))) (-5 *4 (-1 (-657 *6) *7)) + (-5 *5 (-1 (-430 *7) *7)) + (-4 *6 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-4 *7 (-1265 *6)) (-5 *2 (-657 (-419 *7))) (-5 *1 (-825 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-667 *6 (-419 *6))) (-5 *4 (-1 (-657 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-4 *6 (-1265 *5)) (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-667 *7 (-419 *7))) (-5 *4 (-1 (-657 *6) *7)) + (-5 *5 (-1 (-430 *7) *7)) + (-4 *6 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-4 *7 (-1265 *6)) (-5 *2 (-657 (-419 *7))) (-5 *1 (-825 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-419 *5))) (-4 *5 (-1265 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-5 *2 (-657 (-419 *5))) (-5 *1 (-825 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) + (-4 *6 (-1265 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-667 *5 (-419 *5))) (-4 *5 (-1265 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-5 *2 (-657 (-419 *5))) (-5 *1 (-825 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-667 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) + (-4 *6 (-1265 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-1289 (-702 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-702 *4)) (-4 *5 (-669 *4))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-401))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1114 (-972 (-576)))) (-5 *3 (-972 (-576))) + (-5 *1 (-340)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1114 (-972 (-576)))) (-5 *1 (-340))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-1234 *3)) + (-4 *3 (-996))))) +(((*1 *2 *2) + (-12 (-4 *2 (-174)) (-4 *2 (-1071)) (-5 *1 (-727 *2 *3)) + (-4 *3 (-661 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-849 *2)) (-4 *2 (-174)) (-4 *2 (-1071))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1289 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) + (-4 *1 (-737 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1265 *5)) + (-5 *2 (-702 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1289 (-1198))) (-5 *3 (-1289 (-465 *4 *5 *6 *7))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-941)) + (-14 *6 (-657 (-1198))) (-14 *7 (-1289 (-702 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-465 *4 *5 *6 *7))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-941)) + (-14 *6 (-657 *2)) (-14 *7 (-1289 (-702 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1289 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) + (-14 *6 (-1289 (-702 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1289 (-1198))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) + (-14 *6 (-1289 (-702 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1198)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-941)) (-14 *5 (-657 *2)) (-14 *6 (-1289 (-702 *3))))) + ((*1 *1) + (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-941)) + (-14 *4 (-657 (-1198))) (-14 *5 (-1289 (-702 *2)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2549 *1))) - (-4 *1 (-317))))) + (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) + (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) + (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1265 *5)) + (-5 *1 (-740 *5 *2)) (-4 *5 (-374))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-657 (-624 *6))) (-5 *4 (-1198)) (-5 *2 (-624 *6)) + (-4 *6 (-442 *5)) (-4 *5 (-1122)) (-5 *1 (-585 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-941)) (-5 *2 (-1194 *3)) (-5 *1 (-1213 *3)) + (-4 *3 (-374))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1293)) (-5 *1 (-834))))) + (-12 (-5 *2 (-657 (-1194 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) +(((*1 *1 *2) + (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) + (-4 *3 (-13 (-416) (-1224))))) + ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224)))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-888 (-1203) (-784)))) (-5 *1 (-343))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1122)) (-4 *3 (-918 *5)) (-5 *2 (-1289 *3)) + (-5 *1 (-705 *5 *3 *6 *4)) (-4 *6 (-384 *3)) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) + (-4 *3 (-13 (-442 *4) (-1024)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) + (-5 *2 (-419 (-576))) (-5 *1 (-1042 *4)) (-4 *4 (-1265 (-576)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) +(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1290)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1291))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-250 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-784)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-227))) (-5 *2 (-1289 (-712))) (-5 *1 (-315))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1265 (-419 (-576)))) + (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) + (-5 *1 (-933 *3 *4)) (-4 *4 (-1265 (-419 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1265 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-933 *4 *3)) + (-4 *3 (-1265 (-419 *4)))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-702 (-576))) (-5 *5 (-112)) (-5 *7 (-702 (-227))) + (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1057)) (-5 *1 (-767))))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239))))) (((*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (-4 *4 (-1070)) - (-5 *1 (-1049 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) (-4 *4 (-1070)) - (-5 *1 (-1049 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-977 (-1141))) + (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) + (-5 *2 (-1289 (-657 (-2 (|:| -3037 *4) (|:| -3146 (-1142)))))) (-5 *1 (-357 *4))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-624 *4)) (-5 *6 (-1198)) + (-4 *4 (-13 (-442 *7) (-27) (-1224))) + (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) + (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-669 *4)) (-4 *3 (-1122))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1198)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889))))) (((*1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) - (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) - ((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) - (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) + (-5 *2 (-1194 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1180)) (-5 *1 (-194)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1180)) (-5 *1 (-310)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1180)) (-5 *1 (-315))))) +(((*1 *1 *1) + (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1071)) (-4 *3 (-862)) + (-4 *4 (-275 *3)) (-4 *5 (-806))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-784)))) + ((*1 *1 *1) (-4 *1 (-414)))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) + ((*1 *2 *1) + (-12 (-5 *2 (-784)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) + (-14 *4 (-657 (-1198))))) + ((*1 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) + (-14 *4 (-657 (-1198))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) + (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-284)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1194 *8)) (-5 *4 (-657 *6)) (-4 *6 (-862)) + (-4 *8 (-969 *7 *5 *6)) (-4 *5 (-806)) (-4 *7 (-1071)) + (-5 *2 (-657 (-784))) (-5 *1 (-331 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-941)))) + ((*1 *2 *1) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) + (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) + (-4 *4 (-1265 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-657 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 (-784))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) + (-4 *3 (-862)) (-5 *2 (-784)))) + ((*1 *2 *1) + (-12 (-4 *1 (-995 *3 *2 *4)) (-4 *3 (-1071)) (-4 *4 (-862)) + (-4 *2 (-805)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-784)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1280 *3)) + (-5 *2 (-576)))) ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070))))) + (-12 (-4 *1 (-1272 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1249 *3)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-846 (-941))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) + (-5 *2 (-784))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-657 *7)) (-5 *3 (-576)) (-4 *7 (-969 *4 *5 *6)) + (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(((*1 *2 *3) + (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-1122))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-709 *2)) (-4 *2 (-1265 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-657 (-657 (-657 *4)))) (-5 *3 (-657 *4)) (-4 *4 (-862)) + (-5 *1 (-1209 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-784)) (-5 *1 (-1123 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-464))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *2 + (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) + (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) + (-14 *6 (-1198)) (-14 *7 *3)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-877))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + (-12 (-5 *4 (-657 *7)) (-5 *5 (-657 (-657 *8))) (-4 *7 (-862)) + (-4 *8 (-317)) (-4 *6 (-806)) (-4 *9 (-969 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-657 (-2 (|:| -1856 (-1194 *9)) (|:| -2128 (-576))))))) + (-5 *1 (-755 *6 *7 *8 *9)) (-5 *3 (-1194 *9))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1071))))) +(((*1 *1 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317))))) +(((*1 *2 *3) + (-12 (-5 *3 (-947)) + (-5 *2 + (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) + (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-947)) (-5 *4 (-419 (-576))) + (-5 *2 + (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) + (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) + (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) + (-5 *1 (-154)) (-5 *3 (-657 (-963 (-227)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) + (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) + (-5 *1 (-154)) (-5 *3 (-657 (-657 (-963 (-227))))))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1071)) + (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *2 (-657 *1)) (-4 *1 (-1087 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1071)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-99 *3))))) +(((*1 *1) (-5 *1 (-1085)))) +(((*1 *2 *3) + (-12 (-14 *4 (-657 (-1198))) (-14 *5 (-784)) + (-5 *2 + (-657 + (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) + (-253 *4 (-419 (-576)))))) + (-5 *1 (-517 *4 *5)) + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) + (-253 *4 (-419 (-576)))))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-784)) (-4 *5 (-568)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-908 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1122)) + (-4 *5 (-1239)) (-5 *1 (-906 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-908 *4)) (-5 *3 (-657 (-1 (-112) *5))) (-4 *4 (-1122)) + (-4 *5 (-1239)) (-5 *1 (-906 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-908 *5)) (-5 *3 (-657 (-1198))) + (-5 *4 (-1 (-112) (-657 *6))) (-4 *5 (-1122)) (-4 *6 (-1239)) + (-5 *1 (-906 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1239)) (-4 *4 (-1122)) + (-5 *1 (-957 *4 *2 *5)) (-4 *2 (-442 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-657 (-1 (-112) *5))) (-4 *5 (-1239)) (-4 *4 (-1122)) + (-5 *1 (-957 *4 *2 *5)) (-4 *2 (-442 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1198)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1239)) + (-5 *2 (-326 (-576))) (-5 *1 (-958 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1198)) (-5 *4 (-657 (-1 (-112) *5))) (-4 *5 (-1239)) + (-5 *2 (-326 (-576))) (-5 *1 (-958 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-1 (-112) (-657 *6))) + (-4 *6 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))) (-4 *4 (-1122)) + (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) + (-5 *1 (-1098 *4 *5 *6))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576))))) (((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) - (-5 *1 (-760))))) + (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1265 *4)) + (-5 *1 (-790 *3 *4 *5 *2 *6)) (-4 *2 (-1265 *5)) (-14 *6 (-941)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) + ((*1 *1 *1) (-12 (-4 *1 (-1308 *2)) (-4 *2 (-374)) (-4 *2 (-379))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1) (|partial| -4 *1 (-735)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-784)) (-4 *5 (-1071)) (-5 *2 (-576)) + (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1265 *5)) + (-4 *6 (-13 (-416) (-1060 *5) (-374) (-1224) (-294))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1265 *4)) + (-4 *5 (-13 (-416) (-1060 *4) (-374) (-1224) (-294)))))) +(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-246))))) +(((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) + ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1202))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) + (-4 *4 (-13 (-1122) (-34)))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 *2)) (-4 *4 (-1264 *2)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) - (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4)))) + (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 (-576)))) + (-5 *2 (-1289 (-576))) (-5 *1 (-1317 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-576)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) - (-5 *1 (-461 *5 *6 *7 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1070)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *1)))) - (-4 *1 (-1092 *4 *5 *6 *3))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) - (-4 *5 (-1264 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1037 *4 *5)) - (-5 *3 (-419 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-939))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) - ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-1288 *2)) (-4 *5 (-317)) - (-4 *6 (-1013 *5)) (-4 *2 (-13 (-421 *6 *7) (-1059 *6))) - (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1264 *6))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-171 (-227)))) + (-5 *2 (-1057)) (-5 *1 (-767))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) + (-4 *3 (-1265 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360)))) + (-12 (-5 *4 (-576)) (-5 *2 (-657 (-2 (|:| -1856 *3) (|:| -4265 *4)))) + (-5 *1 (-709 *3)) (-4 *3 (-1265 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)) (-4 *2 (-568)))) + ((*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-702 *3)) (|:| |invmval| (-702 *3)) + (|:| |genIdeal| (-516 *3 *4 *5 *6)))) + (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1239)) (-4 *2 (-1071)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-877)))) + ((*1 *1 *1) (-5 *1 (-877))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360)))) - ((*1 *1) (-4 *1 (-379))) + (-12 (-5 *3 (-963 (-227))) (-5 *2 (-227)) (-5 *1 (-1235)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1071))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289))))) +(((*1 *2 *3) + (-12 (-5 *3 (-972 (-576))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) ((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360)))) - ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1) (-4 *1 (-557))) - ((*1 *1 *1) (-5 *1 (-783))) - ((*1 *2 *1) (-12 (-5 *2 (-924 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) + (-12 (-5 *3 (-972 (-419 (-576)))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) + ((*1 *2 *3) (-12 (-5 *3 (-972 *1)) (-4 *1 (-1034)) (-5 *2 (-657 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1194 (-576))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1194 (-419 (-576)))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1194 *1)) (-4 *1 (-1034)) (-5 *2 (-657 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-861) (-374))) (-4 *3 (-1265 *4)) (-5 *2 (-657 *1)) + (-4 *1 (-1090 *4 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3431 *3))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) + ((*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) - (-4 *4 (-1121)))) - ((*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-557)) (-4 *2 (-568))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) - (-4 *5 (-384 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1238)))) + (-12 (-5 *3 (-657 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 (-784))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 (-576)) (-14 *5 (-783)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-783)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-783)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-783)))) + (-12 (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) + (-4 *3 (-862)) (-5 *2 (-784))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-442 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1114 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1114 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1198))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) - (-14 *4 (-783)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-250 (-1179))) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-861) - (-10 -8 (-15 -4369 ((-1179) $ *3)) (-15 -1614 ((-1293) $)) - (-15 -3384 ((-1293) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1010)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-861) - (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 ((-1293) $)) - (-15 -3384 ((-1293) $))))))) + (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) + (-4 *3 (-1265 *2))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1198)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-861)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-861)))) + (-12 (-5 *3 (-1198)) (-5 *2 (-112)) (-5 *1 (-624 *4)) + (-4 *4 (-1122)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1238)) (-4 *2 (-1238)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) - (-4 *4 (-1264 (-419 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1179)) (-5 *1 (-514)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-656 (-907 *4))) (-5 *1 (-907 *4)) - (-4 *4 (-1121)))) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1122)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1122)) (-5 *2 (-112)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1122)) (-5 *2 (-112)) (-5 *1 (-903 *5 *3 *4)) + (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *6)) (-4 *6 (-902 *5)) (-4 *5 (-1122)) + (-5 *2 (-112)) (-5 *1 (-903 *5 *6 *4)) (-4 *4 (-626 (-908 *5)))))) +(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) + ((*1 *2 *3) + (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) + (-5 *1 (-755 *4 *5 *6 *3)) (-4 *3 (-969 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) + (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-430 (-1194 *7))) + (-5 *1 (-755 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-464)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *2 (-430 *1)) (-4 *1 (-969 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-464)) (-5 *2 (-430 *3)) + (-5 *1 (-1001 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-464)) + (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-430 (-1194 (-419 *7)))) + (-5 *1 (-1193 *4 *5 *6 *7)) (-5 *3 (-1194 (-419 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1243)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1268 *4 *3)) + (-4 *3 (-13 (-1265 *4) (-568) (-10 -8 (-15 -3431 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) + (-14 *5 (-657 (-1198))) + (-5 *2 + (-657 (-1168 *4 (-543 (-879 *6)) (-879 *6) (-793 *4 (-879 *6))))) + (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198)))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-657 (-1198))) (-4 *2 (-174)) + (-4 *3 (-243 (-3437 *4) (-784))) + (-14 *6 + (-1 (-112) (-2 (|:| -3146 *5) (|:| -2128 *3)) + (-2 (|:| -3146 *5) (|:| -2128 *3)))) + (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862)) + (-4 *7 (-969 *2 *3 (-879 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-799))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-112)) (-5 *1 (-842))))) +(((*1 *1) (-5 *1 (-571)))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 (-253 *5 *6))) (-4 *6 (-464)) + (-5 *2 (-253 *5 *6)) (-14 *5 (-657 (-1198))) (-5 *1 (-643 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024) (-1224)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 (-1098 *3 *4 *5))) (-4 *3 (-1122)) + (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) + (-4 *5 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))) + (-5 *1 (-1099 *3 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-1262 *5 *4)) (-5 *1 (-1196 *4 *5 *6)) + (-4 *4 (-1071)) (-14 *5 (-1198)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-924 *4)) (-5 *1 (-923 *4)) - (-4 *4 (-1121)))) + (-12 (-5 *3 (-784)) (-5 *2 (-1262 *5 *4)) (-5 *1 (-1281 *4 *5 *6)) + (-4 *4 (-1071)) (-14 *5 (-1198)) (-14 *6 *4)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-657 *6)) (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) + (-4 *3 (-568))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-360)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -1502 (-657 (-2 (|:| |irr| *3) (|:| -2534 (-576))))))) + (-5 *1 (-218 *5 *3)) (-4 *3 (-1265 *5))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) + (-5 *2 (-1057)) (-5 *1 (-760))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-657 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-784)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-806)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) + (-5 *1 (-461 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-832 *3)) (-4 *3 (-862)) (-5 *1 (-685 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-576)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-784)) (-4 *4 (-13 (-568) (-148))) + (-5 *1 (-1259 *4 *2)) (-4 *2 (-1265 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1179 *4))) (-4 *4 (-374)) + (-4 *4 (-1071)) (-5 *2 (-1179 *4)) (-5 *1 (-1182 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) +(((*1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1239)) (-5 *2 (-576))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-657 *3)) + (-5 *1 (-1259 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-2 (|:| -1856 *4) (|:| -4265 (-576))))) + (-4 *4 (-1265 (-576))) (-5 *2 (-750 (-784))) (-5 *1 (-454 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-430 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-1071)) + (-5 *2 (-750 (-784))) (-5 *1 (-456 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1224) (-1024)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1180)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) + (-4 *4 (-1087 *6 *7 *8)) (-5 *2 (-1294)) + (-5 *1 (-789 *6 *7 *8 *4 *5)) (-4 *5 (-1093 *6 *7 *8 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-1124 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *2 (-1070)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-940)) (-4 *4 (-1121)) - (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) - (-5 *1 (-1097 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-940)) (-4 *4 (-1121)) - (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) - (-5 *1 (-1098 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1165))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-419 *1)) (-4 *1 (-1264 *2)) (-4 *2 (-1070)) - (-4 *2 (-374)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) - (-4 *3 (-568)))) + (-12 (-4 *4 (-1122)) (-5 *2 (-1124 (-657 *4))) (-5 *1 (-924 *4)) + (-5 *3 (-657 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) + (-12 (-4 *4 (-1122)) (-5 *2 (-1124 (-1124 *4))) (-5 *1 (-924 *4)) + (-5 *3 (-1124 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) + (-12 (-5 *2 (-1124 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-657 + (-657 + (-3 (|:| -2634 (-1198)) + (|:| -2300 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576)))))))))) + (-5 *1 (-1202))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-657 (-1198))) (-4 *4 (-1122)) + (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4))))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-576)))) + (-4 *4 (-13 (-1265 *3) (-568) (-10 -8 (-15 -3431 ($ $ $))))) + (-4 *3 (-568)) (-5 *1 (-1268 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1224) (-1024)))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-702 (-171 (-227)))) + (-5 *2 (-1057)) (-5 *1 (-768))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-657 *1)) (-4 *1 (-442 *4)) + (-4 *4 (-1122)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122))))) +(((*1 *1) (-4 *1 (-360)))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-52)) (-5 *1 (-1217))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-784))) (-5 *3 (-173)) (-5 *1 (-1186 *4 *5)) + (-14 *4 (-941)) (-4 *5 (-1071))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(((*1 *1) + (-12 (-4 *3 (-1122)) (-5 *1 (-901 *2 *3 *4)) (-4 *2 (-1122)) + (-4 *4 (-679 *3)))) + ((*1 *1) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) +(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-784))))) (((*1 *2 *3) - (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4)) - (-5 *3 (-656 *4))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) + (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1071)) (-5 *1 (-607 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1249 *3)) (-4 *3 (-1071)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1280 *3)) (-4 *3 (-1071))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 (-656 (-2 (|:| -1690 *4) (|:| -2411 (-1141)))))) - (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4))))) -(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121))))) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) + ((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) (((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-831 *3)))) + (-12 (-4 *3 (-1239)) (-5 *2 (-657 *1)) (-4 *1 (-1032 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-657 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) + (-14 *3 (-941)) (-4 *4 (-1071))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-576))) (-5 *1 (-950))))) +(((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-158))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1194 *3)) (-5 *1 (-934 *3)) (-4 *3 (-317))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1265 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-933 *4 *3)) + (-4 *3 (-1265 (-419 *4)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1194 *1)) (-5 *3 (-1198)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-972 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1198)) + (-4 *5 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) + (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) +(((*1 *1) (-5 *1 (-1104)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-1071)) (-4 *4 (-174)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)) + (-4 *3 (-174))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1265 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) - (-4 *4 (-568)) (-5 *2 (-1288 *4)) (-5 *1 (-650 *4 *5))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1122)) (-4 *6 (-1122)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-697 *4 *5 *6)) (-4 *5 (-1122))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) + (-4 *3 (-1265 *4)) (-5 *1 (-822 *4 *3 *2 *5)) (-4 *2 (-669 *3)) + (-4 *5 (-669 (-419 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-419 *5)) + (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) + (-5 *1 (-822 *4 *5 *2 *6)) (-4 *2 (-669 *5)) (-4 *6 (-669 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) + (-5 *1 (-342))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-657 *1)) (|has| *1 (-6 -4467)) (-4 *1 (-1032 *3)) + (-4 *3 (-1239))))) +(((*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-924 *4)) + (-4 *4 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4465)) (-4 *4 (-374)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) + (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-908 *4)) + (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1122)) (-4 *3 (-167 *5)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -4465)) (-4 *4 (-568)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-4 *7 (-1013 *4)) (-4 *8 (-384 *7)) - (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) - (-4 *10 (-699 *7 *8 *9)))) + (-12 (-5 *3 (-657 (-1116 (-856 (-390))))) + (-5 *2 (-657 (-1116 (-856 (-227))))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-877)) (-5 *3 (-576)) (-5 *1 (-406)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) + (-4 *4 (-1265 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) + (-5 *2 (-1289 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1289 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) + (-4 *3 (-1122)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-1071)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-548)))) + ((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2) + (-12 (-4 *3 (-174)) (-4 *1 (-737 *3 *2)) (-4 *2 (-1265 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2) + (-12 (-5 *2 (-972 *3)) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) + (-4 *5 (-626 (-1198))) (-4 *4 (-806)) (-4 *5 (-862)))) + ((*1 *1 *2) + (-2748 + (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) + (-12 (-2665 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) + (-4 *5 (-626 (-1198)))) + (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))) + (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) + (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) + ((*1 *1 *2) + (-12 (-5 *2 (-972 (-419 (-576)))) (-4 *1 (-1087 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198))) (-4 *3 (-1071)) + (-4 *4 (-806)) (-4 *5 (-862)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3941 *8))) + (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1180)) + (-5 *1 (-1091 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3941 *8))) + (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1131 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1180)) + (-5 *1 (-1167 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1203)))) + ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1203)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-877)) (-5 *3 (-576)) (-5 *1 (-1219)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-877)) (-5 *3 (-576)) (-5 *1 (-1219)))) + ((*1 *2 *3) + (-12 (-5 *3 (-793 *4 (-879 *5))) + (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *5 (-657 (-1198))) + (-5 *2 (-793 *4 (-879 *6))) (-5 *1 (-1316 *4 *5 *6)) + (-14 *6 (-657 (-1198))))) + ((*1 *2 *3) + (-12 (-5 *3 (-972 *4)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 (-972 (-1046 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) + (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) + ((*1 *2 *3) + (-12 (-5 *3 (-793 *4 (-879 *6))) + (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *6 (-657 (-1198))) + (-5 *2 (-972 (-1046 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) + (-14 *5 (-657 (-1198))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1194 *4)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 (-1194 (-1046 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) + (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-656 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-340))))) -(((*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403))))) + (-12 + (-5 *3 (-1168 *4 (-543 (-879 *6)) (-879 *6) (-793 *4 (-879 *6)))) + (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *6 (-657 (-1198))) + (-5 *2 (-657 (-793 *4 (-879 *6)))) (-5 *1 (-1316 *4 *5 *6)) + (-14 *5 (-657 (-1198)))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) + (-4 *2 (-1239))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-657 *1)) (-4 *1 (-317))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) + (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) + (|:| |ub| (-657 (-856 (-227)))))) + (-5 *1 (-276))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-446)) + (-5 *2 + (-657 + (-3 (|:| -2634 (-1198)) + (|:| -2300 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576))))))))) + (-5 *1 (-1202))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-963 *5)) (-4 *5 (-1071)) (-5 *2 (-784)) + (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-784))) (-5 *3 (-784)) (-5 *1 (-1186 *4 *5)) + (-14 *4 (-941)) (-4 *5 (-1071)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-784))) (-5 *3 (-963 *5)) (-4 *5 (-1071)) + (-5 *1 (-1186 *4 *5)) (-14 *4 (-941))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) + (-5 *3 (-576)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-886 *4)) (-14 *4 *3) + (-5 *3 (-576)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-887 *4 *5)) + (-5 *3 (-576)) (-4 *5 (-884 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1034)) (-5 *2 (-419 (-576))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1090 *2 *3)) (-4 *2 (-13 (-861) (-374))) + (-4 *3 (-1265 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1267 *2 *3)) (-4 *3 (-805)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3515 (*2 (-1198)))) + (-4 *2 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) ((*1 *1) (-4 *1 (-557))) + ((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-712)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) + (-4 *3 (-13 (-1122) (-34)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1194 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *1 (-755 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1) (-5 *1 (-877)))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-2 (|:| |k| (-685 *3)) (|:| |c| *4)))) + (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1122) (-1060 *5))) + (-4 *5 (-902 *4)) (-4 *4 (-1122)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-951 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *7 (-1265 *5)) (-4 *4 (-737 *5 *7)) + (-5 *2 (-2 (|:| -3962 (-702 *6)) (|:| |vec| (-1289 *5)))) + (-5 *1 (-824 *5 *6 *7 *4 *3)) (-4 *6 (-669 *5)) (-4 *3 (-669 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-390))) (-5 *1 (-270)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1198)) + (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1198)) + (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-310))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) + (-5 *2 + (-2 (|:| -1500 (-784)) (|:| |curves| (-784)) + (|:| |polygons| (-784)) (|:| |constructs| (-784))))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1162 *4 *5)) (-4 *4 (-13 (-1122) (-34))) + (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-112)) (-5 *1 (-1163 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1166)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 (-1179 *7))) (-4 *6 (-862)) + (-4 *7 (-969 *5 (-543 *6) *6)) (-4 *5 (-1071)) + (-5 *2 (-1 (-1179 *7) *7)) (-5 *1 (-1148 *5 *6 *7))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) + (-12 (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4056 *4)))) + (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-662 *3 *4 *5))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -3579 (-419 *6)) (|:| |coeff| (-419 *6)))) + (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-115)) (-4 *4 (-1071)) (-5 *1 (-727 *4 *2)) + (-4 *2 (-661 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-849 *2)) (-4 *2 (-1071))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1071)) + (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-867 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1071)) + (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-868 *5 *3)) + (-4 *3 (-867 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-548))) (-5 *1 (-548))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4468 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) + (-4 *2 (-1071)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1265 *2)) + (-4 *4 (-700 *2 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) + (-4 *5 (-1265 *4)) (-5 *2 (-657 (-2 (|:| -3713 *5) (|:| -2371 *5)))) + (-5 *1 (-820 *4 *5 *3 *6)) (-4 *3 (-669 *5)) + (-4 *6 (-669 (-419 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) + (-4 *4 (-1265 *5)) (-5 *2 (-657 (-2 (|:| -3713 *4) (|:| -2371 *4)))) + (-5 *1 (-820 *5 *4 *3 *6)) (-4 *3 (-669 *4)) + (-4 *6 (-669 (-419 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) + (-4 *5 (-1265 *4)) (-5 *2 (-657 (-2 (|:| -3713 *5) (|:| -2371 *5)))) + (-5 *1 (-820 *4 *5 *6 *3)) (-4 *6 (-669 *5)) + (-4 *3 (-669 (-419 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) + (-4 *4 (-1265 *5)) (-5 *2 (-657 (-2 (|:| -3713 *4) (|:| -2371 *4)))) + (-5 *1 (-820 *5 *4 *6 *3)) (-4 *6 (-669 *4)) + (-4 *3 (-669 (-419 *4)))))) +(((*1 *2) + (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-657 (-576))) + (|:| |cols| (-657 (-576))))) + (-5 *4 (-702 *12)) (-5 *5 (-657 (-419 (-972 *9)))) + (-5 *6 (-657 (-657 *12))) (-5 *7 (-784)) (-5 *8 (-576)) + (-4 *9 (-13 (-317) (-148))) (-4 *12 (-969 *9 *11 *10)) + (-4 *10 (-13 (-862) (-626 (-1198)))) (-4 *11 (-806)) + (-5 *2 + (-2 (|:| |eqzro| (-657 *12)) (|:| |neqzro| (-657 *12)) + (|:| |wcond| (-657 (-972 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1289 (-419 (-972 *9)))) + (|:| -2469 (-657 (-1289 (-419 (-972 *9))))))))) + (-5 *1 (-944 *9 *10 *11 *12))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1224) (-1024))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1265 (-419 *2))) + (-4 *2 (-1265 *4)) (-5 *1 (-352 *3 *4 *2 *5)) + (-4 *3 (-353 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1243)) + (-4 *4 (-1265 (-419 *2))) (-4 *2 (-1265 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1126)) (-5 *3 (-787)) (-5 *1 (-52))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-784)) (-4 *3 (-1239)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1) (-5 *1 (-173))) + ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1122)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-401)))) + ((*1 *1) (-5 *1 (-406))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) + ((*1 *1) + (-12 (-4 *3 (-1122)) (-5 *1 (-901 *2 *3 *4)) (-4 *2 (-1122)) + (-4 *4 (-679 *3)))) + ((*1 *1) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *1 (-1164 *3 *2)) (-14 *3 (-784)) (-4 *2 (-1071)))) + ((*1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) + ((*1 *1 *1) (-5 *1 (-1198))) ((*1 *1) (-5 *1 (-1198))) + ((*1 *1) (-5 *1 (-1219)))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-806)) + (-4 *6 (-568)) (-4 *7 (-969 *6 *5 *3)) + (-5 *1 (-474 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1060 (-419 (-576))) (-374) + (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) + (-15 -1602 (*7 $)))))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-769))))) +(((*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1265 *4)) (-4 *4 (-1243)) + (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1265 (-419 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1289 *4)) (-5 *3 (-1289 *1)) (-4 *4 (-174)) + (-4 *1 (-378 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1289 *4)) (-5 *3 (-1289 *1)) (-4 *4 (-174)) + (-4 *1 (-381 *4 *5)) (-4 *5 (-1265 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-701 *3)))) + (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) + (-4 *4 (-1265 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1162 *3 *2)) (-4 *3 (-13 (-1122) (-34))) + (-4 *2 (-13 (-1122) (-34)))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-1198)) (-5 *1 (-276))))) +(((*1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-762))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) + (-253 *4 (-419 (-576))))) + (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1166)) (-5 *2 (-112))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1194 *1)) (-4 *1 (-1034))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-712)) (-5 *1 (-315))))) +(((*1 *2 *2) (-12 (-5 *2 (-657 (-326 (-227)))) (-5 *1 (-276))))) +(((*1 *1 *2) + (-12 (-5 *2 (-784)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) + (-14 *4 (-657 (-1198))))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *4)) (-4 *4 (-1070)) (-4 *1 (-1144 *3 *4 *5 *6)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-174)) (-4 *2 (-1264 *4)) (-5 *1 (-179 *4 *2 *3)) - (-4 *3 (-736 *4 *2)))) + (-12 (-5 *2 (-784)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) + (-14 *4 (-657 (-1198))))) + ((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) + (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) + (-4 *2 (-353 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-784)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-737 *2 *3)) (-4 *3 (-1265 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 (-2 (|:| -4286 *3) (|:| -4440 *4)))) + (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *1 (-1215 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1215 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) + (-5 *2 (-657 *3)) (-5 *1 (-999 *4 *5 *6 *3)) + (-4 *3 (-1087 *4 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024) (-1224)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-1243)) + (-4 *6 (-1265 (-419 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-353 *4 *5 *6))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) + (-4 *8 (-862)) (-4 *9 (-1087 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3981 (-657 *9)) (|:| -3941 *4) (|:| |ineq| (-657 *9)))) + (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-657 *9)) + (-4 *4 (-1093 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) + (-4 *8 (-862)) (-4 *9 (-1087 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3981 (-657 *9)) (|:| -3941 *4) (|:| |ineq| (-657 *9)))) + (-5 *1 (-1129 *6 *7 *8 *9 *4)) (-5 *3 (-657 *9)) + (-4 *4 (-1093 *6 *7 *8 *9))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1265 *4)) + (-4 *5 (-13 (-416) (-1060 *4) (-374) (-1224) (-294)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-657 (-289))) (-5 *1 (-289)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-1203))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-384 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1) + (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-805)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-657 (-1198))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-971 *5)))) (-5 *4 (-1197)) - (-5 *2 (-971 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464)))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) + (-14 *6 (-784)) (-4 *7 (-174)) (-4 *8 (-174)) + (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) + (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1071) (-862))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-657 (-1198))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-784)) + (-4 *6 (-1239)) (-4 *7 (-1239)) (-5 *2 (-245 *5 *7)) + (-5 *1 (-244 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-304 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1180)) (-5 *5 (-624 *6)) + (-4 *6 (-312)) (-4 *2 (-1239)) (-5 *1 (-307 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) + (-4 *2 (-312)) (-5 *1 (-308 *5 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-702 *5)) (-4 *5 (-1071)) + (-4 *6 (-1071)) (-5 *2 (-702 *6)) (-5 *1 (-314 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) + (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) + (-4 *9 (-374)) (-4 *10 (-1265 *9)) (-4 *11 (-1265 (-419 *10))) + (-5 *2 (-347 *9 *10 *11 *12)) + (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-353 *9 *10 *11)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1243)) (-4 *8 (-1243)) + (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *9 (-1265 *8)) + (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1265 (-419 *9))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) + (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-1122)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) + (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) + (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) + (-4 *6 (-1014 *5)) (-4 *7 (-1265 *6)) + (-4 *8 (-13 (-421 *6 *7) (-1060 *6))) (-4 *9 (-317)) + (-4 *10 (-1014 *9)) (-4 *11 (-1265 *10)) + (-5 *2 (-425 *9 *10 *11 *12)) + (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-421 *10 *11) (-1060 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) + (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) + (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) + (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1239)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) + (-4 *4 (-865)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) + (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -3579 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-374)) (-4 *6 (-374)) + (-5 *2 (-2 (|:| -3579 *6) (|:| |coeff| *6))) + (-5 *1 (-596 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-657 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-374)) (-4 *6 (-374)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-657 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-596 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) + (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-613 *8)) + (-5 *1 (-611 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1179 *6)) (-5 *5 (-613 *7)) + (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-1179 *8)) + (-5 *1 (-611 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1179 *7)) + (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-1179 *8)) + (-5 *1 (-611 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-657 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-657 *6)) (-5 *1 (-655 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-657 *6)) (-5 *5 (-657 *7)) + (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-657 *8)) + (-5 *1 (-656 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1071)) (-4 *8 (-1071)) + (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-700 *8 *9 *10)) + (-5 *1 (-698 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-700 *5 *6 *7)) + (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1071)) + (-4 *8 (-1071)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) + (-4 *2 (-700 *8 *9 *10)) (-5 *1 (-698 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-700 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) + (-4 *6 (-1265 *5)) (-4 *2 (-1265 (-419 *8))) + (-5 *1 (-722 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1265 (-419 *6))) + (-4 *8 (-1265 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1071)) (-4 *9 (-1071)) + (-4 *5 (-862)) (-4 *6 (-806)) (-4 *2 (-969 *9 *7 *5)) + (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-806)) + (-4 *4 (-969 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-862)) (-4 *6 (-862)) (-4 *7 (-806)) + (-4 *9 (-1071)) (-4 *2 (-969 *9 *8 *6)) + (-5 *1 (-742 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-806)) + (-4 *4 (-969 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-748 *5 *7)) (-4 *5 (-1071)) + (-4 *6 (-1071)) (-4 *7 (-739)) (-5 *2 (-748 *6 *7)) + (-5 *1 (-747 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-748 *3 *4)) + (-4 *4 (-739)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-795 *5)) (-4 *5 (-1071)) + (-4 *6 (-1071)) (-5 *2 (-795 *6)) (-5 *1 (-794 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) + (-4 *2 (-810 *6)) (-5 *1 (-811 *4 *5 *2 *6)) (-4 *4 (-810 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-846 *6)) (-5 *1 (-845 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-846 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *1 (-845 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-856 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *1 (-855 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-905 *5 *6)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-905 *5 *7)) + (-5 *1 (-904 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-908 *6)) (-5 *1 (-907 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1071)) + (-4 *6 (-1071)) (-5 *2 (-972 *6)) (-5 *1 (-966 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-862)) + (-4 *8 (-1071)) (-4 *6 (-806)) + (-4 *2 + (-13 (-1122) + (-10 -8 (-15 -2971 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-784)))))) + (-5 *1 (-971 *6 *7 *8 *5 *2)) (-4 *5 (-969 *8 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-978 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-978 *6)) (-5 *1 (-977 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-986 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-986 *6)) (-5 *1 (-988 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-963 *5)) (-4 *5 (-1071)) + (-4 *6 (-1071)) (-5 *2 (-963 *6)) (-5 *1 (-1003 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-1 *2 (-972 *4))) (-4 *4 (-1071)) + (-4 *2 (-969 (-972 *4) *5 *6)) (-4 *5 (-806)) + (-4 *6 + (-13 (-862) + (-10 -8 (-15 -4136 ((-1198) $)) + (-15 -2993 ((-3 $ "failed") (-1198)))))) + (-5 *1 (-1006 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) + (-4 *2 (-1014 *6)) (-5 *1 (-1012 *5 *6 *4 *2)) (-4 *4 (-1014 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) + (-4 *2 (-1019 *6)) (-5 *1 (-1020 *4 *5 *2 *6)) (-4 *4 (-1019 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) + (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) + (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1071)) (-4 *10 (-1071)) + (-14 *5 (-784)) (-14 *6 (-784)) (-4 *8 (-243 *6 *7)) + (-4 *9 (-243 *5 *7)) (-4 *2 (-1075 *5 *6 *10 *11 *12)) + (-5 *1 (-1077 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1075 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) + (-4 *12 (-243 *5 *10)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-1116 *6)) (-5 *1 (-1111 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-861)) + (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-657 *6)) + (-5 *1 (-1111 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1114 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-1114 *6)) (-5 *1 (-1113 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1117 *4 *2)) (-4 *4 (-861)) + (-4 *2 (-1171 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-1179 *6)) (-5 *1 (-1177 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1179 *6)) (-5 *5 (-1179 *7)) + (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-1179 *8)) + (-5 *1 (-1178 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1194 *5)) (-4 *5 (-1071)) + (-4 *6 (-1071)) (-5 *2 (-1194 *6)) (-5 *1 (-1192 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1215 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-1122)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5 *7 *9)) (-4 *5 (-1071)) + (-4 *6 (-1071)) (-14 *7 (-1198)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1253 *6 *8 *10)) (-5 *1 (-1248 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1198)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-1256 *6)) (-5 *1 (-1255 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-861)) + (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1179 *6)) + (-5 *1 (-1255 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1262 *5 *6)) (-14 *5 (-1198)) + (-4 *6 (-1071)) (-4 *8 (-1071)) (-5 *2 (-1262 *7 *8)) + (-5 *1 (-1257 *5 *6 *7 *8)) (-14 *7 (-1198)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) + (-4 *2 (-1265 *6)) (-5 *1 (-1263 *5 *4 *6 *2)) (-4 *4 (-1265 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1274 *5 *7 *9)) (-4 *5 (-1071)) + (-4 *6 (-1071)) (-14 *7 (-1198)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1274 *6 *8 *10)) (-5 *1 (-1269 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1198)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) + (-4 *2 (-1280 *6)) (-5 *1 (-1278 *5 *6 *4 *2)) (-4 *4 (-1280 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1289 *5)) (-4 *5 (-1239)) + (-4 *6 (-1239)) (-5 *2 (-1289 *6)) (-5 *1 (-1288 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1289 *5)) + (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1289 *6)) + (-5 *1 (-1288 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-1071)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-1312 *3 *4)) + (-4 *4 (-859))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-304 (-326 *5)))) + (-5 *1 (-1151 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-5 *2 (-971 *4)) - (-5 *1 (-302 *4)) (-4 *4 (-464)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) + (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-13 (-317) (-148))) + (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1151 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-972 *5)))) (-5 *4 (-1198)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-304 (-326 *5)))) + (-5 *1 (-1151 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) - (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) - (-4 *4 (-13 (-374) (-860))))) + (-12 (-5 *3 (-304 (-419 (-972 *4)))) (-4 *4 (-13 (-317) (-148))) + (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1151 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1197)) - (-5 *2 (-971 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) - (-4 *5 (-13 (-374) (-860))))) + (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *5))))) + (-5 *1 (-1151 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-971 (-419 (-576)))) - (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) + (-12 (-5 *3 (-657 (-419 (-972 *4)))) (-4 *4 (-13 (-317) (-148))) + (-5 *2 (-657 (-657 (-304 (-326 *4))))) (-5 *1 (-1151 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1197)) - (-5 *2 (-971 (-419 (-576)))) (-5 *1 (-791 *5)) - (-4 *5 (-13 (-374) (-860)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1121))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-657 (-304 (-419 (-972 *5))))) (-5 *4 (-657 (-1198))) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *5))))) + (-5 *1 (-1151 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-304 (-419 (-972 *4))))) + (-4 *4 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *4))))) + (-5 *1 (-1151 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-5 *1 (-449))))) +(((*1 *1 *1) (-5 *1 (-1085)))) +(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591))))) +(((*1 *2 *3) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) + (-5 *2 (-493 *4 *5)) (-5 *1 (-964 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1280 *4)) + (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-1 (-1179 *4) (-1179 *4) (-1179 *4))) (-5 *1 (-1282 *4 *5))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1166)) (-5 *3 (-576)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1057)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-940)) (-4 *5 (-568)) (-5 *2 (-701 *5)) - (-5 *1 (-975 *5 *3)) (-4 *3 (-668 *5))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-876) (-876) (-876))) (-5 *4 (-576)) (-5 *2 (-876)) - (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1121)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-876)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-1070)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-876)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) - ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-876)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-876)) (-5 *1 (-1193 *3)) (-4 *3 (-1070))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) + (-12 (-5 *3 (-1194 *5)) (-4 *5 (-464)) (-5 *2 (-657 *6)) + (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-861))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-972 *5)) (-4 *5 (-464)) (-5 *2 (-657 *6)) + (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-861)))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) + (-5 *2 (-1057)) (-5 *1 (-769))))) (((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) - (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *3 (-917 *6)) - (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) - (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4464))))))) -(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-864))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1020 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) + (-12 (-5 *2 (-1179 (-576))) (-5 *1 (-1182 *4)) (-4 *4 (-1071)) + (-5 *3 (-576))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) + (-14 *4 (-657 (-1198))))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *1) (-4 *1 (-294))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-677 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) + (-14 *5 (-941)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-784)) (-4 *4 (-13 (-1071) (-730 (-419 (-576))))) + (-4 *5 (-862)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1310 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-5 *1 (-1309 *3 *4)) + (-4 *4 (-730 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-657 (-1238))) (-5 *3 (-1238)) (-5 *1 (-694))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-657 (-657 *7))) + (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) + (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-657 (-657 *8))) + (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-657 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) - (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-769))))) + (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1116 (-227))) + (-5 *5 (-112)) (-5 *2 (-1291)) (-5 *1 (-264))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) + (-4 *3 (-1122))))) +(((*1 *1 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4)) + (-4 *4 (-174))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) +(((*1 *2 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-881 *4 *5 *6 *7)) + (-4 *4 (-1071)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-784)) (-4 *4 (-1071)) (-4 *5 (-862)) (-4 *6 (-806)) + (-14 *8 (-657 *5)) (-5 *2 (-1294)) + (-5 *1 (-1301 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-969 *4 *6 *5)) + (-14 *9 (-657 *3)) (-14 *10 *3)))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1146 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) + (-5 *2 (-1057)) (-5 *1 (-765))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1239)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-624 *1))) (-5 *3 (-657 *1)) (-4 *1 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-304 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071))))) +(((*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-772))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-657 (-173))))))) +(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-537))))) +(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276))))) +(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1173))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-1162 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) + (-5 *1 (-1163 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-657 (-1162 *3 *4))) (-4 *3 (-13 (-1122) (-34))) + (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-999 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-1289 + (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1500 (-576)) + (|:| -1669 (-576)) (|:| |spline| (-576)) (|:| -2046 (-576)) + (|:| |axesColor| (-889)) (|:| -2364 (-576)) + (|:| |unitsColor| (-889)) (|:| |showing| (-576))))) + (-5 *1 (-1290))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1288 (-656 (-2 (|:| -1690 *4) (|:| -2411 (-1141)))))) - (-4 *4 (-360)) (-5 *2 (-1293)) (-5 *1 (-540 *4))))) + (-12 (-5 *4 (-657 *3)) (-4 *3 (-969 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-461 *5 *6 *7 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -3579 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-657 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1265 *7)) + (-5 *3 (-419 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-586 *7 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) + (-5 *2 (-657 (-2 (|:| |deg| (-784)) (|:| -4124 *3)))) + (-5 *1 (-218 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-784)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-784))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) + (-4 *1 (-1093 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-1 (-1179 (-972 *4)) (-1179 (-972 *4)))) + (-5 *1 (-1297 *4)) (-4 *4 (-374))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) + (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576)))) + ((*1 *2 *2) + (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1146 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1071)) (-5 *1 (-725 *3 *2)) (-4 *2 (-1265 *3))))) (((*1 *2 *3) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-841) (-1071))) (-5 *2 (-1180)) + (-5 *1 (-839 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-841) (-1071))) + (-5 *2 (-1180)) (-5 *1 (-839 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-835)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-841) (-1071))) + (-5 *2 (-1294)) (-5 *1 (-839 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-835)) (-5 *4 (-326 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-841) (-1071))) (-5 *2 (-1294)) (-5 *1 (-839 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-841)) (-5 *2 (-1180)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-841)) (-5 *3 (-112)) (-5 *2 (-1180)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-841)) (-5 *3 (-835)) (-5 *2 (-1294)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-841)) (-5 *3 (-835)) (-5 *4 (-112)) (-5 *2 (-1294))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-702 (-227))) + (-5 *2 (-1057)) (-5 *1 (-768))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-657 (-2 (|:| |totdeg| (-784)) (|:| -3587 *3)))) + (-5 *4 (-784)) (-4 *3 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) + (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1082)) (-4 *3 (-1224)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) + (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1790 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) - (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1292)))) + (-5 *2 (-2 (|:| -1735 *4) (|:| -2192 *3) (|:| -3951 *3))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-1087 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1071)) + (-5 *2 (-2 (|:| -1735 *3) (|:| -2192 *1) (|:| -3951 *1))) + (-4 *1 (-1265 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-480)) - (-5 *1 (-1292)))) + (-12 + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) + (-253 *4 (-419 (-576))))) + (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-981 *3)) (-4 *3 (-557)))) + ((*1 *2 *1) (-12 (-4 *1 (-1243)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) + (|:| -2732 *6))) + (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1198)))) + (-4 *5 (-806)) (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-969 *3 *5 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3941 *4)))) + (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-760))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203))))) +(((*1 *2 *1) (-12 (-5 *2 (-993)) (-5 *1 (-925 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) + (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *3 (-1087 *4 *5 *6)) + (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3941 *1)))) + (-4 *1 (-1093 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) + (|:| |lb| (-657 (-856 (-227)))) + (|:| |cf| (-657 (-326 (-227)))) + (|:| |ub| (-657 (-856 (-227)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-657 (-326 (-227)))) + (|:| -1679 (-657 (-227))))))) + (-5 *2 (-657 (-1180))) (-5 *1 (-276))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1057)) (-5 *1 (-761))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1122)) (-4 *2 (-1122)) + (-5 *1 (-623 *2 *4))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) +(((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-834))))) +(((*1 *2 *3) + (-12 (-5 *2 (-171 (-390))) (-5 *1 (-798 *3)) (-4 *3 (-626 (-390))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) - (-5 *2 (-480)) (-5 *1 (-1292))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-749 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121)))) - ((*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1121))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) + (-12 (-5 *4 (-941)) (-5 *2 (-171 (-390))) (-5 *1 (-798 *3)) + (-4 *3 (-626 (-390))))) + ((*1 *2 *3) + (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) + (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-171 *5)) (-5 *4 (-941)) (-4 *5 (-174)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-972 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) + (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-972 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-174)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 (-390))) + (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) + (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-972 (-171 *4)))) (-4 *4 (-568)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-972 (-171 *5)))) (-5 *4 (-941)) (-4 *5 (-568)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-568)) + (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-798 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) + (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-739)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-784)) (-4 *2 (-1122)) + (-5 *1 (-691 *2))))) +(((*1 *2) (-12 (-5 *2 (-657 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-133))))) +(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) + (-5 *2 (-657 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) + (-5 *2 (-657 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1179 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) + ((*1 *2 *1) + (-12 (-5 *2 (-657 *3)) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-739)))) + ((*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-4 *3 (-1071)) (-5 *2 (-657 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1280 *3)) (-4 *3 (-1071)) (-5 *2 (-1179 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-784)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -4129 *3) (|:| -2128 (-784)))) (-5 *1 (-599 *3)) + (-4 *3 (-557))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-657 (-1198))) (-4 *5 (-568)) + (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-783 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-568)) + (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-783 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-702 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2469 (-657 *6))) + *7 *6)) + (-4 *6 (-374)) (-4 *7 (-669 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1289 *6) "failed")) + (|:| -2469 (-657 (-1289 *6))))) + (-5 *1 (-826 *6 *7)) (-5 *4 (-1289 *6))))) (((*1 *1 *1) (-4 *1 (-641))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) + (-4 *2 (-13 (-442 *3) (-1024) (-1224)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-480)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-657 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) + (-5 *2 (-657 (-2 (|:| |poly| *6) (|:| -3981 *3)))) + (-5 *1 (-822 *5 *6 *3 *7)) (-4 *3 (-669 *6)) + (-4 *7 (-669 (-419 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-657 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-4 *6 (-1265 *5)) + (-5 *2 (-657 (-2 (|:| |poly| *6) (|:| -3981 (-667 *6 (-419 *6)))))) + (-5 *1 (-825 *5 *6)) (-5 *3 (-667 *6 (-419 *6)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1096)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *2) + (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) + (-5 *1 (-178 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-52))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-317)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1122)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2192 (-784)) (|:| -3951 (-784)))) + (-5 *1 (-784)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1289 *5)) (-5 *3 (-784)) (-5 *4 (-1142)) (-4 *5 (-360)) + (-5 *1 (-540 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-430 *6)) (-4 *6 (-1265 *5)) + (-4 *5 (-1071)) (-5 *2 (-657 *6)) (-5 *1 (-456 *5 *6))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290))))) (((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507))))) -(((*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876))))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-890)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-890)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1179)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-518)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-604)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-490)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1187)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-638)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1117)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1111)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1094)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-991)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1057)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-321)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-683)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-537)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1299)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1087)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-529)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1136)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-134)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-618)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1298)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-688)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-220)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-536)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-765))))) +(((*1 *2 *2) + (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) + (-5 *1 (-178 *3))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-941)) (-4 *3 (-374)) + (-14 *4 (-1015 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1265 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) + ((*1 *1) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) + ((*1 *1 *1) (|partial| -4 *1 (-735))) + ((*1 *1 *1) (|partial| -4 *1 (-739))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-789 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1090 *3 *2)) (-4 *3 (-13 (-861) (-374))) + (-4 *2 (-1265 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-1071)) + (-5 *1 (-1182 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) + (-14 *4 (-1198)) (-14 *5 *3)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1161)))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) + (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) + (-12 (-5 *3 (-1114 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1114 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1198)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) + (-12 (-5 *2 (-784)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-227))) (-5 *4 (-784)) (-5 *2 (-702 (-227))) + (-5 *1 (-315))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1239)) + (-4 *5 (-384 *4)) (-4 *3 (-384 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1071)) + (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4))))) +(((*1 *1 *1) + (-12 (-4 *2 (-317)) (-4 *3 (-1014 *2)) (-4 *4 (-1265 *3)) + (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1060 *3)))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174))))) +(((*1 *2 *2) (-12 (-5 *2 (-941)) (|has| *1 (-6 -4457)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) + ((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-712)))) + ((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-712))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1265 *3)) + (-4 *3 (-13 (-374) (-148) (-1060 (-576)))) (-5 *1 (-580 *3 *4))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) + (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-1113 (-971 (-576)))) (-5 *2 (-340)) + (-12 (-5 *3 (-1198)) (-5 *4 (-1114 (-972 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) - (-4 *3 (-1121))))) + (-12 (-5 *2 (-784)) (-5 *1 (-688 *3)) (-4 *3 (-1071)) + (-4 *3 (-1122))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-998 *4 *5 *6 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) + (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *1 *1) (-4 *1 (-175))) + ((*1 *1 *1) + (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-657 (-419 *6))) (-5 *3 (-419 *6)) + (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-580 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-657 (-115)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1180) (-1203))) + (-5 *1 (-1203))))) +(((*1 *2 *2) (-12 (-5 *2 (-657 (-702 (-326 (-576))))) (-5 *1 (-1053))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-464)) (-4 *4 (-833)) + (-14 *5 (-1198)) (-5 *2 (-576)) (-5 *1 (-1136 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1085))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 (-576))) + (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) - (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1193 (-419 (-576)))) + (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-445 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-624 *1))) (-4 *1 (-312))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-529)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *2)) + (-4 *3 (-13 (-1122) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1300))))) +(((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062)))) + ((*1 *1 *1 *1) (-4 *1 (-1161)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-999 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-419 (-576))))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-270))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-657 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-784)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-806)) (-4 *6 (-969 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862)) + (-5 *1 (-461 *4 *3 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) + (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-657 (-624 *2))) (-5 *4 (-657 (-1198))) + (-4 *2 (-13 (-442 (-171 *5)) (-1024) (-1224))) (-4 *5 (-568)) + (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1024) (-1224)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1148 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) + (-4 *4 (-1071)) (-4 *3 (-862)) (-5 *1 (-1148 *4 *3 *5)) + (-4 *5 (-969 *4 (-543 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1233 *4))) (-5 *3 (-1198)) (-5 *1 (-1233 *4)) + (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1071))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-5 *2 (-2 (|:| -4286 *3) (|:| -4440 *4)))))) (((*1 *2) - (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)))) + (-12 (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) + (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) - (-4 *4 (-1264 *3)) + (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) + (-4 *4 (-1265 *3)) (-5 *2 - (-2 (|:| -2704 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) + (-2 (|:| -2469 (-702 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-702 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1264 (-576))) + (-12 (-4 *3 (-1265 (-576))) (-5 *2 - (-2 (|:| -2704 (-701 (-576))) (|:| |basisDen| (-576)) - (|:| |basisInv| (-701 (-576))))) - (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) + (-2 (|:| -2469 (-702 (-576))) (|:| |basisDen| (-576)) + (|:| |basisInv| (-702 (-576))))) + (-5 *1 (-781 *3 *4)) (-4 *4 (-421 (-576) *3)))) ((*1 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) + (-12 (-4 *3 (-360)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 *4)) (-5 *2 - (-2 (|:| -2704 (-701 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-701 *4)))) - (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5)))) + (-2 (|:| -2469 (-702 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-702 *4)))) + (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-737 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) + (-12 (-4 *3 (-360)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 *4)) (-5 *2 - (-2 (|:| -2704 (-701 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-701 *4)))) - (-5 *1 (-1297 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) + (-2 (|:| -2469 (-702 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-702 *4)))) + (-5 *1 (-1298 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1071)) (-4 *3 (-1265 *4)) (-4 *2 (-1280 *4)) + (-5 *1 (-1283 *4 *3 *5 *2)) (-4 *5 (-669 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) + (-4 *3 (-384 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) + (-4 *5 (-384 *2)) (-4 *3 (-384 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-702 *4)) (-4 *4 (-1014 *2)) (-4 *2 (-568)) + (-5 *1 (-706 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-1258 *2 *4 *3)) + (-4 *3 (-1265 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *2 *1) + (-12 (-4 *1 (-384 *3)) (-4 *3 (-1239)) (-4 *3 (-862)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1239)) + (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-568)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-568))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) + (-4 *3 (-1265 *4)) (-5 *2 (-576)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-568) (-1060 *2) (-652 *2) (-464))) + (-5 *2 (-576)) (-5 *1 (-1138 *4 *3)) + (-4 *3 (-13 (-27) (-1224) (-442 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-856 *3)) + (-4 *3 (-13 (-27) (-1224) (-442 *6))) + (-4 *6 (-13 (-568) (-1060 *2) (-652 *2) (-464))) (-5 *2 (-576)) + (-5 *1 (-1138 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-1180)) + (-4 *6 (-13 (-568) (-1060 *2) (-652 *2) (-464))) (-5 *2 (-576)) + (-5 *1 (-1138 *6 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-464)) (-5 *2 (-576)) + (-5 *1 (-1139 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-856 (-419 (-972 *6)))) + (-5 *3 (-419 (-972 *6))) (-4 *6 (-464)) (-5 *2 (-576)) + (-5 *1 (-1139 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-419 (-972 *6))) (-5 *4 (-1198)) + (-5 *5 (-1180)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1139 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1221 *3)) (-4 *3 (-1071))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1118)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) + ((*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-940)) (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-804)))) + (-12 (-5 *2 (-941)) (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-805)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1269 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-112))))) -(((*1 *1) (-4 *1 (-988)))) + (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1270 *3)) (-4 *3 (-1071))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-702 *8)) (-4 *8 (-969 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) + (-4 *7 (-806)) + (-5 *2 + (-657 + (-2 (|:| -4343 (-784)) + (|:| |eqns| + (-657 + (-2 (|:| |det| *8) (|:| |rows| (-657 (-576))) + (|:| |cols| (-657 (-576)))))) + (|:| |fgb| (-657 *8))))) + (-5 *1 (-944 *5 *6 *7 *8)) (-5 *4 (-784))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) + (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-784)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1265 (-419 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) + (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-700 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) + (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071)))) + ((*1 *2 *3) + (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) + (-5 *1 (-701 *2 *4 *5 *3)) (-4 *3 (-700 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) + (-5 *1 (-761))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4)))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) + (-5 *2 (-1057)) (-5 *1 (-764))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-941)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-270))))) (((*1 *2 *1) - (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) + (-5 *2 (-2 (|:| |k| (-832 *3)) (|:| |c| *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-702 *3)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) + (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-999 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-657 *7)) (-5 *3 (-112)) (-4 *7 (-1087 *4 *5 *6)) + (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) + (-5 *1 (-999 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-768))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1194 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) + (-4 *3 (-374))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-851))) (-5 *1 (-141))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-768))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1071))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)) + (-4 *2 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *3)) + (-4 *3 (-1239)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-687 *3)) (-4 *3 (-1239)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1122)) + (-5 *1 (-750 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-750 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) + (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1238)) - (-4 *5 (-1238)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1239)) + (-4 *5 (-1239)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) - (-4 *7 (-1238)) (-4 *5 (-1238)) (-5 *2 (-245 *6 *5)) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-784)) + (-4 *7 (-1239)) (-4 *5 (-1239)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1238)) (-4 *5 (-1238)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1239)) (-4 *5 (-1239)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1121)) (-4 *5 (-1121)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1238)) - (-4 *5 (-1238)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-657 *6)) (-4 *6 (-1239)) + (-4 *5 (-1239)) (-5 *2 (-657 *5)) (-5 *1 (-655 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-977 *6)) (-4 *6 (-1238)) - (-4 *5 (-1238)) (-5 *2 (-977 *5)) (-5 *1 (-976 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-978 *6)) (-4 *6 (-1239)) + (-4 *5 (-1239)) (-5 *2 (-978 *5)) (-5 *1 (-977 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1178 *6)) (-4 *6 (-1238)) - (-4 *3 (-1238)) (-5 *2 (-1178 *3)) (-5 *1 (-1176 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1179 *6)) (-4 *6 (-1239)) + (-4 *3 (-1239)) (-5 *2 (-1179 *3)) (-5 *1 (-1177 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1288 *6)) (-4 *6 (-1238)) - (-4 *5 (-1238)) (-5 *2 (-1288 *5)) (-5 *1 (-1287 *6 *5))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1289 *6)) (-4 *6 (-1239)) + (-4 *5 (-1239)) (-5 *2 (-1289 *5)) (-5 *1 (-1288 *6 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5))))) -(((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-4 *1 (-734))) - ((*1 *1) (-4 *1 (-738))) - ((*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) - ((*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-4 *5 (-1265 *4)) (-5 *2 (-657 (-666 (-419 *5)))) + (-5 *1 (-670 *4 *5)) (-5 *3 (-666 (-419 *5)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) + (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1224) (-442 (-171 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1122)) (-4 *5 (-1122)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-696 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-888 (-941) (-941)))) (-5 *1 (-993))))) +(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1071))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-448))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-941)) (-5 *1 (-1123 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) + (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-861))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1265 (-171 *3)))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1056)) - (-5 *1 (-761))))) + (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1057)) + (-5 *1 (-762))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1198)) (-4 *5 (-1243)) (-4 *6 (-1265 *5)) + (-4 *7 (-1265 (-419 *6))) (-5 *2 (-657 (-972 *5))) + (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1198)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1243)) + (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-4 *4 (-374)) + (-5 *2 (-657 (-972 *4)))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *6 (-227)) + (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) + (-5 *2 (-1057)) (-5 *1 (-760))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-1179 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-657 (-1198))) + (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-310)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *4 (-657 (-1198))) + (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-310))))) +(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-802)) (-5 *5 (-576))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 (-419 (-971 *6)))) - (-5 *3 (-419 (-971 *6))) - (-4 *6 (-13 (-568) (-1059 (-576)) (-148))) + (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-657 (-419 (-972 *6)))) + (-5 *3 (-419 (-972 *6))) + (-4 *6 (-13 (-568) (-1060 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-624 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1194 (-48))) (-5 *3 (-657 (-624 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1194 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1265 (-171 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-941)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1265 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1265 *2)) (-4 *2 (-1014 *3)) (-5 *1 (-425 *3 *2 *4 *5)) + (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1060 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1265 *2)) (-4 *2 (-1014 *3)) + (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) + (-14 *6 (-1289 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-941)) (-4 *5 (-1071)) + (-4 *2 (-13 (-416) (-1060 *5) (-374) (-1224) (-294))) + (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1265 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-624 (-507)))) (-5 *1 (-507)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1194 (-507))) (-5 *3 (-657 (-624 (-507)))) + (-5 *1 (-507)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1194 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1289 *4)) (-5 *3 (-941)) (-4 *4 (-360)) + (-5 *1 (-540 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-737 *4 *2)) (-4 *2 (-1265 *4)) + (-5 *1 (-788 *4 *2 *5 *3)) (-4 *3 (-1265 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) + ((*1 *1 *1) (-4 *1 (-1082)))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062))))) +(((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-132)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-372 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-662 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-657 (-171 *4))) (-5 *1 (-156 *3 *4)) + (-4 *3 (-1265 (-171 (-576)))) (-4 *4 (-13 (-374) (-861))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-657 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-657 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) + (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *3 (-972 *5)) (-4 *5 (-1071)) (-5 *2 (-493 *4 *5)) + (-5 *1 (-964 *4 *5)) (-14 *4 (-657 (-1198)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *1 (-817 *4 *2)) (-4 *2 (-13 (-29 *4) (-1224) (-979))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1) (-5 *1 (-877))) + ((*1 *2 *3) + (-12 (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1071))))) (((*1 *2 *1 *2) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) + (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-702 (-576))) (-5 *3 (-657 (-576))) (-5 *1 (-1132))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) + (-5 *2 + (-2 (|:| -2128 (-784)) (|:| -1735 *5) (|:| |radicand| (-657 *5)))) + (-5 *1 (-330 *5)) (-5 *4 (-784)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-576))))) (((*1 *2 *1) - (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) + (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) + (-5 *2 (-657 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-750 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-451))) (-5 *1 (-880))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-4 *3 (-13 (-27) (-1224) (-442 *6) (-10 -8 (-15 -3515 ($ *7))))) + (-4 *7 (-861)) + (-4 *8 + (-13 (-1267 *3 *7) (-374) (-1224) + (-10 -8 (-15 -2209 ($ $)) (-15 -2320 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) + (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1180)) (-4 *9 (-1005 *8)) + (-14 *10 (-1198))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1198)) (-5 *6 (-112)) + (-4 *7 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-4 *3 (-13 (-1224) (-979) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-856 *3)) (|:| |f2| (-657 (-856 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *7 *3)) (-5 *5 (-856 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1107))) (-5 *1 (-301))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1179 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1239)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1239)) (-14 *4 *2)))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) + (-5 *2 (-1057)) (-5 *1 (-763))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-3 (-112) (-657 *1))) + (-4 *1 (-1093 *4 *5 *6 *3))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-784)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1239)) (-5 *2 (-784)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1122)) (-5 *2 (-784)) (-5 *1 (-441 *3 *4)) + (-4 *3 (-442 *4)))) + ((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) + ((*1 *2) (-12 (-4 *1 (-776)) (-5 *2 (-784)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-784)) (-5 *1 (-809 *3 *4)) + (-4 *3 (-810 *4)))) + ((*1 *2) + (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-1013 *3 *4)) + (-4 *3 (-1014 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-784)) (-5 *1 (-1018 *3 *4)) + (-4 *3 (-1019 *4)))) + ((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1033 *3)) (-4 *3 (-1034)))) + ((*1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-784)))) + ((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1081 *3)) (-4 *3 (-1082))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-135))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) + (-5 *1 (-1027))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-934 *3)) (-4 *3 (-317))))) +(((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) + ((*1 *1 *1) (-5 *1 (-1142)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-145))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1057)) + (-5 *1 (-759))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *5)) (-5 *4 (-941)) (-4 *5 (-862)) + (-5 *2 (-657 (-685 *5))) (-5 *1 (-685 *5))))) +(((*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1071)) + (-4 *2 (-1280 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-337 *3)) (-4 *3 (-1239)))) + ((*1 *2 *1) + (-12 (-5 *2 (-784)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1239)) + (-14 *4 (-576))))) +(((*1 *1 *1 *1) (-5 *1 (-877)))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))) + (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) + ((*1 *1 *1 *1) (-5 *1 (-1142)))) +(((*1 *2 *3) + (-12 (-5 *2 (-430 (-1194 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1194 *1)) + (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1122)))) + ((*1 *2 *3) + (-12 (-4 *1 (-929)) (-5 *2 (-430 (-1194 *1))) (-5 *3 (-1194 *1))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) + (-5 *2 (-1057)) (-5 *1 (-762))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1194 *9)) (-5 *4 (-657 *7)) (-5 *5 (-657 *8)) + (-4 *7 (-862)) (-4 *8 (-1071)) (-4 *9 (-969 *8 *6 *7)) + (-4 *6 (-806)) (-5 *2 (-1194 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) +(((*1 *1) (-5 *1 (-629)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) + (|:| |c2| (-419 *5)) (|:| |deg| (-784)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1265 (-419 *5)))))) +(((*1 *2) + (-12 (-5 *2 (-1289 (-1123 *3 *4))) (-5 *1 (-1123 *3 *4)) + (-14 *3 (-941)) (-14 *4 (-941))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-657 (-702 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) - (-5 *1 (-1181 *4)))) + (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-1071)) + (-5 *1 (-1182 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) - (-14 *4 (-1197)) (-14 *5 *3)))) + (-12 (-5 *2 (-576)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) + (-14 *4 (-1198)) (-14 *5 *3)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) + ((*1 *1 *1 *1) (-5 *1 (-1142)))) +(((*1 *2 *1) + (-12 (-5 *2 (-173)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-1071))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-312)))) + ((*1 *1 *1) (-4 *1 (-312))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) + ((*1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) + (-5 *1 (-771))))) +(((*1 *2 *3) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) + (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1216 *4 *5)) + (-4 *4 (-1122)) (-4 *5 (-1122))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1071)) (-5 *2 (-1289 *3)) (-5 *1 (-725 *3 *4)) + (-4 *4 (-1265 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-576)) + (|:| -1502 (-657 (-2 (|:| |irr| *3) (|:| -2534 (-576))))))) + (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-576)) + (|:| -1502 (-657 (-2 (|:| |irr| *3) (|:| -2534 (-576))))))) + (-5 *1 (-1254 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) + (-4 *3 (-1265 *4)) (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024) (-1224)))))) +(((*1 *2) + (-12 (-5 *2 (-978 (-1142))) (-5 *1 (-354 *3 *4)) (-14 *3 (-941)) + (-14 *4 (-941)))) + ((*1 *2) + (-12 (-5 *2 (-978 (-1142))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-1194 *3)))) + ((*1 *2) + (-12 (-5 *2 (-978 (-1142))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-941))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) + (-12 (-5 *2 (-1 (-963 (-227)) (-963 (-227)))) (-5 *1 (-270)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1288 *3)))) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) + (-5 *2 (-702 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1289 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-702 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-1288 *4)))) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-1289 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1264 *4)) (-5 *2 (-1288 *4)))) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1265 *4)) (-5 *2 (-1289 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) - (-5 *2 (-1288 *3)))) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) + (-5 *2 (-1289 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) + (-5 *2 (-702 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1289 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1289 *3)) (-5 *1 (-651 *3 *4)) (-4 *3 (-374)) + (-14 *4 (-657 (-1198))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) - (-5 *2 (-1288 *5)) (-5 *1 (-1107 *5))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-548))) - ((*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121))))) + (-12 (-5 *4 (-657 (-702 *5))) (-5 *3 (-702 *5)) (-4 *5 (-374)) + (-5 *2 (-1289 *5)) (-5 *1 (-1108 *5))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 (-908 *6))) + (-5 *5 (-1 (-905 *6 *8) *8 (-908 *6) (-905 *6 *8))) (-4 *6 (-1122)) + (-4 *8 (-13 (-1071) (-626 (-908 *6)) (-1060 *7))) + (-5 *2 (-905 *6 *8)) (-4 *7 (-1071)) (-5 *1 (-961 *6 *7 *8))))) +(((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) + (-4 *6 (-806)) (-4 *7 (-969 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-657 *7)) (|:| |n0| (-657 *7)))) + (-5 *1 (-944 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1265 *5)) + (-5 *2 (-657 *3)) (-5 *1 (-790 *4 *5 *6 *3 *7)) (-4 *3 (-1265 *6)) + (-14 *7 (-941))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1122)) (-4 *4 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *5 *4 *6))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) + (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-657 (-784))))) + ((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) + (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-657 (-784)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1057)) (-5 *1 (-766))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-765))))) +(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1239)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1071)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1265 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2) + (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) + (-5 *1 (-178 *3))))) (((*1 *1) (-5 *1 (-142)))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-784)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-1287 *3)) (-4 *3 (-23)) (-4 *3 (-1239))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-657 (-1198))) + (-5 *2 (-657 (-657 (-390)))) (-5 *1 (-1045)) (-5 *5 (-390)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) + (-14 *5 (-657 (-1198))) (-5 *2 (-657 (-657 (-1046 (-419 *4))))) + (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) + (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) + (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) + (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-972 *4))) + (-4 *4 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 (-657 (-657 (-1046 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) + (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-5 *2 (-657 *5)) + (-5 *1 (-906 *4 *5)) (-4 *5 (-1239))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-4 *2 (-1122)) + (-5 *1 (-905 *4 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1057)) (-5 *1 (-766))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-129))))) +(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-962)) (-5 *3 (-576))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1122)) (-4 *2 (-918 *4)) (-5 *1 (-705 *4 *2 *5 *3)) + (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4466))))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-130))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) - (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) + (-12 (-5 *3 (-657 (-493 *5 *6))) (-5 *4 (-879 *5)) + (-14 *5 (-657 (-1198))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-878 *5)) - (-14 *5 (-656 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) + (-12 (-5 *3 (-657 (-493 *5 *6))) (-5 *4 (-879 *5)) + (-14 *5 (-657 (-1198))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1071)) (-5 *2 (-657 *1)) (-4 *1 (-1156 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-5 *1 (-1213 *2)) (-4 *2 (-374))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1590 ((-1147 *3 (-624 $)) $)) + (-15 -1602 ((-1147 *3 (-624 $)) $)) + (-15 -3515 ($ (-1147 *3 (-624 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1590 ((-1147 *3 (-624 $)) $)) + (-15 -1602 ((-1147 *3 (-624 $)) $)) + (-15 -3515 ($ (-1147 *3 (-624 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-657 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1590 ((-1147 *4 (-624 $)) $)) + (-15 -1602 ((-1147 *4 (-624 $)) $)) + (-15 -3515 ($ (-1147 *4 (-624 $))))))) + (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-657 (-624 *2))) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1590 ((-1147 *4 (-624 $)) $)) + (-15 -1602 ((-1147 *4 (-624 $)) $)) + (-15 -3515 ($ (-1147 *4 (-624 $))))))) + (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-1179 (-993))) (-5 *1 (-993))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1057)) (-5 *1 (-762)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-400)) (-5 *2 (-1057)) (-5 *1 (-762))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-702 (-419 (-576)))) + (-5 *2 + (-657 + (-2 (|:| |outval| *4) (|:| |outmult| (-576)) + (|:| |outvect| (-657 (-702 *4)))))) + (-5 *1 (-792 *4)) (-4 *4 (-13 (-374) (-861)))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) + (-5 *2 (-1057)) (-5 *1 (-762))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -2571 *4))) (-5 *5 (-783)) - (-4 *4 (-968 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-784)) (|:| -3587 *4))) (-5 *5 (-784)) + (-4 *4 (-969 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-769))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) - (-4 *4 (-13 (-568) (-1059 (-576)) (-148))) (-5 *1 (-582 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) - (-4 *2 (-668 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -4326)) (-5 *2 (-112)) (-5 *1 (-629)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3053)) (-5 *2 (-112)) (-5 *1 (-629)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3130)) (-5 *2 (-112)) (-5 *1 (-629)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3727)) (-5 *2 (-112)) (-5 *1 (-703 *4)) - (-4 *4 (-625 (-876))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-876))) (-5 *2 (-112)) - (-5 *1 (-703 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)) (-5 *1 (-890)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-890)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1187))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1111))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-991))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)) (-5 *1 (-1202)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1202)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1202)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1202))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1161)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) + (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) + (-5 *1 (-1130 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + (-12 (-5 *2 (-657 (-963 *3))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-657 (-657 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-657 (-963 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *4 (-657 (-1198))) + (-5 *2 (-702 (-326 (-227)))) (-5 *1 (-207)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1122)) (-4 *6 (-918 *5)) (-5 *2 (-702 *6)) + (-5 *1 (-705 *5 *6 *3 *4)) (-4 *3 (-384 *6)) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466))))))) +(((*1 *2 *1) (-12 (-5 *2 (-993)) (-5 *1 (-1314))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) +(((*1 *1) (-5 *1 (-1201)))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1116 (-227))) (-5 *6 (-657 (-270))) (-5 *2 (-1155 (-227))) + (-5 *1 (-710))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1198)) + (-4 *4 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-587 *4 *2)) + (-4 *2 (-13 (-1224) (-979) (-1161) (-29 *4)))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) + (-5 *2 (-1057)) (-5 *1 (-770))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-702 *3)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) + (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-702 *3)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) + (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1264 *5)) - (-5 *1 (-819 *5 *2 *3 *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *3 (-668 *2)) (-4 *6 (-668 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1264 *5)) - (-5 *1 (-819 *5 *2 *3 *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *6 (-668 (-419 *2)))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-888)))) - ((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) +(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1161)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1071)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1071))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-941)) (-5 *1 (-454 *2)) + (-4 *2 (-1265 (-576))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-941)) (-5 *4 (-784)) (-5 *1 (-454 *2)) + (-4 *2 (-1265 (-576))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-941)) (-5 *4 (-657 (-784))) (-5 *1 (-454 *2)) + (-4 *2 (-1265 (-576))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-941)) (-5 *4 (-657 (-784))) (-5 *5 (-784)) + (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-941)) (-5 *4 (-657 (-784))) (-5 *5 (-784)) + (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-430 *2)) (-4 *2 (-1265 *5)) + (-5 *1 (-456 *5 *2)) (-4 *5 (-1071))))) +(((*1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-842))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1197)) - (-4 *4 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) - (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) - (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-786)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-984))))) -(((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) - ((*1 *1 *1 *1) (-5 *1 (-1141)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) - (-5 *1 (-768))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-940)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1193 *1)) - (-4 *1 (-339 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) - (-4 *2 (-1264 *3)))) + (-12 (-5 *2 (-1194 *7)) (-5 *3 (-576)) (-4 *7 (-969 *6 *4 *5)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) + (-5 *1 (-331 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-571))))) +(((*1 *2 *2) (-12 (-5 *2 (-702 (-326 (-576)))) (-5 *1 (-1053))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-419 (-972 *4))) (-5 *3 (-1198)) + (-4 *4 (-13 (-568) (-1060 (-576)) (-148))) (-5 *1 (-582 *4))))) +(((*1 *1 *1) (-5 *1 (-1085)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-941))) (-5 *4 (-925 (-576))) + (-5 *2 (-702 (-576))) (-5 *1 (-602)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) - (-5 *1 (-540 *4))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *1) (-5 *1 (-301)))) -(((*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-557))) - ((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-120 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-968 *4 *6 *5)) (-4 *4 (-464)) - (-4 *5 (-861)) (-4 *6 (-805)) (-5 *1 (-1008 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) - (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) - (-5 *1 (-800))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) - (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) - (-5 *1 (-1097 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) - (-5 *1 (-1097 *3 *4 *2)) - (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) - (-4 *2 (-1264 *4))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) -(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-360))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-928))))) + (-12 (-5 *3 (-657 (-941))) (-5 *2 (-657 (-702 (-576)))) + (-5 *1 (-602)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-941))) (-5 *4 (-657 (-925 (-576)))) + (-5 *2 (-657 (-702 (-576)))) (-5 *1 (-602))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-702 *7)) (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) + (-4 *6 (-806)) (-5 *1 (-944 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-656 (-1197))))) + (-12 + (-5 *2 + (-657 + (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 *3)) + (|:| |logand| (-1194 *3))))) + (-5 *1 (-598 *3)) (-4 *3 (-374))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) +(((*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1238)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-656 (-1197))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-861))))) -(((*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995))))) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) +(((*1 *1) + (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-657 *7))) (-4 *1 (-1232 *4 *5 *6 *7)) + (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1) + (-12 (-4 *1 (-416)) (-2665 (|has| *1 (-6 -4457))) + (-2665 (|has| *1 (-6 -4449))))) + ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1122)) (-4 *2 (-862)))) + ((*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-862)))) + ((*1 *1) (-4 *1 (-857))) ((*1 *1 *1 *1) (-4 *1 (-865)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-672 *4 *2)) + (-4 *2 (-669 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180)) (-5 *2 (-576)) (-5 *1 (-1221 *4)) + (-4 *4 (-1071))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1289 (-657 *3))) (-4 *4 (-317)) + (-5 *2 (-657 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-972 *6)) (-5 *4 (-1198)) + (-5 *5 (-856 *7)) + (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-4 *7 (-13 (-1224) (-29 *6))) (-5 *1 (-226 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1194 *6)) (-5 *4 (-856 *6)) + (-4 *6 (-13 (-1224) (-29 *5))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-226 *5 *6))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) + ((*1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-390)) (-5 *2 (-1294)) (-5 *1 (-1290))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *4)) (-4 *4 (-353 *5 *6 *7)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) + (-5 *1 (-819 *5 *6 *7 *4))))) +(((*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1201))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-1289 (-702 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1289 (-702 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1289 (-702 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-1198))) (-4 *5 (-374)) + (-5 *2 (-1289 (-702 (-419 (-972 *5))))) (-5 *1 (-1108 *5)) + (-5 *4 (-702 (-419 (-972 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-1198))) (-4 *5 (-374)) + (-5 *2 (-1289 (-702 (-972 *5)))) (-5 *1 (-1108 *5)) + (-5 *4 (-702 (-972 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-702 *4))) (-4 *4 (-374)) + (-5 *2 (-1289 (-702 *4))) (-5 *1 (-1108 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1086 *3 *4 *5))))) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 (-963 *3))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-657 (-657 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-657 (-963 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071))))) +(((*1 *2) + (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) + (-5 *2 (-784)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-784))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-657 *7) *7 (-1194 *7))) (-5 *5 (-1 (-430 *7) *7)) + (-4 *7 (-1265 *6)) (-4 *6 (-13 (-374) (-148) (-1060 (-419 (-576))))) + (-5 *2 (-657 (-2 (|:| |frac| (-419 *7)) (|:| -3981 *3)))) + (-5 *1 (-822 *6 *7 *3 *8)) (-4 *3 (-669 *7)) + (-4 *8 (-669 (-419 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-5 *2 + (-657 (-2 (|:| |frac| (-419 *6)) (|:| -3981 (-667 *6 (-419 *6)))))) + (-5 *1 (-825 *5 *6)) (-5 *3 (-667 *6 (-419 *6)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-240 *3)) + (-4 *3 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1239))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1239)) (-5 *2 (-784)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-687 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-962 *4)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-1009 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-1128 *3 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224)))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) + (-5 *2 (-1057)) (-5 *1 (-765))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1239)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4465)) (-4 *1 (-120 *3)) - (-4 *3 (-1238)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4467)) (-4 *1 (-120 *3)) + (-4 *3 (-1239)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4465)) (-4 *1 (-120 *3)) - (-4 *3 (-1238)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4467)) (-4 *1 (-120 *3)) + (-4 *3 (-1239)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) - (-4 *2 (-1238)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1197)) (-5 *1 (-644)))) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) + (-4 *2 (-1239)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1198)) (-5 *1 (-644)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1255 (-576))) (|has| *1 (-6 -4465)) (-4 *1 (-663 *2)) - (-4 *2 (-1238)))) + (-12 (-5 *3 (-1256 (-576))) (|has| *1 (-6 -4467)) (-4 *1 (-664 *2)) + (-4 *2 (-1239)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-12 (-5 *2 (-657 (-576))) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4465)) (-4 *1 (-1031 *2)) - (-4 *2 (-1238)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4467)) (-4 *1 (-1032 *2)) + (-4 *2 (-1239)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) + (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) - (-4 *2 (-1238)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) + (-4 *2 (-1239)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *3)) - (-4 *3 (-1238)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4467)) (-4 *1 (-1277 *3)) + (-4 *3 (-1239)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) - (-4 *2 (-1238))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) - (-4 *2 (-1238))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2687 ((-1146 *3 (-624 $)) $)) - (-15 -2697 ((-1146 *3 (-624 $)) $)) - (-15 -4113 ($ (-1146 *3 (-624 $)))))))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) - (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) - (-5 *4 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) - (-5 *4 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-171 (-390))))) - (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-576)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-171 (-390))))) - (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) - (-5 *4 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) - (-5 *4 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-971 (-576)))) - (-5 *4 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-706)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-711)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-326 (-713)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-340)))) - ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-656 (-1197))) (-4 *2 (-174)) - (-4 *4 (-243 (-1970 *5) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2411 *3) (|:| -4080 *4)) - (-2 (|:| -2411 *3) (|:| -4080 *4)))) - (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) - (-4 *7 (-968 *2 *4 (-878 *5)))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1031 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-1086 *3 *4 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1059 (-48))) - (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 (-1193 (-48)))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1264 *5))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-841))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1009 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1128 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-5 *1 (-607 *3)) (-4 *3 (-1070))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) + (-4 *2 (-1239))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) - (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1193 *7))) (-5 *3 (-1193 *7)) - (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-928)) (-4 *5 (-805)) - (-4 *6 (-861)) (-5 *1 (-925 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) - (-4 *5 (-1264 *4)) (-4 *4 (-928)) (-5 *1 (-926 *4 *5))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3) - (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *1 (-360)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2) - (-12 (-5 *2 (-701 (-929 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) - (-14 *4 (-940)))) - ((*1 *2) - (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) - (-14 *4 - (-3 (-1193 *3) - (-1288 (-656 (-2 (|:| -1690 *3) (|:| -2411 (-1141))))))))) - ((*1 *2) - (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-940))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -3497 (-656 (-2 (|:| |irr| *10) (|:| -3172 (-576))))))) - (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-861)) (-4 *3 (-317)) - (-4 *10 (-968 *3 *9 *8)) (-4 *9 (-805)) - (-5 *2 - (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) - (|:| |corrfact| (-656 (-1193 *3))))) - (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1193 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) + (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1265 *5)) + (-5 *1 (-820 *5 *2 *3 *6)) + (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) + (-4 *3 (-669 *2)) (-4 *6 (-669 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-657 (-419 *2))) (-4 *2 (-1265 *5)) + (-5 *1 (-820 *5 *2 *3 *6)) + (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) + (-4 *6 (-669 (-419 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *1) (-5 *1 (-449)))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1288 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) - (-5 *1 (-679 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-374)) - (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4465)))) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465)))) - (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) - (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1197)) (-5 *2 (-624 *6)) - (-4 *6 (-442 *5)) (-4 *5 (-1121)) (-5 *1 (-585 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) + (-12 (-5 *2 (-941)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-270))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-576)) (-5 *1 (-246)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-657 (-1180))) (-5 *3 (-576)) (-5 *4 (-1180)) + (-5 *1 (-246)))) + ((*1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1267 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291))))) (((*1 *2 *3) - (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1070))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) + (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) + ((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) +(((*1 *2 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1452 *3) (|:| -2196 *4)))) - (-5 *1 (-708 *3)) (-4 *3 (-1264 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-973))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-112)) (-5 *1 (-624 *4)) - (-4 *4 (-1121)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1121)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-5 *2 (-112)) (-5 *1 (-902 *5 *3 *4)) - (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) + (-12 (-5 *3 (-925 (-576))) (-5 *4 (-576)) (-5 *2 (-702 *4)) + (-5 *1 (-1050 *5)) (-4 *5 (-1071)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-702 (-576))) (-5 *1 (-1050 *4)) + (-4 *4 (-1071)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-901 *5)) (-4 *5 (-1121)) - (-5 *2 (-112)) (-5 *1 (-902 *5 *6 *4)) (-4 *4 (-626 (-907 *5)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) - (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1261 *5 *4)) (-5 *1 (-1280 *4 *5 *6)) - (-4 *4 (-1070)) (-14 *5 (-1197)) (-14 *6 *4)))) + (-12 (-5 *3 (-657 (-925 (-576)))) (-5 *4 (-576)) + (-5 *2 (-657 (-702 *4))) (-5 *1 (-1050 *5)) (-4 *5 (-1071)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-657 (-576)))) (-5 *2 (-657 (-702 (-576)))) + (-5 *1 (-1050 *4)) (-4 *4 (-1071))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *1) (-4 *1 (-294))) + ((*1 *2 *3) + (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) + (-5 *2 (-657 (-2 (|:| -1735 (-784)) (|:| |logand| *4)))) + (-5 *1 (-330 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *2 *1) + (-12 (-5 *2 (-677 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-784)) (-4 *4 (-13 (-1071) (-730 (-419 (-576))))) + (-4 *5 (-862)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1310 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-5 *1 (-1309 *3 *4)) + (-4 *4 (-730 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-340))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-889)))) + ((*1 *2 *3) + (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) - (-5 *1 (-1258 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-656 - (-3 (|:| -4149 (-1197)) - (|:| -2685 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576)))))))))) - (-5 *1 (-1201))))) -(((*1 *1) (-4 *1 (-360)))) -(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-158))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) - (-4 *2 (-1238))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771))))) + (-12 (-5 *3 (-1 *5 (-657 *5))) (-4 *5 (-1280 *4)) + (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-1 (-1179 *4) (-657 (-1179 *4)))) (-5 *1 (-1282 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *3 (-568))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) - (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1070)) (-5 *1 (-726 *4 *2)) - (-4 *2 (-660 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1070))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-805)) - (-4 *6 (-568)) (-4 *7 (-968 *6 *5 *3)) - (-5 *1 (-474 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1059 (-419 (-576))) (-374) - (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) - (-15 -2697 (*7 $)))))))) + (-12 (-4 *2 (-1122)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1122))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *2 (-656 *3)) (-5 *1 (-998 *4 *5 *6 *3)) - (-4 *3 (-1086 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) - (-5 *1 (-1150 *5)))) + (-12 (-5 *3 (-782)) + (-5 *2 + (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) + (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) + (-5 *1 (-577)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-782)) (-5 *4 (-1085)) + (-5 *2 + (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) + (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) + (-5 *1 (-577)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-800)) (-5 *3 (-1085)) + (-5 *4 + (-2 (|:| |fn| (-326 (-227))) + (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) + (|:| |extra| (-1057)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-800)) (-5 *3 (-1085)) + (-5 *4 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)) + (|:| |extra| (-1057)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-813)) (-5 *3 (-1085)) + (-5 *4 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) + (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)))))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) + (-12 (-5 *3 (-821)) + (-5 *2 + (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) + (|:| |explanations| (-657 (-1180))))) + (-5 *1 (-818)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-821)) (-5 *4 (-1085)) + (-5 *2 + (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) + (|:| |explanations| (-657 (-1180))))) + (-5 *1 (-818)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) - (-5 *1 (-1150 *5)))) + (-12 (-4 *1 (-852)) (-5 *3 (-1085)) + (-5 *4 + (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) + (-5 *2 (-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-852)) (-5 *3 (-1085)) + (-5 *4 + (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) + (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) + (|:| |ub| (-657 (-856 (-227)))))) + (-5 *2 (-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)))))) ((*1 *2 *3) - (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)))) + (-12 (-5 *3 (-854)) + (-5 *2 + (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) + (|:| |explanations| (-657 (-1180))))) + (-5 *1 (-853)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) - (-5 *1 (-1150 *5)))) + (-12 (-5 *3 (-854)) (-5 *4 (-1085)) + (-5 *2 + (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) + (|:| |explanations| (-657 (-1180))))) + (-5 *1 (-853)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-913)) (-5 *3 (-1085)) + (-5 *4 + (-2 (|:| |pde| (-657 (-326 (-227)))) + (|:| |constraints| + (-657 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-784)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) + (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) + (|:| |tol| (-227)))) + (-5 *2 (-2 (|:| -3701 (-390)) (|:| |explanations| (-1180)))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1150 *4)))) + (-12 (-5 *3 (-916)) + (-5 *2 + (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) + (|:| |explanations| (-657 (-1180))))) + (-5 *1 (-915)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-971 *5))))) (-5 *4 (-656 (-1197))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) - (-5 *1 (-1150 *5)))) + (-12 (-5 *3 (-916)) (-5 *4 (-1085)) + (-5 *2 + (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) + (|:| |explanations| (-657 (-1180))))) + (-5 *1 (-915))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1224))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1122))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-568)) + (-4 *7 (-969 *3 *5 *6)) + (-5 *2 (-2 (|:| -2128 (-784)) (|:| -1735 *8) (|:| |radicand| *8))) + (-5 *1 (-973 *5 *6 *3 *7 *8)) (-5 *4 (-784)) + (-4 *8 + (-13 (-374) + (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *2 (-784)) (-5 *1 (-602))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) - (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) - (-5 *1 (-1150 *4))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1056)) (-5 *1 (-768))))) -(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) + (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-419 (-576))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) + (-4 *3 (-13 (-27) (-1224) (-442 *6))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) + (-4 *6 (-13 (-27) (-1224) (-442 *5))) + (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) + (-4 *3 (-13 (-27) (-1224) (-442 *6))) + (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1256 (-576))) + (-4 *7 (-13 (-27) (-1224) (-442 *6))) + (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-576))) + (-4 *3 (-13 (-27) (-1224) (-442 *7))) + (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) + (-5 *5 (-1256 (-419 (-576)))) (-5 *6 (-419 (-576))) + (-4 *8 (-13 (-27) (-1224) (-442 *7))) + (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-419 (-576)))) + (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *8))) + (-4 *8 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *3)))) + (-4 *3 (-1071)) (-5 *1 (-607 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-608 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *3)))) + (-4 *3 (-1071)) (-4 *1 (-1249 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-784)) + (-5 *3 (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) + (-4 *4 (-1071)) (-4 *1 (-1270 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-4 *1 (-1280 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1179 (-2 (|:| |k| (-784)) (|:| |c| *3)))) + (-4 *3 (-1071)) (-4 *1 (-1280 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) - (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -1546 *3)))) - (-5 *1 (-218 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1081)) (-4 *3 (-1223)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3) (-12 (-5 *3 (-971 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) + (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1060 (-576))) + (-4 *4 (-568)) (-5 *2 (-1194 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-624 *1)) (-4 *1 (-1071)) (-4 *1 (-312)) + (-5 *2 (-1194 *1))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) + (-5 *2 (-1057)) (-5 *1 (-766))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) - (-5 *2 (-656 (-656 (-656 (-962 *3)))))))) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) + (-5 *2 (-1057)) (-5 *1 (-770))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-702 (-576))) (-5 *1 (-1132))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1198)) + (-4 *4 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-270))) (-5 *4 (-1198)) (-5 *2 (-112)) + (-5 *1 (-270))))) (((*1 *2 *1) - (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *5)) (-5 *1 (-900 *3 *4 *5)) - (-4 *3 (-1121)) (-4 *5 (-678 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1249 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-576)) (-5 *1 (-961))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-696 *4 *3)) (-4 *4 (-1122)) + (-4 *3 (-1122))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-947))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-760))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97))))) (((*1 *2 *1) - (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) - (-14 *6 - (-1 (-112) (-2 (|:| -2411 *5) (|:| -4080 *2)) - (-2 (|:| -2411 *5) (|:| -4080 *2)))) - (-4 *2 (-243 (-1970 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-861)) (-4 *7 (-968 *4 *2 (-878 *3)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) + (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) (((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-419 (-576))) - (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) + (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) + (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) + (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) + (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) + (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) + (-5 *2 (-1057)) (-5 *1 (-767))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-541))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-984 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-548))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1265 *3)) (-5 *1 (-411 *3 *2)) + (-4 *3 (-13 (-374) (-148)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-963 (-227))) (-5 *4 (-889)) (-5 *2 (-1294)) + (-5 *1 (-480)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1071)) (-4 *1 (-1002 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-963 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-963 *3)) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-963 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)) (-5 *3 (-227))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) + (-4 *3 (-1087 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-657 *4)) + (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) + (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-657 *4)) + (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) + (-5 *1 (-1167 *5 *6 *7 *3 *4)) (-4 *4 (-1131 *5 *6 *7 *3))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1239)) + (-4 *2 (-1239)) (-5 *1 (-58 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1122)) (|has| *1 (-6 -4466)) + (-4 *1 (-152 *2)) (-4 *2 (-1239)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) + (-4 *2 (-1239)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) + (-4 *2 (-1239)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1071)) + (-5 *2 (-2 (|:| -3587 (-1194 *4)) (|:| |deg| (-941)))) + (-5 *1 (-223 *4 *5)) (-5 *3 (-1194 *4)) (-4 *5 (-568)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-784)) + (-4 *6 (-1239)) (-4 *2 (-1239)) (-5 *1 (-244 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1265 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1122)))) + ((*1 *1 *1) + (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1265 *2)) + (-4 *4 (-1265 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1239)) (-4 *2 (-1239)) + (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1122)) (-4 *2 (-1122)) + (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) + ((*1 *1 *1) (-5 *1 (-507))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-657 *5)) (-4 *5 (-1239)) + (-4 *2 (-1239)) (-5 *1 (-655 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1071)) (-4 *2 (-1071)) + (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) + (-4 *9 (-384 *2)) (-5 *1 (-698 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-700 *5 *6 *7)) (-4 *10 (-700 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1071)) (-5 *1 (-725 *3 *2)) (-4 *2 (-1265 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-374)) + (-4 *3 (-174)) (-4 *1 (-737 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-174)) (-4 *1 (-737 *3 *2)) (-4 *2 (-1265 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-978 *5)) (-4 *5 (-1239)) + (-4 *2 (-1239)) (-5 *1 (-977 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-1056 *3 *4 *5 *2 *6)) (-4 *2 (-969 *3 *4 *5)) + (-14 *6 (-657 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1071)) (-4 *2 (-1071)) + (-14 *5 (-784)) (-14 *6 (-784)) (-4 *8 (-243 *6 *7)) + (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) + (-5 *1 (-1077 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1075 *5 *6 *7 *8 *9)) (-4 *12 (-1075 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1179 *5)) (-4 *5 (-1239)) + (-4 *2 (-1239)) (-5 *1 (-1177 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1232 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-806)) + (-4 *7 (-862)) (-4 *2 (-1087 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1289 *5)) (-4 *5 (-1239)) + (-4 *2 (-1239)) (-5 *1 (-1288 *5 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-837)) (-5 *3 (-657 (-1198))) (-5 *1 (-838))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1208))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-518)) (-5 *2 (-704 (-787))) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1180)) (-5 *2 (-787)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1126)) (-5 *1 (-985))))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-805)) (-4 *2 (-275 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) + (-12 (-5 *2 (-2 (|:| |preimage| (-657 *3)) (|:| |image| (-657 *3)))) + (-5 *1 (-925 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) + (-5 *2 (-1057)) (-5 *1 (-758))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4351 *3) (|:| |coef1| (-795 *3)))) + (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1071)) (-4 *4 (-1265 *3)) (-5 *1 (-165 *3 *4 *2)) + (-4 *2 (-1265 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1197))) - (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5))))) + (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-3 *3 (-657 *1))) + (-4 *1 (-1093 *4 *5 *6 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) - ((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) + (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 (-784)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-784)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) (-5 *3 (-576))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-112)) (-5 *1 (-907 *4)) - (-4 *4 (-1121))))) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-784)) (-5 *1 (-701 *4 *5 *6 *3)) + (-4 *3 (-700 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) + (-5 *2 (-784))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) - (-5 *1 (-964 *4 *5)) (-4 *5 (-1264 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1059 *4)) (-4 *3 (-317)) - (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *6 (-421 *4 *5)) - (-14 *7 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1288 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1013 *3)) - (-4 *5 (-1264 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-656 *3))))) + (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) + (-14 *5 (-657 (-1198))) (-5 *2 (-657 (-657 (-1046 (-419 *4))))) + (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) + (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) + (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-972 *4))) + (-4 *4 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 (-657 (-657 (-1046 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) + (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1126)) (-5 *1 (-289))))) (((*1 *2 *3 *2) - (-12 (-4 *1 (-799)) (-5 *2 (-1056)) - (-5 *3 - (-2 (|:| |fn| (-326 (-227))) - (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-799)) (-5 *2 (-1056)) - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) - (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1023) (-1223)))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) (-5 *5 (-1193 *2)) - (-4 *2 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) - (-5 *5 (-419 (-1193 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1121))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1165)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-982 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) - (-4 *3 (-1070)) (-4 *2 (-804)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1193 *3)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-992)) (-4 *2 (-132)) (-5 *1 (-1199 *3)) (-4 *3 (-568)) - (-4 *3 (-1070)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1261 *4 *3)) (-14 *4 (-1197)) - (-4 *3 (-1070))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-5 *1 (-913 *2 *3)) - (-4 *2 (-1264 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-576)) (-5 *1 (-1131)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1288 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) - (-5 *1 (-1131))))) -(((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) - (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4464) (-6 -4465)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) - (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4464) (-6 -4465))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) - (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-991)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-1139))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1293)) (-5 *1 (-877))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) - (-4 *4 (-861)) (-5 *1 (-1208 *4))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) - (-4 *3 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) + (-12 (-5 *2 (-1179 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1071)) + (-5 *3 (-419 (-576))) (-5 *1 (-1182 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-766))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-688)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1087)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1117))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) - (-4 *2 (-1121)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1224))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 (-1194 (-419 (-1194 *6)))) (-5 *1 (-572 *5 *6 *7)) + (-5 *3 (-1194 *6)) (-4 *7 (-1122)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1265 *3)) (-5 *1 (-725 *3 *2)) (-4 *3 (-1071)))) + ((*1 *2 *1) + (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1265 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1194 *11)) (-5 *6 (-657 *10)) + (-5 *7 (-657 (-784))) (-5 *8 (-657 *11)) (-4 *10 (-862)) + (-4 *11 (-317)) (-4 *9 (-806)) (-4 *5 (-969 *11 *9 *10)) + (-5 *2 (-657 (-1194 *5))) (-5 *1 (-755 *9 *10 *11 *5)) + (-5 *3 (-1194 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-969 *3 *4 *5)) (-5 *1 (-1056 *3 *4 *5 *2 *6)) + (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-14 *6 (-657 *2))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1122)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) + (-4 *3 (-1071)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-832 *4)) (-4 *4 (-862)) (-4 *1 (-1306 *4 *3)) + (-4 *3 (-1071))))) +(((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-999 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-1210 *3))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1122)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-1121)) (-5 *1 (-661 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-107 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2549 *1))) - (-4 *1 (-866 *3))))) + (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1122)) (-5 *2 (-784)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-662 *4 *2 *5)) + (-4 *4 (-1122)) (-14 *5 *2)))) +(((*1 *2) (-12 (-5 *2 (-1169 (-1180))) (-5 *1 (-403))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-112)) + (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1057)) (-5 *1 (-769))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) (((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) + (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1179 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-176 (-576))) (-5 *1 (-778 *3)) (-4 *3 (-416)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) - (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1056)) - (-5 *1 (-766))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) - (-5 *2 (-701 *6)) (-5 *1 (-1050 *6)) (-4 *6 (-374)) (-4 *6 (-1070)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1050 *4)) - (-4 *4 (-374)) (-4 *4 (-1070)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) - (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-1070))))) -(((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) - (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) - (-4 *3 (-1264 *6)) (-4 *7 (-968 *6 *4 *5))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) + (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-886 *3)) (-14 *3 (-576)))) ((*1 *2 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1121)))) - ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179)))) - ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-450 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) - ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-879)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-984)))) - ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1096 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1136)))) - ((*1 *1 *1) (-5 *1 (-1197)))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) - (-4 *7 (-1264 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-586 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-985 *3))) (-5 *1 (-985 *3)) (-4 *3 (-1121))))) + (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) + (-5 *1 (-887 *3 *4)) (-4 *4 (-884 *3))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-442 *3) (-1024))) (-5 *1 (-285 *3 *2)) + (-4 *3 (-568))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) + (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) + (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-38 (-419 (-576)))) + (-4 *2 (-174))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) + (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832 *3)) (-4 *3 (-862))))) +(((*1 *2 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-568)) + (-4 *3 (-969 *7 *5 *6)) + (-5 *2 + (-2 (|:| -2128 (-784)) (|:| -1735 *3) (|:| |radicand| (-657 *3)))) + (-5 *1 (-973 *5 *6 *7 *3 *8)) (-5 *4 (-784)) + (-4 *8 + (-13 (-374) + (-10 -8 (-15 -3515 ($ *3)) (-15 -1590 (*3 $)) (-15 -1602 (*3 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-934 *3)) (-4 *3 (-317))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (|has| *1 (-6 -4457)) (-4 *1 (-416)) + (-5 *2 (-941))))) +(((*1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-861)) (-5 *1 (-313 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-989)))) +(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-767))))) + (-12 (-5 *3 (-657 (-2 (|:| -1856 *4) (|:| -4265 (-576))))) + (-4 *4 (-1265 (-576))) (-5 *2 (-784)) (-5 *1 (-454 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-878 *4))) - (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) - (-4 *6 (-464))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) + (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-906 *4 *3)) + (-4 *3 (-1239)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) (((*1 *2 *2) - (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) - (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-971 (-576))))) - (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-971 (-576)))))) - (-5 *2 (-656 (-656 (-304 (-971 *4))))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 (-304 (-971 *4)))) - (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-784)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1239)) + (-4 *3 (-1122)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-384 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) + (-5 *2 (-576)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1239)) + (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-541)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-576)) (-5 *3 (-142)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-576))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) + (-5 *1 (-769))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-2 (|:| |deg| (-784)) (|:| -4124 *5)))) + (-4 *5 (-1265 *4)) (-4 *4 (-360)) (-5 *2 (-657 *5)) + (-5 *1 (-218 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-971 (-576))))) - (-5 *2 (-656 (-304 (-971 *4)))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1197)) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-4 *4 (-13 (-29 *6) (-1223) (-978))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2704 (-656 *4)))) - (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1223) (-978))) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) + (-12 (-5 *3 (-657 (-2 (|:| -1856 *5) (|:| -4265 (-576))))) + (-5 *4 (-576)) (-4 *5 (-1265 *4)) (-5 *2 (-657 *5)) + (-5 *1 (-709 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-657 (-963 *4))) (-4 *1 (-1156 *4)) (-4 *4 (-1071)) + (-5 *2 (-784))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)) + (-4 *2 (-464)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 *4)) (-4 *4 (-1265 (-576))) (-5 *2 (-657 (-576))) + (-5 *1 (-498 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-464)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)) (-4 *3 (-464))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-784)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) + (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) + ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390)))) + (-5 *2 (-1057)) (-5 *1 (-315))))) +(((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) + (-5 *1 (-122 *3)) (-4 *3 (-862)))) + ((*1 *2 *2) + (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1224))) + (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-595 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-598 (-419 (-972 *3)))) + (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-601 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1288 *5) "failed")) - (|:| -2704 (-656 (-1288 *5))))) - (-5 *1 (-679 *5)) (-5 *4 (-1288 *5)))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -2958 *3) (|:| |special| *3))) (-5 *1 (-740 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1288 *5) "failed")) - (|:| -2704 (-656 (-1288 *5))))) - (-5 *1 (-679 *5)) (-5 *4 (-1288 *5)))) + (-12 (-5 *4 (-1289 *5)) (-4 *5 (-374)) (-4 *5 (-1071)) + (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) + (-5 *3 (-657 (-702 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) + (-12 (-5 *4 (-1289 (-1289 *5))) (-4 *5 (-374)) (-4 *5 (-1071)) + (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) + (-5 *3 (-657 (-702 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-657 *1)) (-4 *1 (-1166)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-657 *1)) (-4 *1 (-1166))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1122)) (-4 *3 (-918 *5)) (-5 *2 (-702 *3)) + (-5 *1 (-705 *5 *3 *6 *4)) (-4 *6 (-384 *3)) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) + (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) + (-5 *1 (-801))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-657 (-1194 *5))) (-5 *3 (-1194 *5)) + (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-657 *3)) (-4 *3 (-1265 *5)) + (-4 *5 (-1265 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-657 (-1194 (-576)))) (-5 *3 (-1194 (-576))) + (-5 *1 (-584)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-657 (-1194 *1))) (-5 *3 (-1194 *1)) + (-4 *1 (-929))))) +(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-941)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1194 *1)) + (-4 *1 (-339 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1194 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) + (-4 *2 (-1265 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-1194 *4)) + (-5 *1 (-540 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) + (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-765))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1116 (-227))) (-5 *6 (-657 (-270))) (-5 *2 (-1155 (-227))) + (-5 *1 (-710)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-227))) + (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-710)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1155 (-227))) (-5 *3 (-1 (-963 (-227)) (-227) (-227))) + (-5 *4 (-1116 (-227))) (-5 *5 (-657 (-270))) (-5 *1 (-710))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) + (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 - (-656 - (-2 (|:| |particular| (-3 (-1288 *5) "failed")) - (|:| -2704 (-656 (-1288 *5)))))) - (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) + (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) + (-5 *1 (-207))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-972 (-576))) (-5 *3 (-1198)) + (-5 *4 (-1116 (-419 (-576)))) (-5 *1 (-30))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-704 (-109))) (-5 *1 (-177)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-704 (-109))) (-5 *1 (-1107))))) +(((*1 *2 *1) + (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) + (-4 *3 (-1122))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-657 *3)) (-4 *3 (-1131 *5 *6 *7 *8)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-603 *5 *6 *7 *8 *3))))) +(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-390))) + ((*1 *1) (-5 *1 (-390)))) +(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-129))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1071)) + (-5 *1 (-868 *5 *2)) (-4 *2 (-867 *5))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-764))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-1239)) (-5 *2 (-1294))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1194 *9)) (-5 *4 (-657 *7)) (-5 *5 (-657 (-657 *8))) + (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-806)) (-5 *2 - (-656 - (-2 (|:| |particular| (-3 (-1288 *5) "failed")) - (|:| -2704 (-656 (-1288 *5)))))) - (-5 *1 (-679 *5)) (-5 *4 (-656 (-1288 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) + (-2 (|:| |upol| (-1194 *8)) (|:| |Lval| (-657 *8)) + (|:| |Lfact| + (-657 (-2 (|:| -1856 (-1194 *8)) (|:| -2128 (-576))))) + (|:| |ctpol| *8))) + (-5 *1 (-755 *6 *7 *8 *9))))) +(((*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)) (-4 *2 (-1122)))) + ((*1 *1 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-1194 *4)) + (-5 *1 (-540 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1198)) + (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) - (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4465)))) + (-2 (|:| |func| *3) (|:| |kers| (-657 (-624 *3))) + (|:| |vals| (-657 *3)))) + (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-656 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2704 (-656 *7))))) - (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) - (-4 *3 (-699 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5)))) + (-657 + (-2 + (|:| -4286 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4440 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1179 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3936 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-571)))) + ((*1 *2 *1) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) + (-5 *2 (-657 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1223) (-978))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1197)) - (-4 *7 (-13 (-29 *6) (-1223) (-978))) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1288 *7)) (|:| -2704 (-656 (-1288 *7))))) - (-5 *1 (-814 *6 *7)) (-5 *4 (-1288 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1197)) - (-4 *6 (-13 (-29 *5) (-1223) (-978))) - (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-1288 *6))) (-5 *1 (-814 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) - (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1288 *7)) (|:| -2704 (-656 (-1288 *7))))) - (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) - (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1288 *7)) (|:| -2704 (-656 (-1288 *7))))) - (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1197)) - (-4 *7 (-13 (-29 *6) (-1223) (-978))) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1122)) (-5 *1 (-1216 *3 *2)) (-4 *3 (-1122))))) +(((*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-784)) (-4 *5 (-1071)) (-4 *2 (-1265 *5)) + (-5 *1 (-1283 *5 *2 *6 *3)) (-4 *6 (-669 *2)) (-4 *3 (-1280 *5))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-657 (-227))) (-5 *1 (-206))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-657 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) + (-14 *4 (-784)) (-4 *5 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-834))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1161))) ((*1 *1 *1 *1) (-4 *1 (-1161)))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-657 (-972 *3))) (-4 *3 (-464)) + (-5 *1 (-371 *3 *4)) (-14 *4 (-657 (-1198))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-657 (-793 *3 (-879 *4)))) (-4 *3 (-464)) + (-14 *4 (-657 (-1198))) (-5 *1 (-640 *3 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *6 (-227)) + (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-765))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1048 (-856 (-576)))) + (-5 *3 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1071)) + (-5 *1 (-607 *4))))) +(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-993))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1198)) + (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) + (-4 *3 (-13 (-1224) (-29 *5)))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-784)) (-4 *5 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) + (-4 *4 (-174)))) + ((*1 *1 *1) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1071)) (-4 *1 (-700 *3 *2 *4)) (-4 *2 (-384 *3)) + (-4 *4 (-384 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-784)) (-4 *3 (-1071))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1057)) + (-5 *1 (-759))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *1) (-5 *1 (-836)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -2704 (-656 *7))) *7 "failed")) - (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1197)) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) + (-657 + (-2 + (|:| -4286 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4440 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1179 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3936 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-571))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -2704 (-656 *3))) *3 "failed")) - (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1223) (-978))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-5 *1 (-814 *6 *2)) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1223) (-978))) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-814 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-820)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1288 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1056)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -2704 (-656 *6))) "failed") - *7 *6)) - (-4 *6 (-374)) (-4 *7 (-668 *6)) - (-5 *2 (-2 (|:| |particular| (-1288 *6)) (|:| -2704 (-701 *6)))) - (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1056)) (-5 *1 (-914)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-914)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) - (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) - (-5 *2 (-1056)) (-5 *1 (-914)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1179)) - (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1056)) - (-5 *1 (-914)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 (-390))) - (-5 *1 (-1044)) (-5 *4 (-390)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1044)) - (-5 *4 (-390)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) - (-5 *3 (-326 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1152 *4)) - (-5 *3 (-304 (-326 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) - (-5 *3 (-304 (-326 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1152 *5)) - (-5 *3 (-326 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1197))) - (-4 *5 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1152 *5)) - (-5 *3 (-656 (-304 (-326 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) - (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) - (-5 *1 (-1206 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1197))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-1206 *5)) - (-5 *3 (-656 (-304 (-419 (-971 *5))))))) + (-657 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-784)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-806)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) + (-5 *1 (-461 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-806)) + (-4 *3 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $))))) (-4 *5 (-568)) + (-5 *1 (-745 *4 *3 *5 *2)) (-4 *2 (-969 (-419 (-972 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1071)) (-4 *5 (-806)) + (-4 *3 + (-13 (-862) + (-10 -8 (-15 -4136 ((-1198) $)) + (-15 -2993 ((-3 $ "failed") (-1198)))))) + (-5 *1 (-1006 *4 *5 *3 *2)) (-4 *2 (-969 (-972 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-657 *6)) + (-4 *6 + (-13 (-862) + (-10 -8 (-15 -4136 ((-1198) $)) + (-15 -2993 ((-3 $ "failed") (-1198)))))) + (-4 *4 (-1071)) (-4 *5 (-806)) (-5 *1 (-1006 *4 *5 *6 *2)) + (-4 *2 (-969 (-972 *4) *5 *6))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-480)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) + (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1186 3 *3)) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) + ((*1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-1009 (-419 (-576)) (-879 *3) (-245 *4 (-784)) + (-253 *3 (-419 (-576))))) + (-14 *3 (-657 (-1198))) (-14 *4 (-784)) (-5 *1 (-1008 *3 *4))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-688 *2)) (-4 *2 (-1071)) (-4 *2 (-1122))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *1) (-5 *1 (-301)))) +(((*1 *2 *1) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-419 (-971 *4)))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-1206 *4)))) + (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-112)) + (-5 *1 (-368 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) - (-5 *1 (-1206 *4)) (-5 *3 (-656 (-304 (-419 (-971 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-4 *5 (-568)) - (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) - (-5 *3 (-419 (-971 *5))))) + (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-112)) + (-5 *1 (-540 *4))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-806)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) + (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) + (-5 *2 + (-2 (|:| -3031 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-4 *5 (-568)) - (-5 *2 (-656 (-304 (-419 (-971 *5))))) (-5 *1 (-1206 *5)) - (-5 *3 (-304 (-419 (-971 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) - (-5 *1 (-1206 *4)) (-5 *3 (-419 (-971 *4))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -2958 (-419 *6)) + (|:| |special| (-419 *6)))) + (-5 *1 (-740 *5 *6)) (-5 *3 (-419 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-971 *4))))) - (-5 *1 (-1206 *4)) (-5 *3 (-304 (-419 (-971 *4))))))) + (-12 (-4 *4 (-374)) (-5 *2 (-657 *3)) (-5 *1 (-914 *3 *4)) + (-4 *3 (-1265 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-784)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -4217 *3) (|:| -4228 *3))) (-5 *1 (-914 *3 *5)) + (-4 *3 (-1265 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) + (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) + (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) + (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1167 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) + (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1167 *5 *6 *7 *8 *9))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1232 *2 *3 *4 *5)) (-4 *2 (-568)) + (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-1087 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) + ((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3115 (-794 *3)) (|:| |coef1| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) + (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) + (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-996))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-784)) (-5 *1 (-796 *2)) (-4 *2 (-38 (-419 (-576)))) + (-4 *2 (-174))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -3115 *1) (|:| |coef1| *1))) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 *2) (-4 *5 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-940)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-940)))) - ((*1 *2) - (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) - (-5 *2 (-940)))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) - (-5 *2 (-783)) (-5 *1 (-679 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-783)) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) + (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-783))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1168 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) - ((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576))))) -(((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) - (-14 *3 (-656 (-1197)))))) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) + (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-152 *3)))) + (-12 (-5 *3 (-925 *4)) (-4 *4 (-1122)) (-5 *2 (-657 (-784))) + (-5 *1 (-924 *4))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-419 (-972 *6)) (-1187 (-1198) (-972 *6)))) + (-5 *5 (-784)) (-4 *6 (-464)) (-5 *2 (-657 (-702 (-419 (-972 *6))))) + (-5 *1 (-302 *6)) (-5 *4 (-702 (-419 (-972 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-419 (-972 *5)) (-1187 (-1198) (-972 *5)))) + (|:| |eigmult| (-784)) (|:| |eigvec| (-657 *4)))) + (-4 *5 (-464)) (-5 *2 (-657 (-702 (-419 (-972 *5))))) + (-5 *1 (-302 *5)) (-5 *4 (-702 (-419 (-972 *5))))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1122))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1313 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-832 *3)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-1071)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1265 (-171 *2)))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-4 *1 (-152 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-656 (-2 (|:| -4080 (-783)) (|:| -3188 *4) (|:| |num| *4)))) - (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) + (-5 *2 (-657 (-2 (|:| -2128 (-784)) (|:| -3713 *4) (|:| |num| *4)))) + (-4 *4 (-1265 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-5 *3 (-656 (-1197))) (-5 *4 (-112)) (-5 *1 (-449)))) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-5 *3 (-657 (-1198))) (-5 *4 (-112)) (-5 *1 (-449)))) ((*1 *2 *1) - (-12 (-5 *2 (-1178 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-1179 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1239)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-5 *1 (-677 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-5 *1 (-677 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-5 *1 (-676 *3 *4)) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-5 *1 (-677 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1121)) - (-5 *1 (-687 *3)))) + (-12 (-5 *2 (-657 (-657 (-657 *3)))) (-4 *3 (-1122)) + (-5 *1 (-688 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1121)) + (-12 (-5 *1 (-726 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1122)) (-14 *4 - (-1 (-112) (-2 (|:| -2411 *2) (|:| -4080 *3)) - (-2 (|:| -2411 *2) (|:| -4080 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-850)))) + (-1 (-112) (-2 (|:| -3146 *2) (|:| -2128 *3)) + (-2 (|:| -3146 *2) (|:| -2128 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1140)) (-5 *1 (-851)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) + (-12 (-5 *1 (-888 *2 *3)) (-4 *2 (-1239)) (-4 *3 (-1239)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 *4)))) - (-4 *4 (-1121)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)))) + (-12 (-5 *2 (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 *4)))) + (-4 *4 (-1122)) (-5 *1 (-905 *3 *4)) (-4 *3 (-1122)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1121) (-34))) - (-5 *2 (-656 (-1161 *3 *5))) (-5 *1 (-1161 *3 *5)) - (-4 *3 (-13 (-1121) (-34))))) + (-12 (-5 *4 (-657 *5)) (-4 *5 (-13 (-1122) (-34))) + (-5 *2 (-657 (-1162 *3 *5))) (-5 *1 (-1162 *3 *5)) + (-4 *3 (-13 (-1122) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -4442 *5)))) - (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) - (-5 *2 (-656 (-1161 *4 *5))) (-5 *1 (-1161 *4 *5)))) + (-12 (-5 *3 (-657 (-2 (|:| |val| *4) (|:| -3941 *5)))) + (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) + (-5 *2 (-657 (-1162 *4 *5))) (-5 *1 (-1162 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4442 *4))) - (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) - (-5 *1 (-1161 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3941 *4))) + (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) + (-5 *1 (-1162 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34))))) + (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) + (-4 *3 (-13 (-1122) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) + (-4 *3 (-13 (-1122) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1121) (-34))) - (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))))) + (-12 (-5 *4 (-657 *3)) (-4 *3 (-13 (-1122) (-34))) + (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1161 *2 *3))) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1162 *2 *3)))) + (-12 (-5 *4 (-657 (-1162 *2 *3))) (-4 *2 (-13 (-1122) (-34))) + (-4 *3 (-13 (-1122) (-34))) (-5 *1 (-1163 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1162 *2 *3))) (-5 *1 (-1162 *2 *3)) - (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) + (-12 (-5 *4 (-657 (-1163 *2 *3))) (-5 *1 (-1163 *2 *3)) + (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4)))) + (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) + (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) - (-4 *5 (-901 (-576))) - (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) - (-4 *3 (-13 (-27) (-1223) (-442 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1197)) (-5 *4 (-855 *2)) (-4 *2 (-1160)) - (-4 *2 (-13 (-27) (-1223) (-442 *5))) - (-4 *5 (-626 (-907 (-576)))) (-4 *5 (-901 (-576))) - (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) - (-5 *1 (-579 *5 *2))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-1301 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1139))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1264 *3))))) + (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-576))))) - (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1264 *3)) - (-5 *2 (-656 (-1193 *3))) (-5 *1 (-510 *3 *5 *6)) - (-4 *6 (-1264 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) + (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1122)) (-4 *3 (-862)) + (-4 *2 (-1239)))) + ((*1 *2 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) + ((*1 *2 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1239)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1239)))) + ((*1 *2 *1) (-12 (-5 *2 (-685 *3)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) + ((*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1280 *4)) (-5 *1 (-1282 *4 *2)) + (-4 *4 (-38 (-419 (-576))))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-656 - (-2 (|:| -4135 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *7))))) - (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) - (-5 *1 (-943 *4 *5 *6 *7))))) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) + (-4 *4 (-13 (-374) (-861))) (-4 *3 (-1265 *2))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-1122))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-609))) (-5 *1 (-609))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1071)) (-5 *1 (-727 *2 *4)) + (-4 *4 (-661 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-372 (-115))) (-5 *1 (-849 *2)) (-4 *2 (-1071))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-657 (-972 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-657 (-972 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-657 (-972 *3))))) + ((*1 *2) + (-12 (-5 *2 (-657 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1289 (-465 *4 *5 *6 *7))) (-5 *2 (-657 (-972 *4))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) + (-14 *5 (-941)) (-14 *6 (-657 (-1198))) (-14 *7 (-1289 (-702 *4)))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-120 *2)) (-4 *2 (-1239))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1239)) + (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *6 *2 *7)) (-4 *6 (-1071)) + (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-877)))) + ((*1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1071)) (-5 *2 (-1194 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) + (-4 *3 (-1265 *4)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-458)) (-5 *3 (-576))))) (((*1 *1 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-14 *6 (-1288 (-701 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))))) - ((*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-1289 *3)) (-4 *3 (-374)) (-14 *6 (-1289 (-702 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))))) + ((*1 *1 *2) (-12 (-5 *2 (-1147 (-576) (-624 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1239)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-4125 'JINT 'X 'ELAM) (-4125) (-711)))) - (-5 *1 (-61 *3)) (-14 *3 (-1197)))) + (-12 (-5 *2 (-1289 (-350 (-3529 'JINT 'X 'ELAM) (-3529) (-712)))) + (-5 *1 (-61 *3)) (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-4125) (-4125 'XC) (-711)))) - (-5 *1 (-63 *3)) (-14 *3 (-1197)))) + (-12 (-5 *2 (-1289 (-350 (-3529) (-3529 'XC) (-712)))) + (-5 *1 (-63 *3)) (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4125 'X) (-4125) (-711))) (-5 *1 (-64 *3)) - (-14 *3 (-1197)))) + (-12 (-5 *2 (-350 (-3529 'X) (-3529) (-712))) (-5 *1 (-64 *3)) + (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4125) (-4125 'XC) (-711))) (-5 *1 (-66 *3)) - (-14 *3 (-1197)))) + (-12 (-5 *2 (-350 (-3529) (-3529 'XC) (-712))) (-5 *1 (-66 *3)) + (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-4125 'X) (-4125 '-1439) (-711)))) - (-5 *1 (-71 *3)) (-14 *3 (-1197)))) + (-12 (-5 *2 (-1289 (-350 (-3529 'X) (-3529 '-2509) (-712)))) + (-5 *1 (-71 *3)) (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-4125) (-4125 'X) (-711)))) - (-5 *1 (-74 *3)) (-14 *3 (-1197)))) + (-12 (-5 *2 (-1289 (-350 (-3529) (-3529 'X) (-712)))) + (-5 *1 (-74 *3)) (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-4125 'X 'EPS) (-4125 '-1439) (-711)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) - (-14 *5 (-1197)))) + (-12 (-5 *2 (-1289 (-350 (-3529 'X 'EPS) (-3529 '-2509) (-712)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1198)) (-14 *4 (-1198)) + (-14 *5 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-4125 'EPS) (-4125 'YA 'YB) (-711)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) - (-14 *5 (-1197)))) + (-12 (-5 *2 (-1289 (-350 (-3529 'EPS) (-3529 'YA 'YB) (-712)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1198)) (-14 *4 (-1198)) + (-14 *5 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4125) (-4125 'X) (-711))) (-5 *1 (-77 *3)) - (-14 *3 (-1197)))) + (-12 (-5 *2 (-350 (-3529) (-3529 'X) (-712))) (-5 *1 (-77 *3)) + (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4125) (-4125 'X) (-711))) (-5 *1 (-78 *3)) - (-14 *3 (-1197)))) + (-12 (-5 *2 (-350 (-3529) (-3529 'X) (-712))) (-5 *1 (-78 *3)) + (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-4125) (-4125 'XC) (-711)))) - (-5 *1 (-79 *3)) (-14 *3 (-1197)))) + (-12 (-5 *2 (-1289 (-350 (-3529) (-3529 'XC) (-712)))) + (-5 *1 (-79 *3)) (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-4125) (-4125 'X) (-711)))) - (-5 *1 (-80 *3)) (-14 *3 (-1197)))) + (-12 (-5 *2 (-1289 (-350 (-3529) (-3529 'X) (-712)))) + (-5 *1 (-80 *3)) (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-4125 'X '-1439) (-4125) (-711)))) - (-5 *1 (-82 *3)) (-14 *3 (-1197)))) + (-12 (-5 *2 (-1289 (-350 (-3529 'X '-2509) (-3529) (-712)))) + (-5 *1 (-82 *3)) (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-4125 'X '-1439) (-4125) (-711)))) - (-5 *1 (-83 *3)) (-14 *3 (-1197)))) + (-12 (-5 *2 (-702 (-350 (-3529 'X '-2509) (-3529) (-712)))) + (-5 *1 (-83 *3)) (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-4125 'X) (-4125) (-711)))) (-5 *1 (-84 *3)) - (-14 *3 (-1197)))) + (-12 (-5 *2 (-702 (-350 (-3529 'X) (-3529) (-712)))) (-5 *1 (-84 *3)) + (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-4125 'X) (-4125) (-711)))) - (-5 *1 (-85 *3)) (-14 *3 (-1197)))) + (-12 (-5 *2 (-1289 (-350 (-3529 'X) (-3529) (-712)))) + (-5 *1 (-85 *3)) (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-350 (-4125 'X) (-4125 '-1439) (-711)))) - (-5 *1 (-86 *3)) (-14 *3 (-1197)))) + (-12 (-5 *2 (-1289 (-350 (-3529 'X) (-3529 '-2509) (-712)))) + (-5 *1 (-86 *3)) (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-4125 'XL 'XR 'ELAM) (-4125) (-711)))) - (-5 *1 (-87 *3)) (-14 *3 (-1197)))) + (-12 (-5 *2 (-702 (-350 (-3529 'XL 'XR 'ELAM) (-3529) (-712)))) + (-5 *1 (-87 *3)) (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4125 'X) (-4125 '-1439) (-711))) (-5 *1 (-89 *3)) - (-14 *3 (-1197)))) + (-12 (-5 *2 (-350 (-3529 'X) (-3529 '-2509) (-712))) (-5 *1 (-89 *3)) + (-14 *3 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) + (-12 (-5 *2 (-657 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-576)) (-14 *4 (-784)) (-4 *5 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-783)))) + (-12 (-5 *2 (-657 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-576)) (-14 *4 (-784)))) ((*1 *1 *2) - (-12 (-5 *2 (-1163 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) + (-12 (-5 *2 (-1164 *4 *5)) (-14 *4 (-784)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) ((*1 *1 *2) - (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) + (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-784)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) - (-5 *2 (-1288 (-701 (-419 (-971 *4))))) (-5 *1 (-191 *4)))) + (-12 (-5 *3 (-1289 (-702 *4))) (-4 *4 (-174)) + (-5 *2 (-1289 (-702 (-419 (-972 *4))))) (-5 *1 (-191 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1113 (-326 *4))) - (-4 *4 (-13 (-861) (-568) (-626 (-390)))) (-5 *2 (-1113 (-390))) + (-12 (-5 *3 (-1114 (-326 *4))) + (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1114 (-390))) (-5 *1 (-265 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) + ((*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-284)))) ((*1 *2 *1) - (-12 (-4 *2 (-1264 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *2 (-1265 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1273 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) - (-14 *5 (-1197)) (-14 *6 *4) - (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) + (-12 (-5 *2 (-1274 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-442 *3))) + (-14 *5 (-1198)) (-14 *6 *4) + (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) + (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) ((*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4)))) @@ -2360,2413 +5419,4477 @@ (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *2 (-1312 *3 *4)))) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) + (-5 *2 (-1313 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *2 (-1303 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) + (-5 *2 (-1304 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) (-4 *1 (-394)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-702 (-712))) (-4 *1 (-394)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) (-4 *1 (-395)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) - ((*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-395)))) + ((*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1122)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-12 (-5 *2 (-304 (-326 (-707)))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-12 (-5 *2 (-304 (-326 (-712)))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-12 (-5 *2 (-304 (-326 (-714)))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-12 (-5 *2 (-326 (-707))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-12 (-5 *2 (-326 (-712))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-12 (-5 *2 (-326 (-714))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) - (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) + (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-12 (-5 *2 (-657 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) - (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-14 *5 (-656 (-1197))) (-14 *6 (-1201)))) + (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-861) (-21))) + (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) ((*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) - (-4 *3 (-13 (-861) (-21))))) + (-4 *3 (-13 (-862) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-971 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1121)) + (-12 (-5 *2 (-419 (-972 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-971 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1121)) + (-12 (-5 *2 (-972 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1121)) + (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1146 *3 (-624 *1))) (-4 *3 (-1070)) (-4 *3 (-1121)) + (-12 (-5 *2 (-1147 *3 (-624 *1))) (-4 *3 (-1071)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-446)))) - ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-446)))) + ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-446)))) + ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-446)))) ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) (-4 *1 (-452)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-711))) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-1289 (-712))) (-4 *1 (-452)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -3536 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4338 (-657 (-340))))) (-4 *1 (-453)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-453)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-419 (-971 *3)))) (-4 *3 (-174)) - (-14 *6 (-1288 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-14 *4 (-940)) (-14 *5 (-656 (-1197))))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-480)))) + (-12 (-5 *2 (-1289 (-419 (-972 *3)))) (-4 *3 (-174)) + (-14 *6 (-1289 (-702 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-14 *4 (-941)) (-14 *5 (-657 (-1198))))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-480)))) ((*1 *1 *2) - (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1197)) + (-12 (-5 *2 (-1274 *3 *4 *5)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-514)))) + (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-486 *3 *4 *5)) + (-4 *3 (-1071)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1147 (-576) (-624 (-507)))) (-5 *1 (-507)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-514)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618)))) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-374)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-536)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-618)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1070)))) + (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-757 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1071)))) ((*1 *2 *1) - (-12 (-5 *2 (-1308 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) + (-12 (-5 *2 (-1309 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) ((*1 *2 *1) - (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) + (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) + (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-757 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-690 *3)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) ((*1 *2 *1) - (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-5 *1 (-687 *3)) - (-4 *3 (-1121)))) + (-12 (-5 *2 (-978 (-978 (-978 *3)))) (-5 *1 (-688 *3)) + (-4 *3 (-1122)))) ((*1 *1 *2) - (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-4 *3 (-1121)) - (-5 *1 (-687 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) - ((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-693)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121)))) + (-12 (-5 *2 (-978 (-978 (-978 *3)))) (-4 *3 (-1122)) + (-5 *1 (-688 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) + ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-694)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-695 *3)) (-4 *3 (-1122)))) ((*1 *1 *2) - (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) + (-12 (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) - ((*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) - ((*1 *2 *3) - (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713)))) - ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722)))) + ((*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-707)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-714))) (-5 *1 (-707)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-712))) (-5 *1 (-707)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-707)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-707)))) + ((*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-712)))) + ((*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-712)))) + ((*1 *2 *3) + (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-714))) (-5 *1 (-714)))) + ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -2862 *3) (|:| -1619 *4)))) - (-4 *3 (-1070)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775)))) + (-12 (-5 *2 (-657 (-2 (|:| -1735 *3) (|:| -3646 *4)))) + (-4 *3 (-1071)) (-4 *4 (-739)) (-5 *1 (-748 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-776)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) - (|:| -1848 (-656 (-1115 (-855 (-227))))) + (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-781)))) + (-5 *1 (-782)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) - (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) + (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-781)))) + (-5 *1 (-782)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-781)))) - ((*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1238)))) + (-5 *1 (-782)))) + ((*1 *2 *3) (-12 (-5 *2 (-787)) (-5 *1 (-786 *3)) (-4 *3 (-1239)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) + (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-820)))) - ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-836)))) + (-5 *1 (-821)))) + ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-837)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) - (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) + (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) + (|:| |lb| (-657 (-856 (-227)))) + (|:| |cf| (-657 (-326 (-227)))) + (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| - (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3650 (-656 (-227))))))) - (-5 *1 (-853)))) + (-2 (|:| |lfn| (-657 (-326 (-227)))) + (|:| -1679 (-657 (-227))))))) + (-5 *1 (-854)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) - (-5 *1 (-853)))) + (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) + (-5 *1 (-854)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *1 (-853)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-872)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888)))) - ((*1 *2 *3) - (-12 (-5 *3 (-971 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-889)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-971 (-48)))) (-5 *2 (-326 (-576))) - (-5 *1 (-889)))) - ((*1 *1 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) + (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) + (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) + (|:| |ub| (-657 (-856 (-227)))))) + (-5 *1 (-854)))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-873)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) + ((*1 *2 *3) + (-12 (-5 *3 (-972 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-890)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-972 (-48)))) (-5 *2 (-326 (-576))) + (-5 *1 (-890)))) + ((*1 *1 *2) (-12 (-5 *1 (-909 *2)) (-4 *2 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-656 (-326 (-227)))) + (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| - (-656 + (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) + (|:| |grid| (-784)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) + (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) - (-5 *1 (-915)))) + (-5 *1 (-916)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) + (-12 (-5 *2 (-657 (-925 *3))) (-4 *3 (-1122)) (-5 *1 (-924 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) + (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-925 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3)))) + (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-925 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-933 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317)))) + (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-934 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-934 *3)) (-4 *3 (-317)))) ((*1 *2 *3) - (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-938 *4)) + (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-939 *4)) (-4 *4 (-568)))) - ((*1 *2 *3) (-12 (-5 *2 (-1293)) (-5 *1 (-1054 *3)) (-4 *3 (-1238)))) - ((*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1054 *2)) (-4 *2 (-1238)))) + ((*1 *2 *3) (-12 (-5 *2 (-1294)) (-5 *1 (-1055 *3)) (-4 *3 (-1239)))) + ((*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1055 *2)) (-4 *2 (-1239)))) ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) - (-14 *6 (-656 *2)))) + (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-1056 *3 *4 *5 *2 *6)) (-4 *2 (-969 *3 *4 *5)) + (-14 *6 (-657 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-1064 *3)) (-4 *3 (-568)))) + (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-1065 *3)) (-4 *3 (-568)))) ((*1 *1 *2) - (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) - (-4 *2 (-968 *3 (-543 *4) *4)))) + (-12 (-4 *3 (-1071)) (-4 *4 (-862)) (-5 *1 (-1148 *3 *4 *2)) + (-4 *2 (-969 *3 (-543 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) - (-4 *4 (-968 *3 (-543 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-876)))) - ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1165)))) + (-12 (-4 *3 (-1071)) (-4 *2 (-862)) (-5 *1 (-1148 *3 *2 *4)) + (-4 *4 (-969 *3 (-543 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-877)))) + ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1166)))) ((*1 *2 *3) - (-12 (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1071)))) ((*1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) - (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1189 *3 *4 *5)) + (-4 *3 (-1071)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) - (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1196 *3 *4 *5)) + (-4 *3 (-1071)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1261 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1197)) - (-14 *5 *3) (-5 *1 (-1195 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1196)))) - ((*1 *2 *1) (-12 (-5 *2 (-1210 (-1197) (-449))) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1202)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1202)))) - ((*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1209 *3)) (-4 *3 (-1121)))) - ((*1 *2 *3) (-12 (-5 *2 (-1218)) (-5 *1 (-1217 *3)) (-4 *3 (-1121)))) + (-12 (-5 *2 (-1262 *4 *3)) (-4 *3 (-1071)) (-14 *4 (-1198)) + (-14 *5 *3) (-5 *1 (-1196 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1197)))) + ((*1 *2 *1) (-12 (-5 *2 (-1211 (-1198) (-449))) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1203)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1203)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1203)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1203)))) + ((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1210 *3)) (-4 *3 (-1122)))) + ((*1 *2 *3) (-12 (-5 *2 (-1219)) (-5 *1 (-1218 *3)) (-4 *3 (-1122)))) ((*1 *1 *2) - (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-5 *1 (-1232 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1232 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-972 *3)) (-4 *3 (-1071)) (-5 *1 (-1233 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1233 *3)) (-4 *3 (-1071)))) ((*1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1252 *3 *4 *5)) - (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1253 *3 *4 *5)) + (-4 *3 (-1071)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1115 *3)) (-4 *3 (-1238)) (-5 *1 (-1255 *3)))) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1239)) (-5 *1 (-1256 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1280 *3 *4 *5)) - (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1281 *3 *4 *5)) + (-4 *3 (-1071)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1261 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1197)) - (-14 *5 *3) (-5 *1 (-1280 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1289)))) - ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1289)) (-5 *1 (-1292)))) + (-12 (-5 *2 (-1262 *4 *3)) (-4 *3 (-1071)) (-14 *4 (-1198)) + (-14 *5 *3) (-5 *1 (-1281 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1285 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1290)))) + ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1290)) (-5 *1 (-1293)))) ((*1 *1 *2) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) + (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) ((*1 *2 *1) - (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) + (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) ((*1 *2 *1) - (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-861)) + (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *1 (-1308 *3 *4))))) + (-12 (-5 *2 (-677 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) + (-5 *1 (-1309 *3 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-661 *5)) (-4 *5 (-1071)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-867 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-702 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1071)) + (-5 *1 (-868 *2 *3)) (-4 *3 (-867 *2))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-925 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-1179 *3)) (-4 *3 (-1239)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-657 *3)) (-5 *1 (-991 *4 *3)) + (-4 *3 (-1265 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1 *1 *1) (-4 *1 (-674)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-802)) (-5 *5 (-576))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)) (-4 *2 (-1071)))) + ((*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568))))) +(((*1 *2 *3) + (-12 (-5 *3 (-702 (-419 (-972 *4)))) (-4 *4 (-464)) + (-5 *2 (-657 (-3 (-419 (-972 *4)) (-1187 (-1198) (-972 *4))))) + (-5 *1 (-302 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1145 *3 *4 *2 *5)) (-4 *4 (-1071)) (-4 *5 (-243 *3 *4)) + (-4 *2 (-243 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1))))) + (-12 (-4 *1 (-813)) + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) + (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-1057))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-969 *4 *6 *5)) (-4 *4 (-464)) + (-4 *5 (-862)) (-4 *6 (-806)) (-5 *1 (-1009 *4 *5 *6 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-877))) (-5 *2 (-1294)) (-5 *1 (-1160))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) + (-12 (-5 *3 (-657 (-1 (-112) *8))) (-4 *8 (-1087 *5 *6 *7)) + (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-2 (|:| |goodPols| (-657 *8)) (|:| |badPols| (-657 *8)))) + (-5 *1 (-999 *5 *6 *7 *8)) (-5 *4 (-657 *8))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) + (-5 *1 (-761))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *1 *1 *1) (-4 *1 (-674)))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -2469 (-702 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-702 *3)))) + (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) + (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1289 *6)) (-5 *4 (-1289 (-576))) (-5 *5 (-576)) + (-4 *6 (-1122)) (-5 *2 (-1 *6)) (-5 *1 (-1039 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-941)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-889)) + (-5 *2 (-1294)) (-5 *1 (-1290))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1180)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1180)) (-5 *1 (-97))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) + (-5 *2 (-1057)) (-5 *1 (-768)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) + (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-768))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1280 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1071)) (-5 *2 (-657 *1)) (-4 *1 (-1156 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1132))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -3962 (-702 (-419 (-972 *4)))) + (|:| |vec| (-657 (-419 (-972 *4)))) (|:| -4343 (-784)) + (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) + (-4 *6 (-806)) + (-5 *2 + (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) + (|:| -2469 (-657 (-1289 (-419 (-972 *4))))))) + (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) + (-4 *3 (-1122))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *6)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-765))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) - (-5 *4 (-656 (-940))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) - (-5 *4 (-656 (-940))) (-5 *1 (-480)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480)))) - ((*1 *1 *1) (-5 *1 (-480)))) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) + (-14 *6 (-784)) (-4 *7 (-174)) (-4 *8 (-174)) + (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *9)) (-4 *9 (-1071)) (-4 *5 (-862)) (-4 *6 (-806)) + (-4 *8 (-1071)) (-4 *2 (-969 *9 *7 *5)) + (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-806)) + (-4 *4 (-969 *8 *6 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-697 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) +(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) - (-4 *4 (-1238)))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -2958 (-430 *3)) (|:| |special| (-430 *3)))) + (-5 *1 (-740 *5 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-768))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1071)) + (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-867 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1071)) + (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-868 *5 *3)) + (-4 *3 (-867 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-4 *1 (-312)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-1316 *5 *6 *7)) + (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-1316 *5 *6 *7)) + (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-972 *4))) + (-4 *4 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 (-657 (-1068 *4 *5))) (-5 *1 (-1316 *4 *5 *6)) + (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198)))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-576)) (-5 *5 (-1180)) (-5 *6 (-702 (-227))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) + (-14 *4 (-784)) (-4 *5 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-862)) (-4 *5 (-929)) (-4 *6 (-806)) + (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-430 (-1194 *8))) + (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-1194 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-929)) (-4 *5 (-1265 *4)) (-5 *2 (-430 (-1194 *5))) + (-5 *1 (-927 *4 *5)) (-5 *3 (-1194 *5))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-702 *8)) (-5 *4 (-784)) (-4 *8 (-969 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) + (-4 *7 (-806)) + (-5 *2 + (-657 + (-2 (|:| |det| *8) (|:| |rows| (-657 (-576))) + (|:| |cols| (-657 (-576)))))) + (-5 *1 (-944 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) + (-5 *2 (-1057)) (-5 *1 (-769))))) +(((*1 *1) (-5 *1 (-590)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1060 (-576)))) (-4 *3 (-568)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1590 ((-1147 *3 (-624 $)) $)) + (-15 -1602 ((-1147 *3 (-624 $)) $)) + (-15 -3515 ($ (-1147 *3 (-624 $)))))))))) +(((*1 *1 *1) (-5 *1 (-1085)))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) + (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) + (-5 *1 (-801))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-657 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-657 *4)))) + (-5 *1 (-1209 *6)) (-5 *5 (-657 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *2 (-657 *4)) (-5 *1 (-792 *4)) + (-4 *4 (-13 (-374) (-861)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3431 *3))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-674)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-1203)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-518)) (-5 *3 (-657 (-1203))) (-5 *1 (-1203))))) +(((*1 *1) (-4 *1 (-989)))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1265 *9)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *9 (-317)) + (-4 *10 (-969 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-657 (-1194 *10))) + (|:| |dterm| + (-657 (-657 (-2 (|:| -3253 (-784)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-657 *6)) (|:| |nlead| (-657 *10)))) + (-5 *1 (-791 *6 *7 *8 *9 *10)) (-5 *3 (-1194 *10)) (-5 *4 (-657 *6)) + (-5 *5 (-657 *10))))) +(((*1 *2 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-1194 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *3)) + (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-784)) (-4 *4 (-568)) (-5 *1 (-991 *4 *2)) + (-4 *2 (-1265 *4))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-862)) (-5 *3 (-657 *6)) (-5 *5 (-657 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-657 *5)) (|:| |f3| *5) + (|:| |f4| (-657 *5)))) + (-5 *1 (-1209 *6)) (-5 *4 (-657 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-657 (-1198))) (|:| |pred| (-52)))) + (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-702 *1)) (-5 *4 (-1289 *1)) (-4 *1 (-652 *5)) + (-4 *5 (-1071)) + (-5 *2 (-2 (|:| -3962 (-702 *5)) (|:| |vec| (-1289 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-702 *1)) (-4 *1 (-652 *4)) (-4 *4 (-1071)) + (-5 *2 (-702 *4))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-739)) (-4 *2 (-1239))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-34)) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-256)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-993)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-5 *2 (-784)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-859))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) + ((*1 *1 *1) (-5 *1 (-390))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) + (-5 *1 (-789 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1224))) + (-5 *1 (-595 *4 *2)) + (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-598 (-419 (-972 *4)))) + (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-326 *4)) + (-5 *1 (-601 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-784)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-806)) + (-4 *9 (-862)) (-4 *3 (-1087 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-657 *4)) + (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) + (-5 *1 (-1091 *7 *8 *9 *3 *4)) (-4 *4 (-1093 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) + (-4 *3 (-1087 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-657 *4)) + (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) + (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-657 *4)) + (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) + (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-784)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-806)) + (-4 *9 (-862)) (-4 *3 (-1087 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-657 *4)) + (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) + (-5 *1 (-1167 *7 *8 *9 *3 *4)) (-4 *4 (-1131 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) + (-4 *3 (-1087 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-657 *4)) + (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) + (-5 *1 (-1167 *6 *7 *8 *3 *4)) (-4 *4 (-1131 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-657 *4)) + (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) + (-5 *1 (-1167 *5 *6 *7 *3 *4)) (-4 *4 (-1131 *5 *6 *7 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-701 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1071)) (-5 *1 (-727 *2 *3)) + (-4 *3 (-661 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1071)) (-5 *1 (-727 *2 *3)) + (-4 *3 (-661 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) + ((*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-174)) (-4 *2 (-1071))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-464)))) + ((*1 *1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1265 (-576))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-709 *2)) (-4 *2 (-1265 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-784))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-317)) + (-5 *1 (-936 *3 *4 *5 *2)) (-4 *2 (-969 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *6 *4 *5)) + (-5 *1 (-936 *4 *5 *6 *2)) (-4 *4 (-806)) (-4 *5 (-862)) + (-4 *6 (-317)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1194 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-936 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-1194 *7))) (-4 *4 (-806)) (-4 *5 (-862)) + (-4 *6 (-317)) (-5 *2 (-1194 *7)) (-5 *1 (-936 *4 *5 *6 *7)) + (-4 *7 (-969 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-941))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) + (-4 *2 (-1265 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-464))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1198)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-716 *3)) + (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1198)) (-5 *2 (-1 (-227) (-227) (-227))) + (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) +(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-772))))) +(((*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1232 *5 *6 *7 *3)) + (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1071)) + (-5 *1 (-1182 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-835))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -4119 *1) (|:| -4453 *1) (|:| |associate| *1))) + (-4 *1 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1239))))) +(((*1 *2) + (-12 + (-5 *2 + (-1289 (-657 (-2 (|:| -3037 (-930 *3)) (|:| -3146 (-1142)))))) + (-5 *1 (-362 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941)))) + ((*1 *2) + (-12 (-5 *2 (-1289 (-657 (-2 (|:| -3037 *3) (|:| -3146 (-1142)))))) + (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1194 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1289 (-657 (-2 (|:| -3037 *3) (|:| -3146 (-1142)))))) + (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-941))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1194 *1)) (-5 *4 (-1198)) (-4 *1 (-27)) + (-5 *2 (-657 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1194 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-972 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *2 (-657 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-657 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-657 (-1198))) + (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-310))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-657 *1)) (-5 *3 (-657 *7)) (-4 *1 (-1093 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) + (-4 *1 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) + (-4 *1 (-1093 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-360))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-929))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-600 *4)) + (-4 *4 (-360))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-518)) (-5 *3 (-657 (-891))) (-5 *1 (-495))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)) + (-4 *2 (-568)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-568))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1238)))) + (|partial| -12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) + (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-784))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) - (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-374)) (-4 *2 (-917 *3)) (-5 *1 (-598 *2)) - (-5 *3 (-1197)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) + (|partial| -12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-568)))) + ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1289 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-568)) + (-5 *1 (-991 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *2 (-1071)) + (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-419 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-13 (-374) (-148))) + (-5 *1 (-411 *3 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-702 (-227))) + (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-768))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-568)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-704 *3)) (-5 *1 (-986 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1198)) (-4 *4 (-1071)) (-4 *4 (-1122)) + (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2128 (-576)))) + (-4 *1 (-442 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238)))) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1071)) (-4 *4 (-1122)) + (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2128 (-576)))) + (-4 *1 (-442 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1134)) (-4 *3 (-1122)) + (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2128 (-576)))) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-908 *3)) (|:| -2128 (-784)))) + (-5 *1 (-908 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -2128 (-784)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) + (-4 *7 (-969 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -2128 (-576)))) + (-5 *1 (-970 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) + (-15 -1602 (*7 $)))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) + (-14 *4 (-657 (-1198))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1239)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) + (-14 *4 (-657 (-1198))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-909 *3)) (-4 *3 (-862))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) + (-5 *1 (-431 *4)))) + ((*1 *1 *1) (-5 *1 (-946))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) + ((*1 *1 *1) (-5 *1 (-947))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) + (-5 *4 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) + (-5 *4 (-419 (-576))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))) + (-5 *1 (-1043 *3)) (-4 *3 (-1265 (-419 (-576)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) + (-4 *3 (-1265 *2))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-832 *3)) (|:| |rm| (-832 *3)))) + (-5 *1 (-832 *3)) (-4 *3 (-862)))) + ((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1256 (-576))) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-664 *3)) (-4 *3 (-1239))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1122)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-397 *3))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-739) (-25)))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-856 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1224) (-29 *6))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-226 *6 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3941 *4)))) + (-5 *1 (-789 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-940)) (-5 *2 (-2 (|:| -1735 (-657 *1)) (|:| -4083 *1))) + (-5 *3 (-657 *1))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-464)))) + ((*1 *1 *1 *1) (-4 *1 (-464)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-925 *4)) (-4 *4 (-1122)) (-5 *2 (-657 (-784))) + (-5 *1 (-924 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) + (-5 *2 (-1057)) (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) + (-4 *6 (-1087 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *2 (-1131 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-657 (-52))) (-5 *2 (-1294)) (-5 *1 (-878))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1071)) (-5 *1 (-910 *2 *3)) (-4 *2 (-1265 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1071)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1265 *3))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1116 (-227))) (-5 *6 (-657 (-270))) (-5 *2 (-1155 (-227))) + (-5 *1 (-710))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-784)) (-5 *2 (-657 (-1198))) (-5 *1 (-212)) + (-5 *3 (-1198)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-784)) (-5 *2 (-657 (-1198))) + (-5 *1 (-276)))) + ((*1 *2 *1) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) + (-5 *2 (-657 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-657 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-832 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) + (-5 *2 (-657 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-996))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) + (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -3579 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1265 *4))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-657 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1087 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-806)) + (-4 *8 (-862)) (-5 *1 (-999 *6 *7 *8 *9))))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-816))))) +(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-784))) + ((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *2) + (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) + (-5 *1 (-178 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-999 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-386 *4 *2)) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467))))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-576)) + (-5 *6 + (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4279 (-390)))) + (-5 *7 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) + (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) + (-5 *1 (-801)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-576)) + (-5 *6 + (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4279 (-390)))) + (-5 *7 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) + (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) + (-5 *1 (-801))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-442 *3) (-1024))) (-5 *1 (-285 *3 *2)) + (-4 *3 (-568))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1122)) + (-4 *2 (-862))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-784)) (-5 *3 (-963 *5)) (-4 *5 (-1071)) + (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-919 *4)) - (-4 *4 (-1121)))) + (-12 (-5 *2 (-657 (-784))) (-5 *3 (-784)) (-5 *1 (-1186 *4 *5)) + (-14 *4 (-941)) (-4 *5 (-1071)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-657 (-784))) (-5 *3 (-963 *5)) (-4 *5 (-1071)) + (-5 *1 (-1186 *4 *5)) (-14 *4 (-941))))) (((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) - (-4 *3 (-568)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568))))) -(((*1 *2 *1 *1) + (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) + (-4 *1 (-1087 *3 *4 *5))))) +(((*1 *2 *3 *1) (-12 (-5 *2 - (-2 (|:| -3115 (-794 *3)) (|:| |coef1| (-794 *3)) - (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -3115 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1086 *3 *4 *5))))) + (-2 (|:| |cycle?| (-112)) (|:| -3959 (-784)) (|:| |period| (-784)))) + (-5 *1 (-1179 *4)) (-4 *4 (-1239)) (-5 *3 (-784))))) +(((*1 *2 *1) + (-12 (-4 *3 (-238)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) + (-4 *6 (-806)) (-5 *2 (-1 *1 (-784))) (-4 *1 (-260 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1071)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-806)) + (-5 *2 (-1 *1 (-784))) (-4 *1 (-260 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-275 *2)) (-4 *2 (-862))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-836)) (-5 *1 (-835))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) - (-4 *6 (-1121)) (-4 *2 (-1121)) (-5 *1 (-692 *5 *6 *2))))) + (-12 (-5 *3 (-1194 *9)) (-5 *4 (-657 *7)) (-4 *7 (-862)) + (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-806)) (-4 *8 (-317)) + (-5 *2 (-657 (-784))) (-5 *1 (-755 *6 *7 *8 *9)) (-5 *5 (-784))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-838))))) +(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-784))) + ((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1180)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1057)) + (-5 *1 (-763))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2113 *6) (|:| |sol?| (-112))) (-576) - *6)) - (-4 *6 (-374)) (-4 *7 (-1264 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-4 *3 (-13 (-27) (-1224) (-442 *6) (-10 -8 (-15 -3515 ($ *7))))) + (-4 *7 (-861)) + (-4 *8 + (-13 (-1267 *3 *7) (-374) (-1224) + (-10 -8 (-15 -2209 ($ $)) (-15 -2320 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) + (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1180)) (-4 *9 (-1005 *8)) + (-14 *10 (-1198))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1264 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-738)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1131))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1288 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) + (-12 (-5 *2 (-657 (-1225 *3))) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) (((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1057)) (-5 *3 (-1198)) (-5 *1 (-194))))) +(((*1 *2 *1) + (-12 (-5 *2 (-963 *4)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-1071))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-999 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1194 *7)) (-4 *5 (-1071)) + (-4 *7 (-1071)) (-4 *2 (-1265 *5)) (-5 *1 (-513 *5 *2 *6 *7)) + (-4 *6 (-1265 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1071)) (-4 *7 (-1071)) + (-4 *4 (-1265 *5)) (-5 *2 (-1194 *7)) (-5 *1 (-513 *5 *4 *6 *7)) + (-4 *6 (-1265 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) + (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (|has| *1 (-6 -4467)) (-4 *1 (-1277 *3)) + (-4 *3 (-1239))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1060 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-925 *3)) (-4 *3 (-1122))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-301))) + ((*1 *1) (-5 *1 (-877))) + ((*1 *1) + (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-806)) + (-5 *1 (-1009 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1107))) + ((*1 *1) + (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) + (-4 *3 (-13 (-1122) (-34))))) + ((*1 *1) (-5 *1 (-1201))) ((*1 *1) (-5 *1 (-1202)))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-877)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-143 *3 *4 *2)) - (-4 *2 (-384 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) (-4 *2 (-384 *4)) - (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) - (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) + (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) + (-5 *1 (-1010 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1013 *3)) (-5 *1 (-1257 *3 *4 *2)) - (-4 *2 (-1264 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) + (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) + (-5 *1 (-1129 *3 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1071)) (-14 *3 (-657 (-1198))))) + ((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1071) (-862))) + (-14 *3 (-657 (-1198)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-4 *4 (-1122)) + (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1198)) + (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) + (-4 *3 (-13 (-1224) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)) (-148))) + (-5 *2 (-598 (-419 (-972 *5)))) (-5 *1 (-582 *5)) + (-5 *3 (-419 (-972 *5)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-862)) + (-5 *2 + (-2 (|:| |f1| (-657 *4)) (|:| |f2| (-657 (-657 (-657 *4)))) + (|:| |f3| (-657 (-657 *4))) (|:| |f4| (-657 (-657 (-657 *4)))))) + (-5 *1 (-1209 *4)) (-5 *3 (-657 (-657 (-657 *4))))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *3) + (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1116 (-856 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-315)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-802)) (-5 *5 (-576))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1180))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) + (-4 *3 (-1122)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-925 *4)) (-4 *4 (-1122)) (-5 *2 (-112)) + (-5 *1 (-924 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-941)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-386 *4 *2)) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467))))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-657 (-702 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834))))) -(((*1 *1 *1) (-4 *1 (-1081))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804))))) -(((*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-833)) (-14 *5 (-1198)) + (-5 *2 (-576)) (-5 *1 (-1136 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1264 (-171 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1264 (-171 *2)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1081)))) + (-12 (-5 *2 (-112)) (-5 *3 (-657 (-270))) (-5 *1 (-268))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1198)) (-4 *5 (-374)) (-5 *2 (-1179 (-1179 (-972 *5)))) + (-5 *1 (-1297 *5)) (-5 *4 (-1179 (-972 *5)))))) +(((*1 *2) + (-12 (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) + (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1224) (-1024)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) + (-14 *4 *2)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-657 (-1198))) + (-5 *2 + (-657 (-1168 *5 (-543 (-879 *6)) (-879 *6) (-793 *5 (-879 *6))))) + (-5 *1 (-640 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1180)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-1198))) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) + (-5 *2 (-657 (-419 (-972 *4)))) (-5 *1 (-944 *4 *5 *6 *7)) + (-4 *7 (-969 *4 *6 *5))))) +(((*1 *1) (-5 *1 (-449)))) (((*1 *2 *1) - (-12 (-5 *2 (-1273 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) - (-14 *4 (-1197)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1121)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-861)) - (-14 *4 - (-1 (-112) (-2 (|:| -2411 *3) (|:| -4080 *2)) - (-2 (|:| -2411 *3) (|:| -4080 *2))))))) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) + (-5 *2 (-657 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-518)) (-5 *3 (-657 (-985))) (-5 *1 (-109))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-817 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1224) (-979)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-464))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-905 *4 *3)) + (-4 *3 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1241)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1241))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-1220))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-769))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) + (-5 *2 + (-2 (|:| A (-702 *5)) + (|:| |eqs| + (-657 + (-2 (|:| C (-702 *5)) (|:| |g| (-1289 *5)) (|:| -3981 *6) + (|:| |rh| *5)))))) + (-5 *1 (-826 *5 *6)) (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)) + (-4 *6 (-669 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-669 *5)) + (-5 *2 (-2 (|:| -3962 (-702 *6)) (|:| |vec| (-1289 *5)))) + (-5 *1 (-826 *5 *6)) (-5 *3 (-702 *6)) (-5 *4 (-1289 *5))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) + (-5 *2 (-1057)) (-5 *1 (-765))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-941)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-784))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1265 (-419 *2))) + (-4 *2 (-1265 *5)) (-5 *1 (-217 *5 *2 *6 *3)) + (-4 *3 (-353 *5 *2 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) + (-5 *1 (-1146 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) + (-5 *2 (-657 (-1098 *3 *4 *5))) (-5 *1 (-1099 *3 *4 *5)) + (-4 *5 (-13 (-442 *4) (-902 *3) (-626 (-908 *3))))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1265 *4)) (-5 *1 (-820 *4 *2 *3 *5)) + (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) + (-4 *5 (-669 (-419 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1265 *4)) (-5 *1 (-820 *4 *2 *5 *3)) + (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-669 *2)) + (-4 *3 (-669 (-419 *2)))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-657 (-112))) (-5 *7 (-702 (-227))) + (-5 *8 (-702 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) + (-5 *2 (-1057)) (-5 *1 (-767))))) +(((*1 *2 *2) (-12 (-5 *2 (-1116 (-856 (-227)))) (-5 *1 (-315))))) +(((*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *3 (-657 (-889))) + (-5 *1 (-480))))) +(((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-340))))) +(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1243)) + (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) + (-5 *2 (-2 (|:| |num| (-702 *5)) (|:| |den| *5)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-774)))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-624 *3)) + (-4 *3 (-13 (-442 *5) (-27) (-1224))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) + (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1122))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))) + (-4 *3 (-13 (-1122) (-34)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) + (-5 *1 (-178 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-806)) + (-5 *1 (-1009 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3))))) +(((*1 *1) (-5 *1 (-836)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-702 *4)) (-5 *3 (-941)) (-4 *4 (-1071)) + (-5 *1 (-1050 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-657 (-702 *4))) (-5 *3 (-941)) (-4 *4 (-1071)) + (-5 *1 (-1050 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) + (-5 *2 (-972 *5)) (-5 *1 (-964 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-657 (-657 (-227)))) (-5 *1 (-1235))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1198)) + (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-4 *4 (-13 (-29 *6) (-1224) (-979))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2469 (-657 *4)))) + (-5 *1 (-814 *6 *4 *3)) (-4 *3 (-669 *4))))) (((*1 *1) (-5 *1 (-449)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-1198)) (-5 *1 (-548)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-657 (-1198))) (-5 *2 (-1198)) (-5 *1 (-717 *3)) + (-4 *3 (-626 (-548)))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-598 *3) *3 (-1198))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1198))) + (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1060 *4)) (-4 *3 (-442 *7)) + (-5 *4 (-1198)) (-4 *7 (-626 (-908 (-576)))) (-4 *7 (-464)) + (-4 *7 (-902 (-576))) (-4 *7 (-1122)) (-5 *2 (-598 *3)) + (-5 *1 (-585 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-5 *1 (-340))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1071)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1265 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-2 (|:| -1989 (-1179 *4)) (|:| -2002 (-1179 *4)))) + (-5 *1 (-1184 *4)) (-5 *3 (-1179 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *4)) + (-4 *4 (-1239)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-772))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-854)) (-5 *4 (-1085)) (-5 *2 (-1057)) (-5 *1 (-853)))) + ((*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1057)) (-5 *1 (-853)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-657 (-390))) (-5 *5 (-657 (-856 (-390)))) + (-5 *6 (-657 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1057)) + (-5 *1 (-853)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-390))) + (-5 *5 (-657 (-856 (-390)))) (-5 *2 (-1057)) (-5 *1 (-853)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-390))) (-5 *2 (-1057)) + (-5 *1 (-853)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-326 (-390)))) (-5 *4 (-657 (-390))) + (-5 *2 (-1057)) (-5 *1 (-853))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-990 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1) (-5 *1 (-876))) + (-12 (-4 *4 (-568)) (-5 *2 (-657 (-784))) (-5 *1 (-991 *4 *3)) + (-4 *3 (-1265 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-941)) (-5 *1 (-1054 *2)) + (-4 *2 (-13 (-1122) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1239)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1239)) + (-14 *4 (-576))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-978 (-1142))) + (-5 *1 (-357 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1198)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-715 *4 *5 *6 *7)) + (-4 *4 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239)) + (-4 *7 (-1239))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) +(((*1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1) (-5 *1 (-877))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *3 (-576)) (-4 *1 (-883 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1121)))) + (-12 (-5 *2 (-1194 (-576))) (-5 *3 (-576)) (-4 *1 (-884 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1057)) (-5 *1 (-853)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-326 (-390)))) (-5 *4 (-657 (-390))) + (-5 *2 (-1057)) (-5 *1 (-853))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1289 (-1289 (-576)))) (-5 *3 (-941)) (-5 *1 (-478))))) +(((*1 *1) (-5 *1 (-1107)))) +(((*1 *2 *1) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) + (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071)))) + ((*1 *2 *3) + (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) + (-5 *1 (-701 *2 *4 *5 *3)) (-4 *3 (-700 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1224) (-442 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-1228 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-889)) + (-5 *5 (-941)) (-5 *6 (-657 (-270))) (-5 *2 (-1290)) + (-5 *1 (-1293)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-657 (-270))) + (-5 *2 (-1290)) (-5 *1 (-1293))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-784)) (-5 *3 (-963 *4)) (-4 *1 (-1156 *4)) + (-4 *4 (-1071)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-784)) (-5 *4 (-963 (-227))) (-5 *2 (-1294)) + (-5 *1 (-1291))))) +(((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-834))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-306)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-322)) (-5 *1 (-306)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-306)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-657 (-1180))) (-5 *3 (-1180)) (-5 *2 (-322)) + (-5 *1 (-306))))) +(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1122)))) ((*1 *1 *1) (-5 *1 (-644)))) +(((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) + (-5 *2 (-657 (-657 (-963 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-657 (-657 (-963 *4)))) (-5 *3 (-112)) (-4 *4 (-1071)) + (-4 *1 (-1156 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 (-657 (-963 *3)))) (-4 *3 (-1071)) + (-4 *1 (-1156 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-657 (-657 (-657 *4)))) (-5 *3 (-112)) + (-4 *1 (-1156 *4)) (-4 *4 (-1071)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-657 (-657 (-963 *4)))) (-5 *3 (-112)) + (-4 *1 (-1156 *4)) (-4 *4 (-1071)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-657 (-657 (-657 *5)))) (-5 *3 (-657 (-173))) + (-5 *4 (-173)) (-4 *1 (-1156 *5)) (-4 *5 (-1071)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-657 (-657 (-963 *5)))) (-5 *3 (-657 (-173))) + (-5 *4 (-173)) (-4 *1 (-1156 *5)) (-4 *5 (-1071))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-657 (-985))) (-5 *1 (-301))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) + ((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-702 *4)) (-5 *3 (-941)) (|has| *4 (-6 (-4468 "*"))) + (-4 *4 (-1071)) (-5 *1 (-1050 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-657 (-702 *4))) (-5 *3 (-941)) + (|has| *4 (-6 (-4468 "*"))) (-4 *4 (-1071)) (-5 *1 (-1050 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -1782 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1264 (-171 *3)))))) + (-12 (-4 *3 (-13 (-374) (-861))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1265 (-171 *3)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3941 *4)))) + (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-568)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-568))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-657 (-880)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1155 (-227))) (-5 *3 (-657 (-270))) (-5 *1 (-1291)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1155 (-227))) (-5 *3 (-1180)) (-5 *1 (-1291)))) + ((*1 *1 *1) (-5 *1 (-1291)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4351 *4))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1194 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-374)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) - (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2156 *4)))))) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-132)) + (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4056 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-864)) - (-5 *2 (-656 (-887 *4 *3))))) + (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-865)) + (-5 *2 (-657 (-888 *4 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -2862 *3) (|:| -1619 *4)))) - (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-738)))) + (-12 (-5 *2 (-657 (-2 (|:| -1735 *3) (|:| -3646 *4)))) + (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-739)))) ((*1 *2 *1) - (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) - (-5 *2 (-1178 (-2 (|:| |k| *4) (|:| |c| *3))))))) + (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) + (-5 *2 (-1179 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-963 *4)) (-4 *4 (-1071)) (-5 *1 (-1186 *3 *4)) + (-14 *3 (-941))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-876))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-657 + (-2 + (|:| -4286 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1289 (-326 (-227)))) + (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) + (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4440 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390))))))) + (-5 *1 (-816))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1213 *2)) (-4 *2 (-374))))) +(((*1 *2) + (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-1122))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-419 *5)) (-4 *4 (-1243)) (-4 *5 (-1265 *4)) + (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1265 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1200 (-419 (-576)))) (-5 *2 (-419 (-576))) + (-5 *1 (-192)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-702 (-326 (-227)))) (-5 *3 (-657 (-1198))) + (-5 *4 (-1289 (-326 (-227)))) (-5 *1 (-207)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-657 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1122)) + (-4 *3 (-1239)) (-5 *1 (-304 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-319 *2)) (-4 *2 (-1122)) (-4 *2 (-1239)) + (-5 *1 (-304 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-657 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-115))) (-5 *3 (-657 (-1 *1 (-657 *1)))) + (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-115))) (-5 *3 (-657 (-1 *1 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-1 *1 (-657 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-1 *1 (-657 *1)))) + (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-1 *1 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-657 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1122)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1200 (-419 (-576)))) + (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 *1)) (-4 *1 (-385 *4 *5)) + (-4 *4 (-862)) (-4 *5 (-174)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1198)) (-5 *3 (-784)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-1071)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1198)) (-5 *3 (-784)) (-5 *4 (-1 *1 (-657 *1))) + (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-1071)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-784))) + (-5 *4 (-657 (-1 *1 (-657 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1122)) + (-4 *5 (-1071)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-784))) + (-5 *4 (-657 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1122)) + (-4 *5 (-1071)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-657 (-115))) (-5 *3 (-657 *1)) (-5 *4 (-1198)) + (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-626 (-548))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1198)) (-4 *1 (-442 *4)) (-4 *4 (-1122)) + (-4 *4 (-626 (-548))))) + ((*1 *1 *1) + (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)) (-4 *2 (-626 (-548))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-657 (-1198))) (-4 *1 (-442 *3)) (-4 *3 (-1122)) + (-4 *3 (-626 (-548))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)) + (-4 *3 (-626 (-548))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1239)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 *5)) (-4 *1 (-526 *4 *5)) + (-4 *4 (-1122)) (-4 *5 (-1239)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-846 *3)) (-4 *3 (-374)) (-5 *1 (-731 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-419 (-972 *4))) (-5 *3 (-1198)) (-4 *4 (-568)) + (-5 *1 (-1065 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-657 (-1198))) (-5 *4 (-657 (-419 (-972 *5)))) + (-5 *2 (-419 (-972 *5))) (-4 *5 (-568)) (-5 *1 (-1065 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-304 (-419 (-972 *4)))) (-5 *2 (-419 (-972 *4))) + (-4 *4 (-568)) (-5 *1 (-1065 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-657 (-304 (-419 (-972 *4))))) (-5 *2 (-419 (-972 *4))) + (-4 *4 (-568)) (-5 *1 (-1065 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1179 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-132))))) (((*1 *2 *1) - (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) - (-4 *5 (-243 (-1970 *3) (-783))) + (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) + (-4 *5 (-243 (-3437 *3) (-784))) (-14 *6 - (-1 (-112) (-2 (|:| -2411 *2) (|:| -4080 *5)) - (-2 (|:| -2411 *2) (|:| -4080 *5)))) - (-4 *2 (-861)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-968 *4 *5 (-878 *3)))))) + (-1 (-112) (-2 (|:| -3146 *2) (|:| -2128 *5)) + (-2 (|:| -3146 *2) (|:| -2128 *5)))) + (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-969 *4 *5 (-879 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1180)) (-5 *1 (-799))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-390))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) + (-5 *1 (-178 *3))))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1292))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 (-1 *6 (-657 *6)))) + (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1280 *5)) (-5 *2 (-657 *6)) + (-5 *1 (-1282 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) + (-5 *1 (-1010 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) + (-5 *1 (-1129 *3 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-999 *3 *4 *5 *6))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-805)) (-4 *3 (-174))))) +(((*1 *2 *1) + (-12 (-4 *1 (-708 *3)) (-4 *3 (-1122)) + (-5 *2 (-657 (-2 (|:| -4440 *3) (|:| -1469 (-784)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-374)) (-5 *2 (-657 *3)) (-5 *1 (-965 *4 *3)) + (-4 *3 (-1265 *4))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) + (-5 *1 (-761))))) +(((*1 *1 *1) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-464)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *3 (-1087 *4 *5 *6)) + (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *1)))) + (-4 *1 (-1093 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1243))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-1268 *3 *2)) + (-4 *2 (-13 (-1265 *3) (-568) (-10 -8 (-15 -3431 ($ $ $)))))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) + (-5 *6 (-227)) (-5 *2 (-1057)) (-5 *1 (-765))))) (((*1 *2 *1) - (-12 (-4 *1 (-707 *3)) (-4 *3 (-1121)) - (-5 *2 (-656 (-2 (|:| -2905 *3) (|:| -3127 (-783)))))))) + (-12 (-5 *2 (-1179 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *3) + (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-246)) (-5 *3 (-1180)))) + ((*1 *2 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-246)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1180)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) + (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-657 (-624 *2))) (-5 *4 (-1198)) + (-4 *2 (-13 (-27) (-1224) (-442 *5))) + (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-286 *5 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-1197)) (-4 *6 (-442 *5)) - (-4 *5 (-1121)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6))))) + (-12 (-5 *3 (-657 *6)) (-5 *4 (-1198)) (-4 *6 (-442 *5)) + (-4 *5 (-1122)) (-5 *2 (-657 (-624 *6))) (-5 *1 (-585 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4056 *4)))) + (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-1071)))) + ((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-1071))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1122)) + (-4 *4 (-1122)))) + ((*1 *1 *2) + (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) +(((*1 *1 *2) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-1225 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-657 (-1225 *2))) (-5 *1 (-1225 *2)) (-4 *2 (-1122))))) +(((*1 *1) (-5 *1 (-145)))) +(((*1 *2 *3) + (-12 (-5 *3 (-702 *2)) (-4 *4 (-1265 *2)) + (-4 *2 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) + (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (-4 *2 (-1071))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-888 *2 *3)) (-4 *2 (-1239)) (-4 *3 (-1239))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-802)) (-5 *5 (-576))))) +(((*1 *1 *1) (-4 *1 (-884 *2)))) +(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-284))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-1293)) (-5 *1 (-843))))) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-760))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1265 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-709 *2)) (-4 *2 (-1265 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1289 *5)) (-4 *5 (-13 (-1071) (-652 *4))) + (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-576)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-784)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-806)) (-4 *4 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) + (-5 *1 (-461 *5 *6 *7 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1256 *3)) (-4 *3 (-1239))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -4228 *7) (|:| |sol?| (-112))) + (-576) *7)) + (-5 *6 (-657 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1265 *7)) + (-5 *3 (-419 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-586 *7 *8))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-657 (-657 (-657 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-657 *5)) (-4 *5 (-862)) (-5 *1 (-1209 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) + (-12 (-4 *5 (-1122)) (-4 *2 (-918 *5)) (-5 *1 (-705 *5 *2 *3 *4)) + (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466))))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-656 + (-516 (-419 (-576)) (-245 *4 (-784)) (-879 *3) + (-253 *3 (-419 (-576))))) + (-14 *3 (-657 (-1198))) (-14 *4 (-784)) (-5 *1 (-517 *3 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1294)) (-5 *1 (-844))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1) (|partial| -4 *1 (-735)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-568)) (-4 *2 (-1071)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-568)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *3 (-1087 *4 *5 *6)) + (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *1)))) + (-4 *1 (-1093 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) + ((*1 *2 *1) + (-12 (-4 *1 (-995 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-798 *3)) (-4 *3 (-626 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-941)) (-5 *2 (-390)) (-5 *1 (-798 *3)) + (-4 *3 (-626 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 *2)) + (-5 *2 (-390)) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) + (-5 *2 (-390)) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) + (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-757 *3)) (-4 *3 (-174))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-702 (-171 (-419 (-576))))) + (-5 *2 + (-657 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 (-171 *4))))))) - (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) + (|:| |outvect| (-657 (-702 (-171 *4))))))) + (-5 *1 (-777 *4)) (-4 *4 (-13 (-374) (-861)))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(((*1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-379)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1289 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360)))) + ((*1 *2 *1) + (-12 (-4 *2 (-862)) (-5 *1 (-726 *2 *3 *4)) (-4 *3 (-1122)) + (-14 *4 + (-1 (-112) (-2 (|:| -3146 *2) (|:| -2128 *3)) + (-2 (|:| -3146 *2) (|:| -2128 *3))))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1289 (-3 (-480) "undefined"))) (-5 *1 (-1290))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) (-5 *2 (-657 *6)) + (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084))))) + (-12 (-5 *2 (-1198)) (-5 *3 (-390)) (-5 *1 (-1085))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 (-1302 *4 *5 *6 *7))) + (-5 *1 (-1302 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-657 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1087 *6 *7 *8)) (-4 *6 (-568)) + (-4 *7 (-806)) (-4 *8 (-862)) (-5 *2 (-657 (-1302 *6 *7 *8 *9))) + (-5 *1 (-1302 *6 *7 *8 *9))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-702 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) + (-4 *5 (-1265 *4)) (-5 *2 (-657 (-419 *5))) (-5 *1 (-1038 *4 *5)) + (-5 *3 (-419 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-657 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))) + (-5 *1 (-571)))) + ((*1 *2 *1) + (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-5 *2 (-657 *3)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-657 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) + (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227))))) + (-5 *1 (-816))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-589)))) + ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-657 *3)) + (-4 *3 (-13 (-27) (-1224) (-442 *6))) + (-4 *6 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-569 *6 *3))))) (((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) +(((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1161)))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-784)) (-4 *6 (-1122)) (-4 *7 (-918 *6)) + (-5 *2 (-702 *7)) (-5 *1 (-705 *6 *7 *3 *4)) (-4 *3 (-384 *7)) + (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4466))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-1 (-112) *8))) (-4 *8 (-1087 *5 *6 *7)) + (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-2 (|:| |goodPols| (-657 *8)) (|:| |badPols| (-657 *8)))) + (-5 *1 (-999 *5 *6 *7 *8)) (-5 *4 (-657 *8))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-1239))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-464)) (-4 *3 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-969 *4 *3 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-1071))))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1180)) + (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 (-1198))) (-4 *6 (-374)) + (-5 *2 (-657 (-304 (-972 *6)))) (-5 *1 (-550 *5 *6 *7)) + (-4 *5 (-464)) (-4 *7 (-13 (-374) (-861)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1289 (-326 (-227)))) + (-5 *2 + (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) + (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) + (-5 *1 (-315))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-657 *1)) (-4 *1 (-940))))) +(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1116 (-856 (-390)))) (-5 *2 (-1116 (-856 (-227)))) + (-5 *1 (-315))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-784)) (-5 *1 (-688 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) + (-5 *2 + (-657 + (-2 (|:| |eigval| (-3 (-419 (-972 *4)) (-1187 (-1198) (-972 *4)))) + (|:| |eigmult| (-784)) + (|:| |eigvec| (-657 (-702 (-419 (-972 *4)))))))) + (-5 *1 (-302 *4)) (-5 *3 (-702 (-419 (-972 *4))))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + (-12 (-4 *1 (-810 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) + (-12 (-5 *2 (-112)) (-5 *1 (-846 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) + (-12 (-5 *2 (-112)) (-5 *1 (-856 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) ((*1 *2 *1) - (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1019 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1029 *3)) (-4 *3 (-1059 (-419 (-576))))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1030 *3)) (-4 *3 (-1060 (-419 (-576))))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) + ((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1239))))) +(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1239)) (-5 *2 (-784))))) +(((*1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-993))))) +(((*1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) + (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) + (-4 *2 (-1280 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1265 *3)) + (-4 *5 (-737 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1280 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-568) (-148))) + (-5 *1 (-1175 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) + (-5 *1 (-1197))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *2 (-1122)) (-4 *3 (-1122)) + (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122))))) +(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1122)) (-5 *2 (-657 *1)) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) + (-4 *3 (-1122)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *2 (-657 *1)) (-4 *1 (-969 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) + (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-657 *3)) + (-5 *1 (-970 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) + (-15 -1602 (*7 $)))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-877)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-784)) + (-14 *4 (-784)) (-4 *5 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-1245)))))) +(((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) (((*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) - (-4 *5 (-13 (-442 *4) (-1023) (-1223))) - (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223)))))) + (-4 *5 (-13 (-442 *4) (-1024) (-1224))) + (-4 *3 (-13 (-442 (-171 *4)) (-1024) (-1224)))))) +(((*1 *2) + (-12 (-4 *1 (-360)) + (-5 *2 (-657 (-2 (|:| -1856 (-576)) (|:| -2128 (-576)))))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1116 (-227))) + (-5 *2 (-1291)) (-5 *1 (-264))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) + (-5 *1 (-1197))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-972 (-419 (-576)))) (-5 *4 (-1198)) + (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-310))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-784)) (-5 *4 (-1289 *2)) (-4 *5 (-317)) + (-4 *6 (-1014 *5)) (-4 *2 (-13 (-421 *6 *7) (-1060 *6))) + (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1265 *6))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-657 *4)) (-4 *4 (-1122)) (-4 *4 (-1239)) (-5 *2 (-112)) + (-5 *1 (-1179 *4))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1085)) (-5 *3 (-1180))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-657 (-657 *8))) (-5 *3 (-657 *8)) + (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) + (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *5 *6 *7 *8))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1121)) + (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1122)) (-4 *2 (-132))))) -(((*1 *1 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1178 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-657 (-1049 *5 *6 *7 *3))) (-5 *1 (-1049 *5 *6 *7 *3)) + (-4 *3 (-1087 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-657 *6)) (-4 *1 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1093 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-657 (-1168 *5 *6 *7 *3))) (-5 *1 (-1168 *5 *6 *7 *3)) + (-4 *3 (-1087 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-702 (-419 (-972 (-576))))) + (-5 *2 (-657 (-702 (-326 (-576))))) (-5 *1 (-1053)) + (-5 *3 (-326 (-576)))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) + (-5 *1 (-1197))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-702 *5))) (-5 *4 (-576)) (-4 *5 (-374)) + (-4 *5 (-1071)) (-5 *2 (-112)) (-5 *1 (-1051 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-702 *4))) (-4 *4 (-374)) (-4 *4 (-1071)) + (-5 *2 (-112)) (-5 *1 (-1051 *4))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) + (-5 *2 (-1057)) (-5 *1 (-765))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) + (-12 (-5 *3 (-1194 *7)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1071)) (-5 *2 (-1194 *6)) + (-5 *1 (-331 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1180)) (-5 *5 (-702 (-227))) (-5 *6 (-227)) + (-5 *7 (-702 (-576))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-765))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) + (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-784)))) + ((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) + (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-784))))) +(((*1 *1 *1) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-1122))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1288 *1)))) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) + (-5 *1 (-1197))))) +(((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-838))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-374)) (-4 *3 (-1071)) + (-5 *1 (-1182 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1060 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *4 *2 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-576))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-657 (-972 *6))) (-5 *4 (-657 (-1198))) (-4 *6 (-464)) + (-5 *2 (-657 (-657 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) + (-4 *5 (-13 (-374) (-861)))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-304 (-846 *3))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *2 (-846 *3)) (-5 *1 (-648 *5 *3)) + (-4 *3 (-13 (-27) (-1224) (-442 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-846 (-972 *5)))) (-4 *5 (-464)) + (-5 *2 (-846 (-419 (-972 *5)))) (-5 *1 (-649 *5)) + (-5 *3 (-419 (-972 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-419 (-972 *5)))) (-5 *3 (-419 (-972 *5))) + (-4 *5 (-464)) (-5 *2 (-846 *3)) (-5 *1 (-649 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1071)) (-4 *2 (-700 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1265 *4)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 + (-2 (|:| |solns| (-657 *5)) + (|:| |maps| (-657 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1150 *3 *5)) (-4 *3 (-1265 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) + (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) + (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1167 *5 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-2 (|:| -2120 (-1179 *4)) (|:| -2131 (-1179 *4)))) + (-5 *1 (-1184 *4)) (-5 *3 (-1179 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-321)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-992)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1058)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1095))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -2627 (-657 (-877))) (|:| -1323 (-657 (-877))) + (|:| |presup| (-657 (-877))) (|:| -3804 (-657 (-877))) + (|:| |args| (-657 (-877))))) + (-5 *1 (-1198))))) +(((*1 *2 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *2 (-657 (-227))) + (-5 *1 (-480))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) + (|:| |explanations| (-657 (-1180))))) + (-5 *2 (-1057)) (-5 *1 (-315)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -3701 (-390)) (|:| -2634 (-1180)) + (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) + (-5 *2 (-1057)) (-5 *1 (-315))))) +(((*1 *2 *3) + (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2916 *4))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-1071))))) +(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-925 *3))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-784)) (-4 *5 (-374)) (-5 *2 (-176 *6)) + (-5 *1 (-882 *5 *4 *6)) (-4 *4 (-1280 *5)) (-4 *6 (-1265 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *2 *4 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1071)) + (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) + ((*1 *1 *1) (-4 *1 (-557))) + ((*1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-832 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1239)) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1236 *3)) (-4 *3 (-1239)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1024)) + (-4 *2 (-1071))))) +(((*1 *1 *1) + (-12 (-4 *2 (-360)) (-4 *2 (-1071)) (-5 *1 (-725 *2 *3)) + (-4 *3 (-1265 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-784)) (-5 *5 (-657 *3)) (-4 *3 (-317)) (-4 *6 (-862)) + (-4 *7 (-806)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) + (-4 *8 (-969 *3 *7 *6))))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-457 *3)) (-4 *3 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-873)))) + ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-985)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1011)))) + ((*1 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1122) (-34))) (-5 *1 (-1162 *2 *3)) + (-4 *3 (-13 (-1122) (-34)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-702 *1)) (-4 *1 (-360)) (-5 *2 (-1289 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-702 *1)) (-4 *1 (-146)) (-4 *1 (-929)) + (-5 *2 (-1289 *1))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-784) *2)) (-5 *4 (-784)) (-4 *2 (-1122)) + (-5 *1 (-691 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-784) *3)) (-4 *3 (-1122)) (-5 *1 (-695 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-340))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-4 *4 (-862)) (-5 *2 (-657 (-657 *4))) (-5 *1 (-1209 *4)) + (-5 *3 (-657 *4))))) +(((*1 *2 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-1122))))) +(((*1 *2) + (-12 (-4 *3 (-1071)) (-5 *2 (-978 (-725 *3 *4))) (-5 *1 (-725 *3 *4)) + (-4 *4 (-1265 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-657 (-879 *5))) (-14 *5 (-657 (-1198))) (-4 *6 (-464)) + (-5 *2 (-657 (-657 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) + (-5 *3 (-657 (-253 *5 *6))) (-4 *7 (-464))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1122)) (-5 *2 (-905 *3 *4)) (-5 *1 (-901 *3 *4 *5)) + (-4 *3 (-1122)) (-4 *5 (-679 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-928)) - (-5 *2 (-1288 *1))))) + (-12 (-5 *3 (-986 *4)) (-4 *4 (-1122)) (-5 *2 (-1124 *4)) + (-5 *1 (-987 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1200 (-419 (-576)))) (-5 *2 (-419 (-576))) + (-5 *1 (-192))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1197)) (-4 *5 (-442 *4)) - (-4 *4 (-1121)) (-5 *1 (-585 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-91 *3))))) + (-12 (-5 *2 (-657 (-624 *5))) (-5 *3 (-1198)) (-4 *5 (-442 *4)) + (-4 *4 (-1122)) (-5 *1 (-585 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-430 (-1194 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-317)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) + (-4 *4 (-317)) (-4 *5 (-806)) (-4 *6 (-862)) + (-5 *1 (-459 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) + (-4 *4 (-317)) (-4 *5 (-806)) (-4 *6 (-862)) + (-5 *1 (-459 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1289 (-657 (-2 (|:| -3037 *4) (|:| -3146 (-1142)))))) + (-4 *4 (-360)) (-5 *2 (-702 *4)) (-5 *1 (-357 *4))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) + (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) + (-5 *1 (-1130 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-657 (-1289 *4))) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) + (-5 *2 (-657 (-1289 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-1 (-1179 (-972 *4)) (-1179 (-972 *4)))) + (-5 *1 (-1297 *4)) (-4 *4 (-374))))) +(((*1 *1 *1) (-5 *1 (-1085)))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-91 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-963 (-227))) (-5 *4 (-889)) (-5 *5 (-941)) + (-5 *2 (-1294)) (-5 *1 (-480)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-963 (-227))) (-5 *2 (-1294)) (-5 *1 (-480)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-657 (-963 (-227)))) (-5 *4 (-889)) (-5 *5 (-941)) + (-5 *2 (-1294)) (-5 *1 (-480))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-568) (-148))) + (-5 *2 (-2 (|:| -4217 *3) (|:| -4228 *3))) (-5 *1 (-1259 *4 *3)) + (-4 *3 (-1265 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) + (-5 *2 (-832 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-859)) (-5 *1 (-1312 *3 *2)) (-4 *3 (-1071))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) + (-5 *2 (-1057)) (-5 *1 (-760))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)) + (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) + (-5 *2 (-702 *3))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4466)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1122)) + (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-240 *3)))) + ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1122))))) (((*1 *1 *1) - (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) - (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121))))) + (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *2 (-1122)) (-4 *3 (-1122)) + (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *3 (-657 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-270)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *2 (-1294)) (-5 *1 (-1291)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3734 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-1291)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *3) + (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) + (-4 *3 (-384 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-702 *5)) (-4 *5 (-1014 *4)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |num| (-702 *4)) (|:| |den| *4))) + (-5 *1 (-706 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) + (-4 *6 (-1265 *5)) + (-5 *2 (-2 (|:| -3981 *7) (|:| |rh| (-657 (-419 *6))))) + (-5 *1 (-820 *5 *6 *7 *3)) (-5 *4 (-657 (-419 *6))) + (-4 *7 (-669 *6)) (-4 *3 (-669 (-419 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1258 *4 *5 *3)) + (-4 *3 (-1265 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-1088))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1289 *5)) (-4 *5 (-13 (-1071) (-652 *4))) + (-4 *4 (-568)) (-5 *2 (-1289 *4)) (-5 *1 (-650 *4 *5))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-702 *2)) (-5 *4 (-576)) + (-4 *2 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) + (-4 *5 (-1265 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-702 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) + (-5 *7 (-702 (-576))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-766))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-806)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) + (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) + (|partial| -12 (-4 *3 (-1134)) (-4 *3 (-1122)) (-5 *2 (-657 *1)) (-4 *1 (-442 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) - (-4 *3 (-1121)))) + (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) + (-4 *3 (-1122)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *2 (-657 *1)) (-4 *1 (-969 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) - (-5 *1 (-969 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) + (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-657 *3)) + (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) - (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) - (-15 -2697 (*7 $)))))))) + (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) + (-15 -1602 (*7 $)))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 (-925 *3))) (-4 *3 (-1122)) (-5 *1 (-924 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-1264 *4)) (-5 *2 (-1 *6 (-656 *6))) - (-5 *1 (-1282 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1279 *4))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) + (-12 (-5 *3 (-1194 *6)) (-4 *6 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *2 (-1194 *7)) (-5 *1 (-331 *4 *5 *6 *7)) + (-4 *7 (-969 *6 *4 *5))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)) (-4 *2 (-374)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) ((*1 *1 *1 *1) - (-3795 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) + (-2748 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1239))) + (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1239))))) ((*1 *1 *1 *1) (-4 *1 (-374))) ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1146 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1121)) + (-12 (-5 *2 (-1147 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) ((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) + (-12 (-5 *2 (-1289 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) ((*1 *1 *1 *1) (-5 *1 (-548))) ((*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-738) *4)))) + (-4 *3 (|SubsetCategory| (-739) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-738) *4)))) + (-4 *2 (|SubsetCategory| (-739) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) - (-4 *3 (|SubsetCategory| (-738) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-675 *2 *4 *3)) (-4 *2 (-730 *4)) + (-4 *3 (|SubsetCategory| (-739) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) - (-4 *2 (|SubsetCategory| (-738) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-675 *3 *4 *2)) (-4 *3 (-730 *4)) + (-4 *2 (|SubsetCategory| (-739) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-880 *2 *3 *4 *5)) (-4 *2 (-374)) - (-4 *2 (-1070)) (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-783))) - (-14 *5 (-783)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)))) + (|partial| -12 (-5 *1 (-881 *2 *3 *4 *5)) (-4 *2 (-374)) + (-4 *2 (-1071)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-784))) + (-14 *5 (-784)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) + (-12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *2 (-1071)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-374)))) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-374)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1070)) (-4 *3 (-861)) - (-4 *4 (-805)) (-14 *6 (-656 *3)) - (-5 *1 (-1300 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-968 *2 *4 *3)) - (-14 *7 (-656 (-783))) (-14 *8 (-783)))) + (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1071)) (-4 *3 (-862)) + (-4 *4 (-806)) (-14 *6 (-657 *3)) + (-5 *1 (-1301 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-969 *2 *4 *3)) + (-14 *7 (-657 (-784))) (-14 *8 (-784)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1070)) - (-4 *3 (-858))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-626 (-907 (-576)))) - (-4 *5 (-901 (-576))) - (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) - (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) + (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1071)) + (-4 *3 (-859))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-879 *3)) (-14 *3 (-657 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1011)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1239)) (-5 *2 (-1198)) (-5 *1 (-1079 *3 *4)) + (-4 *3 (-1115 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1114 *3)) (-4 *3 (-1239)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) + (-5 *2 (-1198)))) + ((*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1285 *3)) (-14 *3 *2)))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4467)) (-4 *4 (-374)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-657 *6)) (-5 *1 (-533 *4 *5 *6 *3)) + (-4 *3 (-700 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4467)) (-4 *4 (-568)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-4 *7 (-1014 *4)) (-4 *8 (-384 *7)) + (-4 *9 (-384 *7)) (-5 *2 (-657 *6)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-700 *4 *5 *6)) + (-4 *10 (-700 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-657 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-657 *6)) (-5 *1 (-701 *4 *5 *6 *3)) + (-4 *3 (-700 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) + (-5 *2 (-657 *7))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *5)) (-4 *4 (-1071)) + (-4 *5 (-862)) (-5 *2 (-972 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *5)) (-4 *4 (-1071)) + (-4 *5 (-862)) (-5 *2 (-972 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-784)) (-4 *1 (-1280 *4)) (-4 *4 (-1071)) + (-5 *2 (-972 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-784)) (-4 *1 (-1280 *4)) (-4 *4 (-1071)) + (-5 *2 (-972 *4))))) +(((*1 *1 *1) (-4 *1 (-1166)))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1465 *4))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1071)) (-4 *5 (-1265 *4)) (-5 *2 (-1 *6 (-657 *6))) + (-5 *1 (-1283 *4 *5 *3 *6)) (-4 *3 (-669 *5)) (-4 *6 (-1280 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-784)) (-5 *1 (-228)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) - (-5 *1 (-181 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *8)) - (-5 *4 - (-656 - (-2 (|:| -2704 (-701 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-701 *7))))) - (-5 *5 (-783)) (-4 *8 (-1264 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-360)) - (-5 *2 - (-2 (|:| -2704 (-701 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-701 *7)))) - (-5 *1 (-510 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 - (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) - (|:| |genIdeal| (-516 *4 *5 *6 *7)))) - (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) - (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) + (-12 (-5 *2 (-171 (-227))) (-5 *3 (-784)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1161)))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) + (-4 *6 (-384 *3)) (-5 *1 (-701 *3 *5 *6 *2)) + (-4 *2 (-700 *3 *5 *6))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-941)) (-4 *1 (-416)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *4 *5 *2 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-135))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-861) - (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 ((-1293) $)) - (-15 -3384 ((-1293) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) + (-13 (-862) + (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 ((-1294) $)) + (-15 -2884 ((-1294) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) - ((*1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-21))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-656 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-576))))) - (-4 *2 (-568)) (-5 *1 (-430 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-576)) - (|:| -3497 (-656 (-2 (|:| |irr| *4) (|:| -3172 (-576))))))) - (-4 *4 (-1264 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-21))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-340))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1179 (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1182 *4)) + (-4 *4 (-1071))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-551 *4 *2 *5 *6)) + (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-784)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1264 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1070))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) - (|:| |tol| (-227)))) - (-5 *2 (-112)) (-5 *1 (-212))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) - (-5 *2 (-2 (|:| -2862 *1) (|:| |gap| (-783)) (|:| -3561 *1))) - (-4 *1 (-1086 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -2862 *1) (|:| |gap| (-783)) (|:| -3561 *1))) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-1049 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1070)) (-5 *1 (-1049 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841)) (-5 *3 (-1179))))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-861)) - (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-940)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) + (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) + (-5 *2 (-784)))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) + (-5 *2 (-784)))) + ((*1 *2 *1) + (-12 (-5 *2 (-784)) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-739))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-657 (-1194 *11))) (-5 *3 (-1194 *11)) + (-5 *4 (-657 *10)) (-5 *5 (-657 *8)) (-5 *6 (-657 (-784))) + (-5 *7 (-1289 (-657 (-1194 *8)))) (-4 *10 (-862)) + (-4 *8 (-317)) (-4 *11 (-969 *8 *9 *10)) (-4 *9 (-806)) + (-5 *1 (-720 *9 *10 *8 *11))))) +(((*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-289))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-760))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-784)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1265 (-419 *2))) + (-4 *2 (-1265 *4)) (-5 *1 (-352 *3 *4 *2 *5)) + (-4 *3 (-353 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1243)) + (-4 *4 (-1265 (-419 *2))) (-4 *2 (-1265 *3))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-861) - (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 ((-1293) $)) - (-15 -3384 ((-1293) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) + (-13 (-862) + (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 ((-1294) $)) + (-15 -2884 ((-1294) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1239)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1239)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)))) + (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-132)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) - (-4 *2 (-1264 *3)))) + (-4 *2 (-1265 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) + (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-548))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-25))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1121)) - (-5 *1 (-585 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-977 (-185 (-140)))) (-5 *1 (-343)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-618))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3) - (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) - (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) - (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-861)) (-5 *2 (-656 (-656 (-656 *4)))) - (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 *4)))))) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-25))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2) (-12 (-5 *2 (-1169 (-1180))) (-5 *1 (-403))))) (((*1 *2 *3) - (-12 (-4 *4 (-861)) - (-5 *2 - (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) - (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) - (-5 *1 (-1208 *4)) (-5 *3 (-656 (-656 (-656 *4))))))) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-115))))) + (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071))))) +(((*1 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-419 (-972 *5)) (-1187 (-1198) (-972 *5)))) + (-4 *5 (-464)) (-5 *2 (-657 (-702 (-419 (-972 *5))))) + (-5 *1 (-302 *5)) (-5 *4 (-702 (-419 (-972 *5))))))) (((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *2 (-317)) (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052))))) -(((*1 *2) - (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1193 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) - (-4 *3 (-374))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-1178 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) - (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) - (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310))))) + (-12 (-5 *2 (-1179 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) - (-4 *3 (-1264 (-171 (-576)))) (-4 *4 (-13 (-374) (-860))))) + (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-626 (-908 (-576)))) + (-4 *5 (-902 (-576))) + (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) + (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-796 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1265 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| -4080 (-783)) (|:| -2862 *5) (|:| |radicand| (-656 *5)))) - (-5 *1 (-330 *5)) (-5 *4 (-783)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-576))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1105 *3)) (-4 *3 (-133))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) - (-4 *1 (-1092 *4 *5 *6 *3))))) + (-12 (-5 *4 (-657 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-13 (-464) (-148))) + (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-657 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-212))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 *1)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1071)) (-5 *1 (-702 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 *4)) (-4 *4 (-1071)) (-4 *1 (-1145 *3 *4 *5 *6)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1062)) (-5 *3 (-390))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-576)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-317)) + (-4 *9 (-969 *8 *6 *7)) + (-5 *2 (-2 (|:| -3587 (-1194 *9)) (|:| |polval| (-1194 *8)))) + (-5 *1 (-755 *6 *7 *8 *9)) (-5 *3 (-1194 *9)) (-5 *4 (-1194 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-877))) (-5 *2 (-1294)) (-5 *1 (-1160))))) +(((*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) - (-4 *2 (-1279 *3))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) - (-4 *4 (-1121)) (-4 *5 (-1121))))) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) + (-5 *2 (-1194 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-657 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-657 (-657 *4))) (-5 *2 (-657 *4)) (-4 *4 (-317)) + (-5 *1 (-181 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-657 *8)) + (-5 *4 + (-657 + (-2 (|:| -2469 (-702 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-702 *7))))) + (-5 *5 (-784)) (-4 *8 (-1265 *7)) (-4 *7 (-1265 *6)) (-4 *6 (-360)) + (-5 *2 + (-2 (|:| -2469 (-702 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-702 *7)))) + (-5 *1 (-510 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) + (-5 *2 (-1057)) (-5 *1 (-767))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *1 (-701 *4 *5 *6 *2)) + (-4 *2 (-700 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1178 (-992))) (-5 *1 (-992))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-876)))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *4 *5 *6 *2)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-940)) (-5 *1 (-454 *2)) - (-4 *2 (-1264 (-576))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-940)) (-5 *4 (-783)) (-5 *1 (-454 *2)) - (-4 *2 (-1264 (-576))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) - (-4 *2 (-1264 (-576))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) - (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-940)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) - (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-576))))) + (-12 (-5 *3 (-702 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-174)) (-4 *2 (-1265 *4)) (-5 *1 (-179 *4 *2 *3)) + (-4 *3 (-737 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-430 *2)) (-4 *2 (-1264 *5)) - (-5 *1 (-456 *5 *2)) (-4 *5 (-1070))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) - (-5 *1 (-818 *5 *6 *7 *4))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1223))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) -(((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) + (-12 (-5 *3 (-702 (-419 (-972 *5)))) (-5 *4 (-1198)) + (-5 *2 (-972 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) + (-12 (-5 *3 (-702 (-419 (-972 *4)))) (-5 *2 (-972 *4)) + (-5 *1 (-302 *4)) (-4 *4 (-464)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-783))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) - (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1056)) (-5 *1 (-768))))) -(((*1 *1 *1 *1) (-4 *1 (-988)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-701 *3)) - (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) - (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) - (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-62 *3)) (-14 *3 (-1197)))) - ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-69 *3)) (-14 *3 (-1197)))) - ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-72 *3)) (-14 *3 (-1197)))) - ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1293)))) - ((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-409)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) - ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) - ((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1207))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-861)) (-4 *5 (-928)) (-4 *6 (-805)) - (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-430 (-1193 *8))) - (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-1193 *8)))) + (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1265 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) - (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) + (-12 (-5 *3 (-702 (-171 (-419 (-576))))) + (-5 *2 (-972 (-171 (-419 (-576))))) (-5 *1 (-777 *4)) + (-4 *4 (-13 (-374) (-861))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-702 (-171 (-419 (-576))))) (-5 *4 (-1198)) + (-5 *2 (-972 (-171 (-419 (-576))))) (-5 *1 (-777 *5)) + (-4 *5 (-13 (-374) (-861))))) + ((*1 *2 *3) + (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *2 (-972 (-419 (-576)))) + (-5 *1 (-792 *4)) (-4 *4 (-13 (-374) (-861))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *4 (-1198)) + (-5 *2 (-972 (-419 (-576)))) (-5 *1 (-792 *5)) + (-4 *5 (-13 (-374) (-861)))))) +(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1208))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1223))) - (-5 *1 (-595 *4 *2)) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))))) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-442 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-419 (-971 *4)))) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-601 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *1 *2) - (-12 (-4 *3 (-1070)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-403))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1223) (-29 *6))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-226 *6 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1070)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1264 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1024))))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312)))) + ((*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *5 (-1122)) (-5 *2 (-112)) + (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1024) (-1224)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-672 *4 *2)) + (-4 *2 (-669 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1224) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-148)) + (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-326 *5)) + (-5 *1 (-601 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-784)) (-4 *4 (-13 (-1071) (-730 (-419 (-576))))) + (-4 *5 (-862)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1310 *5 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -4113 ($ *7))))) - (-4 *7 (-860)) - (-4 *8 - (-13 (-1266 *3 *7) (-374) (-1223) - (-10 -8 (-15 -4107 ($ $)) (-15 -4412 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) - (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) - (-14 *10 (-1197))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-386 *4 *2)) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467))))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-877)))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-109))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) - (-5 *2 - (-2 (|:| A (-701 *5)) - (|:| |eqs| - (-656 - (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5)) (|:| -3379 *6) - (|:| |rh| *5)))))) - (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) - (-4 *6 (-668 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) - (-5 *2 (-2 (|:| -3563 (-701 *6)) (|:| |vec| (-1288 *5)))) - (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1288 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) -(((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1293)) (-5 *1 (-403)))) - ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-403))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-962 (-227)) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-894 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-897 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) + (-12 (-5 *3 (-657 (-1098 *4 *5 *2))) (-4 *4 (-1122)) + (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) + (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-657 (-1098 *5 *6 *2))) (-5 *4 (-941)) (-4 *5 (-1122)) + (-4 *6 (-13 (-1071) (-902 *5) (-626 (-908 *5)))) + (-4 *2 (-13 (-442 *6) (-902 *5) (-626 (-908 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-374) (-148))) + (-5 *2 (-657 (-2 (|:| -2128 (-784)) (|:| -3713 *4) (|:| |num| *4)))) + (-5 *1 (-411 *3 *4)) (-4 *4 (-1265 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1239)) (-5 *2 (-784))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-657 (-657 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-657 (-3 (|:| |array| (-657 *3)) (|:| |scalar| (-1198))))) + (-5 *6 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1126)) + (-5 *1 (-409)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-657 (-657 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-657 (-3 (|:| |array| (-657 *3)) (|:| |scalar| (-1198))))) + (-5 *6 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1126)) + (-5 *1 (-409)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-657 (-1198))) (-5 *5 (-1201)) (-5 *3 (-1198)) + (-5 *2 (-1126)) (-5 *1 (-409))))) (((*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-992)))) + ((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-1095)))) + ((*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-1140))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-856 *3))) (-4 *3 (-13 (-27) (-1224) (-442 *5))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *2 + (-3 (-856 *3) + (-2 (|:| |leftHandLimit| (-3 (-856 *3) "failed")) + (|:| |rightHandLimit| (-3 (-856 *3) "failed"))) + "failed")) + (-5 *1 (-648 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1180)) + (-4 *3 (-13 (-27) (-1224) (-442 *6))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *2 (-856 *3)) (-5 *1 (-648 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-856 (-972 *5)))) (-4 *5 (-464)) + (-5 *2 + (-3 (-856 (-419 (-972 *5))) + (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-856 (-419 (-972 *5))) "failed"))) + "failed")) + (-5 *1 (-649 *5)) (-5 *3 (-419 (-972 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-419 (-972 *5)))) (-5 *3 (-419 (-972 *5))) + (-4 *5 (-464)) + (-5 *2 + (-3 (-856 *3) + (-2 (|:| |leftHandLimit| (-3 (-856 *3) "failed")) + (|:| |rightHandLimit| (-3 (-856 *3) "failed"))) + "failed")) + (-5 *1 (-649 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-304 (-419 (-972 *6)))) (-5 *5 (-1180)) + (-5 *3 (-419 (-972 *6))) (-4 *6 (-464)) (-5 *2 (-856 *3)) + (-5 *1 (-649 *6))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1122) (-34))) (-4 *6 (-13 (-1122) (-34))) + (-5 *2 (-112)) (-5 *1 (-1162 *5 *6))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-784)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-784)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) + ((*1 *2 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317)))) + ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) + ((*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-576))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-751))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-905 *4 *3)) + (-4 *3 (-1122))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-148) (-27) (-1060 (-576)) (-1060 (-419 (-576))))) + (-4 *5 (-1265 *4)) (-5 *2 (-1194 (-419 *5))) (-5 *1 (-627 *4 *5)) + (-5 *3 (-419 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) + (-4 *5 (-13 (-148) (-27) (-1060 (-576)) (-1060 (-419 (-576))))) + (-5 *2 (-1194 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2) (-12 (-5 *2 (-856 (-576))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1122))))) +(((*1 *1) (-5 *1 (-480)))) +(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-52)) (-5 *1 (-842))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-991 *2 *3)) + (-4 *3 (-1265 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-702 *11)) (-5 *4 (-657 (-419 (-972 *8)))) + (-5 *5 (-784)) (-5 *6 (-1180)) (-4 *8 (-13 (-317) (-148))) + (-4 *11 (-969 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1198)))) + (-4 *10 (-806)) + (-5 *2 + (-2 + (|:| |rgl| + (-657 + (-2 (|:| |eqzro| (-657 *11)) (|:| |neqzro| (-657 *11)) + (|:| |wcond| (-657 (-972 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1289 (-419 (-972 *8)))) + (|:| -2469 (-657 (-1289 (-419 (-972 *8)))))))))) + (|:| |rgsz| (-576)))) + (-5 *1 (-944 *8 *9 *10 *11)) (-5 *7 (-576))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-145)))) + ((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-145))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-941)) (-4 *5 (-568)) (-5 *2 (-702 *5)) + (-5 *1 (-976 *5 *3)) (-4 *3 (-669 *5))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (|has| *1 (-6 -4457)) (-4 *1 (-416)) + (-5 *2 (-941))))) +(((*1 *1) (-5 *1 (-1291)))) +(((*1 *2 *3) + (-12 (-5 *3 (-972 *5)) (-4 *5 (-1071)) (-5 *2 (-253 *4 *5)) + (-5 *1 (-964 *4 *5)) (-14 *4 (-657 (-1198)))))) +(((*1 *2) (-12 (-5 *2 (-856 (-576))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1122))))) +(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208))))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -2627 (-657 (-877))) (|:| -1323 (-657 (-877))) + (|:| |presup| (-657 (-877))) (|:| -3804 (-657 (-877))) + (|:| |args| (-657 (-877))))) + (-5 *1 (-1198)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-657 (-877)))) (-5 *1 (-1198))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-576)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-784)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-806)) (-4 *4 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) + (-5 *1 (-461 *5 *6 *7 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) - (-5 *1 (-702 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) + (-12 (-4 *3 (-13 (-464) (-1060 (-576)))) (-4 *3 (-568)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1590 ((-1147 *3 (-624 $)) $)) + (-15 -1602 ((-1147 *3 (-624 $)) $)) + (-15 -3515 ($ (-1147 *3 (-624 $)))))))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-877) (-877) (-877))) (-5 *4 (-576)) (-5 *2 (-877)) + (-5 *1 (-662 *5 *6 *7)) (-4 *5 (-1122)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-877)) (-5 *1 (-869 *3 *4 *5)) (-4 *3 (-1071)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-877)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877)))) + ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-877)))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-877)) (-5 *1 (-1194 *3)) (-4 *3 (-1071))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-430 *4)) (-4 *4 (-568))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-657 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-442 *4) (-1024))) (-4 *4 (-568)) + (-5 *1 (-285 *4 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-1060 (-419 *2)))) (-5 *2 (-576)) + (-5 *1 (-116 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) + (-5 *2 + (-2 (|:| |mval| (-702 *4)) (|:| |invmval| (-702 *4)) + (|:| |genIdeal| (-516 *4 *5 *6 *7)))) + (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1452 (-1193 *6)) (|:| -4080 (-576))))) - (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) - (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5))))) + (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1221 *3)) (-4 *3 (-1071))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1107))))) +(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-657 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-784)))) + ((*1 *2 *1) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-784))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 (-493 *3 *4))) (-14 *3 (-657 (-1198))) + (-4 *4 (-464)) (-5 *1 (-643 *3 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1265 *5)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) + (-5 *1 (-823 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-419 *6))) (-4 *6 (-1265 *5)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-5 *2 (-2 (|:| -2469 (-657 (-419 *6))) (|:| -3962 (-702 *5)))) + (-5 *1 (-823 *5 *6)) (-5 *4 (-657 (-419 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-667 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1265 *5)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) + (-5 *1 (-823 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-667 *6 (-419 *6))) (-4 *6 (-1265 *5)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-5 *2 (-2 (|:| -2469 (-657 (-419 *6))) (|:| -3962 (-702 *5)))) + (-5 *1 (-823 *5 *6)) (-5 *4 (-657 (-419 *6)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-657 (-1262 *5 *4))) + (-5 *1 (-1136 *4 *5)) (-5 *3 (-1262 *5 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1294)) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-862) + (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 (*2 $)) + (-15 -2884 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1294)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-862) + (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 (*2 $)) + (-15 -2884 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-514))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1122))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *1) (-5 *1 (-877))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1047 *3)) (-4 *3 (-1238))))) -(((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1059 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1048 *3)) (-4 *3 (-1239))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-576)) (-5 *1 (-206))))) + (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) + (-5 *2 (-972 *5)) (-5 *1 (-964 *4 *5))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1132)) (-5 *3 (-576))))) +(((*1 *2) + (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1194 *3) (-1194 *3))) + (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) + (-5 *1 (-563 *6 *3))))) +(((*1 *1) (-5 *1 (-1294)))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-1140))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1239)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-877))))) +(((*1 *2 *2) (-12 (-5 *2 (-986 *3)) (-4 *3 (-1122)) (-5 *1 (-987 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) + (-5 *1 (-701 *3 *4 *5 *6)) (-4 *6 (-700 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-713 *3)) + (-4 *3 (-317))))) +(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) (((*1 *2 *3) + (-12 (-5 *3 (-1289 (-1289 *4))) (-4 *4 (-1071)) (-5 *2 (-702 *4)) + (-5 *1 (-1051 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-657 (-972 *4))) (-5 *3 (-657 (-1198))) (-4 *4 (-464)) + (-5 *1 (-938 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *3 - (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) - (-5 *2 (-656 (-227))) (-5 *1 (-315))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-783)) - (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) - (-5 *1 (-251 *3))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) - (-4 *6 (-1070)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1050 *6)) - (-5 *3 (-656 (-701 *6))))) + (-657 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-576))))) + (-4 *2 (-568)) (-5 *1 (-430 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1070)) - (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1050 *4)) - (-5 *3 (-656 (-701 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) - (-5 *3 (-656 (-701 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) - (-5 *3 (-656 (-701 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *1 (-598 *2)) (-4 *2 (-1059 *3)) - (-4 *2 (-374)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) - (-4 *2 (-13 (-442 *4) (-1023) (-1223))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) - (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-1197)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-978))))) + (-12 + (-5 *3 + (-2 (|:| |contp| (-576)) + (|:| -1502 (-657 (-2 (|:| |irr| *4) (|:| -2534 (-576))))))) + (-4 *4 (-1265 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) +(((*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1201))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-784)) (-4 *4 (-317)) (-4 *6 (-1265 *4)) + (-5 *2 (-1289 (-657 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-657 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 (-449))))) - (-5 *1 (-1201))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1288 *5)) (-4 *5 (-317)) - (-4 *5 (-1070)) (-5 *2 (-701 *5)) (-5 *1 (-1050 *5))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1193 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1193 *3))))) + (-12 (-5 *3 (-1180)) (-5 *2 (-216 (-514))) (-5 *1 (-850))))) +(((*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-784)) (-4 *6 (-1122)) (-4 *3 (-918 *6)) + (-5 *2 (-702 *3)) (-5 *1 (-705 *6 *3 *7 *4)) (-4 *7 (-384 *3)) + (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4466))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-784))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1194 *3)) + (-4 *3 (-13 (-442 *6) (-27) (-1224))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) + (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1194 *3))) + (-4 *3 (-13 (-442 *6) (-27) (-1224))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) + (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122))))) (((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-194)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 (-1197))) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) - (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-940)) - (-14 *6 (-656 *2)) (-14 *7 (-1288 (-701 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) - (-14 *6 (-1288 (-701 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-1197))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-940)) (-14 *5 (-656 (-1197))) - (-14 *6 (-1288 (-701 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1197)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-940)) (-14 *5 (-656 *2)) (-14 *6 (-1288 (-701 *3))))) - ((*1 *1) - (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-940)) - (-14 *4 (-656 (-1197))) (-14 *5 (-1288 (-701 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-4 *3 (-917 *5)) (-5 *2 (-1288 *3)) - (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) + (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) - (-5 *2 (-1288 (-656 (-2 (|:| -1690 *4) (|:| -2411 (-1141)))))) - (-5 *1 (-357 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-12 (-4 *4 (-464)) (-5 *2 - (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) - (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) - (-14 *6 (-1197)) (-14 *7 *3)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-656 *1)) (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1201))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *1) (-5 *1 (-571)))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-576)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-940)))) + (-657 + (-2 (|:| |eigval| (-3 (-419 (-972 *4)) (-1187 (-1198) (-972 *4)))) + (|:| |geneigvec| (-657 (-702 (-419 (-972 *4)))))))) + (-5 *1 (-302 *4)) (-5 *3 (-702 (-419 (-972 *4))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1071)) (-5 *2 (-1289 *3)) (-5 *1 (-725 *3 *4)) + (-4 *4 (-1265 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1028))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-4 *1 (-923 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-784)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-941)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-158)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-158)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223))) + (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224))) (-5 *1 (-229 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) + (-12 (-5 *1 (-304 *2)) (-4 *2 (-1134)) (-4 *2 (-1239)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) + (-12 (-5 *1 (-304 *2)) (-4 *2 (-1134)) (-4 *2 (-1239)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1121)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1121)))) + (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-132)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1122)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)))) + (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-862)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) + (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-1122)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) - (-4 *6 (-243 (-1970 *3) (-783))) + (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) + (-4 *6 (-243 (-3437 *3) (-784))) (-14 *7 - (-1 (-112) (-2 (|:| -2411 *5) (|:| -4080 *6)) - (-2 (|:| -2411 *5) (|:| -4080 *6)))) - (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) - (-4 *2 (-968 *4 *6 (-878 *3))))) + (-1 (-112) (-2 (|:| -3146 *5) (|:| -2128 *6)) + (-2 (|:| -3146 *5) (|:| -2128 *6)))) + (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862)) + (-4 *2 (-969 *4 *6 (-879 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) + (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) + (-12 (-5 *2 (-1289 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) ((*1 *1 *1 *1) (-5 *1 (-548))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1134)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) - (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-696 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-697 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1070)) (-4 *2 (-384 *3)) + (-12 (-4 *1 (-700 *3 *2 *4)) (-4 *3 (-1071)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) + (-12 (-4 *1 (-700 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) + (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) + (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-732))) ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *1) (-4 *1 (-733))) ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-568)) - (-5 *1 (-990 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1 *1) (-4 *1 (-1133))) + (-12 (-5 *2 (-1289 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-568)) + (-5 *1 (-991 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1073 *2)) (-4 *2 (-1134)))) + ((*1 *1 *1 *1) (-4 *1 (-1134))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *2 (-243 *3 *4)) + (-12 (-4 *1 (-1145 *3 *4 *2 *5)) (-4 *4 (-1071)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1144 *3 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) + (-12 (-4 *1 (-1145 *3 *4 *5 *2)) (-4 *4 (-1071)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) - (-4 *2 (-968 *3 (-543 *4) *4)))) + (-12 (-4 *3 (-1071)) (-4 *4 (-862)) (-5 *1 (-1148 *3 *4 *2)) + (-4 *2 (-969 *3 (-543 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-962 (-227))) (-5 *3 (-227)) (-5 *1 (-1234)))) + (-12 (-5 *2 (-963 (-227))) (-5 *3 (-227)) (-5 *1 (-1235)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-738)))) + (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-739)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-738)))) + (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-739)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-21)))) + (-12 (-5 *2 (-576)) (-4 *1 (-1287 *3)) (-4 *3 (-1239)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) + (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) + (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1071)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858))))) + (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-859))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1239)) (-5 *1 (-888 *3 *2)) (-4 *3 (-1239)))) + ((*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-865))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1161)))) +(((*1 *1) (-4 *1 (-360))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-657 (-1194 *5))) + (|:| |prim| (-1194 *5)))) + (-5 *1 (-444 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-568) (-148))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1194 *3)) + (|:| |pol2| (-1194 *3)) (|:| |prim| (-1194 *3)))) + (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-972 *5)) (-5 *4 (-1198)) (-4 *5 (-13 (-374) (-148))) + (-5 *2 + (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) + (|:| |prim| (-1194 *5)))) + (-5 *1 (-980 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-657 (-1198))) + (-4 *5 (-13 (-374) (-148))) + (-5 *2 + (-2 (|:| -1735 (-657 (-576))) (|:| |poly| (-657 (-1194 *5))) + (|:| |prim| (-1194 *5)))) + (-5 *1 (-980 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-657 (-972 *6))) (-5 *4 (-657 (-1198))) (-5 *5 (-1198)) + (-4 *6 (-13 (-374) (-148))) + (-5 *2 + (-2 (|:| -1735 (-657 (-576))) (|:| |poly| (-657 (-1194 *6))) + (|:| |prim| (-1194 *6)))) + (-5 *1 (-980 *6))))) +(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1062))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-174)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-1310 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-1071))))) +(((*1 *1) (-5 *1 (-816)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1021 *3)) (-4 *3 (-174)) (-5 *1 (-812 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) + (-5 *1 (-761))))) (((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-697 *4 *5 *6)) (-4 *4 (-1122))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-764))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1060 *4)) (-4 *3 (-568))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-249 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-802)) (-5 *5 (-576))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-657 (-390))) (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1083 (-1046 *3) (-1194 (-1046 *3)))) + (-5 *1 (-1046 *3)) (-4 *3 (-13 (-861) (-374) (-1044)))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2) + (-12 (-5 *2 (-972 (-390))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-419 (-972 (-390)))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-972 (-576))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-419 (-972 (-576)))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1198)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 *2)) + (-14 *4 (-657 *2)) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) + (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))))) + ((*1 *1 *2) (-12 (-5 *2 (-702 (-419 (-972 (-576))))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-702 (-419 (-972 (-390))))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-702 (-972 (-576)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-702 (-972 (-390)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-702 (-326 (-576)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-702 (-326 (-390)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-576)))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-390)))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-972 (-576))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-972 (-390))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-1289 (-419 (-972 (-576))))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1289 (-419 (-972 (-390))))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1289 (-972 (-576)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1289 (-972 (-390)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1289 (-326 (-576)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1289 (-326 (-390)))) (-4 *1 (-453)))) + ((*1 *2 *1) (-12 - (-5 *3 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| |mdnia| + (-2 (|:| |fn| (-326 (-227))) + (|:| -3936 (-657 (-1116 (-856 (-227))))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) + (-5 *1 (-782)))) + ((*1 *2 *1) + (-12 + (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) + (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) - (-4 *3 (-1264 (-419 *4)))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *3 (-1264 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) - (-4 *5 (-668 (-419 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 *5)) - (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-1264 *4)) - (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34))) - (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *4 *5))))) -(((*1 *2) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1264 *4)) - (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) - (-5 *5 (-112)) (-5 *2 (-1290)) (-5 *1 (-264))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070))))) -(((*1 *2 *1) + (-5 *1 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 - (-1288 - (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2729 (-576)) - (|:| -3204 (-576)) (|:| |spline| (-576)) (|:| -2792 (-576)) - (|:| |axesColor| (-888)) (|:| -3479 (-576)) - (|:| |unitsColor| (-888)) (|:| |showing| (-576))))) - (-5 *1 (-1289))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *1)))) - (-4 *1 (-1092 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-317)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1121)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2675 (-783)) (|:| -3561 (-783)))) - (-5 *1 (-783)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) + (|:| |lb| (-657 (-856 (-227)))) + (|:| |cf| (-657 (-326 (-227)))) + (|:| |ub| (-657 (-856 (-227)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-657 (-326 (-227)))) + (|:| -1679 (-657 (-227))))))) + (-5 *1 (-854)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |pde| (-657 (-326 (-227)))) + (|:| |constraints| + (-657 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-784)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) + (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) + (|:| |tol| (-227)))) + (-5 *1 (-916)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-1071)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *1 (-998 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2) + (-2748 + (-12 (-5 *2 (-972 *3)) + (-12 (-2665 (-4 *3 (-38 (-419 (-576))))) + (-2665 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1198)))) + (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) + (-4 *5 (-862))) + (-12 (-5 *2 (-972 *3)) + (-12 (-2665 (-4 *3 (-557))) (-2665 (-4 *3 (-38 (-419 (-576))))) + (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) + (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) + (-4 *5 (-862))) + (-12 (-5 *2 (-972 *3)) + (-12 (-2665 (-4 *3 (-1014 (-576)))) (-4 *3 (-38 (-419 (-576)))) + (-4 *5 (-626 (-1198)))) + (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) + (-4 *5 (-862))))) + ((*1 *1 *2) + (-2748 + (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) + (-12 (-2665 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) + (-4 *5 (-626 (-1198)))) + (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))) + (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) + (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) + ((*1 *1 *2) + (-12 (-5 *2 (-972 (-419 (-576)))) (-4 *1 (-1087 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198))) (-4 *3 (-1071)) + (-4 *4 (-806)) (-4 *5 (-862))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) + (-5 *2 (-832 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-859)) (-5 *1 (-1312 *3 *2)) (-4 *3 (-1071))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1265 (-576))) (-5 *1 (-498 *3))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-941)) (-5 *1 (-712)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-702 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-374)) (-5 *1 (-1000 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-657 (-326 (-227)))) + (|:| |constraints| + (-657 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-784)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) + (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) + (|:| |tol| (-227)))) + (-5 *2 (-112)) (-5 *1 (-212))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1265 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))) + (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-286 *4 *2))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34)))))) + (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-657 (-657 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-657 (-657 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-657 (-657 *3))) (-5 *1 (-1210 *3)) (-4 *3 (-1122))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) - (-5 *2 (-112)) (-5 *1 (-1008 *3 *4 *5 *6)) - (-4 *6 (-968 *3 *5 *4)))) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) + (-5 *2 (-657 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1021 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1059 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-442 *3)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1193 *4)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1070)) (-4 *1 (-312)))) - ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1193 *3)))) - ((*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) + (-12 (-5 *2 (-657 (-2 (|:| |k| (-909 *3)) (|:| |c| *4)))) + (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) ((*1 *2 *1) - (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) - (-4 *2 (-1264 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3972 (-576)) (|:| -3497 (-656 *3)))) - (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2) - (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1121))))) + (-12 (-5 *2 (-657 (-685 *3))) (-5 *1 (-909 *3)) (-4 *3 (-862))))) +(((*1 *2 *1) + (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-5 *2 (-1180))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) - (-4 *4 (-1264 *3)) - (-5 *2 - (-2 (|:| -2704 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-464)) (-5 *2 (-112)) + (-5 *1 (-371 *4 *5)) (-14 *5 (-657 (-1198))))) ((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-1264 *3)) - (-5 *2 - (-2 (|:| -2704 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) - (-5 *2 - (-2 (|:| -2704 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-1006 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) - (-5 *2 - (-2 (|:| -2704 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-1297 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) - ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244))) - ((*1 *1 *1 *1) (-5 *1 (-1245))) ((*1 *1 *1 *1) (-5 *1 (-1246)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-240 *3)) - (-4 *3 (-1121)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-240 *2)) (-4 *2 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) - (-5 *1 (-749 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-390)) (-5 *1 (-1084))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1061))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-879)))))) -(((*1 *1 *1 *1) (-4 *1 (-988)))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-145)))) - ((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-786)) (-5 *1 (-115))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) - ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244))) - ((*1 *1 *1 *1) (-5 *1 (-1245))) ((*1 *1 *1 *1) (-5 *1 (-1246)))) + (-12 (-5 *3 (-657 (-793 *4 (-879 *5)))) (-4 *4 (-464)) + (-14 *5 (-657 (-1198))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1179 *2)) (-4 *2 (-1239))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) + (-5 *2 (-2 (|:| -1735 *1) (|:| |gap| (-784)) (|:| -3951 *1))) + (-4 *1 (-1087 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *2 (-2 (|:| -1735 *1) (|:| |gap| (-784)) (|:| -3951 *1))) + (-4 *1 (-1087 *3 *4 *5))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1180)) (-5 *3 (-576)) (-5 *1 (-1085))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) + (-4 *6 (-806)) (-5 *2 (-657 *3)) (-5 *1 (-944 *4 *5 *6 *3)) + (-4 *3 (-969 *4 *6 *5))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1180)) (-5 *5 (-702 (-227))) (-5 *6 (-702 (-576))) + (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-770))))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-856 (-227)))) (-5 *4 (-227)) (-5 *2 (-657 *4)) + (-5 *1 (-276))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) + (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1224)))) + ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-449)) (-5 *1 (-1201))))) + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) + (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-844))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1121)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1121)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) - (-5 *1 (-114 *4)))) + (-12 (-5 *3 (-1289 (-657 (-2 (|:| -3037 *4) (|:| -3146 (-1142)))))) + (-4 *4 (-360)) (-5 *2 (-1294)) (-5 *1 (-540 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) + ((*1 *2 *3) (-12 (-5 *3 (-993)) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) +(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) - (-5 *1 (-114 *4)) (-4 *4 (-1121)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) - (-5 *1 (-726 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2))))) + (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-112)) + (-5 *1 (-368 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) - (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *2 (-1289 (-326 (-390)))) + (-5 *1 (-315))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321)))) + ((*1 *2 *1) + (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-1071))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)) - (-5 *1 (-1198 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-5 *2 (-1288 *3)) (-5 *1 (-1198 *3)) - (-4 *3 (-1070))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) + (-12 (-5 *2 (-657 (-702 *3))) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-657 (-702 *3))) (-4 *3 (-1071)) (-5 *1 (-1050 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-103 *3))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-941)) (-4 *5 (-317)) (-4 *3 (-1265 *5)) + (-5 *2 (-2 (|:| |plist| (-657 *3)) (|:| |modulo| *5))) + (-5 *1 (-472 *5 *3)) (-5 *4 (-657 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 - (-3 (|:| |overq| (-1193 (-419 (-576)))) - (|:| |overan| (-1193 (-48))) (|:| -2532 (-112)))) - (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1121) (-34))) - (-5 *2 (-112)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-13 (-1121) (-34)))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *2 (-1233 (-945))) - (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1115 (-227))) (-5 *6 (-576)) (-5 *7 (-1179)) - (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) - (-5 *2 (-1233 (-945))) (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1115 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1179)) - (-5 *2 (-1233 (-945))) (-5 *1 (-328))))) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1465 *4))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1239 *2)) - (-4 *2 (-1121)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-861)) - (-5 *1 (-1239 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1082 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) + (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-317) (-148))) - (-4 *2 (-968 *4 *6 *5)) (-5 *1 (-943 *4 *5 *6 *2)) - (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805))))) + (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1265 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-704 (-1157))) (-5 *1 (-1173))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) + (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) + (-4 *2 (-700 *3 *4 *5))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1198)) (-5 *3 (-446)) (-4 *5 (-1122)) + (-5 *1 (-1128 *5 *4)) (-4 *4 (-442 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 (-656 (-2 (|:| -1690 *4) (|:| -2411 (-1141)))))) - (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) - (-14 *4 (-940)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) - (-14 *4 - (-3 (-1193 *3) - (-1288 (-656 (-2 (|:| -1690 *3) (|:| -2411 (-1141))))))))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-940))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) - (-4 *2 (-1121))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1238)) - (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) + (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-842)) (-5 *3 (-1180))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) (-5 *3 (-227)) + (-5 *2 (-1057)) (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-5 *3 (-784)) (-4 *4 (-374)) (-4 *5 (-1265 *4)) (-5 *2 (-1294)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1265 (-419 *5))) (-14 *7 *6)))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-768))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1239)) + (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) + (-4 *5 (-384 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1239)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1239)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *7 *2)) (-4 *6 (-1070)) - (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1070)) (-4 *3 (-1121)) - (-5 *2 (-2 (|:| |val| *1) (|:| -4080 (-576)))) (-4 *1 (-442 *3)))) + (-12 (-5 *3 (-657 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 (-576)) (-14 *5 (-784)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-784)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-784)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-784)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -4080 (-907 *3)))) - (-5 *1 (-907 *3)) (-4 *3 (-1121)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-968 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -4080 (-576)))) - (-5 *1 (-969 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) - (-15 -2697 (*7 $)))))))) + (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) + (-14 *4 (-784)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1198)) (-5 *2 (-250 (-1180))) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-862) + (-10 -8 (-15 -2780 ((-1180) $ *3)) (-15 -2011 ((-1294) $)) + (-15 -2884 ((-1294) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1011)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-862) + (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 ((-1294) $)) + (-15 -2884 ((-1294) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-784)) (-5 *1 (-250 *4)) (-4 *4 (-862)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-862)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-862)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1239)) (-4 *2 (-1239)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-657 *1)) (-4 *1 (-312)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1243)) (-4 *3 (-1265 *2)) + (-4 *4 (-1265 (-419 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1180)) (-5 *1 (-514)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-784)) (-5 *1 (-688 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-657 (-576))) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-657 (-908 *4))) (-5 *1 (-908 *4)) + (-4 *4 (-1122)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-925 *4)) (-5 *1 (-924 *4)) + (-4 *4 (-1122)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-1032 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *2 *6 *7)) (-4 *2 (-1071)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *2 *6 *7)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1071)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-941)) (-4 *4 (-1122)) + (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) + (-5 *1 (-1098 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-941)) (-4 *4 (-1122)) + (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) + (-5 *1 (-1099 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1166))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-419 *1)) (-4 *1 (-1265 *2)) (-4 *2 (-1071)) + (-4 *2 (-374)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-419 *1)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)) + (-4 *3 (-568)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "rest") (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1452 (-1193 *6)) (|:| -4080 (-576))))) - (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070))))) -(((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-940)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-845 (-940))) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) - ((*1 *2) - (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-876)) (-5 *1 (-1178 *3)) (-4 *3 (-1121)) - (-4 *3 (-1238))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (-4 *2 (-1070))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) - (-5 *2 (-419 (-576)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-763))))) + (-12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 (-576)))) + (-5 *2 (-112)) (-5 *1 (-1317 *4))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-657 *11)) (-5 *5 (-657 (-1194 *9))) + (-5 *6 (-657 *9)) (-5 *7 (-657 *12)) (-5 *8 (-657 (-784))) + (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-969 *9 *10 *11)) + (-4 *10 (-806)) (-5 *2 (-657 (-1194 *12))) + (-5 *1 (-720 *10 *11 *9 *12)) (-5 *3 (-1194 *12))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-561)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-861))) + (-5 *2 (-657 (-2 (|:| -1502 (-657 *3)) (|:| -3235 *5)))) + (-5 *1 (-183 *5 *3)) (-4 *3 (-1265 (-171 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-374) (-861))) + (-5 *2 (-657 (-2 (|:| -1502 (-657 *3)) (|:| -3235 *4)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4)))))) +(((*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862)) + (-4 *3 (-13 (-174) (-730 (-419 (-576))))) (-14 *4 (-941)))) + ((*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071))))) (((*1 *2 *3) - (-12 (-4 *1 (-912)) - (-5 *3 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) - (|:| |tol| (-227)))) - (-5 *2 (-1056))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1121)) - (-4 *4 (-1121)))) - ((*1 *1 *2) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-997 *4 *5 *3 *6)) (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-971 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) - (|:| -2704 (-656 (-1288 (-419 (-971 *5)))))))))) - (-5 *4 (-1179)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-968 *5 *7 *6)) - (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-576)) - (-5 *1 (-943 *5 *6 *7 *8))))) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-784)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-464)) (-4 *4 (-833)) + (-14 *5 (-1198)) (-5 *2 (-576)) (-5 *1 (-1136 *4 *5))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *3 (-568))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) - (-14 *4 (-940))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1141)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1059 (-576)))) - (-4 *7 (-1264 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) - (-4 *2 (-353 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 *2)) + (-5 *2 (-390)) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) + (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) + (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) + (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) + (-5 *1 (-798 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *1 *1) (-4 *1 (-1165)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) + (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1265 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-856 *3)) (-4 *3 (-1122))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)) (-4 *5 (-1087 *3 *4 *2))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-669 *3)) (-4 *3 (-1071)) (-4 *3 (-374)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-784)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) + (-5 *1 (-672 *5 *2)) (-4 *2 (-669 *5))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1274 *4 *5 *6)) + (|:| |%expon| (-329 *4 *5 *6)) + (|:| |%expTerms| + (-657 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) + (|:| |%type| (-1180)))) + (-5 *1 (-1275 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-442 *3))) + (-14 *5 (-1198)) (-14 *6 *4)))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-518)) (-5 *3 (-1126)) (-5 *1 (-301))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) - (-5 *1 (-1196))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-984))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115))))) + (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) + (-5 *1 (-1197))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-889)) + (-5 *5 (-941)) (-5 *6 (-657 (-270))) (-5 *2 (-480)) (-5 *1 (-1293)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *2 (-480)) + (-5 *1 (-1293)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-657 (-270))) + (-5 *2 (-480)) (-5 *1 (-1293))))) +(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-1186 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-1291)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-1291))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1239)) (-5 *2 (-657 *1)) (-4 *1 (-1032 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1265 *6)) + (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)))) + (-4 *8 (-1265 (-419 *7))) (-5 *2 (-598 *3)) + (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) (((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-120 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-701 (-971 *4))) (-5 *1 (-1049 *4)) - (-4 *4 (-1070))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) - (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1291))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-249 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-905 *4 *3)) + (-4 *3 (-1122))))) (((*1 *2 *2) - (-12 (-4 *3 (-1264 (-419 (-576)))) (-5 *1 (-932 *3 *2)) - (-4 *2 (-1264 (-419 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *2 (-1293)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) + (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) - (-5 *1 (-1196))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) - (-5 *1 (-1239 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) - (-5 *1 (-1239 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) + (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) + (-5 *1 (-1197))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-750 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1122)))) + ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1122))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) + ((*1 *1 *1) (-5 *1 (-877)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *6)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) - (-5 *2 (-2 (|:| -4080 (-783)) (|:| -2862 *3) (|:| |radicand| *6))) - (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1264 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) - (-14 *4 (-656 (-1197))))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-462 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-462 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) - (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-1301 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1301 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-940)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-940)) - (-5 *1 (-540 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *1) (-5 *1 (-1196))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) - (-5 *1 (-1196))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-804))))) -(((*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1690 *4) (|:| -2028 (-576))))) - (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-940)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-374)) (-14 *5 (-1014 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1193 (-1193 *4)))) - (-5 *1 (-1236 *4)) (-5 *3 (-1193 (-1193 *4)))))) + (-12 (-5 *3 (-657 *5)) (-5 *4 (-941)) (-4 *5 (-862)) + (-5 *2 (-59 (-657 (-685 *5)))) (-5 *1 (-685 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-657 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *1) - (-12 (-4 *1 (-416)) (-2299 (|has| *1 (-6 -4455))) - (-2299 (|has| *1 (-6 -4447))))) - ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861)))) - ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-864))) - ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-971 (-576))))) (-5 *2 (-656 (-326 (-576)))) - (-5 *1 (-1052))))) -(((*1 *2 *3) - (-12 (-5 *3 (-419 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-568)) - (-4 *4 (-1070)) (-4 *2 (-1279 *4)) (-5 *1 (-1282 *4 *5 *6 *2)) - (-4 *6 (-668 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) - (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) + (-12 (-4 *4 (-929)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-430 (-1194 *7))) + (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-940))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-907 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1121)) - (-4 *5 (-1238)) (-5 *1 (-905 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-907 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1121)) - (-4 *5 (-1238)) (-5 *1 (-905 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-907 *5)) (-5 *3 (-656 (-1197))) - (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1121)) (-4 *6 (-1238)) - (-5 *1 (-905 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1238)) (-4 *4 (-1121)) - (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-442 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1238)) (-4 *4 (-1121)) - (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-442 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1238)) - (-5 *2 (-326 (-576))) (-5 *1 (-957 *5)))) + (-12 (-4 *4 (-929)) (-4 *5 (-1265 *4)) (-5 *2 (-430 (-1194 *5))) + (-5 *1 (-927 *4 *5)) (-5 *3 (-1194 *5))))) +(((*1 *1) (-5 *1 (-590))) + ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-878)))) + ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-878)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1238)) - (-5 *2 (-326 (-576))) (-5 *1 (-957 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1 (-112) (-656 *6))) - (-4 *6 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) (-4 *4 (-1121)) - (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) - (-5 *1 (-1097 *4 *5 *6))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121)))) - ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1121))))) + (-12 (-5 *3 (-1180)) (-5 *4 (-877)) (-5 *2 (-1294)) (-5 *1 (-878)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1179 *4)) + (-4 *4 (-1122)) (-4 *4 (-1239))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1314))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) - (-4 *6 (-13 (-568) (-1059 *5))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *6)))))) (-5 *1 (-1060 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298))))) -(((*1 *2 *1 *1) + (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) + (-5 *1 (-342))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1180) (-787))) (-5 *1 (-115))))) +(((*1 *1 *1) (-5 *1 (-1197))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2862 *3) (|:| |gap| (-783)) (|:| -2675 (-794 *3)) - (|:| -3561 (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) - (-5 *2 - (-2 (|:| -2862 *1) (|:| |gap| (-783)) (|:| -2675 *1) - (|:| -3561 *1))) - (-4 *1 (-1086 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 - (-2 (|:| -2862 *1) (|:| |gap| (-783)) (|:| -2675 *1) - (|:| -3561 *1))) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-832)) (-14 *5 (-1197)) (-5 *2 (-656 (-1261 *5 *4))) - (-5 *1 (-1135 *4 *5)) (-5 *3 (-1261 *5 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2970 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-875)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-875))))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1291))))) -(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -2113 *7) (|:| |sol?| (-112))) - (-576) *7)) - (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) - (-5 *3 (-419 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-586 *7 *8))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-390)))) (-5 *2 (-1115 (-855 (-227)))) - (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1115 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1115 (-227)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1121)) (-4 *4 (-1238)) (-5 *2 (-112)) - (-5 *1 (-1178 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-1193 *6)) - (-5 *1 (-331 *4 *5 *6 *7))))) + (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) + (-5 *1 (-1197))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) + ((*1 *1 *1 *1) (-4 *1 (-557))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) + ((*1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-784))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) - (-5 *1 (-1181 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-2 (|:| -3562 (-1178 *4)) (|:| -3574 (-1178 *4)))) - (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-1097 *3 *4 *5))) (-4 *3 (-1121)) - (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) - (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) - (-5 *1 (-1098 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1264 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) - (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) - (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-940)) - (-4 *2 (-1121))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-759))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) - (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1790 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *3 (-657 (-576))) + (-5 *1 (-899))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) + (-4 *4 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-702 *2)) (-5 *4 (-784)) + (-4 *2 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) + (-4 *5 (-1265 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) - (-4 *4 (-1070))))) -(((*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876)))))) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1294)) + (-5 *1 (-461 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) + (-12 (-4 *4 (-862)) (-5 *2 (-657 (-657 (-657 *4)))) + (-5 *1 (-1209 *4)) (-5 *3 (-657 (-657 *4)))))) +(((*1 *2 *1) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239))))) +(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-317)) - (-4 *9 (-968 *8 *6 *7)) - (-5 *2 (-2 (|:| -2571 (-1193 *9)) (|:| |polval| (-1193 *8)))) - (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9)) (-5 *4 (-1193 *8))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1223) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) (-4 *5 (-148)) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) - (-5 *1 (-601 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-374) (-148))) - (-5 *2 (-656 (-2 (|:| -4080 (-783)) (|:| -3188 *4) (|:| |num| *4)))) - (-5 *1 (-411 *3 *4)) (-4 *4 (-1264 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) - (-4 *5 (-384 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-1121)) (-5 *1 (-215 *4 *2)) - (-14 *4 (-940)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1238)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1070))))) -(((*1 *1) (-5 *1 (-480)))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-430 *4)) (-4 *4 (-568))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1197))) - (-4 *4 (-464)) (-5 *1 (-643 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-1114 *3)) (-4 *3 (-1238))))) -(((*1 *2) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783))))) -(((*1 *1) (-4 *1 (-360))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1193 *5))) - (|:| |prim| (-1193 *5)))) - (-5 *1 (-444 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-568) (-148))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1193 *3)) - (|:| |pol2| (-1193 *3)) (|:| |prim| (-1193 *3)))) - (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-971 *5)) (-5 *4 (-1197)) (-4 *5 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) - (|:| |prim| (-1193 *5)))) - (-5 *1 (-979 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) - (-4 *5 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| -2862 (-656 (-576))) (|:| |poly| (-656 (-1193 *5))) - (|:| |prim| (-1193 *5)))) - (-5 *1 (-979 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-5 *5 (-1197)) - (-4 *6 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| -2862 (-656 (-576))) (|:| |poly| (-656 (-1193 *6))) - (|:| |prim| (-1193 *6)))) - (-5 *1 (-979 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1121))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-831 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1070))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-5 *2 (-1179))))) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1087 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-806)) + (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1425 (-657 *9)))) + (-5 *3 (-657 *9)) (-4 *1 (-1232 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -1425 (-657 *8)))) + (-5 *3 (-657 *8)) (-4 *1 (-1232 *5 *6 *7 *8))))) +(((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-4 *1 (-735))) + ((*1 *1) (-4 *1 (-739))) + ((*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) + ((*1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-862))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1122))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) - (-5 *1 (-276))))) + (-12 (-4 *5 (-568)) + (-5 *2 (-2 (|:| -3962 (-702 *5)) (|:| |vec| (-1289 (-657 (-941)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-941)) (-4 *3 (-669 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2 *3) (-12 (-5 *3 (-992)) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1193 *9))) - (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) - (-4 *11 (-861)) (-4 *9 (-317)) (-4 *12 (-968 *9 *10 *11)) - (-4 *10 (-805)) (-5 *2 (-656 (-1193 *12))) - (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1193 *12))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) - ((*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) + (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-624 *3)) (-5 *5 (-1194 *3)) + (-4 *3 (-13 (-442 *6) (-27) (-1224))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1194 *3))) + (-4 *3 (-13 (-442 *6) (-27) (-1224))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-861)) (-4 *5 (-626 *2)) (-5 *2 (-390)) - (-5 *1 (-797 *5))))) + (-12 (-5 *3 (-702 (-326 (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) + (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-548))) + ((*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-1185 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1290))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) - (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *3 (-656 (-576))) - (-5 *1 (-898))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) - (-4 *4 (-1121)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-52))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) + (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 *2))) + (-5 *2 (-908 *3)) (-5 *1 (-1098 *3 *4 *5)) + (-4 *5 (-13 (-442 *4) (-902 *3) (-626 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861)))) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *2) (-12 (-5 *1 (-981 *2)) (-4 *2 (-557))))) +(((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-974))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-1244)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-115))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-518)) (-4 *4 (-1122)) (-5 *1 (-949 *4 *2)) + (-4 *2 (-442 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1198)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) + (-5 *1 (-950))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-374)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -2190)) (-5 *2 (-112)) (-5 *1 (-629)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3824)) (-5 *2 (-112)) (-5 *1 (-629)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3447)) (-5 *2 (-112)) (-5 *1 (-629)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -1408)) (-5 *2 (-112)) (-5 *1 (-704 *4)) + (-4 *4 (-625 (-877))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-877))) (-5 *2 (-112)) + (-5 *1 (-704 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)) (-5 *1 (-891)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-891)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1118))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-992))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1058))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-684))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1173))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1300))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-694))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-689))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)) (-5 *1 (-1203)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1203)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1203)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1203))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-451)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-851)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1137)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-657 (-1203))) (-5 *3 (-1203)) (-5 *1 (-1140))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1238)))) + (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1239)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -2240 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| -4286 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -2905 + (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -4779,10 +9902,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1178 (-227))) + (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1848 + (|:| -3936 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -4792,13509 +9915,8392 @@ (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1121)))) + (-12 (-5 *3 (-784)) (-4 *1 (-708 *2)) (-4 *2 (-1122)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -2240 + (|:| -4286 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) + (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -2905 + (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) - (-5 *1 (-815)))) + (-5 *1 (-816)))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-1070)) (-4 *2 (-1264 *4)) - (-5 *1 (-456 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-419 (-1193 (-326 *5)))) (-5 *3 (-1288 (-326 *5))) - (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1151 *5))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1123 (-783))) (-5 *6 (-783)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -3497 (-656 (-2 (|:| |irr| *3) (|:| -3172 (-576))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-833))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| -4135 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *8))))) - (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-783))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-940) (-940)))) (-5 *1 (-992))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 *2)))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121)))) - ((*1 *2 *3) - (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1))))) + (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-1122))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) - (-5 *1 (-770))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3) - (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-656 *5)) - (-5 *1 (-905 *4 *5)) (-4 *5 (-1238))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) - (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) - (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) + (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) + (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1167 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-656 *7) *7 (-1193 *7))) (-5 *5 (-1 (-430 *7) *7)) - (-4 *7 (-1264 *6)) (-4 *6 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -3379 *3)))) - (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) - (-4 *8 (-668 (-419 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *7)) (-4 *7 (-862)) + (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-5 *2 - (-656 (-2 (|:| |frac| (-419 *6)) (|:| -3379 (-666 *6 (-419 *6)))))) - (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1279 *4)) - (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-1 (-1178 *4) (-656 (-1178 *4)))) (-5 *1 (-1281 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-717 *3 *4)) (-4 *3 (-1238)) (-4 *4 (-1238))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1056)) (-5 *1 (-766))))) + (-2 (|:| |particular| (-3 (-1289 (-419 *8)) "failed")) + (|:| -2469 (-657 (-1289 (-419 *8)))))) + (-5 *1 (-682 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) - (-5 *1 (-924 *3)) (-4 *3 (-1121))))) -(((*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-403))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-764))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1238)) (-5 *2 (-1293))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-992))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-995))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)))) - ((*1 *1) (-4 *1 (-1173)))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-764))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-656 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) - (-5 *1 (-1208 *6)) (-5 *5 (-656 *4))))) + (-12 (-5 *2 (-877)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-784)) + (-14 *4 (-784)) (-4 *5 (-174))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-656 (-1197))) (|:| |pred| (-52)))) - (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) + (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-760))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-657 *3)) + (-4 *3 (-13 (-442 *6) (-27) (-1224))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1122))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1070)) - (-5 *1 (-1181 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *3 *1) (-12 (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -1995 (-783)) (|:| |period| (-783)))) - (-5 *1 (-1178 *4)) (-4 *4 (-1238)) (-5 *3 (-783))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1193 *7)) (-4 *5 (-1070)) - (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) - (-4 *6 (-1264 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) - (-4 *4 (-1264 *5)) (-5 *2 (-1193 *7)) (-5 *1 (-513 *5 *4 *6 *7)) - (-4 *6 (-1264 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-4 *4 (-1121)) - (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1197))) - (-5 *2 - (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) - (-5 *1 (-640 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) - (-5 *1 (-1145 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1234))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1178 *3))) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1070))))) + (-657 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-806)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) + (-5 *1 (-461 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) + ((*1 *1 *1 *1) (-5 *1 (-1142)))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1291))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-112)) - (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1059 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-913 *2 *4)) - (-4 *2 (-1264 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) - (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| -4291 (-419 *5)) (|:| |coeff| (-419 *5)))) - (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1056))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-962 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *3)) - (-4 *3 (-1238)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1231 *4 *5 *3 *2)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *3 (-861)) (-4 *2 (-1086 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *1 (-1235 *2)) (-4 *2 (-1238))))) + (-12 (-5 *3 (-1289 *4)) (-4 *4 (-1071)) (-4 *2 (-1265 *4)) + (-5 *1 (-456 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-419 (-1194 (-326 *5)))) (-5 *3 (-1289 (-326 *5))) + (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1152 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2970 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) - (-5 *2 (-1056)) (-5 *1 (-760))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-5 *2 (-1193 *3)) (-5 *1 (-1212 *3)) - (-4 *3 (-374))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) -(((*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-734)))) -(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-317)) - (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 *7))) - (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-430 *1)) (-4 *1 (-968 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) - (-5 *1 (-1000 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) - (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) - (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1267 *4 *3)) - (-4 *3 (-13 (-1264 *4) (-568) (-10 -8 (-15 -3115 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-14 *5 (-656 (-1197))) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 - (-656 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6))))) - (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-4 *3 (-568))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-1121)) - (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *2) - (-12 + (-657 + (-2 (|:| |eqzro| (-657 *7)) (|:| |neqzro| (-657 *7)) + (|:| |wcond| (-657 (-972 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) + (|:| -2469 (-657 (-1289 (-419 (-972 *4)))))))))) + (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1034)) (-5 *2 (-877))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-337 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-528 *3 *4)) + (-14 *4 (-576))))) +(((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) + (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) + (-5 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) + (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) + (-5 *1 (-1130 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-249 *2)) (-4 *2 (-1239))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1124 (-784))) (-5 *6 (-784)) (-5 *2 - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *1 (-276))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1121) (-1059 *5))) - (-4 *5 (-901 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-950 *4 *5 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-866 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-867 *5 *3)) - (-4 *3 (-866 *5))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-768))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) + (-2 (|:| |contp| (-576)) + (|:| -1502 (-657 (-2 (|:| |irr| *3) (|:| -2534 (-576))))))) + (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1256 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1239))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-5 *1 (-449))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) + (|partial| -12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1071)) + (-4 *2 (-1249 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) + ((*1 *1 *1) (-4 *1 (-1082)))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-880 *4 *5 *6 *7)) - (-4 *4 (-1070)) (-14 *5 (-656 (-1197))) (-14 *6 (-656 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) - (-14 *8 (-656 *5)) (-5 *2 (-1293)) - (-5 *1 (-1300 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-968 *4 *6 *5)) - (-14 *9 (-656 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172))))) -(((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-783))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-861))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) - (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1070)))) - ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1223))) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) - (-5 *1 (-595 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-419 (-971 *4)))) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1170 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) - (-4 *2 (-1170 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1303 (-1197) *3)) (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1070))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) - (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3379 *3)))) - (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) - (-4 *7 (-668 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *6 (-1264 *5)) - (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3379 (-666 *6 (-419 *6)))))) - (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-764))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) - (-5 *1 (-315))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) + (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1280 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1288 *5))) (-5 *4 (-576)) (-5 *2 (-1288 *5)) - (-5 *1 (-1050 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-1193 *4)) - (-4 *4 (-13 (-442 *7) (-27) (-1223))) - (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1193 *4))) - (-4 *4 (-13 (-442 *7) (-27) (-1223))) - (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121))))) -(((*1 *1 *1) (|partial| -4 *1 (-1173)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448))))) -(((*1 *2 *1) - (-12 + (-12 (-4 *1 (-998 *4 *5 *6 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) + (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1198)) (-5 *6 (-657 (-624 *3))) + (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *7))) + (-4 *7 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) + (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) + (-5 *1 (-569 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-923 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *8 (-1087 *5 *6 *7)) (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-340))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) - ((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) -(((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-2 (|:| |val| (-657 *8)) + (|:| |towers| (-657 (-1049 *5 *6 *7 *8))))) + (-5 *1 (-1049 *5 *6 *7 *8)) (-5 *3 (-657 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *8 (-1087 *5 *6 *7)) (-5 *2 - (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1264 *4)) - (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1070)) (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1121)) (-5 *2 (-783))))) -(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1238)) - (-4 *3 (-1121)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) - (-5 *2 (-576)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) - (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-541)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576)) (-5 *3 (-142)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-576))))) + (-2 (|:| |val| (-657 *8)) + (|:| |towers| (-657 (-1168 *5 *6 *7 *8))))) + (-5 *1 (-1168 *5 *6 *7 *8)) (-5 *3 (-657 *8))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1197)) - (|:| |arrayIndex| (-656 (-971 (-576)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -1617 (-876)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) - (|:| |ints2Floats?| (-112)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1196)) (|:| |thenClause| (-340)) - (|:| |elseClause| (-340)))) - (|:| |returnBranch| - (-2 (|:| -3617 (-112)) - (|:| -1690 - (-2 (|:| |ints2Floats?| (-112)) (|:| -1617 (-876)))))) - (|:| |blockBranch| (-656 (-340))) - (|:| |commentBranch| (-656 (-1179))) (|:| |callBranch| (-1179)) - (|:| |forBranch| - (-2 (|:| -1848 (-1113 (-971 (-576)))) - (|:| |span| (-971 (-576))) (|:| -4159 (-340)))) - (|:| |labelBranch| (-1141)) - (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -4159 (-340)))) - (|:| |commonBranch| - (-2 (|:| -4149 (-1197)) (|:| |contents| (-656 (-1197))))) - (|:| |printBranch| (-656 (-876))))) - (-5 *1 (-340))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-317)) - (-5 *2 (-783)) (-5 *1 (-467 *5 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1165)))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130)))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1288 (-656 (-576)))) (-5 *1 (-492)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-771))))) -(((*1 *2 *3) - (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) - (-4 *3 (-568)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) - (-4 *3 (-1121)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) - (-4 *3 (-1121)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) - (-4 *3 (-1059 *2))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) - (|:| -2704 (-656 (-1288 (-419 (-971 *4))))))) - (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) - (-4 *7 (-968 *4 *6 *5)) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-384 *2)) (-4 *2 (-1238)) - (-4 *2 (-861)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4465)) - (-4 *1 (-384 *3)) (-4 *3 (-1238))))) + (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) +(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1289 *1)) (-4 *1 (-378 *3))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1265 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-861)) - (-4 *5 (-805)) (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) - (-5 *2 (-253 *4 *5)) (-5 *1 (-963 *4 *5))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-885 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-14 *2 (-576)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-886 *3 *4)) - (-4 *4 (-883 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-576)) (-5 *1 (-886 *2 *3)) (-4 *3 (-883 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-1279 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1250 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1279 *2))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3890 (-656 *3)) (|:| -2699 (-656 *3)))) - (-5 *1 (-1239 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-451)))) - ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-1136)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1202))) (-5 *3 (-1202)) (-5 *1 (-1139))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *1 *1 *1) (-5 *1 (-390))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-317)) - (-5 *2 (-419 (-430 (-971 *4)))) (-5 *1 (-1063 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *5 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $))))) (-4 *6 (-568)) - (-5 *2 (-2 (|:| -2214 (-971 *6)) (|:| -2130 (-971 *6)))) - (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-971 *6)) *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *6 (-1264 *5)) - (-5 *2 (-656 (-2 (|:| -2666 *5) (|:| -3379 *3)))) - (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) - (-4 *7 (-668 (-419 *6)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1121))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-173)))))) -(((*1 *1) (-5 *1 (-158)))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2156 (-576))))) - (-5 *1 (-372 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) - (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) - (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2156 (-783))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -1452 *3) (|:| -4080 (-576))))) - (-5 *1 (-430 *3)) (-4 *3 (-568))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-4 *3 (-568))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) + (-12 (-5 *2 (-576)) (-4 *1 (-1115 *3)) (-4 *3 (-1239))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1264 *6)) - (-4 *6 (-13 (-374) (-148) (-1059 *4))) (-5 *4 (-576)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3379 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1036 *6 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) - (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) - (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1070)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1144 *2 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-1208 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-676 *4 *5))) - (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) - (-14 *6 (-940))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-1197)) (|:| |c| (-1310 *3))))) - (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1312 *3 *4))))) - (-5 *1 (-1312 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1264 *2)) (-4 *2 (-1264 *4)) - (-5 *1 (-1006 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1123 *3)) (-5 *1 (-924 *3)) (-4 *3 (-379)) - (-4 *3 (-1121))))) -(((*1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *2 *3) - (-12 (-4 *2 (-1264 *4)) (-5 *1 (-821 *4 *2 *3 *5)) - (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *5 (-668 (-419 *2)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) - (-4 *4 (-275 *3)) (-4 *5 (-805))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1056)) (-5 *1 (-763))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) - ((*1 *1 *1) (-5 *1 (-1289)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) - (-5 *2 (-1293)) (-5 *1 (-1200)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) - (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-5 *2 (-1293)) - (-5 *1 (-1200)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1197)) - (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-5 *2 (-1293)) - (-5 *1 (-1200))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *1 *2) + (-12 (-5 *2 (-702 *5)) (-4 *5 (-1071)) (-5 *1 (-1076 *3 *4 *5)) + (-14 *3 (-784)) (-14 *4 (-784))))) +(((*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1070)) (-4 *6 (-968 *5 *4 *2)) - (-4 *2 (-861)) (-5 *1 (-969 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4113 ($ *6)) (-15 -2687 (*6 $)) - (-15 -2697 (*6 $))))))) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) +(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-877)))) +(((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-834))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-576)) (-5 *1 (-246)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) - (-5 *2 (-1197)) (-5 *1 (-1064 *4))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) - (-5 *3 (-576))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) - ((*1 *1 *1) (-4 *1 (-1226)))) -(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1) (-5 *1 (-340)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) - (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-5 *2 (-946)) (-5 *1 (-944 *3)) - (-4 *3 (-626 (-548))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-946)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) - (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *5)) - (-4 *5 (-1264 (-419 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995))))) -(((*1 *1) (-5 *1 (-301)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-224 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-4 *1 (-261 *3)))) - ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) - ((*1 *1 *1) (-4 *1 (-1226)))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) - (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) - (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) - (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) - (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) - (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) - (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-977 *3)) (-5 *1 (-1184 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-464)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) - (-5 *2 (-2 (|:| -2862 (-576)) (|:| |var| (-624 *1)))) - (-4 *1 (-442 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) - (-5 *1 (-1208 *4)) (-4 *4 (-861))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) - ((*1 *1 *1) (-4 *1 (-1226)))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-962 *5)) (-5 *3 (-783)) (-4 *5 (-1070)) - (-5 *1 (-1185 *4 *5)) (-14 *4 (-940))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1185 *4 *5)) - (-14 *4 (-940)) (-4 *5 (-1070))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) - (-5 *2 (-656 (-1197))) (-5 *1 (-1097 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1238)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1238)))) - ((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) - (-14 *4 *2)))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1197)) (-5 *1 (-687 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -4291 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-374)) (-4 *7 (-1264 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -4291 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-768))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1121)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) - ((*1 *1 *1) (-4 *1 (-1226)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *3 (-129)) (-5 *2 (-783))))) -(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) - (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-888)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1105 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197)))) - ((*1 *1 *1) (-4 *1 (-161)))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) - (-4 *3 (-1121))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) - ((*1 *1 *1) (-4 *1 (-1226)))) -(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-1179)) (-5 *1 (-798))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1179)) - (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) - (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) - (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *9)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-805)) - (-4 *8 (-1070)) (-4 *2 (-968 *9 *7 *5)) - (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) - (-4 *4 (-968 *8 *6 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) - ((*1 *1 *1) (-4 *1 (-1226)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1279 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1279 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1174 *3))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-783)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1070)) - (-4 *1 (-699 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-876)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1163 *3 *4)) (-5 *1 (-1014 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-374)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1070)) - (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) - (-4 *7 (-243 *3 *5))))) -(((*1 *2) - (-12 (-4 *1 (-360)) - (-5 *2 (-656 (-2 (|:| -1452 (-576)) (|:| -4080 (-576)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-701 (-419 (-971 (-576))))) - (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052)) - (-5 *3 (-326 (-576)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1070)) (-4 *2 (-699 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3389 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-340))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *1) (-5 *1 (-590))) - ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-877)))) - ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-877)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1178 *4)) - (-4 *4 (-1121)) (-4 *4 (-1238))))) -(((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 (-783)) (-4 *5 (-174))))) + (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-576)) (-5 *1 (-246))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-52)) (-5 *1 (-842))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-924 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-766))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1121)) - (-5 *1 (-690 *2))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) - (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1223) (-442 *5))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (-855 *3) - (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) - (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) - "failed")) - (-5 *1 (-648 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1179)) - (-4 *3 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-855 (-971 *5)))) (-4 *5 (-464)) - (-5 *2 - (-3 (-855 (-419 (-971 *5))) - (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-971 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-855 (-419 (-971 *5))) "failed"))) - "failed")) - (-5 *1 (-649 *5)) (-5 *3 (-419 (-971 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) - (-4 *5 (-464)) - (-5 *2 - (-3 (-855 *3) - (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) - (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) - "failed")) - (-5 *1 (-649 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-304 (-419 (-971 *6)))) (-5 *5 (-1179)) - (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) - (-5 *1 (-649 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-990 *2 *3)) - (-4 *3 (-1264 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2687 ((-1146 *3 (-624 $)) $)) - (-15 -2697 ((-1146 *3 (-624 $)) $)) - (-15 -4113 ($ (-1146 *3 (-624 $)))))))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) - ((*1 *1 *1 *1) (-4 *1 (-557))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-861) - (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 (*2 $)) - (-15 -3384 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-861) - (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 (*2 $)) - (-15 -3384 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1264 *4)) - (-5 *2 (-1288 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1027))))) -(((*1 *1) (-5 *1 (-815)))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1095)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1264 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) (-5 *3 (-227)) - (-5 *2 (-1056)) (-5 *1 (-760))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) - (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-518)) (-5 *3 (-1125)) (-5 *1 (-301))))) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-1169 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) - (-4 *3 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-249 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1197)) (-5 *6 (-656 (-624 *3))) - (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *7))) - (-4 *7 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-2 (|:| -4291 *3) (|:| |coeff| *3))) - (-5 *1 (-569 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) + (-12 (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) + (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) (((*1 *2 *1) - (-12 (-5 *2 (-1047 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-1048 (-856 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-529))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1239))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1282 *3 *2)) + (-4 *2 (-1280 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-145))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) + (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-784)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-940)))) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) + (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-941)))) ((*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) - (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) - (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-940))))) + (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) + (-5 *2 (-784)) (-5 *1 (-404 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-846 (-941))))) ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1264 *3)))) + (-4 *4 (-1265 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) - (-4 *3 (-861)))) + (-12 (-5 *2 (-784)) (-4 *1 (-753 *4 *3)) (-4 *4 (-1071)) + (-4 *3 (-862)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) + (-12 (-4 *1 (-753 *4 *3)) (-4 *4 (-1071)) (-4 *3 (-862)) + (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) - (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) - (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) - (-5 *2 (-783)) (-5 *1 (-930 *4 *5 *6 *7 *8)))) + (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) + (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1060 (-576)))) + (-5 *2 (-784)) (-5 *1 (-931 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) - (-5 *1 (-931 *4 *5 *6)))) + (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-1265 (-419 *4))) + (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-784)) + (-5 *1 (-932 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) - (-4 *7 (-1264 *6)) (-4 *4 (-1264 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) - (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) - (-5 *1 (-1039 *6 *7 *4 *8 *9)))) + (-4 *7 (-1265 *6)) (-4 *4 (-1265 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) + (-4 *9 (-13 (-379) (-374))) (-5 *2 (-784)) + (-5 *1 (-1040 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-568)) - (-5 *2 (-783)))) + (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1071)) (-4 *3 (-568)) + (-5 *2 (-784)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) + (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) ((*1 *2 *1) - (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804))))) + (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-832 *3)) (-4 *3 (-862)) (-5 *1 (-685 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1071)) + (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-941)) (-4 *5 (-1071)) + (-4 *2 (-13 (-416) (-1060 *5) (-374) (-1224) (-294))) + (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1265 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-760))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-689)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1041)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1088)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-1118))))) +(((*1 *2) + (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) + ((*1 *2 *2) + (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-145))))) (((*1 *2 *3) (-12 (-5 *3 - (-656 - (-2 (|:| -4135 (-783)) + (-657 + (-2 (|:| -4343 (-784)) (|:| |eqns| - (-656 - (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *7))))) - (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-783)) - (-5 *1 (-943 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-998 *4 *5 *6 *7))))) + (-657 + (-2 (|:| |det| *7) (|:| |rows| (-657 (-576))) + (|:| |cols| (-657 (-576)))))) + (|:| |fgb| (-657 *7))))) + (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-784)) + (-5 *1 (-944 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) + (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) + (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-177))) (-5 *1 (-1107))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-374)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1197)) (-5 *6 (-112)) - (-4 *7 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-1223) (-978) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1115 *3)) (-4 *3 (-968 *7 *6 *4)) (-4 *6 (-805)) - (-4 *4 (-861)) (-4 *7 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) - (-5 *1 (-606 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) - (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *1) (-5 *1 (-876))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1223))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1223))) - (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1189 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)))) - (-5 *2 (-419 (-971 *5))) (-5 *1 (-1190 *5)) (-5 *3 (-971 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)))) - (-5 *2 (-3 (-419 (-971 *5)) (-326 *5))) (-5 *1 (-1190 *5)) - (-5 *3 (-419 (-971 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-971 *5))) (-5 *3 (-971 *5)) - (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-419 *3)) - (-5 *1 (-1190 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) - (-4 *5 (-13 (-568) (-1059 (-576)))) (-5 *2 (-3 *3 (-326 *5))) - (-5 *1 (-1190 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) + (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 (-576)))) + (-5 *2 (-1289 (-419 (-576)))) (-5 *1 (-1317 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) - (-14 *4 (-576))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97))))) + (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1122)))) + ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-450 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-880)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-985)))) + ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1097 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1137)))) + ((*1 *1 *1) (-5 *1 (-1198)))) +(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-541)))) + ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -3497 (-656 (-2 (|:| |irr| *3) (|:| -3172 (-576))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + (-12 (-5 *3 (-657 (-419 (-972 (-576))))) + (-5 *2 (-657 (-657 (-304 (-972 *4))))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-861) (-374))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -3497 (-656 (-2 (|:| |irr| *3) (|:| -3172 (-576))))))) - (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) - (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) - (-5 *1 (-709))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1193 *7)) (-5 *3 (-576)) (-4 *7 (-968 *6 *4 *5)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-5 *1 (-331 *4 *5 *6 *7))))) -(((*1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-568)) - (-4 *7 (-968 *3 *5 *6)) - (-5 *2 (-2 (|:| -4080 (-783)) (|:| -2862 *8) (|:| |radicand| *8))) - (-5 *1 (-972 *5 *6 *3 *7 *8)) (-5 *4 (-783)) - (-4 *8 - (-13 (-374) - (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $)))))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1264 *3)) (-5 *1 (-411 *3 *2)) - (-4 *3 (-13 (-374) (-148)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1125)) (-5 *1 (-289))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-390))) - ((*1 *1) (-5 *1 (-390)))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-971 *3))) (-4 *3 (-464)) - (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1197))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-792 *3 (-878 *4)))) (-4 *3 (-464)) - (-14 *4 (-656 (-1197))) (-5 *1 (-640 *3 *4))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-656 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) - (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1172))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) - (-5 *2 - (-2 (|:| -1685 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) + (-12 (-5 *3 (-657 (-304 (-419 (-972 (-576)))))) + (-5 *2 (-657 (-657 (-304 (-972 *4))))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-861) (-374))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -4251 (-419 *6)) - (|:| |special| (-419 *6)))) - (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-913 *3 *4)) - (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -2102 *3) (|:| -2113 *3))) (-5 *1 (-913 *3 *5)) - (-4 *3 (-1264 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-831 *3)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) -(((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1264 *4)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-971 *4)))) (-4 *4 (-464)) - (-5 *2 (-656 (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4))))) - (-5 *1 (-302 *4))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1179)) (-5 *1 (-97))))) -(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1056)) (-5 *1 (-768))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1202))) (-5 *1 (-1202))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1090 *7 *8 *9 *3 *4)) (-4 *4 (-1092 *7 *8 *9 *3)))) + (-12 (-5 *3 (-419 (-972 (-576)))) (-5 *2 (-657 (-304 (-972 *4)))) + (-5 *1 (-391 *4)) (-4 *4 (-13 (-861) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-972 (-576))))) + (-5 *2 (-657 (-304 (-972 *4)))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-861) (-374))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + (|partial| -12 (-5 *5 (-1198)) + (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-4 *4 (-13 (-29 *6) (-1224) (-979))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2469 (-657 *4)))) + (-5 *1 (-665 *6 *4 *3)) (-4 *3 (-669 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-657 *2)) + (-4 *2 (-13 (-29 *6) (-1224) (-979))) + (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *1 (-665 *6 *2 *3)) (-4 *3 (-669 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) + (-12 (-5 *3 (-702 *5)) (-4 *5 (-374)) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1166 *7 *8 *9 *3 *4)) (-4 *4 (-1130 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) + (-2 (|:| |particular| (-3 (-1289 *5) "failed")) + (|:| -2469 (-657 (-1289 *5))))) + (-5 *1 (-680 *5)) (-5 *4 (-1289 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-657 *5))) (-4 *5 (-374)) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) + (-2 (|:| |particular| (-3 (-1289 *5) "failed")) + (|:| -2469 (-657 (-1289 *5))))) + (-5 *1 (-680 *5)) (-5 *4 (-1289 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) + (-12 (-5 *3 (-702 *5)) (-4 *5 (-374)) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) -(((*1 *2) - (-12 + (-657 + (-2 (|:| |particular| (-3 (-1289 *5) "failed")) + (|:| -2469 (-657 (-1289 *5)))))) + (-5 *1 (-680 *5)) (-5 *4 (-657 (-1289 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-657 *5))) (-4 *5 (-374)) (-5 *2 - (-1288 (-656 (-2 (|:| -1690 (-929 *3)) (|:| -2411 (-1141)))))) - (-5 *1 (-362 *3 *4)) (-14 *3 (-940)) (-14 *4 (-940)))) - ((*1 *2) - (-12 (-5 *2 (-1288 (-656 (-2 (|:| -1690 *3) (|:| -2411 (-1141)))))) - (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1193 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1288 (-656 (-2 (|:| -1690 *3) (|:| -2411 (-1141)))))) - (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-940))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) - ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) - (-14 *3 (-656 (-1197))))) - ((*1 *1 *1) - (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1121)))) - ((*1 *1 *1) - (-12 (-14 *2 (-656 (-1197))) (-4 *3 (-174)) - (-4 *5 (-243 (-1970 *2) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2411 *4) (|:| -4080 *5)) - (-2 (|:| -2411 *4) (|:| -4080 *5)))) - (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) - (-4 *7 (-968 *3 *5 (-878 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-864)))) - ((*1 *1 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1070)))) - ((*1 *1 *1) - (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1070)) - (-4 *3 (-738)))) - ((*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-301))) - ((*1 *1) (-5 *1 (-876))) - ((*1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) - (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1106))) - ((*1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34))))) - ((*1 *1) (-5 *1 (-1200))) ((*1 *1) (-5 *1 (-1201)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-657 + (-2 (|:| |particular| (-3 (-1289 *5) "failed")) + (|:| -2469 (-657 (-1289 *5)))))) + (-5 *1 (-680 *5)) (-5 *4 (-657 (-1289 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 - (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2) - (-12 (-4 *3 (-1242)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1223) (-978)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) -(((*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-598 *3) *3 (-1197))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1197))) - (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1059 *4)) (-4 *3 (-442 *7)) - (-5 *4 (-1197)) (-4 *7 (-626 (-907 (-576)))) (-4 *7 (-464)) - (-4 *7 (-901 (-576))) (-4 *7 (-1121)) (-5 *2 (-598 *3)) - (-5 *1 (-585 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-940)) (-5 *1 (-1053 *2)) - (-4 *2 (-13 (-1121) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) + (-5 *1 (-681 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) - (-5 *2 (-1056)) (-5 *1 (-852))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-968 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) - (-5 *2 (-656 (-656 (-962 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) (-4 *4 (-1070)) - (-4 *1 (-1155 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 (-962 *3)))) (-4 *3 (-1070)) - (-4 *1 (-1155 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) - (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-962 *4)))) (-5 *3 (-112)) - (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) - (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-656 (-962 *5)))) (-5 *3 (-656 (-173))) - (-5 *4 (-173)) (-4 *1 (-1155 *5)) (-4 *5 (-1070))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1197))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1092 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1223) (-442 *3))) - (-14 *4 (-1197)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-4 *2 (-13 (-27) (-1223) (-442 *3) (-10 -8 (-15 -4113 ($ *4))))) - (-4 *4 (-860)) - (-4 *5 - (-13 (-1266 *2 *4) (-374) (-1223) - (-10 -8 (-15 -4107 ($ $)) (-15 -4412 ($ $))))) - (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1004 *5)) - (-14 *7 (-1197))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1193 *3)) (-4 *3 (-1070)) (-4 *1 (-1264 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) + (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) -(((*1 *2 *1) - (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) - (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-340))))) -(((*1 *2 *3) - (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1264 *5)) - (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) - (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) - (-5 *1 (-930 *4 *5 *6 *7 *8)))) + (-657 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2469 (-657 *7))))) + (-5 *1 (-681 *5 *6 *7 *3)) (-5 *4 (-657 *7)) + (-4 *3 (-700 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-657 (-1198))) (-4 *5 (-568)) + (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-783 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-931 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-590)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) + (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-568)) + (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-783 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1198)) + (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *1 (-785 *5 *2)) (-4 *2 (-13 (-29 *5) (-1224) (-979))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) - (-5 *5 (-1 (-430 *7) *7)) - (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) + (|partial| -12 (-5 *3 (-702 *7)) (-5 *5 (-1198)) + (-4 *7 (-13 (-29 *6) (-1224) (-979))) + (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1289 *7)) (|:| -2469 (-657 (-1289 *7))))) + (-5 *1 (-815 *6 *7)) (-5 *4 (-1289 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *6 (-1264 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) + (|partial| -12 (-5 *3 (-702 *6)) (-5 *4 (-1198)) + (-4 *6 (-13 (-29 *5) (-1224) (-979))) + (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *2 (-657 (-1289 *6))) (-5 *1 (-815 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) - (-5 *5 (-1 (-430 *7) *7)) - (-4 *6 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *7 (-1264 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) - (-4 *6 (-1264 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) - (-4 *6 (-1264 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-1197)) - (-4 *4 (-13 (-442 *7) (-27) (-1223))) - (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) - (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *2)) - (-4 *3 (-13 (-1121) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1299))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-968 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-876))))) -(((*1 *1) (-5 *1 (-1084)))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) - (-14 *4 *2)))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) - (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1197))) (-5 *1 (-643 *5 *6))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1248 *3)) (-4 *3 (-1070)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1279 *3)) (-4 *3 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1193 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2156 *4)))) - (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576))))) - (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-971 *9)))) - (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) - (-4 *9 (-13 (-317) (-148))) (-4 *12 (-968 *9 *11 *10)) - (-4 *10 (-13 (-861) (-626 (-1197)))) (-4 *11 (-805)) - (-5 *2 - (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) - (|:| |wcond| (-656 (-971 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *9)))) - (|:| -2704 (-656 (-1288 (-419 (-971 *9))))))))) - (-5 *1 (-943 *9 *10 *11 *12))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1202))) (-5 *1 (-1202))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-876)))) - ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-981))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1056)) (-5 *1 (-760))))) -(((*1 *1 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-861)) (-4 *1 (-385 *3 *4)) - (-4 *4 (-174))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-656 (-173))))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-767))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) + (|partial| -12 (-5 *3 (-657 (-304 *7))) (-5 *4 (-657 (-115))) + (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) + (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) - (|:| -4245 *6))) - (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) - (-5 *1 (-623 *2 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1178 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-738)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1070)) (-5 *2 (-1178 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-430 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-1070)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1056)) (-5 *1 (-763))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1070))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2704 (-656 *1)))) - (-4 *1 (-378 *3)))) - ((*1 *2) - (|partial| -12 + (-2 (|:| |particular| (-1289 *7)) (|:| -2469 (-657 (-1289 *7))))) + (-5 *1 (-815 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-657 *7)) (-5 *4 (-657 (-115))) + (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) + (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -2704 (-656 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) -(((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) - (-5 *2 (-1056)) (-5 *1 (-760))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1178 (-227))) (-5 *2 (-656 (-1179))) (-5 *1 (-315))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-971 *5)))) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148))) - (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) - (-5 *1 (-1150 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148))) - (-5 *2 (-1186 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) - (-5 *1 (-1150 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-374)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) - (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1264 *2)) - (-4 *5 (-1264 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) - (-4 *6 (-353 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-374)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) - (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) - (-4 *1 (-346 *3 *4 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) - ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1293))))) -(((*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (|has| *1 (-6 -4465)) (-4 *1 (-384 *3)) - (-4 *3 (-1238))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-374)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-462 *4 *5 *6 *2)))) + (-2 (|:| |particular| (-1289 *7)) (|:| -2469 (-657 (-1289 *7))))) + (-5 *1 (-815 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) + (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1198)) + (-4 *7 (-13 (-29 *6) (-1224) (-979))) + (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 - (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) - (-5 *1 (-999 *6)) (-5 *3 (-701 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-940)) (-5 *2 (-480)) (-5 *1 (-1289))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-861)) - (-4 *3 (-1121))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2) - (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1197)) - (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) - (-5 *2 - (-2 (|:| -4291 (-419 (-971 *5))) (|:| |coeff| (-419 (-971 *5))))) - (-5 *1 (-582 *5)) (-5 *3 (-419 (-971 *5)))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1161 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) - (-5 *2 (-112)) (-5 *1 (-1162 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) - (-5 *2 (-425 *4 (-419 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1288 *6)) (-4 *6 (-13 (-421 *4 *5) (-1059 *4))) - (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-317)) - (-5 *1 (-425 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1045 *3)) - (-4 *3 (-13 (-860) (-374) (-1043))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) - (-4 *3 (-1264 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) - (-4 *3 (-1264 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) - (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) + (-3 (-2 (|:| |particular| *7) (|:| -2469 (-657 *7))) *7 "failed")) + (-5 *1 (-815 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-1198)) + (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 - (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) - (|:| |polypart| *6))) - (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1197)) - (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2435 "void"))) (-5 *1 (-1200))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) - ((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) - ((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) (-4 *1 (-883 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) - (-4 *4 (-861))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-759))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1121))))) -(((*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-656 (-1179))) (-5 *3 (-576)) (-5 *4 (-1179)) - (-5 *1 (-246)))) - ((*1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1233 *3)) - (-5 *1 (-802 *3)) (-4 *3 (-995)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-112)) - (-5 *1 (-1233 *2)) (-4 *2 (-995))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) - (-5 *2 (-390)) (-5 *1 (-276)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-3 (-2 (|:| |particular| *3) (|:| -2469 (-657 *3))) *3 "failed")) + (-5 *1 (-815 *6 *3)) (-4 *3 (-13 (-29 *6) (-1224) (-979))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-657 *2)) + (-4 *2 (-13 (-29 *6) (-1224) (-979))) (-5 *1 (-815 *6 *2)) + (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-657 *2)) + (-4 *2 (-13 (-29 *6) (-1224) (-979))) + (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *1 (-815 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1057)) (-5 *1 (-818)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-821)) (-5 *4 (-1085)) (-5 *2 (-1057)) (-5 *1 (-818)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1289 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-657 *4)) + (-5 *2 (-1057)) (-5 *1 (-818)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1289 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-657 *4)) + (-5 *2 (-1057)) (-5 *1 (-818)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1289 (-326 *4))) (-5 *5 (-657 (-390))) + (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1057)) (-5 *1 (-818)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1289 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-657 *4)) + (-5 *2 (-1057)) (-5 *1 (-818)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1289 (-326 *4))) (-5 *5 (-657 (-390))) + (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1057)) (-5 *1 (-818)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1289 (-326 *4))) (-5 *5 (-657 (-390))) + (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1057)) (-5 *1 (-818)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -2469 (-657 *6))) "failed") + *7 *6)) + (-4 *6 (-374)) (-4 *7 (-669 *6)) + (-5 *2 (-2 (|:| |particular| (-1289 *6)) (|:| -2469 (-702 *6)))) + (-5 *1 (-826 *6 *7)) (-5 *3 (-702 *6)) (-5 *4 (-1289 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1057)) (-5 *1 (-915)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-916)) (-5 *4 (-1085)) (-5 *2 (-1057)) (-5 *1 (-915)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-784)) (-5 *6 (-657 (-657 (-326 *3)))) (-5 *7 (-1180)) + (-5 *8 (-227)) (-5 *5 (-657 (-326 (-390)))) (-5 *3 (-390)) + (-5 *2 (-1057)) (-5 *1 (-915)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-784)) (-5 *6 (-657 (-657 (-326 *3)))) (-5 *7 (-1180)) + (-5 *5 (-657 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1057)) + (-5 *1 (-915)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-972 (-419 (-576)))) (-5 *2 (-657 (-390))) + (-5 *1 (-1045)) (-5 *4 (-390)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) - (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5)))) + (-12 (-5 *3 (-972 (-576))) (-5 *2 (-657 (-390))) (-5 *1 (-1045)) + (-5 *4 (-390)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5)))) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1153 *4)) + (-5 *3 (-326 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1153 *4)) + (-5 *3 (-304 (-326 *4))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5))))) -(((*1 *2) - (-12 (-14 *4 (-783)) (-4 *5 (-1238)) (-5 *2 (-135)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-576)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1070)) (-5 *2 (-940)))) - ((*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + (-12 (-5 *4 (-1198)) + (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *2 (-657 (-304 (-326 *5)))) (-5 *1 (-1153 *5)) + (-5 *3 (-304 (-326 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) + (-12 (-5 *4 (-1198)) + (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *2 (-657 (-304 (-326 *5)))) (-5 *1 (-1153 *5)) + (-5 *3 (-326 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238))))) -(((*1 *2) - (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1264 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-130))) - ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) - ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) - ((*1 *1) (-4 *1 (-738))) ((*1 *1) (-5 *1 (-1197))) - ((*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-940)))) - ((*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-940)))) - ((*1 *1) (-5 *1 (-1243))) ((*1 *1) (-5 *1 (-1244))) - ((*1 *1) (-5 *1 (-1245))) ((*1 *1) (-5 *1 (-1246)))) -(((*1 *2 *3) - (-12 (-5 *3 (-304 (-971 (-576)))) - (-5 *2 - (-2 (|:| |varOrder| (-656 (-1197))) - (|:| |inhom| (-3 (-656 (-1288 (-783))) "failed")) - (|:| |hom| (-656 (-1288 (-783)))))) - (-5 *1 (-241))))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-783))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-594))))) -(((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-968 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 (-701 *4))) (-4 *4 (-174)) - (-5 *2 (-1288 (-701 (-971 *4)))) (-5 *1 (-191 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) -(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) - (-4 *4 (-1238)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1238)))) - ((*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-919 *4)) - (-4 *4 (-1121)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-919 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-52)) (-5 *1 (-907 *4)) - (-4 *4 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1193 *4))) (-5 *3 (-1193 *4)) - (-4 *4 (-928)) (-5 *1 (-675 *4))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *2 (-1293)) - (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) - (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -4245 *6))) - (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 (-576)))) (-5 *1 (-478))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) - (-5 *2 (-1056)) (-5 *1 (-757))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1156)) (-5 *2 (-703 (-290))) (-5 *1 (-169))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *5 (-1264 *4)) - (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3379 *5)))) - (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) - (-4 *6 (-668 (-419 *5)))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2970 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1059 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1223) (-442 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-568) (-1059 (-576)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-586 *5 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-374)) (-4 *3 (-1070)) - (-5 *1 (-1181 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) - (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) - (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *8))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-171 (-326 *4))) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-171 *3)) (-5 *1 (-1227 *4 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *1) (-4 *1 (-988)))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1258 *3 *2)) - (-4 *2 (-1264 *3))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) - (-4 *3 (-1121)) (-5 *2 (-783)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) - (-4 *4 (-1238)) (-5 *2 (-783))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) - (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -3824 (-656 (-876))) (|:| -2214 (-656 (-876))) - (|:| |presup| (-656 (-876))) (|:| -3678 (-656 (-876))) - (|:| |args| (-656 (-876))))) - (-5 *1 (-1197))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-1255 (-576)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-971 (-576))))) - (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1052))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-751 *3))))) -(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) + (-12 (-5 *4 (-657 (-1198))) + (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *2 (-657 (-657 (-304 (-326 *5))))) (-5 *1 (-1153 *5)) + (-5 *3 (-657 (-304 (-326 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) + (-4 *5 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) + (-5 *1 (-1207 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-657 (-1198))) (-4 *5 (-568)) + (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-1207 *5)) + (-5 *3 (-657 (-304 (-419 (-972 *5))))))) ((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1197)) (-5 *1 (-548))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-683)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-940)) - (-14 *4 (-940))))) -(((*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1141))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) - ((*1 *1 *1 *1) (-4 *1 (-464))) + (-12 (-5 *3 (-657 (-419 (-972 *4)))) (-4 *4 (-568)) + (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-1207 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-783))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) - (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4)))) + (-12 (-4 *4 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) + (-5 *1 (-1207 *4)) (-5 *3 (-657 (-304 (-419 (-972 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1198)) (-4 *5 (-568)) + (-5 *2 (-657 (-304 (-419 (-972 *5))))) (-5 *1 (-1207 *5)) + (-5 *3 (-419 (-972 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1198)) (-4 *5 (-568)) + (-5 *2 (-657 (-304 (-419 (-972 *5))))) (-5 *1 (-1207 *5)) + (-5 *3 (-304 (-419 (-972 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) - (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-317)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) + (-12 (-4 *4 (-568)) (-5 *2 (-657 (-304 (-419 (-972 *4))))) + (-5 *1 (-1207 *4)) (-5 *3 (-419 (-972 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1193 *7))) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-317)) (-5 *2 (-1193 *7)) (-5 *1 (-935 *4 *5 *6 *7)) - (-4 *7 (-968 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-940))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) - (-4 *2 (-1264 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1264 *4)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) + (-12 (-4 *4 (-568)) (-5 *2 (-657 (-304 (-419 (-972 *4))))) + (-5 *1 (-1207 *4)) (-5 *3 (-304 (-419 (-972 *4))))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-1259 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1279 *4)) - (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1178 *4) (-1178 *4))) - (-5 *1 (-1281 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-4 *2 (-917 *5)) (-5 *1 (-704 *5 *2 *3 *4)) - (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) - (-5 *1 (-269 *2)) (-4 *2 (-1238)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-52)) - (-5 *1 (-270))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) - (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) - ((*1 *1 *1) (-4 *1 (-557))) - ((*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1235 *3)) (-4 *3 (-1238)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) - (-4 *2 (-1070))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-589)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) - (-5 *2 - (-656 - (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) - (|:| |eigmult| (-783)) - (|:| |eigvec| (-656 (-701 (-419 (-971 *4)))))))) - (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-992))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244)))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1084)) (-5 *3 (-1179))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1179)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-656 (-971 *6))) (-5 *4 (-656 (-1197))) (-4 *6 (-464)) - (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) - (-4 *5 (-13 (-374) (-860)))))) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-999 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *2 (-1056)) (-5 *1 (-315)))) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) + (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) - (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) - (-5 *2 (-1056)) (-5 *1 (-315))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)))) - ((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) - (-12 (-4 *2 (-360)) (-4 *2 (-1070)) (-5 *1 (-724 *2 *3)) - (-4 *3 (-1264 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) - (-5 *1 (-1296 *4)) (-4 *4 (-374))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-240 *3)))) - ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1121))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-656 (-1193 *11))) (-5 *3 (-1193 *11)) - (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) - (-5 *7 (-1288 (-656 (-1193 *8)))) (-4 *10 (-861)) - (-4 *8 (-317)) (-4 *11 (-968 *8 *9 *10)) (-4 *9 (-805)) - (-5 *1 (-719 *9 *10 *8 *11))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) - (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) - (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) - (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) - (-5 *1 (-1090 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) - (-5 *4 (-783)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-1293)) - (-5 *1 (-1166 *5 *6 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1159)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-876))) (-5 *2 (-1293)) (-5 *1 (-1159))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1238)) (-5 *2 (-783))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) - (-4 *3 (-1121))))) -(((*1 *2 *3) - (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-253 *4 *5)) - (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-1059 (-419 *2)))) (-5 *2 (-576)) - (-5 *1 (-116 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) - (-5 *1 (-937 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) - ((*1 *1 *1 *1) (-4 *1 (-464)))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) - (-5 *2 - (-656 - (-2 (|:| |eigval| (-3 (-419 (-971 *4)) (-1186 (-1197) (-971 *4)))) - (|:| |geneigvec| (-656 (-701 (-419 (-971 *4)))))))) - (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-971 *4))))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1059 *4)) (-4 *3 (-568))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-834))))) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-112)) - (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1197))))) + (-12 (-5 *2 (-430 (-1194 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1194 *1)) + (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1122)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-792 *4 (-878 *5)))) (-4 *4 (-464)) - (-14 *5 (-656 (-1197))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) - (-5 *1 (-760))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *1) (-12 (-5 *2 (-703 (-1156))) (-5 *1 (-1172))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) - (-5 *2 (-656 (-2 (|:| -3497 (-656 *3)) (|:| -2178 *5)))) - (-5 *1 (-183 *5 *3)) (-4 *3 (-1264 (-171 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-374) (-860))) - (-5 *2 (-656 (-2 (|:| -3497 (-656 *3)) (|:| -2178 *4)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-855 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1293)) - (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-861)) - (-4 *8 (-968 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1288 (-419 *8)) "failed")) - (|:| -2704 (-656 (-1288 (-419 *8)))))) - (-5 *1 (-681 *5 *6 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-337 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-528 *3 *4)) - (-14 *4 (-576))))) -(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-378 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1279 *3))))) -(((*1 *1) (-5 *1 (-629)))) -(((*1 *2) - (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) - (-5 *2 (-1288 (-419 (-576)))) (-5 *1 (-1316 *4))))) + (-12 (-4 *1 (-929)) (-5 *2 (-430 (-1194 *1))) (-5 *3 (-1194 *1))))) +(((*1 *1 *1 *1) (-5 *1 (-877)))) (((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) - ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) + ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-689)))) ((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) - (-4 *2 (-13 (-861) (-21)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) - (-4 *3 (-1264 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-990 *4 *2)) - (-4 *2 (-1264 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-762))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1056)) - (-5 *1 (-758))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) - (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1) (-4 *1 (-312))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) - ((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) - (-5 *1 (-1196))))) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) - (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) - (-14 *7 (-940))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2687 ((-1146 *3 (-624 $)) $)) - (-15 -2697 ((-1146 *3 (-624 $)) $)) - (-15 -4113 ($ (-1146 *3 (-624 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2687 ((-1146 *3 (-624 $)) $)) - (-15 -2697 ((-1146 *3 (-624 $)) $)) - (-15 -4113 ($ (-1146 *3 (-624 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2687 ((-1146 *4 (-624 $)) $)) - (-15 -2697 ((-1146 *4 (-624 $)) $)) - (-15 -4113 ($ (-1146 *4 (-624 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-624 *2))) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2687 ((-1146 *4 (-624 $)) $)) - (-15 -2697 ((-1146 *4 (-624 $)) $)) - (-15 -4113 ($ (-1146 *4 (-624 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *4 (-656 (-1197))) - (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-4 *6 (-917 *5)) (-5 *2 (-701 *6)) - (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4464))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4)))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *3)) - (|:| |logand| (-1193 *3))))) - (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-971 *6)) (-5 *4 (-1197)) - (-5 *5 (-855 *7)) - (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-4 *7 (-13 (-1223) (-29 *6))) (-5 *1 (-226 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1193 *6)) (-5 *4 (-855 *6)) - (-4 *6 (-13 (-1223) (-29 *5))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-226 *5 *6))))) + (-12 (-4 *4 (-568)) (-5 *2 (-657 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1238)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-686 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270))))) + (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1121)) (-5 *1 (-983 *2 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1121)) - (-4 *3 (-1121))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1070)) (-4 *4 (-1264 *3)) (-5 *1 (-165 *3 *4 *2)) - (-4 *2 (-1264 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-1209 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) - (-4 *3 (-968 *7 *5 *6)) - (-5 *2 - (-2 (|:| -4080 (-783)) (|:| -2862 *3) (|:| |radicand| (-656 *3)))) - (-5 *1 (-972 *5 *6 *7 *3 *8)) (-5 *4 (-783)) - (-4 *8 - (-13 (-374) - (-10 -8 (-15 -4113 ($ *3)) (-15 -2687 (*3 $)) (-15 -2697 (*3 $)))))))) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-962 *4))) (-4 *1 (-1155 *4)) (-4 *4 (-1070)) - (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) - (-5 *1 (-207))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) - (-4 *7 (-861)) (-4 *8 (-317)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) - (-5 *2 - (-2 (|:| |upol| (-1193 *8)) (|:| |Lval| (-656 *8)) - (|:| |Lfact| - (-656 (-2 (|:| -1452 (-1193 *8)) (|:| -4080 (-576))))) - (|:| |ctpol| *8))) - (-5 *1 (-754 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-4 *2 (-1264 *5)) - (-5 *1 (-1282 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1279 *5))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1070)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) - (-4 *4 (-384 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1070))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1185 3 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) - ((*1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) - (-5 *1 (-923 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1070)) (-5 *1 (-726 *2 *4)) - (-4 *4 (-660 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-990 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) - (-5 *1 (-760))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-516 (-419 (-576)) (-245 *4 (-783)) (-878 *3) - (-253 *3 (-419 (-576))))) - (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) - (-4 *3 (-1121))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-815))))) -(((*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-5 *2 (-390)) (-5 *1 (-797 *3)) - (-4 *3 (-626 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) + (|partial| -12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-5 *2 (-112)) + (-5 *1 (-905 *4 *5)) (-4 *5 (-1122)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + (-12 (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-5 *2 (-112)) + (-5 *1 (-906 *5 *3)) (-4 *3 (-1239)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-4 *7 (-861)) - (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) - (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) + (-12 (-5 *3 (-657 *6)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) + (-4 *6 (-1239)) (-5 *2 (-112)) (-5 *1 (-906 *5 *6))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1197))) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) - (-5 *2 (-656 (-419 (-971 *4)))) (-5 *1 (-943 *4 *5 *6 *7)) - (-4 *7 (-968 *4 *6 *5))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-768))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1071)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *3 *5)) - (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *5 (-668 (-419 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1264 *4)) (-5 *1 (-819 *4 *2 *5 *3)) - (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) (-4 *5 (-668 *2)) - (-4 *3 (-668 (-419 *2)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1197)) - (-4 *6 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-4 *4 (-13 (-29 *6) (-1223) (-978))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2704 (-656 *4)))) - (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-5 *3 (-962 *4)) (-4 *1 (-1155 *4)) - (-4 *4 (-1070)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-962 (-227))) (-5 *2 (-1293)) - (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-718 *3 *4)) (-4 *3 (-1239)) (-4 *4 (-1239))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) + (-4 *2 (-13 (-862) (-21)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3431 (-795 *3)) (|:| |coef1| (-795 *3)))) + (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *2 (-2 (|:| -3431 *1) (|:| |coef1| *1))) + (-4 *1 (-1087 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 *4)) (-4 *4 (-862)) (-5 *2 (-657 (-677 *4 *5))) + (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-730 (-419 (-576))))) + (-14 *6 (-941))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -3961 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2) - (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) - (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) - (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1223) (-29 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-971 (-390)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-971 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-971 (-576)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) - (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-419 (-971 (-576))))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-419 (-971 (-390))))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-971 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-971 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-971 (-576)))) (-4 *1 (-408)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-971 (-390)))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-971 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1288 (-419 (-971 (-576))))) (-4 *1 (-453)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1288 (-419 (-971 (-390))))) (-4 *1 (-453)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1288 (-971 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1288 (-971 (-390)))) (-4 *1 (-453)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1288 (-326 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1288 (-326 (-390)))) (-4 *1 (-453)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1264 *5)) - (-5 *2 (-1193 (-1193 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) - (-4 *3 (-1264 *6)) (-14 *7 (-940)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) - (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *1 (-997 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) - (|partial| -3795 - (-12 (-5 *2 (-971 *3)) - (-12 (-2299 (-4 *3 (-38 (-419 (-576))))) - (-2299 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) - (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861))) - (-12 (-5 *2 (-971 *3)) - (-12 (-2299 (-4 *3 (-557))) (-2299 (-4 *3 (-38 (-419 (-576))))) - (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) - (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861))) - (-12 (-5 *2 (-971 *3)) - (-12 (-2299 (-4 *3 (-1013 (-576)))) (-4 *3 (-38 (-419 (-576)))) - (-4 *5 (-626 (-1197)))) - (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861))))) - ((*1 *1 *2) - (|partial| -3795 - (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) - (-12 (-2299 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1197)))) - (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) - (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) - (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) - (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1238)) - (-4 *3 (-384 *4)) (-4 *5 (-384 *4))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-656 *3)) (-5 *5 (-940)) (-4 *3 (-1264 *4)) - (-4 *4 (-317)) (-5 *1 (-472 *4 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212))))) -(((*1 *1) (-5 *1 (-1106)))) -(((*1 *2 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1238)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-59 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *3 (-174)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1070)) - (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-968 *2 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-971 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-1233 *3)) - (-4 *3 (-995))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-887 (-1202) (-783)))) (-5 *1 (-343))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) - (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-766))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179))))) -(((*1 *2 *1) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-1193 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-861)) - (-5 *1 (-1208 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-1070)) (-5 *2 (-576)) - (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1264 *5)) - (-4 *6 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1264 *4)) - (-4 *5 (-13 (-416) (-1059 *4) (-374) (-1223) (-294)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -3824 (-656 (-876))) (|:| -2214 (-656 (-876))) - (|:| |presup| (-656 (-876))) (|:| -3678 (-656 (-876))) - (|:| |args| (-656 (-876))))) - (-5 *1 (-1197)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-876)))) (-5 *1 (-1197))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1238)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1070)) - (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-759))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-1197)) (-5 *1 (-548)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1197)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-716 *3)) - (-4 *3 (-626 (-548)))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-576)))) - (-4 *4 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3115 ($ $ $))))) - (-4 *3 (-568)) (-5 *1 (-1267 *3 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1193 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1121)) (-4 *6 (-1121)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1121))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *2 (-783)) - (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) - (-14 *4 (-940)) (-4 *5 (-1070)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) - (-5 *1 (-1185 *4 *5)) (-14 *4 (-940))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-276))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) - (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3379 (-656 *9)) (|:| -4442 *4) (|:| |ineq| (-656 *9)))) - (-5 *1 (-1009 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) - (-4 *4 (-1092 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) - (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 - (-2 (|:| -3379 (-656 *9)) (|:| -4442 *4) (|:| |ineq| (-656 *9)))) - (-5 *1 (-1128 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) - (-4 *4 (-1092 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1237))) (-5 *3 (-1237)) (-5 *1 (-693))))) -(((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) - (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-924 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3))))) + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1179 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3936 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-571))))) +(((*1 *2 *1) (-12 (-5 *2 (-978 (-784))) (-5 *1 (-343))))) (((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1238)) - (-4 *5 (-384 *4)) (-4 *3 (-384 *4))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-998 *4 *5 *3 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) + (-4 *3 (-862)) (-4 *6 (-1087 *4 *5 *3)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) - (-4 *6 (-1264 *5)) (-4 *5 (-13 (-374) (-148) (-1059 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-580 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) - (-4 *3 (-384 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) - (-4 *5 (-384 *2)) (-4 *3 (-384 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *4)) (-4 *4 (-1013 *2)) (-4 *2 (-568)) - (-5 *1 (-705 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1013 *2)) (-4 *2 (-568)) (-5 *1 (-1257 *2 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-998 *4 *5 *6 *7))))) + (-12 (-4 *7 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-568)) + (-4 *8 (-969 *7 *5 *6)) + (-5 *2 (-2 (|:| -2128 (-784)) (|:| -1735 *3) (|:| |radicand| *3))) + (-5 *1 (-973 *5 *6 *7 *8 *3)) (-5 *4 (-784)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3515 ($ *8)) (-15 -1590 (*8 $)) (-15 -1602 (*8 $)))))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) - (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) - (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) + (-12 (-4 *4 (-1071)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) + (-4 *3 (-1265 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1179) (-1202))) - (-5 *1 (-1202))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-656 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-805)) (-4 *6 (-968 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-861)) - (-5 *1 (-461 *4 *3 *5 *6))))) + (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-384 *3)) (-4 *3 (-1238)) (-4 *3 (-861)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1238)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) - (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-786)) (-5 *1 (-52))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) + (-12 (-5 *2 (-657 (-2 (|:| |k| (-1198)) (|:| |c| (-1311 *3))))) + (-5 *1 (-1311 *3)) (-4 *3 (-1071)))) ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1179)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-759))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-132)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-372 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-661 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-5 *2 (-657 (-2 (|:| |k| *3) (|:| |c| (-1313 *3 *4))))) + (-5 *1 (-1313 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-879))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) - (-4 *3 (-442 *4)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) - ((*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) - (-4 *3 (-809 *4)))) - ((*1 *2) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1012 *3 *4)) - (-4 *3 (-1013 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1017 *3 *4)) - (-4 *3 (-1018 *4)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1032 *3)) (-4 *3 (-1033)))) - ((*1 *2) (-12 (-4 *1 (-1070)) (-5 *2 (-783)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1080 *3)) (-4 *3 (-1081))))) -(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) - (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) -(((*1 *1) - (-12 (-4 *1 (-416)) (-2299 (|has| *1 (-6 -4455))) - (-2299 (|has| *1 (-6 -4447))))) - ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-861)))) - ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-864)))) -(((*1 *2) - (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-354 *3 *4)) (-14 *3 (-940)) - (-14 *4 (-940)))) - ((*1 *2) - (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-1193 *3)))) - ((*1 *2) - (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-940))))) -(((*1 *2 *3) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) + (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-784)) (-4 *5 (-374)) (-5 *2 (-419 *6)) + (-5 *1 (-882 *5 *4 *6)) (-4 *4 (-1280 *5)) (-4 *6 (-1265 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-784)) (-5 *4 (-1281 *5 *6 *7)) (-4 *5 (-374)) + (-14 *6 (-1198)) (-14 *7 *5) (-5 *2 (-419 (-1262 *6 *5))) + (-5 *1 (-883 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-784)) (-5 *4 (-1281 *5 *6 *7)) (-4 *5 (-374)) + (-14 *6 (-1198)) (-14 *7 *5) (-5 *2 (-419 (-1262 *6 *5))) + (-5 *1 (-883 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-227)))) (-5 *1 (-946))))) +(((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1178 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1848 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-571))))) + (-657 + (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) + (|:| |wcond| (-657 (-972 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) + (|:| -2469 (-657 (-1289 (-419 (-972 *5)))))))))) + (-5 *4 (-1180)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-969 *5 *7 *6)) + (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-576)) + (-5 *1 (-944 *5 *6 *7 *8))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-784)) (-4 *4 (-568)) (-5 *1 (-991 *4 *2)) + (-4 *2 (-1265 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) - ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1056)) (-5 *1 (-761)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-400)) (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-1313))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1070)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-907 *3)) (|:| |den| (-907 *3)))) - (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-983 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) - (-4 *1 (-1092 *4 *5 *6 *3))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1452 *4) (|:| -2196 (-576))))) - (-4 *4 (-1264 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) - (-5 *1 (-122 *3)) (-4 *3 (-861)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1223))) - (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-595 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 (-419 (-971 *3)))) - (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *1 (-601 *3)))) + (-12 (-4 *1 (-875)) (-5 *2 (-704 (-1247))) (-5 *3 (-1247))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1116 *3)) (-4 *3 (-969 *7 *6 *4)) (-4 *6 (-806)) + (-4 *4 (-862)) (-4 *7 (-568)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) + (-5 *1 (-606 *6 *4 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -4251 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3)))) + (-12 (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-568)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) + (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1) (-5 *1 (-877))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-1190 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1224))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1114 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1224))) + (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-1190 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1288 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) - (-5 *3 (-656 (-701 *5))))) + (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)))) + (-5 *2 (-419 (-972 *5))) (-5 *1 (-1191 *5)) (-5 *3 (-972 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1288 (-1288 *5))) (-4 *5 (-374)) (-4 *5 (-1070)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1050 *5)) - (-5 *3 (-656 (-701 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1165)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1165))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1106))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 - (|:| -2240 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -2905 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1178 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1848 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571)))) - ((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) - (-5 *2 (-656 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-833))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-368 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-540 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1121))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1238)) - (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1074 *4 *5 *6 *2 *7)) (-4 *6 (-1070)) - (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1288 *6)) (-5 *4 (-1288 (-576))) (-5 *5 (-576)) - (-4 *6 (-1121)) (-5 *2 (-1 *6)) (-5 *1 (-1038 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) - (-4 *6 (-1121)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1121)) (-4 *2 (-1238))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))))) - ((*1 *1 *1) (-5 *1 (-390))) + (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)))) + (-5 *2 (-3 (-419 (-972 *5)) (-326 *5))) (-5 *1 (-1191 *5)) + (-5 *3 (-419 (-972 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) - (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) + (-12 (-5 *4 (-1114 (-972 *5))) (-5 *3 (-972 *5)) + (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-419 *3)) + (-5 *1 (-1191 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1114 (-419 (-972 *5)))) (-5 *3 (-419 (-972 *5))) + (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-3 *3 (-326 *5))) + (-5 *1 (-1191 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3))))) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-998 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1179)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1056)) - (-5 *1 (-762))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (|has| *1 (-6 -4465)) (-4 *1 (-1276 *3)) - (-4 *3 (-1238))))) + (-12 (-4 *3 (-1265 *2)) (-4 *2 (-1265 *4)) + (-5 *1 (-1007 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-737 *2 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-254))))) (((*1 *2 *3) - (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-194))))) +(((*1 *2) + (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) + ((*1 *2 *2) + (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-657 (-657 (-227)))) (-5 *4 (-227)) + (-5 *2 (-657 (-963 *4))) (-5 *1 (-1235)) (-5 *3 (-963 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-657 (-270))) (-5 *4 (-1198)) + (-5 *1 (-269 *2)) (-4 *2 (-1239)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1115 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-315)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-5 *2 (-2 (|:| -2240 *3) (|:| -2905 *4)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) - (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) - (-5 *2 (-656 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1312 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-861)) - (-4 *2 (-174)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-831 *4)) (-4 *1 (-1305 *4 *2)) (-4 *4 (-861)) - (-4 *2 (-1070)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) + (|partial| -12 (-5 *3 (-657 (-270))) (-5 *4 (-1198)) (-5 *2 (-52)) + (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-109))) (-5 *1 (-177))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) - (-4 *3 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) - (-4 *6 (-13 (-27) (-1223) (-442 *5))) - (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-576))) - (-4 *7 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-576))) - (-4 *3 (-13 (-27) (-1223) (-442 *7))) - (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) - (-5 *5 (-1255 (-419 (-576)))) (-5 *6 (-419 (-576))) - (-4 *8 (-13 (-27) (-1223) (-442 *7))) - (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-419 (-576)))) - (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *8))) - (-4 *8 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-4 *3 (-1070)) (-5 *1 (-607 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-608 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-4 *3 (-1070)) (-4 *1 (-1248 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-783)) - (-5 *3 (-1178 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) - (-4 *4 (-1070)) (-4 *1 (-1269 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-4 *1 (-1279 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1178 (-2 (|:| |k| (-783)) (|:| |c| *3)))) - (-4 *3 (-1070)) (-4 *1 (-1279 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-946)) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) - (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) - (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) - (-5 *1 (-154))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1129 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) - (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) - (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4442 *9)))) - (-5 *1 (-1129 *6 *7 *4 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1197)) - (-4 *5 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-2 (|:| -4291 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) + (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1140)) (-5 *1 (-1137))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1179 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-784)) (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) + (-4 *2 (-1265 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-941)) + (-14 *4 (-941))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1117)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) - ((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) (((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223))) - (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1023) (-1223))) - (-5 *1 (-612 *4 *5 *2))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-940)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1070)) - (-4 *4 (-1238)))) - ((*1 *1 *2) - (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) - (-4 *5 (-243 (-1970 *3) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2411 *2) (|:| -4080 *5)) - (-2 (|:| -2411 *2) (|:| -4080 *5)))) - (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) - (-4 *7 (-968 *4 *5 (-878 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234))))) -(((*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-861)) - (-4 *4 (-805)) (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1140)))) - ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) + (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1265 *4)) + (-5 *2 (-2 (|:| -3665 (-635 *4 *5)) (|:| -2934 (-419 *5)))) + (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-657 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) + (-14 *3 (-941)) (-4 *4 (-1071)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-464)) (-4 *3 (-1071)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1265 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) - (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) + (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) + (-4 *3 (-1087 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-657 *4)) + (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) + (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) - (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) - (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) - (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) - (-5 *2 (-1154 (-227))) (-5 *1 (-262)))) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-657 *4)) + (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) + (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) - (-5 *1 (-266 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) - (-5 *2 (-1154 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1121))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1154 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1121))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1154 (-227))) - (-5 *1 (-266 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) - (-5 *2 (-783)) (-5 *1 (-964 *5 *6)) (-4 *6 (-1264 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-503))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *3 (-656 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-962 (-227)) (-962 (-227)))) (-5 *1 (-270)))) + (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) + (-4 *3 (-1087 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-657 *4)) + (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) + (-5 *1 (-1167 *6 *7 *8 *3 *4)) (-4 *4 (-1131 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) - (-14 *5 (-656 (-1197))) (-4 *6 (-464)) (-5 *2 (-1288 *6)) - (-5 *1 (-643 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1193 *6)) (-1193 *6))) - (-4 *6 (-374)) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) (-5 *2 - (-656 - (-2 (|:| |outval| *7) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 *7)))))) - (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -2699 (-656 (-1197))) (|:| -3890 (-656 (-1197))))) - (-5 *1 (-1240))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-4 *7 (-1013 *4)) (-4 *2 (-699 *7 *8 *9)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) - (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)) (-4 *2 (-317)))) - ((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1074 *2 *3 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-656 *11)) - (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4442 *11)))))) - (-5 *6 (-783)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4442 *11)))) - (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) - (-4 *11 (-1092 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-861)) (-5 *1 (-1090 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-656 *11)) - (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4442 *11)))))) - (-5 *6 (-783)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4442 *11)))) - (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1086 *7 *8 *9)) - (-4 *11 (-1130 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-861)) (-5 *1 (-1166 *7 *8 *9 *10 *11))))) -(((*1 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-971 *5)))) (-5 *4 (-656 (-1197))) - (-4 *5 (-568)) (-5 *2 (-656 (-656 (-971 *5)))) (-5 *1 (-1206 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) - (-5 *2 (-656 *4)) (-5 *1 (-1135 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-940)) (-5 *1 (-798))))) + (-2 (|:| |done| (-657 *4)) + (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))))) + (-5 *1 (-1167 *5 *6 *7 *3 *4)) (-4 *4 (-1131 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576))))) +(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) + ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) + ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1124 *3)) (-5 *1 (-925 *3)) (-4 *3 (-379)) + (-4 *3 (-1122))))) +(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390)))) + ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-390))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1288 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) - (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1264 *5)) - (-5 *2 (-701 *5))))) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-2 (|:| |goodPols| (-657 *8)) (|:| |badPols| (-657 *8)))) + (-5 *1 (-999 *5 *6 *7 *8)) (-5 *4 (-657 *8))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-657 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-999 *5 *6 *7 *8))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1289 *4)) (-5 *3 (-1142)) (-4 *4 (-360)) + (-5 *1 (-540 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) + (-4 *3 (-1239))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) - (-4 *3 (-13 (-442 *4) (-1023)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) (-4 *2 (-1238)) - (-4 *2 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *3)) - (-4 *3 (-1238)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1121)) - (-5 *1 (-749 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783)))) - ((*1 *1 *1) (-4 *1 (-414)))) + (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) + (-4 *2 + (-13 (-414) + (-10 -7 (-15 -3515 (*2 *4)) (-15 -2327 ((-941) *2)) + (-15 -2469 ((-1289 *2) (-941))) (-15 -4237 (*2 *2))))) + (-5 *1 (-367 *2 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34)))))) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1071) (-862))) + (-14 *3 (-657 (-1198)))))) (((*1 *2 *3) - (-12 (-5 *3 (-971 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) - ((*1 *2 *3) - (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) - ((*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1193 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1193 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1033)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1193 *1)) (-4 *1 (-1033)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1264 *4)) (-5 *2 (-656 *1)) - (-4 *1 (-1089 *4 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *2 (-1293)) - (-5 *1 (-480)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1070)) (-4 *1 (-1001 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-962 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-962 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-962 (-227))) (-5 *1 (-1234)) (-5 *3 (-227))))) + (-12 (-4 *4 (-862)) (-5 *2 (-1210 (-657 *4))) (-5 *1 (-1209 *4)) + (-5 *3 (-657 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-774)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) - (-4 *5 (-861)) (-5 *2 (-971 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1070)) - (-4 *5 (-861)) (-5 *2 (-971 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) - (-5 *2 (-971 *4)))) + (-12 (-5 *3 (-576)) (-4 *1 (-1249 *4)) (-4 *4 (-1071)) (-4 *4 (-568)) + (-5 *2 (-419 (-972 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1279 *4)) (-4 *4 (-1070)) - (-5 *2 (-971 *4))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-446)) (-4 *5 (-1121)) - (-5 *1 (-1127 *5 *4)) (-4 *4 (-442 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -3188 *5) (|:| -2441 *5)))) - (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) - (-4 *6 (-668 (-419 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -3188 *4) (|:| -2441 *4)))) - (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) - (-4 *6 (-668 (-419 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *5 (-1264 *4)) (-5 *2 (-656 (-2 (|:| -3188 *5) (|:| -2441 *5)))) - (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) - (-4 *3 (-668 (-419 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *4 (-1264 *5)) (-5 *2 (-656 (-2 (|:| -3188 *4) (|:| -2441 *4)))) - (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) - (-4 *3 (-668 (-419 *4)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5))))) + (-12 (-5 *3 (-576)) (-4 *1 (-1249 *4)) (-4 *4 (-1071)) (-4 *4 (-568)) + (-5 *2 (-419 (-972 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-145))) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-142))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) + (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) + (-4 *3 (-1122))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) -(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-771))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576)))) - ((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| -2862 *4) (|:| -2675 *3) (|:| -3561 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-1086 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2862 *3) (|:| -2675 *1) (|:| -3561 *1))) - (-4 *1 (-1264 *3))))) + (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) + (-4 *1 (-1087 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) + (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) + (-5 *1 (-801)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) + (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) + (-5 *1 (-801))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-5 *2 (-112))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) - (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3650 (-656 (-227))))))) - (-5 *2 (-656 (-1179))) (-5 *1 (-276))))) + (-12 (-4 *2 (-1265 *4)) (-5 *1 (-822 *4 *2 *3 *5)) + (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) + (-4 *5 (-669 (-419 *2)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-784)) (-5 *1 (-796 *2)) (-4 *2 (-38 (-419 (-576)))) + (-4 *2 (-174))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1115 (-390))) - (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) - (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-894 (-1 (-227) (-227)))) (-5 *4 (-1115 (-390))) - (-5 *2 (-1290)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-962 (-227)) (-227))) (-5 *4 (-1115 (-390))) - (-5 *2 (-1290)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1115 (-390))) - (-5 *2 (-1290)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-390))) - (-5 *2 (-1290)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-897 (-1 (-227) (-227) (-227)))) (-5 *4 (-1115 (-390))) - (-5 *2 (-1290)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-1197)) (-5 *5 (-656 (-270))) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-861) (-1059 (-576)))) - (-5 *2 (-1289)) (-5 *1 (-263 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) + (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1265 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1121))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1289)) - (-5 *1 (-266 *6)))) + (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1265 (-576))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 *5)) (-5 *4 (-1113 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1289)) - (-5 *1 (-266 *5)))) + (-12 (-5 *4 (-657 (-784))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1265 (-576))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) - (-5 *1 (-266 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1290)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1121))))) + (-12 (-5 *4 (-657 (-784))) (-5 *5 (-784)) (-5 *2 (-430 *3)) + (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1113 (-390))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1121))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1121))) (-5 *2 (-1290)) - (-5 *1 (-266 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1289)) (-5 *1 (-267)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) - (-5 *1 (-267)))) + (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1265 (-576))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *2 (-1289)) (-5 *1 (-267)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-656 (-270))) - (-5 *2 (-1289)) (-5 *1 (-267)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1290)) (-5 *1 (-267)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1290)) - (-5 *1 (-267))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-888)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-112)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1029 *3)) + (-4 *3 (-1265 (-419 (-576)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-112)) - (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4)))))) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)) (-4 *5 (-1087 *3 *4 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1265 (-576))) (-5 *1 (-498 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1071) (-862))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-657 (-1198)))))) +(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1071)) (-4 *3 (-862)) + (-4 *4 (-275 *3)) (-4 *5 (-806))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-448))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-996))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1201)))) + ((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) + (-5 *1 (-1163 *3 *4)) (-4 *3 (-13 (-1122) (-34))) + (-4 *4 (-13 (-1122) (-34)))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-739)) (-4 *2 (-1239))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) +(((*1 *2) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-1222))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-701 (-1193 *8))) (-4 *5 (-1070)) (-4 *8 (-1070)) - (-4 *6 (-1264 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) - (-4 *7 (-1264 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-246))))) -(((*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1197))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1265 *5)) + (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1060 (-576)))) + (-4 *7 (-1265 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) + (-4 *2 (-353 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *3 (-1071)) (-5 *2 (-978 (-725 *3 *4))) (-5 *1 (-725 *3 *4)) + (-4 *4 (-1265 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1265 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) - (-5 *4 (-656 (-1197))) (-5 *2 (-656 (-656 (-171 *5)))) - (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) + (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-626 (-908 (-576)))) + (-4 *5 (-902 (-576))) + (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) + (-4 *3 (-13 (-27) (-1224) (-442 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1198)) (-5 *4 (-856 *2)) (-4 *2 (-1161)) + (-4 *2 (-13 (-27) (-1224) (-442 *5))) + (-4 *5 (-626 (-908 (-576)))) (-4 *5 (-902 (-576))) + (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) + (-5 *1 (-579 *5 *2))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) + (-5 *2 (-1057)) (-5 *1 (-764))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-657 *5)) (-4 *5 (-1265 *3)) (-4 *3 (-317)) + (-5 *2 (-112)) (-5 *1 (-467 *3 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-340))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762))))) (((*1 *2 *3) - (-12 (-5 *3 (-1123 *4)) (-4 *4 (-1121)) (-5 *2 (-1 *4)) - (-5 *1 (-1038 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1115 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4351 *4))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1239)) (-5 *1 (-184 *3 *2)) (-4 *2 (-687 *3))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) + (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-1302 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-657 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1302 *5 *6 *7 *8))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-480)) (-5 *3 (-657 (-270))) (-5 *1 (-1290)))) + ((*1 *1 *1) (-5 *1 (-1290)))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *1 *1) (-4 *1 (-1166)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-986 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-130))) + ((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) + (-4 *4 (-174)))) + ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) + ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) + ((*1 *1) (-4 *1 (-739))) ((*1 *1) (-5 *1 (-1198))) + ((*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-941)))) + ((*1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-941)))) + ((*1 *1) (-5 *1 (-1244))) ((*1 *1) (-5 *1 (-1245))) + ((*1 *1) (-5 *1 (-1246))) ((*1 *1) (-5 *1 (-1247)))) +(((*1 *2 *1) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) + (-5 *2 (-1194 *3))))) +(((*1 *1) (-5 *1 (-131)))) (((*1 *2 *3) - (-12 - (-5 *2 - (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) + (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) + (-5 *2 (-1294)) (-5 *1 (-1201)))) ((*1 *2 *3 *4) - (-12 + (-12 (-5 *3 (-1198)) + (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-5 *2 (-1294)) + (-5 *1 (-1201)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1198)) + (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-5 *2 (-1294)) + (-5 *1 (-1201))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-702 *8)) (-4 *8 (-969 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) + (-4 *7 (-806)) (-5 *2 - (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) - (-5 *4 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))))) + (-657 + (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) + (|:| |wcond| (-657 (-972 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) + (|:| -2469 (-657 (-1289 (-419 (-972 *5)))))))))) + (-5 *1 (-944 *5 *6 *7 *8)) (-5 *4 (-657 *8)))) ((*1 *2 *3 *4) - (-12 + (-12 (-5 *3 (-702 *8)) (-5 *4 (-657 (-1198))) (-4 *8 (-969 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) + (-4 *7 (-806)) (-5 *2 - (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))) (-5 *4 (-419 (-576))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -2102 *5) (|:| -2113 *5)))) (-5 *1 (-1041 *3)) - (-4 *3 (-1264 (-576))) (-5 *4 (-2 (|:| -2102 *5) (|:| -2113 *5))))) + (-657 + (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) + (|:| |wcond| (-657 (-972 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) + (|:| -2469 (-657 (-1289 (-419 (-972 *5)))))))))) + (-5 *1 (-944 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 + (-12 (-5 *3 (-702 *7)) (-4 *7 (-969 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) + (-4 *6 (-806)) (-5 *2 - (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))))) - ((*1 *2 *3 *4) - (-12 + (-657 + (-2 (|:| |eqzro| (-657 *7)) (|:| |neqzro| (-657 *7)) + (|:| |wcond| (-657 (-972 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) + (|:| -2469 (-657 (-1289 (-419 (-972 *4)))))))))) + (-5 *1 (-944 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-702 *9)) (-5 *5 (-941)) (-4 *9 (-969 *6 *8 *7)) + (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1198)))) + (-4 *8 (-806)) (-5 *2 - (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))) - (-5 *4 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -2102 *4) (|:| -2113 *4)))) (-5 *1 (-1042 *3)) - (-4 *3 (-1264 *4)))) + (-657 + (-2 (|:| |eqzro| (-657 *9)) (|:| |neqzro| (-657 *9)) + (|:| |wcond| (-657 (-972 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1289 (-419 (-972 *6)))) + (|:| -2469 (-657 (-1289 (-419 (-972 *6)))))))))) + (-5 *1 (-944 *6 *7 *8 *9)) (-5 *4 (-657 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -2102 *5) (|:| -2113 *5)))) (-5 *1 (-1042 *3)) - (-4 *3 (-1264 *5)) (-5 *4 (-2 (|:| -2102 *5) (|:| -2113 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-971 (-576)))) (-5 *1 (-449)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-227))) (-5 *2 (-1125)) - (-5 *1 (-771)))) + (-12 (-5 *3 (-702 *9)) (-5 *4 (-657 (-1198))) (-5 *5 (-941)) + (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) + (-5 *2 + (-657 + (-2 (|:| |eqzro| (-657 *9)) (|:| |neqzro| (-657 *9)) + (|:| |wcond| (-657 (-972 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1289 (-419 (-972 *6)))) + (|:| -2469 (-657 (-1289 (-419 (-972 *6)))))))))) + (-5 *1 (-944 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-701 (-576))) (-5 *2 (-1125)) - (-5 *1 (-771))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-1008 *3 *4 *5 *2)) - (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1121)) - (-5 *1 (-624 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1121)) (-5 *2 (-55))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-1 (-1193 (-971 *4)) (-971 *4))) - (-5 *1 (-1296 *4)) (-4 *4 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-834))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-315)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1056))) (-5 *2 (-1056)) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *1) (-5 *1 (-1084))) - ((*1 *2 *3) - (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1175 *4)) - (-4 *4 (-1238)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-5 *3 (-702 *8)) (-5 *4 (-941)) (-4 *8 (-969 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) + (-4 *7 (-806)) (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) - (-5 *1 (-1196))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) - (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) - (-4 *6 (-13 (-861) (-626 (-1197)))) (-4 *7 (-805)) (-5 *2 (-112)) - (-5 *1 (-943 *5 *6 *7 *8))))) + (-657 + (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) + (|:| |wcond| (-657 (-972 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) + (|:| -2469 (-657 (-1289 (-419 (-972 *5)))))))))) + (-5 *1 (-944 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-702 *9)) (-5 *4 (-657 *9)) (-5 *5 (-1180)) + (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-576)) + (-5 *1 (-944 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-702 *9)) (-5 *4 (-657 (-1198))) (-5 *5 (-1180)) + (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-576)) + (-5 *1 (-944 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-702 *8)) (-5 *4 (-1180)) (-4 *8 (-969 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) + (-4 *7 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-702 *10)) (-5 *4 (-657 *10)) (-5 *5 (-941)) + (-5 *6 (-1180)) (-4 *10 (-969 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) + (-4 *8 (-13 (-862) (-626 (-1198)))) (-4 *9 (-806)) (-5 *2 (-576)) + (-5 *1 (-944 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-702 *10)) (-5 *4 (-657 (-1198))) (-5 *5 (-941)) + (-5 *6 (-1180)) (-4 *10 (-969 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) + (-4 *8 (-13 (-862) (-626 (-1198)))) (-4 *9 (-806)) (-5 *2 (-576)) + (-5 *1 (-944 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-702 *9)) (-5 *4 (-941)) (-5 *5 (-1180)) + (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-576)) + (-5 *1 (-944 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783))))) -(((*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) - ((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711))))) -(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200))))) -(((*1 *2 *3) - (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *2) (-12 (-5 *2 (-1178 (-656 (-940)))) (-5 *1 (-898))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) - (-5 *1 (-1196))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-866 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-867 *5 *3)) - (-4 *3 (-866 *5))))) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) + (-14 *4 (-1198)) (-14 *5 *3)))) (((*1 *2 *3) - (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1197)) - (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-874)) (-5 *2 (-703 (-130))) (-5 *3 (-130))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-112)) (-5 *1 (-833))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) - (-14 *3 (-940)) (-4 *4 (-1070)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1261 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1197)) - (-4 *5 (-374)) (-5 *1 (-942 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1193 *5)) - (-5 *1 (-942 *4 *5)) (-14 *4 (-1197)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) - (-5 *2 (-419 (-971 *6))) (-5 *1 (-1071 *5 *6)) (-14 *5 (-1197))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1070)) - (-5 *2 (-1288 (-1288 *5))) (-5 *1 (-1050 *5)) (-5 *4 (-1288 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) - (-5 *1 (-1196))))) -(((*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1121)) (-4 *2 (-379))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *10)) - (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1092 *5 *6 *7 *8)) - (-4 *10 (-1130 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1 (-1179 *4) (-1179 *4))) (-5 *2 (-1179 *4)) + (-5 *1 (-1315 *4)) (-4 *4 (-1239)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) - (-5 *1 (-640 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1197))) - (-5 *2 - (-656 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-792 *5 (-878 *6))))) - (-5 *1 (-640 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) - (-5 *1 (-1067 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1092 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1231 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-657 (-1179 *5)) (-657 (-1179 *5)))) (-5 *4 (-576)) + (-5 *2 (-657 (-1179 *5))) (-5 *1 (-1315 *5)) (-4 *5 (-1239))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1121))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1197)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-656 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -4291 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1223) (-27) (-442 *8))) - (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) - (-5 *2 (-656 *4)) (-5 *1 (-1035 *8 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1264 *4)) (-4 *4 (-1070)) - (-5 *2 (-1288 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2119 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1196)))) - (-5 *1 (-1196))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-940)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1106))))) + (-12 (-5 *2 (-2 (|:| -4351 *3) (|:| |coef2| (-795 *3)))) + (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) (((*1 *2 *3) - (-12 (-5 *2 (-430 (-1193 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1193 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1121)))) + (-12 (-5 *3 (-304 (-972 (-576)))) + (-5 *2 + (-2 (|:| |varOrder| (-657 (-1198))) + (|:| |inhom| (-3 (-657 (-1289 (-784))) "failed")) + (|:| |hom| (-657 (-1289 (-784)))))) + (-5 *1 (-241))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)))) ((*1 *2 *3) - (-12 (-4 *1 (-928)) (-5 *2 (-430 (-1193 *1))) (-5 *3 (-1193 *1))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-4 *7 (-568)) - (-4 *8 (-968 *7 *5 *6)) - (-5 *2 (-2 (|:| -4080 (-783)) (|:| -2862 *3) (|:| |radicand| *3))) - (-5 *1 (-972 *5 *6 *7 *8 *3)) (-5 *4 (-783)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4113 ($ *8)) (-15 -2687 (*8 $)) (-15 -2697 (*8 $)))))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1023))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568)))) - ((*1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1223)))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) - (-4 *2 (-1238)) (-5 *1 (-58 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (|has| *1 (-6 -4464)) - (-4 *1 (-152 *2)) (-4 *2 (-1238)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) - (-4 *2 (-1238)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4464)) (-4 *1 (-152 *2)) - (-4 *2 (-1238)))) + (|partial| -12 (-4 *4 (-806)) (-4 *5 (-1071)) (-4 *6 (-969 *5 *4 *2)) + (-4 *2 (-862)) (-5 *1 (-970 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3515 ($ *6)) (-15 -1590 (*6 $)) + (-15 -1602 (*6 $))))))) ((*1 *2 *3) - (-12 (-4 *4 (-1070)) - (-5 *2 (-2 (|:| -2571 (-1193 *4)) (|:| |deg| (-940)))) - (-5 *1 (-223 *4 *5)) (-5 *3 (-1193 *4)) (-4 *5 (-568)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) - (-4 *6 (-1238)) (-4 *2 (-1238)) (-5 *1 (-244 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1264 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1121)))) - ((*1 *1 *1) - (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1264 *2)) - (-4 *4 (-1264 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1238)) (-4 *2 (-1238)) - (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1121)) (-4 *2 (-1121)) - (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) - ((*1 *1 *1) (-5 *1 (-507))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1238)) - (-4 *2 (-1238)) (-5 *1 (-654 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1070)) (-4 *2 (-1070)) - (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) - (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1070)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-374)) - (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) - (-4 *2 (-1238)) (-5 *1 (-976 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) - (-14 *6 (-656 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1070)) (-4 *2 (-1070)) - (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) - (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) - (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *12 (-1074 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1238)) - (-4 *2 (-1238)) (-5 *1 (-1176 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1231 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *2 (-1086 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) - (-4 *2 (-1238)) (-5 *1 (-1287 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-945))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) - (-4 *3 (-1238))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) - (-4 *3 (-1121))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-995))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2970 *3) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1223))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-1193 (-419 (-1193 *6)))) (-5 *1 (-572 *5 *6 *7)) - (-5 *3 (-1193 *6)) (-4 *7 (-1121)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1264 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1193 *11)) (-5 *6 (-656 *10)) - (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-861)) - (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-968 *11 *9 *10)) - (-5 *2 (-656 (-1193 *5))) (-5 *1 (-754 *9 *10 *11 *5)) - (-5 *3 (-1193 *5)))) - ((*1 *2 *1) - (-12 (-4 *2 (-968 *3 *4 *5)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) - (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-14 *6 (-656 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406))))) + (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) + (-5 *2 (-1198)) (-5 *1 (-1065 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-657 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) + (-4 *7 (-1265 *6)) + (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-947))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) + (-12 (-4 *2 (-1071)) (-5 *1 (-50 *2 *3)) (-14 *3 (-657 (-1198))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-940))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) - (-14 *4 (-940)) (-14 *5 (-1014 *4 *2)))) + (-12 (-5 *3 (-657 (-941))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) + (-14 *4 (-941)) (-14 *5 (-1015 *4 *2)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) + (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-132)))) + (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-132)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) + (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1071)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) - (-4 *4 (-1264 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070)))) + (-4 *4 (-1265 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-721 *2)) (-4 *2 (-1071)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) + (-12 (-4 *2 (-1071)) (-5 *1 (-748 *2 *3)) (-4 *3 (-739)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) - (-4 *4 (-1070)) (-4 *5 (-861)))) + (-12 (-5 *2 (-657 *5)) (-5 *3 (-657 (-784))) (-4 *1 (-753 *4 *5)) + (-4 *4 (-1071)) (-4 *5 (-862)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) - (-4 *2 (-861)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *2)) (-4 *4 (-1071)) + (-4 *2 (-862)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-867 *2)) (-4 *2 (-1071)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) - (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) + (-12 (-5 *2 (-657 *6)) (-5 *3 (-657 (-784))) (-4 *1 (-969 *4 *5 *6)) + (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *2 (-861)))) + (-12 (-5 *3 (-784)) (-4 *1 (-969 *4 *5 *2)) (-4 *4 (-1071)) + (-4 *5 (-806)) (-4 *2 (-862)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-968 *4 (-543 *5) *5)) - (-5 *1 (-1147 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-861)))) + (-12 (-5 *3 (-784)) (-4 *2 (-969 *4 (-543 *5) *5)) + (-5 *1 (-1148 *4 *5 *2)) (-4 *4 (-1071)) (-4 *5 (-862)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-971 *4)) (-5 *1 (-1232 *4)) - (-4 *4 (-1070))))) + (-12 (-5 *3 (-784)) (-5 *2 (-972 *4)) (-5 *1 (-1233 *4)) + (-4 *4 (-1071))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) +(((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) + (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) + (-5 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) + (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) + (-5 *1 (-1130 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-784)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-784))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1179 (-576))) (-5 *1 (-1182 *4)) (-4 *4 (-1071)) + (-5 *3 (-576))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) + (-4 *6 (-806)) (-5 *2 (-419 (-972 *4))) (-5 *1 (-944 *4 *5 *6 *3)) + (-4 *3 (-969 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-702 *7)) (-4 *7 (-969 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) + (-4 *6 (-806)) (-5 *2 (-702 (-419 (-972 *4)))) + (-5 *1 (-944 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) + (-4 *6 (-806)) (-5 *2 (-657 (-419 (-972 *4)))) + (-5 *1 (-944 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1161)))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-1225 *3))) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1070)) - (-5 *1 (-726 *3 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-661 *3)) (-4 *3 (-1071)) + (-5 *1 (-727 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-848 *3))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-849 *3))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-120 *2)) (-4 *2 (-1239))))) +(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1062))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-576)) (-14 *4 (-784))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-784)) (-4 *5 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-784)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1071)) + (-4 *1 (-700 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-877)))) (-5 *1 (-877)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1164 *3 *4)) (-5 *1 (-1015 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-374)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 (-657 *5))) (-4 *5 (-1071)) + (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) + (-4 *7 (-243 *3 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-806)) (-4 *2 (-969 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) + (-4 *4 (-464)) (-4 *6 (-862))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-657 (-972 *4))) (-5 *3 (-657 (-1198))) (-4 *4 (-464)) + (-5 *1 (-938 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-707))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-714))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-712))) (-5 *1 (-340)))) + ((*1 *1) (-5 *1 (-340)))) +(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1202))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) - (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1279 *5)) - (-5 *1 (-1281 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-657 *2))) (-5 *4 (-657 *5)) + (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1280 *5)) + (-5 *1 (-1282 *5 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-702 (-972 *4))) (-5 *1 (-1050 *4)) + (-4 *4 (-1071))))) +(((*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1224) (-1024)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1071)) (-5 *1 (-725 *3 *4)) + (-4 *4 (-1265 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-548))) (-5 *1 (-548))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-859))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *3 (-657 (-270))) + (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-270)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-480))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1180)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) + (-5 *2 (-1057)) (-5 *1 (-771))))) (((*1 *2 *2) - (-12 (-5 *2 (-1288 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) + (-12 (-5 *2 (-1289 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-940)) (-4 *4 (-374)) (-5 *2 (-1288 *1)) + (-12 (-5 *3 (-941)) (-4 *4 (-374)) (-5 *2 (-1289 *1)) (-4 *1 (-339 *4)))) - ((*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1288 *1)) (-4 *1 (-339 *3)))) + ((*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1289 *1)) (-4 *1 (-339 *3)))) ((*1 *2) - (-12 (-4 *3 (-174)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *1)) + (-12 (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-1289 *1)) (-4 *1 (-421 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) - (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) - (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) + (-12 (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) + (-5 *2 (-1289 *6)) (-5 *1 (-425 *3 *4 *5 *6)) + (-4 *6 (-13 (-421 *4 *5) (-1060 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) - (-5 *2 (-1288 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) + (-12 (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) + (-5 *2 (-1289 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1288 *1)) (-4 *1 (-429 *3)))) + ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1289 *1)) (-4 *1 (-429 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1288 (-1288 *4))) (-5 *1 (-540 *4)) + (-12 (-5 *3 (-941)) (-5 *2 (-1289 (-1289 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-802)) (-5 *5 (-576))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-765))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-657 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-576))))) + (-5 *1 (-430 *3)) (-4 *3 (-568)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-784)) (-4 *3 (-360)) (-4 *5 (-1265 *3)) + (-5 *2 (-657 (-1194 *3))) (-5 *1 (-510 *3 *5 *6)) + (-4 *6 (-1265 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 *4)) (-4 *4 (-374)) (-5 *2 (-702 *4)) + (-5 *1 (-827 *4 *5)) (-4 *5 (-669 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *5)) (-5 *4 (-784)) (-4 *5 (-374)) + (-5 *2 (-702 *5)) (-5 *1 (-827 *5 *6)) (-4 *6 (-669 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-856 (-390))) (-5 *2 (-856 (-227))) (-5 *1 (-315))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) + (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) - (-5 *1 (-815))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-943 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) (-5 *2 (-112)) - (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) - ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576)))) - ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1056)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-317) (-1059 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1013 *2)) (-4 *4 (-1264 *3)) (-4 *2 (-317)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1059 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1121)) (-5 *2 (-1146 *3 (-624 *1))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) - (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) - (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) - (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) - (-4 *2 (-699 *3 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) - (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1083)))) - ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1083))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-317)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) - (-5 *2 (-656 (-1115 (-227)))) (-5 *1 (-947))))) -(((*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1059 (-576)))) (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1013 *3)) (-4 *5 (-1264 *4)) - (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) - (-4 *6 (-13 (-421 *4 *5) (-1059 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *3 (-1121)) (-5 *2 (-1146 *3 (-624 *1))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1146 (-576) (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-738) *3)))) - ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-738) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1111))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-1121)) (-5 *2 (-656 *1)) - (-4 *1 (-393 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-738)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-968 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1237))) (-5 *1 (-536))))) -(((*1 *1) (-5 *1 (-1289)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) - (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-656 (-1232 *5))) - (-5 *1 (-1296 *5)) (-5 *4 (-1232 *5))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) - (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1288 *5))))) - (-5 *1 (-999 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1288 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3115 (-794 *3)) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -3115 *1) (|:| |coef2| *1))) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) - (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-866 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-867 *5 *3)) - (-4 *3 (-866 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-971 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) + (-5 *1 (-816))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-594))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4442 *7)))) - (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4442 *7)))) - (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-1128 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-695 *4 *5)) (-4 *4 (-1121)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1305 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1070)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-940)) (|has| *4 (-6 (-4466 "*"))) - (-4 *4 (-1070)) (-5 *1 (-1049 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-940)) - (|has| *4 (-6 (-4466 "*"))) (-4 *4 (-1070)) (-5 *1 (-1049 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1290)))) + (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1280 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1198)) (-5 *5 (-1116 (-227))) (-5 *2 (-947)) + (-5 *1 (-945 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1198)) (-5 *2 (-947)) (-5 *1 (-945 *3)) + (-4 *3 (-626 (-548))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-947)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1179)) (-5 *1 (-1290)))) - ((*1 *1 *1) (-5 *1 (-1290)))) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) + (-5 *1 (-947))))) +(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390)))) + ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-390))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 (-657 *6))) (-4 *6 (-969 *3 *5 *4)) + (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1198)))) + (-4 *5 (-806)) (-5 *1 (-944 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 - (-5 *2 - (-656 - (-2 - (|:| -2240 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) - (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) - (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -2905 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390))))))) - (-5 *1 (-815))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) - (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1279 *5)) (-5 *2 (-656 *6)) - (-5 *1 (-1281 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *1)))) - (-4 *1 (-1092 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1242))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-1267 *3 *2)) - (-4 *2 (-13 (-1264 *3) (-568) (-10 -8 (-15 -3115 ($ $ $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1238)) (-5 *2 (-576))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) - (-4 *5 (-861)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1070)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-866 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1070)) - (-5 *1 (-867 *2 *3)) (-4 *3 (-866 *2))))) + (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) +(((*1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1292))))) (((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1288 (-3 (-480) "undefined"))) (-5 *1 (-1289))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-656 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-464) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *6 *3))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-656 *1)) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) - (-4 *3 (-1121)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-656 *1)) (-4 *1 (-968 *3 *4 *5)))) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) + (-4 *6 (-806)) (-5 *2 (-112)) (-5 *1 (-944 *4 *5 *6 *7)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *3)) - (-5 *1 (-969 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) - (-15 -2697 (*7 $)))))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-496 *3))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) - (-5 *3 (-576)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-885 *4)) (-14 *4 *3) - (-5 *3 (-576)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-886 *4 *5)) - (-5 *3 (-576)) (-4 *5 (-883 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1033)) (-5 *2 (-419 (-576))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-374))) - (-4 *3 (-1264 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-804)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4113 (*2 (-1197)))) - (-4 *2 (-1070))))) -(((*1 *2 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) - (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1279 *5)) (-4 *6 (-1264 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) - (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) - (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1288 *4))) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-656 (-1288 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)) - (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) - (-5 *2 (-701 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *1 *1) (-4 *1 (-1165)))) + (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-112)) + (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1198)) (-5 *1 (-340))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-4 *1 (-416)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *2 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1178 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *1) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-1193 *3))))) -(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1207))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-1081)) (-5 *2 (-576))))) + (-12 + (-5 *3 + (-657 + (-2 (|:| -4343 (-784)) + (|:| |eqns| + (-657 + (-2 (|:| |det| *7) (|:| |rows| (-657 (-576))) + (|:| |cols| (-657 (-576)))))) + (|:| |fgb| (-657 *7))))) + (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-784)) + (-5 *1 (-944 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) + (-4 *4 (-1265 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-933 *4 *5)) + (-4 *5 (-1265 (-419 *4)))))) +(((*1 *1) (-5 *1 (-518)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1265 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1265 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-784))) + (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1265 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (|has| *1 (-6 -4455)) (-4 *1 (-416)) - (-5 *2 (-940))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-783))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) - (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-712 *3)) - (-4 *3 (-317))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1193 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -4291 *3) (|:| |coeff| *3))) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1193 *3))) - (-4 *3 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -4291 *3) (|:| |coeff| *3))) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1121))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1056)) - (-5 *1 (-760))))) + (-12 (-5 *3 (-657 (-548))) (-5 *2 (-1198)) (-5 *1 (-548))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1264 (-576))) (-5 *1 (-498 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-908 *3)) (|:| |c| *4)))) - (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) + (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) + (-4 *2 (-700 *3 *4 *5))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-657 (-1198))) (-4 *4 (-1122)) + (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) + (-5 *1 (-1098 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) + (-5 *1 (-1098 *3 *4 *2)) + (-4 *2 (-13 (-442 *4) (-902 *3) (-626 (-908 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) + ((*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-908 *3)) (-4 *3 (-861))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-368 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) + ((*1 *1 *1) (-4 *1 (-1082)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) - (-5 *2 (-112)) (-5 *1 (-1316 *4))))) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) - ((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1121))))) + (-12 (-4 *1 (-929)) (-5 *2 (-430 (-1194 *1))) (-5 *3 (-1194 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-996))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) + (-5 *2 (-1289 *6)) (-5 *1 (-347 *3 *4 *5 *6)) + (-4 *6 (-353 *3 *4 *5))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *1) (-4 *1 (-294))) - ((*1 *2 *3) - (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) - (-5 *2 (-656 (-2 (|:| -2862 (-783)) (|:| |logand| *4)))) - (-5 *1 (-330 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *2 *1) - (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) - (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) - (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) -(((*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557))))) -(((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1238))))) + (-4 *2 (-13 (-442 *3) (-1024)))))) (((*1 *2 *1) - (-12 (-5 *2 (-876)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-861) (-626 (-1197)))) (-4 *6 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) - (|:| |wcond| (-656 (-971 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) - (|:| -2704 (-656 (-1288 (-419 (-971 *4)))))))))) - (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1238))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *8 (-1086 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-656 *8)) - (|:| |towers| (-656 (-1048 *5 *6 *7 *8))))) - (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *8 (-1086 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-656 *8)) - (|:| |towers| (-656 (-1167 *5 *6 *7 *8))))) - (-5 *1 (-1167 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-576)) (-5 *1 (-246))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *5 (-1242)) (-4 *6 (-1264 *5)) - (-4 *7 (-1264 (-419 *6))) (-5 *2 (-656 (-971 *5))) - (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) - (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *4 (-374)) - (-5 *2 (-656 (-971 *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1193 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1264 (-171 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-940)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) (-5 *1 (-425 *3 *2 *4 *5)) - (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1059 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1013 *3)) - (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) - (-14 *6 (-1288 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-4 *5 (-1070)) - (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-656 (-624 (-507)))) - (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1193 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-940)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1264 *4)) - (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1264 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) - ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1131))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1193 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) - (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *9 (-968 *8 *6 *7)) - (-4 *6 (-805)) (-5 *2 (-1193 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-5 *2 (-173)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-907 *6))) - (-5 *5 (-1 (-904 *6 *8) *8 (-907 *6) (-904 *6 *8))) (-4 *6 (-1121)) - (-4 *8 (-13 (-1070) (-626 (-907 *6)) (-1059 *7))) - (-5 *2 (-904 *6 *8)) (-4 *7 (-1070)) (-5 *1 (-960 *6 *7 *8))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-971 (-576)))) (-5 *4 (-656 (-1197))) - (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1044)) (-5 *5 (-390)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) - (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) - (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-656 *1)) (-4 *1 (-1155 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-940))) (-5 *4 (-924 (-576))) - (-5 *2 (-701 (-576))) (-5 *1 (-602)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-602)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-924 (-576)))) - (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602))))) + (-12 (-5 *2 (-2 (|:| |cd| (-1180)) (|:| -2634 (-1180)))) + (-5 *1 (-835))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1265 (-419 (-576)))) (-5 *1 (-933 *3 *2)) + (-4 *2 (-1265 (-419 *3)))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) + (-5 *2 (-1057)) (-5 *1 (-769))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-941)) (-5 *1 (-799))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-576)) (-5 *1 (-1220 *4)) - (-4 *4 (-1070))))) + (-12 (-5 *3 (-657 (-941))) (-5 *2 (-1200 (-419 (-576)))) + (-5 *1 (-192))))) (((*1 *2) - (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2469 (-657 *1)))) + (-4 *1 (-378 *3)))) ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-783))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1197)) (-5 *2 (-112)) - (-5 *1 (-270))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-861))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-783)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-360)) (-5 *2 (-1193 *4)) - (-5 *1 (-540 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1223) (-29 *5)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1131))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-866 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2675 *3) (|:| -3561 *3))) (-5 *1 (-867 *5 *3)) - (-4 *3 (-866 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-861)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) - (|:| |f4| (-656 *5)))) - (-5 *1 (-1208 *6)) (-5 *4 (-656 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1231 *5 *6 *7 *3)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-890))) (-5 *1 (-495))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) - (-5 *2 (-1056)) (-5 *1 (-760))))) -(((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -4291 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1264 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-238)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-275 *4)) - (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-275 *3)) (-4 *6 (-805)) - (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-861))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *1) (-5 *1 (-340)))) -(((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-656 (-1197))))) - ((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-656 (-1197))))) - ((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) - (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-4 *2 (-353 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1264 *2))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1179)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219))))) -(((*1 *2 *2) (-12 (-5 *2 (-1115 (-855 (-227)))) (-5 *1 (-315))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-624 *3)) - (-4 *3 (-13 (-442 *5) (-27) (-1223))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -4291 *3) (|:| |coeff| *3))) - (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-340))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) - (-4 *4 (-1238)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1121)) (-5 *2 (-112)) (-5 *1 (-900 *3 *4 *5)) - (-4 *3 (-1121)) (-4 *5 (-678 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (|has| *1 (-6 -4455)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) - ((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-1178 (-576)))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1289)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1289)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1290)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290))))) -(((*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448))))) -(((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) -(((*1 *1) - (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) - (-4 *4 (-678 *3)))) - ((*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1070)) - (-4 *3 (-1121))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1121))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *5 (-379)) - (-5 *2 (-783))))) + (-5 *2 + (-2 (|:| |particular| (-465 *3 *4 *5 *6)) + (|:| -2469 (-657 (-465 *3 *4 *5 *6))))) + (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) (((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) - (-4 *6 (-353 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) -(((*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-876)))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *3 (-971 (-576))) - (-5 *1 (-340)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1113 (-971 (-576)))) (-5 *1 (-340))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288 (-711))) (-5 *1 (-315))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3))))) + (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1024)) + (-4 *2 (-1071))))) +(((*1 *1) (-5 *1 (-301)))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) (((*1 *2 *3) - (-12 (-5 *3 (-946)) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) - (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-946)) (-5 *4 (-419 (-576))) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) - (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) - (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) - (-5 *1 (-154)) (-5 *3 (-656 (-962 (-227)))))) - ((*1 *2 *3) - (-12 + (-12 (-5 *3 (-657 (-493 *4 *5))) (-14 *4 (-657 (-1198))) + (-4 *5 (-464)) (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 (-227))))) - (|:| |xValues| (-1115 (-227))) (|:| |yValues| (-1115 (-227))))) - (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 (-227))))))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *2 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1264 *4)) - (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1264 *5)) (-14 *6 (-940)))) + (-2 (|:| |gblist| (-657 (-253 *4 *5))) + (|:| |gvlist| (-657 (-576))))) + (-5 *1 (-643 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-5 *2 (-1294)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) + (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-969 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *1 *1) (-12 (-4 *1 (-1307 *2)) (-4 *2 (-374)) (-4 *2 (-379))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) - (|:| |genIdeal| (-516 *3 *4 *5 *6)))) - (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-656 (-1197))) (-4 *2 (-174)) - (-4 *3 (-243 (-1970 *4) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2411 *5) (|:| -4080 *3)) - (-2 (|:| -2411 *5) (|:| -4080 *3)))) - (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) - (-4 *7 (-968 *2 *3 (-878 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-360)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -3497 (-656 (-2 (|:| |irr| *3) (|:| -3172 (-576))))))) - (-5 *1 (-218 *5 *3)) (-4 *3 (-1264 *5))))) + (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1452 *4) (|:| -2196 (-576))))) - (-4 *4 (-1264 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-430 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1070)) - (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-1216))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1070)) (-4 *4 (-174)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)) - (-4 *3 (-174))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) + (-12 (-5 *3 (-1180)) (-5 *2 (-657 (-704 (-290)))) (-5 *1 (-169))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *7 (-1264 *5)) (-4 *4 (-736 *5 *7)) - (-5 *2 (-2 (|:| -3563 (-701 *6)) (|:| |vec| (-1288 *5)))) - (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4466 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) - (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) - (-4 *4 (-699 *2 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238))))) -(((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1242)) - (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) - (-4 *1 (-378 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-174)) - (-4 *1 (-381 *4 *5)) (-4 *5 (-1264 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) - (-4 *4 (-1264 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1242)) - (-4 *6 (-1264 (-419 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-353 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-301)) (-5 *1 (-169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) (((*1 *2 *3) - (-12 (-5 *2 (-1178 (-576))) (-5 *1 (-1181 *4)) (-4 *4 (-1070)) - (-5 *3 (-576))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-1293)) (-5 *1 (-246))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1161 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) - (-5 *1 (-1162 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-656 (-1161 *3 *4))) (-4 *3 (-13 (-1121) (-34))) - (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1162 *3 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1092 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112))))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *1 *1) (-5 *1 (-390))) ((*1 *1) (-5 *1 (-390)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-940)) (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) (-4 *1 (-175))) - ((*1 *1 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) -(((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1291)))) - ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1291))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) - (-4 *3 (-167 *6)) (-4 (-971 *6) (-901 *5)) - (-4 *6 (-13 (-901 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-904 *4 *1)) (-5 *3 (-907 *4)) (-4 *1 (-901 *4)) - (-4 *4 (-1121)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) - (-4 *6 (-13 (-1121) (-1059 *3))) (-4 *3 (-901 *5)) - (-5 *1 (-950 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) - (-4 *3 (-13 (-442 *6) (-626 *4) (-901 *5) (-1059 (-624 $)))) - (-5 *4 (-907 *5)) (-4 *6 (-13 (-568) (-901 *5))) - (-5 *1 (-951 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 (-576) *3)) (-5 *4 (-907 (-576))) (-4 *3 (-557)) - (-5 *1 (-952 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1121)) - (-4 *6 (-13 (-1121) (-1059 (-624 $)) (-626 *4) (-901 *5))) - (-5 *4 (-907 *5)) (-5 *1 (-953 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *6 *3)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) - (-4 *6 (-901 *5)) (-4 *3 (-678 *6)) (-5 *1 (-954 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-904 *6 *3) *8 (-907 *6) (-904 *6 *3))) - (-4 *8 (-861)) (-5 *2 (-904 *6 *3)) (-5 *4 (-907 *6)) - (-4 *6 (-1121)) (-4 *3 (-13 (-968 *9 *7 *8) (-626 *4))) - (-4 *7 (-805)) (-4 *9 (-13 (-1070) (-901 *6))) - (-5 *1 (-955 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) - (-4 *3 (-13 (-968 *8 *6 *7) (-626 *4))) (-5 *4 (-907 *5)) - (-4 *7 (-901 *5)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *8 (-13 (-1070) (-901 *5))) (-5 *1 (-955 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-1013 *6)) - (-4 *6 (-13 (-568) (-901 *5) (-626 *4))) (-5 *4 (-907 *5)) - (-5 *1 (-958 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 (-1197))) (-5 *3 (-1197)) (-5 *4 (-907 *5)) - (-4 *5 (-1121)) (-5 *1 (-959 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-656 (-907 *7))) (-5 *5 (-1 *9 (-656 *9))) - (-5 *6 (-1 (-904 *7 *9) *9 (-907 *7) (-904 *7 *9))) (-4 *7 (-1121)) - (-4 *9 (-13 (-1070) (-626 (-907 *7)) (-1059 *8))) - (-5 *2 (-904 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1070)) - (-5 *1 (-960 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1172))))) -(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-713))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-890))) (-5 *1 (-495))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1242)) (-4 *5 (-1264 *3)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-841))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-763))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178 (-1178 *4))) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4)) - (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1193 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-971 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *2)) (-5 *4 (-1197)) (-4 *2 (-442 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-568)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-4 *1 (-1033)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1193 *1)) (-5 *3 (-940)) (-5 *4 (-876)) - (-4 *1 (-1033)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-940)) (-4 *4 (-13 (-860) (-374))) - (-4 *1 (-1089 *4 *2)) (-4 *2 (-1264 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1293)) (-5 *1 (-843))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1246)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-904 *4 *5)) (-5 *3 (-904 *4 *6)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-678 *5)) (-5 *1 (-900 *4 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-876)))) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-1220))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *6 (-626 (-1197))) - (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *2 (-1186 (-656 (-971 *4)) (-656 (-304 (-971 *4))))) - (-5 *1 (-516 *4 *5 *6 *7))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1231 *5 *6 *7 *8)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2113 *6) (|:| |sol?| (-112))) (-576) - *6)) - (-4 *6 (-374)) (-4 *7 (-1264 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -4291 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -2113 *4) (|:| |sol?| (-112))) - (-576) *4)) - (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *1 (-586 *4 *5))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1242)) (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| -2862 (-419 *5)) (|:| |poly| *3))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) + (-5 *1 (-817 *4 *2)) (-4 *2 (-13 (-29 *4) (-1224) (-979)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1179))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) - (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1082 (-1045 *4) (-1193 (-1045 *4)))) (-5 *3 (-876)) - (-5 *1 (-1045 *4)) (-4 *4 (-13 (-860) (-374) (-1043)))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-1010)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-4 *4 (-1238)) (-5 *1 (-1078 *3 *4)) - (-4 *3 (-1114 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1115 *4)) (-4 *4 (-1238)) - (-5 *1 (-1113 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *3 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $))))) (-4 *5 (-568)) - (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *3 - (-13 (-861) - (-10 -8 (-15 -1556 ((-1197) $)) - (-15 -1654 ((-3 $ "failed") (-1197)))))) - (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *6)) - (-4 *6 - (-13 (-861) - (-10 -8 (-15 -1556 ((-1197) $)) - (-15 -1654 ((-3 $ "failed") (-1197)))))) - (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) - (-4 *2 (-968 (-971 *4) *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1023) (-1223))) - (-5 *1 (-612 *4 *2 *3)) - (-4 *3 (-13 (-442 (-171 *4)) (-1023) (-1223)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480))))) -(((*1 *1) (-5 *1 (-1293)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-390)) (-5 *1 (-1084))))) -(((*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) - ((*1 *2 *1) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1193 (-576))) (-5 *1 (-961)) (-5 *3 (-576))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2) - (-12 (-5 *2 (-1288 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) - (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1163 *4 *2)) (-14 *4 (-940)) - (-4 *2 (-13 (-1070) (-10 -7 (-6 (-4466 "*"))))) - (-5 *1 (-921 *4 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-419 (-971 (-576))))) (-5 *4 (-656 (-1197))) - (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) - (-4 *5 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1298))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-804)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-656 (-1197))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) - (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) - (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) - (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1070) (-861))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) - (-4 *6 (-1238)) (-4 *7 (-1238)) (-5 *2 (-245 *5 *7)) - (-5 *1 (-244 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-304 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1179)) (-5 *5 (-624 *6)) - (-4 *6 (-312)) (-4 *2 (-1238)) (-5 *1 (-307 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) - (-4 *2 (-312)) (-5 *1 (-308 *5 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1070)) - (-4 *6 (-1070)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1121)) - (-4 *6 (-1121)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) - (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) - (-4 *9 (-374)) (-4 *10 (-1264 *9)) (-4 *11 (-1264 (-419 *10))) - (-5 *2 (-347 *9 *10 *11 *12)) - (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-353 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1121)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1242)) (-4 *8 (-1242)) - (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *9 (-1264 *8)) - (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1264 (-419 *9))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-1121)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) - (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) - (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) - (-4 *6 (-1013 *5)) (-4 *7 (-1264 *6)) - (-4 *8 (-13 (-421 *6 *7) (-1059 *6))) (-4 *9 (-317)) - (-4 *10 (-1013 *9)) (-4 *11 (-1264 *10)) - (-5 *2 (-425 *9 *10 *11 *12)) - (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-421 *10 *11) (-1059 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) - (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) - (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) - (-4 *4 (-864)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) - (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -4291 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-374)) (-4 *6 (-374)) - (-5 *2 (-2 (|:| -4291 *6) (|:| |coeff| *6))) - (-5 *1 (-596 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-374)) (-4 *6 (-374)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-596 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) - (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-613 *8)) - (-5 *1 (-611 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1178 *6)) (-5 *5 (-613 *7)) - (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) - (-5 *1 (-611 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1178 *7)) - (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) - (-5 *1 (-611 *6 *7 *8)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) - (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-656 *8)) - (-5 *1 (-655 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) - (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) - (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) - (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1070)) - (-4 *8 (-1070)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) - (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) - (-4 *6 (-1264 *5)) (-4 *2 (-1264 (-419 *8))) - (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1264 (-419 *6))) - (-4 *8 (-1264 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1070)) (-4 *9 (-1070)) - (-4 *5 (-861)) (-4 *6 (-805)) (-4 *2 (-968 *9 *7 *5)) - (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) - (-4 *4 (-968 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-805)) - (-4 *9 (-1070)) (-4 *2 (-968 *9 *8 *6)) - (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) - (-4 *4 (-968 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1070)) - (-4 *6 (-1070)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) - (-5 *1 (-746 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-747 *3 *4)) - (-4 *4 (-738)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1070)) - (-4 *6 (-1070)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1121)) - (-4 *6 (-1121)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-844 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1121)) - (-4 *6 (-1121)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-854 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-897 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-897 *6)) (-5 *1 (-896 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-904 *5 *6)) (-4 *5 (-1121)) - (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-904 *5 *7)) - (-5 *1 (-903 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) - (-4 *6 (-1121)) (-5 *2 (-907 *6)) (-5 *1 (-906 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1070)) - (-4 *6 (-1070)) (-5 *2 (-971 *6)) (-5 *1 (-965 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) - (-4 *8 (-1070)) (-4 *6 (-805)) - (-4 *2 - (-13 (-1121) - (-10 -8 (-15 -4026 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) - (-5 *1 (-970 *6 *7 *8 *5 *2)) (-4 *5 (-968 *8 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-977 *6)) (-5 *1 (-976 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-985 *5)) (-4 *5 (-1121)) - (-4 *6 (-1121)) (-5 *2 (-985 *6)) (-5 *1 (-987 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1070)) - (-4 *6 (-1070)) (-5 *2 (-962 *6)) (-5 *1 (-1002 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-971 *4))) (-4 *4 (-1070)) - (-4 *2 (-968 (-971 *4) *5 *6)) (-4 *5 (-805)) - (-4 *6 - (-13 (-861) - (-10 -8 (-15 -1556 ((-1197) $)) - (-15 -1654 ((-3 $ "failed") (-1197)))))) - (-5 *1 (-1005 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) - (-4 *2 (-1013 *6)) (-5 *1 (-1011 *5 *6 *4 *2)) (-4 *4 (-1013 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-1018 *6)) (-5 *1 (-1019 *4 *5 *2 *6)) (-4 *4 (-1018 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) - (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) - (-4 *5 (-1070)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1070)) (-4 *10 (-1070)) - (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) - (-4 *9 (-243 *5 *7)) (-4 *2 (-1074 *5 *6 *10 *11 *12)) - (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) - (-4 *12 (-243 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1115 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-1115 *6)) (-5 *1 (-1110 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1115 *5)) (-4 *5 (-860)) - (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-656 *6)) - (-5 *1 (-1110 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-1113 *6)) (-5 *1 (-1112 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) - (-4 *2 (-1170 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-1178 *6)) (-5 *1 (-1176 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1178 *6)) (-5 *5 (-1178 *7)) - (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1178 *8)) - (-5 *1 (-1177 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1193 *5)) (-4 *5 (-1070)) - (-4 *6 (-1070)) (-5 *2 (-1193 *6)) (-5 *1 (-1191 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1214 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5 *7 *9)) (-4 *5 (-1070)) - (-4 *6 (-1070)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1252 *6 *8 *10)) (-5 *1 (-1247 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1197)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-1255 *6)) (-5 *1 (-1254 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-860)) - (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1178 *6)) - (-5 *1 (-1254 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1261 *5 *6)) (-14 *5 (-1197)) - (-4 *6 (-1070)) (-4 *8 (-1070)) (-5 *2 (-1261 *7 *8)) - (-5 *1 (-1256 *5 *6 *7 *8)) (-14 *7 (-1197)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) - (-4 *2 (-1264 *6)) (-5 *1 (-1262 *5 *4 *6 *2)) (-4 *4 (-1264 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1273 *5 *7 *9)) (-4 *5 (-1070)) - (-4 *6 (-1070)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1273 *6 *8 *10)) (-5 *1 (-1268 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1197)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) - (-4 *2 (-1279 *6)) (-5 *1 (-1277 *5 *6 *4 *2)) (-4 *4 (-1279 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1287 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1288 *5)) - (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) - (-5 *1 (-1287 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1070)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-1311 *3 *4)) - (-4 *4 (-858))))) -(((*1 *1) (-5 *1 (-1084)))) + (-12 (-4 *4 (-174)) (-5 *2 (-1194 (-972 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) + (-5 *2 (-1194 (-972 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) - (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) - (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1059 (-576)))) - (-5 *2 (-2 (|:| -3359 (-783)) (|:| -2952 *8))) - (-5 *1 (-930 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1264 (-419 (-576)))) (-4 *5 (-1264 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) - (-5 *2 (-2 (|:| -3359 (-783)) (|:| -2952 *6))) - (-5 *1 (-931 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-403))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-861)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-1001 *3)) (-4 *3 (-1070)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1092 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804))))) -(((*1 *2 *1) (-12 (-5 *2 (-977 (-783))) (-5 *1 (-343))))) + (-12 (-5 *3 (-1289 (-702 *4))) (-4 *4 (-174)) + (-5 *2 (-1289 (-702 (-972 *4)))) (-5 *1 (-191 *4))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *3 (-657 (-889))) + (-5 *4 (-657 (-941))) (-5 *5 (-657 (-270))) (-5 *1 (-480)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *3 (-657 (-889))) + (-5 *4 (-657 (-941))) (-5 *1 (-480)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-480)))) + ((*1 *1 *1) (-5 *1 (-480)))) (((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-194))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1139)) (-5 *1 (-1136))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390))))) -(((*1 *2 *3) - (-12 (-4 *4 (-861)) (-5 *2 (-1209 (-656 *4))) (-5 *1 (-1208 *4)) - (-5 *3 (-656 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *1 *2) (-12 (-5 *2 (-940)) (-4 *1 (-379)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360)))) + (|partial| -12 (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) + (-5 *2 (-856 *4)) (-5 *1 (-323 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1224) (-442 *3))) (-14 *5 (-1198)) + (-14 *6 *4))) ((*1 *2 *1) - (-12 (-4 *2 (-861)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1121)) - (-14 *4 - (-1 (-112) (-2 (|:| -2411 *2) (|:| -4080 *3)) - (-2 (|:| -2411 *2) (|:| -4080 *3))))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *5)) (-4 *5 (-1264 *3)) (-4 *3 (-317)) - (-5 *2 (-112)) (-5 *1 (-467 *3 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) + (|partial| -12 (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) + (-5 *2 (-856 *4)) (-5 *1 (-1275 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1224) (-442 *3))) (-14 *5 (-1198)) + (-14 *6 *4)))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-224 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-4 *1 (-261 *3)))) + ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) +(((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-4 *8 (-968 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-971 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) - (|:| -2704 (-656 (-1288 (-419 (-971 *5)))))))))) - (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1197))) (-4 *8 (-968 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-971 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) - (|:| -2704 (-656 (-1288 (-419 (-971 *5)))))))))) - (-5 *1 (-943 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) - (|:| |wcond| (-656 (-971 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) - (|:| -2704 (-656 (-1288 (-419 (-971 *4)))))))))) - (-5 *1 (-943 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *5 (-940)) (-4 *9 (-968 *6 *8 *7)) - (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-861) (-626 (-1197)))) - (-4 *8 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) - (|:| |wcond| (-656 (-971 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) - (|:| -2704 (-656 (-1288 (-419 (-971 *6)))))))))) - (-5 *1 (-943 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) - (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) - (|:| |wcond| (-656 (-971 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *6)))) - (|:| -2704 (-656 (-1288 (-419 (-971 *6)))))))))) - (-5 *1 (-943 *6 *7 *8 *9)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) + (-4 *7 (-1265 (-419 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -3746 *3))) + (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-940)) (-4 *8 (-968 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) - (-4 *7 (-805)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-971 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *5)))) - (|:| -2704 (-656 (-1288 (-419 (-971 *5)))))))))) - (-5 *1 (-943 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1179)) - (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-943 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1197))) (-5 *5 (-1179)) - (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-943 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-1179)) (-4 *8 (-968 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) - (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-943 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-940)) - (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) - (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) - (-5 *1 (-943 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1197))) (-5 *5 (-940)) - (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) - (-4 *8 (-13 (-861) (-626 (-1197)))) (-4 *9 (-805)) (-5 *2 (-576)) - (-5 *1 (-943 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-940)) (-5 *5 (-1179)) - (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-861) (-626 (-1197)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-943 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) - (-4 *7 (-1264 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *2 (-419 (-971 *4))) (-5 *1 (-943 *4 *5 *6 *3)) - (-4 *3 (-968 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *7)) (-4 *7 (-968 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *2 (-701 (-419 (-971 *4)))) - (-5 *1 (-943 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *2 (-656 (-419 (-971 *4)))) - (-5 *1 (-943 *4 *5 *6 *7))))) + (-2 (|:| |answer| (-419 *6)) (|:| -3746 (-419 *6)) + (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) + (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) + (-4 *6 (-384 *3)) (-5 *1 (-701 *3 *5 *6 *2)) + (-4 *2 (-700 *3 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557))))) +(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1220)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1220))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-805)) (-4 *2 (-968 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) - (-4 *4 (-464)) (-4 *6 (-861))))) + (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1224) (-1024)))))) (((*1 *2 *1) - (-12 (-4 *2 (-1114 *3)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1238)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1115 *3)) (-5 *1 (-1113 *3)) (-4 *3 (-1238)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) - (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4)))) + (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-657 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-784)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1071))))) +(((*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-784))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1122)) (-4 *6 (-902 *5)) (-5 *2 (-901 *5 *6 (-657 *6))) + (-5 *1 (-903 *5 *6 *4)) (-5 *3 (-657 *6)) (-4 *4 (-626 (-908 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) - (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1293)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-390))))) -(((*1 *1) (-5 *1 (-518)))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-1288 *6)) (-5 *1 (-347 *3 *4 *5 *6)) - (-4 *6 (-353 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) - (-4 *2 (-1070))))) + (-12 (-4 *5 (-1122)) (-5 *2 (-657 (-304 *3))) (-5 *1 (-903 *5 *3 *4)) + (-4 *3 (-1060 (-1198))) (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1122)) (-5 *2 (-657 (-304 (-972 *3)))) + (-5 *1 (-903 *5 *3 *4)) (-4 *3 (-1071)) + (-2665 (-4 *3 (-1060 (-1198)))) (-4 *3 (-902 *5)) + (-4 *4 (-626 (-908 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1122)) (-5 *2 (-905 *5 *3)) (-5 *1 (-903 *5 *3 *4)) + (-2665 (-4 *3 (-1060 (-1198)))) (-2665 (-4 *3 (-1071))) + (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-326 *5))) + (-5 *1 (-1151 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-326 *5)))) + (-5 *1 (-1151 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) + (-12 (-5 *3 (-657 *4)) (-4 *4 (-1122)) (-5 *2 (-1294)) + (-5 *1 (-1240 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-657 *4)) (-4 *4 (-1122)) (-5 *2 (-1294)) + (-5 *1 (-1240 *4))))) +(((*1 *2) + (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) + (-5 *2 (-657 (-657 *4))) (-5 *1 (-352 *3 *4 *5 *6)) + (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-657 (-657 *3)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-52)) (-5 *1 (-908 *4)) + (-4 *4 (-1122))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-799))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-941)))) + ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245))) + ((*1 *1 *1 *1) (-5 *1 (-1246))) ((*1 *1 *1 *1) (-5 *1 (-1247)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1287 *3)) (-4 *3 (-1239)) (-4 *3 (-1071)) + (-5 *2 (-702 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) - (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) - (-5 *2 (-855 *4)) (-5 *1 (-1274 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1223) (-442 *3))) (-14 *5 (-1197)) - (-14 *6 *4)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) + (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-1071))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) - (-4 *4 (-1121)) (-4 *5 (-1121))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) - ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *1 *1) (-4 *1 (-568)))) + (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1216 *4 *5)) + (-4 *4 (-1122)) (-4 *5 (-1122))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1084)))) + ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1084))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) - (-4 *4 (-38 (-419 (-576))))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-941)))) + ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245))) + ((*1 *1 *1 *1) (-5 *1 (-1246))) ((*1 *1 *1 *1) (-5 *1 (-1247)))) (((*1 *1 *2) - (-12 (-5 *2 (-701 *4)) (-4 *4 (-1070)) (-5 *1 (-1163 *3 *4)) - (-14 *3 (-783))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1179)) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1125))) (-5 *1 (-301))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1238)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) - (-4 *6 (-1086 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3058 *1) (|:| |upper| *1))) - (-4 *1 (-997 *4 *5 *3 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) - (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1197)) (-5 *5 (-1115 (-227))) (-5 *2 (-946)) - (-5 *1 (-944 *3)) (-4 *3 (-626 (-548))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-945)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946)))) + (-12 (-5 *2 (-657 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)) + (-4 *3 (-568)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-568))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) + (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) + ((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *4)) + (-4 *4 (-1239)) (-5 *2 (-112))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1180)) (-5 *1 (-1011)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946)))) + (-12 (-5 *2 (-1198)) (-4 *4 (-1239)) (-5 *1 (-1079 *3 *4)) + (-4 *3 (-1115 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1115 (-227))) - (-5 *1 (-946))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-759))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-861)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1070)) (-5 *1 (-1260 *4 *2)) - (-4 *2 (-1264 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) + (-12 (-5 *2 (-1198)) (-5 *3 (-1116 *4)) (-4 *4 (-1239)) + (-5 *1 (-1114 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-905 *4 *5)) (-4 *5 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1187))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1121)))) + (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1201)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) - (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-962 (-227)))) (-5 *1 (-1289))))) + (-12 (-5 *4 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1294)) + (-5 *1 (-1201)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1294)) + (-5 *1 (-1201))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-317)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) - (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) - (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) - (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(((*1 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) - (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-968 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *2 (-928)) - (-5 *1 (-925 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-928)) (-5 *1 (-926 *2 *3)) (-4 *3 (-1264 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) + (-12 (-5 *3 (-419 *6)) (-4 *5 (-1243)) (-4 *6 (-1265 *5)) + (-5 *2 (-2 (|:| -2128 (-784)) (|:| -1735 *3) (|:| |radicand| *6))) + (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-784)) (-4 *7 (-1265 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1122)) (-5 *1 (-984 *3 *2)) (-4 *3 (-1122))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-657 (-1194 *4))) (-5 *3 (-1194 *4)) + (-4 *4 (-929)) (-5 *1 (-676 *4))))) +(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) - ((*1 *1 *1) (-4 *1 (-860))) - ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)) (-4 *2 (-1081)))) - ((*1 *1 *1) (-4 *1 (-1081))) ((*1 *1 *1) (-4 *1 (-1160)))) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *1 *1) (-5 *1 (-390))) ((*1 *1) (-5 *1 (-390)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-657 (-390))) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-390))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-390))) (-5 *1 (-480)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-889)) (-5 *2 (-1294)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1239)) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-784)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1071)) + (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) - (-4 *3 (-1070))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-895))))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1059 (-576))) (-4 *4 (-568)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-135))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) - (-4 *5 (-1279 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1250 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) - (-4 *5 (-1248 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1271 *4 *5)) - (-4 *6 (-1004 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-294))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *1) (-5 *1 (-390))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1121)) - (-4 *3 (-1133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-576)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1121)) - (-5 *1 (-694 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1070)) - (-5 *1 (-702 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *3 (-1070)) (-5 *1 (-726 *3 *4)) - (-4 *4 (-660 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1070)) - (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1070)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1070)))) - ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-419 (-576))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1133)) (-5 *2 (-940)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2156 *4)))) - (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))) - (-5 *1 (-571)))) - ((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) (-12 (-5 *2 - (-656 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227))))) - (-5 *1 (-815))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1264 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1264 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-1301 *4 *5 *6 *7))) - (-5 *1 (-1301 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) - (-4 *7 (-805)) (-4 *8 (-861)) (-5 *2 (-656 (-1301 *6 *7 *8 *9))) - (-5 *1 (-1301 *6 *7 *8 *9))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + (-2 (|:| -3431 (-795 *3)) (|:| |coef1| (-795 *3)) + (|:| |coef2| (-795 *3)))) + (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *2 (-2 (|:| -3431 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1087 *3 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-568)))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) + (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-969 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) + (-4 *1 (-1265 *3))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) + (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-657 *7)) + (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-657 (-304 *7))) (-5 *4 (-657 (-115))) (-5 *5 (-304 *7)) + (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-657 (-304 *8))) (-5 *4 (-657 (-115))) (-5 *5 (-304 *8)) + (-5 *6 (-657 *8)) (-4 *8 (-442 *7)) + (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-657 *7)) (-5 *4 (-657 (-115))) (-5 *5 (-304 *7)) + (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 (-115))) (-5 *6 (-657 (-304 *8))) + (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) + (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) + (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) + (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) + (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-657 *3)) + (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) + (-5 *1 (-327 *7 *3))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-1202)) (-5 *1 (-1201))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 (-972 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) + (-14 *4 (-657 (-1198))))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1197))) (-4 *6 (-374)) - (-5 *2 (-656 (-304 (-971 *6)))) (-5 *1 (-550 *5 *6 *7)) - (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860)))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1115 (-227))) - (-5 *2 (-1290)) (-5 *1 (-264))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) - (-4 *3 (-1086 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1092 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-656 (-1167 *5 *6 *7 *3))) (-5 *1 (-1167 *5 *6 *7 *3)) - (-4 *3 (-1086 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) + (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-5 *1 (-462 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) + (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-5 *1 (-462 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-657 (-793 *3 (-879 *4)))) (-4 *3 (-464)) + (-14 *4 (-657 (-1198))) (-5 *1 (-640 *3 *4))))) +(((*1 *1 *1) (-5 *1 (-1085)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4228 *6) (|:| |sol?| (-112))) (-576) + *6)) + (-4 *6 (-374)) (-4 *7 (-1265 *6)) + (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-304 (-845 *3))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-845 (-971 *5)))) (-4 *5 (-464)) - (-5 *2 (-845 (-419 (-971 *5)))) (-5 *1 (-649 *5)) - (-5 *3 (-419 (-971 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-419 (-971 *5)))) (-5 *3 (-419 (-971 *5))) - (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1280 *4)) (-5 *1 (-1282 *4 *2)) + (-4 *4 (-38 (-419 (-576))))))) +(((*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1180)) (-5 *1 (-799))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-657 (-1194 *7))) (-5 *3 (-1194 *7)) + (-4 *7 (-969 *5 *6 *4)) (-4 *5 (-929)) (-4 *6 (-806)) + (-4 *4 (-862)) (-5 *1 (-926 *5 *6 *4 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340))))) (((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1121)) - (-5 *1 (-690 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1121)) (-5 *1 (-694 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 (-1193 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1255 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1238))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-962 (-227))) (-5 *4 (-888)) (-5 *5 (-940)) - (-5 *2 (-1293)) (-5 *1 (-480)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-962 (-227))) (-5 *2 (-1293)) (-5 *1 (-480)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-656 (-962 (-227)))) (-5 *4 (-888)) (-5 *5 (-940)) - (-5 *2 (-1293)) (-5 *1 (-480))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-270)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *2 (-1293)) (-5 *1 (-1290)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2897 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1193 *6)) (-4 *6 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-1193 *7)) (-5 *1 (-331 *4 *5 *6 *7)) - (-4 *7 (-968 *6 *4 *5))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) - (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) - (-4 *2 (-699 *3 *5 *6))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) - (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) - (-4 *3 (-353 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) - (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-13 (-464) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) - (-4 *2 (-699 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4465))))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *4 (-1197)) - (-5 *1 (-1200)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1200)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-1197)) (-5 *1 (-1201)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1197))) (-5 *1 (-1201))))) -(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1291))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-576)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-805)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) - (-5 *1 (-461 *5 *6 *7 *4))))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) + (-4 *4 (-174))))) +(((*1 *1) (-5 *1 (-131)))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-784)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-784))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1238)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) - (-12 (-5 *2 (-971 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 (-971 (-390)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1059 (-390))) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-971 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 (-971 (-576)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1059 (-576))) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1197)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) - (-14 *4 (-656 *2)) (-4 *5 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-656 (-1197))) (-14 *4 (-656 (-1197))))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-971 (-576))))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-971 (-390))))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-971 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-971 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-576)))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-971 (-390)))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-971 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-971 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 (-576))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-971 (-390))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-971 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-971 (-390)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-390)))) (-4 *1 (-453)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| |mdnia| - (-2 (|:| |fn| (-326 (-227))) - (|:| -1848 (-656 (-1115 (-855 (-227))))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-781)))) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1071)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-820)))) + (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) + (-4 *4 (-1265 *3)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) - (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3650 (-656 (-227))))))) - (-5 *1 (-853)))) + (-12 (-5 *2 (-112)) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-739)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) - (|:| |tol| (-227)))) - (-5 *1 (-915)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) - (-3795 - (-12 (-5 *2 (-971 *3)) - (-12 (-2299 (-4 *3 (-38 (-419 (-576))))) - (-2299 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1197)))) - (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861))) - (-12 (-5 *2 (-971 *3)) - (-12 (-2299 (-4 *3 (-557))) (-2299 (-4 *3 (-38 (-419 (-576))))) - (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1197)))) - (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861))) - (-12 (-5 *2 (-971 *3)) - (-12 (-2299 (-4 *3 (-1013 (-576)))) (-4 *3 (-38 (-419 (-576)))) - (-4 *5 (-626 (-1197)))) - (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861))))) - ((*1 *1 *2) - (-3795 - (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) - (-12 (-2299 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1197)))) - (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) - (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) - (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) - ((*1 *1 *2) - (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861))))) + (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) + (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-4 *1 (-922 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1179)) (-5 *3 (-576)) (-5 *1 (-1084))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1264 *4)) (-5 *2 (-1293)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1264 (-419 *5))) (-14 *7 *6)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1059 (-576)) (-651 (-576)) (-464))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1273 *4 *5 *6)) - (|:| |%expon| (-329 *4 *5 *6)) - (|:| |%expTerms| - (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) - (|:| |%type| (-1179)))) - (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-442 *3))) - (-14 *5 (-1197)) (-14 *6 *4)))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) - (-4 *3 (-1121))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1121))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-1313))))) -(((*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) + (-12 (-5 *2 (-702 *4)) (-4 *4 (-1071)) (-5 *1 (-1164 *3 *4)) + (-14 *3 (-784))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-326 (-227)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) - (-5 *1 (-207))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1121))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) - (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) - (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-701 *5)) (-4 *5 (-1070)) (-5 *1 (-1075 *3 *4 *5)) - (-14 *3 (-783)) (-14 *4 (-783))))) -(((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) - (-4 *4 (-275 *3)) (-4 *5 (-805))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) + (|partial| -12 (-5 *3 (-941)) + (-5 *2 (-1289 (-657 (-2 (|:| -3037 *4) (|:| -3146 (-1142)))))) + (-5 *1 (-357 *4)) (-4 *4 (-360))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-657 *4)) (-4 *4 (-374)) (-5 *2 (-1289 *4)) + (-5 *1 (-827 *4 *3)) (-4 *3 (-669 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) + (|partial| -12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) + (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-1302 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-657 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1302 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-1202))) (-5 *1 (-1157))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1238))))) -(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1121))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-27) (-1223) (-442 *6) (-10 -8 (-15 -4113 ($ *7))))) - (-4 *7 (-860)) - (-4 *8 - (-13 (-1266 *3 *7) (-374) (-1223) - (-10 -8 (-15 -4107 ($ $)) (-15 -4412 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) - (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1004 *8)) - (-14 *10 (-1197))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *3 (-657 (-657 (-963 (-227))))) + (-5 *2 (-657 (-1116 (-227)))) (-5 *1 (-948))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-1288 (-1122 *3 *4))) (-5 *1 (-1122 *3 *4)) - (-14 *3 (-940)) (-14 *4 (-940))))) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) (((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1264 *4)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1056)) (-5 *1 (-765))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1121)) (-4 *2 (-917 *4)) (-5 *1 (-704 *4 *2 *5 *3)) - (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4464))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) - (-5 *2 - (-656 - (-2 (|:| |outval| *4) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 *4)))))) - (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *1) (-5 *1 (-1200)))) -(((*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-841))))) -(((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-1288 (-701 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 (-701 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) - (-5 *2 (-1288 (-701 (-419 (-971 *5))))) (-5 *1 (-1107 *5)) - (-5 *4 (-701 (-419 (-971 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1197))) (-4 *5 (-374)) - (-5 *2 (-1288 (-701 (-971 *5)))) (-5 *1 (-1107 *5)) - (-5 *4 (-701 (-971 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) - (-5 *2 (-1288 (-701 *4))) (-5 *1 (-1107 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 (-940))) (-5 *2 (-783)) (-5 *1 (-602))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-769))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-548))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-14 *5 (-656 (-1197))) (-5 *2 (-656 (-656 (-1045 (-419 *4))))) - (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-656 (-1045 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) - (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-784)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-784))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1220))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-978 *3)) (-5 *1 (-1185 *4 *3)) + (-4 *3 (-1265 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *5))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-115)) (-5 *4 (-784)) + (-4 *5 (-13 (-464) (-1060 (-576)))) (-4 *5 (-568)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1590 ((-1147 *5 (-624 $)) $)) + (-15 -1602 ((-1147 *5 (-624 $)) $)) + (-15 -3515 ($ (-1147 *5 (-624 $)))))))))) +(((*1 *2 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317))))) +(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-941)))) ((*1 *2 *3) - (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416)))) - ((*1 *2 *1) - (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-885 *3)) (-14 *3 (-576)))) - ((*1 *2 *1) - (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) - (-5 *1 (-886 *3 *4)) (-4 *4 (-883 *3))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401))))) + (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-941)) + (-5 *1 (-540 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-905 *4 *3)) - (-4 *3 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) - (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) - (-5 *1 (-800))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1130 *5 *6 *7 *8)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-603 *5 *6 *7 *8 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1198)) (-4 *4 (-464)) (-4 *4 (-1122)) + (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *2 (-1294)) + (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-657 (-576))) (-5 *3 (-702 (-576))) (-5 *1 (-1132))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) + (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771))))) (((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1115 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1160))) ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-656 - (-2 - (|:| -2240 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -2905 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1178 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1848 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-5 *2 (-1193 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-1070)))) - ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-568))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-940)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-888)) - (-5 *2 (-1293)) (-5 *1 (-1289))))) -(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) + (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-968 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-861) (-626 (-1197)))) - (-4 *7 (-805)) + (-12 (-5 *4 (-1114 (-856 *3))) (-4 *3 (-13 (-1224) (-979) (-29 *5))) + (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 - (-656 - (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (-5 *1 (-943 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1264 *9)) (-4 *7 (-805)) (-4 *8 (-861)) (-4 *9 (-317)) - (-4 *10 (-968 *9 *7 *8)) + (-3 (|:| |f1| (-856 *3)) (|:| |f2| (-657 (-856 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1114 (-856 *3))) (-5 *5 (-1180)) + (-4 *3 (-13 (-1224) (-979) (-29 *6))) + (-4 *6 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 - (-2 (|:| |deter| (-656 (-1193 *10))) - (|:| |dterm| - (-656 (-656 (-2 (|:| -3299 (-783)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) - (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1193 *10)) (-5 *4 (-656 *6)) - (-5 *5 (-656 *10))))) -(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070)))) - ((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) - (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) + (-3 (|:| |f1| (-856 *3)) (|:| |f2| (-657 (-856 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1114 (-856 (-326 *5)))) + (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-856 (-326 *5))) (|:| |f2| (-657 (-856 (-326 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1197))) - (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-1178 (-227))) (-5 *1 (-310))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-940)) (-5 *1 (-1051 *2)) - (-4 *2 (-13 (-1121) (-10 -8 (-15 -4026 ($ $ $)))))))) -(((*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *2 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-985 *3)) (-4 *3 (-1121))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1290))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-750))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-576)) - (-5 *6 - (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4176 (-390)))) - (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) - (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) - (-5 *1 (-800)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-576)) - (-5 *6 - (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4176 (-390)))) - (-5 *7 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) - (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) - (-5 *1 (-800))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-576)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1179))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-4 *5 (-374)) (-5 *2 (-1178 (-1178 (-971 *5)))) - (-5 *1 (-1296 *5)) (-5 *4 (-1178 (-971 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1264 (-419 *2))) - (-4 *2 (-1264 *5)) (-5 *1 (-217 *5 *2 *6 *3)) - (-4 *3 (-353 *5 *2 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-321)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-991)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1015)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1057)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1094))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *3 (-656 (-888))) - (-5 *1 (-480))))) -(((*1 *1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-805)) - (-5 *1 (-1008 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 (-1288 (-576)))) (-5 *3 (-940)) (-5 *1 (-478))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-656 (-984))) (-5 *1 (-301))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4442 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-763))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-940)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *2 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-227)) + (-12 (-5 *3 (-419 (-972 *6))) (-5 *4 (-1114 (-856 (-326 *6)))) + (-5 *5 (-1180)) + (-4 *6 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-962 *4)))) - (|:| |xValues| (-1115 *4)) (|:| |yValues| (-1115 *4)))) - (-5 *1 (-154)) (-5 *3 (-656 (-656 (-962 *4))))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) - ((*1 *1 *1 *1) (-4 *1 (-805)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-158)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-656 (-1197))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-656 (-1197)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-105))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) - (-14 *3 (-656 (-1197))) (-4 *4 (-1070)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1197))) - (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1070)) - (-4 *5 (-243 (-1970 *3) (-783))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) - (-14 *3 (-656 (-1197))) (-4 *4 (-1070))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1121))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1305 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-858))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1240))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-783)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-132)) - (-5 *2 (-783)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) - ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1121)) (-5 *2 (-783)))) - ((*1 *2) - (-12 (-4 *4 (-1121)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) - (-4 *3 (-437 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1264 *4)) (-5 *2 (-783)) - (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) - (-4 *3 (-1264 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) - (-5 *2 (-419 (-576))) (-5 *1 (-1041 *4)) (-4 *4 (-1264 (-576)))))) -(((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1) (-5 *1 (-1141)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1197)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-656 (-1197))))) - ((*1 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-656 (-1197))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *8)) (-5 *4 (-656 *6)) (-4 *6 (-861)) - (-4 *8 (-968 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1070)) - (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-940)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1264 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *3 (-861)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *2 *4)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *2 (-804)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1250 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1279 *3)) - (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1271 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1248 *3)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-940))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-783))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-861)) - (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-968 *8 *6 *7)) + (-3 (|:| |f1| (-856 (-326 *6))) (|:| |f2| (-657 (-856 (-326 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1114 (-856 (-419 (-972 *5))))) (-5 *3 (-419 (-972 *5))) + (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-656 (-2 (|:| -1452 (-1193 *9)) (|:| -4080 (-576))))))) - (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1193 *9))))) -(((*1 *2 *3) - (-12 (-14 *4 (-656 (-1197))) (-14 *5 (-783)) + (-3 (|:| |f1| (-856 (-326 *5))) (|:| |f2| (-657 (-856 (-326 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1114 (-856 (-419 (-972 *6))))) (-5 *5 (-1180)) + (-5 *3 (-419 (-972 *6))) + (-4 *6 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 - (-656 - (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) - (-253 *4 (-419 (-576)))))) - (-5 *1 (-517 *4 *5)) - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) - (-253 *4 (-419 (-576)))))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 (-576)))) - (-5 *2 (-1288 (-576))) (-5 *1 (-1316 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-804)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 (-783))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *3 (-861)) (-5 *2 (-783))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1178 *4))) (-4 *4 (-374)) - (-4 *4 (-1070)) (-5 *2 (-1178 *4)) (-5 *1 (-1181 *4))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1027))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1 *1) (-5 *1 (-1141)))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4465)) (-4 *1 (-1031 *3)) - (-4 *3 (-1238))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1178 *7))) (-4 *6 (-861)) - (-4 *7 (-968 *5 (-543 *6) *6)) (-4 *5 (-1070)) - (-5 *2 (-1 (-1178 *7) *7)) (-5 *1 (-1147 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1193 *1)) (-4 *1 (-1033))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1179))) (-5 *2 (-322)) (-5 *1 (-306)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-322)) (-5 *1 (-306)))) + (-3 (|:| |f1| (-856 (-326 *6))) (|:| |f2| (-657 (-856 (-326 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1179))) (-5 *3 (-1179)) (-5 *2 (-322)) - (-5 *1 (-306))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1279 *4)) - (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-1 (-1178 *4) (-1178 *4) (-1178 *4))) (-5 *1 (-1281 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1 *1) (-5 *1 (-1141)))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) - (-4 *3 (-1121))))) -(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-461 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1070))) (-5 *2 (-1179)) - (-5 *1 (-838 *4)))) + (-12 (-5 *4 (-1198)) + (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-5 *2 (-3 *3 (-657 *3))) (-5 *1 (-440 *5 *3)) + (-4 *3 (-13 (-1224) (-979) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-486 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) + (-5 *5 (-390)) (-5 *6 (-1085)) (-5 *2 (-1057)) (-5 *1 (-577)))) + ((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1057)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) + (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) + (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1070))) - (-5 *2 (-1179)) (-5 *1 (-838 *5)))) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) + (-5 *2 (-1057)) (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1070))) - (-5 *2 (-1293)) (-5 *1 (-838 *5)))) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) + (-5 *2 (-1057)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-840) (-1070))) (-5 *2 (-1293)) (-5 *1 (-838 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1179)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1179)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1293)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1293))))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1197))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-980 *3)) (-4 *3 (-557)))) - ((*1 *2 *1) (-12 (-4 *1 (-1242)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1056)) (-5 *1 (-760))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1869 *3) (|:| -4080 (-783)))) (-5 *1 (-599 *3)) - (-4 *3 (-557))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1288 *5)) (-5 *3 (-783)) (-5 *4 (-1141)) (-4 *5 (-360)) - (-5 *1 (-540 *5))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) - (-5 *1 (-1181 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) - (-14 *4 (-1197)) (-14 *5 *3)))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) - (-4 *3 (-13 (-374) (-148) (-1059 (-576)))) (-5 *1 (-580 *3 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1261 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) - (-14 *5 (-1197)) (-5 *2 (-576)) (-5 *1 (-1135 *4 *5))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1197))) - (-4 *2 (-13 (-442 (-171 *5)) (-1023) (-1223))) (-4 *5 (-568)) - (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1023) (-1223)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-568))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) - (-5 *2 (-2 (|:| -3563 (-701 *4)) (|:| |vec| (-1288 *4)))))) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) + (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) + (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) + (-5 *5 (-390)) (-5 *6 (-1085)) (-5 *2 (-1057)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-856 (-390)))) + (-5 *5 (-1180)) (-5 *2 (-1057)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-856 (-390)))) + (-5 *5 (-1198)) (-5 *2 (-1057)) (-5 *1 (-577)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) - (-5 *2 (-701 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-656 (-1197))))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *1) (-4 *1 (-294))) + (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) (-4 *5 (-1265 *4)) + (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-148)) + (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *2 (-3 (-326 *5) (-657 (-326 *5)))) (-5 *1 (-601 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) - (-14 *5 (-940)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1070) (-729 (-419 (-576))))) - (-4 *5 (-861)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1309 *5 *4)))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1308 *3 *4)) - (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-861)) (-4 *4 (-174))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-783)) (-4 *3 (-1070)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1286 *3)) (-4 *3 (-23)) (-4 *3 (-1238))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-968 *7 *5 *6)) - (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-317))))) -(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2687 ((-1146 *3 (-624 $)) $)) - (-15 -2697 ((-1146 *3 (-624 $)) $)) - (-15 -4113 ($ (-1146 *3 (-624 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) - (-5 *2 (-876)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -3961 (-115)) (|:| |arg| (-656 (-907 *3))))) - (-5 *1 (-907 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-907 *4))) - (-5 *1 (-907 *4)) (-4 *4 (-1121))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-591))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1193 (-1193 *5)))) - (-5 *1 (-1236 *5)) (-5 *3 (-1193 (-1193 *5)))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-97))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-419 *5)) (-4 *4 (-1242)) (-4 *5 (-1264 *4)) - (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1264 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1199 (-419 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-192)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1197))) - (-5 *4 (-1288 (-326 (-227)))) (-5 *1 (-207)))) + (-12 (-4 *1 (-753 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-862)) + (-4 *3 (-38 (-419 (-576)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1121)) - (-4 *3 (-1238)) (-5 *1 (-304 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-319 *2)) (-4 *2 (-1121)) (-4 *2 (-1238)) - (-5 *1 (-304 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) - (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) + (-12 (-5 *2 (-1198)) (-5 *1 (-972 *3)) (-4 *3 (-38 (-419 (-576)))) + (-4 *3 (-1071)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-1 *1 (-656 *1)))) - (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-4 *2 (-862)) + (-5 *1 (-1148 *3 *2 *4)) (-4 *4 (-969 *3 (-543 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) + (-5 *1 (-1182 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1121)))) + (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1189 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1121)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1199 (-419 (-576)))) - (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1195 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1196 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) - (-4 *4 (-861)) (-4 *5 (-174)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) - (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-1070)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-783))) - (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) - (-4 *5 (-1070)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-1197))) (-5 *3 (-656 (-783))) - (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1121)) - (-4 *5 (-1070)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1197)) - (-4 *1 (-442 *5)) (-4 *5 (-1121)) (-4 *5 (-626 (-548))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1197)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) - (-4 *4 (-626 (-548))))) + (-12 (-5 *2 (-1198)) (-5 *1 (-1233 *3)) (-4 *3 (-38 (-419 (-576)))) + (-4 *3 (-1071)))) + ((*1 *1 *1 *2) + (-2748 + (-12 (-5 *2 (-1198)) (-4 *1 (-1249 *3)) (-4 *3 (-1071)) + (-12 (-4 *3 (-29 (-576))) (-4 *3 (-979)) (-4 *3 (-1224)) + (-4 *3 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-1198)) (-4 *1 (-1249 *3)) (-4 *3 (-1071)) + (-12 (|has| *3 (-15 -1998 ((-657 *2) *3))) + (|has| *3 (-15 -2320 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121)) (-4 *2 (-626 (-548))))) + (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-1197))) (-4 *1 (-442 *3)) (-4 *3 (-1121)) - (-4 *3 (-626 (-548))))) + (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1253 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1197)) (-4 *1 (-442 *3)) (-4 *3 (-1121)) - (-4 *3 (-626 (-548))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1238)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) - (-4 *4 (-1121)) (-4 *5 (-1238)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-419 (-971 *4))) (-5 *3 (-1197)) (-4 *4 (-568)) - (-5 *1 (-1064 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-1197))) (-5 *4 (-656 (-419 (-971 *5)))) - (-5 *2 (-419 (-971 *5))) (-4 *5 (-568)) (-5 *1 (-1064 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-304 (-419 (-971 *4)))) (-5 *2 (-419 (-971 *4))) - (-4 *4 (-568)) (-5 *1 (-1064 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-304 (-419 (-971 *4))))) (-5 *2 (-419 (-971 *4))) - (-4 *4 (-568)) (-5 *1 (-1064 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1178 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-464)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *5 (-928)) (-5 *1 (-469 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1193 *1)) (-4 *1 (-928))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *6)))) - (-5 *4 (-1047 (-855 (-576)))) (-5 *5 (-1197)) (-5 *7 (-419 (-576))) - (-4 *6 (-1070)) (-5 *2 (-876)) (-5 *1 (-607 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1121)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1121))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1178 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) - ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-1121))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-419 (-1193 (-326 *3)))) (-4 *3 (-568)) - (-5 *1 (-1151 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-374))))) -(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)) (-5 *3 (-1179)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-246)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1197)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-656 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -4291 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1223) (-27) (-442 *8))) - (-4 *8 (-13 (-464) (-148) (-1059 *3) (-651 *3))) (-5 *3 (-576)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -2113 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1034 *8 *4))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1200)) (-5 *3 (-1197))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-340))))) + (-2748 + (-12 (-5 *2 (-1198)) (-4 *1 (-1270 *3)) (-4 *3 (-1071)) + (-12 (-4 *3 (-29 (-576))) (-4 *3 (-979)) (-4 *3 (-1224)) + (-4 *3 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-1198)) (-4 *1 (-1270 *3)) (-4 *3 (-1071)) + (-12 (|has| *3 (-15 -1998 ((-657 *2) *3))) + (|has| *3 (-15 -2320 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1274 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2748 + (-12 (-5 *2 (-1198)) (-4 *1 (-1280 *3)) (-4 *3 (-1071)) + (-12 (-4 *3 (-29 (-576))) (-4 *3 (-979)) (-4 *3 (-1224)) + (-4 *3 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-1198)) (-4 *1 (-1280 *3)) (-4 *3 (-1071)) + (-12 (|has| *3 (-15 -1998 ((-657 *2) *3))) + (|has| *3 (-15 -2320 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1281 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1061))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-933 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-430 (-971 *6))) (-5 *5 (-1197)) (-5 *3 (-971 *6)) - (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-934 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *1 *1 *1) (-4 *1 (-485))) - ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-940))) (-5 *1 (-898)))) - ((*1 *1 *1) (-5 *1 (-992))) - ((*1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-29 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1216))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) + (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) (-4 *5 (-1265 *4)) + (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1037 *4 *5)) (-5 *3 (-419 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) + (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2732 *6))) + (-5 *1 (-1038 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *1) (-5 *1 (-145))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-270))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) - (-4 *3 (-1264 *2))))) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-908 *3)) (|:| |den| (-908 *3)))) + (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-760))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-503)) (-5 *4 (-973)) (-5 *2 (-703 (-545))) - (-5 *1 (-545)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-973)) (-4 *3 (-1121)) (-5 *2 (-703 *1)) - (-4 *1 (-779 *3))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1086 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1070)) - (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-1264 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-656 *3)) - (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1130 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -2785 (-1193 *5)) (|:| -4314 (-656 (-971 *5)))))) - (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) - (-14 *6 (-656 (-1197))))) + (-12 (-5 *3 (-832 *4)) (-4 *4 (-862)) (-5 *2 (-112)) + (-5 *1 (-685 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -2785 (-1193 *4)) (|:| -4314 (-656 (-971 *4)))))) - (-5 *1 (-1099 *4 *5)) (-5 *3 (-656 (-971 *4))) - (-14 *5 (-656 (-1197))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -2785 (-1193 *5)) (|:| -4314 (-656 (-971 *5)))))) - (-5 *1 (-1099 *5 *6)) (-5 *3 (-656 (-971 *5))) - (-14 *6 (-656 (-1197)))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) + (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-805))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) + (-5 *1 (-677 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) - (-4 *3 (-1264 *2))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1056)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1242)) (-5 *1 (-149 *2 *4 *3)) - (-4 *3 (-1264 (-419 *4)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-194))))) + (|partial| -12 (-5 *2 (-677 *3 *4)) (-5 *1 (-1309 *3 *4)) + (-4 *3 (-862)) (-4 *4 (-174))))) (((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| -3335 (-635 *4 *5)) (|:| -3723 (-419 *5)))) - (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) - (-14 *3 (-940)) (-4 *4 (-1070)))) + (-12 (-5 *3 (-941)) (-5 *2 (-1289 (-1289 (-576)))) (-5 *1 (-478))))) +(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1264 *3))))) + (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1122)) + (-5 *2 (-2 (|:| -1735 (-576)) (|:| |var| (-624 *1)))) + (-4 *1 (-442 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-548))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-1112))))) +(((*1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) + (-5 *2 (-1057)) (-5 *1 (-758))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) + (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-657 *4))))) +(((*1 *1 *1) (-5 *1 (-548)))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406))))) (((*1 *2 *3) - (-12 (-5 *3 (-1193 *4)) (-4 *4 (-360)) - (-4 *2 - (-13 (-414) - (-10 -7 (-15 -4113 (*2 *4)) (-15 -3787 ((-940) *2)) - (-15 -2704 ((-1288 *2) (-940))) (-15 -2510 (*2 *2))))) - (-5 *1 (-367 *2 *4))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) - (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) - (-5 *1 (-800)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1293) (-1288 *5) (-1288 *5) (-390))) - (-5 *3 (-1288 (-390))) (-5 *5 (-390)) (-5 *2 (-1293)) - (-5 *1 (-800))))) -(((*1 *1 *2) - (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1070) (-861))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1197)))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) - ((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200))))) + (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) + (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-657 (-657 *4)))) (-5 *2 (-657 (-657 *4))) + (-5 *1 (-1209 *4)) (-4 *4 (-862))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-704 (-1126))) (-5 *1 (-301))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-784)) (-4 *2 (-568)) (-5 *1 (-991 *2 *4)) + (-4 *4 (-1265 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2970 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-4 *2 (-1115 *3)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1239)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1114 *3)) (-4 *3 (-1239)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2) (-12 (-5 *1 (-1256 *2)) (-4 *2 (-1239))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) (((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1193 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) - (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1293)) - (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-1071))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-764))))) + (-12 (-5 *3 (-657 (-2 (|:| -3037 *4) (|:| -3074 (-576))))) + (-4 *4 (-1122)) (-5 *2 (-1 *4)) (-5 *1 (-1039 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *1) (-5 *1 (-449)))) + (|partial| -12 (-4 *3 (-1239)) (-5 *1 (-184 *3 *2)) + (-4 *2 (-687 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) + (-12 (-5 *3 (-1157)) (-5 *2 (-704 (-290))) (-5 *1 (-169))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-940))) (-5 *2 (-1199 (-419 (-576)))) - (-5 *1 (-192))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) - (-5 *2 (-1193 (-971 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1219))))) + (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1294)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-925 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) + (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) (((*1 *2 *1) - (-12 (-4 *2 (-1121)) (-5 *1 (-983 *3 *2)) (-4 *3 (-1121))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-548))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-464)) (-4 *4 (-1121)) - (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4))))) -(((*1 *1) (-5 *1 (-145))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-270))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *1 (-676 *3 *4)))) + (-12 (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-657 *1)) + (-4 *1 (-393 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1308 *3 *4)) - (-4 *3 (-861)) (-4 *4 (-174))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1238)) (-5 *1 (-184 *3 *2)) - (-4 *2 (-686 *3))))) + (-12 (-5 *2 (-657 (-748 *3 *4))) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-739)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) + (-4 *1 (-969 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) + (-4 *5 (-1265 *4)) + (-5 *2 (-657 (-2 (|:| |deg| (-784)) (|:| -3981 *5)))) + (-5 *1 (-822 *4 *5 *3 *6)) (-4 *3 (-669 *5)) + (-4 *6 (-669 (-419 *5)))))) (((*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) + (-14 *4 (-784)) (-4 *5 (-174)))) ((*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) + (-14 *4 (-784)) (-4 *5 (-174)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-516 (-419 (-576)) (-245 *5 (-783)) (-878 *4) + (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576))))) - (-5 *3 (-656 (-878 *4))) (-14 *4 (-656 (-1197))) (-14 *5 (-783)) + (-5 *3 (-657 (-879 *4))) (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *1 (-517 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1210 (-940) (-783)))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-940))) (-5 *4 (-112)) - (-5 *1 (-1131))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1056)) (-5 *1 (-766))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-861)) (-5 *1 (-1208 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-1059 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| -3030 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) +(((*1 *1) (-5 *1 (-340)))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-768))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) + (-5 *2 (-1057)) (-5 *1 (-769))))) (((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *3) - (-12 (-14 *4 (-656 (-1197))) (-4 *5 (-464)) - (-5 *2 - (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) - (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) - (-5 *2 (-2 (|:| |start| *3) (|:| -3497 (-430 *3)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) + (-5 *2 (-2 (|:| |num| (-1289 *4)) (|:| |den| *4)))))) (((*1 *2 *3) - (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-964 *2 *3)) - (-4 *3 (-1264 *2))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2970 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197)) - (-5 *2 - (-2 (|:| |zeros| (-1178 (-227))) (|:| |ones| (-1178 (-227))) - (|:| |singularities| (-1178 (-227))))) - (-5 *1 (-105))))) + (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1194 (-1194 *4)))) + (-5 *1 (-1237 *4)) (-5 *3 (-1194 (-1194 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-536))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)) (-4 *5 (-1087 *3 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| -1597 *1) (|:| -3823 (-656 *7))))) - (-5 *3 (-656 *7)) (-4 *1 (-1231 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449))))) + (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1211 (-941) (-784)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-963 *5)) (-5 *3 (-784)) (-4 *5 (-1071)) + (-5 *1 (-1186 *4 *5)) (-14 *4 (-941))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -4291 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-374)) (-4 *7 (-1264 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-656 *5)) (-4 *5 (-861)) (-5 *1 (-1208 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-805)) (-5 *2 (-656 *6)) - (-5 *1 (-1008 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1121))))) -(((*1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) + (-12 (-5 *4 (-1198)) (-5 *5 (-1116 (-227))) (-5 *2 (-947)) + (-5 *1 (-945 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1198)) (-5 *5 (-1116 (-227))) (-5 *2 (-947)) + (-5 *1 (-945 *3)) (-4 *3 (-626 (-548))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) + (-5 *1 (-947)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) + (-5 *1 (-947)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-657 (-1 (-227) (-227)))) (-5 *3 (-1116 (-227))) + (-5 *1 (-947)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-657 (-1 (-227) (-227)))) (-5 *3 (-1116 (-227))) + (-5 *1 (-947)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) + (-5 *1 (-947)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) + (-5 *1 (-947))))) +(((*1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-998 *5 *6 *7 *8))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-861)) (-5 *2 (-783))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-576))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *2 (-656 (-227))) - (-5 *1 (-480))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-861)) - (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) - (-4 *8 (-968 *3 *7 *6))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1121)) (-5 *2 (-904 *3 *4)) (-5 *1 (-900 *3 *4 *5)) - (-4 *3 (-1121)) (-4 *5 (-678 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-985 *4)) (-4 *4 (-1121)) (-5 *2 (-1123 *4)) - (-5 *1 (-986 *4))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1121)) - (-4 *3 (-1238)) (-4 *3 (-1121)) (-5 *2 (-112))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *1) (-5 *1 (-1290)))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-805)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) - (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) - (-5 *2 (-783)))) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-702 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-702 *4)) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-657 (-576))) (-5 *3 (-657 (-941))) (-5 *4 (-112)) + (-5 *1 (-1132))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4351 *4))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-941)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-783)))) + (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1265 *2)) (-4 *2 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1289 *4)) (-5 *3 (-941)) (-4 *4 (-360)) + (-5 *1 (-540 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-738))))) -(((*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1070)) (-4 *2 (-374)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) - (-4 *2 (-668 *4))))) + (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (-4 *2 (-1071))))) (((*1 *2 *2) - (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-442 *3)))) + (-12 (-4 *3 (-568)) (-4 *4 (-1014 *3)) (-5 *1 (-143 *3 *4 *2)) + (-4 *2 (-384 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-576))) (-5 *1 (-949))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876))))) -(((*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-133))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *5 (-1264 *4)) (-5 *2 (-1193 (-419 *5))) (-5 *1 (-627 *4 *5)) - (-5 *3 (-419 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-148) (-27) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-1193 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *1) (-5 *1 (-1290)))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-442 *4) (-1023))) (-4 *4 (-568)) - (-5 *1 (-285 *4 *2))))) + (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) (-4 *2 (-384 *4)) + (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-702 *5)) (-4 *5 (-1014 *4)) (-4 *4 (-568)) + (-5 *2 (-702 *4)) (-5 *1 (-706 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-4 *4 (-1014 *3)) (-5 *1 (-1258 *3 *4 *2)) + (-4 *2 (-1265 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 (-784))) (-5 *3 (-112)) (-5 *1 (-1186 *4 *5)) + (-14 *4 (-941)) (-4 *5 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2916 *4))) (-5 *1 (-991 *4 *3)) + (-4 *3 (-1265 *4))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) + (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1) + (-12 (-4 *1 (-416)) (-2665 (|has| *1 (-6 -4457))) + (-2665 (|has| *1 (-6 -4449))))) + ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1122)) (-4 *2 (-862)))) + ((*1 *1) (-4 *1 (-857))) ((*1 *1 *1 *1) (-4 *1 (-865))) + ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-862))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1265 *4)) (-4 *4 (-1243)) + (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1265 (-419 *3)))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) + (-5 *2 (-1057)) (-5 *1 (-767))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-702 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) + (-5 *2 (-657 (-1198))) (-5 *1 (-1098 *3 *4 *5)) + (-4 *5 (-13 (-442 *4) (-902 *3) (-626 (-908 *3))))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-760))))) +(((*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-52)) (-5 *1 (-842))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) - (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-2 (|:| -2704 (-656 (-419 *6))) (|:| -3563 (-701 *5)))) - (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2704 (-656 *4)))) - (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-5 *2 (-2 (|:| -2704 (-656 (-419 *6))) (|:| -3563 (-701 *5)))) - (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6)))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1193 *3) (-1193 *3))) - (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) - (-5 *1 (-563 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 (-1288 *4))) (-4 *4 (-1070)) (-5 *2 (-701 *4)) - (-5 *1 (-1050 *4))))) + (-12 (-5 *3 (-1198)) (-4 *5 (-374)) (-5 *2 (-657 (-1233 *5))) + (-5 *1 (-1297 *5)) (-5 *4 (-1233 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *2) (-12 (-5 *2 (-657 (-326 (-227)))) (-5 *1 (-276))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1289 *5)) (-4 *5 (-805)) (-5 *2 (-112)) + (-5 *1 (-858 *4 *5)) (-14 *4 (-784))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) + (-14 *4 *2)))) (((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1061))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-763))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-940)) (-5 *1 (-711)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-374)) (-5 *1 (-999 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1238))))) -(((*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1223)))) - ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1121))))) + (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) + (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-171 (-227)))) (-5 *2 (-1057)) + (-5 *1 (-769))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1071)) + (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1265 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1071)) + (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1265 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1071)) + (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1265 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 (-326 (-227)))) (-5 *2 (-1288 (-326 (-390)))) - (-5 *1 (-315))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) + (-12 (-5 *3 (-702 (-419 (-972 (-576))))) (-5 *2 (-657 (-326 (-576)))) + (-5 *1 (-1053))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-768))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-783)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561)))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-783)) (-4 *3 (-1238)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1) (-5 *1 (-173))) - ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1121)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-401)))) - ((*1 *1) (-5 *1 (-406))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1238)))) - ((*1 *1) - (-12 (-4 *3 (-1121)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1121)) - (-4 *4 (-678 *3)))) - ((*1 *1) (-12 (-5 *1 (-904 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *1 (-1163 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1070)))) - ((*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070)))) - ((*1 *1 *1) (-5 *1 (-1197))) ((*1 *1) (-5 *1 (-1197))) - ((*1 *1) (-5 *1 (-1218)))) + (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-862)) (-5 *1 (-1209 *3))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) + (-5 *2 (-1057)) (-5 *1 (-765))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-664 *2)) (-4 *2 (-1239))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-836)) (-5 *1 (-835))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1198)) (-5 *1 (-688 *3)) (-4 *3 (-1122))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1292))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1201)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1201)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-449)) (-5 *3 (-657 (-1198))) (-5 *4 (-1198)) + (-5 *1 (-1201)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1201)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1202)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-449)) (-5 *3 (-657 (-1198))) (-5 *1 (-1202))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))) - (-5 *2 (-656 (-1097 *3 *4 *5))) (-5 *1 (-1098 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-901 *3) (-626 (-907 *3))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) - (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1059 (-576)))) - (-4 *8 (-1264 (-419 *7))) (-5 *2 (-598 *3)) - (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) - (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-419 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-568)) + (-4 *4 (-1071)) (-4 *2 (-1280 *4)) (-5 *1 (-1283 *4 *5 *6 *2)) + (-4 *6 (-669 *5))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1224) (-442 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-1228 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-568)) - (-5 *2 (-2 (|:| -3563 (-701 *5)) (|:| |vec| (-1288 (-656 (-940)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) + (-12 (-5 *4 (-1198)) + (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) + (-5 *2 (-2 (|:| -3680 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) + (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1202))))) +(((*1 *1 *1) (-4 *1 (-1082))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-784)) (-4 *4 (-1071)) (-5 *1 (-1261 *4 *2)) + (-4 *2 (-1265 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) +(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-784)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-784)) (-4 *1 (-272 *4)) + (-4 *4 (-1239)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1239)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) + (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-374)) (-4 *2 (-918 *3)) (-5 *1 (-598 *2)) + (-5 *3 (-1198)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-877)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-912 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1239)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 (-784))) (-4 *1 (-920 *4)) + (-4 *4 (-1122)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-784)) (-4 *1 (-920 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *1 (-920 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1265 *3)) (-4 *3 (-1071))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-963 (-227)) (-227) (-227))) + (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) + (-14 *4 *2)))) +(((*1 *2 *2) + (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-576))) (-5 *1 (-950))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *2 (-783)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1033)) (-5 *2 (-876))))) + (-12 (-4 *5 (-374)) + (-5 *2 (-657 (-2 (|:| C (-702 *5)) (|:| |g| (-1289 *5))))) + (-5 *1 (-1000 *5)) (-5 *3 (-702 *5)) (-5 *4 (-1289 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-657 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) + (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) - (-4 *2 (-1248 *3))))) -(((*1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1264 *4))))) + (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-586 *5 *3))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3579 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-374)) (-4 *7 (-1265 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) + (-2 (|:| -3579 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -2240 *3) (|:| -2905 *4)))) - (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *1 (-1214 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1214 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1281 *3 *2)) - (-4 *2 (-1279 *3))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-541)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541))))) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-1289 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1180)) (-5 *1 (-315))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) + (-12 (-5 *3 (-702 *4)) (-4 *4 (-374)) (-5 *2 (-1194 *4)) + (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-861)))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1071)) (-4 *2 (-700 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1265 *4)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4))))) +(((*1 *1) (-4 *1 (-989)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-374)) (-4 *3 (-1071)) + (-5 *1 (-1182 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023))))) + (-4 *2 (-13 (-442 *3) (-1024))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1279 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1250 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1248 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1271 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4464)) (-4 *1 (-34)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-992)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-858))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-874)) (-5 *2 (-703 (-1246))) (-5 *3 (-1246))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-940)) (-4 *5 (-861)) - (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) -(((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) - (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-4 *7 (-968 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) - (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) - (-5 *1 (-904 *4 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1212 *2)) (-4 *2 (-374))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1070) (-901 *3) (-626 *2))) - (-5 *2 (-907 *3)) (-5 *1 (-1097 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-901 *3) (-626 *2)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-656 (-962 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1313 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-832 *3)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-1071)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) -(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-876)))) + (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) + (-5 *2 (-1057)) (-5 *1 (-769))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1239))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-968 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *1 (-943 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1288 (-656 *3))) (-4 *4 (-317)) - (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4464)) (-4 *1 (-240 *3)) - (-4 *3 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1238))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781)) - (-5 *2 - (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) - (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) - (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-1084)) - (-5 *2 - (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) - (|:| |explanations| (-656 (-1179))) (|:| |extra| (-1056)))) - (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-799)) (-5 *3 (-1084)) - (-5 *4 - (-2 (|:| |fn| (-326 (-227))) - (|:| -1848 (-656 (-1115 (-855 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) - (|:| |extra| (-1056)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-799)) (-5 *3 (-1084)) - (-5 *4 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)) - (|:| |extra| (-1056)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-812)) (-5 *3 (-1084)) - (-5 *4 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-820)) - (-5 *2 - (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-820)) (-5 *4 (-1084)) - (-5 *2 - (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-851)) (-5 *3 (-1084)) - (-5 *4 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) - (-5 *2 (-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-851)) (-5 *3 (-1084)) - (-5 *4 - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *2 (-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-853)) - (-5 *2 - (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-853)) (-5 *4 (-1084)) - (-5 *2 - (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-912)) (-5 *3 (-1084)) - (-5 *4 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1179)) - (|:| |tol| (-227)))) - (-5 *2 (-2 (|:| -1952 (-390)) (|:| |explanations| (-1179)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-915)) - (-5 *2 - (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *1 (-914)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-915)) (-5 *4 (-1084)) - (-5 *2 - (-2 (|:| -1952 (-390)) (|:| -4149 (-1179)) - (|:| |explanations| (-656 (-1179))))) - (-5 *1 (-914))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-541))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-1154 *4 *2)) + (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4466) (-6 -4467)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-862)) (-4 *3 (-1239)) (-5 *1 (-1154 *3 *2)) + (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4466) (-6 -4467))))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2970 *3) (|:| |coef1| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-945))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) - (-4 *2 (-568)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-568))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) - (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-783))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-568)) - (-5 *1 (-990 *3 *4)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) - (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-933 *3)) (-4 *3 (-317))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)) - (-4 *2 (-464)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1264 (-576))) (-5 *2 (-656 (-576))) - (-5 *1 (-498 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *3 (-464))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) - (-5 *1 (-709)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-962 (-227)) (-227) (-227))) (-5 *4 (-1115 (-227))) - (-5 *5 (-656 (-270))) (-5 *2 (-1154 (-227))) (-5 *1 (-709)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1154 (-227))) (-5 *3 (-1 (-962 (-227)) (-227) (-227))) - (-5 *4 (-1115 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709))))) -(((*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1238)) (-4 *2 (-1121)))) - ((*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1121))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-656 (-227))) (-5 *1 (-206))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1056)) - (-5 *1 (-758))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)))) + (-12 (-5 *2 (-2 (|:| -3431 (-795 *3)) (|:| |coef2| (-795 *3)))) + (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-656 (-971 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-656 (-971 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-971 *3))))) - ((*1 *2) - (-12 (-5 *2 (-656 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-971 *4))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) - (-14 *5 (-940)) (-14 *6 (-656 (-1197))) (-14 *7 (-1288 (-701 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -2704 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *6)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-924 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) - (-5 *1 (-831 *3)) (-4 *3 (-861)))) - ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-1067 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-656 (-1067 *4 *5))) (-5 *1 (-1315 *4 *5 *6)) - (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *1)) (-5 *4 (-1288 *1)) (-4 *1 (-651 *5)) - (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -3563 (-701 *5)) (|:| |vec| (-1288 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1070)) - (-5 *2 (-701 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-374) (-148))) - (-5 *1 (-411 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) - (-5 *1 (-431 *4)))) - ((*1 *1 *1) (-5 *1 (-945))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-945)))) - ((*1 *1 *1) (-5 *1 (-946))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-227))) (-5 *1 (-946)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) - (-5 *4 (-419 (-576))) (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) - (-5 *1 (-1041 *3)) (-4 *3 (-1264 (-576))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) - (-5 *4 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-419 (-576)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) - (-4 *3 (-1264 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *2 (-1130 *3 *4 *5 *6))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) - (-4 *8 (-861)) (-5 *1 (-998 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-876)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-835)) (-5 *1 (-834))))) -(((*1 *1 *1) (-4 *1 (-557)))) + (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *2 (-2 (|:| -3431 *1) (|:| |coef2| *1))) + (-4 *1 (-1087 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3941 *8))) + (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1010 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1223) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-568) (-1059 (-576)) (-148))) - (-5 *2 (-598 (-419 (-971 *5)))) (-5 *1 (-582 *5)) - (-5 *3 (-419 (-971 *5)))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) - (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) - (-5 *2 (-1056)) (-5 *1 (-766))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1121) (-34))) - (-4 *3 (-13 (-1121) (-34)))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-888))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1121)) - (-4 *2 (-1238))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) - (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-4 *7 (-1238))))) -(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) - ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) + (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3941 *8))) + (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1129 *4 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1121)) - (-4 *4 (-132))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-804)) (-4 *3 (-174))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1197)) - (-4 *2 (-13 (-27) (-1223) (-442 *5))) - (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *5 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) + (-2 (|:| |glbase| (-657 (-253 *4 *5))) (|:| |glval| (-657 (-576))))) + (-5 *1 (-643 *4 *5)) (-5 *3 (-657 (-253 *4 *5)))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4465)) (-4 *1 (-501 *3)) - (-4 *3 (-1238))))) -(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-390)))) -(((*1 *2 *1) - (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) - ((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1193 *3)) - (-4 *3 (-13 (-442 *7) (-27) (-1223))) - (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) - (-5 *6 (-419 (-1193 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1223))) - (-4 *7 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-971 (-171 (-576)))))) - (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-971 (-171 (-576))))))) - (-5 *2 (-656 (-656 (-304 (-971 (-171 *4)))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 (-171 (-576))))) - (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *1) (-4 *1 (-505))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-704 (-591))) (-5 *1 (-591))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-695 *2)) (-4 *2 (-1122)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-971 (-171 (-576)))))) - (-5 *2 (-656 (-304 (-971 (-171 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |minor| (-656 (-940))) (|:| -3379 *3) - (|:| |minors| (-656 (-656 (-940)))) (|:| |ops| (-656 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-940)) (-4 *3 (-668 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-289))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1131)) (-5 *3 (-576))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *9 (-1086 *6 *7 *8)) - (-5 *2 - (-656 - (-2 (|:| -3379 (-656 *9)) (|:| -4442 *10) (|:| |ineq| (-656 *9))))) - (-5 *1 (-1009 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1092 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *9 (-1086 *6 *7 *8)) - (-5 *2 - (-656 - (-2 (|:| -3379 (-656 *9)) (|:| -4442 *10) (|:| |ineq| (-656 *9))))) - (-5 *1 (-1128 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-624 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *2)) (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) - (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) - (-4 *4 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $))))) - (-4 *6 (-568))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) + (-12 (-5 *3 (-1 (-657 *5) (-657 *5))) (-5 *4 (-576)) + (-5 *2 (-657 *5)) (-5 *1 (-695 *5)) (-4 *5 (-1122))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-657 *2) *2 *2 *2)) (-4 *2 (-1122)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1122)) (-5 *1 (-103 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-657 (-112)))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-317)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4083 *1))) + (-4 *1 (-317))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-464))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-657 (-657 *7))) + (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1121)) (-5 *2 (-112)) - (-5 *1 (-1239 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1178 *4))) (-5 *1 (-295 *4 *5)) - (-5 *3 (-1178 *4)) (-4 *5 (-1279 *4))))) -(((*1 *2 *2) - (-12 (-4 *2 (-174)) (-4 *2 (-1070)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1070))))) -(((*1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) - (-4 *3 (-13 (-416) (-1223))))) - ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223)))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) + (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-657 (-657 *8))) + (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-657 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-657 (-657 *7))) + (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) + (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-657 (-657 *8))) + (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-657 *8))))) (((*1 *2 *3) - (-12 (-4 *3 (-1264 (-419 (-576)))) - (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) - (-5 *1 (-932 *3 *4)) (-4 *4 (-1264 (-419 *3))))) + (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-171 (-326 *4))) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-932 *4 *3)) - (-4 *3 (-1264 (-419 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-194)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-310)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1179)) (-5 *1 (-315))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1121)) - (-5 *2 (-112))))) + (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *2 (-171 *3)) (-5 *1 (-1228 *4 *3)) + (-4 *3 (-13 (-27) (-1224) (-442 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) - (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-246))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-876)))) - ((*1 *1 *1) (-5 *1 (-876))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-962 (-227))) (-5 *2 (-227)) (-5 *1 (-1234)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-390)) (-5 *1 (-798))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-656 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-805)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) - (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1179)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *4 (-1086 *6 *7 *8)) (-5 *2 (-1293)) - (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1092 *6 *7 *8 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1185 *4 *5)) - (-14 *4 (-940)) (-4 *5 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-940)))) ((*1 *1) (-4 *1 (-557))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-711)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-446)) - (-5 *2 - (-656 - (-3 (|:| -4149 (-1197)) - (|:| -2685 (-656 (-3 (|:| S (-1197)) (|:| P (-971 (-576))))))))) - (-5 *1 (-1201))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) - (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1197)) - (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1121) (-34))) - (-4 *2 (-13 (-1121) (-34)))))) + (-12 (-4 *4 (-13 (-374) (-861))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1502 (-430 *3)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-861)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1178 (-971 *4)) (-1178 (-971 *4)))) - (-5 *1 (-1296 *4)) (-4 *4 (-374))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) - (-5 *2 - (-2 (|:| -2729 (-783)) (|:| |curves| (-783)) - (|:| |polygons| (-783)) (|:| |constructs| (-783))))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202))))) -(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-940)) (-4 *3 (-374)) - (-14 *4 (-1014 *2 *3)))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *1) (-4 *1 (-505))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) ((*1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1071)) (-14 *3 (-657 (-1198))))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1071) (-862))) + (-14 *3 (-657 (-1198))))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *1) (|partial| -4 *1 (-734))) - ((*1 *1 *1) (|partial| -4 *1 (-738))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-374))) - (-4 *2 (-1264 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115)))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-419 (-576))))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1115 (-390)))) (-5 *1 (-270))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *3 (-1264 *4)) (-4 *2 (-1279 *4)) - (-5 *1 (-1282 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) - (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) - (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070)))) + (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-1122)))) + ((*1 *1 *1) + (-12 (-14 *2 (-657 (-1198))) (-4 *3 (-174)) + (-4 *5 (-243 (-3437 *2) (-784))) + (-14 *6 + (-1 (-112) (-2 (|:| -3146 *4) (|:| -2128 *5)) + (-2 (|:| -3146 *4) (|:| -2128 *5)))) + (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862)) + (-4 *7 (-969 *3 *5 (-879 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-865)))) + ((*1 *1 *1) + (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1265 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-1071)))) + ((*1 *1 *1) + (-12 (-5 *1 (-748 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1071)) + (-4 *3 (-739)))) + ((*1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-859))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-877)))) + ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-982))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-963 (-227)))) (-5 *1 (-1290))))) +(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1265 (-171 *2))))) ((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) - (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4466 "*"))) (-4 *2 (-1070))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-448))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) - (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-763))))) -(((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-722))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-568)) (-4 *2 (-968 *3 *5 *4)) - (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-971 *6))) (-4 *5 (-805)) - (-4 *4 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1273 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1197)) - (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1061)) (-5 *3 (-390))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 (-971 *6))) (-4 *6 (-568)) - (-4 *2 (-968 (-419 (-971 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) - (-4 *5 (-805)) - (-4 *4 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $)))))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) + (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1265 (-171 *2)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1264 *4)) - (-5 *1 (-941 *4 *2))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) - (-4 *2 (-861))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023) (-1223)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1193 (-971 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) - (-5 *2 (-1193 (-971 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1690 *4) (|:| -2178 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) + (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) + (-5 *1 (-779 *3 *4)) (-4 *3 (-721 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1071)) + (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-867 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1071)) + (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-868 *5 *3)) + (-4 *3 (-867 *5))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1082 *2 *3)) - (-4 *3 (-1264 *2))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-1122))))) (((*1 *2 *3) - (-12 (-4 *1 (-851)) - (-5 *3 - (-2 (|:| |fn| (-326 (-227))) (|:| -3650 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *2 (-1056)))) - ((*1 *2 *3) - (-12 (-4 *1 (-851)) - (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) - (-5 *2 (-1056))))) + (-12 (-4 *2 (-374)) (-4 *2 (-861)) (-5 *1 (-965 *2 *3)) + (-4 *3 (-1265 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1279 *3)))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1279 *3)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1174 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-14 *5 (-656 (-1197))) - (-5 *2 - (-656 (-2 (|:| -2785 (-1193 *4)) (|:| -4314 (-656 (-971 *4)))))) - (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-656 (-1197))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 - (-656 (-2 (|:| -2785 (-1193 *5)) (|:| -4314 (-656 (-971 *5)))))) - (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 - (-656 (-2 (|:| -2785 (-1193 *5)) (|:| -4314 (-656 (-971 *5)))))) - (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 - (-656 (-2 (|:| -2785 (-1193 *5)) (|:| -4314 (-656 (-971 *5)))))) - (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-656 (-971 *5))) - (-14 *6 (-656 (-1197))) (-14 *7 (-656 (-1197))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 - (-656 (-2 (|:| -2785 (-1193 *4)) (|:| -4314 (-656 (-971 *4)))))) - (-5 *1 (-1315 *4 *5 *6)) (-5 *3 (-656 (-971 *4))) - (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197)))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-1197))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-656 (-2 (|:| -2102 (-419 (-576))) (|:| -2113 (-419 (-576)))))) - (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1041 *4)) - (-4 *4 (-1264 (-576)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) - (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-4 *7 (-1238)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) - (-4 *3 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1068))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) - (-5 *1 (-766))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-668 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -3379 *3) (|:| -3961 (-656 *5)))) - (-5 *1 (-1046 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5))))) -(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1223)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-374)) - (-5 *2 (-112)) (-5 *1 (-679 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4465)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4465)))) (-5 *2 (-112)) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1209 (-656 *4))) (-4 *4 (-861)) - (-5 *2 (-656 (-656 *4))) (-5 *1 (-1208 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1193 (-419 (-576)))) (-5 *1 (-961)) (-5 *3 (-576))))) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-518))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-891))) (-5 *1 (-495))))) (((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-783))))) -(((*1 *1) (-5 *1 (-301)))) + (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) + (-4 *1 (-969 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *3 (-129)) (-5 *2 (-784))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) - (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1288 *5)) - (-5 *1 (-650 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-651 *5))) - (-2299 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1288 (-419 *5))) - (-5 *1 (-650 *5 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-132)) - (-4 *3 (-804))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-1070)) - (-5 *1 (-1181 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-1070)) - (-14 *4 (-1197)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2549 *1))) - (-4 *1 (-866 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *2 (-2 (|:| -1597 (-656 *6)) (|:| -3823 (-656 *6))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-971 (-576))))) - (-5 *2 - (-656 - (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) - (|:| |radvect| (-656 (-701 (-326 (-576)))))))) - (-5 *1 (-1052))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1265 *6)) + (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)))) + (-4 *8 (-1265 (-419 *7))) (-5 *2 (-598 *3)) + (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-977 (-1193 *4))) (-5 *1 (-368 *4)) - (-5 *3 (-1193 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312))))) -(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1264 *2)) - (-4 *2 (-174)))) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1239)) (-5 *2 (-784)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-132)) + (-5 *2 (-784)))) ((*1 *2) - (-12 (-4 *4 (-1264 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) - (-4 *3 (-421 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-174)))) + (-12 (-4 *4 (-374)) (-5 *2 (-784)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-372 *3)) (-4 *3 (-1122)))) + ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-784)))) + ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1122)) (-5 *2 (-784)))) ((*1 *2) - (-12 (-4 *3 (-1264 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) - (-4 *4 (-421 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *3 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-174))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-980 *3)) (-4 *3 (-557))))) -(((*1 *1 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)) - (-4 *2 (-464)))) - ((*1 *1 *1) - (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1264 *2)) - (-4 *4 (-1264 (-419 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)) (-4 *3 (-464)))) - ((*1 *1 *1) - (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-464)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1184 *3 *2)) - (-4 *2 (-1264 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) - ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) - ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-638)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1121)) - (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) - (-5 *1 (-1097 *3 *4 *2)) - (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1121))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-878 *5))) (-14 *5 (-656 (-1197))) (-4 *6 (-464)) - (-5 *2 - (-2 (|:| |dpolys| (-656 (-253 *5 *6))) - (|:| |coords| (-656 (-576))))) - (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 (-1193 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1264 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-448))))) -(((*1 *2) (-12 (-5 *2 (-1154 (-227))) (-5 *1 (-1221))))) -(((*1 *2 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-638)))) + (-12 (-4 *4 (-1122)) (-5 *2 (-784)) (-5 *1 (-436 *3 *4)) + (-4 *3 (-437 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-1121)) - (-4 *2 (-13 (-442 *4) (-901 *3) (-626 (-907 *3)))) - (-5 *1 (-1097 *3 *4 *2)) - (-4 *4 (-13 (-1070) (-901 *3) (-626 (-907 *3)))))) + (-12 (-5 *2 (-784)) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-784)) + (-5 *1 (-736 *3 *4 *5)) (-4 *3 (-737 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028)))) ((*1 *2 *1) - (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) - (-14 *4 (-1197)) (-14 *5 *3)))) + (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) + (-4 *3 (-1265 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1199 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-971 *4))) (-5 *3 (-656 (-1197))) (-4 *4 (-464)) - (-5 *1 (-937 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-858))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-968 *3 *5 *4)) - (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) - (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) - (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1264 *3))))) + (-12 (-5 *3 (-657 (-941))) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224)))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) - (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1121)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219))))) -(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-4 *6 (-901 *5)) (-5 *2 (-900 *5 *6 (-656 *6))) - (-5 *1 (-902 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-907 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-902 *5 *3 *4)) - (-4 *3 (-1059 (-1197))) (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-5 *2 (-656 (-304 (-971 *3)))) - (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1070)) - (-2299 (-4 *3 (-1059 (-1197)))) (-4 *3 (-901 *5)) - (-4 *4 (-626 (-907 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1121)) (-5 *2 (-904 *5 *3)) (-5 *1 (-902 *5 *3 *4)) - (-2299 (-4 *3 (-1059 (-1197)))) (-2299 (-4 *3 (-1070))) - (-4 *3 (-901 *5)) (-4 *4 (-626 (-907 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1193 (-419 (-971 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4464)) (-4 *1 (-501 *4)) - (-4 *4 (-1238)) (-5 *2 (-112))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) - (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) (-4 *1 (-968 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2675 *1) (|:| -3561 *1))) - (-4 *1 (-1264 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-940)) - (-5 *2 (-1288 (-656 (-2 (|:| -1690 *4) (|:| -2411 (-1141)))))) - (-5 *1 (-357 *4)) (-4 *4 (-360))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1121)) (-4 *3 (-861)) - (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1238)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1231 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1276 *3)) (-4 *3 (-1238)))) - ((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5))))) -(((*1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291)))) - ((*1 *2 *2) (-12 (-5 *2 (-940)) (-5 *1 (-1291))))) -(((*1 *2 *3) - (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-112)) - (-5 *1 (-684 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-990 *2 *4)) - (-4 *4 (-1264 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-768))))) -(((*1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3389 *4))) (-5 *1 (-990 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1056)) - (-5 *1 (-768))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1291))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-962 (-227)) (-227) (-227))) - (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1179)) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1231 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-876))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) - (-4 *2 (-13 (-861) (-21)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1193 *7)) - (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) - (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1178 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1848 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1056)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1193 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-374) (-312) - (-10 -8 (-15 -2687 ((-1146 *4 (-624 $)) $)) - (-15 -2697 ((-1146 *4 (-624 $)) $)) - (-15 -4113 ($ (-1146 *4 (-624 $)))))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-878 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1197))) (-5 *2 (-656 (-1067 *5 *6))) - (-5 *1 (-640 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) - (-5 *3 (-656 (-576)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1179)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-783)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) - (-5 *2 - (-3 (-1193 *4) - (-1288 (-656 (-2 (|:| -1690 *4) (|:| -2411 (-1141))))))) - (-5 *1 (-357 *4)) (-4 *4 (-360))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-1121)) (-4 *7 (-917 *6)) - (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) - (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4464))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 (-326 (-227)))) - (-5 *2 - (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) - (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) - (-5 *1 (-315))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-518)) (-4 *4 (-1121)) (-5 *1 (-948 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1197)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) - (-5 *1 (-949))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) - (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-971 (-419 (-576)))) (-5 *4 (-1197)) - (-5 *5 (-1115 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) - (-4 *5 (-1070)) (-5 *2 (-112)) (-5 *1 (-1050 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1070)) - (-5 *2 (-112)) (-5 *1 (-1050 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *1 *1) (-4 *1 (-505))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) + (-4 *2 (-1280 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) + (-4 *5 (-1265 *4)) (-4 *6 (-737 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) + (-4 *2 (-1280 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) + (-5 *1 (-554 *4 *2)) (-4 *2 (-1280 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) + (-5 *1 (-1175 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) ((*1 *2 *1) - (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1197))))) + (-12 (-4 *2 (-1071)) (-5 *1 (-50 *2 *3)) (-14 *3 (-657 (-1198))))) ((*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-656 (-1197))))) + (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) ((*1 *2 *1) - (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1070)))) + (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1071)))) ((*1 *2 *1) - (-12 (-14 *3 (-656 (-1197))) (-4 *5 (-243 (-1970 *3) (-783))) + (-12 (-14 *3 (-657 (-1198))) (-4 *5 (-243 (-3437 *3) (-784))) (-14 *6 - (-1 (-112) (-2 (|:| -2411 *4) (|:| -4080 *5)) - (-2 (|:| -2411 *4) (|:| -4080 *5)))) - (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) - (-4 *7 (-968 *2 *5 (-878 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-864)) (-4 *2 (-102)))) + (-1 (-112) (-2 (|:| -3146 *4) (|:| -2128 *5)) + (-2 (|:| -3146 *4) (|:| -2128 *5)))) + (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862)) + (-4 *7 (-969 *2 *5 (-879 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-865)) (-4 *2 (-102)))) ((*1 *2 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1264 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1070)))) + (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1265 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-1071)))) ((*1 *2 *1) - (-12 (-4 *2 (-1070)) (-5 *1 (-747 *2 *3)) (-4 *3 (-861)) - (-4 *3 (-738)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + (-12 (-4 *2 (-1071)) (-5 *1 (-748 *2 *3)) (-4 *3 (-862)) + (-4 *3 (-739)))) + ((*1 *2 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)))) ((*1 *2 *1) - (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) - (-4 *2 (-1070)))) + (-12 (-4 *1 (-995 *2 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) + (-4 *2 (-1071)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-769))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-317)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-459 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) - (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-459 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) - (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-148))) - (-5 *2 (-2 (|:| -2102 *3) (|:| -2113 *3))) (-5 *1 (-1258 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) - (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-1013 *4)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) - (-5 *1 (-705 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1059 (-419 (-576))))) - (-4 *6 (-1264 *5)) - (-5 *2 (-2 (|:| -3379 *7) (|:| |rh| (-656 (-419 *6))))) - (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) - (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1013 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1257 *4 *5 *3)) - (-4 *3 (-1264 *5))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1178 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1848 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-571))))) + (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862))))) +(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) + ((*1 *1 *1) (-4 *1 (-1082)))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1070))))) + (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-929)) + (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-969 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-929)) + (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-929)) (-5 *1 (-927 *2 *3)) (-4 *3 (-1265 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-835))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1232 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-806)) + (-4 *3 (-862)) (-4 *6 (-1087 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-941)) (-5 *1 (-1052 *2)) + (-4 *2 (-13 (-1122) (-10 -8 (-15 -2971 ($ $ $)))))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1122))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1259 *3 *2)) + (-4 *2 (-1265 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4351 *4))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-212))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *1 *1) (-4 *1 (-505))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-374)) (-5 *2 (-657 *3)) (-5 *1 (-965 *4 *3)) + (-4 *3 (-1265 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) + (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1122)))) ((*1 *2 *1) - (-12 (-14 *3 (-656 (-1197))) (-4 *4 (-174)) - (-4 *6 (-243 (-1970 *3) (-783))) + (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) + (-4 *6 (-243 (-3437 *3) (-784))) (-14 *7 - (-1 (-112) (-2 (|:| -2411 *5) (|:| -4080 *6)) - (-2 (|:| -2411 *5) (|:| -4080 *6)))) - (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-861)) (-4 *8 (-968 *4 *6 (-878 *3))))) + (-1 (-112) (-2 (|:| -3146 *5) (|:| -2128 *6)) + (-2 (|:| -3146 *5) (|:| -2128 *6)))) + (-5 *2 (-726 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-862)) (-4 *8 (-969 *4 *6 (-879 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-738)) (-4 *2 (-861)) (-5 *1 (-747 *3 *2)) - (-4 *3 (-1070)))) + (-12 (-4 *2 (-739)) (-4 *2 (-862)) (-5 *1 (-748 *3 *2)) + (-4 *3 (-1071)))) ((*1 *1 *1) - (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-804)) - (-4 *4 (-861))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-1097 *4 *5 *2))) (-4 *4 (-1121)) - (-4 *5 (-13 (-1070) (-901 *4) (-626 (-907 *4)))) - (-4 *2 (-13 (-442 *5) (-901 *4) (-626 (-907 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-656 (-1097 *5 *6 *2))) (-5 *4 (-940)) (-4 *5 (-1121)) - (-4 *6 (-13 (-1070) (-901 *5) (-626 (-907 *5)))) - (-4 *2 (-13 (-442 *6) (-901 *5) (-626 (-907 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) - (-5 *2 (-112)) (-5 *1 (-1161 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-971 *8)))) - (-5 *5 (-783)) (-5 *6 (-1179)) (-4 *8 (-13 (-317) (-148))) - (-4 *11 (-968 *8 *10 *9)) (-4 *9 (-13 (-861) (-626 (-1197)))) - (-4 *10 (-805)) - (-5 *2 - (-2 - (|:| |rgl| - (-656 - (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) - (|:| |wcond| (-656 (-971 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-971 *8)))) - (|:| -2704 (-656 (-1288 (-419 (-971 *8)))))))))) - (|:| |rgsz| (-576)))) - (-5 *1 (-943 *8 *9 *10 *11)) (-5 *7 (-576))))) -(((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1106))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *2 (-861)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861))))) + (-12 (-4 *1 (-995 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-805)) + (-4 *4 (-862))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1274 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) + (-14 *4 (-1198)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1122)) (-5 *1 (-726 *3 *2 *4)) (-4 *3 (-862)) + (-14 *4 + (-1 (-112) (-2 (|:| -3146 *3) (|:| -2128 *2)) + (-2 (|:| -3146 *3) (|:| -2128 *2))))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1082)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)) (-4 *2 (-1082)))) + ((*1 *1 *1) (-4 *1 (-861))) + ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)) (-4 *2 (-1082)))) + ((*1 *1 *1) (-4 *1 (-1082))) ((*1 *1 *1) (-4 *1 (-1161)))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-853)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-852)))) - ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1056)) (-5 *1 (-852)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) - (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1056)) - (-5 *1 (-852)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) - (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1056)) (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1056)) - (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) - (-5 *2 (-1056)) (-5 *1 (-852))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-984)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1010)))) - ((*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) + (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-972 *6))) (-5 *4 (-657 (-1198))) + (-4 *6 (-13 (-568) (-1060 *5))) (-4 *5 (-568)) + (-5 *2 (-657 (-657 (-304 (-419 (-972 *6)))))) (-5 *1 (-1061 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) + (-5 *1 (-342))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) + (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1161 *2 *3)) - (-4 *3 (-13 (-1121) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1121)) (-5 *1 (-986 *3))))) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1070)))) - ((*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1121))))) -(((*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1121))))) + (-12 (-5 *3 (-1198)) + (-5 *2 + (-2 (|:| |zeros| (-1179 (-227))) (|:| |ones| (-1179 (-227))) + (|:| |singularities| (-1179 (-227))))) + (-5 *1 (-105))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1197))) - (-14 *4 (-656 (-1197))) (-4 *5 (-399))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1082 (-1045 *3) (-1193 (-1045 *3)))) - (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-374) (-1043)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *4))) - (-4 *4 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-943 *4 *5 *6 *3)) - (-4 *3 (-968 *4 *6 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-940)) (-4 *5 (-317)) (-4 *3 (-1264 *5)) - (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) - (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *1 *1) (-4 *1 (-505))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-1120 *3)))) + ((*1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) + ((*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-657 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-568)) + (-4 *3 (-1071))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1299))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 (-2 (|:| |val| (-657 *6)) (|:| -3941 *7)))) + (-4 *6 (-1087 *3 *4 *5)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-657 (-2 (|:| |val| (-657 *6)) (|:| -3941 *7)))) + (-4 *6 (-1087 *3 *4 *5)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1129 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) + (-5 *2 (-657 (-2 (|:| -1988 *1) (|:| -3179 (-657 *7))))) + (-5 *3 (-657 *7)) (-4 *1 (-1232 *4 *5 *6 *7))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1166)) (-5 *2 (-1256 (-576)))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-877)))) (((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) + (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *3 (-568))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1179) (-786))) (-5 *1 (-115))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) - (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3015 (-656 *9)))) - (-5 *3 (-656 *9)) (-4 *1 (-1231 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3015 (-656 *8)))) - (-5 *3 (-656 *8)) (-4 *1 (-1231 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121))))) + ((*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1060 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-877))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -1735 *3) (|:| |gap| (-784)) (|:| -2192 (-795 *3)) + (|:| -3951 (-795 *3)))) + (-5 *1 (-795 *3)) (-4 *3 (-1071)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) + (-5 *2 + (-2 (|:| -1735 *1) (|:| |gap| (-784)) (|:| -2192 *1) + (|:| -3951 *1))) + (-4 *1 (-1087 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *2 + (-2 (|:| -1735 *1) (|:| |gap| (-784)) (|:| -2192 *1) + (|:| -3951 *1))) + (-4 *1 (-1087 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-702 (-419 (-972 (-576))))) + (-5 *2 (-657 (-702 (-326 (-576))))) (-5 *1 (-1053))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-972 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) (((*1 *1 *1) (-4 *1 (-248))) ((*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1265 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-3795 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1238))) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) + (-2748 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1239))) + (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1239))))) ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) + ((*1 *1 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180)) (-5 *2 (-657 (-1203))) (-5 *1 (-896))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1194 *5)) (-4 *5 (-374)) (-5 *2 (-657 *6)) + (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-861)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) + ((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1071)) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1265 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-657 (-1262 *5 *4))) + (-5 *1 (-1136 *4 *5)) (-5 *3 (-1262 *5 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-752 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) + (-5 *2 (-657 (-657 (-657 (-963 *3)))))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1069))))) (((*1 *2 *3 *2) + (-12 (-5 *2 (-889)) (-5 *3 (-657 (-270))) (-5 *1 (-268))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) + (-4 *2 (-13 (-862) (-21)))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-656 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-805)) (-4 *3 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) - (-5 *1 (-461 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1156))) (-5 *1 (-1087))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1238)) (-4 *3 (-1070)) - (-5 *2 (-701 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-922 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-876))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) - ((*1 *1) (-5 *1 (-590)))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-254))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1070)) - (-4 *2 (-13 (-416) (-1059 *4) (-374) (-1223) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-4 *5 (-1070)) - (-4 *2 (-13 (-416) (-1059 *5) (-374) (-1223) (-294))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1293)) - (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) - (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) + (-3 (|:| I (-326 (-576))) (|:| -1995 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) + (-5 *1 (-1197))))) +(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-907 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) - (-5 *1 (-904 *4 *5)) (-4 *5 (-1121)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-907 *5)) (-4 *5 (-1121)) (-5 *2 (-112)) - (-5 *1 (-905 *5 *3)) (-4 *3 (-1238)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-907 *5)) (-4 *5 (-1121)) - (-4 *6 (-1238)) (-5 *2 (-112)) (-5 *1 (-905 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-861)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-878 *3)) (-14 *3 (-656 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1010)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1238)) (-5 *2 (-1197)) (-5 *1 (-1078 *3 *4)) - (-4 *3 (-1114 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1113 *3)) (-4 *3 (-1238)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-804)) - (-5 *2 (-1197)))) - ((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2)))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) -(((*1 *2) - (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + (-12 (-5 *3 (-941)) (-5 *2 (-1289 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360))))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1122))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) ((*1 *2 *2) - (-12 (-5 *2 (-940)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1178 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *1 *1 *1) (-5 *1 (-390))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) + (-12 (-5 *3 (-1194 (-576))) (-5 *2 (-576)) (-5 *1 (-962))))) +(((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) + (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) - (-4 *3 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-4 *3 (-13 (-27) (-1224) (-442 *6))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) - (-5 *5 (-1255 (-419 (-576)))) (-5 *6 (-419 (-576))) - (-4 *8 (-13 (-27) (-1223) (-442 *7))) - (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *5 (-1256 (-419 (-576)))) (-5 *6 (-419 (-576))) + (-4 *8 (-13 (-27) (-1224) (-442 *7))) + (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-419 (-576)))) - (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1223) (-442 *8))) - (-4 *8 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-419 (-576)))) + (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *8))) + (-4 *8 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1070)) (-4 *1 (-1271 *4 *3)) - (-4 *3 (-1248 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) - (-5 *2 (-419 (-971 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1248 *4)) (-4 *4 (-1070)) (-4 *4 (-568)) - (-5 *2 (-419 (-971 *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-1197))) (-5 *2 (-1197)) (-5 *1 (-340))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-764))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1197)) - (-4 *4 (-13 (-317) (-148) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-587 *4 *2)) - (-4 *2 (-13 (-1223) (-978) (-1160) (-29 *4)))))) -(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-571))))) + (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1071)) (-4 *1 (-1272 *4 *3)) + (-4 *3 (-1249 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1106 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1106 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) + (-4 *3 (-1087 *6 *7 *8)) + (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) + (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3941 *9)))) + (-5 *5 (-112)) (-4 *8 (-1087 *6 *7 *4)) (-4 *9 (-1093 *6 *7 *4 *8)) + (-4 *6 (-464)) (-4 *7 (-806)) (-4 *4 (-862)) + (-5 *2 (-657 (-2 (|:| |val| *8) (|:| -3941 *9)))) + (-5 *1 (-1094 *6 *7 *4 *8 *9))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-548) (-657 (-548)))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-657 (-548)))) (-5 *1 (-115)))) + ((*1 *1) (-5 *1 (-590)))) +(((*1 *2 *1) + (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) + (-14 *6 + (-1 (-112) (-2 (|:| -3146 *5) (|:| -2128 *2)) + (-2 (|:| -3146 *5) (|:| -2128 *2)))) + (-4 *2 (-243 (-3437 *3) (-784))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-862)) (-4 *7 (-969 *4 *2 (-879 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) + (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1059 *4) (-651 *4))) + (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1060 *4) (-652 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *5))))) + (-4 *3 (-13 (-27) (-1224) (-442 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-464) (-1059 *5) (-651 *5))) (-5 *5 (-576)) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) + (-4 *6 (-13 (-464) (-1060 *5) (-652 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-576))) - (-4 *7 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1256 (-576))) + (-4 *7 (-13 (-27) (-1224) (-442 *6))) + (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-576))) - (-4 *3 (-13 (-27) (-1223) (-442 *7))) - (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-576))) + (-4 *3 (-13 (-27) (-1224) (-442 *7))) + (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *4 (-1070)) (-4 *1 (-1250 *4 *3)) - (-4 *3 (-1279 *4)))) + (-12 (-5 *2 (-576)) (-4 *4 (-1071)) (-4 *1 (-1251 *4 *3)) + (-4 *3 (-1280 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1271 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1248 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1231 *4 *5 *6 *7)) - (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-924 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) - (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) + (-12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1249 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-784)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-784)) (-4 *1 (-272 *4)) + (-4 *4 (-1239)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1239)))) + ((*1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-912 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1239)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 (-784))) (-4 *1 (-920 *4)) + (-4 *4 (-1122)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-784)) (-4 *1 (-920 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *1 (-920 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1049 *4)) - (-4 *4 (-1070)))) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-442 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1198)))) + ((*1 *1 *1) (-4 *1 (-161)))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-62 *3)) (-14 *3 (-1198)))) + ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-69 *3)) (-14 *3 (-1198)))) + ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-72 *3)) (-14 *3 (-1198)))) + ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1294)))) + ((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1294)) (-5 *1 (-409)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-924 (-576)))) (-5 *4 (-576)) - (-5 *2 (-656 (-701 *4))) (-5 *1 (-1049 *5)) (-4 *5 (-1070)))) + (-12 (-5 *3 (-1180)) (-5 *4 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) + ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-1049 *4)) (-4 *4 (-1070))))) + (-12 (-5 *3 (-657 (-877))) (-5 *2 (-1294)) (-5 *1 (-1160))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-390)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-684)))) + ((*1 *2 *1) + (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-941)) + (-14 *4 (-941))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) (((*1 *2 *3) - (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1059 (-576))) - (-4 *4 (-568)) (-5 *2 (-1193 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-624 *1)) (-4 *1 (-1070)) (-4 *1 (-312)) - (-5 *2 (-1193 *1))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1131))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-971 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1197))) (-5 *1 (-837))))) + (-12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-906 *4 *5)) (-4 *5 (-1239)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1188))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-568))))) (((*1 *2 *3) - (-12 (-5 *3 (-1197)) - (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-442 *4))))) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *4))))) + (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) + (-12 (-5 *4 (-784)) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *5))))) + (-4 *3 (-13 (-27) (-1224) (-442 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) - (-4 *3 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-12 (-5 *4 (-304 *3)) (-5 *5 (-784)) + (-4 *3 (-13 (-27) (-1224) (-442 *6))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) - (-4 *6 (-13 (-27) (-1223) (-442 *5))) - (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-4 *6 (-13 (-27) (-1224) (-442 *5))) + (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) + (-4 *3 (-13 (-27) (-1224) (-442 *6))) + (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1255 (-783))) - (-4 *7 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1256 (-784))) + (-4 *7 (-13 (-27) (-1224) (-442 *6))) + (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1197)) (-5 *5 (-304 *3)) (-5 *6 (-1255 (-783))) - (-4 *3 (-13 (-27) (-1223) (-442 *7))) - (-4 *7 (-13 (-568) (-1059 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-784))) + (-4 *3 (-13 (-27) (-1224) (-442 *7))) + (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1178 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1070)) - (-5 *3 (-419 (-576))) (-5 *1 (-1181 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1280 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-947))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) + (-4 *3 (-1122))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1194 *7)) + (-4 *5 (-1071)) (-4 *7 (-1071)) (-4 *2 (-1265 *5)) + (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1265 *2))))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-403))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-889)) (-5 *2 (-1294)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) (((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1193 *5))) (-5 *3 (-1193 *5)) - (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1264 *5)) - (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1193 (-576)))) (-5 *3 (-1193 (-576))) - (-5 *1 (-584)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1193 *1))) (-5 *3 (-1193 *1)) - (-4 *1 (-928))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) - (-5 *3 (-576)) (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1070)) (-5 *1 (-702 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-834))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) + (-4 *3 (-1265 *4)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1264 (-171 *2)))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1121)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-1178 *3)) (-5 *1 (-1181 *3)) - (-4 *3 (-1070)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-831 *4)) (-4 *4 (-861)) (-4 *1 (-1305 *4 *3)) - (-4 *3 (-1070))))) -(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6 *2)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3)))) + ((*1 *1 *1) (-4 *1 (-1227)))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1180)) (-5 *5 (-702 (-227))) (-5 *6 (-227)) + (-5 *7 (-702 (-576))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-765))))) +(((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1294)) (-5 *1 (-403)))) + ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-403))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1179 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3936 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1057)) (-5 *1 (-315))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1232 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *5 (-1087 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *5 (-243 *3 *4)) - (-4 *2 (-243 *3 *4))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) - (-5 *2 (-1056)) (-5 *1 (-767)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) - (-5 *4 (-227)) (-5 *2 (-1056)) (-5 *1 (-767))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-876))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-876) (-656 (-876)))) (-5 *1 (-115)))) + (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) + (-5 *2 (-112)) (-5 *1 (-1009 *3 *4 *5 *6)) + (-4 *6 (-969 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1293)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-861) - (-10 -8 (-15 -4369 ((-1179) $ (-1197))) (-15 -1614 (*2 $)) - (-15 -3384 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-406)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) - ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-722)))) - ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1218)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-1218))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) + (-4 *4 (-13 (-1122) (-34)))))) +(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3)))) + ((*1 *1 *1) (-4 *1 (-1227)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1062))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -4251 (-430 *3)) (|:| |special| (-430 *3)))) - (-5 *1 (-739 *5 *3))))) -(((*1 *1) (-5 *1 (-590)))) + (-12 (-5 *3 (-657 (-1289 *5))) (-5 *4 (-576)) (-5 *2 (-1289 *5)) + (-5 *1 (-1051 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1071))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1193 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) + (-12 (-4 *4 (-568)) (-5 *2 (-1194 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-374) (-312) + (-10 -8 (-15 -1590 ((-1147 *4 (-624 $)) $)) + (-15 -1602 ((-1147 *4 (-624 $)) $)) + (-15 -3515 ($ (-1147 *4 (-624 $)))))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-112)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-112)) + (-5 *1 (-1228 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-1022 *3))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4468 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) + (-4 *2 (-1071)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1265 *2)) + (-4 *4 (-700 *2 *5 *6))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-1260 *4 *3)) + (-4 *3 (-1265 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3579 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-374)) (-4 *7 (-1265 *6)) + (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3)))) + ((*1 *1 *1) (-4 *1 (-1227)))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1292)))) + ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1292))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) - (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-227) (-227) (-227))) - (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4080 (-576)))) - (-4 *1 (-442 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1070)) (-4 *4 (-1121)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4080 (-576)))) - (-4 *1 (-442 *4)))) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) + (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 (-449))))) + (-5 *1 (-1202))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1068 *5 *6))) + (-5 *1 (-640 *5 *6))))) +(((*1 *2) + (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-1122))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-112)) + (-5 *2 (-1057)) (-5 *1 (-766))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-702 (-1194 *8))) (-4 *5 (-1071)) (-4 *8 (-1071)) + (-4 *6 (-1265 *5)) (-5 *2 (-702 *6)) (-5 *1 (-513 *5 *6 *7 *8)) + (-4 *7 (-1265 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1280 *4)) + (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1179 *4) (-1179 *4))) + (-5 *1 (-1282 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3)))) + ((*1 *1 *1) (-4 *1 (-1227)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-877) (-877))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-877) (-657 (-877)))) (-5 *1 (-115)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1121)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4080 (-576)))) - (-4 *1 (-442 *3)))) + (|partial| -12 (-5 *2 (-1 (-877) (-657 (-877)))) (-5 *1 (-115)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-907 *3)) (|:| -4080 (-783)))) - (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + (-12 (-5 *2 (-1294)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-862) + (-10 -8 (-15 -2780 ((-1180) $ (-1198))) (-15 -2011 (*2 $)) + (-15 -2884 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-406)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-514)))) + ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-723)))) + ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1219))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-419 (-576))) + (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-568))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-905 *5 *3)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) + (-4 *3 (-167 *6)) (-4 (-972 *6) (-902 *5)) + (-4 *6 (-13 (-902 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-905 *4 *1)) (-5 *3 (-908 *4)) (-4 *1 (-902 *4)) + (-4 *4 (-1122)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-905 *5 *6)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) + (-4 *6 (-13 (-1122) (-1060 *3))) (-4 *3 (-902 *5)) + (-5 *1 (-951 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-905 *5 *3)) (-4 *5 (-1122)) + (-4 *3 (-13 (-442 *6) (-626 *4) (-902 *5) (-1060 (-624 $)))) + (-5 *4 (-908 *5)) (-4 *6 (-13 (-568) (-902 *5))) + (-5 *1 (-952 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-905 (-576) *3)) (-5 *4 (-908 (-576))) (-4 *3 (-557)) + (-5 *1 (-953 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-905 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1122)) + (-4 *6 (-13 (-1122) (-1060 (-624 $)) (-626 *4) (-902 *5))) + (-5 *4 (-908 *5)) (-5 *1 (-954 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-901 *5 *6 *3)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) + (-4 *6 (-902 *5)) (-4 *3 (-679 *6)) (-5 *1 (-955 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-905 *6 *3) *8 (-908 *6) (-905 *6 *3))) + (-4 *8 (-862)) (-5 *2 (-905 *6 *3)) (-5 *4 (-908 *6)) + (-4 *6 (-1122)) (-4 *3 (-13 (-969 *9 *7 *8) (-626 *4))) + (-4 *7 (-806)) (-4 *9 (-13 (-1071) (-902 *6))) + (-5 *1 (-956 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-905 *5 *3)) (-4 *5 (-1122)) + (-4 *3 (-13 (-969 *8 *6 *7) (-626 *4))) (-5 *4 (-908 *5)) + (-4 *7 (-902 *5)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *8 (-13 (-1071) (-902 *5))) (-5 *1 (-956 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-905 *5 *3)) (-4 *5 (-1122)) (-4 *3 (-1014 *6)) + (-4 *6 (-13 (-568) (-902 *5) (-626 *4))) (-5 *4 (-908 *5)) + (-5 *1 (-959 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-905 *5 (-1198))) (-5 *3 (-1198)) (-5 *4 (-908 *5)) + (-4 *5 (-1122)) (-5 *1 (-960 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-657 (-908 *7))) (-5 *5 (-1 *9 (-657 *9))) + (-5 *6 (-1 (-905 *7 *9) *9 (-908 *7) (-905 *7 *9))) (-4 *7 (-1122)) + (-4 *9 (-13 (-1071) (-626 (-908 *7)) (-1060 *8))) + (-5 *2 (-905 *7 *9)) (-5 *3 (-657 *9)) (-4 *8 (-1071)) + (-5 *1 (-961 *7 *8 *9))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *3)) + (-4 *3 (-1239)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-687 *3)) (-4 *3 (-1239)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1232 *4 *5 *3 *2)) (-4 *4 (-568)) + (-4 *5 (-806)) (-4 *3 (-862)) (-4 *2 (-1087 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-784)) (-5 *1 (-1236 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) + (-5 *3 (-657 (-576)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1060 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-442 *3)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1194 *4)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1071)) (-4 *1 (-312)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1194 *3)))) + ((*1 *2) (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1265 *3)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -4080 (-783)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-968 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -4080 (-576)))) - (-5 *1 (-969 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) - (-15 -2697 (*7 $)))))))) -(((*1 *2 *3) - (-12 (-4 *1 (-939)) (-5 *2 (-2 (|:| -2862 (-656 *1)) (|:| -2549 *1))) - (-5 *3 (-656 *1))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1115 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1154 (-227))) - (-5 *1 (-709))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1121)) - (-4 *2 (-861))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1056)) (-5 *3 (-1197)) (-5 *1 (-194))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4464)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) - (-4 *3 (-1121)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-112)) - (-5 *1 (-923 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-940)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1290))))) -(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-340))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1238)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) - (-14 *4 (-576))))) -(((*1 *1) (-5 *1 (-1106)))) + (-12 (-4 *1 (-1090 *3 *2)) (-4 *3 (-13 (-861) (-374))) + (-4 *2 (-1265 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *2 (-568))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-962 *4)) (-4 *4 (-1070)) (-5 *1 (-1185 *3 *4)) - (-14 *3 (-940))))) + (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) + (-5 *1 (-315))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *1) (-5 *1 (-145)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-651 *4))) - (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3)))) + ((*1 *1 *1) (-4 *1 (-1227)))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-934 *3)) (-4 *3 (-317))))) +(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1173))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1289 *5)) (-4 *5 (-805)) (-5 *2 (-112)) + (-5 *1 (-858 *4 *5)) (-14 *4 (-784))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3650 (-656 (-227))))) - (-5 *2 (-656 (-1197))) (-5 *1 (-276)))) + (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) + (-5 *2 (-657 (-1198))) (-5 *1 (-276)))) ((*1 *2 *3) - (-12 (-5 *3 (-1193 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-656 *5)) + (-12 (-5 *3 (-1194 *7)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1071)) (-5 *2 (-657 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) + (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) ((*1 *2 *1) - (-12 (-4 *1 (-442 *3)) (-4 *3 (-1121)) (-5 *2 (-656 (-1197))))) + (-12 (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-5 *2 (-657 (-1198))))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) + (-12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) ((*1 *2 *1) - (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-656 *5)))) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-657 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-656 *5)) - (-5 *1 (-969 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) + (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-657 *5)) + (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) - (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $))))))) + (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-804)) - (-4 *5 (-861)) (-5 *2 (-656 *5)))) + (-12 (-4 *1 (-995 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-657 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-656 *5)))) + (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1197))) - (-5 *1 (-1064 *4))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-734)))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1070)) - (-5 *1 (-867 *5 *2)) (-4 *2 (-866 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-576)) (-5 *5 (-1179)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-761))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-940)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) -(((*1 *1 *1) (-5 *1 (-548)))) + (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-5 *2 (-657 (-1198))) + (-5 *1 (-1065 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1180)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-270))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-652 *4)) (-4 *4 (-1071)) + (-5 *2 (-2 (|:| -3962 (-702 *4)) (|:| |vec| (-1289 *4)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-652 *4)) (-4 *4 (-1071)) + (-5 *2 (-702 *4))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2469 (-657 *1)))) + (-4 *1 (-378 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-465 *3 *4 *5 *6)) + (|:| -2469 (-657 (-465 *3 *4 *5 *6))))) + (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) - (-4 *4 (-1264 *2))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) - (-5 *3 (-227)) (-5 *2 (-1056)) (-5 *1 (-762))))) + (-12 (-5 *2 (-2 (|:| -3519 (-576)) (|:| -1502 (-657 *3)))) + (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-576)) (-5 *1 (-246))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3)))) + ((*1 *1 *1) (-4 *1 (-1227)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1290)))) + ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1193 (-419 (-1193 *2)))) (-5 *4 (-624 *2)) - (-4 *2 (-13 (-442 *5) (-27) (-1223))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1121)))) + (-12 (-5 *3 (-1194 (-419 (-1194 *2)))) (-5 *4 (-624 *2)) + (-4 *2 (-13 (-442 *5) (-27) (-1224))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1122)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1193 *1)) (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *3 (-861)))) + (-12 (-5 *2 (-1194 *1)) (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1071)) + (-4 *5 (-806)) (-4 *3 (-862)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1193 *4)) (-4 *4 (-1070)) (-4 *1 (-968 *4 *5 *3)) - (-4 *5 (-805)) (-4 *3 (-861)))) + (-12 (-5 *2 (-1194 *4)) (-4 *4 (-1071)) (-4 *1 (-969 *4 *5 *3)) + (-4 *5 (-806)) (-4 *3 (-862)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1193 *2))) (-4 *5 (-805)) (-4 *4 (-861)) - (-4 *6 (-1070)) + (-12 (-5 *3 (-419 (-1194 *2))) (-4 *5 (-806)) (-4 *4 (-862)) + (-4 *6 (-1071)) (-4 *2 (-13 (-374) - (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $))))) - (-5 *1 (-969 *5 *4 *6 *7 *2)) (-4 *7 (-968 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1193 (-419 (-971 *5))))) (-5 *4 (-1197)) - (-5 *2 (-419 (-971 *5))) (-5 *1 (-1064 *5)) (-4 *5 (-568))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1121)))) - ((*1 *1 *2) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1121))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-940)) - (-4 *4 (-1070))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-1141)) (-5 *2 (-112)) (-5 *1 (-833))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-822 *4 *2)) - (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1264 *4)) - (-5 *1 (-822 *4 *2)) - (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576)))))))) + (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $))))) + (-5 *1 (-970 *5 *4 *6 *7 *2)) (-4 *7 (-969 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-1194 (-419 (-972 *5))))) (-5 *4 (-1198)) + (-5 *2 (-419 (-972 *5))) (-5 *1 (-1065 *5)) (-4 *5 (-568))))) +(((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-714)))) + ((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-714))))) +(((*1 *2 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) + (-12 (-5 *2 (-1289 *4)) (-5 *3 (-784)) (-4 *4 (-360)) + (-5 *1 (-540 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-940))) (-5 *4 (-656 (-576))) - (-5 *2 (-701 (-576))) (-5 *1 (-1131))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) + (-12 (-5 *3 (-419 (-972 (-171 (-576))))) (-5 *2 (-657 (-171 *4))) + (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-861))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-657 (-419 (-972 (-171 (-576)))))) + (-5 *4 (-657 (-1198))) (-5 *2 (-657 (-657 (-171 *5)))) + (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-861)))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1288 (-701 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-701 *4)) (-4 *5 (-668 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1264 *5)) - (-5 *1 (-739 *5 *2)) (-4 *5 (-374))))) + (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024) (-1224)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-493 *4 *5))) (-14 *4 (-657 (-1198))) + (-4 *5 (-464)) (-5 *2 (-657 (-253 *4 *5))) (-5 *1 (-643 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-804)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-940))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-940)) - (-4 *2 (-374)) (-14 *5 (-1014 *4 *2)))) + (-12 (-5 *3 (-657 (-941))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-941)) + (-4 *2 (-374)) (-14 *5 (-1015 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-861)) - (-4 *6 (-243 (-1970 *4) (-783))) + (-12 (-5 *3 (-726 *5 *6 *7)) (-4 *5 (-862)) + (-4 *6 (-243 (-3437 *4) (-784))) (-14 *7 - (-1 (-112) (-2 (|:| -2411 *5) (|:| -4080 *6)) - (-2 (|:| -2411 *5) (|:| -4080 *6)))) - (-14 *4 (-656 (-1197))) (-4 *2 (-174)) - (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-968 *2 *6 (-878 *4))))) + (-1 (-112) (-2 (|:| -3146 *5) (|:| -2128 *6)) + (-2 (|:| -3146 *5) (|:| -2128 *6)))) + (-14 *4 (-657 (-1198))) (-4 *2 (-174)) + (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-969 *2 *6 (-879 *4))))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-864)))) + (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-865)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) - (-4 *4 (-1264 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1070)))) + (-4 *4 (-1265 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-721 *2)) (-4 *2 (-1071)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-738)))) + (-12 (-5 *1 (-748 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-739)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) - (-4 *4 (-1070)) (-4 *5 (-861)))) + (-12 (-5 *2 (-657 *5)) (-5 *3 (-657 (-784))) (-4 *1 (-753 *4 *5)) + (-4 *4 (-1071)) (-4 *5 (-862)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1070)) - (-4 *2 (-861)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *2)) (-4 *4 (-1071)) + (-4 *2 (-862)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-867 *2)) (-4 *2 (-1071)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-968 *4 *5 *6)) - (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *6 (-861)))) + (-12 (-5 *2 (-657 *6)) (-5 *3 (-657 (-784))) (-4 *1 (-969 *4 *5 *6)) + (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1070)) - (-4 *5 (-805)) (-4 *2 (-861)))) + (-12 (-5 *3 (-784)) (-4 *1 (-969 *4 *5 *2)) (-4 *4 (-1071)) + (-4 *5 (-806)) (-4 *2 (-862)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-994 *4 *5 *6)) - (-4 *4 (-1070)) (-4 *5 (-804)) (-4 *6 (-861)))) + (-12 (-5 *2 (-657 *6)) (-5 *3 (-657 *5)) (-4 *1 (-995 *4 *5 *6)) + (-4 *4 (-1071)) (-4 *5 (-805)) (-4 *6 (-862)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-994 *4 *3 *2)) (-4 *4 (-1070)) (-4 *3 (-804)) - (-4 *2 (-861))))) -(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1121)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1056)) (-5 *1 (-766))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1113 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1197))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-907 *4)) - (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1121)) (-4 *3 (-167 *5)))) + (-12 (-4 *1 (-995 *4 *3 *2)) (-4 *4 (-1071)) (-4 *3 (-805)) + (-4 *2 (-862))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1071))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1243)) (-4 *5 (-1265 *3)) (-4 *6 (-1265 (-419 *5))) + (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-941)) (-4 *6 (-568)) (-5 *2 (-657 (-326 *6))) + (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1071)))) + ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1115 (-855 (-390))))) - (-5 *2 (-656 (-1115 (-855 (-227))))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-406)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) - (-4 *4 (-1264 *3)))) + (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1224))) + (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-657 *5)) + (-5 *1 (-595 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-598 (-419 (-972 *4)))) + (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *2 (-657 (-326 *4))) (-5 *1 (-601 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) - (-5 *2 (-1288 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1288 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) - (-4 *3 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-475 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-548)))) - ((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-971 *3)) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) - (-4 *5 (-626 (-1197))) (-4 *4 (-805)) (-4 *5 (-861)))) - ((*1 *1 *2) - (-3795 - (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) - (-12 (-2299 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1197)))) - (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))) - (-12 (-5 *2 (-971 (-576))) (-4 *1 (-1086 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197)))) - (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861))))) - ((*1 *1 *2) - (-12 (-5 *2 (-971 (-419 (-576)))) (-4 *1 (-1086 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1197))) (-4 *3 (-1070)) - (-4 *4 (-805)) (-4 *5 (-861)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) - (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) - (-5 *1 (-1090 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4442 *8))) - (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1130 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-1179)) - (-5 *1 (-1166 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1202)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1202)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-1218)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-576)) (-5 *1 (-1218)))) - ((*1 *2 *3) - (-12 (-5 *3 (-792 *4 (-878 *5))) - (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *5 (-656 (-1197))) - (-5 *2 (-792 *4 (-878 *6))) (-5 *1 (-1315 *4 *5 *6)) - (-14 *6 (-656 (-1197))))) - ((*1 *2 *3) - (-12 (-5 *3 (-971 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-971 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) - (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) - ((*1 *2 *3) - (-12 (-5 *3 (-792 *4 (-878 *6))) - (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) - (-5 *2 (-971 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) - (-14 *5 (-656 (-1197))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1193 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1043))) - (-5 *2 (-1193 (-1045 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) - (-14 *5 (-656 (-1197))) (-14 *6 (-656 (-1197))))) + (-12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1171 *3)))) ((*1 *2 *3) - (-12 - (-5 *3 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-792 *4 (-878 *6)))) - (-4 *4 (-13 (-860) (-317) (-148) (-1043))) (-14 *6 (-656 (-1197))) - (-5 *2 (-656 (-792 *4 (-878 *6)))) (-5 *1 (-1315 *4 *5 *6)) - (-14 *5 (-656 (-1197)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1123 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-656 *4))) (-5 *1 (-923 *4)) - (-5 *3 (-656 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1121)) (-5 *2 (-1123 (-1123 *4))) (-5 *1 (-923 *4)) - (-5 *3 (-1123 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1123 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1056)) (-5 *1 (-767))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-687 *2)) (-4 *2 (-1070)) (-4 *2 (-1121))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1156)) (-5 *3 (-301)) (-5 *1 (-169))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1238)) (-5 *2 (-656 *1)) (-4 *1 (-1031 *3)))) + (-12 (-5 *3 (-657 *1)) (-4 *1 (-1117 *4 *2)) (-4 *4 (-861)) + (-4 *2 (-1171 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224))))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) - (-14 *3 (-940)) (-4 *4 (-1070))))) -(((*1 *1) (-5 *1 (-1103)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-1293)) (-5 *1 (-923 *4)) - (-4 *4 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -4291 (-419 *6)) (|:| |coeff| (-419 *6)))) - (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) + (-12 (-5 *2 (-1304 (-1198) *3)) (-5 *1 (-1311 *3)) (-4 *3 (-1071)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1313 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-1071))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1264 (-419 *2))) - (-4 *2 (-1264 *4)) (-5 *1 (-352 *3 *4 *2 *5)) - (-4 *3 (-353 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1242)) - (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) -(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-384 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) - (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-971 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) - (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-537))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -4291 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1264 *7)) - (-5 *3 (-419 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-586 *7 *8))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -2571 *3)))) - (-5 *4 (-783)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-861)) (-5 *1 (-461 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-861) (-626 (-1197)))) - (-4 *5 (-805)) (-5 *1 (-943 *3 *4 *5 *2)) (-4 *2 (-968 *3 *5 *4))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1025 *3)) (-14 *3 (-576))))) + (-12 (-5 *3 (-941)) + (-5 *2 + (-3 (-1194 *4) + (-1289 (-657 (-2 (|:| -3037 *4) (|:| -3146 (-1142))))))) + (-5 *1 (-357 *4)) (-4 *4 (-360))))) +(((*1 *2) + (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) + ((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-971 *5))) (-5 *4 (-656 (-1197))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *5)))))) (-5 *1 (-782 *5)))) + (-12 (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) + (-5 *1 (-755 *5 *4 *6 *3)) (-4 *3 (-969 *6 *5 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1224) (-1024)))))) +(((*1 *2) + (-12 (-5 *2 (-784)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576))))) + ((*1 *2 *2) + (-12 (-5 *2 (-784)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) + ((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-971 *4))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-971 *4)))))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2704 (-656 *6))) - *7 *6)) - (-4 *6 (-374)) (-4 *7 (-668 *6)) + (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-112)) (-5 *1 (-842))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-624 *4)) (-5 *6 (-1194 *4)) + (-4 *4 (-13 (-442 *7) (-27) (-1224))) + (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 - (-2 (|:| |particular| (-3 (-1288 *6) "failed")) - (|:| -2704 (-656 (-1288 *6))))) - (-5 *1 (-825 *6 *7)) (-5 *4 (-1288 *6))))) -(((*1 *1 *1) (-5 *1 (-876))) - ((*1 *2 *1) - (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) - (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1179)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1179)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1197))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) + (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-669 *4)) (-4 *3 (-1122)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1194 *4))) + (-4 *4 (-13 (-442 *7) (-27) (-1224))) + (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2469 (-657 *4)))) + (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-669 *4)) (-4 *3 (-1122))))) +(((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1164 *3 *4)) (-14 *3 (-941)) (-4 *4 (-374)) + (-5 *1 (-1015 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-947))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-695 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) (-5 *3 (-576))))) +(((*1 *1 *1) (|partial| -4 *1 (-1174)))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-764))))) +(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723))))) +(((*1 *2 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-625 (-877))))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-891)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-891)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1180)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-518)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-604)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-490)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1188)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-638)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1118)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1095)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-992)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-182)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1058)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-321)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-684)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-155)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1173)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-537)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1300)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1088)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-529)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-618)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1299)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-689)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-220)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-536)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1203)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1203)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1203)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1203))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -4215 ((-430 $) $))))) + (-4 *4 (-1265 *3)) + (-5 *2 + (-2 (|:| -2469 (-702 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-702 *3)))) + (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-1265 *3)) + (-5 *2 + (-2 (|:| -2469 (-702 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-702 *3)))) + (-5 *1 (-781 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 *3)) + (-5 *2 + (-2 (|:| -2469 (-702 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-702 *3)))) + (-5 *1 (-1007 *4 *3 *5 *6)) (-4 *6 (-737 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 *3)) + (-5 *2 + (-2 (|:| -2469 (-702 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-702 *3)))) + (-5 *1 (-1298 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1124 *4)) (-4 *4 (-1122)) (-5 *2 (-1 *4)) + (-5 *1 (-1039 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1084))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1147 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) - (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *1 (-1147 *4 *3 *5)) - (-4 *5 (-968 *4 (-543 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1232 *4))) (-5 *3 (-1197)) (-5 *1 (-1232 *4)) - (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-924 *3)) (-4 *3 (-1121)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1264 *4)) (-5 *2 (-576)))) + (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1062)) (-5 *3 (-390)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1059 *2) (-651 *2) (-464))) - (-5 *2 (-576)) (-5 *1 (-1137 *4 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *4))))) + (-12 (-5 *3 (-1116 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1069))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-657 *7)) (-5 *3 (-112)) (-4 *7 (-1087 *4 *5 *6)) + (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) + (-5 *1 (-999 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-969 *7 *5 *6)) + (-5 *1 (-755 *5 *6 *7 *2)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-317))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024) (-1224)))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1166)) (-5 *3 (-145)) (-5 *2 (-112))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-112)) (-5 *1 (-908 *4)) + (-4 *4 (-1122))))) +(((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-448))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) + ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1069)) + (-5 *3 (-576))))) +(((*1 *2 *3) + (-12 + (-5 *2 + (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))) + (-5 *4 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))) (-5 *4 (-419 (-576))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 *3)) - (-4 *3 (-13 (-27) (-1223) (-442 *6))) - (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) - (-5 *1 (-1137 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-1179)) - (-4 *6 (-13 (-568) (-1059 *2) (-651 *2) (-464))) (-5 *2 (-576)) - (-5 *1 (-1137 *6 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *6))))) + (-12 (-5 *5 (-419 (-576))) + (-5 *2 (-657 (-2 (|:| -4217 *5) (|:| -4228 *5)))) (-5 *1 (-1042 *3)) + (-4 *3 (-1265 (-576))) (-5 *4 (-2 (|:| -4217 *5) (|:| -4228 *5))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-464)) (-5 *2 (-576)) - (-5 *1 (-1138 *4)))) + (-12 + (-5 *2 + (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) + (-5 *1 (-1043 *3)) (-4 *3 (-1265 (-419 (-576)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) + (-5 *1 (-1043 *3)) (-4 *3 (-1265 (-419 (-576)))) + (-5 *4 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-419 (-576))) + (-5 *2 (-657 (-2 (|:| -4217 *4) (|:| -4228 *4)))) (-5 *1 (-1043 *3)) + (-4 *3 (-1265 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-855 (-419 (-971 *6)))) - (-5 *3 (-419 (-971 *6))) (-4 *6 (-464)) (-5 *2 (-576)) - (-5 *1 (-1138 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-419 (-971 *6))) (-5 *4 (-1197)) - (-5 *5 (-1179)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1138 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1220 *3)) (-4 *3 (-1070))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-940)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-940)) (-5 *1 (-270))))) + (-12 (-5 *5 (-419 (-576))) + (-5 *2 (-657 (-2 (|:| -4217 *5) (|:| -4228 *5)))) (-5 *1 (-1043 *3)) + (-4 *3 (-1265 *5)) (-5 *4 (-2 (|:| -4217 *5) (|:| -4228 *5)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) + (-5 *2 (-1057)) (-5 *1 (-761))))) +(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 *4)) (-4 *4 (-861)) (-4 *4 (-374)) (-5 *2 (-784)) + (-5 *1 (-965 *4 *5)) (-4 *5 (-1265 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -2240 (-1197)) (|:| -2905 *4)))) - (-5 *1 (-904 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) + (-12 (-5 *2 (-657 (-2 (|:| -4286 (-1198)) (|:| -4440 *4)))) + (-5 *1 (-905 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) ((*1 *2 *1) - (-12 (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) - (-4 *7 (-1121)) (-5 *2 (-656 *1)) (-4 *1 (-1124 *3 *4 *5 *6 *7))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1023)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1264 (-171 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-1218))))) -(((*1 *2 *3) - (-12 (-5 *3 (-971 *5)) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) - (-5 *1 (-963 *4 *5)) (-14 *4 (-656 (-1197)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1106))) (-5 *1 (-301))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) - (-5 *1 (-1026))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) + (-12 (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) + (-4 *7 (-1122)) (-5 *2 (-657 *1)) (-4 *1 (-1125 *3 *4 *5 *6 *7))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1291)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1057))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 (-419 (-971 (-576))))) - (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876)))) - ((*1 *1 *1) (-5 *1 (-876))) + (-12 (-4 *4 (-929)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-430 (-1194 *7))) + (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-929)) (-4 *5 (-1265 *4)) (-5 *2 (-430 (-1194 *5))) + (-5 *1 (-927 *4 *5)) (-5 *3 (-1194 *5))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) +(((*1 *1 *2) + (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1060 *4)) (-4 *3 (-317)) + (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-4 *6 (-421 *4 *5)) + (-14 *7 (-1289 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) - ((*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-1179))) (-5 *1 (-409))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1070)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3))))) + (-12 (-5 *2 (-1289 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1014 *3)) + (-4 *5 (-1265 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-227))) - (|:| -1848 (-1115 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-112)) (-5 *1 (-310))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-940)) (-4 *3 (-1070))))) -(((*1 *1 *1 *1) (-5 *1 (-876)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1264 *5)) - (-5 *2 - (-656 - (-2 (|:| -2704 (-701 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-701 *6))))) - (-5 *1 (-510 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2704 (-701 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-701 *6)))) - (-4 *7 (-1264 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-317))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) - (-4 *6 (-1264 *5)) (-5 *2 (-1193 (-1193 *7))) - (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1264 *6))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-858))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1223) (-1023)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1290))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-945))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1056)) (-5 *1 (-766))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) + (-12 (-5 *3 (-1179 (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1182 *4)) + (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1071))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) + ((*1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-1120 *3)))) + ((*1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1193 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) - (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1193 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-971 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1197)) (-4 *4 (-568)) (-5 *2 (-656 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1193 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-874)) (-5 *2 (-703 (-561))) (-5 *3 (-561))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-878 *4)) - (-14 *4 (-656 (-1197))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1288 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1121))))) + (-12 (-4 *6 (-568)) (-4 *2 (-969 *3 *5 *4)) + (-5 *1 (-745 *5 *4 *6 *2)) (-5 *3 (-419 (-972 *6))) (-4 *5 (-806)) + (-4 *4 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-240 *3)) + (-4 *3 (-1122)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4466)) (-4 *1 (-240 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1122)) + (-5 *1 (-750 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-750 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) + (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1179 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1179 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-310)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1179 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-315))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1590 ((-1147 *3 (-624 $)) $)) + (-15 -1602 ((-1147 *3 (-624 $)) $)) + (-15 -3515 ($ (-1147 *3 (-624 $)))))))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-702 (-419 (-972 (-576))))) + (-5 *2 (-702 (-326 (-576)))) (-5 *1 (-1053))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) + (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) + ((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1194 *1)) (-5 *3 (-1198)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-972 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1194 *2)) (-5 *4 (-1198)) (-4 *2 (-442 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-568)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1194 *1)) (-5 *3 (-941)) (-4 *1 (-1034)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1194 *1)) (-5 *3 (-941)) (-5 *4 (-877)) + (-4 *1 (-1034)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-941)) (-4 *4 (-13 (-861) (-374))) + (-4 *1 (-1090 *4 *2)) (-4 *2 (-1265 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1238)) (-4 *1 (-243 *3 *4))))) + (-12 (-5 *2 (-1274 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1198)) + (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1062)) (-5 *3 (-390))))) +(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-774)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-390)) (-5 *2 (-1294)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-972 *5)))) (-5 *4 (-1198)) + (-4 *5 (-13 (-317) (-148))) + (-5 *2 (-1187 (-657 (-326 *5)) (-657 (-304 (-326 *5))))) + (-5 *1 (-1151 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) + (-4 *5 (-13 (-317) (-148))) + (-5 *2 (-1187 (-657 (-326 *5)) (-657 (-304 (-326 *5))))) + (-5 *1 (-1151 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-409))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1121)) (-5 *2 (-624 *5)) - (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4))))) + (-12 (-5 *3 (-657 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) + (-5 *2 (-877)) (-5 *1 (-32 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-877)))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1070)) - (-5 *1 (-1050 *4))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3015 (-656 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) + (-12 (-4 *1 (-800)) (-5 *2 (-1057)) + (-5 *3 + (-2 (|:| |fn| (-326 (-227))) + (|:| -3936 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-800)) (-5 *2 (-1057)) + (-5 *3 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1289 *4)) (-4 *4 (-1239)) (-4 *1 (-243 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1194 (-972 *6))) (-4 *6 (-568)) + (-4 *2 (-969 (-419 (-972 *6)) *5 *4)) (-5 *1 (-745 *5 *4 *6 *2)) + (-4 *5 (-806)) + (-4 *4 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $)))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) + (-5 *1 (-178 *3))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) + ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-557))) + ((*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) + (-4 *3 (-13 (-1122) (-34)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-390)) (-5 *1 (-1085))))) (((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1264 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1264 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-656 (-1193 *13))) (-5 *3 (-1193 *13)) - (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) - (-5 *7 (-656 (-656 (-2 (|:| -3299 (-783)) (|:| |pcoef| *13))))) - (-5 *8 (-656 (-783))) (-5 *9 (-1288 (-656 (-1193 *10)))) - (-4 *12 (-861)) (-4 *10 (-317)) (-4 *13 (-968 *10 *11 *12)) - (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13))))) + (-12 (-5 *2 (-657 (-657 (-784)))) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-784)) (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) (((*1 *2 *1) - (-12 (-5 *2 (-1123 (-1123 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) + (|partial| -12 + (-5 *2 (-2 (|:| -1782 (-115)) (|:| |arg| (-657 (-908 *3))))) + (-5 *1 (-908 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-657 (-908 *4))) + (-5 *1 (-908 *4)) (-4 *4 (-1122))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1071)) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1265 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-985))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1180) (-787))) (-5 *1 (-115))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1024) (-1224))) + (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1024) (-1224)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-834)) (-5 *4 (-52)) (-5 *2 (-1294)) (-5 *1 (-844))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-802)) (-5 *5 (-576))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) + (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-326 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1238)) (-5 *1 (-1178 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1223))))) -(((*1 *2 *1 *1) - (-12 + (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -3738 (-783)))) - (-5 *1 (-794 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3738 (-783)))) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1264 *4)) (-5 *2 (-701 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1264 *3)) - (-5 *2 (-701 *3))))) -(((*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) + (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-802)) (-5 *5 (-576))))) +(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-390)) (-5 *1 (-1062))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-972 (-576)))) (-5 *1 (-449)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1198)) (-5 *4 (-702 (-227))) (-5 *2 (-1126)) + (-5 *1 (-772)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1198)) (-5 *4 (-702 (-576))) (-5 *2 (-1126)) + (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-591))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-374)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 (-419 *3))) + (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1265 *2)) + (-4 *5 (-1265 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) + (-4 *6 (-353 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-374)) (-4 *3 (-1265 *2)) (-4 *4 (-1265 (-419 *3))) + (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1121)) (-5 *1 (-1224 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-1224 *2))) (-5 *1 (-1224 *2)) (-4 *2 (-1121))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1279 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1264 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1279 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1279 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1174 *3))))) + (-12 (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) + (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) + (-4 *1 (-346 *3 *4 *5 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 (-879 *5))) (-4 *4 (-374)) + (-14 *5 (-657 (-1198))) (-5 *1 (-651 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-1264 (-419 *3))) (-5 *2 (-940)) - (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1121)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) - (-5 *2 (-701 (-227))) (-5 *1 (-276))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-112)) (-5 *1 (-310))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-768))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1059 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-442 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-174)))) + (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-326 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)) (-651 (-576)))) - (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-442 *3)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) - (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6))))) + (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-1247)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071)))) + ((*1 *2) + (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1265 *4)) + (-4 *5 (-13 (-416) (-1060 *4) (-374) (-1224) (-294)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360)))) + ((*1 *1) (-4 *1 (-379))) + ((*1 *2 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1289 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360)))) + ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1) (-4 *1 (-557))) + ((*1 *1 *1) (-5 *1 (-784))) + ((*1 *2 *1) (-12 (-5 *2 (-925 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-925 *4)) (-5 *1 (-924 *4)) + (-4 *4 (-1122)))) + ((*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-557)) (-4 *2 (-568))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-4 *2 (-1122)) (-5 *1 (-693 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1238))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2970 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1070))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2119)))) - (-5 *2 (-1056)) (-5 *1 (-758))))) + (|partial| -12 (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))) + (-4 *3 (-13 (-1122) (-34)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-568)) (-4 *8 (-968 *7 *5 *6)) - (-5 *2 (-2 (|:| -4080 (-783)) (|:| -2862 *9) (|:| |radicand| *9))) - (-5 *1 (-972 *5 *6 *7 *8 *9)) (-5 *4 (-783)) - (-4 *9 - (-13 (-374) - (-10 -8 (-15 -4113 ($ *8)) (-15 -2687 (*8 $)) (-15 -2697 (*8 $)))))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1194 (-1194 *5)))) + (-5 *1 (-1237 *5)) (-5 *3 (-1194 (-1194 *5)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) - (-4 *2 (-13 (-442 *5) (-27) (-1223))) - (-4 *5 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1121))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1121)) - (-4 *6 (-1238)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1121)) - (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1121)) - (-4 *5 (-1238)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1121)) - (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) - (-4 *5 (-1121)) (-4 *6 (-1238)) (-5 *1 (-653 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1121)) (-4 *2 (-1238)) (-5 *1 (-653 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-145)) (-5 *2 (-783))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-962 (-227))))) (-5 *1 (-480))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1303 (-1197) *3)) (-4 *3 (-1070)) (-5 *1 (-1310 *3)))) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) (-5 *5 (-1194 *2)) + (-4 *2 (-13 (-442 *6) (-27) (-1224))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1122)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-624 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) + (-5 *5 (-419 (-1194 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1224))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1122))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-784)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *1 (-1312 *3 *4))))) + (-12 (-4 *2 (-1071)) (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-905 *4 *5)) (-5 *3 (-905 *4 *6)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-679 *5)) (-5 *1 (-901 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1197))) - (-14 *3 (-656 (-1197))) (-4 *4 (-399)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-576)))) - ((*1 *1 *1) (-4 *1 (-1023))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1033)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1033)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-940)))) - ((*1 *1 *1) (-4 *1 (-1033)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1232 *6)) - (-5 *2 (-1 (-1178 *4) (-1178 *4))) (-5 *1 (-1296 *6)) - (-5 *5 (-1178 *4))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-656 - (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1193 *2)) - (|:| |logand| (-1193 *2))))) - (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-374)) (-5 *1 (-598 *2))))) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) + ((*1 *1 *1) (-4 *1 (-1024))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1034)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1034)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-941)))) + ((*1 *1 *1) (-4 *1 (-1034)))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) - (-5 *3 (-656 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1178 (-656 (-576)))) (-5 *1 (-898)) - (-5 *3 (-656 (-576)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-626 (-907 *3))) (-4 *3 (-901 *3)) (-4 *3 (-464)) - (-5 *1 (-1229 *3 *2)) (-4 *2 (-626 (-907 *3))) (-4 *2 (-901 *3)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) - (-4 *4 (-626 (-548))) (-4 *5 (-1238)) (-4 *6 (-1238))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1258 *4 *2)) (-4 *2 (-1264 *4))))) + (-12 (-5 *3 (-657 *4)) (-4 *4 (-374)) (-4 *2 (-1265 *4)) + (-5 *1 (-942 *4 *2))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 *4)) (-5 *1 (-1162 *3 *4)) - (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34)))))) + (-12 (-4 *2 (-969 *3 *5 *4)) (-5 *1 (-1009 *3 *4 *5 *2)) + (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806))))) +(((*1 *1 *1 *1) (-4 *1 (-989)))) +(((*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) + ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) +(((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-97))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1166)))) +(((*1 *1 *1) (-5 *1 (-877)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1264 (-48))))) + (-12 (-5 *4 (-657 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1265 (-48))))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) - (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-968 (-48) *6 *5)))) + (-12 (-5 *4 (-657 (-48))) (-4 *5 (-862)) (-4 *6 (-806)) + (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-969 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-48))) (-4 *5 (-861)) (-4 *6 (-805)) - (-4 *7 (-968 (-48) *6 *5)) (-5 *2 (-430 (-1193 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1193 *7)))) + (-12 (-5 *4 (-657 (-48))) (-4 *5 (-862)) (-4 *6 (-806)) + (-4 *7 (-969 (-48) *6 *5)) (-5 *2 (-430 (-1194 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1194 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1264 (-171 *4))))) + (-4 *3 (-1265 (-171 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1264 *4)))) + (-4 *3 (-1265 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-576))))) + (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1265 (-576))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-576))))) + (-12 (-5 *4 (-657 (-784))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1265 (-576))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) - (-5 *1 (-454 *3)) (-4 *3 (-1264 (-576))))) + (-12 (-5 *4 (-657 (-784))) (-5 *5 (-784)) (-5 *2 (-430 *3)) + (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-576))))) + (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1265 (-576))))) ((*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-861) - (-10 -8 (-15 -1556 ((-1197) $)) - (-15 -1654 ((-3 $ "failed") (-1197)))))) - (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) + (-13 (-862) + (-10 -8 (-15 -4136 ((-1198) $)) + (-15 -2993 ((-3 $ "failed") (-1198)))))) + (-4 *5 (-806)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) - (-4 *3 (-968 *7 *5 *4)))) + (-4 *3 (-969 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1193 *4))) (-5 *1 (-470 *4)) - (-5 *3 (-1193 *4)))) + (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1194 *4))) (-5 *1 (-470 *4)) + (-5 *3 (-1194 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-374)) - (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) - (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1264 *7)))) + (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) + (-4 *7 (-13 (-374) (-148) (-737 *5 *6))) (-5 *2 (-430 *3)) + (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1265 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 (-1193 *7)) (-1193 *7))) - (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) + (-12 (-5 *4 (-1 (-430 (-1194 *7)) (-1194 *7))) + (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-806)) (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) - (-4 *3 (-968 *7 *6 *5)))) + (-4 *3 (-969 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 (-1193 *7)) (-1193 *7))) - (-4 *7 (-13 (-317) (-148))) (-4 *5 (-861)) (-4 *6 (-805)) - (-4 *8 (-968 *7 *6 *5)) (-5 *2 (-430 (-1193 *8))) - (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1193 *8)))) + (-12 (-5 *4 (-1 (-430 (-1194 *7)) (-1194 *7))) + (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-806)) + (-4 *8 (-969 *7 *6 *5)) (-5 *2 (-430 (-1194 *8))) + (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1194 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *6 (-1264 *5)) (-5 *2 (-656 (-665 (-419 *6)))) - (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6))))) + (-12 (-5 *4 (-1 (-657 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-4 *6 (-1265 *5)) (-5 *2 (-657 (-666 (-419 *6)))) + (-5 *1 (-670 *5 *6)) (-5 *3 (-666 (-419 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1059 (-576)) (-1059 (-419 (-576))))) - (-4 *5 (-1264 *4)) (-5 *2 (-656 (-665 (-419 *5)))) - (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) + (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) + (-4 *5 (-1265 *4)) (-5 *2 (-657 (-666 (-419 *5)))) + (-5 *1 (-670 *4 *5)) (-5 *3 (-666 (-419 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-831 *4)) (-4 *4 (-861)) (-5 *2 (-656 (-684 *4))) - (-5 *1 (-684 *4)))) + (-12 (-5 *3 (-832 *4)) (-4 *4 (-862)) (-5 *2 (-657 (-685 *4))) + (-5 *1 (-685 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) - (-4 *3 (-1264 *4)))) + (-12 (-5 *4 (-576)) (-5 *2 (-657 *3)) (-5 *1 (-709 *3)) + (-4 *3 (-1265 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) - (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) + (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-360)) (-5 *2 (-430 *3)) + (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-360)) - (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-430 (-1193 *7))) - (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) + (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-360)) + (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-430 (-1194 *7))) + (-5 *1 (-711 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-805)) + (-12 (-4 *4 (-806)) (-4 *5 - (-13 (-861) - (-10 -8 (-15 -1556 ((-1197) $)) - (-15 -1654 ((-3 $ "failed") (-1197)))))) - (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) - (-4 *3 (-968 (-971 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *5 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $))))) (-4 *6 (-568)) - (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) - (-4 *3 (-968 (-419 (-971 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-13 (-317) (-148))) + (-13 (-862) + (-10 -8 (-15 -4136 ((-1198) $)) + (-15 -2993 ((-3 $ "failed") (-1198)))))) + (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-743 *4 *5 *6 *3)) + (-4 *3 (-969 (-972 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-806)) + (-4 *5 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) - (-4 *3 (-968 (-419 *6) *4 *5)))) + (-4 *3 (-969 (-419 (-972 *6)) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) - (-4 *3 (-968 *6 *5 *4)))) + (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148))) + (-5 *2 (-430 *3)) (-5 *1 (-746 *4 *5 *6 *3)) + (-4 *3 (-969 (-419 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-430 (-1193 *7))) - (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) + (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-13 (-317) (-148))) + (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) + (-4 *3 (-969 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1028 *3)) - (-4 *3 (-1264 (-419 (-576)))))) + (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-430 (-1194 *7))) + (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1062 *3)) - (-4 *3 (-1264 (-419 (-971 (-576))))))) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1029 *3)) + (-4 *3 (-1265 (-419 (-576)))))) ((*1 *2 *3) - (-12 (-4 *4 (-1264 (-419 (-576)))) - (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) - (-5 *2 (-430 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1264 *5)))) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1063 *3)) + (-4 *3 (-1265 (-419 (-972 (-576))))))) ((*1 *2 *3) - (-12 (-4 *4 (-1264 (-419 (-971 (-576))))) - (-4 *5 (-13 (-374) (-148) (-736 (-419 (-971 (-576))) *4))) - (-5 *2 (-430 *3)) (-5 *1 (-1102 *4 *5 *3)) (-4 *3 (-1264 *5)))) + (-12 (-4 *4 (-1265 (-419 (-576)))) + (-4 *5 (-13 (-374) (-148) (-737 (-419 (-576)) *4))) + (-5 *2 (-430 *3)) (-5 *1 (-1101 *4 *5 *3)) (-4 *3 (-1265 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-464)) - (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-430 (-1193 (-419 *7)))) - (-5 *1 (-1192 *4 *5 *6 *7)) (-5 *3 (-1193 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1242)))) + (-12 (-4 *4 (-1265 (-419 (-972 (-576))))) + (-4 *5 (-13 (-374) (-148) (-737 (-419 (-972 (-576))) *4))) + (-5 *2 (-430 *3)) (-5 *1 (-1103 *4 *5 *3)) (-4 *3 (-1265 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1264 (-576)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197)) (-5 *2 (-548)) (-5 *1 (-547 *4)) - (-4 *4 (-1238))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1121)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1121)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) - (-4 *4 (-1121)) (-14 *5 *2)))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (|has| *1 (-6 -4455)) (-4 *1 (-416)) - (-5 *2 (-940))))) -(((*1 *2 *3) - (-12 + (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-464)) + (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-430 (-1194 (-419 *7)))) + (-5 *1 (-1193 *4 *5 *6 *7)) (-5 *3 (-1194 (-419 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1243)))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1122)) (-5 *2 (-784))))) +(((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1122)) (-5 *2 (-55))))) +(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291))))) +(((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-657 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1122)) + (-5 *1 (-585 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-784)) (-4 *5 (-360)) (-4 *6 (-1265 *5)) + (-5 *2 + (-657 + (-2 (|:| -2469 (-702 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-702 *6))))) + (-5 *1 (-510 *5 *6 *7)) (-5 *3 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))) - (-5 *2 (-1056)) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-763))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1121)) (-5 *1 (-1215 *3 *2)) (-4 *3 (-1121))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1047 (-855 (-576)))) - (-5 *3 (-1178 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1070)) - (-5 *1 (-607 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *3 (-13 (-861) (-10 -8 (-15 -1556 ((-1197) $))))) (-4 *5 (-568)) - (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-971 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-805)) - (-4 *3 - (-13 (-861) - (-10 -8 (-15 -1556 ((-1197) $)) - (-15 -1654 ((-3 $ "failed") (-1197)))))) - (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-968 (-971 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *6)) - (-4 *6 - (-13 (-861) - (-10 -8 (-15 -1556 ((-1197) $)) - (-15 -1654 ((-3 $ "failed") (-1197)))))) - (-4 *4 (-1070)) (-4 *5 (-805)) (-5 *1 (-1005 *4 *5 *6 *2)) - (-4 *2 (-968 (-971 *4) *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) - (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1264 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1121)) (-5 *1 (-924 *3))))) + (-2 (|:| -2469 (-702 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-702 *6)))) + (-4 *7 (-1265 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1178 *4) (-1178 *4))) (-5 *2 (-1178 *4)) - (-5 *1 (-1314 *4)) (-4 *4 (-1238)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-656 (-1178 *5)) (-656 (-1178 *5)))) (-5 *4 (-576)) - (-5 *2 (-656 (-1178 *5))) (-5 *1 (-1314 *5)) (-4 *5 (-1238))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1250 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1279 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1056)) - (-5 *1 (-767))))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *3)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *6 (-626 (-1198))) + (-4 *4 (-374)) (-4 *5 (-806)) (-4 *6 (-862)) + (-5 *2 (-1187 (-657 (-972 *4)) (-657 (-304 (-972 *4))))) + (-5 *1 (-516 *4 *5 *6 *7))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-568))))) +(((*1 *1 *1) (-4 *1 (-557)))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2946 *1) (|:| -4451 *1) (|:| |associate| *1))) - (-4 *1 (-568))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-861)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-656 *1)) - (-4 *1 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1092 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1223)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-924 *4)) (-4 *4 (-1121)) (-5 *2 (-656 (-783))) - (-5 *1 (-923 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-374) (-1223) (-1023))) - (-5 *1 (-178 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-5 *3 (-962 *5)) (-4 *5 (-1070)) - (-5 *1 (-1185 *4 *5)) (-14 *4 (-940)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1185 *4 *5)) - (-14 *4 (-940)) (-4 *5 (-1070)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) - (-5 *1 (-1185 *4 *5)) (-14 *4 (-940))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-656 (-1197))))) - ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1070) (-861))) - (-14 *3 (-656 (-1197)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1070)) (-5 *1 (-1181 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1280 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1197)) - (-14 *4 *2)))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) + (-4 *3 (-568)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (-12 (-4 *1 (-810 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-846 *3)) (-4 *3 (-557)) + (-4 *3 (-1122)))) + ((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-856 *3)) (-4 *3 (-557)) + (-4 *3 (-1122)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *3) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1030 *3)) (-4 *3 (-1060 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) + (-12 (-5 *2 (-1289 *4)) (-5 *3 (-576)) (-4 *4 (-360)) + (-5 *1 (-540 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-784)) (-5 *2 (-1294))))) +(((*1 *1 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317))))) +(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-129))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-784)) (-5 *1 (-795 *3)) (-4 *3 (-1071)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-983 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) + (-4 *3 (-1071)) (-4 *2 (-805)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-784)) (-5 *1 (-1194 *3)) (-4 *3 (-1071)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-993)) (-4 *2 (-132)) (-5 *1 (-1200 *3)) (-4 *3 (-568)) + (-4 *3 (-1071)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-784)) (-5 *1 (-1262 *4 *3)) (-14 *4 (-1198)) + (-4 *3 (-1071))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-657 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1232 *5 *6 *7 *8)) (-4 *5 (-568)) + (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1122)) + (-4 *2 (-862))))) +(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1239)) (-4 *2 (-862)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1239)))) + ((*1 *2 *2) + (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) + (-4 *6 (-1087 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -2681 *1) (|:| |upper| *1))) + (-4 *1 (-998 *4 *5 *3 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1198)) (-5 *2 (-1 (-1194 (-972 *4)) (-972 *4))) + (-5 *1 (-1297 *4)) (-4 *4 (-374))))) +(((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1071))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-464)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1194 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *5 (-929)) (-5 *1 (-469 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-929))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1071)) (-4 *7 (-1071)) + (-4 *6 (-1265 *5)) (-5 *2 (-1194 (-1194 *7))) + (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1265 *6))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-5 *1 (-914 *2 *3)) + (-4 *2 (-1265 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1121)) - (-4 *4 (-568)) (-5 *2 (-419 (-1193 *1))))) + (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1122)) + (-4 *4 (-568)) (-5 *2 (-419 (-1194 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1223))) - (-4 *6 (-13 (-464) (-1059 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-1193 (-419 (-1193 *3)))) (-5 *1 (-572 *6 *3 *7)) - (-5 *5 (-1193 *3)) (-4 *7 (-1121)))) + (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1224))) + (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *2 (-1194 (-419 (-1194 *3)))) (-5 *1 (-572 *6 *3 *7)) + (-5 *5 (-1194 *3)) (-4 *7 (-1122)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1284 *5)) (-14 *5 (-1197)) (-4 *6 (-1070)) - (-5 *2 (-1261 *5 (-971 *6))) (-5 *1 (-966 *5 *6)) (-5 *3 (-971 *6)))) + (-12 (-5 *4 (-1285 *5)) (-14 *5 (-1198)) (-4 *6 (-1071)) + (-5 *2 (-1262 *5 (-972 *6))) (-5 *1 (-967 *5 *6)) (-5 *3 (-972 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-805)) - (-4 *5 (-861)) (-5 *2 (-1193 *3)))) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-1194 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-805)) (-4 *3 (-861)) (-5 *2 (-1193 *1)) - (-4 *1 (-968 *4 *5 *3)))) + (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-1194 *1)) + (-4 *1 (-969 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-861)) (-4 *6 (-1070)) - (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-419 (-1193 *3))) - (-5 *1 (-969 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-1071)) + (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-419 (-1194 *3))) + (-5 *1 (-970 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) - (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $))))))) + (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1193 *3)) + (-12 (-5 *2 (-1194 *3)) (-4 *3 (-13 (-374) - (-10 -8 (-15 -4113 ($ *7)) (-15 -2687 (*7 $)) (-15 -2697 (*7 $))))) - (-4 *7 (-968 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-861)) - (-4 *6 (-1070)) (-5 *1 (-969 *5 *4 *6 *7 *3)))) + (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) (-15 -1602 (*7 $))))) + (-4 *7 (-969 *6 *5 *4)) (-4 *5 (-806)) (-4 *4 (-862)) + (-4 *6 (-1071)) (-5 *1 (-970 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) (-4 *5 (-568)) - (-5 *2 (-419 (-1193 (-419 (-971 *5))))) (-5 *1 (-1064 *5)) - (-5 *3 (-419 (-971 *5)))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-907 *4)) (-4 *4 (-1121)) (-5 *1 (-904 *4 *3)) - (-4 *3 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) + (-12 (-5 *4 (-1198)) (-4 *5 (-568)) + (-5 *2 (-419 (-1194 (-419 (-972 *5))))) (-5 *1 (-1065 *5)) + (-5 *3 (-419 (-972 *5)))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4228 *6) (|:| |sol?| (-112))) (-576) + *6)) + (-4 *6 (-374)) (-4 *7 (-1265 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) + (-2 (|:| -3579 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1197))) (-5 *1 (-212)) - (-5 *3 (-1197)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1197))) - (-5 *1 (-276)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-940)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-656 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1242)) - (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1197))) (-4 *5 (-1070)) - (-5 *2 (-971 *5)) (-5 *1 (-963 *4 *5))))) + (-12 (-5 *4 (-657 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-317)) + (-5 *2 (-784)) (-5 *1 (-467 *5 *3))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1194 (-972 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) + (-5 *2 (-1194 (-972 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-835))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-787)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-787)) (-5 *1 (-115))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-576)) (|has| *1 (-6 -4467)) (-4 *1 (-384 *3)) + (-4 *3 (-1239))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-784)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-2 (|:| -3412 (-1178 *4)) (|:| -3424 (-1178 *4)))) - (-5 *1 (-1183 *4)) (-5 *3 (-1178 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-888)) - (-5 *5 (-940)) (-5 *6 (-656 (-270))) (-5 *2 (-1289)) - (-5 *1 (-1292)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-962 (-227))))) (-5 *4 (-656 (-270))) - (-5 *2 (-1289)) (-5 *1 (-1292))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1193 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1212 *2)) (-4 *2 (-374))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-1009 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-1128 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-227)) (-5 *2 (-1056)) (-5 *1 (-764))))) -(((*1 *1 *1) (-4 *1 (-883 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3)) (-4 *3 (-1238))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) + (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1193 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2) (-12 (-5 *1 (-1256 *2)) (-4 *2 (-1239))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1239)) + (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) + (-4 *2 (-1239))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-374)) + (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-5 *1 (-462 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4442 *4)))))) - (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) + (-2 (|:| R (-702 *6)) (|:| A (-702 *6)) (|:| |Ainv| (-702 *6)))) + (-5 *1 (-1000 *6)) (-5 *3 (-702 *6))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-859))))) (((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1289 (-576))) (-5 *3 (-576)) (-5 *1 (-1132)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1289 (-576))) (-5 *3 (-657 (-576))) (-5 *4 (-576)) + (-5 *1 (-1132))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1166)))) (((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-783)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-55)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-784)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-115)))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-115)) (-5 *1 (-164)))) + ((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-115)) (-5 *1 (-164)))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) - (-4 *4 (-13 (-442 *3) (-1023))))) + (-4 *4 (-13 (-442 *3) (-1024))))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) ((*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1121)) (-5 *1 (-441 *3 *4)) + (-12 (-5 *2 (-115)) (-4 *4 (-1122)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) - (-4 *4 (-13 (-442 *3) (-1023) (-1223))))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1211 *2)) (-4 *2 (-1121))))) + (-4 *4 (-13 (-442 *3) (-1024) (-1224))))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1041)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1212 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3037 *4) (|:| -3235 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-802)) (-5 *5 (-576))))) +(((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-449)) (-5 *1 (-1202))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4467)) (-4 *1 (-501 *3)) + (-4 *3 (-1239))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-941)) (-5 *2 (-480)) (-5 *1 (-1290))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *6)))) + (-5 *4 (-1048 (-856 (-576)))) (-5 *5 (-1198)) (-5 *7 (-419 (-576))) + (-4 *6 (-1071)) (-5 *2 (-877)) (-5 *1 (-607 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1224) (-1024)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *1 *1) (-4 *1 (-1082)))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-130)))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-312)))) + ((*1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-5 *1 (-877)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-624 *1))) (-4 *1 (-312))))) +(((*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-1116 (-227)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-784)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-862)) + (-4 *3 (-1122))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-657 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1122)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-657 *4))) (-4 *4 (-1122)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1122)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-657 *4))) + (-5 *1 (-114 *4)) (-4 *4 (-1122)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-661 *3)) (-4 *3 (-1071)) + (-5 *1 (-727 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-849 *3))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1071)) (-5 *1 (-840 *2 *3)) (-4 *2 (-721 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-1154 *4 *2)) + (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4466) (-6 -4467)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-862)) (-4 *3 (-1239)) (-5 *1 (-1154 *3 *2)) + (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4466) (-6 -4467))))))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-772))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-635 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -4228 *4) (|:| |sol?| (-112))) + (-576) *4)) + (-4 *4 (-374)) (-4 *5 (-1265 *4)) (-5 *1 (-586 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) + (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) + (-4 *3 (-1265 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1116 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-1116 (-227)))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-568)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) + (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-657 (-1 *4 (-657 *4)))) (-4 *4 (-1122)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1122)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-657 (-1 *4 (-657 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1122))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-171 (-227)))) + (-5 *2 (-1057)) (-5 *1 (-767))))) +(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-103 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) + (-4 *6 (-806)) (-5 *2 (-657 (-657 (-576)))) + (-5 *1 (-944 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-969 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1146 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6))))) +(((*1 *1 *1) (-5 *1 (-1085)))) +(((*1 *2 *3) + (-12 (-4 *1 (-852)) + (-5 *3 + (-2 (|:| |fn| (-326 (-227))) (|:| -1679 (-657 (-227))) + (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) + (|:| |ub| (-657 (-856 (-227)))))) + (-5 *2 (-1057)))) + ((*1 *2 *3) + (-12 (-4 *1 (-852)) + (-5 *3 + (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) + (-5 *2 (-1057))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1194 (-1194 *4)))) + (-5 *1 (-1237 *4)) (-5 *3 (-1194 (-1194 *4)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-464))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1179 *3))) (-5 *1 (-1179 *3)) (-4 *3 (-1239))))) +(((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1116 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-1116 (-227)))))) +(((*1 *2) + (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) + (-5 *2 (-784)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-784))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1) (-5 *1 (-1085)))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) - (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) + (-4 *3 (-568)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) ((*1 *2 *1) - (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) + (|partial| -12 (-4 *1 (-810 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) - (-4 *3 (-1121)))) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-846 *3)) (-4 *3 (-557)) + (-4 *3 (-1122)))) ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) - (-4 *3 (-1121)))) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-856 *3)) (-4 *3 (-557)) + (-4 *3 (-1122)))) ((*1 *2 *1) - (-12 (-4 *1 (-1018 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) + (|partial| -12 (-4 *1 (-1019 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) ((*1 *2 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276))))) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1030 *3)) + (-4 *3 (-1060 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -2687 ((-1146 *3 (-624 $)) $)) - (-15 -2697 ((-1146 *3 (-624 $)) $)) - (-15 -4113 ($ (-1146 *3 (-624 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1223)))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1293)) (-5 *1 (-1290))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-1 (-227) (-227) (-227) (-227))) - (-5 *2 (-1 (-962 (-227)) (-227) (-227))) (-5 *1 (-709))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-861)) (-4 *5 (-317)) - (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4)))) + (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) + (-4 *2 (-1280 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1265 *3)) + (-4 *5 (-737 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1280 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-568) (-148))) + (-5 *1 (-1175 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1193 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *5 (-317)) (-5 *1 (-935 *3 *4 *5 *6)))) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1161)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-657 (-657 *8))) (-5 *3 (-657 *8)) + (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) + (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-112)) + (-5 *1 (-944 *5 *6 *7 *8))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1122))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-784)) (-5 *1 (-215 *4 *2)) (-14 *4 (-941)) + (-4 *2 (-1122))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1194 *1)) (-5 *4 (-1198)) (-4 *1 (-27)) + (-5 *2 (-657 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1194 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-972 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *2 (-657 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-657 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-657 (-657 (-657 *4)))) (-5 *2 (-657 (-657 *4))) + (-4 *4 (-862)) (-5 *1 (-1209 *4))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) + (|:| -2469 (-657 (-1289 (-419 (-972 *4))))))) + (-5 *3 (-657 *7)) (-4 *4 (-13 (-317) (-148))) + (-4 *7 (-969 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1198)))) + (-4 *6 (-806)) (-5 *1 (-944 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-835))))) +(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1180))))) +(((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 *4)) (-4 *4 (-1071)) (-5 *2 (-1289 *4)) + (-5 *1 (-1199 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-941)) (-5 *2 (-1289 *3)) (-5 *1 (-1199 *3)) + (-4 *3 (-1071))))) +(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-1071))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1289 *5)) (-4 *5 (-805)) (-5 *2 (-112)) + (-5 *1 (-858 *4 *5)) (-14 *4 (-784))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) + (-4 *5 (-384 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-784)) (-4 *2 (-1122)) (-5 *1 (-215 *4 *2)) + (-14 *4 (-941)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *2 *6 *7)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1071))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-1122)) + (-4 *3 (-1239))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) + (-5 *2 (-2 (|:| -1735 (-419 *5)) (|:| |poly| *3))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1265 (-419 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) + (-14 *5 (-657 (-1198))) + (-5 *2 + (-657 (-2 (|:| -1980 (-1194 *4)) (|:| -3806 (-657 (-972 *4)))))) + (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 + (-657 (-2 (|:| -1980 (-1194 *5)) (|:| -3806 (-657 (-972 *5)))))) + (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-657 (-972 *5))) + (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 + (-657 (-2 (|:| -1980 (-1194 *5)) (|:| -3806 (-657 (-972 *5)))))) + (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-657 (-972 *5))) + (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 + (-657 (-2 (|:| -1980 (-1194 *5)) (|:| -3806 (-657 (-972 *5)))))) + (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-657 (-972 *5))) + (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-968 *6 *4 *5)) - (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-861)) - (-4 *6 (-317))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-870 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) + (-12 (-4 *4 (-13 (-861) (-317) (-148) (-1044))) + (-5 *2 + (-657 (-2 (|:| -1980 (-1194 *4)) (|:| -3806 (-657 (-972 *4)))))) + (-5 *1 (-1316 *4 *5 *6)) (-5 *3 (-657 (-972 *4))) + (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1313 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862)) + (-4 *2 (-174)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1071)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-832 *4)) (-4 *1 (-1306 *4 *2)) (-4 *4 (-862)) + (-4 *2 (-1071)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1071)) (-5 *1 (-1312 *2 *3)) (-4 *3 (-859))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -1546 *5)))) - (-4 *5 (-1264 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) - (-5 *1 (-218 *4 *5)))) + (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1198)) + (-4 *5 (-13 (-568) (-1060 (-576)) (-148))) + (-5 *2 + (-2 (|:| -3579 (-419 (-972 *5))) (|:| |coeff| (-419 (-972 *5))))) + (-5 *1 (-582 *5)) (-5 *3 (-419 (-972 *5)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-145))))) +(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343))))) +(((*1 *2 *3) + (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-962)) (-5 *3 (-576))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) + (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) + (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) + (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| -1452 *5) (|:| -2196 (-576))))) - (-5 *4 (-576)) (-4 *5 (-1264 *4)) (-5 *2 (-656 *5)) - (-5 *1 (-708 *5))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) + (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) + (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) + (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) + (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) + (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) + (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) + (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) + (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-895 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) + (-5 *1 (-266 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-895 *5)) (-5 *4 (-1114 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) + (-5 *1 (-266 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) + (-5 *2 (-1155 (-227))) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-626 (-548)) (-1122))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1114 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-626 (-548)) (-1122))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-898 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) + (-5 *1 (-266 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-898 *5)) (-5 *4 (-1114 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) + (-5 *1 (-266 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) + ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1201))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1162 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1122) (-34))) (-4 *6 (-13 (-1122) (-34))) + (-5 *2 (-112)) (-5 *1 (-1163 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1194 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3941 *4)))) + (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-657 (-702 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-1179 (-657 (-941)))) (-5 *1 (-899))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 + (-3 (|:| |overq| (-1194 (-419 (-576)))) + (|:| |overan| (-1194 (-48))) (|:| -4165 (-112)))) + (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1265 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) +(((*1 *2 *1) + (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) + (-5 *2 (-425 *4 (-419 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1289 *6)) (-4 *6 (-13 (-421 *4 *5) (-1060 *4))) + (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-4 *3 (-317)) + (-5 *1 (-425 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-374)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-875)) (-5 *2 (-704 (-561))) (-5 *3 (-561))))) +(((*1 *1) (-5 *1 (-301)))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1180))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-558)))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1122) (-34))) + (-5 *2 (-112)) (-5 *1 (-1162 *4 *5)) (-4 *4 (-13 (-1122) (-34)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1071)) + (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-867 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1071)) + (-5 *2 (-2 (|:| -2192 *3) (|:| -3951 *3))) (-5 *1 (-868 *5 *3)) + (-4 *3 (-867 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1046 *3)) + (-4 *3 (-13 (-861) (-374) (-1044))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) + (-4 *3 (-1265 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1090 *2 *3)) (-4 *2 (-13 (-861) (-374))) + (-4 *3 (-1265 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224)))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-657 (-493 *4 *5))) (-5 *3 (-879 *4)) + (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *3)) + (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1087 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-657 *7) (-657 *7))) (-5 *2 (-657 *7)) + (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) + (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-384 *2)) (-4 *2 (-1239)) + (-4 *2 (-862)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4467)) + (-4 *1 (-384 *3)) (-4 *3 (-1239))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-833)) (-14 *5 (-1198)) + (-5 *2 (-576)) (-5 *1 (-1136 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1116 (-227))) (-5 *6 (-576)) (-5 *2 (-1234 (-946))) + (-5 *1 (-328)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1116 (-227))) (-5 *6 (-576)) (-5 *7 (-1180)) + (-5 *2 (-1234 (-946))) (-5 *1 (-328)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1116 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) + (-5 *2 (-1234 (-946))) (-5 *1 (-328)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1116 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1180)) + (-5 *2 (-1234 (-946))) (-5 *1 (-328))))) +(((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1289 (-784))) (-5 *1 (-688 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-490)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-604)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-638)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1122)) + (-4 *2 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))) + (-5 *1 (-1098 *3 *4 *2)) + (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1122)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-1122))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1083 (-1046 *4) (-1194 (-1046 *4)))) (-5 *3 (-877)) + (-5 *1 (-1046 *4)) (-4 *4 (-13 (-861) (-374) (-1044)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862)) + (-4 *5 (-806)) (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4))))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1106 *3)) (-4 *3 (-133))))) (((*1 *2 *3) - (-12 (-4 *1 (-812)) + (-12 (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1288 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-1056))))) + (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) + (-5 *2 (-657 (-419 (-576)))) (-5 *1 (-1042 *4)) + (-4 *4 (-1265 (-576)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1116 (-390))) + (-5 *5 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1116 (-390))) + (-5 *2 (-1290)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) + (-5 *5 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) + (-5 *2 (-1290)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) + (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) + (-5 *2 (-1291)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) + (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) + (-5 *2 (-1291)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) + (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) + (-5 *2 (-1291)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) + (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) + (-5 *2 (-1291)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) + (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) + (-5 *2 (-1291)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-304 *7)) (-5 *4 (-1198)) (-5 *5 (-657 (-270))) + (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1060 (-576)))) + (-5 *2 (-1290)) (-5 *1 (-263 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1290)) + (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1114 (-390))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-626 (-548)) (-1122))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-893 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1290)) + (-5 *1 (-266 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-893 *5)) (-5 *4 (-1114 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1290)) + (-5 *1 (-266 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-895 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) + (-5 *1 (-266 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-895 *5)) (-5 *4 (-1114 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) + (-5 *1 (-266 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) + (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1114 (-390))) (-5 *2 (-1291)) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-626 (-548)) (-1122))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-898 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) + (-5 *1 (-266 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-898 *5)) (-5 *4 (-1114 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) + (-5 *1 (-266 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-657 (-227))) (-5 *2 (-1290)) (-5 *1 (-267)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-657 (-227))) (-5 *4 (-657 (-270))) (-5 *2 (-1290)) + (-5 *1 (-267)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-963 (-227)))) (-5 *2 (-1290)) (-5 *1 (-267)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-963 (-227)))) (-5 *4 (-657 (-270))) + (-5 *2 (-1290)) (-5 *1 (-267)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-657 (-227))) (-5 *2 (-1291)) (-5 *1 (-267)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-657 (-227))) (-5 *4 (-657 (-270))) (-5 *2 (-1291)) + (-5 *1 (-267))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1240 *2)) + (-4 *2 (-1122)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-862)) + (-5 *1 (-1240 *2))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-875)) (-5 *2 (-704 (-130))) (-5 *3 (-130))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-1122))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-624 *5))) (-4 *4 (-1122)) (-5 *2 (-624 *5)) + (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)))) + ((*1 *1) (-4 *1 (-1174)))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-490)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-604)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-638)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1122)) + (-4 *2 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))) + (-5 *1 (-1098 *3 *4 *2)) + (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1122)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-1122))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *3) + (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) + (-5 *2 (-253 *4 *5)) (-5 *1 (-964 *4 *5))))) +(((*1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2) (-12 (-5 *1 (-921 *2)) (-4 *2 (-1122))))) +(((*1 *1 *2) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1198))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-834))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-419 (-1194 (-326 *3)))) (-4 *3 (-568)) + (-5 *1 (-1152 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-657 (-702 *4))) (-5 *2 (-702 *4)) (-4 *4 (-1071)) + (-5 *1 (-1051 *4))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-767))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-14 *2 (-576)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-887 *3 *4)) + (-4 *4 (-884 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-576)) (-5 *1 (-887 *2 *3)) (-4 *3 (-884 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-576)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-1280 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-1280 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1198)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-715 *3 *5 *6 *7)) + (-4 *3 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239)) + (-4 *7 (-1239)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1198)) (-5 *2 (-1 *6 *5)) (-5 *1 (-719 *3 *5 *6)) + (-4 *3 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-657 *1)) (-4 *1 (-312)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-115)) (-5 *3 (-657 *5)) (-5 *4 (-784)) (-4 *5 (-1122)) + (-5 *1 (-624 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1239)) (-4 *2 (-862)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1239)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-862)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) + ((*1 *1 *2) + (-12 (-5 *2 (-657 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) + (-14 *3 (-941)) (-4 *4 (-1071)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1238)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) -(((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-834))))) + (-12 (-4 *4 (-13 (-861) (-374))) (-5 *2 (-112)) (-5 *1 (-1083 *4 *3)) + (-4 *3 (-1265 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -1425 (-657 *7)))) + (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) + (-4 *2 (-1122)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-1122)) (-5 *1 (-662 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2704 (-656 *1)))) - (-4 *1 (-378 *3)))) + (-12 (-5 *2 (-2 (|:| -3989 (-657 *3)) (|:| -2421 (-657 *3)))) + (-5 *1 (-1240 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *3) + (-12 (-5 *3 (-972 *4)) (-4 *4 (-13 (-317) (-148))) + (-4 *2 (-969 *4 *6 *5)) (-5 *1 (-944 *4 *5 *6 *2)) + (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806))))) +(((*1 *1) (-5 *1 (-836)))) +(((*1 *2 *1) + (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) + (-4 *3 (-1122))))) +(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-704 (-189))) (-5 *1 (-189))))) +(((*1 *2 *1) + (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1265 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-724 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -2704 (-656 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-940)) - (-14 *5 (-656 (-1197))) (-14 *6 (-1288 (-701 *3)))))) + (-12 (-4 *2 (-1265 *3)) (-5 *1 (-725 *3 *2)) (-4 *3 (-1071)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-728 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-702 (-227))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-766))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-806)) + (-4 *3 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $))))) (-4 *5 (-568)) + (-5 *1 (-745 *4 *3 *5 *2)) (-4 *2 (-969 (-419 (-972 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1071)) (-4 *5 (-806)) + (-4 *3 + (-13 (-862) + (-10 -8 (-15 -4136 ((-1198) $)) + (-15 -2993 ((-3 $ "failed") (-1198)))))) + (-5 *1 (-1006 *4 *5 *3 *2)) (-4 *2 (-969 (-972 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-657 *6)) + (-4 *6 + (-13 (-862) + (-10 -8 (-15 -4136 ((-1198) $)) + (-15 -2993 ((-3 $ "failed") (-1198)))))) + (-4 *4 (-1071)) (-4 *5 (-806)) (-5 *1 (-1006 *4 *5 *6 *2)) + (-4 *2 (-969 (-972 *4) *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1069))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1262 *4 *5)) (-5 *3 (-657 *5)) (-14 *4 (-1198)) + (-4 *5 (-374)) (-5 *1 (-943 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-657 *5)) (-4 *5 (-374)) (-5 *2 (-1194 *5)) + (-5 *1 (-943 *4 *5)) (-14 *4 (-1198)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-657 *6)) (-5 *4 (-784)) (-4 *6 (-374)) + (-5 *2 (-419 (-972 *6))) (-5 *1 (-1072 *5 *6)) (-14 *5 (-1198))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1198)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-657 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-657 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3579 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1224) (-27) (-442 *8))) + (-4 *8 (-13 (-464) (-148) (-1060 *3) (-652 *3))) (-5 *3 (-576)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -4228 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1035 *8 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1173))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-657 (-1194 *13))) (-5 *3 (-1194 *13)) + (-5 *4 (-657 *12)) (-5 *5 (-657 *10)) (-5 *6 (-657 *13)) + (-5 *7 (-657 (-657 (-2 (|:| -3253 (-784)) (|:| |pcoef| *13))))) + (-5 *8 (-657 (-784))) (-5 *9 (-1289 (-657 (-1194 *10)))) + (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-969 *10 *11 *12)) + (-4 *11 (-806)) (-5 *1 (-720 *11 *12 *10 *13))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-315)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-1057))) (-5 *2 (-1057)) (-5 *1 (-315)))) + ((*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1 *1) (-5 *1 (-1085))) + ((*1 *2 *3) + (-12 (-5 *3 (-1179 (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1176 *4)) + (-4 *4 (-1239)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-4 *1 (-107 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1180)) (-5 *1 (-315))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-171 (-227)))) (-5 *2 (-1057)) + (-5 *1 (-767))))) +(((*1 *2) (-12 (-5 *2 (-846 (-576))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)) (-4 *2 (-862)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-862))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1289 (-657 (-2 (|:| -3037 *4) (|:| -3146 (-1142)))))) + (-4 *4 (-360)) (-5 *2 (-784)) (-5 *1 (-357 *4)))) + ((*1 *2) + (-12 (-5 *2 (-784)) (-5 *1 (-362 *3 *4)) (-14 *3 (-941)) + (-14 *4 (-941)))) + ((*1 *2) + (-12 (-5 *2 (-784)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) + (-14 *4 + (-3 (-1194 *3) + (-1289 (-657 (-2 (|:| -3037 *3) (|:| -3146 (-1142))))))))) + ((*1 *2) + (-12 (-5 *2 (-784)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-941))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) + (-5 *2 + (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) + (|:| |polypart| *6))) + (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1124 (-1124 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1071)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4083 *1))) + (-4 *1 (-867 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-1201))))) + (-12 (-4 *4 (-568)) (-5 *2 (-657 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-374)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-669 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -3981 *3) (|:| -1782 (-657 *5)))) + (-5 *1 (-1047 *5 *3)) (-5 *4 (-657 *5)) (-4 *3 (-669 *5))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-442 *3) (-1024))) (-5 *1 (-285 *3 *2)) + (-4 *3 (-568)))) + ((*1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) + (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1224)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-702 *5))) (-4 *5 (-317)) (-4 *5 (-1071)) + (-5 *2 (-1289 (-1289 *5))) (-5 *1 (-1051 *5)) (-5 *4 (-1289 *5))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1070))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) - (-4 *2 (-1279 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) - (-4 *5 (-1264 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) - (-4 *2 (-1279 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) - (-5 *1 (-554 *4 *2)) (-4 *2 (-1279 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1174 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-964 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)) + (-4 *2 (-1122))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1201)) (-5 *3 (-1198))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-284))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-442 *4)))) + (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-317)) + (-5 *2 (-419 (-430 (-972 *4)))) (-5 *1 (-1064 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1024) (-1224))) + (-5 *1 (-612 *4 *2 *3)) + (-4 *3 (-13 (-442 (-171 *4)) (-1024) (-1224)))))) +(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1239)) + (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *6 *7 *2)) (-4 *6 (-1071)) + (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) +(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-340))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-657 (-112))) (-5 *5 (-702 (-227))) + (-5 *6 (-702 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1057)) + (-5 *1 (-767))))) +(((*1 *2 *3) + (-12 (-4 *4 (-806)) + (-4 *5 (-13 (-862) (-10 -8 (-15 -4136 ((-1198) $))))) (-4 *6 (-568)) + (-5 *2 (-2 (|:| -1323 (-972 *6)) (|:| -1702 (-972 *6)))) + (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-969 (-419 (-972 *6)) *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-963 (-227))) (-5 *2 (-1294)) (-5 *1 (-480))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)) (-4 *5 (-374)) + (-5 *2 (-112)) (-5 *1 (-680 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 (-112)) + (-5 *1 (-681 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4))))) +(((*1 *2 *3) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) + (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4)))) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1014 *2)) (-4 *4 (-1265 *3)) (-4 *2 (-317)) + (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1060 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1122)) (-5 *2 (-1147 *3 (-624 *1))) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-507)))) (-5 *1 (-507)))) + ((*1 *2 *1) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-739) *4)) + (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-739) *4)) + (-5 *1 (-675 *3 *4 *2)) (-4 *3 (-730 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1122)) (-4 *2 (-379))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-934 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-935 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-430 (-972 *6))) (-5 *5 (-1198)) (-5 *3 (-972 *6)) + (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-935 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-795 *3)) (|:| |polden| *3) (|:| -3066 (-784)))) + (-5 *1 (-795 *3)) (-4 *3 (-1071)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3066 (-784)))) + (-4 *1 (-1087 *3 *4 *5))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-657 (-702 *6))) (-5 *4 (-112)) (-5 *5 (-576)) + (-5 *2 (-702 *6)) (-5 *1 (-1051 *6)) (-4 *6 (-374)) (-4 *6 (-1071)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-657 (-702 *4))) (-5 *2 (-702 *4)) (-5 *1 (-1051 *4)) + (-4 *4 (-374)) (-4 *4 (-1071)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-657 (-702 *5))) (-5 *4 (-576)) (-5 *2 (-702 *5)) + (-5 *1 (-1051 *5)) (-4 *5 (-374)) (-4 *5 (-1071))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-390)) (-5 *1 (-1085))))) +(((*1 *2 *2) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-972 (-390))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 (-972 (-390)))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-972 (-576))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 (-972 (-576)))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-350 *3 *4 *5)) + (-14 *3 (-657 *2)) (-14 *4 (-657 *2)) (-4 *5 (-399)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) + (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) + (-14 *4 (-657 (-1198))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-702 (-419 (-972 (-576))))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-702 (-419 (-972 (-390))))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-702 (-972 (-576)))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-702 (-972 (-390)))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-702 (-326 (-576)))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-702 (-326 (-390)))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 (-972 (-576)))) (-4 *1 (-408)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 (-972 (-390)))) (-4 *1 (-408)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-576))) (-4 *1 (-408)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-390))) (-4 *1 (-408)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1289 (-419 (-972 (-576))))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1289 (-419 (-972 (-390))))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1289 (-972 (-576)))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1289 (-972 (-390)))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1289 (-326 (-576)))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1289 (-326 (-390)))) (-4 *1 (-453)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023))))) + (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1265 *5)) + (-5 *2 (-1194 (-1194 *4))) (-5 *1 (-790 *4 *5 *6 *3 *7)) + (-4 *3 (-1265 *6)) (-14 *7 (-941)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) + (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) + (-4 *1 (-998 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1060 *2)) (-4 *2 (-1239)))) + ((*1 *1 *2) + (|partial| -2748 + (-12 (-5 *2 (-972 *3)) + (-12 (-2665 (-4 *3 (-38 (-419 (-576))))) + (-2665 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1198)))) + (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) + (-4 *5 (-862))) + (-12 (-5 *2 (-972 *3)) + (-12 (-2665 (-4 *3 (-557))) (-2665 (-4 *3 (-38 (-419 (-576))))) + (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) + (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) + (-4 *5 (-862))) + (-12 (-5 *2 (-972 *3)) + (-12 (-2665 (-4 *3 (-1014 (-576)))) (-4 *3 (-38 (-419 (-576)))) + (-4 *5 (-626 (-1198)))) + (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) + (-4 *5 (-862))))) + ((*1 *1 *2) + (|partial| -2748 + (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) + (-12 (-2665 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) + (-4 *5 (-626 (-1198)))) + (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))) + (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) + (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-972 (-419 (-576)))) (-4 *1 (-1087 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198))) + (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) +(((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-657 (-657 (-963 (-227))))))) + ((*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-657 (-657 (-963 (-227)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-702 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) + (-5 *2 (-1289 *6)) (-5 *1 (-425 *3 *4 *5 *6)) + (-4 *6 (-13 (-421 *4 *5) (-1060 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-1071)) (-4 *3 (-1122)) (-5 *2 (-1147 *3 (-624 *1))) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-507)))) (-5 *1 (-507)))) + ((*1 *2 *1) + (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-739) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-174)) (-4 *2 (-730 *3)) (-5 *1 (-675 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-739) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568))))) +(((*1 *1 *1) (-5 *1 (-1085)))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1071)) (-4 *3 (-1122)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2128 (-576)))) (-4 *1 (-442 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-908 *3)) (|:| -2128 (-908 *3)))) + (-5 *1 (-908 *3)) (-4 *3 (-1122)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312)))) - ((*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) + (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) + (-4 *7 (-969 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -2128 (-576)))) + (-5 *1 (-970 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3515 ($ *7)) (-15 -1590 (*7 $)) + (-15 -1602 (*7 $)))))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *1 *1 *1) (-4 *1 (-485))) + ((*1 *1 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-899)))) + ((*1 *1 *1) (-5 *1 (-993))) + ((*1 *1 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-978 (-185 (-140)))) (-5 *1 (-343)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-618))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) + (-5 *2 (-702 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) + (-5 *2 (-657 (-784))) (-5 *1 (-791 *3 *4 *5 *6 *7)) + (-4 *3 (-1265 *6)) (-4 *7 (-969 *6 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-862)) + (-4 *5 (-806)) (-4 *2 (-275 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) + ((*1 *2 *1) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-657 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) + (-5 *2 (-657 (-2 (|:| -1491 *5) (|:| -3981 *3)))) + (-5 *1 (-822 *5 *6 *3 *7)) (-4 *3 (-669 *6)) + (-4 *7 (-669 (-419 *6)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1210 (-657 *4))) (-4 *4 (-862)) + (-5 *2 (-657 (-657 *4))) (-5 *1 (-1209 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 *10)) + (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1093 *5 *6 *7 *8)) + (-4 *10 (-1131 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1068 *5 *6))) + (-5 *1 (-640 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-657 (-1198))) + (-5 *2 + (-657 (-1168 *5 (-543 (-879 *6)) (-879 *6) (-793 *5 (-879 *6))))) + (-5 *1 (-640 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-657 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-657 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1068 *5 *6))) + (-5 *1 (-1068 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 *1)) + (-4 *1 (-1093 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-657 (-1168 *5 *6 *7 *8))) (-5 *1 (-1168 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-5 *2 (-657 (-1168 *5 *6 *7 *8))) (-5 *1 (-1168 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1121)) (-5 *2 (-112)) - (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) + (-4 *1 (-1232 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) + ((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1198)) + (-4 *4 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1224) (-979) (-29 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) + (-4 *2 (-1280 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1265 *3)) + (-4 *5 (-737 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1280 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-568) (-148))) + (-5 *1 (-1175 *3))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-765))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4)))) + (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1023) (-1223)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) - (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) - (-5 *1 (-409)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1197))))) - (-5 *6 (-656 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1125)) - (-5 *1 (-409)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-656 (-1197))) (-5 *5 (-1200)) (-5 *3 (-1197)) - (-5 *2 (-1125)) (-5 *1 (-409))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-940))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-1131))))) + (-12 (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-962)) (-5 *3 (-576))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3115 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1197))) (-5 *1 (-837))))) + (-12 (-5 *3 (-657 (-2 (|:| -1856 (-1194 *6)) (|:| -2128 (-576))))) + (-4 *6 (-317)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-755 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) + (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1217))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1198)) + (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2875 "void"))) (-5 *1 (-1201))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-1265 (-419 *3))) (-5 *2 (-941)) + (-5 *1 (-933 *4 *5)) (-4 *5 (-1265 (-419 *4)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-772))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-657 (-419 *7))) + (-4 *7 (-1265 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-586 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1122))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-862)) (-5 *2 (-784))))) +(((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-941)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-846 (-941))) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-941)))) + ((*1 *2) + (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-846 (-941)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) + (-5 *2 (-1057)) (-5 *1 (-765))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) + ((*1 *2 *3) + (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) + ((*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239)))) + ((*1 *1 *1) (-4 *1 (-884 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-995 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-805)) + (-4 *4 (-862))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-784) (-784))) (-4 *1 (-397 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122))))) +(((*1 *2 *1) + (-12 (-5 *2 (-704 (-986 *3))) (-5 *1 (-986 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) + (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-861)) - (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 *5))) + (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1289 *5)) + (-5 *1 (-650 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 *5))) + (-2665 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1289 (-419 *5))) + (-5 *1 (-650 *5 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-877)) (-5 *1 (-1179 *3)) (-4 *3 (-1122)) + (-4 *3 (-1239))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) + (-5 *2 (-1057)) (-5 *1 (-760))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-702 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-702 *4)) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-326 (-227)))) (-5 *4 (-784)) + (-5 *2 (-702 (-227))) (-5 *1 (-276))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-1 (-227) (-227) (-227) (-227))) + (-5 *2 (-1 (-963 (-227)) (-227) (-227))) (-5 *1 (-710))))) (((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1264 *4)) - (-4 *5 (-1264 (-419 *3))) (-5 *2 (-112)))) + (-12 (-5 *3 (-657 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-310)))) ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-656 (-656 (-962 (-227))))))) - ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-656 (-656 (-962 (-227)))))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-876))) (-5 *1 (-876))))) + (-12 (-5 *3 (-657 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-315))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) + (-12 (-5 *3 (-1164 *4 *2)) (-14 *4 (-941)) + (-4 *2 (-13 (-1071) (-10 -7 (-6 (-4468 "*"))))) + (-5 *1 (-922 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-132)) + (-4 *3 (-805))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1132)) (-5 *3 (-576))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-503)) (-5 *4 (-974)) (-5 *2 (-704 (-545))) + (-5 *1 (-545)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-940)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) - (-4 *3 (-626 (-390))))) + (-12 (-5 *4 (-974)) (-4 *3 (-1122)) (-5 *2 (-704 *1)) + (-4 *1 (-780 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) + (-4 *3 (-1087 *5 *6 *7)) + (-5 *2 (-657 (-2 (|:| |val| (-657 *3)) (|:| -3941 *4)))) + (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) + (-5 *2 (-1057)) (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1239)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-1071)) + (-5 *1 (-1182 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) + (-14 *4 (-1198)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1272 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1249 *3)) + (-5 *2 (-419 (-576)))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1198)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-657 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-657 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3579 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1224) (-27) (-442 *8))) + (-4 *8 (-13 (-464) (-148) (-1060 *3) (-652 *3))) (-5 *3 (-576)) + (-5 *2 (-657 *4)) (-5 *1 (-1036 *8 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *2 (-1087 *4 *5 *6)) (-5 *1 (-789 *4 *5 *6 *2 *3)) + (-4 *3 (-1093 *4 *5 *6 *2))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) + (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-317)) + (-5 *1 (-936 *3 *4 *5 *2)) (-4 *2 (-969 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1194 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-936 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *6 *4 *5)) + (-5 *1 (-936 *4 *5 *6 *2)) (-4 *4 (-806)) (-4 *5 (-862)) + (-4 *6 (-317))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-657 (-493 *4 *5))) (-5 *3 (-657 (-879 *4))) + (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) + (-4 *6 (-464))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-173)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-925 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-559)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-784)) (-4 *1 (-1265 *4)) (-4 *4 (-1071)) + (-5 *2 (-1289 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-657 (-576))) (-5 *2 (-1200 (-419 (-576)))) + (-5 *1 (-192))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *4 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-163))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-657 (-419 (-972 (-576))))) (-5 *4 (-657 (-1198))) + (-5 *2 (-657 (-657 *5))) (-5 *1 (-391 *5)) + (-4 *5 (-13 (-861) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-972 (-576)))) (-5 *2 (-657 *4)) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-861) (-374)))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1071)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4083 *1))) + (-4 *1 (-867 *3))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-764))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1234 *3)) + (-5 *1 (-803 *3)) (-4 *3 (-996)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-112)) + (-5 *1 (-1234 *2)) (-4 *2 (-996))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-1087 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-712))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1299))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4056 (-576))))) + (-5 *1 (-372 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) + (-12 (-4 *1 (-397 *3)) (-4 *3 (-1122)) + (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4056 (-784))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-657 (-2 (|:| -1856 *3) (|:| -2128 (-576))))) + (-5 *1 (-430 *3)) (-4 *3 (-568))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-784)) (-5 *1 (-573))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290))))) +(((*1 *2 *3) + (-12 (-4 *1 (-913)) + (-5 *3 + (-2 (|:| |pde| (-657 (-326 (-227)))) + (|:| |constraints| + (-657 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-784)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) + (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) + (|:| |tol| (-227)))) + (-5 *2 (-1057))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-784)) (-4 *4 (-1071)) + (-5 *2 (-2 (|:| -2192 *1) (|:| -3951 *1))) (-4 *1 (-1265 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1239)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1122)) + (-4 *2 (-1239))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-657 *6)) (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) + (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) + (-4 *3 (-568))))) +(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390)))) + ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-390))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) + (-5 *2 (-2 (|:| -1988 (-657 *6)) (|:| -3179 (-657 *6))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1122)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-696 *4 *5)) (-4 *4 (-1122)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-576))) (-5 *1 (-950)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1071)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1071)) (-5 *1 (-1312 *2 *3)) (-4 *3 (-859))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) + (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-657 *3)) + (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1131 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-940)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) + (-5 *2 + (-657 (-2 (|:| -1980 (-1194 *5)) (|:| -3806 (-657 (-972 *5)))))) + (-5 *1 (-1100 *5 *6)) (-5 *3 (-657 (-972 *5))) + (-14 *6 (-657 (-1198))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) + (-5 *2 + (-657 (-2 (|:| -1980 (-1194 *4)) (|:| -3806 (-657 (-972 *4)))))) + (-5 *1 (-1100 *4 *5)) (-5 *3 (-657 (-972 *4))) + (-14 *5 (-657 (-1198))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) + (-5 *2 + (-657 (-2 (|:| -1980 (-1194 *5)) (|:| -3806 (-657 (-972 *5)))))) + (-5 *1 (-1100 *5 *6)) (-5 *3 (-657 (-972 *5))) + (-14 *6 (-657 (-1198)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -4351 *3) (|:| |coef1| (-795 *3)) (|:| |coef2| (-795 *3)))) + (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071))))) +(((*1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1292))))) +(((*1 *1) (-5 *1 (-1085)))) +(((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-784))))) +(((*1 *2 *3) + (-12 (-5 *3 (-702 (-419 (-972 (-576))))) + (-5 *2 + (-657 + (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) + (|:| |radvect| (-657 (-702 (-326 (-576)))))))) + (-5 *1 (-1053))))) +(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1679 (-657 (-227))))) + (-5 *2 (-390)) (-5 *1 (-276)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1995)))) + (-5 *2 (-1057)) (-5 *1 (-759))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-568))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) + (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) + (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1060 (-576)))) + (-5 *2 (-2 (|:| -2650 (-784)) (|:| -3265 *8))) + (-5 *1 (-931 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) + (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-1265 (-419 *4))) + (-4 *6 (-353 (-419 (-576)) *4 *5)) + (-5 *2 (-2 (|:| -2650 (-784)) (|:| -3265 *6))) + (-5 *1 (-932 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-5 *2 (-978 (-1194 *4))) (-5 *1 (-368 *4)) + (-5 *3 (-1194 *4))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) + (-5 *1 (-946)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) + (-5 *1 (-947)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) + (-5 *1 (-947))))) +(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1202))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-657 (-784))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-1071))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-576))) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-568)) (-4 *8 (-969 *7 *5 *6)) + (-5 *2 (-2 (|:| -2128 (-784)) (|:| -1735 *9) (|:| |radicand| *9))) + (-5 *1 (-973 *5 *6 *7 *8 *9)) (-5 *4 (-784)) + (-4 *9 + (-13 (-374) + (-10 -8 (-15 -3515 ($ *8)) (-15 -1590 (*8 $)) (-15 -1602 (*8 $)))))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) + (-4 *3 (-1122)) (-5 *2 (-784)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *4)) + (-4 *4 (-1239)) (-5 *2 (-784))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1060 (-576)))) (-4 *3 (-568)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1590 ((-1147 *3 (-624 $)) $)) + (-15 -1602 ((-1147 *3 (-624 $)) $)) + (-15 -3515 ($ (-1147 *3 (-624 $)))))))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1265 *6)) + (-4 *6 (-13 (-374) (-148) (-1060 *4))) (-5 *4 (-576)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -3981 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1037 *6 *3))))) +(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-403))))) +(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-971 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1265 *2)) + (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-1265 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) + (-4 *3 (-421 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1265 *2)) (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *3 (-1265 *2)) (-5 *2 (-576)) (-5 *1 (-781 *3 *4)) + (-4 *4 (-421 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)) (-4 *3 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-568)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-174))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-893 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-895 *2)) (-4 *2 (-1239)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-898 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3) + (-12 (-5 *3 (-947)) + (-5 *2 + (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) + (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-947)) (-5 *4 (-419 (-576))) + (-5 *2 + (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) + (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) + (-5 *1 (-154))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-972 (-171 *4))) (-4 *4 (-174)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-971 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (|partial| -12 (-5 *3 (-972 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-174)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-971 *4)) (-4 *4 (-1070)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (|partial| -12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-971 *5)) (-5 *4 (-940)) (-4 *5 (-1070)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (|partial| -12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-971 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 *5))) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (|partial| -12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-971 (-171 *4)))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (|partial| -12 (-5 *3 (-419 (-972 (-171 *4)))) (-4 *4 (-568)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-971 (-171 *5)))) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (|partial| -12 (-5 *3 (-419 (-972 (-171 *5)))) (-5 *4 (-941)) + (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-798 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-940)) (-4 *5 (-568)) (-4 *5 (-861)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) + (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-798 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-861)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-940)) (-4 *5 (-568)) - (-4 *5 (-861)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-576)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-783)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1070)) (-4 *3 (-374)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) - (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1264 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1121)) (-4 *4 (-1121)) - (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) - (-5 *2 (-656 (-656 (-656 (-783)))))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-984))) (-5 *1 (-301))))) -(((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 - (-2 (|:| |solns| (-656 *5)) - (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1149 *3 *5)) (-4 *3 (-1264 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) + (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-568)) + (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-798 *5))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) + (-5 *2 (-1057)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1142))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-624 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) + (-4 *2 (-13 (-442 *5) (-27) (-1224))) + (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1122))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1060 (-576))) (-4 *4 (-568)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-135))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) + (-4 *5 (-1280 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1251 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) + (-4 *5 (-1249 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1272 *4 *5)) + (-4 *6 (-1005 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-294))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *1) (-5 *1 (-390))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-397 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-442 *3)) (-4 *3 (-1122)) + (-4 *3 (-1134)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1289 *4)) (-5 *3 (-576)) (-4 *4 (-360)) + (-5 *1 (-540 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-548)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-784)) (-4 *4 (-1122)) + (-5 *1 (-695 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-702 *4)) (-5 *3 (-784)) (-4 *4 (-1071)) + (-5 *1 (-703 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *3 (-1071)) (-5 *1 (-727 *3 *4)) + (-4 *4 (-661 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1071)) + (-5 *1 (-727 *4 *5)) (-4 *5 (-661 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-941)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-784)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-739)) (-5 *2 (-784)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-849 *3)) (-4 *3 (-1071)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-849 *4)) (-4 *4 (-1071)))) + ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-419 (-576))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-941)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-1145 *3 *4 *5 *6)) (-4 *4 (-1071)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1183 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1184 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) + (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) + (-5 *4 (-326 (-390))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) + (-5 *4 (-326 (-576))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-171 (-390))))) + (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-576)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-171 (-390))))) + (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-576)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) + (-5 *4 (-326 (-707))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) + (-5 *4 (-326 (-712))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) + (-5 *4 (-326 (-714))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-707)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-712)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-714)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-707)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-712)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-714)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-707))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-712))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-714))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-707))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-712))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-714))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-707))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-712))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-714))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1180)) (-5 *1 (-340)))) + ((*1 *1 *1 *1) (-5 *1 (-877)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-687 *3)) (-4 *3 (-1239)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-784)) (-4 *1 (-753 *3 *4)) (-4 *3 (-1071)) + (-4 *4 (-862)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-4 *1 (-1002 *3)) (-4 *3 (-1071)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-657 *1)) (-5 *3 (-657 *7)) (-4 *1 (-1093 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) + (-4 *1 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) + (-4 *1 (-1093 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) + (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-4 *7 (-1014 *4)) (-4 *2 (-700 *7 *8 *9)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-700 *4 *5 *6)) + (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) + (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) + (-4 *2 (-700 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-702 *2)) (-4 *2 (-374)) (-4 *2 (-1071)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1145 *2 *3 *4 *5)) (-4 *3 (-1071)) + (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) + ((*1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-1209 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-657 *3)) (-5 *1 (-981 *3)) (-4 *3 (-557))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4442 *4)))) - (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) + (-4 *3 (-1087 *6 *7 *8)) + (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3941 *4)))) + (-5 *1 (-1130 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4442 *9)))) - (-5 *5 (-112)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-861)) - (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4442 *9)))) - (-5 *1 (-1093 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3941 *9)))) + (-5 *5 (-112)) (-4 *8 (-1087 *6 *7 *4)) (-4 *9 (-1093 *6 *7 *4 *8)) + (-4 *6 (-464)) (-4 *7 (-806)) (-4 *4 (-862)) + (-5 *2 (-657 (-2 (|:| |val| *8) (|:| -3941 *9)))) + (-5 *1 (-1130 *6 *7 *4 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) +(((*1 *2) + (-12 (-14 *4 (-784)) (-4 *5 (-1239)) (-5 *2 (-135)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) + (-12 (-5 *2 (-784)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-576)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) + (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1071)) (-5 *2 (-941)))) + ((*1 *2) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) +(((*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-480))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-657 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) + (-5 *2 (-657 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-993))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-657 (-1198))) (-4 *2 (-174)) + (-4 *4 (-243 (-3437 *5) (-784))) + (-14 *6 + (-1 (-112) (-2 (|:| -3146 *3) (|:| -2128 *4)) + (-2 (|:| -3146 *3) (|:| -2128 *4)))) + (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862)) + (-4 *7 (-969 *2 *4 (-879 *5)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1280 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1231 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) - (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4466 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) - (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) - (-4 *4 (-699 *2 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) - (-5 *2 (-1056)) (-5 *1 (-765))))) + (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)) + (-4 *2 (-464)))) + ((*1 *1 *1) + (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1243)) (-4 *3 (-1265 *2)) + (-4 *4 (-1265 (-419 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-464)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862)) (-4 *3 (-464)))) + ((*1 *1 *1) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) + (-4 *4 (-862)) (-4 *2 (-464)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1185 *3 *2)) + (-4 *2 (-1265 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) - (-5 *1 (-315))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-112))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1069))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-861)) (-5 *2 (-112)) - (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-923 (-576))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-923 (-576))) (-5 *1 (-936))))) + (-12 (-4 *4 (-1265 *2)) (-4 *2 (-1243)) (-5 *1 (-149 *2 *4 *3)) + (-4 *3 (-1265 (-419 *4)))))) (((*1 *1 *2) - (-12 (-5 *2 (-1163 *3 *4)) (-14 *3 (-940)) (-4 *4 (-374)) - (-5 *1 (-1014 *3 *4))))) + (-12 (-5 *2 (-1304 (-1198) *3)) (-4 *3 (-1071)) (-5 *1 (-1311 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) + (-5 *1 (-1313 *3 *4))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1032 *2)) (-4 *2 (-1239))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1179 *3))) (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071))))) +(((*1 *2 *2) (-12 (-5 *1 (-981 *2)) (-4 *2 (-557))))) +(((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-340))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) + (-4 *1 (-1087 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) + (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1086 *4 *5 *6)) - (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-861)) - (-5 *1 (-998 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) - ((*1 *1 *1 *1) (-5 *1 (-876))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1068)) - (-5 *3 (-576))))) + (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) + (-5 *1 (-999 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-784)) (-4 *5 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-784)) (-4 *6 (-374)) (-5 *4 (-1233 *6)) + (-5 *2 (-1 (-1179 *4) (-1179 *4))) (-5 *1 (-1297 *6)) + (-5 *5 (-1179 *4))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-340))))) +(((*1 *2 *1) + (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *5 (-1087 *3 *4 *2)) (-4 *2 (-862)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) + (-4 *2 (-862))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-901 *3 *4 *5)) + (-4 *3 (-1122)) (-4 *5 (-679 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-905 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-1122))))) (((*1 *2 *3) - (-12 (-4 *4 (-928)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-430 (-1193 *7))) - (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1193 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-928)) (-4 *5 (-1264 *4)) (-5 *2 (-430 (-1193 *5))) - (-5 *1 (-926 *4 *5)) (-5 *3 (-1193 *5))))) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1239))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1198)) + (-4 *5 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) + (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) + (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-861)) - (-4 *2 (-1086 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) - (-4 *3 (-1092 *4 *5 *6 *2))))) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-657 + (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 *2)) + (|:| |logand| (-1194 *2))))) + (-5 *4 (-657 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-374)) (-5 *1 (-598 *2))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1060 (-48))) + (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 (-430 (-1194 (-48)))) (-5 *1 (-447 *4 *5 *3)) + (-4 *3 (-1265 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1199 (-419 (-576)))) - (-5 *1 (-192))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3589 ((-430 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1052))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) - (-5 *2 (-1056)) (-5 *1 (-757))))) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) + (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-551 *4 *2 *5 *6)) + (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-784)))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-861)) - (-5 *1 (-998 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) - ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-971 (-576))) (-5 *3 (-1197)) - (-5 *4 (-1115 (-419 (-576)))) (-5 *1 (-30))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1197)) - (-4 *5 (-13 (-568) (-1059 (-576)) (-651 (-576)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) - (|:| |vals| (-656 *3)))) - (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-442 *5)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-702 *4)) (-5 *3 (-784)) (-4 *4 (-1071)) + (-5 *1 (-703 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) + (-5 *3 (-657 (-576))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) + (-5 *3 (-657 (-576)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-842))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 (-783)) (-4 *5 (-174))))) + (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) + (-4 *4 (-1071))))) +(((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) + ((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) + ((*1 *2 *2) (-12 (-5 *2 (-941)) (|has| *1 (-6 -4457)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) + ((*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-1179 (-576)))))) +(((*1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-625 (-877)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1056)) (-5 *1 (-770))))) -(((*1 *2 *2) - (-12 + (-12 (-5 *4 (-657 (-879 *5))) (-14 *5 (-657 (-1198))) (-4 *6 (-464)) (-5 *2 - (-1008 (-419 (-576)) (-878 *3) (-245 *4 (-783)) - (-253 *3 (-419 (-576))))) - (-14 *3 (-656 (-1197))) (-14 *4 (-783)) (-5 *1 (-1007 *3 *4))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-419 (-971 *6)) (-1186 (-1197) (-971 *6)))) - (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *6))))) - (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-971 *6)))))) + (-2 (|:| |dpolys| (-657 (-253 *5 *6))) + (|:| |coords| (-657 (-576))))) + (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-657 (-253 *5 *6))) (-4 *7 (-464))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) +(((*1 *2 *3) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1024) (-1224))) + (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1024) (-1224))) + (-5 *1 (-612 *4 *5 *2))))) +(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1198))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-764))))) +(((*1 *2 *2) + (-12 (-4 *3 (-626 (-908 *3))) (-4 *3 (-902 *3)) (-4 *3 (-464)) + (-5 *1 (-1230 *3 *2)) (-4 *2 (-626 (-908 *3))) (-4 *2 (-902 *3)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) ((*1 *2 *3 *4) + (-12 (-5 *4 (-657 *3)) (-4 *3 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-657 *3)) (-4 *3 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1129 *5 *6 *7 *8 *3))))) +(((*1 *2) (-12 (-5 *2 (-657 (-784))) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-657 (-784))) (-5 *1 (-1292))))) +(((*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448))))) +(((*1 *1) (-5 *1 (-340)))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 (-430 (-1194 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) + (-4 *3 (-1265 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-941)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-374)) (-14 *5 (-1015 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-2 (|:| -1856 (-1194 *6)) (|:| -2128 (-576))))) + (-4 *6 (-317)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-576)) + (-5 *1 (-755 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-941)) (-5 *1 (-1123 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) + (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) + (-5 *1 (-769))))) +(((*1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390))))) +(((*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1180)) (-5 *1 (-1290)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1290)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1290)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1180)) (-5 *1 (-1291)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1291)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1291))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-889)) (-5 *3 (-657 (-270))) (-5 *1 (-268))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *1) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) + (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) + (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-702 (-171 (-419 (-576))))) (-5 *2 (-657 (-171 *4))) + (-5 *1 (-777 *4)) (-4 *4 (-13 (-374) (-861)))))) +(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) + (-4 *4 (-1122))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) + (-4 *3 (-13 (-1122) (-34)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-941)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1071)) + (-4 *4 (-1239)))) + ((*1 *1 *2) + (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) + (-4 *5 (-243 (-3437 *3) (-784))) + (-14 *6 + (-1 (-112) (-2 (|:| -3146 *2) (|:| -2128 *5)) + (-2 (|:| -3146 *2) (|:| -2128 *5)))) + (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862)) + (-4 *7 (-969 *4 *5 (-879 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1060 (-576))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1198)) (-5 *2 (-1 *6 *5)) (-5 *1 (-719 *4 *5 *6)) + (-4 *4 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1290)))) + ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) (-5 *2 (-112)) + (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) + (-4 *4 (-13 (-1122) (-34)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *6)) (-4 *5 (-1122)) + (-4 *6 (-1239)) (-5 *2 (-1 *6 *5)) (-5 *1 (-654 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *2)) (-4 *5 (-1122)) + (-4 *2 (-1239)) (-5 *1 (-654 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 *5)) (-4 *6 (-1122)) + (-4 *5 (-1239)) (-5 *2 (-1 *5 *6)) (-5 *1 (-654 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *2)) (-4 *5 (-1122)) + (-4 *2 (-1239)) (-5 *1 (-654 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-657 *5)) (-5 *4 (-657 *6)) + (-4 *5 (-1122)) (-4 *6 (-1239)) (-5 *1 (-654 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1122)) (-4 *2 (-1239)) (-5 *1 (-654 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1166)) (-5 *3 (-145)) (-5 *2 (-784))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180)) + (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-112)) + (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1224) (-29 *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1180)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-270)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) +(((*1 *2 *2) (-12 (-5 *2 (-986 *3)) (-4 *3 (-1122)) (-5 *1 (-987 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862)) + (-4 *4 (-806)) (-5 *1 (-1009 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1141)))) + ((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1224)))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-419 (-971 *5)) (-1186 (-1197) (-971 *5)))) - (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) - (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-971 *5))))) - (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-971 *5))))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1279 *4)) (-5 *1 (-1281 *4 *2)) - (-4 *4 (-38 (-419 (-576))))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1178 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4465)) (-4 *1 (-1276 *2)) (-4 *2 (-1238))))) + (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) + (|:| -3936 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-576)) (-5 *1 (-206))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-657 *1)) (-5 *3 (-657 *7)) (-4 *1 (-1093 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *7 (-1087 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) + (-4 *1 (-1093 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) + (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) + (-4 *1 (-1093 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) + (-253 *4 (-419 (-576))))) + (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) + (|partial| -12 (-5 *3 (-784)) (-4 *4 (-13 (-568) (-148))) + (-5 *1 (-1259 *4 *2)) (-4 *2 (-1265 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) + (-5 *2 (-657 (-657 (-657 (-784)))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1060 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-925 *3)) (-4 *3 (-1122))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1024)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 *4)) (-5 *1 (-1163 *3 *4)) + (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-657 *5)) (-5 *4 (-576)) (-4 *5 (-861)) (-4 *5 (-374)) + (-5 *2 (-784)) (-5 *1 (-965 *5 *6)) (-4 *6 (-1265 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3563 (-701 (-419 (-971 *4)))) - (|:| |vec| (-656 (-419 (-971 *4)))) (|:| -4135 (-783)) - (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-861) (-626 (-1197)))) - (-4 *6 (-805)) + (-657 (-2 (|:| -4217 (-419 (-576))) (|:| -4228 (-419 (-576)))))) + (-5 *2 (-657 (-227))) (-5 *1 (-315))))) +(((*1 *2 *1) + (-12 (-5 *2 (-657 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-598 *3)) (-4 *3 (-374))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-227)) (-5 *2 - (-2 (|:| |partsol| (-1288 (-419 (-971 *4)))) - (|:| -2704 (-656 (-1288 (-419 (-971 *4))))))) - (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-4 *1 (-312)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) - (-4 *4 (-13 (-374) (-860)))))) + (-2 (|:| |brans| (-657 (-657 (-963 *4)))) + (|:| |xValues| (-1116 *4)) (|:| |yValues| (-1116 *4)))) + (-5 *1 (-154)) (-5 *3 (-657 (-657 (-963 *4))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1198)) (-5 *2 (-548)) (-5 *1 (-547 *4)) + (-4 *4 (-1239))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-518)) (-5 *3 (-657 (-985))) (-5 *1 (-301))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-941)) (|has| *1 (-6 -4457)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-246)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1294)) (-5 *1 (-246))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-784)) (-4 *4 (-374)) (-5 *1 (-914 *2 *4)) + (-4 *2 (-1265 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-702 (-227))) (-5 *6 (-112)) (-5 *7 (-702 (-576))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-766))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1238))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-145))))) -(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) +(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-503))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-784)) + (-4 *3 (-13 (-739) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) + (-5 *1 (-251 *3))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) + (-5 *1 (-768))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1224) (-442 *3))) + (-14 *4 (-1198)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) + (-4 *2 (-13 (-27) (-1224) (-442 *3) (-10 -8 (-15 -3515 ($ *4))))) + (-4 *4 (-861)) + (-4 *5 + (-13 (-1267 *2 *4) (-374) (-1224) + (-10 -8 (-15 -2209 ($ $)) (-15 -2320 ($ $))))) + (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1005 *5)) + (-14 *7 (-1198))))) (((*1 *2 *3) - (-12 (-5 *3 (-940)) (-5 *2 (-1193 *4)) (-5 *1 (-600 *4)) - (-4 *4 (-360))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-1121)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-397 *3))))) -((-1322 . 731413) (-1323 . 731319) (-1324 . 731263) (-1325 . 731153) - (-1326 . 731070) (-1327 . 730947) (-1328 . 730885) (-1329 . 730437) - (-1330 . 730359) (-1331 . 730197) (-1332 . 730073) (-1333 . 729588) - (-1334 . 729406) (-1335 . 729318) (-1336 . 729195) (-1337 . 728943) - (-1338 . 728822) (-1339 . 728627) (-1340 . 728571) (-1341 . 728396) - (-1342 . 728277) (-1343 . 728210) (-1344 . 727869) (-1345 . 727772) - (-1346 . 727611) (-1347 . 727315) (-1348 . 727010) (-1349 . 726701) - (-1350 . 726599) (-1351 . 726462) (-1352 . 726074) (-1353 . 725985) - (-1354 . 725892) (-1355 . 725740) (-1356 . 725554) (-1357 . 725429) - (-1358 . 725285) (-1359 . 725156) (-1360 . 724626) (-1361 . 724524) - (-1362 . 724268) (-1363 . 724216) (-1364 . 724134) (-1365 . 724036) - (-1366 . 723893) (-1367 . 723791) (-1368 . 723581) (-1369 . 723443) - (-1370 . 723360) (-1371 . 721228) (-1372 . 721131) (-1373 . 720987) - (-1374 . 720735) (-1375 . 720555) (-1376 . 720495) (-1377 . 720365) - (-1378 . 720271) (-1379 . 719668) (-1380 . 718826) (-1381 . 718723) - (-1382 . 718198) (-1383 . 718112) (-1384 . 718051) (-1385 . 717967) - (-1386 . 717559) (-1387 . 717506) (-1388 . 717444) (-1389 . 717346) - (-1390 . 717053) (-1391 . 716993) (-1392 . 716681) (-1393 . 716575) - (-1394 . 716164) (-1395 . 715994) (-1396 . 715914) (-1397 . 715818) - (-1398 . 715533) (-1399 . 715459) (-1400 . 714745) (-1401 . 713578) - (-1402 . 713484) (-1403 . 713389) (-1404 . 712829) (-1405 . 712743) - (-1406 . 712671) (-1407 . 712637) (-1408 . 712463) (-1409 . 712111) - (-1410 . 712037) (-1411 . 711935) (-1412 . 711849) (-1413 . 711569) - (-1414 . 711322) (-1415 . 711167) (-1416 . 711040) (-1417 . 710856) - (-1418 . 710040) (-1419 . 709983) (-1420 . 709879) (-1421 . 708477) - (-1422 . 708397) (-1423 . 708224) (-1424 . 708169) (-1425 . 707986) - (-1426 . 707900) (-1427 . 707533) (-1428 . 707433) (-1429 . 707329) - (-1430 . 707257) (-1431 . 706297) (-1432 . 706191) (-1433 . 706111) - (-1434 . 705966) (-1435 . 705934) (-1436 . 705824) (-1437 . 705743) - (-1438 . 705657) (-1439 . 705388) (-1440 . 705305) (-1441 . 705192) - (-1442 . 704978) (-1443 . 704319) (-1444 . 704171) (-1445 . 704083) - (-1446 . 703970) (-1447 . 703915) (-1448 . 703695) (-1449 . 703601) - (-1450 . 703329) (-1451 . 703237) (-1452 . 697723) (-1453 . 697600) - (-1454 . 697473) (-1455 . 697333) (-1456 . 697196) (-1457 . 697089) - (-1458 . 696904) (-1459 . 696715) (-1460 . 696469) (-1461 . 696311) - (-1462 . 695918) (-1463 . 695732) (-1464 . 695659) (-1465 . 694786) - (-1466 . 694516) (-1467 . 694178) (-1468 . 694018) (-1469 . 693856) - (-1470 . 693786) (-1471 . 693700) (-1472 . 693557) (-1473 . 693414) - (-1474 . 692972) (-1475 . 692747) (-1476 . 692636) (-1477 . 692349) - (-1478 . 692219) (-1479 . 691773) (-1480 . 691555) (-1481 . 691335) - (-1482 . 691019) (-1483 . 690952) (-1484 . 690875) (-1485 . 690540) - (-1486 . 690455) (-1487 . 690034) (-1488 . 689321) (-1489 . 689088) - (-1490 . 688980) (-1491 . 688855) (-1492 . 688775) (-1493 . 688694) - (-1494 . 688555) (-1495 . 688476) (-1496 . 688402) (-1497 . 688350) - (-1498 . 688216) (-1499 . 687814) (-1500 . 687740) (-1501 . 687601) - (-1502 . 687552) (-1503 . 687312) (-1504 . 687197) (-1505 . 686890) - (-1506 . 686862) (-1507 . 686686) (-1508 . 686631) (-1509 . 686302) - (-1510 . 686268) (-1511 . 686190) (-1512 . 685980) (-1513 . 685896) - (-1514 . 685836) (-1515 . 685621) (-1516 . 685500) (-1517 . 685466) - (-1518 . 685369) (-1519 . 685309) (-1520 . 685182) (-1521 . 685063) - (-1522 . 684961) (-1523 . 684866) (-1524 . 684802) (-1525 . 684513) - (-1526 . 684384) (-1527 . 683041) (-1528 . 682726) (-1529 . 682669) - (-1530 . 682317) (-1531 . 682222) (-1532 . 682132) (-1533 . 681811) - (-1534 . 681207) (-1535 . 681123) (-1536 . 680966) (-1537 . 680762) - (-1538 . 680295) (-1539 . 680242) (-1540 . 680156) (-1541 . 679861) - (-1542 . 679636) (-1543 . 679570) (-1544 . 679182) (-1545 . 678979) - (-1546 . 678882) (-1547 . 678714) (-1548 . 678685) (-1549 . 678500) - (-1550 . 678429) (-1551 . 678161) (-1552 . 678011) (-1553 . 677639) - (-1554 . 677520) (-1555 . 677483) (-1556 . 673816) (-1557 . 673504) - (-1558 . 673356) (-1559 . 673175) (-1560 . 673094) (-1561 . 673036) - (-1562 . 672965) (-1563 . 672895) (-1564 . 671266) (-1565 . 671144) - (-1566 . 671020) (-1567 . 670924) (-1568 . 670812) (-1569 . 670679) - (-1570 . 670361) (-1571 . 670269) (-1572 . 670173) (-1573 . 670060) - (-1574 . 669201) (-1575 . 668994) (-1576 . 668893) (-1577 . 668862) - (-1578 . 668754) (-1579 . 668432) (-1580 . 668336) (-1581 . 668262) - (-1582 . 668192) (-1583 . 668065) (-1584 . 667944) (-1585 . 666648) - (-1586 . 666519) (-1587 . 666491) (-1588 . 666391) (-1589 . 666296) - (-1590 . 666194) (-1591 . 665964) (-1592 . 665827) (-1593 . 665798) - (-1594 . 665634) (-1595 . 665465) (-1596 . 665398) (-1597 . 665239) - (-1598 . 665186) (-1599 . 665085) (-1600 . 664997) (-1601 . 664916) - (-1602 . 664600) (-1603 . 664544) (-1604 . 664467) (-1605 . 664372) - (-1606 . 664152) (-1607 . 664042) (-1608 . 662964) (-1609 . 662898) - (-1610 . 662664) (-1611 . 662570) (-1612 . 662542) (-1613 . 662374) - (-1614 . 661620) (-1615 . 661082) (-1616 . 660969) (-1617 . 660831) - (-1618 . 660757) (-1619 . 660481) (-1620 . 660379) (-1621 . 660326) - (-1622 . 660167) (-1623 . 659993) (-1624 . 659941) (-1625 . 659889) - (-1626 . 659401) (-1627 . 659298) (-1628 . 659080) (-1629 . 658957) - (-1630 . 657191) (-1631 . 657111) (-1632 . 656932) (-1633 . 656842) - (-1634 . 656609) (-1635 . 656135) (-1636 . 656076) (-1637 . 655980) - (-1638 . 655801) (-1639 . 654346) (-1640 . 654296) (-1641 . 654098) - (-1642 . 654031) (-1643 . 654003) (-1644 . 653881) (-1645 . 653827) - (-1646 . 653746) (-1647 . 653505) (-1648 . 652015) (-1649 . 651775) - (-1650 . 651696) (-1651 . 651541) (-1652 . 651408) (-1653 . 651312) - (-1654 . 650793) (-1655 . 650418) (-1656 . 650166) (-1657 . 649774) - (-1658 . 649472) (-1659 . 649419) (-1660 . 649366) (-1661 . 649185) - (-1662 . 649133) (-1663 . 649059) (-1664 . 648992) (-1665 . 648893) - (-1666 . 648774) (-1667 . 648535) (-1668 . 648394) (-1669 . 647658) - (-1670 . 647587) (-1671 . 647069) (-1672 . 647000) (-1673 . 646914) - (-1674 . 646862) (-1675 . 646810) (-1676 . 646673) (-1677 . 646569) - (-1678 . 646406) (-1679 . 646224) (-1680 . 646158) (-1681 . 645980) - (-1682 . 645820) (-1683 . 645679) (-1684 . 645426) (-1685 . 645370) - (-1686 . 645242) (-1687 . 645016) (-1688 . 644939) (-1689 . 644865) - (-1690 . 644552) (-1691 . 643873) (-1692 . 643670) (-1693 . 643614) - (-1694 . 643520) (-1695 . 642900) (-1696 . 642843) (-1697 . 642659) - (-1698 . 642229) (-1699 . 642134) (-1700 . 641490) (-1701 . 641383) - (-1702 . 641288) (-1703 . 641229) (-1704 . 641134) (-1705 . 639838) - (-1706 . 638964) (-1707 . 638806) (-1708 . 638340) (-1709 . 638236) - (-1710 . 638140) (-1711 . 636969) (-1712 . 636888) (-1713 . 636835) - (-1714 . 636585) (-1715 . 636440) (-1716 . 636302) (-1717 . 636144) - (-1718 . 635895) (-1719 . 635682) (-1720 . 635487) (-1721 . 635321) - (-1722 . 635224) (-1723 . 635093) (-1724 . 634996) (-1725 . 634824) - (-1726 . 634577) (-1727 . 633512) (-1728 . 633314) (-1729 . 633216) - (-1730 . 633063) (-1731 . 632944) (-1732 . 632807) (-1733 . 632738) - (-1734 . 632683) (-1735 . 632468) (-1736 . 632256) (-1737 . 632176) - (-1738 . 632098) (-1739 . 632039) (-1740 . 631986) (-1741 . 631918) - (-1742 . 631791) (-1743 . 631733) (-1744 . 631610) (-1745 . 631554) - (-1746 . 631406) (-1747 . 631354) (-1748 . 631223) (-1749 . 631170) - (-1750 . 631067) (-1751 . 630888) (-1752 . 630795) (-1753 . 630694) - (-1754 . 630551) (-1755 . 629938) (-1756 . 629781) (-1757 . 629729) - (-1758 . 629477) (-1759 . 629353) (-1760 . 629166) (-1761 . 628456) - (-1762 . 628355) (-1763 . 628227) (-1764 . 627800) (-1765 . 627756) - (-1766 . 627661) (-1767 . 627371) (-1768 . 627186) (-1769 . 627105) - (-1770 . 626917) (-1771 . 626806) (-1772 . 626579) (-1773 . 626495) - (-1774 . 626378) (-1775 . 626292) (-1776 . 625733) (-1777 . 625680) - (-1778 . 625622) (-1779 . 625553) (-1780 . 625465) (-1781 . 625285) - (-1782 . 625035) (-1783 . 624890) (-1784 . 624331) (-1785 . 624279) - (-1786 . 624124) (-1787 . 624008) (-1788 . 623413) (-1789 . 623335) - (-1790 . 622632) (-1791 . 622353) (-1792 . 622248) (-1793 . 622035) - (-1794 . 621850) (-1795 . 621780) (-1796 . 621636) (-1797 . 621577) - (-1798 . 621359) (-1799 . 621262) (-1800 . 620909) (-1801 . 620881) - (-1802 . 620768) (-1803 . 620631) (-1804 . 620519) (-1805 . 620436) - (-1806 . 620121) (-1807 . 620055) (-1808 . 619822) (-1809 . 619708) - (-1810 . 619646) (-1811 . 619594) (-1812 . 619282) (-1813 . 619201) - (-1814 . 619021) (-1815 . 618958) (-1816 . 618899) (-1817 . 618827) - (-1818 . 618654) (-1819 . 617352) (-1820 . 617243) (-1821 . 616797) - (-1822 . 616427) (-1823 . 616331) (-1824 . 616173) (-1825 . 615954) - (-1826 . 615859) (-1827 . 615477) (-1828 . 615345) (-1829 . 615250) - (-1830 . 615128) (-1831 . 615068) (-1832 . 614965) (-1833 . 614794) - (-1834 . 614575) (-1835 . 614364) (-1836 . 614173) (-1837 . 613980) - (-1838 . 613828) (-1839 . 613750) (-1840 . 613682) (-1841 . 613626) - (-1842 . 613470) (-1843 . 613420) (-1844 . 613367) (-1845 . 613254) - (-1846 . 612730) (-1847 . 612603) (-1848 . 612464) (-1849 . 612405) - (-1850 . 612310) (-1851 . 611093) (-1852 . 611005) (-1853 . 610937) - (-1854 . 610884) (-1855 . 610790) (-1856 . 610615) (-1857 . 610490) - (-1858 . 610327) (-1859 . 610205) (-1860 . 609825) (-1861 . 609793) - (-1862 . 609651) (-1863 . 609543) (-1864 . 609397) (-1865 . 609123) - (-1866 . 608942) (-1867 . 608282) (-1868 . 608157) (-1869 . 607911) - (-1870 . 607787) (-1871 . 607735) (-1872 . 607536) (-1873 . 607297) - (-1874 . 607229) (-1875 . 606913) (-1876 . 606863) (-1877 . 606720) - (-1878 . 606624) (-1879 . 606424) (-1880 . 606150) (-1881 . 605917) - (-1882 . 605751) (-1883 . 605621) (-1884 . 605360) (-1885 . 605282) - (-1886 . 605078) (-1887 . 604994) (-1888 . 604860) (-1889 . 604226) - (-1890 . 604143) (-1891 . 604090) (-1892 . 603851) (-1893 . 603199) - (-1894 . 602409) (-1895 . 602312) (-1896 . 602160) (-1897 . 602107) - (-1898 . 601880) (-1899 . 601794) (-1900 . 601699) (-1901 . 601546) - (-1902 . 601338) (-1903 . 601223) (-1904 . 601122) (-1905 . 600981) - (-1906 . 600818) (-1907 . 600766) (-1908 . 600669) (-1909 . 600504) - (-1910 . 600272) (-1911 . 600194) (-1912 . 600098) (-1913 . 600046) - (-1914 . 599941) (-1915 . 599736) (-1916 . 599608) (-1917 . 599580) - (-1918 . 599499) (-1919 . 599155) (-1920 . 598803) (-1921 . 598772) - (-1922 . 598698) (-1923 . 598667) (-1924 . 598501) (-1925 . 598273) - (-1926 . 598084) (-1927 . 597014) (-1928 . 596901) (-1929 . 596654) - (-1930 . 596397) (-1931 . 596267) (-1932 . 595623) (-1933 . 595460) - (-1934 . 595238) (-1935 . 594992) (-1936 . 594904) (-1937 . 594236) - (-1938 . 593709) (-1939 . 593657) (-1940 . 593474) (-1941 . 593232) - (-1942 . 593106) (-1943 . 592561) (-1944 . 592179) (-1945 . 592106) - (-1946 . 591245) (-1947 . 591196) (-1948 . 591065) (-1949 . 591009) - (-1950 . 590928) (-1951 . 590875) (-1952 . 587576) (-1953 . 587521) - (-1954 . 587330) (-1955 . 587185) (-1956 . 586986) (-1957 . 586899) - (-1958 . 586684) (-1959 . 586348) (-1960 . 586173) (-1961 . 586099) - (-1962 . 585985) (-1963 . 585721) (-1964 . 585469) (-1965 . 585368) - (-1966 . 585247) (-1967 . 585170) (-1968 . 585089) (-1969 . 585022) - (-1970 . 584605) (-1971 . 584553) (-1972 . 583990) (-1973 . 583892) - (-1974 . 583789) (-1975 . 583704) (-1976 . 583605) (-1977 . 583466) - (-1978 . 583264) (-1979 . 583161) (-1980 . 583130) (-1981 . 583033) - (-1982 . 582970) (-1983 . 582546) (-1984 . 582472) (-1985 . 582302) - (-1986 . 582114) (-1987 . 581962) (-1988 . 581724) (-1989 . 581521) - (-1990 . 581426) (-1991 . 580656) (-1992 . 580597) (-1993 . 580488) - (-1994 . 580341) (-1995 . 580279) (-1996 . 580177) (-1997 . 579981) - (-1998 . 579930) (-1999 . 579828) (-2000 . 579772) (-2001 . 579578) - (-2002 . 579474) (-2003 . 579424) (-2004 . 579271) (-2005 . 579164) - (-2006 . 578988) (-2007 . 577960) (-2008 . 577781) (-2009 . 577752) - (-2010 . 577319) (-2011 . 577248) (-2012 . 577195) (-2013 . 577037) - (-2014 . 576883) (-2015 . 576705) (-2016 . 576652) (-2017 . 576579) - (-2018 . 576300) (-2019 . 576165) (-2020 . 575927) (-2021 . 575791) - (-2022 . 575757) (-2023 . 575725) (-2024 . 575507) (-2025 . 575327) - (-2026 . 575227) (-2027 . 575150) (-2028 . 574712) (-2029 . 574524) - (-2030 . 574454) (-2031 . 574331) (-2032 . 574246) (-2033 . 574212) - (-2034 . 574116) (-2035 . 573819) (-2036 . 573677) (-2037 . 573610) - (-2038 . 573467) (-2039 . 573415) (-2040 . 573155) (-2041 . 573103) - (-2042 . 573051) (-2043 . 572965) (-2044 . 572813) (-2045 . 572742) - (-2046 . 572684) (-2047 . 572631) (-2048 . 572425) (-2049 . 572248) - (-2050 . 572098) (-2051 . 572008) (-2052 . 571939) (-2053 . 571842) - (-2054 . 571685) (-2055 . 571487) (-2056 . 571417) (-2057 . 571170) - (-2058 . 570963) (-2059 . 570880) (-2060 . 570852) (-2061 . 570711) - (-2062 . 570603) (-2063 . 570519) (-2064 . 570079) (-2065 . 569984) - (-2066 . 569848) (-2067 . 569624) (-2068 . 569456) (-2069 . 569325) - (-2070 . 569183) (-2071 . 569088) (-2072 . 569033) (-2073 . 568970) - (-2074 . 568893) (-2075 . 568757) (-2076 . 568677) (-2077 . 568568) - (-2078 . 568186) (-2079 . 568134) (-2080 . 568040) (-2081 . 567746) - (-2082 . 567718) (-2083 . 567623) (-2084 . 567495) (-2085 . 567380) - (-2086 . 567330) (-2087 . 566988) (-2088 . 566806) (-2089 . 566712) - (-2090 . 566582) (-2091 . 566503) (-2092 . 566313) (-2093 . 566194) - (-2094 . 565832) (-2095 . 565606) (-2096 . 565183) (-2097 . 564610) - (-2098 . 564447) (-2099 . 564332) (-2100 . 564280) (-2101 . 564146) - (-2102 . 563808) (-2103 . 563747) (-2104 . 563696) (-2105 . 562832) - (-2106 . 562686) (-2107 . 562563) (-2108 . 562418) (-2109 . 562340) - (-2110 . 562182) (-2111 . 561990) (-2112 . 561731) (-2113 . 561393) - (-2114 . 561298) (-2115 . 561244) (-2116 . 561076) (-2117 . 560796) - (-2118 . 560439) (-2119 . 560361) (-2120 . 560308) (-2121 . 560226) - (-2122 . 560142) (-2123 . 559631) (-2124 . 559445) (-2125 . 559371) - (-2126 . 559297) (-2127 . 559197) (-2128 . 559104) (-2129 . 559009) - (-2130 . 558940) (-2131 . 558888) (-2132 . 558769) (-2133 . 558631) - (-2134 . 558515) (-2135 . 558459) (-2136 . 558376) (-2137 . 558048) - (-2138 . 557996) (-2139 . 557786) (-2140 . 557727) (-2141 . 557699) - (-2142 . 557440) (-2143 . 557368) (-2144 . 557267) (-2145 . 553317) - (-2146 . 553268) (-2147 . 553128) (-2148 . 553075) (-2149 . 552819) - (-2150 . 552706) (-2151 . 552478) (-2152 . 552355) (-2153 . 552300) - (-2154 . 552138) (-2155 . 551931) (-2156 . 550730) (-2157 . 550678) - (-2158 . 550534) (-2159 . 550376) (-2160 . 550139) (-2161 . 550029) - (-2162 . 549943) (-2163 . 549672) (-2164 . 549462) (-2165 . 549326) - (-2166 . 549185) (-2167 . 548967) (-2168 . 548851) (-2169 . 548661) - (-2170 . 548466) (-2171 . 548077) (-2172 . 547301) (-2173 . 547106) - (-2174 . 547039) (-2175 . 546940) (-2176 . 546848) (-2177 . 546681) - (-2178 . 546372) (-2179 . 546277) (-2180 . 546210) (-2181 . 546057) - (-2182 . 545866) (-2183 . 545758) (-2184 . 545653) (-2185 . 545565) - (-2186 . 545428) (-2187 . 545336) (-2188 . 545161) (-2189 . 545111) - (-2190 . 544962) (-2191 . 544830) (-2192 . 544367) (-2193 . 544230) - (-2194 . 543945) (-2195 . 543627) (-2196 . 541513) (-2197 . 541389) - (-2198 . 541303) (-2199 . 541147) (-2200 . 540620) (-2201 . 539684) - (-2202 . 539633) (-2203 . 539481) (-2204 . 539347) (-2205 . 539213) - (-2206 . 539154) (-2207 . 539001) (-2208 . 538627) (-2209 . 538570) - (-2210 . 538474) (-2211 . 538422) (-2212 . 538206) (-2213 . 538129) - (-2214 . 538028) (-2215 . 537921) (-2216 . 537703) (-2217 . 537505) - (-2218 . 537411) (-2219 . 537273) (-2220 . 537130) (-2221 . 537023) - (-2222 . 536916) (-2223 . 536697) (-2224 . 536618) (-2225 . 536530) - (-2226 . 536479) (-2227 . 536420) (-2228 . 536296) (-2229 . 536193) - (-2230 . 535882) (-2231 . 535719) (-2232 . 535624) (-2233 . 535484) - (-2234 . 535431) (-2235 . 535357) (-2236 . 535261) (-2237 . 535162) - (-2238 . 534619) (-2239 . 534550) (-2240 . 534396) (-2241 . 534347) - (-2242 . 534251) (-2243 . 534177) (-2244 . 533967) (-2245 . 533852) - (-2246 . 533306) (-2247 . 532722) (-2248 . 532313) (-2249 . 532007) - (-2250 . 531955) (-2251 . 531797) (-2252 . 531671) (-2253 . 531593) - (-2254 . 531498) (-2255 . 531403) (-2256 . 529957) (-2257 . 529602) - (-2258 . 529354) (-2259 . 529298) (-2260 . 529088) (-2261 . 528903) - (-2262 . 528731) (-2263 . 528672) (-2264 . 528163) (-2265 . 527280) - (-2266 . 527227) (-2267 . 527157) (-2268 . 527028) (-2269 . 526954) - (-2270 . 526817) (-2271 . 526689) (-2272 . 525988) (-2273 . 525833) - (-2274 . 525776) (-2275 . 525747) (-2276 . 525530) (-2277 . 525377) - (-2278 . 525206) (-2279 . 524958) (-2280 . 524850) (-2281 . 524794) - (-2282 . 524698) (-2283 . 524540) (-2284 . 524057) (-2285 . 524001) - (-2286 . 523930) (-2287 . 523851) (-2288 . 523629) (-2289 . 523348) - (-2290 . 523274) (-2291 . 523219) (-2292 . 523134) (-2293 . 523082) - (-2294 . 522964) (-2295 . 522846) (-2296 . 522657) (-2297 . 522315) - (-2298 . 521949) (-2299 . 521890) (-2300 . 521548) (-2301 . 521395) - (-2302 . 521338) (-2303 . 521278) (-2304 . 521216) (-2305 . 521109) - (-2306 . 520646) (-2307 . 520593) (-2308 . 520437) (-2309 . 520358) - (-2310 . 520274) (-2311 . 520209) (-2312 . 520122) (-2313 . 520067) - (-2314 . 519935) (-2315 . 519880) (-2316 . 519797) (-2317 . 514458) - (-2318 . 514407) (-2319 . 514335) (-2320 . 514247) (-2321 . 514164) - (-2322 . 513911) (-2323 . 513839) (-2324 . 513774) (-2325 . 513673) - (-2326 . 513187) (-2327 . 513050) (-2328 . 512897) (-2329 . 512649) - (-2330 . 512374) (-2331 . 512218) (-2332 . 512053) (-2333 . 510713) - (-2334 . 510386) (-2335 . 510230) (-2336 . 510146) (-2337 . 509956) - (-2338 . 509877) (-2339 . 509381) (-2340 . 509329) (-2341 . 508669) - (-2342 . 508541) (-2343 . 508453) (-2344 . 508295) (-2345 . 508183) - (-2346 . 507995) (-2347 . 507780) (-2348 . 507363) (-2349 . 507293) - (-2350 . 507205) (-2351 . 507153) (-2352 . 506967) (-2353 . 506372) - (-2354 . 506229) (-2355 . 506177) (-2356 . 505861) (-2357 . 505762) - (-2358 . 505607) (** . 502612) (-2360 . 502513) (-2361 . 502428) - (-2362 . 502397) (-2363 . 502319) (-2364 . 502116) (-2365 . 502012) - (-2366 . 501526) (-2367 . 501216) (-2368 . 500978) (-2369 . 500911) - (-2370 . 500706) (-2371 . 500533) (-2372 . 500477) (-2373 . 500424) - (-2374 . 500316) (-2375 . 500251) (-2376 . 499956) (-2377 . 499855) - (-2378 . 499802) (-2379 . 498622) (-2380 . 498191) (-2381 . 498081) - (-2382 . 498010) (-2383 . 497927) (-2384 . 497284) (-2385 . 497225) - (-2386 . 497087) (-2387 . 497033) (-2388 . 496934) (-2389 . 496816) - (-2390 . 496785) (-2391 . 496694) (-2392 . 496578) (-2393 . 496508) - (-2394 . 496081) (-2395 . 495982) (-2396 . 495888) (-2397 . 495728) - (-2398 . 495700) (-2399 . 495584) (-2400 . 495334) (-2401 . 495215) - (-2402 . 494945) (-2403 . 494722) (-2404 . 494115) (-2405 . 493872) - (-2406 . 489712) (-2407 . 489617) (-2408 . 489499) (-2409 . 489420) - (-2410 . 489296) (-2411 . 488969) (-2412 . 488863) (-2413 . 488758) - (-2414 . 488642) (-2415 . 488570) (-2416 . 488360) (-2417 . 488079) - (-2418 . 488020) (-2419 . 486821) (-2420 . 486771) (-2421 . 486230) - (-2422 . 486201) (-2423 . 471969) (-2424 . 471853) (-2425 . 471799) - (-2426 . 471512) (-2427 . 471429) (-2428 . 471346) (-2429 . 471209) - (-2430 . 471078) (-2431 . 470982) (-2432 . 470834) (-2433 . 470716) - (-2434 . 470644) (-2435 . 470615) (-2436 . 470535) (-2437 . 470379) - (-2438 . 470306) (-2439 . 470254) (-2440 . 469595) (-2441 . 469266) - (-2442 . 469189) (-2443 . 469101) (-2444 . 469073) (-2445 . 468927) - (-2446 . 468174) (-2447 . 468120) (-2448 . 468040) (-2449 . 467938) - (-2450 . 467804) (-2451 . 467638) (-2452 . 467586) (-2453 . 467554) - (-2454 . 467522) (-2455 . 467304) (-2456 . 467208) (-2457 . 467137) - (-2458 . 467009) (-2459 . 466659) (-2460 . 466456) (-2461 . 466229) - (-2462 . 466198) (-2463 . 466052) (-2464 . 465992) (-2465 . 465905) - (-2466 . 465833) (-2467 . 465096) (-2468 . 464960) (-2469 . 464905) - (-2470 . 464871) (-2471 . 464761) (-2472 . 464693) (-2473 . 464408) - (-2474 . 464293) (-2475 . 464194) (-2476 . 464091) (-2477 . 461863) - (-2478 . 461747) (-2479 . 461697) (-2480 . 461362) (-2481 . 461256) - (-2482 . 461196) (-2483 . 461096) (-2484 . 461004) (-2485 . 460807) - (-2486 . 460520) (-2487 . 460126) (-2488 . 460010) (-2489 . 459861) - (-2490 . 459551) (-2491 . 459406) (-2492 . 459227) (-2493 . 459127) - (-2494 . 459031) (-2495 . 458805) (-2496 . 458208) (-2497 . 458033) - (-2498 . 457850) (-2499 . 457638) (-2500 . 457570) (-2501 . 457361) - (-2502 . 457296) (-2503 . 457228) (-2504 . 457176) (-2505 . 456911) - (-2506 . 456712) (-2507 . 456419) (-2508 . 456346) (-2509 . 456110) - (-2510 . 455808) (-2511 . 454892) (-2512 . 454813) (-2513 . 454761) - (-2514 . 454677) (-2515 . 454571) (-2516 . 454487) (-2517 . 454319) - (-2518 . 454257) (-2519 . 454156) (-2520 . 453996) (-2521 . 453863) - (-2522 . 453722) (-2523 . 453503) (-2524 . 453345) (-2525 . 453179) - (-2526 . 453084) (-2527 . 453013) (-2528 . 452935) (-2529 . 452843) - (-2530 . 452791) (-2531 . 452638) (-2532 . 452470) (-2533 . 452406) - (-2534 . 452339) (-2535 . 452234) (-2536 . 452163) (-2537 . 452058) - (-2538 . 451664) (-2539 . 451349) (-2540 . 450961) (-2541 . 450752) - (-2542 . 450697) (-2543 . 450573) (-2544 . 450517) (-2545 . 450252) - (-2546 . 450185) (-2547 . 450121) (-2548 . 450022) (-2549 . 449411) - (-2550 . 449383) (-2551 . 449304) (-2552 . 449221) (-2553 . 449058) - (-2554 . 448692) (-2555 . 448511) (-2556 . 448345) (-2557 . 448278) - (-2558 . 448199) (-2559 . 447778) (-2560 . 447553) (-2561 . 447501) - (-2562 . 447215) (-2563 . 447159) (-2564 . 446912) (-2565 . 446685) - (-2566 . 446623) (-2567 . 446517) (-2568 . 446302) (-2569 . 446123) - (-2570 . 446037) (-2571 . 445939) (-2572 . 445721) (-2573 . 445554) - (-2574 . 445339) (-2575 . 445267) (-2576 . 445183) (-2577 . 445067) - (-2578 . 444969) (-2579 . 444838) (-2580 . 444704) (-2581 . 444651) - (-2582 . 444308) (-2583 . 444215) (-2584 . 443890) (-2585 . 443838) - (-2586 . 443611) (-2587 . 443534) (-2588 . 442272) (-2589 . 442008) - (-2590 . 441912) (-2591 . 441705) (-2592 . 441595) (-2593 . 441567) - (-2594 . 441477) (-2595 . 439691) (-2596 . 439339) (-2597 . 439283) - (-2598 . 439125) (-2599 . 438955) (-2600 . 438765) (-2601 . 438622) - (-2602 . 438112) (-2603 . 437956) (-2604 . 437529) (-2605 . 437416) - (-2606 . 437363) (-2607 . 437308) (-2608 . 436081) (-2609 . 436019) - (-2610 . 435924) (-2611 . 435836) (-2612 . 435769) (-2613 . 435627) - (-2614 . 435511) (-2615 . 435414) (-2616 . 435270) (-2617 . 435236) - (-2618 . 434852) (-2619 . 434769) (-2620 . 434598) (-2621 . 434383) - (-2622 . 433795) (-2623 . 433498) (-2624 . 433415) (-2625 . 433172) - (-2626 . 432926) (-2627 . 432832) (-2628 . 432604) (-2629 . 432533) - (-2630 . 432483) (-2631 . 432389) (-2632 . 432306) (-2633 . 432044) - (-2634 . 431899) (-2635 . 431867) (-2636 . 431812) (-2637 . 431479) - (-2638 . 431279) (-2639 . 431080) (-2640 . 430921) (-2641 . 430792) - (-2642 . 430116) (-2643 . 430021) (-2644 . 429948) (-2645 . 429853) - (-2646 . 429245) (-2647 . 429178) (-2648 . 429106) (-2649 . 429048) - (-2650 . 428901) (-2651 . 428559) (-2652 . 428397) (-2653 . 428006) - (-2654 . 427825) (-2655 . 427646) (-2656 . 427574) (-2657 . 427522) - (-2658 . 427075) (-2659 . 426904) (-2660 . 426358) (-2661 . 426160) - (-2662 . 425903) (-2663 . 425843) (-2664 . 425759) (-2665 . 425682) - (-2666 . 425265) (-2667 . 424835) (-2668 . 424778) (-2669 . 424680) - (-2670 . 424609) (-2671 . 424557) (-2672 . 424146) (-2673 . 424033) - (-2674 . 423733) (-2675 . 423483) (-2676 . 423321) (-2677 . 423222) - (-2678 . 423106) (-2679 . 422981) (-2680 . 422847) (-2681 . 422818) - (-2682 . 422758) (-2683 . 422442) (-2684 . 422346) (-2685 . 422285) - (-2686 . 422197) (-2687 . 421493) (-2688 . 421302) (-2689 . 421247) - (-2690 . 421139) (-2691 . 421083) (-2692 . 421010) (-2693 . 420866) - (-2694 . 420761) (-2695 . 420450) (-2696 . 420294) (-2697 . 419613) - (-2698 . 419448) (-2699 . 419391) (-2700 . 419235) (-2701 . 418884) - (-2702 . 418493) (-2703 . 418014) (-2704 . 417146) (-2705 . 417000) - (-2706 . 416818) (-2707 . 415229) (-2708 . 415169) (-2709 . 414327) - (-2710 . 414196) (-2711 . 414137) (-2712 . 413887) (-2713 . 413810) - (-2714 . 413739) (-2715 . 413611) (-2716 . 413508) (-2717 . 413407) - (-2718 . 413161) (-2719 . 413081) (-2720 . 413015) (-2721 . 409406) - (-2722 . 409153) (-2723 . 408822) (-2724 . 408726) (-2725 . 408508) - (-2726 . 408448) (-2727 . 408344) (-2728 . 408275) (-2729 . 408182) - (-2730 . 408010) (-2731 . 407924) (-2732 . 407825) (-2733 . 407310) - (-2734 . 407227) (-2735 . 407168) (-2736 . 407037) (-2737 . 406930) - (-2738 . 406801) (-2739 . 404833) (-2740 . 404801) (-2741 . 404730) - (-2742 . 404558) (-2743 . 404506) (-2744 . 404355) (-2745 . 404137) - (-2746 . 403747) (-2747 . 403719) (-2748 . 403181) (-2749 . 403110) - (-2750 . 403031) (-2751 . 402913) (-2752 . 402627) (-2753 . 402455) - (-2754 . 402388) (-2755 . 402236) (-2756 . 402148) (-2757 . 402078) - (-2758 . 401860) (-2759 . 401614) (-2760 . 401390) (-2761 . 401277) - (-2762 . 401203) (-2763 . 401132) (-2764 . 401080) (-2765 . 401009) - (-2766 . 400837) (-2767 . 400207) (-2768 . 400154) (-2769 . 400036) - (-2770 . 399984) (-2771 . 399914) (-2772 . 399605) (-2773 . 399359) - (-2774 . 399235) (-2775 . 399117) (-2776 . 398857) (-2777 . 398770) - (-2778 . 398700) (-2779 . 398623) (-2780 . 398567) (-2781 . 397135) - (-2782 . 396881) (-2783 . 396824) (-2784 . 396709) (-2785 . 396394) - (-2786 . 396279) (-2787 . 396208) (-2788 . 396155) (-2789 . 395926) - (-2790 . 395582) (-2791 . 395527) (-2792 . 395273) (-2793 . 395224) - (-2794 . 395157) (-2795 . 391094) (-2796 . 391008) (-2797 . 390928) - (-2798 . 390529) (-2799 . 390102) (-2800 . 389897) (-2801 . 389823) - (-2802 . 389770) (-2803 . 389689) (-2804 . 389637) (-2805 . 389391) - (-2806 . 389193) (-2807 . 388305) (-2808 . 388210) (-2809 . 388138) - (-2810 . 388040) (-2811 . 387738) (-2812 . 387686) (-2813 . 387600) - (-2814 . 387528) (-2815 . 387455) (-2816 . 387335) (-2817 . 387264) - (-2818 . 386838) (-2819 . 386197) (-2820 . 385608) (-2821 . 385485) - (-2822 . 385253) (-2823 . 385140) (-2824 . 385056) (-2825 . 384457) - (-2826 . 384299) (-2827 . 384189) (-2828 . 384030) (-2829 . 383962) - (-2830 . 383866) (-2831 . 383742) (-2832 . 383591) (-2833 . 383534) - (-2834 . 382732) (-2835 . 382674) (-2836 . 381855) (-2837 . 381761) - (-2838 . 381651) (-2839 . 381361) (-2840 . 381016) (-2841 . 380949) - (-2842 . 380896) (-2843 . 380745) (-2844 . 378400) (-2845 . 378008) - (-2846 . 377570) (-2847 . 377443) (-2848 . 377392) (-2849 . 377218) - (-2850 . 376844) (-2851 . 376748) (-2852 . 376664) (-2853 . 376429) - (-2854 . 376291) (-2855 . 376206) (-2856 . 375676) (-2857 . 375624) - (-2858 . 375226) (-2859 . 375158) (-2860 . 375033) (-2861 . 372192) - (-2862 . 371834) (-2863 . 371736) (-2864 . 371615) (-2865 . 371477) - (-2866 . 371133) (-2867 . 371031) (-2868 . 370785) (-2869 . 370625) - (-2870 . 370542) (-2871 . 370457) (-2872 . 370308) (-2873 . 370234) - (-2874 . 369701) (-2875 . 369636) (-2876 . 369559) (-2877 . 369416) - (-2878 . 369275) (-2879 . 369056) (-2880 . 368804) (-2881 . 368721) - (-2882 . 368450) (-2883 . 368292) (-2884 . 368239) (-2885 . 366697) - (-2886 . 366540) (-2887 . 365448) (-2888 . 365243) (-2889 . 365166) - (-2890 . 365006) (-2891 . 364926) (-2892 . 364859) (-2893 . 364792) - (-2894 . 364720) (-2895 . 364643) (-2896 . 364490) (-2897 . 364211) - (-2898 . 364142) (-2899 . 363938) (-2900 . 363741) (-2901 . 363688) - (-2902 . 363145) (-2903 . 363092) (-2904 . 362811) (-2905 . 361609) - (-2906 . 361311) (-2907 . 361033) (-2908 . 360800) (-2909 . 360699) - (-2910 . 359833) (-2911 . 359603) (-2912 . 359233) (-2913 . 359101) - (-2914 . 358898) (-2915 . 358371) (-2916 . 358301) (-2917 . 358242) - (-2918 . 358077) (-2919 . 357886) (-2920 . 357647) (-2921 . 357494) - (-2922 . 357351) (-2923 . 357278) (-2924 . 357204) (-2925 . 357051) - (-2926 . 356842) (-2927 . 356506) (-2928 . 356411) (-2929 . 355985) - (-2930 . 355807) (-2931 . 355498) (-2932 . 355375) (-2933 . 355293) - (-2934 . 355193) (-2935 . 355105) (-2936 . 355034) (-2937 . 354861) - (-2938 . 354730) (-2939 . 354650) (-2940 . 354520) (-2941 . 354439) - (-2942 . 354378) (-2943 . 353738) (-2944 . 353666) (-2945 . 353571) - (-2946 . 353382) (-2947 . 353018) (-2948 . 352878) (-2949 . 352799) - (-2950 . 352744) (-2951 . 352509) (-2952 . 352063) (-2953 . 351996) - (-2954 . 351870) (-2955 . 351442) (-2956 . 351164) (-2957 . 351068) - (-2958 . 351006) (-2959 . 350674) (-2960 . 350374) (-2961 . 350260) - (-2962 . 350166) (-2963 . 350113) (-2964 . 349930) (-2965 . 349856) - (-2966 . 349759) (-2967 . 349676) (-2968 . 349537) (-2969 . 349185) - (-2970 . 348798) (-2971 . 348654) (-2972 . 348553) (-2973 . 348479) - (-2974 . 348337) (-2975 . 348263) (-2976 . 348234) (-2977 . 348175) - (-2978 . 348051) (-2979 . 347928) (-2980 . 347648) (-2981 . 347596) - (-2982 . 343053) (-2983 . 342890) (-2984 . 342770) (-2985 . 342595) - (-2986 . 342501) (-2987 . 342413) (-2988 . 342144) (-2989 . 342083) - (-2990 . 341882) (-2991 . 341803) (-2992 . 341753) (-2993 . 341501) - (-2994 . 341401) (-2995 . 341059) (-2996 . 340952) (-2997 . 340734) - (-2998 . 340632) (-2999 . 340546) (-3000 . 340451) (-3001 . 340245) - (-3002 . 339324) (-3003 . 339274) (-3004 . 339200) (-3005 . 339099) - (-3006 . 339002) (-3007 . 338949) (-3008 . 338890) (-3009 . 338749) - (-3010 . 338361) (-3011 . 338258) (-3012 . 338078) (-3013 . 337913) - (-3014 . 337810) (-3015 . 337753) (-3016 . 337565) (-3017 . 337461) - (-3018 . 337329) (-3019 . 336840) (-3020 . 336695) (-3021 . 336329) - (-3022 . 336295) (-3023 . 335936) (-3024 . 335831) (-3025 . 335504) - (-3026 . 335420) (-3027 . 335261) (-3028 . 335208) (-3029 . 335112) - (-3030 . 335013) (-3031 . 334925) (-3032 . 334848) (-3033 . 334719) - (-3034 . 334622) (-3035 . 334176) (-3036 . 333998) (-3037 . 333706) - (-3038 . 333407) (-3039 . 332443) (-3040 . 332272) (-3041 . 332107) - (-3042 . 331935) (-3043 . 331765) (-3044 . 331520) (-3045 . 331340) - (-3046 . 331203) (-3047 . 331100) (-3048 . 330891) (-3049 . 330772) - (-3050 . 330520) (-3051 . 330373) (-3052 . 330218) (-3053 . 330190) - (-3054 . 330108) (-3055 . 330035) (-3056 . 329968) (-3057 . 329897) - (-3058 . 329796) (-3059 . 329626) (-3060 . 329348) (-3061 . 329288) - (-3062 . 329188) (-3063 . 329028) (-3064 . 328961) (-3065 . 328884) - (-3066 . 328812) (-3067 . 328466) (-3068 . 328405) (-3069 . 328377) - (-3070 . 328209) (-3071 . 327947) (-3072 . 327875) (-3073 . 327758) - (-3074 . 327706) (-3075 . 327464) (-3076 . 327377) (-3077 . 327266) - (-3078 . 327199) (-3079 . 327121) (-3080 . 327000) (-3081 . 326873) - (-3082 . 326769) (-3083 . 326697) (-3084 . 326599) (-3085 . 326454) - (-3086 . 325950) (-3087 . 325757) (-3088 . 325412) (-3089 . 325283) - (-3090 . 324879) (-3091 . 324754) (-3092 . 324629) (-3093 . 324532) - (-3094 . 324434) (-3095 . 324227) (-3096 . 323891) (-3097 . 323697) - (-3098 . 323513) (-3099 . 323454) (-3100 . 323372) (-3101 . 323312) - (-3102 . 323260) (-3103 . 322992) (-3104 . 322958) (-3105 . 322855) - (-3106 . 322759) (-3107 . 322686) (-3108 . 322010) (-3109 . 321787) - (-3110 . 321634) (-3111 . 321481) (-3112 . 321333) (-3113 . 321187) - (-3114 . 320839) (-3115 . 319737) (-3116 . 319683) (-3117 . 319522) - (-3118 . 319439) (-3119 . 319362) (-9 . 319334) (-3121 . 319175) - (-3122 . 319097) (-3123 . 318982) (-3124 . 318915) (-3125 . 318648) - (-3126 . 318265) (-3127 . 318026) (-3128 . 317914) (-3129 . 317861) - (-3130 . 317833) (-3131 . 317740) (-3132 . 317430) (-8 . 317402) - (-3134 . 316944) (-3135 . 316845) (-3136 . 316687) (-3137 . 316120) - (-3138 . 315983) (-3139 . 315917) (-3140 . 315746) (-3141 . 315616) - (-3142 . 315488) (-3143 . 315259) (-3144 . 315207) (-3145 . 315130) - (-7 . 315102) (-3147 . 314983) (-3148 . 314898) (-3149 . 314585) - (-3150 . 314470) (-3151 . 314396) (-3152 . 314368) (-3153 . 314336) - (-3154 . 314215) (-3155 . 314127) (-3156 . 314023) (-3157 . 313349) - (-3158 . 313234) (-3159 . 313115) (-3160 . 312844) (-3161 . 312776) - (-3162 . 312703) (-3163 . 312636) (-3164 . 312567) (-3165 . 312348) - (-3166 . 312291) (-3167 . 312175) (-3168 . 312060) (-3169 . 311843) - (-3170 . 311309) (-3171 . 311227) (-3172 . 311119) (-3173 . 311036) - (-3174 . 310953) (-3175 . 310837) (-3176 . 310784) (-3177 . 309666) - (-3178 . 309522) (-3179 . 309362) (-3180 . 309295) (-3181 . 308559) - (-3182 . 306703) (-3183 . 306597) (-3184 . 306379) (-3185 . 306302) - (-3186 . 306221) (-3187 . 305990) (-3188 . 305659) (-3189 . 305575) - (-3190 . 305518) (-3191 . 305459) (-3192 . 305330) (-3193 . 305012) - (-3194 . 304899) (-3195 . 304805) (-3196 . 304727) (-3197 . 304668) - (-3198 . 304550) (-3199 . 304491) (-3200 . 304269) (-3201 . 304198) - (-3202 . 304095) (-3203 . 304028) (-3204 . 303935) (-3205 . 303853) - (-3206 . 303782) (-3207 . 303475) (-3208 . 302996) (-3209 . 302819) - (-3210 . 302579) (-3211 . 302413) (-3212 . 302322) (-3213 . 302049) - (-3214 . 301757) (-3215 . 301595) (-3216 . 301524) (-3217 . 301165) - (-3218 . 301061) (-3219 . 301004) (-3220 . 300933) (-3221 . 300899) - (-3222 . 300840) (-3223 . 300645) (-3224 . 300572) (-3225 . 299814) - (-3226 . 299727) (-3227 . 299360) (-3228 . 299109) (-3229 . 299046) - (-3230 . 298880) (-3231 . 298828) (-3232 . 298757) (-3233 . 298602) - (-3234 . 298474) (-3235 . 298066) (-3236 . 297977) (-3237 . 297843) - (-3238 . 297702) (-3239 . 297618) (-3240 . 297475) (-3241 . 297410) - (-3242 . 297183) (-3243 . 297046) (-3244 . 296535) (-3245 . 296424) - (-3246 . 296149) (-3247 . 296006) (-3248 . 295920) (-3249 . 295832) - (-3250 . 295736) (-3251 . 295544) (-3252 . 295425) (-3253 . 295297) - (-3254 . 295230) (-3255 . 294596) (-3256 . 294453) (-3257 . 294293) - (-3258 . 294138) (-3259 . 293952) (-3260 . 293702) (-3261 . 293650) - (-3262 . 293576) (-3263 . 293480) (-3264 . 293350) (-3265 . 293190) - (-3266 . 293017) (-3267 . 292771) (-3268 . 292742) (-3269 . 292686) - (-3270 . 292521) (-3271 . 292313) (-3272 . 292003) (-3273 . 291850) - (-3274 . 291717) (-3275 . 289939) (-3276 . 289844) (-3277 . 289719) - (-3278 . 289691) (-3279 . 289264) (-3280 . 289211) (-3281 . 289034) - (-3282 . 288997) (-3283 . 288775) (-3284 . 288698) (-3285 . 288619) - (-3286 . 288438) (-3287 . 288360) (-3288 . 287852) (-3289 . 287733) - (-3290 . 287110) (-3291 . 287031) (-3292 . 286647) (-3293 . 286433) - (-3294 . 286382) (-3295 . 286323) (-3296 . 285516) (-3297 . 285401) - (-3298 . 285223) (-3299 . 285112) (-3300 . 284734) (-3301 . 284706) - (-3302 . 284654) (-3303 . 284546) (-3304 . 284362) (-3305 . 284234) - (-3306 . 284012) (-3307 . 283635) (-3308 . 283524) (-3309 . 283439) - (-3310 . 282303) (-3311 . 282211) (-3312 . 282134) (-3313 . 281916) - (-3314 . 281686) (-3315 . 281246) (-3316 . 279516) (-3317 . 279373) - (-3318 . 279226) (-3319 . 278935) (-3320 . 278865) (-3321 . 278724) - (-3322 . 278566) (-3323 . 278318) (-3324 . 277827) (-3325 . 276250) - (-3326 . 276196) (-3327 . 275960) (-3328 . 275702) (-3329 . 275646) - (-3330 . 275561) (-3331 . 275504) (-3332 . 275426) (-3333 . 275334) - (-3334 . 275271) (-3335 . 275176) (-3336 . 275075) (-3337 . 275013) - (-3338 . 274697) (-3339 . 274603) (-3340 . 274533) (-3341 . 274482) - (-3342 . 274392) (-3343 . 274228) (-3344 . 274051) (-3345 . 273787) - (-3346 . 273631) (-3347 . 273543) (-3348 . 273164) (-3349 . 273029) - (-3350 . 272865) (-3351 . 272813) (-3352 . 271385) (-3353 . 271050) - (-3354 . 270973) (-3355 . 270918) (-3356 . 270830) (-3357 . 270667) - (-3358 . 270274) (-3359 . 268018) (-3360 . 267930) (-3361 . 267775) - (-3362 . 267488) (-3363 . 267356) (-3364 . 267273) (-3365 . 267166) - (-3366 . 267099) (-3367 . 266621) (-3368 . 266564) (-3369 . 266466) - (-3370 . 266343) (-3371 . 266264) (-3372 . 266131) (-3373 . 265937) - (-3374 . 265903) (-3375 . 265611) (-3376 . 265471) (-3377 . 265368) - (-3378 . 265149) (-3379 . 264939) (-3380 . 264911) (-3381 . 264842) - (-3382 . 264682) (-3383 . 264626) (-3384 . 264204) (-3385 . 263955) - (-3386 . 263799) (-3387 . 263715) (-3388 . 263430) (-3389 . 263330) - (-3390 . 262032) (-3391 . 261879) (-3392 . 261778) (-3393 . 261646) - (-3394 . 261423) (-3395 . 261350) (-3396 . 261091) (-3397 . 261008) - (-3398 . 260892) (-3399 . 260760) (-3400 . 260683) (-3401 . 260325) - (-3402 . 260254) (-3403 . 260093) (-3404 . 260034) (-3405 . 259869) - (-3406 . 259711) (-3407 . 259612) (-3408 . 259469) (-3409 . 259372) - (-3410 . 258786) (-3411 . 258340) (-3412 . 257610) (-3413 . 257537) - (-3414 . 257136) (-3415 . 256995) (-3416 . 256894) (-3417 . 256723) - (-3418 . 256622) (-3419 . 256570) (-3420 . 256466) (-3421 . 256329) - (-3422 . 256223) (-3423 . 256155) (-3424 . 255425) (-3425 . 255326) - (-3426 . 255067) (-3427 . 254898) (-3428 . 254819) (-3429 . 254670) - (-3430 . 254584) (-3431 . 254502) (-3432 . 254447) (-3433 . 254395) - (-3434 . 254325) (-3435 . 253648) (-3436 . 253574) (-3437 . 253391) - (-3438 . 253188) (-3439 . 252858) (-3440 . 252806) (-3441 . 252726) - (-3442 . 252553) (-3443 . 252421) (-3444 . 252227) (-3445 . 252103) - (-3446 . 251980) (-3447 . 251898) (-3448 . 251333) (-3449 . 251253) - (-3450 . 251200) (-3451 . 251061) (-3452 . 250943) (-3453 . 250795) - (-3454 . 250682) (-3455 . 250553) (-3456 . 250449) (-3457 . 250392) - (-3458 . 250336) (-3459 . 250268) (-3460 . 248487) (-3461 . 247922) - (-3462 . 247779) (-3463 . 247726) (-3464 . 247655) (-3465 . 247458) - (-3466 . 247391) (-3467 . 247363) (-3468 . 247242) (-3469 . 247063) - (-3470 . 246682) (-3471 . 246599) (-3472 . 246441) (-3473 . 246064) - (-3474 . 245499) (-3475 . 245399) (-3476 . 245307) (-3477 . 244829) - (-3478 . 244456) (-3479 . 244072) (-3480 . 243962) (-3481 . 243834) - (-3482 . 243757) (-3483 . 243639) (-3484 . 243470) (-3485 . 243436) - (-3486 . 243341) (-3487 . 242666) (-3488 . 242603) (-3489 . 242474) - (-3490 . 242218) (-3491 . 242045) (-3492 . 241078) (-3493 . 240734) - (-3494 . 240621) (-3495 . 240550) (-3496 . 240386) (-3497 . 240046) - (-3498 . 239371) (-3499 . 239343) (-3500 . 239262) (-3501 . 239190) - (-3502 . 239116) (-3503 . 239017) (-3504 . 238949) (-3505 . 238876) - (-3506 . 238622) (-3507 . 238480) (-3508 . 238241) (-3509 . 238123) - (-3510 . 237385) (-3511 . 237287) (-3512 . 237219) (-3513 . 237139) - (-3514 . 236852) (-3515 . 236736) (-3516 . 236140) (-3517 . 236010) - (-3518 . 235854) (-3519 . 235646) (-3520 . 235593) (-3521 . 235515) - (-3522 . 235438) (-3523 . 234875) (-3524 . 234717) (-3525 . 234423) - (-3526 . 233605) (-3527 . 233423) (-3528 . 233373) (-3529 . 233058) - (-3530 . 233024) (-3531 . 232965) (-3532 . 232879) (-3533 . 232587) - (-3534 . 232469) (-3535 . 232374) (-3536 . 231193) (-3537 . 230630) - (-3538 . 230477) (-3539 . 229956) (-3540 . 229885) (-3541 . 229653) - (-3542 . 229495) (-3543 . 229273) (-3544 . 229173) (-3545 . 229072) - (-3546 . 228824) (-3547 . 228787) (-3548 . 228272) (-3549 . 228203) - (-3550 . 227640) (-3551 . 227552) (-3552 . 227510) (-3553 . 226870) - (-3554 . 226811) (-3555 . 226737) (-3556 . 226621) (-3557 . 226508) - (-3558 . 226328) (-3559 . 226173) (-3560 . 225785) (-3561 . 225577) - (-3562 . 224901) (-3563 . 224797) (-3564 . 224684) (-3565 . 224165) - (-3566 . 223947) (-3567 . 223846) (-3568 . 222879) (-3569 . 222809) - (-3570 . 222650) (-3571 . 222596) (-3572 . 222216) (-3573 . 222138) - (-3574 . 221462) (-3575 . 221369) (-3576 . 221237) (-3577 . 221127) - (-3578 . 220841) (-3579 . 220674) (-3580 . 220507) (-3581 . 220288) - (-3582 . 220202) (-3583 . 220174) (-3584 . 220121) (-3585 . 219923) - (-3586 . 219247) (-3587 . 219129) (-3588 . 218965) (-3589 . 217691) - (-3590 . 217524) (-3591 . 217399) (-3592 . 217278) (-3593 . 217223) - (-3594 . 217171) (-3595 . 217019) (-3596 . 216967) (-3597 . 216869) - (-3598 . 216787) (-3599 . 216223) (-3600 . 216057) (-3601 . 215907) - (-3602 . 215768) (-3603 . 215281) (-3604 . 214828) (-3605 . 214776) - (-3606 . 214670) (-3607 . 214617) (-3608 . 214521) (-3609 . 214306) - (-3610 . 214253) (-3611 . 214180) (-3612 . 213616) (-3613 . 213487) - (-3614 . 213297) (-3615 . 213197) (-3616 . 213001) (-3617 . 212695) - (-3618 . 212602) (-3619 . 212523) (-3620 . 212408) (-3621 . 212309) - (-3622 . 212122) (-3623 . 211558) (-3624 . 211480) (-3625 . 211344) - (-3626 . 211274) (-3627 . 211190) (-3628 . 211153) (-3629 . 210942) - (-3630 . 210783) (-3631 . 210560) (-3632 . 209997) (-3633 . 209860) - (-3634 . 209744) (-3635 . 209410) (-3636 . 209247) (-3637 . 209067) - (-3638 . 208968) (-3639 . 208915) (-3640 . 208848) (-3641 . 208741) - (-3642 . 208178) (-3643 . 208058) (-3644 . 207860) (-3645 . 207790) - (-3646 . 207677) (-3647 . 207532) (-3648 . 207305) (-3649 . 207236) - (-3650 . 207111) (-3651 . 207055) (-3652 . 206971) (-3653 . 206408) - (-3654 . 206295) (-3655 . 206183) (-3656 . 206090) (-3657 . 205966) - (-3658 . 205847) (-3659 . 205741) (-3660 . 205668) (-3661 . 205610) - (-3662 . 205485) (-3663 . 205356) (-3664 . 204793) (-3665 . 204741) - (-3666 . 204583) (-3667 . 204453) (-3668 . 204286) (-3669 . 204258) - (-3670 . 203684) (-3671 . 203617) (-3672 . 203585) (-3673 . 203022) - (-3674 . 202934) (-3675 . 202542) (-3676 . 202459) (-3677 . 202343) - (-3678 . 202309) (-3679 . 202211) (-3680 . 201993) (-3681 . 201941) - (-3682 . 201778) (-3683 . 201705) (-3684 . 201619) (-3685 . 201591) - (-3686 . 201518) (-3687 . 201445) (-3688 . 201357) (-3689 . 200943) - (-3690 . 200890) (-3691 . 200737) (-3692 . 200583) (-3693 . 200349) - (-3694 . 200108) (-3695 . 197693) (-3696 . 197597) (-3697 . 197482) - (-3698 . 197430) (-3699 . 197014) (-3700 . 196917) (-3701 . 196790) - (-3702 . 196518) (-3703 . 195678) (-3704 . 195549) (-3705 . 195218) - (-3706 . 195038) (-3707 . 194883) (-3708 . 194776) (-3709 . 194680) - (-3710 . 194507) (-3711 . 194367) (-3712 . 193219) (-3713 . 193147) - (-3714 . 193088) (-3715 . 192912) (-3716 . 192835) (-3717 . 192720) - (-3718 . 192600) (-3719 . 192518) (-3720 . 192490) (-3721 . 192058) - (-3722 . 191782) (-3723 . 191615) (-3724 . 191284) (-3725 . 191034) - (-3726 . 190946) (-3727 . 190887) (-3728 . 190779) (-3729 . 190652) - (-3730 . 190461) (-3731 . 190335) (-3732 . 190234) (-3733 . 189842) - (-3734 . 189734) (-3735 . 189528) (-3736 . 189459) (-3737 . 189304) - (-3738 . 189205) (-3739 . 189040) (-3740 . 188926) (-3741 . 188813) - (-3742 . 188695) (-3743 . 188639) (-3744 . 188537) (-3745 . 188460) - (-3746 . 188386) (-3747 . 188319) (-3748 . 188246) (-3749 . 187760) - (-3750 . 187541) (-3751 . 187268) (-3752 . 187185) (-3753 . 187067) - (-3754 . 187016) (-3755 . 186964) (-3756 . 186933) (-3757 . 186830) - (-3758 . 186700) (-3759 . 186612) (-3760 . 186045) (-3761 . 185910) - (-3762 . 185364) (-3763 . 185310) (-3764 . 185250) (-3765 . 185054) - (-3766 . 184938) (-3767 . 183786) (-3768 . 183703) (-3769 . 183605) - (-3770 . 182841) (-3771 . 182789) (-3772 . 182631) (-3773 . 182492) - (-3774 . 182329) (-3775 . 182221) (-3776 . 182168) (-3777 . 181890) - (-3778 . 181631) (-3779 . 181509) (-3780 . 181393) (-3781 . 181179) - (-3782 . 181047) (-3783 . 180995) (-3784 . 180894) (-3785 . 180695) - (-3786 . 180609) (-3787 . 180465) (-3788 . 180089) (-3789 . 180034) - (-3790 . 179217) (-3791 . 179006) (-3792 . 178954) (-3793 . 178761) - (-3794 . 178696) (-3795 . 178524) (-3796 . 178438) (-3797 . 178284) - (-3798 . 178180) (-3799 . 178128) (-3800 . 178013) (-3801 . 177960) - (-3802 . 177840) (-3803 . 177738) (-3804 . 177655) (-3805 . 177532) - (-12 . 177360) (-3807 . 177308) (-3808 . 177241) (-3809 . 177209) - (-3810 . 177116) (-3811 . 177035) (-3812 . 176796) (-3813 . 176635) - (-3814 . 176583) (-3815 . 176453) (-3816 . 176352) (-3817 . 176249) - (-3818 . 176004) (-3819 . 175918) (-3820 . 175470) (-3821 . 175327) - (-3822 . 175169) (-3823 . 174995) (-3824 . 174961) (-3825 . 174820) - (-3826 . 174761) (-3827 . 174662) (-3828 . 174233) (-3829 . 174123) - (-3830 . 174025) (-3831 . 173919) (-3832 . 173493) (-3833 . 173351) - (-3834 . 173258) (-3835 . 172927) (-3836 . 172666) (-3837 . 172529) - (-3838 . 171943) (-3839 . 171890) (-3840 . 171638) (-3841 . 171539) - (-3842 . 171060) (-3843 . 170965) (-3844 . 170787) (-3845 . 170673) - (-3846 . 170577) (-3847 . 170375) (-3848 . 169621) (-3849 . 169469) - (-3850 . 169236) (-3851 . 169142) (-3852 . 169064) (-3853 . 168868) - (-3854 . 168641) (-3855 . 168519) (-3856 . 168437) (-3857 . 167835) - (-3858 . 167763) (-3859 . 167272) (-3860 . 167050) (-3861 . 166905) - (-3862 . 166871) (-3863 . 166768) (-3864 . 166671) (-3865 . 166612) - (-3866 . 166578) (-3867 . 166519) (-3868 . 166456) (-3869 . 166388) - (-3870 . 166311) (-3871 . 166246) (-3872 . 165503) (-3873 . 165281) - (-3874 . 165228) (-3875 . 165161) (-3876 . 164281) (-3877 . 164209) - (-3878 . 164115) (-3879 . 164020) (-3880 . 163898) (-3881 . 163414) - (-3882 . 163320) (-3883 . 163243) (-3884 . 162967) (-3885 . 162809) - (-3886 . 162723) (-3887 . 162646) (-3888 . 162550) (-3889 . 162129) - (-3890 . 162072) (-3891 . 161743) (-3892 . 161670) (-3893 . 161590) - (-3894 . 161230) (-3895 . 161170) (-3896 . 161024) (-3897 . 160894) - (-3898 . 160736) (-3899 . 160442) (-3900 . 160266) (-3901 . 160121) - (-3902 . 160035) (-3903 . 159682) (-3904 . 159567) (-3905 . 159275) - (* . 155162) (-3907 . 155047) (-3908 . 154952) (-3909 . 154814) - (-3910 . 154786) (-3911 . 154636) (-3912 . 154514) (-3913 . 154380) - (-3914 . 154061) (-3915 . 153980) (-3916 . 153835) (-3917 . 153660) - (-3918 . 152664) (-3919 . 152529) (-3920 . 152441) (-3921 . 152283) - (-3922 . 152081) (-3923 . 151939) (-3924 . 151736) (-3925 . 151669) - (-3926 . 151567) (-3927 . 151159) (-3928 . 151106) (-3929 . 150965) - (-3930 . 150457) (-3931 . 150361) (-3932 . 149684) (-3933 . 149538) - (-3934 . 149395) (-3935 . 149185) (-3936 . 148904) (-3937 . 148852) - (-3938 . 148732) (-3939 . 148460) (-3940 . 148257) (-3941 . 148204) - (-3942 . 148098) (-3943 . 148002) (-3944 . 147844) (-3945 . 147791) - (-3946 . 147739) (-3947 . 147521) (-3948 . 147104) (-3949 . 146969) - (-3950 . 146867) (-3951 . 146395) (-3952 . 146316) (-3953 . 146237) - (-3954 . 146146) (-3955 . 145950) (-3956 . 145467) (-3957 . 145330) - (-3958 . 145168) (-3959 . 144951) (-3960 . 144901) (-3961 . 144822) - (-3962 . 144788) (-3963 . 144557) (-3964 . 144492) (-3965 . 144196) - (-3966 . 144123) (-3967 . 143806) (-3968 . 143736) (-3969 . 143665) - (-3970 . 143579) (-3971 . 143491) (-3972 . 143407) (-3973 . 142856) - (-3974 . 142732) (-3975 . 142645) (-3976 . 142404) (-3977 . 142376) - (-3978 . 142281) (-3979 . 142222) (-3980 . 142119) (-3981 . 141945) - (-3982 . 141911) (-3983 . 141638) (-3984 . 141479) (-3985 . 140897) - (-3986 . 140848) (-3987 . 140796) (-3988 . 140677) (-3989 . 140470) - (-3990 . 140369) (-3991 . 140300) (-3992 . 140007) (-3993 . 139955) - (-3994 . 139204) (-3995 . 139117) (-3996 . 139062) (-3997 . 138985) - (-3998 . 138930) (-3999 . 138830) (-4000 . 138717) (-4001 . 138615) - (-4002 . 138518) (-4003 . 138357) (-4004 . 138288) (-4005 . 138057) - (-4006 . 137670) (-4007 . 137156) (-4008 . 137052) (-4009 . 136788) - (-4010 . 136691) (-4011 . 136557) (-4012 . 136505) (-4013 . 136232) - (-4014 . 136158) (-4015 . 136013) (-4016 . 135855) (-4017 . 135746) - (-4018 . 135607) (-4019 . 135370) (-4020 . 135252) (-4021 . 134956) - (-4022 . 134595) (-4023 . 134467) (-4024 . 134343) (-4025 . 133981) - (-4026 . 132795) (-4027 . 132419) (-4028 . 132341) (-4029 . 132019) - (-4030 . 131966) (-4031 . 131633) (-4032 . 131205) (-4033 . 131122) - (-4034 . 130930) (-4035 . 130828) (-4036 . 130457) (-4037 . 129275) - (-4038 . 129220) (-4039 . 129085) (-4040 . 128831) (-4041 . 128780) - (-4042 . 128714) (-4043 . 128687) (-4044 . 128620) (-4045 . 128034) - (-4046 . 127723) (-4047 . 125515) (-4048 . 125414) (-4049 . 125261) - (-4050 . 124651) (-4051 . 124513) (-4052 . 124440) (-4053 . 124374) - (-4054 . 124248) (-4055 . 124057) (-4056 . 123980) (-4057 . 123927) - (-4058 . 123810) (-4059 . 123753) (-4060 . 123656) (-4061 . 123482) - (-4062 . 123344) (-4063 . 122693) (-4064 . 122640) (-4065 . 122531) - (-4066 . 122454) (-4067 . 122216) (-4068 . 122144) (-4069 . 122049) - (-4070 . 121905) (-4071 . 121790) (-4072 . 121503) (-4073 . 121018) - (-4074 . 120916) (-4075 . 120831) (-4076 . 120688) (-4077 . 120581) - (-4078 . 120553) (-4079 . 120426) (-4080 . 119958) (-4081 . 119857) - (-4082 . 119804) (-4083 . 119599) (-4084 . 119522) (-4085 . 119031) - (-4086 . 118929) (-4087 . 118738) (-4088 . 118667) (-4089 . 118551) - (-4090 . 118498) (-4091 . 118054) (-4092 . 117959) (-4093 . 117907) - (-4094 . 117830) (-4095 . 117616) (-4096 . 117539) (-4097 . 117487) - (-4098 . 117383) (-4099 . 117293) (-4100 . 117241) (-4101 . 116706) - (-4102 . 116426) (-4103 . 116283) (-4104 . 115930) (-4105 . 115659) - (-4106 . 115563) (-4107 . 114501) (-4108 . 114410) (-4109 . 114025) - (-4110 . 113937) (-4111 . 113849) (-4112 . 113765) (-4113 . 95190) - (-4114 . 94797) (-4115 . 94715) (-4116 . 94380) (-4117 . 94278) - (-4118 . 94159) (-4119 . 93999) (-4120 . 93947) (-4121 . 93895) - (-4122 . 93867) (-4123 . 93491) (-4124 . 92905) (-4125 . 90084) - (-4126 . 89973) (-4127 . 89905) (-4128 . 89807) (-4129 . 89706) - (-4130 . 89651) (-4131 . 89524) (-4132 . 89447) (-4133 . 89303) - (-4134 . 89248) (-4135 . 87998) (-4136 . 87698) (-4137 . 87603) - (-4138 . 78153) (-4139 . 78080) (-4140 . 77994) (-4141 . 77863) - (-4142 . 77777) (-4143 . 77595) (-4144 . 77415) (-4145 . 77284) - (-4146 . 77036) (-4147 . 76953) (-4148 . 76650) (-4149 . 76004) - (-4150 . 75900) (-4151 . 75730) (-4152 . 75311) (-4153 . 75124) - (-4154 . 74877) (-4155 . 74733) (-4156 . 74659) (-4157 . 74434) - (-4158 . 74013) (-4159 . 73421) (-4160 . 73314) (-4161 . 73286) - (-4162 . 73200) (-4163 . 73105) (-4164 . 72975) (-4165 . 72581) - (-4166 . 72529) (-4167 . 72439) (-4168 . 72318) (-4169 . 72244) - (-4170 . 72207) (-4171 . 71948) (-4172 . 71741) (-4173 . 71445) - (-4174 . 71413) (-4175 . 71222) (-4176 . 71166) (-4177 . 71076) - (-4178 . 70978) (-4179 . 70481) (-4180 . 70393) (-4181 . 70307) - (-4182 . 69715) (-4183 . 69611) (-4184 . 69458) (-4185 . 69051) - (-4186 . 68974) (-4187 . 68836) (-4188 . 68473) (-4189 . 68343) - (-4190 . 68242) (-4191 . 68158) (-4192 . 67866) (-4193 . 67723) - (-4194 . 67670) (-4195 . 67552) (-4196 . 67482) (-4197 . 67318) - (-4198 . 67194) (-4199 . 67124) (-4200 . 66925) (-4201 . 66848) - (-4202 . 66564) (-4203 . 66487) (-4204 . 66262) (-4205 . 66140) - (-4206 . 66039) (-4207 . 65965) (-4208 . 65931) (-4209 . 65798) - (-4210 . 65659) (-4211 . 65550) (-4212 . 65480) (-4213 . 65342) - (-4214 . 64119) (-4215 . 63959) (-4216 . 63653) (-4217 . 63481) - (-4218 . 63301) (-4219 . 63252) (-4220 . 63152) (-4221 . 63081) - (-4222 . 63032) (-4223 . 63004) (-4224 . 62827) (-4225 . 62713) - (-4226 . 62441) (-4227 . 61778) (-4228 . 61725) (-4229 . 61593) - (-4230 . 61445) (-4231 . 61342) (-4232 . 61244) (-4233 . 61195) - (-4234 . 61126) (-4235 . 60979) (-4236 . 60833) (-4237 . 60250) - (-4238 . 60154) (-4239 . 59703) (-4240 . 59526) (-4241 . 59167) - (-4242 . 59076) (-4243 . 58866) (-4244 . 58838) (-4245 . 58765) - (-4246 . 58679) (-4247 . 58348) (-4248 . 58230) (-4249 . 58012) - (-4250 . 57900) (-4251 . 57822) (-4252 . 57633) (-4253 . 57552) - (-4254 . 57497) (-4255 . 57424) (-4256 . 57356) (-4257 . 56618) - (-4258 . 56547) (-4259 . 56347) (-4260 . 56126) (-4261 . 56042) - (-4262 . 55749) (-4263 . 52968) (-4264 . 52683) (-4265 . 52559) - (-4266 . 52442) (-4267 . 52234) (-4268 . 50930) (-4269 . 50857) - (-4270 . 50505) (-4271 . 50406) (-4272 . 50290) (-4273 . 50216) - (-4274 . 50164) (-4275 . 49660) (-4276 . 49531) (-4277 . 49481) - (-4278 . 49378) (-4279 . 49003) (-4280 . 48824) (-4281 . 48750) - (-4282 . 48673) (-4283 . 48528) (-4284 . 48432) (-4285 . 48352) - (-4286 . 48269) (-4287 . 47942) (-4288 . 47868) (-4289 . 47840) - (-4290 . 47767) (-4291 . 47712) (-4292 . 47625) (-4293 . 47250) - (-4294 . 47140) (-4295 . 47044) (-4296 . 46946) (-4297 . 46889) - (-4298 . 46660) (-4299 . 46318) (-4300 . 46137) (-4301 . 46075) - (-4302 . 45948) (-4303 . 45545) (-4304 . 45209) (-4305 . 41546) - (-4306 . 41368) (-4307 . 41227) (-4308 . 41082) (-4309 . 40962) - (-4310 . 40672) (-4311 . 40351) (-4312 . 40323) (-4313 . 40152) - (-4314 . 38960) (-4315 . 38742) (-4316 . 38517) (-4317 . 38444) - (-4318 . 38362) (-4319 . 38282) (-4320 . 37956) (-4321 . 37755) - (-4322 . 37508) (-4323 . 37387) (-4324 . 36206) (-4325 . 36080) - (-4326 . 36052) (-4327 . 35978) (-4328 . 35723) (-4329 . 34724) - (-4330 . 34446) (-4331 . 34142) (-4332 . 33558) (-4333 . 31497) - (-4334 . 31442) (-4335 . 31310) (-4336 . 31258) (-4337 . 31172) - (-4338 . 30993) (-4339 . 30626) (-4340 . 30540) (-4341 . 30485) - (-4342 . 30338) (-4343 . 30196) (-4344 . 30042) (-4345 . 29693) - (-4346 . 29611) (-4347 . 29456) (-4348 . 29383) (-4349 . 29191) - (-4350 . 29102) (-4351 . 28975) (-4352 . 28901) (-4353 . 28337) - (-4354 . 28207) (-4355 . 28013) (-4356 . 27906) (-4357 . 27745) - (-4358 . 26660) (-4359 . 26216) (-4360 . 26158) (-4361 . 26105) - (-4362 . 25217) (-4363 . 25071) (-4364 . 24898) (-4365 . 24791) - (-4366 . 24650) (-4367 . 24546) (-4368 . 24472) (-4369 . 20472) - (-4370 . 19849) (-4371 . 19425) (-4372 . 19265) (-4373 . 19146) - (-4374 . 18961) (-4375 . 18852) (-4376 . 18761) (-4377 . 18693) - (-4378 . 18446) (-4379 . 18267) (-4380 . 18239) (-4381 . 17786) - (-4382 . 17530) (-4383 . 17252) (-4384 . 17148) (-4385 . 17048) - (-4386 . 16993) (-4387 . 16850) (-4388 . 16588) (-4389 . 16191) - (-4390 . 16089) (-4391 . 16006) (-4392 . 15805) (-4393 . 15647) - (-4394 . 15576) (-4395 . 15463) (-4396 . 15348) (-4397 . 15135) - (-4398 . 14839) (-4399 . 14693) (-4400 . 14520) (-4401 . 14425) - (-4402 . 13964) (-4403 . 13897) (-4404 . 13757) (-4405 . 13669) - (-4406 . 13333) (-4407 . 13167) (-4408 . 13096) (-4409 . 13037) - (-4410 . 12984) (-4411 . 12807) (-4412 . 5864) (-4413 . 5540) - (-4414 . 5403) (-4415 . 5210) (-4416 . 5137) (-4417 . 4857) - (-4418 . 4708) (-4419 . 4397) (-4420 . 3946) (-4421 . 3862) - (-4422 . 3655) (-4423 . 3561) (-4424 . 3398) (-4425 . 3187) - (-4426 . 3074) (-4427 . 2779) (-4428 . 2725) (-4429 . 2640) - (-4430 . 2591) (-4431 . 2492) (-4432 . 2443) (-4433 . 2319) - (-4434 . 2231) (-4435 . 2121) (-4436 . 2011) (-4437 . 1213) - (-4438 . 1103) (-4439 . 904) (-4440 . 798) (-4441 . 656) (-4442 . 594) - (-4443 . 566) (-4444 . 30))
\ No newline at end of file + (-12 (-5 *3 (-657 (-941))) (-5 *2 (-657 (-702 (-576)))) + (-5 *1 (-1132))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *3)))) + (-5 *1 (-607 *3)) (-4 *3 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856 *3)) (-4 *3 (-1122))))) +(((*1 *1 *1) (-5 *1 (-877))) + ((*1 *2 *1) + (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) + ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1180)))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1198))))) +(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-390)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-692 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1239)) + (-4 *3 (-384 *4)) (-4 *5 (-384 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1194 *1)) (-4 *1 (-1034))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) + (-4 *6 (-1071)) (-5 *2 (-657 (-657 (-702 *6)))) (-5 *1 (-1051 *6)) + (-5 *3 (-657 (-702 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1071)) + (-5 *2 (-657 (-657 (-702 *4)))) (-5 *1 (-1051 *4)) + (-5 *3 (-657 (-702 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1071)) + (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) + (-5 *3 (-657 (-702 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-941)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1071)) + (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) + (-5 *3 (-657 (-702 *5)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1194 *3)) (-4 *3 (-1071)) (-4 *1 (-1265 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) + ((*1 *1 *1 *1) (-4 *1 (-806)))) +((-1323 . 731674) (-1324 . 731596) (-1325 . 730919) (-1326 . 730852) + (-1327 . 730729) (-1328 . 730649) (-1329 . 730597) (-1330 . 730544) + (-1331 . 730223) (-1332 . 730033) (-1333 . 729921) (-1334 . 729827) + (-1335 . 729319) (-1336 . 729212) (-1337 . 729066) (-1338 . 729013) + (-1339 . 728927) (-1340 . 728647) (-1341 . 728494) (-1342 . 728394) + (-1343 . 728249) (-1344 . 728060) (-1345 . 727978) (-1346 . 727886) + (-1347 . 727668) (-1348 . 727549) (-1349 . 727406) (-1350 . 727255) + (-1351 . 727132) (-1352 . 727080) (-1353 . 726985) (-1354 . 726789) + (-1355 . 726725) (-1356 . 726644) (-1357 . 726546) (-1358 . 726419) + (-1359 . 726221) (-1360 . 725598) (-1361 . 725388) (-1362 . 724996) + (-1363 . 724723) (-1364 . 724560) (-1365 . 723687) (-1366 . 723620) + (-1367 . 723467) (-1368 . 723161) (-1369 . 723055) (-1370 . 723000) + (-1371 . 722860) (-1372 . 722766) (-1373 . 722687) (-1374 . 722406) + (-1375 . 721968) (-1376 . 721863) (-1377 . 721770) (-1378 . 721697) + (-1379 . 721560) (-1380 . 721508) (-1381 . 721365) (-1382 . 720981) + (-1383 . 720901) (-1384 . 720774) (-1385 . 720686) (-1386 . 720607) + (-1387 . 720213) (-1388 . 720142) (-1389 . 720074) (-1390 . 720043) + (-1391 . 719936) (-1392 . 719722) (-1393 . 719615) (-1394 . 719412) + (-1395 . 719361) (-1396 . 719245) (-1397 . 719065) (-1398 . 719037) + (-1399 . 718932) (-1400 . 718817) (-1401 . 718079) (-1402 . 717894) + (-1403 . 717787) (-1404 . 717736) (-1405 . 717562) (-1406 . 717509) + (-1407 . 717259) (-1408 . 717200) (-1409 . 716885) (-1410 . 716786) + (-1411 . 716715) (-1412 . 716526) (-1413 . 716420) (-1414 . 716324) + (-1415 . 716179) (-1416 . 715992) (-1417 . 715604) (-1418 . 715404) + (-1419 . 715158) (-1420 . 714585) (-1421 . 714441) (-1422 . 714206) + (-1423 . 714110) (-1424 . 714058) (-1425 . 714001) (-1426 . 713923) + (-1427 . 713714) (-1428 . 713493) (-1429 . 712978) (-1430 . 712820) + (-1431 . 712660) (-1432 . 712497) (-1433 . 712339) (-1434 . 712201) + (-1435 . 712085) (-1436 . 712032) (-1437 . 711977) (-1438 . 711841) + (-1439 . 711757) (-1440 . 711571) (-1441 . 711456) (-1442 . 711389) + (-1443 . 711336) (-1444 . 711251) (-1445 . 710656) (-1446 . 710574) + (-1447 . 710281) (-1448 . 710005) (-1449 . 709932) (-1450 . 709880) + (-1451 . 709144) (-1452 . 709092) (-1453 . 708562) (-1454 . 708484) + (-1455 . 707517) (-1456 . 706318) (-1457 . 703537) (** . 700542) + (-1459 . 700272) (-1460 . 700218) (-1461 . 700084) (-1462 . 698228) + (-1463 . 697830) (-1464 . 697612) (-1465 . 696909) (-1466 . 696859) + (-1467 . 696515) (-1468 . 696230) (-1469 . 695991) (-1470 . 695653) + (-1471 . 695547) (-1472 . 695486) (-1473 . 695418) (-1474 . 695001) + (-1475 . 694896) (-1476 . 694355) (-1477 . 694242) (-1478 . 694118) + (-1479 . 693958) (-1480 . 693740) (-1481 . 693689) (-1482 . 693476) + (-1483 . 693405) (-1484 . 693376) (-1485 . 693259) (-1486 . 693097) + (-1487 . 693020) (-1488 . 692156) (-1489 . 692087) (-1490 . 691988) + (-1491 . 691571) (-1492 . 691386) (-1493 . 691270) (-1494 . 691106) + (-1495 . 690898) (-1496 . 690828) (-1497 . 690747) (-1498 . 690624) + (-1499 . 690195) (-1500 . 690102) (-1501 . 690032) (-1502 . 689692) + (-1503 . 689638) (-1504 . 689536) (-1505 . 689463) (-1506 . 689377) + (-1507 . 689232) (-1508 . 689001) (-1509 . 688915) (-1510 . 688805) + (-1511 . 688661) (-1512 . 688633) (-1513 . 688346) (-1514 . 688262) + (-1515 . 688119) (-1516 . 688022) (-1517 . 687944) (-1518 . 687846) + (-1519 . 687747) (-1520 . 687688) (-1521 . 687605) (-1522 . 687524) + (-1523 . 687344) (-1524 . 686933) (-1525 . 686775) (-1526 . 686632) + (-1527 . 686471) (-1528 . 686414) (-1529 . 685899) (-1530 . 685793) + (-1531 . 685575) (-1532 . 685492) (-1533 . 685420) (-1534 . 685289) + (-1535 . 685064) (-1536 . 685005) (-1537 . 684813) (-1538 . 684671) + (-1539 . 684588) (-1540 . 684491) (-1541 . 684417) (-1542 . 684280) + (-1543 . 684032) (-1544 . 683862) (-1545 . 683751) (-1546 . 683492) + (-1547 . 683363) (-1548 . 683304) (-1549 . 683211) (-1550 . 682858) + (-1551 . 682727) (-1552 . 682628) (-1553 . 682548) (-1554 . 682465) + (-1555 . 682178) (-1556 . 682083) (-1557 . 681765) (-1558 . 681634) + (-1559 . 681303) (-1560 . 681190) (-1561 . 681122) (-1562 . 681026) + (-1563 . 680723) (-1564 . 680674) (-1565 . 680544) (-1566 . 680431) + (-1567 . 680377) (-1568 . 680248) (-1569 . 679987) (-1570 . 679850) + (-1571 . 679702) (-1572 . 679629) (-1573 . 679525) (-1574 . 679079) + (-1575 . 678911) (-1576 . 678817) (-1577 . 678680) (-1578 . 676712) + (-1579 . 676600) (-1580 . 676346) (-1581 . 676228) (-1582 . 676110) + (-1583 . 675940) (-1584 . 675720) (-1585 . 675642) (-1586 . 675518) + (-1587 . 675238) (-1588 . 674652) (-1589 . 674620) (-1590 . 673916) + (-1591 . 673833) (-1592 . 673689) (-1593 . 669146) (-1594 . 669004) + (-1595 . 668932) (-1596 . 668513) (-1597 . 668197) (-1598 . 668138) + (-1599 . 667781) (-1600 . 667710) (-1601 . 667657) (-1602 . 666976) + (-1603 . 666724) (-1604 . 666409) (-1605 . 666329) (-1606 . 666090) + (-1607 . 665903) (-1608 . 665836) (-1609 . 665783) (-1610 . 665665) + (-1611 . 665613) (-1612 . 665361) (-1613 . 665295) (-1614 . 665139) + (-1615 . 665021) (-1616 . 664774) (-1617 . 664697) (-1618 . 664638) + (-1619 . 664556) (-1620 . 664457) (-1621 . 664306) (-1622 . 664053) + (-1623 . 663820) (-1624 . 663722) (-1625 . 663649) (-1626 . 663505) + (-1627 . 663420) (-1628 . 663198) (-1629 . 663114) (-1630 . 662635) + (-1631 . 662417) (-1632 . 662310) (-1633 . 662196) (-1634 . 662128) + (-1635 . 662076) (-1636 . 662002) (-1637 . 661372) (-1638 . 660951) + (-1639 . 660897) (-1640 . 660826) (-1641 . 660315) (-1642 . 660220) + (-1643 . 659830) (-1644 . 659768) (-1645 . 659688) (-1646 . 659029) + (-1647 . 658804) (-1648 . 658091) (-1649 . 658017) (-1650 . 657914) + (-1651 . 657886) (-1652 . 657708) (-1653 . 657656) (-1654 . 657579) + (-1655 . 657463) (-1656 . 657042) (-1657 . 656809) (-1658 . 656735) + (-1659 . 656668) (-1660 . 656554) (-1661 . 656016) (-1662 . 655707) + (-1663 . 655395) (-1664 . 655307) (-1665 . 654711) (-1666 . 654604) + (-1667 . 654496) (-1668 . 654396) (-1669 . 654303) (-1670 . 654232) + (-1671 . 654136) (-1672 . 654021) (-1673 . 653908) (-1674 . 653827) + (-1675 . 653799) (-1676 . 653669) (-1677 . 653641) (-1678 . 653082) + (-1679 . 652957) (-1680 . 652832) (-1681 . 652750) (-1682 . 652657) + (-1683 . 652578) (-1684 . 652376) (-1685 . 648313) (-1686 . 648133) + (-1687 . 648064) (-1688 . 647908) (-1689 . 647762) (-1690 . 647676) + (-1691 . 647117) (-1692 . 647036) (-1693 . 646941) (-1694 . 646870) + (-1695 . 646116) (-1696 . 645998) (-1697 . 645935) (-1698 . 645727) + (-1699 . 644974) (-1700 . 644879) (-1701 . 644740) (-1702 . 644671) + (-1703 . 644364) (-1704 . 644078) (-1705 . 643926) (-1706 . 643867) + (-1707 . 643814) (-1708 . 643760) (-1709 . 643630) (-1710 . 643602) + (-1711 . 643523) (-1712 . 643044) (-1713 . 642992) (-1714 . 642759) + (-1715 . 642692) (-1716 . 642620) (-1717 . 642518) (-1718 . 642440) + (-1719 . 642046) (-1720 . 641972) (-1721 . 641795) (-1722 . 641676) + (-1723 . 641582) (-1724 . 641430) (-1725 . 639085) (-1726 . 638912) + (-1727 . 638778) (-1728 . 638701) (-1729 . 638649) (-1730 . 638597) + (-1731 . 638459) (-1732 . 638219) (-1733 . 638131) (-1734 . 638053) + (-1735 . 637695) (-1736 . 636393) (-1737 . 636227) (-1738 . 636069) + (-1739 . 635979) (-1740 . 635845) (-1741 . 635413) (-1742 . 635297) + (-1743 . 635131) (-1744 . 634935) (-1745 . 634865) (-1746 . 634812) + (-1747 . 634703) (-1748 . 634651) (-1749 . 634357) (-1750 . 634236) + (-1751 . 633834) (-1752 . 633733) (-1753 . 633677) (-1754 . 633586) + (-1755 . 633362) (-1756 . 633135) (-1757 . 632689) (-1758 . 631871) + (-1759 . 631839) (-1760 . 631802) (-1761 . 631728) (-1762 . 631455) + (-1763 . 631337) (-1764 . 631254) (-1765 . 631141) (-1766 . 631019) + (-1767 . 630649) (-1768 . 630617) (-1769 . 630435) (-1770 . 630228) + (-1771 . 630154) (-1772 . 630052) (-1773 . 629913) (-1774 . 629585) + (-1775 . 629293) (-1776 . 629211) (-1777 . 629093) (-1778 . 628997) + (-1779 . 628779) (-1780 . 628729) (-1781 . 628433) (-1782 . 628354) + (-1783 . 627752) (-1784 . 627703) (-1785 . 627651) (-1786 . 627489) + (-1787 . 627418) (-1788 . 627358) (-1789 . 627296) (-1790 . 627138) + (-1791 . 627026) (-1792 . 626967) (-1793 . 626871) (-1794 . 626839) + (-1795 . 626787) (-1796 . 626672) (-1797 . 626462) (-1798 . 626391) + (-1799 . 626164) (-1800 . 626092) (-1801 . 626021) (-1802 . 625802) + (-1803 . 624635) (-1804 . 624549) (-1805 . 624358) (-1806 . 623867) + (-1807 . 623560) (-1808 . 623501) (-1809 . 623141) (-1810 . 622909) + (-1811 . 622838) (-1812 . 622663) (-1813 . 622568) (-1814 . 622276) + (-1815 . 622148) (-1816 . 622058) (-1817 . 622030) (-1818 . 621926) + (-1819 . 621898) (-1820 . 621753) (-1821 . 621700) (-1822 . 621318) + (-1823 . 621200) (-1824 . 620850) (-1825 . 619448) (-1826 . 619350) + (-1827 . 619174) (-1828 . 618915) (-1829 . 618858) (-1830 . 618824) + (-1831 . 618706) (-1832 . 618275) (-1833 . 618180) (-1834 . 618085) + (-1835 . 617882) (-1836 . 617385) (-1837 . 617333) (-1838 . 617278) + (-1839 . 617207) (-1840 . 617135) (-1841 . 617038) (-1842 . 616324) + (-1843 . 616293) (-1844 . 616171) (-1845 . 615944) (-1846 . 615791) + (-1847 . 615703) (-1848 . 615374) (-1849 . 615012) (-1850 . 614978) + (-1851 . 614877) (-1852 . 614818) (-1853 . 614748) (-1854 . 614677) + (-1855 . 614617) (-1856 . 609103) (-1857 . 609072) (-1858 . 608986) + (-1859 . 608937) (-1860 . 608903) (-1861 . 608708) (-1862 . 608674) + (-1863 . 608550) (-1864 . 607987) (-1865 . 607884) (-1866 . 607491) + (-1867 . 607345) (-1868 . 607113) (-1869 . 606521) (-1870 . 606443) + (-1871 . 606303) (-1872 . 606230) (-1873 . 606112) (-1874 . 606049) + (-1875 . 605906) (-1876 . 605283) (-1877 . 605125) (-1878 . 604954) + (-1879 . 604894) (-1880 . 604452) (-1881 . 604348) (-1882 . 604138) + (-1883 . 604005) (-1884 . 603247) (-1885 . 603194) (-1886 . 602934) + (-1887 . 602866) (-1888 . 602647) (-1889 . 602312) (-1890 . 602090) + (-1891 . 602003) (-1892 . 601850) (-1893 . 601727) (-1894 . 601643) + (-1895 . 601387) (-1896 . 601300) (-1897 . 601213) (-1898 . 601136) + (-1899 . 600809) (-1900 . 600709) (-1901 . 600498) (-1902 . 600418) + (-1903 . 600346) (-1904 . 599939) (-1905 . 599905) (-1906 . 599792) + (-1907 . 599732) (-1908 . 599365) (-1909 . 599120) (-1910 . 599050) + (-1911 . 598985) (-1912 . 598794) (-1913 . 598057) (-1914 . 597956) + (-1915 . 597818) (-1916 . 597697) (-1917 . 597469) (-1918 . 597218) + (-1919 . 597141) (-1920 . 596398) (-1921 . 596150) (-1922 . 595957) + (-1923 . 595742) (-1924 . 595606) (-1925 . 595243) (-1926 . 595187) + (-1927 . 595124) (-1928 . 595001) (-1929 . 594705) (-1930 . 594652) + (-1931 . 594615) (-1932 . 594463) (-1933 . 594174) (-1934 . 594119) + (-1935 . 593989) (-1936 . 593934) (-1937 . 593768) (-1938 . 593701) + (-1939 . 592269) (-1940 . 591964) (-1941 . 591886) (-1942 . 591817) + (-1943 . 591783) (-1944 . 591682) (-1945 . 591608) (-1946 . 591476) + (-1947 . 591314) (-1948 . 591005) (-1949 . 590953) (-1950 . 590699) + (-1951 . 589819) (-1952 . 587758) (-1953 . 587690) (-1954 . 587580) + (-1955 . 587538) (-1956 . 587454) (-1957 . 587382) (-1958 . 587311) + (-1959 . 587259) (-1960 . 587157) (-1961 . 587100) (-1962 . 586460) + (-1963 . 586392) (-1964 . 586100) (-1965 . 585945) (-1966 . 585830) + (-1967 . 585686) (-1968 . 585549) (-1969 . 585455) (-1970 . 585289) + (-1971 . 584322) (-1972 . 584037) (-1973 . 583978) (-1974 . 582349) + (-1975 . 582206) (-1976 . 582074) (-1977 . 581979) (-1978 . 581821) + (-1979 . 581693) (-1980 . 581378) (-1981 . 580990) (-1982 . 580893) + (-1983 . 580726) (-1984 . 580652) (-1985 . 580553) (-1986 . 579694) + (-1987 . 579641) (-1988 . 579482) (-1989 . 578752) (-1990 . 578681) + (-1991 . 578559) (-1992 . 578151) (-1993 . 577914) (-1994 . 577825) + (-1995 . 577747) (-1996 . 577616) (-1997 . 577449) (-1998 . 576153) + (-1999 . 576037) (-2000 . 575934) (-2001 . 575864) (-2002 . 575134) + (-2003 . 575041) (-2004 . 574988) (-2005 . 574504) (-2006 . 574407) + (-2007 . 573920) (-2008 . 571692) (-2009 . 571579) (-2010 . 571415) + (-2011 . 570661) (-2012 . 569984) (-2013 . 569932) (-2014 . 569779) + (-2015 . 569550) (-2016 . 569398) (-2017 . 569304) (-2018 . 569132) + (-2019 . 569030) (-2020 . 568850) (-2021 . 568734) (-2022 . 568610) + (-2023 . 568045) (-2024 . 567785) (-2025 . 567637) (-2026 . 567451) + (-2027 . 567374) (-2028 . 567030) (-2029 . 566783) (-2030 . 566628) + (-2031 . 566578) (-2032 . 566508) (-2033 . 565943) (-2034 . 565891) + (-2035 . 565745) (-2036 . 565690) (-2037 . 565414) (-2038 . 565289) + (-2039 . 564224) (-2040 . 564089) (-2041 . 563890) (-2042 . 563325) + (-2043 . 563273) (-2044 . 562925) (-2045 . 562839) (-2046 . 562585) + (-2047 . 562441) (-2048 . 562391) (-2049 . 562193) (-2050 . 562094) + (-2051 . 561995) (-2052 . 561943) (-2053 . 560177) (-2054 . 560100) + (-2055 . 559425) (-2056 . 559252) (-2057 . 559166) (-2058 . 559005) + (-2059 . 558956) (-2060 . 558827) (-2061 . 558750) (-2062 . 558652) + (-2063 . 558101) (-2064 . 557842) (-2065 . 557687) (-2066 . 557013) + (-2067 . 555558) (-2068 . 555274) (-2069 . 555093) (-2070 . 554418) + (-2071 . 554335) (-2072 . 554183) (-2073 . 554116) (-2074 . 553586) + (-2075 . 553490) (-2076 . 553337) (-2077 . 553238) (-2078 . 553069) + (-2079 . 551579) (-2080 . 551527) (-2081 . 551450) (-2082 . 550712) + (-2083 . 550641) (-2084 . 550482) (-2085 . 550310) (-2086 . 550191) + (-2087 . 550112) (-2088 . 550027) (-2089 . 549926) (-2090 . 549363) + (-2091 . 549305) (-2092 . 549227) (-2093 . 549092) (-2094 . 549008) + (-2095 . 548871) (-2096 . 548722) (-2097 . 548644) (-2098 . 547908) + (-2099 . 547834) (-2100 . 547271) (-2101 . 547218) (-2102 . 547103) + (-2103 . 546557) (-2104 . 546480) (-2105 . 546411) (-2106 . 546325) + (-2107 . 546122) (-2108 . 545959) (-2109 . 545925) (-2110 . 545362) + (-2111 . 545295) (-2112 . 545089) (-2113 . 544659) (-2114 . 544605) + (-2115 . 544550) (-2116 . 544468) (-2117 . 544364) (-2118 . 544236) + (-2119 . 544107) (-2120 . 543431) (-2121 . 543254) (-2122 . 542871) + (-2123 . 542773) (-2124 . 542577) (-2125 . 542362) (-2126 . 542307) + (-2127 . 541821) (-2128 . 541353) (-2129 . 540709) (-2130 . 540606) + (-2131 . 539930) (-2132 . 539780) (-2133 . 539668) (-2134 . 539552) + (-2135 . 539481) (-2136 . 539366) (-2137 . 539154) (-2138 . 539102) + (-2139 . 538792) (-2140 . 538691) (-2141 . 537520) (-2142 . 536995) + (-2143 . 536319) (-2144 . 536250) (-2145 . 536197) (-2146 . 536145) + (-2147 . 536062) (-2148 . 535126) (-2149 . 535046) (-2150 . 534808) + (-2151 . 534738) (-2152 . 534685) (-2153 . 534570) (-2154 . 534455) + (-2155 . 533891) (-2156 . 533794) (-2157 . 533701) (-2158 . 533290) + (-2159 . 533192) (-2160 . 532987) (-2161 . 532909) (-2162 . 532835) + (-2163 . 532768) (-2164 . 532649) (-2165 . 531513) (-2166 . 530949) + (-2167 . 530792) (-2168 . 530482) (-2169 . 529718) (-2170 . 529605) + (-2171 . 529392) (-2172 . 529333) (-2173 . 529150) (-2174 . 528945) + (-2175 . 528871) (-2176 . 528794) (-2177 . 528230) (-2178 . 528032) + (-2179 . 527574) (-2180 . 527522) (-2181 . 527222) (-2182 . 526926) + (-2183 . 526873) (-2184 . 526817) (-2185 . 526614) (-2186 . 526123) + (-2187 . 526053) (-2188 . 525490) (-2189 . 525391) (-2190 . 525363) + (-2191 . 525205) (-2192 . 524955) (-9 . 524927) (-2194 . 524781) + (-2195 . 524713) (-2196 . 524636) (-2197 . 524306) (-2198 . 524253) + (-2199 . 524151) (-2200 . 524065) (-8 . 524037) (-2202 . 523879) + (-2203 . 523632) (-2204 . 523493) (-2205 . 523330) (-2206 . 523176) + (-2207 . 523003) (-2208 . 522876) (-2209 . 521814) (-2210 . 521762) + (-2211 . 521654) (-2212 . 521463) (-2213 . 521402) (-7 . 521374) + (-2215 . 521167) (-2216 . 520600) (-2217 . 520501) (-2218 . 520338) + (-2219 . 520243) (-2220 . 519757) (-2221 . 519699) (-2222 . 519634) + (-2223 . 519554) (-2224 . 519483) (-2225 . 519327) (-2226 . 519190) + (-2227 . 519107) (-2228 . 518991) (-2229 . 518883) (-2230 . 518422) + (-2231 . 518299) (-2232 . 518004) (-2233 . 517831) (-2234 . 517715) + (-2235 . 517622) (-2236 . 517556) (-2237 . 517528) (-2238 . 517475) + (-2239 . 517350) (-2240 . 517283) (-2241 . 517227) (-2242 . 517126) + (-2243 . 516932) (-2244 . 516842) (-2245 . 516789) (-2246 . 516618) + (-2247 . 516477) (-2248 . 516343) (-2249 . 516065) (-2250 . 515925) + (-2251 . 515863) (-2252 . 515715) (-2253 . 515662) (-2254 . 515538) + (-2255 . 515094) (-2256 . 514668) (-2257 . 514538) (-2258 . 514430) + (-2259 . 514171) (-2260 . 514142) (-2261 . 514054) (-2262 . 514002) + (-2263 . 512822) (-2264 . 512699) (-2265 . 512604) (-2266 . 512520) + (-2267 . 512392) (-2268 . 512332) (-2269 . 512210) (-2270 . 512044) + (-2271 . 511913) (-2272 . 511803) (-2273 . 511750) (-2274 . 511698) + (-2275 . 511670) (-2276 . 511230) (-2277 . 511001) (-2278 . 510685) + (-2279 . 510471) (-2280 . 510400) (-2281 . 510347) (-2282 . 510208) + (-2283 . 510137) (-2284 . 510060) (-2285 . 509983) (-2286 . 509888) + (-2287 . 509756) (-2288 . 509660) (-2289 . 509601) (-2290 . 509331) + (-2291 . 509228) (-2292 . 509145) (-2293 . 509027) (-2294 . 508813) + (-2295 . 508753) (-2296 . 508722) (-2297 . 508586) (-2298 . 508467) + (-2299 . 508415) (-2300 . 508354) (-2301 . 508301) (-2302 . 508122) + (-2303 . 507974) (-2304 . 507331) (-2305 . 507279) (-2306 . 507194) + (-2307 . 506970) (-2308 . 506869) (-2309 . 506781) (-2310 . 506604) + (-2311 . 506511) (-2312 . 506452) (-2313 . 506339) (-2314 . 506235) + (-2315 . 506031) (-2316 . 505863) (-2317 . 505550) (-2318 . 505464) + (-2319 . 505273) (-2320 . 498330) (-2321 . 498229) (-2322 . 498100) + (-2323 . 497962) (-2324 . 497872) (-2325 . 497757) (-2326 . 497626) + (-2327 . 497482) (-2328 . 497427) (-2329 . 497103) (-2330 . 496960) + (-2331 . 496856) (-2332 . 496802) (-2333 . 496750) (-2334 . 496504) + (-2335 . 496430) (-2336 . 496288) (-2337 . 496180) (-2338 . 495804) + (-2339 . 495667) (-2340 . 495510) (-2341 . 495454) (-2342 . 495355) + (-2343 . 494820) (-2344 . 494574) (-2345 . 494546) (-2346 . 494451) + (-2347 . 494395) (-2348 . 494340) (-2349 . 494147) (-2350 . 494095) + (-2351 . 494027) (-2352 . 493909) (-2353 . 493629) (-2354 . 493574) + (-2355 . 493542) (-2356 . 492725) (-2357 . 492652) (-2358 . 492579) + (-2359 . 490798) (-2360 . 490546) (-2361 . 490515) (-2362 . 490162) + (-2363 . 489734) (-2364 . 489350) (-2365 . 489153) (-2366 . 489032) + (-2367 . 488955) (-2368 . 488744) (-2369 . 488600) (-2370 . 488320) + (-2371 . 487991) (-2372 . 487867) (-2373 . 487776) (-2374 . 487633) + (-2375 . 487362) (-2376 . 487140) (-2377 . 487052) (-2378 . 486916) + (-2379 . 486864) (-2380 . 486759) (-2381 . 486610) (-2382 . 486423) + (-2383 . 486370) (-2384 . 486254) (-2385 . 486158) (-2386 . 486059) + (-2387 . 485837) (-2388 . 485757) (-2389 . 485653) (-2390 . 485342) + (-2391 . 485149) (-2392 . 484838) (-2393 . 484128) (-2394 . 484058) + (-2395 . 483987) (-2396 . 483896) (-2397 . 483819) (-2398 . 483704) + (-2399 . 483595) (-2400 . 483530) (-2401 . 483374) (-2402 . 482923) + (-2403 . 482822) (-2404 . 482625) (-2405 . 482198) (-2406 . 481813) + (-2407 . 481694) (-2408 . 481312) (-2409 . 481226) (-2410 . 481061) + (-2411 . 480977) (-2412 . 480849) (-2413 . 480750) (-2414 . 480683) + (-2415 . 480612) (-2416 . 480524) (-2417 . 480440) (-2418 . 480169) + (-2419 . 480117) (-2420 . 479963) (-2421 . 479906) (-2422 . 479699) + (-2423 . 479655) (-2424 . 479627) (-2425 . 479533) (-2426 . 479445) + (-2427 . 479037) (-2428 . 478943) (-2429 . 478875) (-2430 . 478719) + (-2431 . 478615) (-2432 . 478521) (-2433 . 478426) (-2434 . 478266) + (-2435 . 478145) (-2436 . 478061) (-2437 . 478009) (-2438 . 477715) + (-2439 . 477642) (-2440 . 477291) (-2441 . 476916) (-2442 . 476753) + (-2443 . 476676) (-2444 . 476386) (-2445 . 476358) (-2446 . 476179) + (-2447 . 475786) (-2448 . 475705) (-2449 . 475638) (-2450 . 475610) + (-2451 . 475219) (-2452 . 475104) (-2453 . 474893) (-2454 . 474708) + (-2455 . 474592) (-2456 . 474211) (-2457 . 474129) (-2458 . 474034) + (-2459 . 473965) (-2460 . 473486) (-2461 . 473433) (-2462 . 473320) + (-2463 . 473239) (-2464 . 473156) (-2465 . 472906) (-2466 . 472571) + (-2467 . 472443) (-2468 . 472224) (-2469 . 471356) (-2470 . 471236) + (-2471 . 470941) (-2472 . 470753) (-2473 . 470595) (-2474 . 470476) + (-2475 . 470374) (-2476 . 470259) (-2477 . 470202) (-2478 . 470100) + (-2479 . 469954) (-2480 . 469900) (-2481 . 469523) (-2482 . 469412) + (-2483 . 469189) (-2484 . 468603) (-2485 . 468443) (-2486 . 468327) + (-2487 . 468277) (-2488 . 468194) (-2489 . 468012) (-2490 . 467927) + (-2491 . 467700) (-2492 . 467093) (-2493 . 466993) (-2494 . 466941) + (-2495 . 466826) (-2496 . 466484) (-2497 . 466432) (-2498 . 464843) + (-2499 . 464794) (-2500 . 464710) (-2501 . 464467) (-2502 . 463989) + (-2503 . 463937) (-2504 . 463720) (-2505 . 463538) (-2506 . 463407) + (-2507 . 463340) (-2508 . 463241) (-2509 . 462972) (-2510 . 462855) + (-2511 . 458695) (-2512 . 458322) (-2513 . 458294) (-2514 . 458200) + (-2515 . 457666) (-2516 . 457632) (-2517 . 457573) (-2518 . 457541) + (-2519 . 457492) (-2520 . 457406) (-2521 . 457311) (-2522 . 457201) + (-2523 . 456825) (-2524 . 456743) (-2525 . 456613) (-2526 . 456532) + (-2527 . 456282) (-2528 . 456158) (-2529 . 456105) (-2530 . 455987) + (-2531 . 455859) (-2532 . 455273) (-2533 . 455194) (-2534 . 455086) + (-2535 . 454847) (-2536 . 454770) (-2537 . 454682) (-2538 . 454624) + (-2539 . 454545) (-2540 . 454468) (-2541 . 454357) (-2542 . 454274) + (-2543 . 454116) (-2544 . 453926) (-2545 . 453765) (-2546 . 453694) + (-2547 . 453584) (-2548 . 453515) (-2549 . 453397) (-2550 . 453273) + (-2551 . 453205) (-2552 . 453086) (-2553 . 453003) (-2554 . 452951) + (-2555 . 452823) (-2556 . 452025) (-2557 . 451919) (-2558 . 451750) + (-2559 . 451652) (-2560 . 451290) (-2561 . 451174) (-2562 . 451071) + (-2563 . 450941) (-2564 . 450831) (-2565 . 450590) (-2566 . 450556) + (-2567 . 450451) (-2568 . 450350) (-2569 . 450124) (-2570 . 450071) + (-2571 . 449970) (-2572 . 449869) (-2573 . 449670) (-2574 . 449430) + (-2575 . 449314) (-2576 . 449219) (-2577 . 449064) (-2578 . 449009) + (-2579 . 447891) (-2580 . 447468) (-2581 . 447222) (-2582 . 447119) + (-2583 . 447013) (-2584 . 446934) (-2585 . 446862) (-2586 . 446799) + (-2587 . 446672) (-2588 . 446613) (-2589 . 446390) (-2590 . 446310) + (-2591 . 446224) (-2592 . 446082) (-2593 . 445927) (-2594 . 445717) + (-2595 . 445664) (-2596 . 445535) (-2597 . 445391) (-2598 . 443963) + (-2599 . 443882) (-2600 . 443779) (-2601 . 443331) (-2602 . 443265) + (-2603 . 442729) (-2604 . 442596) (-2605 . 442315) (-2606 . 442059) + (-2607 . 442004) (-2608 . 441937) (-2609 . 441728) (-2610 . 441397) + (-2611 . 441254) (-2612 . 441158) (-2613 . 441099) (-2614 . 439803) + (-2615 . 439630) (-2616 . 439330) (-2617 . 439278) (-2618 . 439159) + (-2619 . 439029) (-2620 . 438871) (-2621 . 438775) (-2622 . 438400) + (-2623 . 438316) (-2624 . 438221) (-2625 . 438123) (-2626 . 437871) + (-2627 . 437837) (-2628 . 437619) (-2629 . 437367) (-2630 . 437293) + (-2631 . 437130) (-2632 . 427680) (-2633 . 427577) (-2634 . 426931) + (-2635 . 426784) (-2636 . 426643) (-2637 . 426583) (-2638 . 426191) + (-2639 . 426136) (-2640 . 425743) (-2641 . 425633) (-2642 . 425560) + (-2643 . 425475) (-2644 . 425320) (-2645 . 424728) (-2646 . 424624) + (-2647 . 424565) (-2648 . 424263) (-2649 . 424178) (-2650 . 421922) + (-2651 . 421836) (-2652 . 421726) (-2653 . 421627) (-2654 . 421554) + (-2655 . 421483) (-2656 . 421430) (-2657 . 421342) (-2658 . 421290) + (-2659 . 421159) (-2660 . 421082) (-2661 . 421015) (-2662 . 420876) + (-2663 . 420733) (-2664 . 420680) (-2665 . 420621) (-2666 . 420569) + (-2667 . 420414) (-2668 . 420296) (-2669 . 420210) (-2670 . 420133) + (-2671 . 420030) (-2672 . 419959) (-2673 . 419806) (-2674 . 419296) + (-2675 . 419231) (-2676 . 419157) (-2677 . 418870) (-2678 . 418681) + (-2679 . 418499) (-2680 . 418417) (-2681 . 418316) (-2682 . 418219) + (-2683 . 418063) (-2684 . 417829) (-2685 . 417764) (-2686 . 417697) + (-2687 . 417614) (-2688 . 417272) (-2689 . 417102) (-2690 . 417039) + (-2691 . 416612) (-2692 . 416371) (-2693 . 416273) (-2694 . 416034) + (-2695 . 415668) (-2696 . 415561) (-2697 . 415403) (-2698 . 415290) + (-2699 . 415012) (-2700 . 414588) (-2701 . 412173) (-2702 . 411886) + (-2703 . 411834) (-2704 . 408171) (-2705 . 408030) (-2706 . 407963) + (-2707 . 407621) (-2708 . 407372) (-2709 . 407263) (-2710 . 407189) + (-2711 . 407129) (-2712 . 407076) (-2713 . 407021) (-2714 . 406925) + (-2715 . 406750) (-2716 . 406579) (-2717 . 406508) (-2718 . 406355) + (-2719 . 405877) (-2720 . 405738) (-2721 . 405568) (-2722 . 405468) + (-2723 . 405353) (-2724 . 405291) (-2725 . 405044) (-2726 . 404526) + (-2727 . 404469) (-2728 . 404412) (-2729 . 404294) (-2730 . 404134) + (-2731 . 403946) (-2732 . 403873) (-2733 . 403778) (-2734 . 403681) + (-2735 . 403595) (-2736 . 403346) (-2737 . 403147) (-2738 . 403078) + (-2739 . 402980) (-2740 . 402920) (-2741 . 402562) (-2742 . 402266) + (-2743 . 402114) (-2744 . 402047) (-2745 . 401920) (-2746 . 401832) + (-2747 . 401653) (-2748 . 401481) (-2749 . 401395) (-2750 . 401272) + (-2751 . 401165) (-2752 . 400804) (-2753 . 400566) (-2754 . 400489) + (-2755 . 400422) (-2756 . 400150) (-2757 . 400097) (-2758 . 399730) + (-12 . 399558) (-2760 . 399506) (-2761 . 399427) (-2762 . 398964) + (-2763 . 398754) (-2764 . 398626) (-2765 . 398531) (-2766 . 398459) + (-2767 . 398317) (-2768 . 397477) (-2769 . 397391) (-2770 . 397254) + (-2771 . 397121) (-2772 . 397068) (-2773 . 396930) (-2774 . 396554) + (-2775 . 396208) (-2776 . 396149) (-2777 . 395818) (-2778 . 395702) + (-2779 . 395647) (-2780 . 391647) (-2781 . 391543) (-2782 . 391387) + (-2783 . 391193) (-2784 . 391115) (-2785 . 390995) (-2786 . 390848) + (-2787 . 390787) (-2788 . 390690) (-2789 . 390510) (-2790 . 390363) + (-2791 . 390181) (-2792 . 390102) (-2793 . 390068) (-2794 . 389746) + (-2795 . 389600) (-2796 . 389572) (-2797 . 389470) (-2798 . 389326) + (-2799 . 389171) (-2800 . 389029) (-2801 . 388963) (-2802 . 388879) + (-2803 . 388587) (-2804 . 388534) (-2805 . 388338) (-2806 . 388170) + (-2807 . 388063) (-2808 . 388029) (-2809 . 387875) (-2810 . 387697) + (-2811 . 387557) (-2812 . 387470) (-2813 . 387137) (-2814 . 387020) + (-2815 . 386918) (-2816 . 386656) (-2817 . 386560) (-2818 . 386176) + (-2819 . 385827) (-2820 . 385667) (-2821 . 385612) (-2822 . 385509) + (-2823 . 385081) (-2824 . 384968) (-2825 . 384896) (-2826 . 384701) + (-2827 . 384618) (-2828 . 384445) (-2829 . 384363) (-2830 . 379024) + (-2831 . 378883) (-2832 . 378751) (-2833 . 378532) (-2834 . 378449) + (-2835 . 378332) (-2836 . 378228) (-2837 . 378088) (-2838 . 377917) + (-2839 . 377762) (-2840 . 377509) (-2841 . 377454) (-2842 . 377426) + (-2843 . 377234) (-2844 . 377182) (-2845 . 377132) (-2846 . 375984) + (-2847 . 375769) (-2848 . 375696) (-2849 . 375564) (* . 371451) + (-2851 . 371225) (-2852 . 371142) (-2853 . 371073) (-2854 . 370971) + (-2855 . 370729) (-2856 . 370576) (-2857 . 369988) (-2858 . 369916) + (-2859 . 369724) (-2860 . 369667) (-2861 . 369590) (-2862 . 369430) + (-2863 . 369379) (-2864 . 369008) (-2865 . 368897) (-2866 . 368790) + (-2867 . 368731) (-2868 . 368434) (-2869 . 368345) (-2870 . 368271) + (-2871 . 368215) (-2872 . 368143) (-2873 . 368088) (-2874 . 367969) + (-2875 . 367940) (-2876 . 367764) (-2877 . 367697) (-2878 . 367521) + (-2879 . 367438) (-2880 . 367311) (-2881 . 367039) (-2882 . 366836) + (-2883 . 366748) (-2884 . 366326) (-2885 . 366191) (-2886 . 365163) + (-2887 . 365085) (-2888 . 364970) (-2889 . 364727) (-2890 . 364653) + (-2891 . 364597) (-2892 . 364514) (-2893 . 364430) (-2894 . 364176) + (-2895 . 364055) (-2896 . 363876) (-2897 . 363756) (-2898 . 363510) + (-2899 . 362946) (-2900 . 362852) (-2901 . 362621) (-2902 . 362336) + (-2903 . 362083) (-2904 . 361805) (-2905 . 361754) (-2906 . 361647) + (-2907 . 361520) (-2908 . 361491) (-2909 . 361397) (-2910 . 361315) + (-2911 . 361185) (-2912 . 361082) (-2913 . 360995) (-2914 . 360375) + (-2915 . 360303) (-2916 . 360203) (-2917 . 360137) (-2918 . 360109) + (-2919 . 360002) (-2920 . 359569) (-2921 . 359465) (-2922 . 359396) + (-2923 . 359168) (-2924 . 358974) (-2925 . 358815) (-2926 . 358631) + (-2927 . 357333) (-2928 . 357232) (-2929 . 357205) (-2930 . 356946) + (-2931 . 356788) (-2932 . 356185) (-2933 . 356113) (-2934 . 355946) + (-2935 . 355875) (-2936 . 355714) (-2937 . 355284) (-2938 . 355197) + (-2939 . 355060) (-2940 . 354907) (-2941 . 354840) (-2942 . 354779) + (-2943 . 354448) (-2944 . 354270) (-2945 . 354172) (-2946 . 353330) + (-2947 . 353280) (-2948 . 352195) (-2949 . 352057) (-2950 . 351962) + (-2951 . 351809) (-2952 . 351677) (-2953 . 351091) (-2954 . 350997) + (-2955 . 350944) (-2956 . 350799) (-2957 . 350549) (-2958 . 350471) + (-2959 . 350027) (-2960 . 349920) (-2961 . 349672) (-2962 . 349449) + (-2963 . 349138) (-2964 . 349055) (-2965 . 348862) (-2966 . 348789) + (-2967 . 348701) (-2968 . 348410) (-2969 . 348352) (-2970 . 348257) + (-2971 . 347071) (-2972 . 346796) (-2973 . 346723) (-2974 . 346622) + (-2975 . 346569) (-2976 . 346224) (-2977 . 345945) (-2978 . 345800) + (-2979 . 345692) (-2980 . 345639) (-2981 . 345580) (-2982 . 344398) + (-2983 . 344136) (-2984 . 343980) (-2985 . 343721) (-2986 . 343568) + (-2987 . 343433) (-2988 . 343304) (-2989 . 343177) (-2990 . 343145) + (-2991 . 342719) (-2992 . 341831) (-2993 . 341312) (-2994 . 341217) + (-2995 . 339009) (-2996 . 338844) (-2997 . 338761) (-2998 . 338151) + (-2999 . 337913) (-3000 . 337509) (-3001 . 337454) (-3002 . 337263) + (-3003 . 337117) (-3004 . 336998) (-3005 . 336124) (-3006 . 336047) + (-3007 . 334707) (-3008 . 334569) (-3009 . 334444) (-3010 . 334308) + (-3011 . 333975) (-3012 . 333849) (-3013 . 333676) (-3014 . 333518) + (-3015 . 333191) (-3016 . 333120) (-3017 . 333047) (-3018 . 333015) + (-3019 . 332890) (-3020 . 332690) (-3021 . 332298) (-3022 . 332157) + (-3023 . 331691) (-3024 . 331607) (-3025 . 331446) (-3026 . 331320) + (-3027 . 331223) (-3028 . 331005) (-3029 . 330806) (-3030 . 330698) + (-3031 . 330642) (-3032 . 330538) (-3033 . 330434) (-3034 . 330375) + (-3035 . 330185) (-3036 . 329994) (-3037 . 329681) (-3038 . 329612) + (-3039 . 329432) (-3040 . 329334) (-3041 . 328658) (-3042 . 328520) + (-3043 . 328361) (-3044 . 328287) (-3045 . 328230) (-3046 . 328134) + (-3047 . 328055) (-3048 . 327890) (-3049 . 327813) (-3050 . 327477) + (-3051 . 327377) (-3052 . 327248) (-3053 . 326981) (-3054 . 326670) + (-3055 . 326515) (-3056 . 326091) (-3057 . 325835) (-3058 . 325754) + (-3059 . 325596) (-3060 . 325100) (-3061 . 325047) (-3062 . 324952) + (-3063 . 324758) (-3064 . 324681) (-3065 . 324471) (-3066 . 324372) + (-3067 . 324212) (-3068 . 324159) (-3069 . 324107) (-3070 . 323935) + (-3071 . 323883) (-3072 . 323784) (-3073 . 323727) (-3074 . 323289) + (-3075 . 323105) (-3076 . 322940) (-3077 . 322867) (-3078 . 322748) + (-3079 . 322498) (-3080 . 322326) (-3081 . 322183) (-3082 . 321523) + (-3083 . 321426) (-3084 . 321238) (-3085 . 321156) (-3086 . 321061) + (-3087 . 320947) (-3088 . 320762) (-3089 . 320617) (-3090 . 320445) + (-3091 . 320317) (-3092 . 320220) (-3093 . 320046) (-3094 . 319976) + (-3095 . 319916) (-3096 . 319803) (-3097 . 319195) (-3098 . 319086) + (-3099 . 318948) (-3100 . 318776) (-3101 . 318688) (-3102 . 318242) + (-3103 . 318104) (-3104 . 317981) (-3105 . 317929) (-3106 . 317788) + (-3107 . 317732) (-3108 . 317665) (-3109 . 317574) (-3110 . 317416) + (-3111 . 317258) (-3112 . 317185) (-3113 . 316534) (-3114 . 316266) + (-3115 . 316181) (-3116 . 316079) (-3117 . 316007) (-3118 . 315939) + (-3119 . 315726) (-3120 . 315538) (-3121 . 315397) (-3122 . 315344) + (-3123 . 315310) (-3124 . 315214) (-3125 . 315067) (-3126 . 314990) + (-3127 . 314743) (-3128 . 314548) (-3129 . 314333) (-3130 . 314232) + (-3131 . 314123) (-3132 . 313781) (-3133 . 313678) (-3134 . 313381) + (-3135 . 312786) (-3136 . 312712) (-3137 . 312533) (-3138 . 312362) + (-3139 . 311945) (-3140 . 311868) (-3141 . 311726) (-3142 . 311630) + (-3143 . 311563) (-3144 . 311401) (-3145 . 311373) (-3146 . 311046) + (-3147 . 310976) (-3148 . 310906) (-3149 . 310805) (-3150 . 310567) + (-3151 . 310494) (-3152 . 310421) (-3153 . 310354) (-3154 . 309433) + (-3155 . 309252) (-3156 . 308799) (-3157 . 308678) (-3158 . 308626) + (-3159 . 308538) (-3160 . 308466) (-3161 . 308287) (-3162 . 308107) + (-3163 . 307954) (-3164 . 307811) (-3165 . 307325) (-3166 . 307253) + (-3167 . 306997) (-3168 . 306868) (-3169 . 306682) (-3170 . 306578) + (-3171 . 306483) (-3172 . 306431) (-3173 . 306397) (-3174 . 306178) + (-3175 . 306098) (-3176 . 305820) (-3177 . 305792) (-3178 . 305574) + (-3179 . 305400) (-3180 . 305263) (-3181 . 305120) (-3182 . 304976) + (-3183 . 304768) (-3184 . 304648) (-3185 . 304462) (-3186 . 304379) + (-3187 . 304205) (-3188 . 303758) (-3189 . 303654) (-3190 . 303554) + (-3191 . 303448) (-3192 . 303396) (-3193 . 303281) (-3194 . 303166) + (-3195 . 302991) (-3196 . 302639) (-3197 . 302468) (-3198 . 302417) + (-3199 . 302317) (-3200 . 302222) (-3201 . 301906) (-3202 . 301838) + (-3203 . 301551) (-3204 . 301450) (-3205 . 297500) (-3206 . 297406) + (-3207 . 297332) (-3208 . 296786) (-3209 . 296683) (-3210 . 296628) + (-3211 . 296526) (-3212 . 296041) (-3213 . 295900) (-3214 . 295812) + (-3215 . 295710) (-3216 . 295580) (-3217 . 295382) (-3218 . 295239) + (-3219 . 295180) (-3220 . 294950) (-3221 . 294891) (-3222 . 294672) + (-3223 . 294570) (-3224 . 294301) (-3225 . 294138) (-3226 . 294052) + (-3227 . 293964) (-3228 . 293707) (-3229 . 293445) (-3230 . 293308) + (-3231 . 293229) (-3232 . 292422) (-3233 . 292302) (-3234 . 292217) + (-3235 . 291908) (-3236 . 291856) (-3237 . 291655) (-3238 . 291589) + (-3239 . 291309) (-3240 . 291249) (-3241 . 290682) (-3242 . 290285) + (-3243 . 290256) (-3244 . 290168) (-3245 . 289990) (-3246 . 289847) + (-3247 . 289768) (-3248 . 289603) (-3249 . 289356) (-3250 . 289254) + (-3251 . 289090) (-3252 . 289039) (-3253 . 288928) (-3254 . 288821) + (-3255 . 288142) (-3256 . 288064) (-3257 . 288014) (-3258 . 287890) + (-3259 . 287820) (-3260 . 287665) (-3261 . 287582) (-3262 . 287413) + (-3263 . 287354) (-3264 . 286976) (-3265 . 286530) (-3266 . 286502) + (-3267 . 286250) (-3268 . 286154) (-3269 . 286098) (-3270 . 286014) + (-3271 . 285887) (-3272 . 285686) (-3273 . 285619) (-3274 . 285591) + (-3275 . 285467) (-3276 . 285340) (-3277 . 285240) (-3278 . 285135) + (-3279 . 284870) (-3280 . 284833) (-3281 . 284649) (-3282 . 284491) + (-3283 . 284325) (-3284 . 284272) (-3285 . 284169) (-3286 . 284117) + (-3287 . 284050) (-3288 . 283845) (-3289 . 283503) (-3290 . 283300) + (-3291 . 283089) (-3292 . 283032) (-3293 . 282961) (-3294 . 282860) + (-3295 . 282697) (-3296 . 282589) (-3297 . 282464) (-3298 . 281992) + (-3299 . 281885) (-3300 . 281757) (-3301 . 281693) (-3302 . 281534) + (-3303 . 281430) (-3304 . 281317) (-3305 . 281229) (-3306 . 281134) + (-3307 . 280950) (-3308 . 280871) (-3309 . 280773) (-3310 . 280745) + (-3311 . 280527) (-3312 . 280428) (-3313 . 280205) (-3314 . 280032) + (-3315 . 279917) (-3316 . 279836) (-3317 . 279708) (-3318 . 279568) + (-3319 . 279489) (-3320 . 279368) (-3321 . 279266) (-3322 . 279185) + (-3323 . 279048) (-3324 . 278969) (-3325 . 278914) (-3326 . 278598) + (-3327 . 278545) (-3328 . 278323) (-3329 . 277979) (-3330 . 277888) + (-3331 . 277651) (-3332 . 277565) (-3333 . 277221) (-3334 . 277138) + (-3335 . 277022) (-3336 . 276839) (-3337 . 276487) (-3338 . 276431) + (-3339 . 276335) (-3340 . 275958) (-3341 . 275762) (-3342 . 275660) + (-3343 . 275480) (-3344 . 275385) (-3345 . 275033) (-3346 . 274699) + (-3347 . 274536) (-3348 . 274450) (-3349 . 274351) (-3350 . 274274) + (-3351 . 274175) (-3352 . 274090) (-3353 . 273607) (-3354 . 273361) + (-3355 . 273264) (-3356 . 273204) (-3357 . 272998) (-3358 . 272924) + (-3359 . 272558) (-3360 . 272395) (-3361 . 272279) (-3362 . 271912) + (-3363 . 271817) (-3364 . 271725) (-3365 . 271182) (-3366 . 271045) + (-3367 . 270885) (-3368 . 270785) (-3369 . 270688) (-3370 . 270638) + (-3371 . 270410) (-3372 . 270229) (-3373 . 270049) (-3374 . 269975) + (-3375 . 269159) (-3376 . 268939) (-3377 . 268862) (-3378 . 268813) + (-3379 . 268730) (-3380 . 268568) (-3381 . 268494) (-3382 . 268305) + (-3383 . 268231) (-3384 . 268132) (-3385 . 267966) (-3386 . 267914) + (-3387 . 267810) (-3388 . 267723) (-3389 . 267613) (-3390 . 267395) + (-3391 . 267299) (-3392 . 267082) (-3393 . 266997) (-3394 . 266875) + (-3395 . 266719) (-3396 . 266556) (-3397 . 265486) (-3398 . 265385) + (-3399 . 265332) (-3400 . 265265) (-3401 . 265193) (-3402 . 264689) + (-3403 . 263611) (-3404 . 263537) (-3405 . 263307) (-3406 . 263158) + (-3407 . 263124) (-3408 . 263011) (-3409 . 262150) (-3410 . 262071) + (-3411 . 261974) (-3412 . 261880) (-3413 . 261813) (-3414 . 261684) + (-3415 . 260724) (-3416 . 260658) (-3417 . 260112) (-3418 . 259672) + (-3419 . 259613) (-3420 . 259548) (-3421 . 259474) (-3422 . 259368) + (-3423 . 259281) (-3424 . 259228) (-3425 . 258981) (-3426 . 258874) + (-3427 . 258453) (-3428 . 258397) (-3429 . 258347) (-3430 . 258113) + (-3431 . 257011) (-3432 . 256427) (-3433 . 254697) (-3434 . 254401) + (-3435 . 253868) (-3436 . 253809) (-3437 . 253392) (-3438 . 253309) + (-3439 . 253052) (-3440 . 252932) (-3441 . 252707) (-3442 . 252604) + (-3443 . 252459) (-3444 . 252363) (-3445 . 252269) (-3446 . 251860) + (-3447 . 251832) (-3448 . 251689) (-3449 . 251624) (-3450 . 251551) + (-3451 . 251499) (-3452 . 251468) (-3453 . 251327) (-3454 . 251197) + (-3455 . 251074) (-3456 . 250876) (-3457 . 250697) (-3458 . 250665) + (-3459 . 250380) (-3460 . 250352) (-3461 . 250205) (-3462 . 249899) + (-3463 . 249822) (-3464 . 249505) (-3465 . 249389) (-3466 . 249319) + (-3467 . 248931) (-3468 . 248287) (-3469 . 248225) (-3470 . 247939) + (-3471 . 247865) (-3472 . 247755) (-3473 . 247587) (-3474 . 247535) + (-3475 . 247465) (-3476 . 247394) (-3477 . 247251) (-3478 . 246850) + (-3479 . 246737) (-3480 . 246515) (-3481 . 246412) (-3482 . 245964) + (-3483 . 245908) (-3484 . 245831) (-3485 . 245750) (-3486 . 245212) + (-3487 . 245071) (-3488 . 244913) (-3489 . 244827) (-3490 . 244686) + (-3491 . 244608) (-3492 . 244362) (-3493 . 244328) (-3494 . 244242) + (-3495 . 244077) (-3496 . 243830) (-3497 . 243685) (-3498 . 243540) + (-3499 . 243247) (-3500 . 243134) (-3501 . 242976) (-3502 . 242850) + (-3503 . 242762) (-3504 . 242543) (-3505 . 242509) (-3506 . 242421) + (-3507 . 242318) (-3508 . 242222) (-3509 . 242060) (-3510 . 241833) + (-3511 . 241606) (-3512 . 241523) (-3513 . 241463) (-3514 . 241072) + (-3515 . 222497) (-3516 . 222423) (-3517 . 222175) (-3518 . 222097) + (-3519 . 222013) (-3520 . 221761) (-3521 . 221678) (-3522 . 221010) + (-3523 . 220822) (-3524 . 220760) (-3525 . 220691) (-3526 . 220578) + (-3527 . 220454) (-3528 . 219841) (-3529 . 217020) (-3530 . 216918) + (-3531 . 216823) (-3532 . 216332) (-3533 . 216249) (-3534 . 216125) + (-3535 . 215640) (-3536 . 215536) (-3537 . 215009) (-3538 . 214903) + (-3539 . 214847) (-3540 . 214773) (-3541 . 214559) (-3542 . 214132) + (-3543 . 214079) (-3544 . 213984) (-3545 . 212407) (-3546 . 212166) + (-3547 . 211895) (-3548 . 211867) (-3549 . 211815) (-3550 . 211547) + (-3551 . 211365) (-3552 . 211233) (-3553 . 211018) (-3554 . 210934) + (-3555 . 210842) (-3556 . 210183) (-3557 . 210024) (-3558 . 209788) + (-3559 . 208342) (-3560 . 208184) (-3561 . 208156) (-3562 . 208083) + (-3563 . 207900) (-3564 . 207411) (-3565 . 207232) (-3566 . 207120) + (-3567 . 206972) (-3568 . 206884) (-3569 . 206710) (-3570 . 206452) + (-3571 . 206097) (-3572 . 206002) (-3573 . 205949) (-3574 . 205826) + (-3575 . 205584) (-3576 . 205439) (-3577 . 205353) (-3578 . 205260) + (-3579 . 205205) (-3580 . 205117) (-3581 . 205065) (-3582 . 205009) + (-3583 . 204761) (-3584 . 204702) (-3585 . 203160) (-3586 . 202908) + (-3587 . 202810) (-3588 . 202684) (-3589 . 202318) (-3590 . 202194) + (-3591 . 202081) (-3592 . 201994) (-3593 . 201867) (-3594 . 201815) + (-3595 . 201730) (-3596 . 201520) (-3597 . 201417) (-3598 . 201260) + (-3599 . 201139) (-3600 . 200780) (-3601 . 200235) (-3602 . 200116) + (-3603 . 199898) (-3604 . 199523) (-3605 . 199468) (-3606 . 198980) + (-3607 . 198795) (-3608 . 198738) (-3609 . 198564) (-3610 . 197472) + (-3611 . 197252) (-3612 . 197057) (-3613 . 196890) (-3614 . 196508) + (-3615 . 196403) (-3616 . 196297) (-3617 . 195985) (-3618 . 195875) + (-3619 . 195354) (-3620 . 195251) (-3621 . 195173) (-3622 . 195001) + (-3623 . 194796) (-3624 . 194762) (-3625 . 194689) (-3626 . 194595) + (-3627 . 194522) (-3628 . 194195) (-3629 . 194139) (-3630 . 193924) + (-3631 . 193828) (-3632 . 193722) (-3633 . 193628) (-3634 . 193410) + (-3635 . 193318) (-3636 . 192809) (-3637 . 192732) (-3638 . 192459) + (-3639 . 192401) (-3640 . 192129) (-3641 . 192080) (-3642 . 191996) + (-3643 . 191821) (-3644 . 191749) (-3645 . 191692) (-3646 . 191416) + (-3647 . 190574) (-3648 . 190479) (-3649 . 190356) (-3650 . 190293) + (-3651 . 189410) (-3652 . 188828) (-3653 . 188668) (-3654 . 188584) + (-3655 . 188425) (-3656 . 188294) (-3657 . 188175) (-3658 . 188050) + (-3659 . 187821) (-3660 . 187751) (-3661 . 187671) (-3662 . 184062) + (-3663 . 183502) (-3664 . 182861) (-3665 . 182766) (-3666 . 182713) + (-3667 . 182664) (-3668 . 182584) (-3669 . 182528) (-3670 . 182432) + (-3671 . 182303) (-3672 . 182187) (-3673 . 181845) (-3674 . 181759) + (-3675 . 181580) (-3676 . 181510) (-3677 . 181409) (-3678 . 181357) + (-3679 . 181290) (-3680 . 181191) (-3681 . 181110) (-3682 . 181012) + (-3683 . 180960) (-3684 . 180779) (-3685 . 180689) (-3686 . 180560) + (-3687 . 180498) (-3688 . 180379) (-3689 . 180312) (-3690 . 180224) + (-3691 . 180171) (-3692 . 180013) (-3693 . 179882) (-3694 . 179820) + (-3695 . 179587) (-3696 . 176746) (-3697 . 176672) (-3698 . 176356) + (-3699 . 176149) (-3700 . 176077) (-3701 . 172778) (-3702 . 172701) + (-3703 . 172567) (-3704 . 172400) (-3705 . 172273) (-3706 . 172162) + (-3707 . 170935) (-3708 . 170461) (-3709 . 170367) (-3710 . 170230) + (-3711 . 170153) (-3712 . 170052) (-3713 . 169721) (-3714 . 169666) + (-3715 . 169537) (-3716 . 169509) (-3717 . 169456) (-3718 . 169053) + (-3719 . 167749) (-3720 . 167690) (-3721 . 167620) (-3722 . 167492) + (-3723 . 167423) (-3724 . 167270) (-3725 . 167173) (-3726 . 166982) + (-3727 . 166408) (-3728 . 166065) (-3729 . 165729) (-3730 . 165633) + (-3731 . 164932) (-3732 . 164881) (-3733 . 164588) (-3734 . 164309) + (-3735 . 163863) (-3736 . 163718) (-3737 . 163651) (-3738 . 163558) + (-3739 . 163380) (-3740 . 163102) (-3741 . 162923) (-3742 . 162833) + (-3743 . 162678) (-3744 . 162609) (-3745 . 162557) (-3746 . 162379) + (-3747 . 162180) (-3748 . 161855) (-3749 . 161823) (-3750 . 161678) + (-3751 . 161611) (-3752 . 161561) (-3753 . 161397) (-3754 . 161340) + (-3755 . 160589) (-3756 . 160392) (-3757 . 160100) (-3758 . 159885) + (-3759 . 159833) (-3760 . 159745) (-3761 . 159404) (-3762 . 159284) + (-3763 . 159086) (-3764 . 158909) (-3765 . 158880) (-3766 . 158825) + (-3767 . 158772) (-3768 . 158473) (-3769 . 158137) (-3770 . 157745) + (-3771 . 157518) (-3772 . 157228) (-3773 . 157161) (-3774 . 156897) + (-3775 . 156680) (-3776 . 156137) (-3777 . 156060) (-3778 . 155096) + (-3779 . 155022) (-3780 . 154939) (-3781 . 154862) (-3782 . 154541) + (-3783 . 154489) (-3784 . 154461) (-3785 . 154308) (-3786 . 154152) + (-3787 . 154097) (-3788 . 154044) (-3789 . 153873) (-3790 . 153759) + (-3791 . 153643) (-3792 . 152381) (-3793 . 152174) (-3794 . 152146) + (-3795 . 152046) (-3796 . 151821) (-3797 . 151699) (-3798 . 151528) + (-3799 . 151440) (-3800 . 151159) (-3801 . 151016) (-3802 . 150851) + (-3803 . 150587) (-3804 . 150553) (-3805 . 150289) (-3806 . 148993) + (-3807 . 148939) (-3808 . 148641) (-3809 . 148509) (-3810 . 148261) + (-3811 . 147882) (-3812 . 147780) (-3813 . 147667) (-3814 . 147415) + (-3815 . 147317) (-3816 . 147147) (-3817 . 147051) (-3818 . 146959) + (-3819 . 146741) (-3820 . 146639) (-3821 . 146504) (-3822 . 146396) + (-3823 . 146163) (-3824 . 146135) (-3825 . 145928) (-3826 . 145683) + (-3827 . 145582) (-3828 . 145364) (-3829 . 145272) (-3830 . 145047) + (-3831 . 145013) (-3832 . 144849) (-3833 . 144753) (-3834 . 144656) + (-3835 . 144555) (-3836 . 144434) (-3837 . 144254) (-3838 . 144202) + (-3839 . 144092) (-3840 . 144006) (-3841 . 143933) (-3842 . 143836) + (-3843 . 143784) (-3844 . 143626) (-3845 . 142760) (-3846 . 142599) + (-3847 . 142462) (-3848 . 142385) (-3849 . 142357) (-3850 . 142194) + (-3851 . 142112) (-3852 . 142052) (-3853 . 141717) (-3854 . 141234) + (-3855 . 141004) (-3856 . 140773) (-3857 . 140700) (-3858 . 140610) + (-3859 . 140530) (-3860 . 140194) (-3861 . 140067) (-3862 . 139990) + (-3863 . 139934) (-3864 . 139547) (-3865 . 139177) (-3866 . 139121) + (-3867 . 139048) (-3868 . 138962) (-3869 . 137176) (-3870 . 136850) + (-3871 . 136731) (-3872 . 136509) (-3873 . 136454) (-3874 . 135940) + (-3875 . 135808) (-3876 . 135734) (-3877 . 135578) (-3878 . 135226) + (-3879 . 135198) (-3880 . 134997) (-3881 . 134895) (-3882 . 134807) + (-3883 . 134526) (-3884 . 134323) (-3885 . 134219) (-3886 . 134169) + (-3887 . 134016) (-3888 . 133960) (-3889 . 133887) (-3890 . 133766) + (-3891 . 133671) (-3892 . 133407) (-3893 . 132880) (-3894 . 132671) + (-3895 . 132618) (-3896 . 132587) (-3897 . 132429) (-3898 . 132356) + (-3899 . 131175) (-3900 . 131111) (-3901 . 130512) (-3902 . 130423) + (-3903 . 130313) (-3904 . 130254) (-3905 . 130157) (-3906 . 130044) + (-3907 . 129708) (-3908 . 129538) (-3909 . 129450) (-3910 . 129324) + (-3911 . 129195) (-3912 . 129109) (-3913 . 128975) (-3914 . 128841) + (-3915 . 128676) (-3916 . 128581) (-3917 . 128057) (-3918 . 127867) + (-3919 . 127453) (-3920 . 127198) (-3921 . 126824) (-3922 . 125481) + (-3923 . 125340) (-3924 . 125069) (-3925 . 124878) (-3926 . 124826) + (-3927 . 124400) (-3928 . 124273) (-3929 . 123274) (-3930 . 123136) + (-3931 . 122821) (-3932 . 122737) (-3933 . 122527) (-3934 . 122254) + (-3935 . 122015) (-3936 . 121876) (-3937 . 121698) (-3938 . 121310) + (-3939 . 120975) (-3940 . 120767) (-3941 . 120705) (-3942 . 120427) + (-3943 . 120370) (-3944 . 120227) (-3945 . 120091) (-3946 . 120017) + (-3947 . 119864) (-3948 . 119805) (-3949 . 119496) (-3950 . 119390) + (-3951 . 119182) (-3952 . 118878) (-3953 . 118737) (-3954 . 118385) + (-3955 . 118167) (-3956 . 118102) (-3957 . 117957) (-3958 . 117814) + (-3959 . 117752) (-3960 . 117629) (-3961 . 117534) (-3962 . 117430) + (-3963 . 117370) (-3964 . 116786) (-3965 . 116691) (-3966 . 116464) + (-3967 . 116246) (-3968 . 116164) (-3969 . 114947) (-3970 . 114847) + (-3971 . 114734) (-3972 . 114679) (-3973 . 114589) (-3974 . 114452) + (-3975 . 114336) (-3976 . 114250) (-3977 . 113829) (-3978 . 113778) + (-3979 . 113678) (-3980 . 113590) (-3981 . 113380) (-3982 . 112861) + (-3983 . 112769) (-3984 . 112637) (-3985 . 112033) (-3986 . 111843) + (-3987 . 111332) (-3988 . 111252) (-3989 . 111195) (-3990 . 111124) + (-3991 . 111023) (-3992 . 110955) (-3993 . 110867) (-3994 . 110580) + (-3995 . 110362) (-3996 . 108230) (-3997 . 108178) (-3998 . 108094) + (-3999 . 107983) (-4000 . 107788) (-4001 . 107389) (-4002 . 107060) + (-4003 . 106989) (-4004 . 106936) (-4005 . 106835) (-4006 . 106441) + (-4007 . 106284) (-4008 . 106009) (-4009 . 105620) (-4010 . 105193) + (-4011 . 105120) (-4012 . 105026) (-4013 . 104853) (-4014 . 104783) + (-4015 . 104667) (-4016 . 104534) (-4017 . 104330) (-4018 . 104187) + (-4019 . 103411) (-4020 . 103331) (-4021 . 103126) (-4022 . 102995) + (-4023 . 102870) (-4024 . 102721) (-4025 . 102562) (-4026 . 102423) + (-4027 . 101956) (-4028 . 101870) (-4029 . 101675) (-4030 . 101601) + (-4031 . 101241) (-4032 . 101161) (-4033 . 100998) (-4034 . 100688) + (-4035 . 100634) (-4036 . 100525) (-4037 . 100451) (-4038 . 100398) + (-4039 . 100331) (-4040 . 100243) (-4041 . 100190) (-4042 . 100130) + (-4043 . 99851) (-4044 . 99729) (-4045 . 99599) (-4046 . 99420) + (-4047 . 99040) (-4048 . 98970) (-4049 . 98884) (-4050 . 98788) + (-4051 . 98689) (-4052 . 98543) (-4053 . 98462) (-4054 . 98082) + (-4055 . 98001) (-4056 . 96800) (-4057 . 96722) (-4058 . 96622) + (-4059 . 96484) (-4060 . 96189) (-4061 . 95997) (-4062 . 95923) + (-4063 . 95756) (-4064 . 95704) (-4065 . 95574) (-4066 . 95513) + (-4067 . 95481) (-4068 . 95388) (-4069 . 95292) (-4070 . 94069) + (-4071 . 79837) (-4072 . 79612) (-4073 . 79517) (-4074 . 79389) + (-4075 . 79231) (-4076 . 78985) (-4077 . 78843) (-4078 . 78203) + (-4079 . 77977) (-4080 . 77845) (-4081 . 77685) (-4082 . 77483) + (-4083 . 76872) (-4084 . 76806) (-4085 . 76739) (-4086 . 76672) + (-4087 . 76616) (-4088 . 76418) (-4089 . 76124) (-4090 . 76071) + (-4091 . 75999) (-4092 . 75891) (-4093 . 75294) (-4094 . 75184) + (-4095 . 74878) (-4096 . 74108) (-4097 . 73545) (-4098 . 73475) + (-4099 . 73087) (-4100 . 72453) (-4101 . 72300) (-4102 . 72124) + (-4103 . 71236) (-4104 . 71053) (-4105 . 70958) (-4106 . 70812) + (-4107 . 70732) (-4108 . 70446) (-4109 . 70274) (-4110 . 69711) + (-4111 . 69508) (-4112 . 69365) (-4113 . 69174) (-4114 . 69118) + (-4115 . 69023) (-4116 . 68878) (-4117 . 68703) (-4118 . 68429) + (-4119 . 68240) (-4120 . 68028) (-4121 . 67861) (-4122 . 67681) + (-4123 . 67118) (-4124 . 67021) (-4125 . 66861) (-4126 . 66753) + (-4127 . 66667) (-4128 . 66595) (-4129 . 66349) (-4130 . 65673) + (-4131 . 65309) (-4132 . 65128) (-4133 . 64909) (-4134 . 64841) + (-4135 . 64741) (-4136 . 61074) (-4137 . 60511) (-4138 . 60343) + (-4139 . 60188) (-4140 . 60083) (-4141 . 59985) (-4142 . 59632) + (-4143 . 59574) (-4144 . 59434) (-4145 . 58774) (-4146 . 58688) + (-4147 . 58479) (-4148 . 58408) (-4149 . 58379) (-4150 . 58193) + (-4151 . 58105) (-4152 . 57803) (-4153 . 57688) (-4154 . 57609) + (-4155 . 57484) (-4156 . 57419) (-4157 . 57391) (-4158 . 57342) + (-4159 . 57188) (-4160 . 57003) (-4161 . 56866) (-4162 . 56616) + (-4163 . 56324) (-4164 . 56272) (-4165 . 56104) (-4166 . 56049) + (-4167 . 55925) (-4168 . 55872) (-4169 . 55804) (-4170 . 55776) + (-4171 . 55360) (-4172 . 55210) (-4173 . 55158) (-4174 . 54983) + (-4175 . 54868) (-4176 . 54782) (-4177 . 54730) (-4178 . 54495) + (-4179 . 54297) (-4180 . 54245) (-4181 . 54068) (-4182 . 54016) + (-4183 . 53644) (-4184 . 53594) (-4185 . 53498) (-4186 . 53403) + (-4187 . 53331) (-4188 . 53132) (-4189 . 53065) (-4190 . 52947) + (-4191 . 52682) (-4192 . 52568) (-4193 . 52496) (-4194 . 52465) + (-4195 . 52346) (-4196 . 52197) (-4197 . 52067) (-4198 . 51929) + (-4199 . 51856) (-4200 . 51617) (-4201 . 51491) (-4202 . 51292) + (-4203 . 51128) (-4204 . 50856) (-4205 . 50650) (-4206 . 50593) + (-4207 . 50556) (-4208 . 50424) (-4209 . 50264) (-4210 . 50236) + (-4211 . 50165) (-4212 . 50097) (-4213 . 50001) (-4214 . 49708) + (-4215 . 48434) (-4216 . 47771) (-4217 . 47433) (-4218 . 47121) + (-4219 . 46658) (-4220 . 46485) (-4221 . 46335) (-4222 . 45746) + (-4223 . 45684) (-4224 . 45368) (-4225 . 45132) (-4226 . 45007) + (-4227 . 44875) (-4228 . 44537) (-4229 . 44389) (-4230 . 44143) + (-4231 . 44006) (-4232 . 43883) (-4233 . 43761) (-4234 . 43711) + (-4235 . 43379) (-4236 . 43258) (-4237 . 42956) (-4238 . 42808) + (-4239 . 41656) (-4240 . 41475) (-4241 . 41190) (-4242 . 41161) + (-4243 . 40929) (-4244 . 40795) (-4245 . 40652) (-4246 . 40352) + (-4247 . 39436) (-4248 . 39381) (-4249 . 39278) (-4250 . 39197) + (-4251 . 38879) (-4252 . 38823) (-4253 . 38504) (-4254 . 38391) + (-4255 . 38335) (-4256 . 38226) (-4257 . 38130) (-4258 . 38016) + (-4259 . 37964) (-4260 . 37885) (-4261 . 37787) (-4262 . 37729) + (-4263 . 37677) (-4264 . 37512) (-4265 . 35398) (-4266 . 35314) + (-4267 . 35233) (-4268 . 35115) (-4269 . 34915) (-4270 . 34821) + (-4271 . 34769) (-4272 . 34617) (-4273 . 34568) (-4274 . 34497) + (-4275 . 34373) (-4276 . 34063) (-4277 . 33918) (-4278 . 33760) + (-4279 . 33704) (-4280 . 33521) (-4281 . 33247) (-4282 . 33195) + (-4283 . 33111) (-4284 . 33042) (-4285 . 32969) (-4286 . 32815) + (-4287 . 32745) (-4288 . 32592) (-4289 . 32436) (-4290 . 32326) + (-4291 . 32151) (-4292 . 32077) (-4293 . 31844) (-4294 . 31760) + (-4295 . 31662) (-4296 . 31515) (-4297 . 31393) (-4298 . 31260) + (-4299 . 30733) (-4300 . 29737) (-4301 . 29578) (-4302 . 29412) + (-4303 . 29315) (-4304 . 29147) (-4305 . 29065) (-4306 . 28919) + (-4307 . 28860) (-4308 . 28736) (-4309 . 26958) (-4310 . 26907) + (-4311 . 26839) (-4312 . 26704) (-4313 . 26651) (-4314 . 26521) + (-4315 . 26438) (-4316 . 26376) (-4317 . 26210) (-4318 . 25627) + (-4319 . 25531) (-4320 . 25436) (-4321 . 25284) (-4322 . 25196) + (-4323 . 25100) (-4324 . 25002) (-4325 . 24863) (-4326 . 24602) + (-4327 . 24452) (-4328 . 24351) (-4329 . 24255) (-4330 . 24176) + (-4331 . 24064) (-4332 . 23930) (-4333 . 23805) (-4334 . 23647) + (-4335 . 23523) (-4336 . 23445) (-4337 . 23382) (-4338 . 22201) + (-4339 . 21849) (-4340 . 21689) (-4341 . 21550) (-4342 . 21099) + (-4343 . 19849) (-4344 . 19534) (-4345 . 19401) (-4346 . 19267) + (-4347 . 19239) (-4348 . 19037) (-4349 . 18886) (-4350 . 18682) + (-4351 . 18295) (-4352 . 17842) (-4353 . 17709) (-4354 . 17532) + (-4355 . 17214) (-4356 . 16787) (-4357 . 16728) (-4358 . 16671) + (-4359 . 16529) (-4360 . 16385) (-4361 . 16301) (-4362 . 16249) + (-4363 . 16108) (-4364 . 15749) (-4365 . 15661) (-4366 . 15569) + (-4367 . 15516) (-4368 . 15363) (-4369 . 15160) (-4370 . 14358) + (-4371 . 14224) (-4372 . 14123) (-4373 . 13904) (-4374 . 13798) + (-4375 . 13707) (-4376 . 13611) (-4377 . 13237) (-4378 . 13060) + (-4379 . 13002) (-4380 . 12935) (-4381 . 12861) (-4382 . 12227) + (-4383 . 12174) (-4384 . 12016) (-4385 . 11806) (-4386 . 11599) + (-4387 . 11542) (-4388 . 11505) (-4389 . 10686) (-4390 . 10278) + (-4391 . 10195) (-4392 . 10053) (-4393 . 9887) (-4394 . 9791) + (-4395 . 9763) (-4396 . 9662) (-4397 . 9440) (-4398 . 8936) + (-4399 . 8840) (-4400 . 8746) (-4401 . 8693) (-4402 . 8454) + (-4403 . 8380) (-4404 . 8285) (-4405 . 8070) (-4406 . 7984) + (-4407 . 7901) (-4408 . 7793) (-4409 . 7741) (-4410 . 7664) + (-4411 . 7523) (-4412 . 7413) (-4413 . 6761) (-4414 . 6690) + (-4415 . 6661) (-4416 . 6608) (-4417 . 6368) (-4418 . 6037) + (-4419 . 5821) (-4420 . 5699) (-4421 . 5377) (-4422 . 5280) + (-4423 . 4990) (-4424 . 4911) (-4425 . 4704) (-4426 . 4196) + (-4427 . 4144) (-4428 . 4085) (-4429 . 3295) (-4430 . 3222) + (-4431 . 3144) (-4432 . 3026) (-4433 . 2930) (-4434 . 2749) + (-4435 . 2672) (-4436 . 2327) (-4437 . 2231) (-4438 . 2107) + (-4439 . 2027) (-4440 . 825) (-4441 . 673) (-4442 . 544) (-4443 . 452) + (-4444 . 322) (-4445 . 104) (-4446 . 30))
\ No newline at end of file |